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ABSTRACT 

Lake Malawi is the second largest lake in Africa, supporting diverse populations of endemic cichlids 

and supplying essential water resources to Malawi, Mozambique and Tanzania. However, population 

growth, rapid deforestation and intensive agriculture, especially in the southern catchments, have 

accelerated soil erosion during the last half century. These anthropogenically-disturbed catchments 

have caused rivers to transport greater sediment loads into Lake Malawi than rivers within forested 

catchments. Lake Malawi’s immense size and oligotrophic nature may retard detection of inputs of 

external contaminants. Reversing the effects of increased nutrient loading to Lake Malawi once 

observed would likely take generations, as the residence time of water is over 140 years. Therefore, 

sensitive metrics are required to assess the effects of land use change and climate variability in Lake 

Malawi in advance of deleterious effects. In this study, paleolimnological analyses of four sediment 

cores collected in 1997 and 1998 along a longitudinal transect of Lake Malawi, dated with 210Pb 

analyses and analyzed for biogenic silica and sedimentary diatom assemblages, were used to create a 

long-term water quality dataset. These four sites span gradients of land use and latitude in order to 

reconstruct limnological conditions over the whole lake during the last 300 years. Paleoecological 

results indicate that patterns of diatom assemblage change are not uniform lake wide. Southern cores 

contain evidence of nutrient enrichment starting as early as ca. 1940, indicated by increased silica, 

carbon and nitrogen burial. By ca. 1970, increased rates of sedimentation, diatom influx and changes 

in diatom community composition, characterized by increased percent abundance of eutrophic diatom 

taxa, are attributable to accelerated enrichment by terrestrial soil erosion. The succession of diatoms 

in southern Lake Malawi begins with high percent abundance of Aulacoseira nyassensis and 

Fragilaria africana, which thrive in nutrient-rich waters, followed by a shift towards diatom taxa 

with reduced silica requirements by ca. 1980 (e.g. Stephanodiscus nyassae, S. minutulus, S. muelleri, 

Cyclostephanos and small Nitzschia species.), a pattern comparable to the eutrophication-induced 

decline in silica to phosphorus ratios in Lake Victoria. In Lake Malawi, evidence of eutrophication 

extends to the mid lake as indicated by similar diatom assemblage changes in the sediment core from 
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the central region. Diatom stratigraphies from the north end of the lake indicate no observable 

impacts of land use change on the northern basin of Lake Malawi during the past 350 years. However, 

a nine-meter rise in water level ca. 1860 AD appears to have resulted in elevated diatom influxes at 

that time comparable to the recent eutrophication-induced diatom influxes of the southern cores. The 

effects of this rise in water level was recorded in all three measured sites, southern, central and 

northern Lake Malawi, indicating lake-wide increased productivity, yet changes to the diatom 

community composition were imperceptible. This study shows evidence of recent cultural 

eutrophication altering limnological conditions with impacts to the biogeochemical cycling of silica, 

the available silica to phosphorus ratios and the biotic communities of a large portion of Lake 

Malawi. Thus, providing an early warning that proper stewardship of Lake Malawi requires effective 

management of land-use practices within the catchment to reduce soil erosion and avoid widespread 

water quality deterioration of this great lake. (Kidd, 1983) 
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INTRODUCTION 

Lake Malawi is the southernmost lake of the African Rift Valley extending from 9˚30 S to 14˚30 S 

(Figure 1) and is the second largest lake in Africa by volume (Bootsma and Hecky, 2003). Lake 

Malawi is bordered by the countries Tanzania, Mozambique and Malawi, which benefit from this 

large freshwater resource. The lake is used for drinking, irrigation, transportation, fishing, 

hydroelectricity, tourism and scientific research (Bootsma and Hecky, 1993). Lake Malawi has more 

fish species than any other lake in the world, consisting primarily of endemic cichlids (Snoeks, 1998). 

This faunal diversity, along with Lake Malawi’s immense size, slow flushing rate and great age, are 

just a few distinguished limnological features that place the lake at risk due to human land use 

changes and climate warming (Bootsma and Hecky, 1993; Tweddle, 1992; Verburg et al., 2003; 

Vollmer et al., in press). 

During the last 30 to 40 years, demands of rapidly growing human populations in the riparian 

zone of Lake Malawi have led to increased deforestation for cultivation, especially in the southern 

portion of the catchment (Cohen et al., 1996; Hudak and Wessman, 2000). Substantial deforestation 

from 1967 to 1990 in Malawi reduced the catchment from 64% to 51% forest coverage (Calder et al., 

1995) and deforestation continues at an estimated rate of 1.8 % per year on average (Hudak and 

Wessman, 2000). This loss of natural vegetation results in an exchange of a deep root system for a 

fine root system of grasses and seasonally barren soils from row crops (Hudak and Wessman, 2000). 

At the same time, Calder (1995) estimated that a decline of 13% forest cover in the catchment, 

beginning in 1967, caused a one-meter rise in lake level due to increased runoff and reduced 

evapotranspiration and forest interception. In addition to the increased runoff, current agricultural 

practices in East Africa often neglect traditional soil conservation techniques used on steep slopes, 

such as soil terracing and crop rotation, resulting in the loss of nutrients and soil fertility (Cohen et al., 

1996). Destabilization and exposure of soils (Hudak and Wessman, 2000), burning of fuel wood and 

crops (Tamatamah et al., in press), and eolian erosion of topsoil have increased riverine  
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Figure 2. Map of Lake Malawi and the surrounding catchment with 14 of the major tributaries and 

the Shire River outflow labeled. Adapted from Hecky, et al. (2003). 
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(Hecky et al., 2003) and atmospheric (Bootsma et al., 1996a) loading of nutrients in several Malawi 

catchments. Increased atmospheric and riverine loadings of phosphorus are a particular concern for 

Lake Malawi, as they are the external sources of phosphorus inputs to the lake and response times to 

changes in external inputs of phosphorus are believed to be rapid (Bootsma and Hecky, 1999).  

Land-use practices are most intensive in the southern catchments around the shallower end of 

Lake Malawi where the catchment relief is less steep than in the north and conducive to human 

habitation and extensive agriculture (Hecky et al., 2003). Therefore, lake water quality may be most 

affected by land use change at the south end of the lake. Human activities can impact the aquatic 

ecosystem by way of rivers that feed the lake and in southern Lake Malawi the Linthipe River is the 

largest, most impacted river to the southern portion of the lake (Figure 1). The Linthipe River has 

high flow variability and is responsible for transport of the greatest suspended nutrient loads into 

Lake Malawi, relative to a dozen of the most prominent inflow rivers along the Malawi coast (Hecky 

et al., 2003). Shallow, well-oxygenated waters in the south may be more sensitive to the onset of 

eutrophication in Lake Malawi than the north since nutrient inputs are effectively re-circulated during 

seasonal mixing and available to the photic zone rather than lost to the deep, anoxic monimolimnion 

in the north (Bootsma and Hecky, 2003). Consequently, increased runoff and sediment flux to the 

south end of the lake threaten the aquatic ecosystem in many ways such as modified nutrient ratios, 

altered phytoplankton communities (with reduced nutritional value), diminished light penetration and 

reduced fish habitat (Cohen et al., 1996). 

Lake Malawi is currently classified as an ultra-oligotrophic system (Guildford et al., 2000; 

Kling et al., 2001) and its large volume of water has the potential to dilute pollutants from the air and 

watershed. In the past, however, human perturbations that increase nutrient loads have had 

catastrophic effects in Lake Victoria, another African Great Lake, which serves as a cautionary 

example of the potential for land-use induced eutrophication in tropical African Great Lakes. In the 

span of 30 years (1960-1990), Lake Victoria’s trophic status shifted from oligo-mesotrophic to 

eutrophic (Kling et al., 2001) and anthropogenic eutrophication resulted in massive changes to the 
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phytoplankton community towards thinly silicified diatoms and persistence of cyanophytes (Kling et 

al., 2001; Mugidde et al., 2003; Verschuren et al., 2001). In Lake Malawi, during the 1960s, 

phytoplankton net samples from all stations in the lake were dominated by the large, heavily silicified 

diatom Aulacoseira nyassensis (Talling, 1969). But, by 1980, lightly silicified Stephanodiscus species 

and Nitzschia species had increased in abundance (Hecky and Kling, 1987). As well, monitoring of 

the phytoplankton community in the past decade in Lake Malawi revealed an increased abundance of 

cyanophytes Planktolyngbya tallingii and Anabaena in the southern portion of the basin (Hecky et al., 

1999). These cyanophytes are commonly present in African Great Lakes that tend to be nitrogen 

deficient where these species will be favoured for their ability to fix nitrogen (Mugidde et al., 2003; 

Talling, 1966; Talling and Talling, 1965). In Lake Malawi, nitrogen in the mixolimnion consists 

predominantly of biologically fixed nitrogen (Hecky et al., 1996). Fixed nitrogen is lost from the 

mixed layer by sedimentation and denitrification at the oxic-anoxic boundary with the permanently 

anoxic monimolimnion. Thus, nitrogen is less effectively recycled in the lake than phosphorus. As a 

result, nutrient enrichment is expected to reduce the nitrogen to phosphorus ratio (N:P) and favour 

nitrogen-fixing cyanophytes (Bootsma and Hecky, 1999; Guildford et al., 1999). Thus far data are too 

sparse because of infrequent sampling spatially and temporally to accurately assess whether 

perturbations in the catchment have altered the phytoplankton community composition in Lake 

Malawi beyond the range of natural variability. To do so a longer temporal perspective of the lake’s 

environmental history is necessary. 

Paleolimnology is an interdisciplinary field of science using physical, chemical and 

biological information preserved in lacustrine sediments to provide a long-term record of past 

limnological conditions and to identify the causes of change (Frey, 1988). In a paleolimnological 

study by Hecky et al. (1999), a sediment core taken from the southern basin of Lake Malawi 

(Dwangwa Delta) in 1993 exhibited signs of nutrient enrichment, with increased relative abundance 

of Aulacoseira taxa as well as higher sedimentary content of phosphorus and silica after ca. 1950. 

Similarly, Ramlal (2002) conducted carbon stable isotope analyses of sediment cores from the central 
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and southern portions of Lake Malawi, finding an increased deposition of carbon carrying an isotopic 

signature of phytoplankton in the southern basin. These results are potentially due to an increase in 

primary production through elevated allochthonous nutrient loading at the south end of the lake 

(Ramlal, 2002), but, thus far evidence for deleterious effects of changing land use is limited as to the 

impacts on carbon cycling, and the effects of land use change on water quality and the response by 

the phytoplankton community remains unidentified. 

Cultural eutrophication at the north end of Lake Malawi may be less significant as population 

densities are substantially lower than in the south, hence nutrient loads are much lower (Hecky et al., 

2003). However, another factor potentially controlling Lake Malawi’s nutrient availability and 

phytoplankton community composition is climatic variability. Lake Malawi’s large surface area 

dictates the water budget, predominantly composed of direct precipitation to and evaporation from the 

lake surface area, making lake-level fluctuations particularly sensitive to changes in precipitation 

relative to evaporation (Spigel and Coulter, 1996). The relief at north end of the lake reaches over 

2000m above sea level (Hamblin et al., 2002) and typically receives greater precipitation (Nicholson 

and Yin, 2002) and wind speeds (Patterson and Kachinjika, 1995) than the south end of the lake. 

Overall, limnological conditions in the north end of Lake Malawi are more likely impacted by 

climatic variability. Thus, paleolimnological analyses will compare patterns of limnological change at 

both the northern and southern ends of the basin following the gradient of land use change.  

The objective of this research is to assess the long-term impacts of land use change and 

climatic variability on limnological conditions in Lake Malawi. In order to achieve these goals, 

paleolimnological analyses of biogenic silica and diatoms in four sediment cores collected along the 

length of Lake Malawi will be used to provide both a temporal (~300 years) and spatial representation 

of the whole lake. This study will provide an understanding of Lake Malawi’s recent limnological 

history, which is pertinent in guiding effective ecosystem stewardship and land-use management 

practices to preserve the lake’s water quality and unique ecology.  
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LAKE MALAWI DIATOM ECOLOGY  

Class Bacillariophyceae, known commonly as diatoms, have been studied in Lake Malawi since the 

late 1800s by such algal taxonomists as Dickie, Schmidle and Muller. Diatoms are commonly used as 

paleoecological indicators as they preserve well in most lacustrine sediments (Battarbee et al., 2001). 

These algae are mostly unicellular with short life spans and are sensitive to changing environmental 

conditions. The siliceous cell walls, known as valves, are durable and taxonomically diagnostic, 

allowing diatomists to readily identify fossil specimens (Battarbee et al., 1999).  

Aulacoseira are diatom genera prevalent in the African Great Lakes fossil records, including 

Lake Malawi, being heavily silicified and preserving well in lacustrine sediments (Kilham, 1990a). 

Most Aulacoseira species are adapted to nutrient-rich, deep-mixing events common to such 

meromictic lakes as Lake Tanganyika and Lake Malawi (Kilham, 1990a). In general, Aulacoseira are 

often outcompeted by euplanktonic diatom species under more stratified conditions when nutrient 

concentrations decline (Kilham, 1990a). On the other hand, A. nyassensis is a strong competitor for 

phosphorus given that required turbulent mixing conditions are met (Kilham et al., 1986). 

Taxa in the genus Stephanodiscus are common in Lake Malawi readily outcompeting 

Aulacoseira spp., Synedra and similar Nitzschia spp. under conditions of reduced silica availability 

(Kilham, 1984). For example, Stephanodiscus astraea and S. minutulus (part of the S. astraea 

complex) are known to dominate in Lake Michigan during periods of low soluble reactive silica to 

soluble reactive phosphorus (atomic ratios < 20 ) (Kilham, 1990b). Within the African Great Lakes 

literature, Stephanodiscus and Cyclostephanos species are often lumped ecologically and are assumed 

to share similar autecology. 

Phytoplankton tows in Lake Malawi are commonly abundant in Nitzschia species, which are 

typically long, narrow morphotypes that can persist within the photic zone during conditions of 

reduced wind energy due to their reduced sinking rates (Hecky and Kling, 1987; Kilham et al., 1986). 

However, short, more densely silicified Nitzschia species (e.g. N. fonticola) live in association with 

buoyant algal colonies (e.g. Microcystis aeruginosa). Microcystis species are non-nitrogen-fixing 
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cyanophytes that can leak organic nitrogen compounds under nutrient-stressed conditions and are 

adapted to warm, stratified waters (Kilham et al., 1986).  

A number of littoral and riverine species have also been identified in Lake Malawi. 

Achnanthes, Cocconeis, Cymbella, Fragilaria, Gomphonema, Navicula, Rhopalodia and Surirella 

species are known components of the littoral community in both northern and southern ends of Lake 

Malawi (Cocquyt and Vyverman, 1994; Haberyan and Mhone, 1991; Higgins et al., 2001). Their 

occurrence within deep-water sediment cores is useful in signaling littoral disturbances and changing 

water levels that bring these periphytic species from source areas closer to deep-water coring sites 

(Haberyan and Mhone, 1991). 

 

SEASONAL CYCLES 

Climate in tropical East Africa is dominated by three limnological seasons, controlled largely by the 

passing of the Intertropical Convergence Zone (ITCZ) over the equator. The first of which is the cool, 

mixing period when the ITCZ is farthest north during May to September when surface water 

temperatures decline to 23˚C and strong south-south easterly trade winds known as mweras persist 

over Lake Malawi. Deeper mixing of the epilimnion entrains nutrients from the metalimnion and 

establishes deep-water waves (known as internal seiches) and upwelling in the extreme southern end 

of the lake (Bootsma, 1993b; Eccles, 1962, 1974). An estimated 75% of the total silica inputs into the 

mixed layer of Lake Malawi are supplied by upwelling of metalimnetic waters (Bootsma and Hecky, 

1999; Bootsma et al., 2003; Hamblin et al., 2003). The wind energy also creates turbulent mixing 

ideal for the suspension and proliferation of planktonic diatoms Stephanodiscus, Cyclostephanos, 

Nitzschia and Aulacoseira (Bootsma, 1993b; Hecky and Kling, 1987; Patterson and Kachinjika, 

1995), and this season is correlated with high sedimentation rates of diatoms in northern Lake Malawi 

(Pilskaln, 2004). 

In September, lake temperatures begin to rise with the onset of the dry, stratified period. By 

October, solar radiation reaches a maximum, warming the epilimnion to 27˚C and establishing a 
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shallower thermocline depth (Eccles, 1974; Patterson and Kachinjika, 1995). Reduced vertical mixing 

in October leads to a decline in diatom abundance (Bootsma and Hecky, 1999; Hecky and Kling, 

1987; Patterson and Kachinjika, 1995). In November, the wet stratified period begins with the ITCZ 

moving southwards bringing heavy rains (particularly in the north end of Lake Malawi) and northerly 

winds known as mpotos (Beauchamp, 1953). Often nitrogen deficiency increases from November to 

March, along with increased abundances of blue-green algae, including heterocystous Anabaena or 

non-nitrogen fixing Lyngbya and Microcystis species (Guildford et al., 2003; Patterson and 

Kachinjika, 1995). In the rainy season, the whole lake is believed to be relatively phosphorus 

sufficient with the increased wet deposition and riverine inputs, and cyanophytes and occasionally 

chlorophytes dominate the algal biomass (Bootsma, 1993a; Guildford et al., 2003). By the end of the 

wet stratified period, in April, nitrogen can once again become limiting for phytoplankton growth 

lake-wide (Bootsma, 1993a).  

 

METEOROLOGICAL INFLUENCES ON NUTRIENT REGIMES 

In order to understand fully the effects of nutrient enrichment, one must understand the relative 

availability of growth-limiting macronutrients in Lake Malawi. Nitrogen is often deficient over the 

whole lake, and can be severely deficient during stratified periods (Guildford et al., 2000; Guildford 

et al., 2003). This is due in part to the fact that over 70 % of Lake Malawi’s nitrogen is supplied from 

the atmosphere in the form of N2(g) for biological fixation (Bootsma, 1993a; Bootsma and Hecky, 

1999). However, less than four percent of Lake Malawi’s epilimnetic nitrogen balance is due to N2(g) 

fixation within the sandy littoral zone (Gondwe, 2004) and nitrogen is readily lost through 

denitrification at the oxic-anoxic boundary layer of the permanently anoxic hypolimnion (Hecky et 

al., 1996). 

Diatom community composition in the African Great Lakes is largely driven by competition 

for available silica, phosphorus and light (Kilham et al., 1986). In Lake Malawi, the monimolimnion 

(250-700 m depth) is potentially an important source of nutrient-rich waters, however, chemical and 
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thermal stratification restrict nutrient regeneration. Every year roughly 25% of the epilimnion (0-100 

m depth) mixes with the metalimnion (100-250 m depth) and 20% of the metalimnion mixes with the 

hypolimnion (250-700 m depth) (Gonfiantini et al., 1979; Vollmer et al., 2002). This vertical 

exchange contributes 70 % of the silica and 50 % of the phosphorus supplied to the epilimnion 

(Bootsma, 1993a; Bootsma and Hecky, 1999; Bootsma et al., 2003). Recently, this exchange has 

declined due to decreased cool water convection and increased thermal warming (Vollmer et al., in 

press; Vollmer et al., 2002). From 1939 to 1999, only two wet periods (1961-1963 and 1977-1979) 

were found to have a cooling effect on the deep waters (Vollmer et al., in press). The increased 

discharge of colder river water and direct rainfall, and decreased summer insolation due to cloud 

cover, produce a net decline in epilimnetic heat inputs (Vollmer et al., in press). The cool riverine 

water sinks below the mixolimnion (0-250 m depth) and cools hypolimnetic water temperatures and 

nutrient depleted epilimnetic waters dilute nutrient concentrations in the monimolimnion, while the 

mixed layer is enriched by metalimnetic water (Vollmer et al., in press). 

At the start of the rainy season, peak flow rates in the tributaries are associated with peak 

concentrations of suspended nitrogen, phosphorus and silica (Bootsma et al., 2003; Hecky et al., 

2003). Interannual variability in precipitation is associated with these early peak rains because high 

early rains often produce high rainfall years (Nicholson, 1996). Following increases in precipitation, 

nutrient inputs increase for several reasons: the direct deposition of nutrients on the lake surface, the 

riverine export of particulate nutrients, and the increased runoff causing increased exchange with 

nutrient-rich deeper waters. Early in the river flow period, over 80% of Lake Malawi’s annual silica 

inputs are supplied, of which roughly 60% is biogenic silica, often in the form of phytoliths (Bootsma 

et al., 2003). Meanwhile, soluble reactive silica concentrations in the river do not respond to changes 

in flow rate, remaining between 200-400 µmol/L (Bootsma et al., 2003). Thus, increased runoff 

through Lake Malawi’s tributaries will result in an overall increase in nutrients, but likely a decline in 

bioavailable Si:P inputs to the lake at the onset of the rainy season. 
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HISTORICAL LAKE LEVEL FLUCTUATIONS FOR LAKE MALAWI  

Past change in Lake Malawi’s level (Figure 2) has been reconstructed based on measured data by 

Vollmer (pers. comm.) since 1898 AD and levels from 1650-1898 AD were compiled from 

paleolimnological, archaeological and oral histories by Owen et al. (1990) and Nicholson (1998). The 

paleolimnological reconstruction by Owen et al. (1990) utilized multiple proxies, such as geopulse 

recordings and diatom stratigraphies, finding strong evidence that lake levels rose substantially (~ 

nine meters) ca. 1850AD, before which lake level was at a prolonged low stand until around 1700AD 

when a probable recovery of the lake level occurred (Nicholson, 1998).  

Long-term changes of lake level have been recorded since 1895AD in association with the 

construction of a hydroelectric damn on the Shire River outflow. The Kapachira damn sits below the 

outlet control of the lake, thus no impacts to lake level were incurred as a result of its construction. 

However, a lowstand occurred from ~1898-1937AD in which the lake level fell below the level of the 

outlet (471 m. above sea level), halting hydroelectric production between 1915-1937 (Drayton, 1984). 

In 1965, a barrage was build to ensure flow of water from the lake to the damn and other irrigation 

projects downstream (Drayton, 1984). However, the Shire River contributes only ~ 8% of the outflow 

volume within the water balance (Owen et al., 1990), hence the strong correlation between lake level 

and evaporation: precipitation ratios.  
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Figure 3. Lake level fluctuations for Lake Malawi since 1650 AD. Data from 1898-2000 AD 

supplied by M.K. Vollmer (pers. comm.) and data from 1650-1898 AD modified from Nicholson 

(1998) and Owen et al. (1990). Vertical dotted line denotes the outlet level (471 m.a.s.l.). Lake levels 

below the outlet level produce a closed basin system and lake levels above the outlet level produce an 

open basin system.  
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MATERIALS & METHODS 

CORING SITE & SEDIMENT DESCRIPTION 

Four sediment cores were used in this study, taken along a longitudinal transect of Lake Malawi and 

incorporating a range of water depths, surface sediments, neighbouring catchment elevations and 

land-use practices. These cores have been identified as: northern core M98-11MC, central core MAL 

4, and southern cores MAL 10 and MAL 14 (Figure 3). 

 

Northern Core - M98-11MC (10˚00.2’S and 34˚17.3’E) 

The catchment of northern Lake Malawi is mountainous and relatively sparsely populated. Tectonic 

faulting and subsequent uplift that formed the rift basin during the Miocene (approximately 8.6 

million years ago) are responsible for the catchment terrain and the formation of the Livingstone 

mountain range and associated Rungwe volcanics located north of Lake Malawi (Ebinger et al., 1984; 

Tiercelin and Lezzar, 2002). The largest tributary in close proximity to the coring site is the Ruhuhu 

River, which runs through a basin dominated by forest cover and is likely characterized by low flow 

variability, typical of a northern basin river (Hecky et al., 2003). 

Core M98-11MC was collected using a multicorer from 404 m depth on March 7th, 1998 at 

the north end of Lake Malawi (Johnson et al., 2001) (Figure 3). Core M98-11MC measured 52 cm in 

length and was sectioned into one-centimeter intervals for most analyses (Table 1). The coring depth 

lies below the oxycline and within a region of laminated sediments (Figure 3). These laminae are 

considered annual couplets known as varves consisting of lightly pigmented, diatomaceous deposits 

overlain with dark, terrigenous deposits (Pilskaln, 2004; Pilskaln and Johnson, 1991). Three turbidite 

layers interrupt the laminae at 9.5-10.5cm, 23.0-24.5cm and 40.8-42.0cm intervals and a volcanic 

tephra lies at 48.5 depth. A turbidite is a depositional layer of remobilized sediment formed as a result 

of sediment laden gravity currents often occurring during a change in water level, severe flooding 

event or a seismic event (Cohen, 2003; Lezzar et al., 1996). 
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Central Core - MAL 4 (11˚54.088’S, 34˚16.717’E ) 

The drainage basin nearest core MAL 4 is steep, well-forested terrain drained by the Mlowe River. 

The small Mlowe River has low sediment loads and is considered among the least disturbed basins 

within Lake Malawi’s catchment (Hecky et al., 2003; Ramlal, 2002). However, the largest river near 

the coring site is the Dwangwa River, a river with moderate impacts of agricultural clearance on the 

upland plateau (Hecky et al., 2003) while the lower reaches of the Dwangwa River lie within 

protected areas.  

On November 3rd, 1997, core MAL 4 was collected at 285 m water depth in central Lake 

Malawi. Core MAL 4 was 48 cm in length and divided into one-centimeter intervals from 0-20 cm 

sediment depth, while slices 20 - 48 cm were sectioned in two-centimeter intervals (Table 1). Core 

MAL 4 was retrieved below the oxycline, yet sediments were not varved. Rather, they were 

homogeneous diatomite and clastic muds representative of the region (Figure 3), likely indicating a 

less seasonal and more continuous sedimentation rate (Pilskaln, 2004).  

 

Southern Cores - MAL 10 (13˚52.008’S, 34˚45.112’E) & MAL 14 (13˚58.997’S, 34˚38.856’E) 

The Linthipe River is the largest and most impacted river entering southern Lake Malawi. It drains 

land under intensive cultivation (Hecky et al., 2003) and receives discharges from the city of 

Lilongwe (2004 est. pop. 632,900 – C.I.A. (2004)), the largest city as well as the capitol city of 

Malawi. Agricultural practices in this region commence before the onset of the rainy season such that 

fields are burned and sugar cane and maize are planted leaving soils and loose ash debris exposed to 

erosion with the onset of the rains. These practices are known to have accounted for much of the total 

suspended sediment and dissolved organic carbon transported into Lake Malawi (Hecky et al., 2003; 

Ramlal et al., 2003). 
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Figure 4. Map of coring sites with respect to surface sediments in Lake Malawi, East Africa for cores 

M98-11MC, MAL 4, MAL 10 and MAL 14, denoted by (●). Bathymetric map of Lake Malawi with 

100m contour lines inserted. Adapted from Owen and Crossley, 1992.  
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Table 1. Summary of information on the coring site and sectioning intervals for sediment cores M98-

11MC, MAL 4, MAL 10, and MAL 14 Lake Malawi, East Africa 

CORE M98-11MC MAL 4 MAL 10 MAL 14 

Date (d/m/y) 07/03/1998 03/11/1997 04/11/1997 05/11/1997 

Latitude (S) 10˚00.2 11˚54.088 13˚52.088 13˚58.997 

Longitudinal (E) 34˚17.3 34˚16.717 34˚45.112 34˚38.856 

Water Depth (m) 404 285 124 81 

Core Length (cm) 52 48 45 44 

No. Slices Dated 52 34 32 32 

No. Slices Analyzed for 

Diatom, BSi 

 

51 

 
17 

 
32 

 
16 
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At the south end of Lake Malawi, core MAL 10 was collected on November 4th, 1997 at a 

depth of 124 m and core MAL 14 was retrieved November 5th, 1997 at a depth of 81 m (Table 1). 

Southern cores were sectioned at one-centimeter intervals for the upper 20 cm while deeper sediments 

were sectioned in two-centimeter intervals (Table 1). The cold, south-south easterly mweras blow 

from June to August, leading to periods of destratification, oxygenation (to 200 m depth) and some 

benthic faunal activity in this region. As a result, the southern sediments are not laminated, consisting 

of homogeneous diatomites, clastics and sands, characteristic of productive waters and river discharge 

to the region (Figure 3).  

 

SEDIMENTARY ANALYSES 

CHRONOLOGY 

Sediment cores were dated using techniques based on analyses of total 210 Pb and 137 Cs activity by P. 

Wilkinson at the Radioisotope Dating Laboratory of the Freshwater Institute in Winnipeg, Manitoba. 

210 Pb is part of the radium-226 decay series, which is deposited from the atmosphere, known as 

unsupported 210 Pb and incorporated into the lake sediments. Unsupported 210 Pb decays to 210 Bi with 

time (210 Pb has a half-life of 22.26 yrs), causing a decline in total 210 Pb activity with sediment depth. 

Sediments also evolve a supported concentration of 210 Pb by decay from in situ 226 Ra, which must be 

subtracted from the total 210 Pb to derive the unsupported 210 Pb activity (Appleby and Oldfield, 1978). 

Two models were used to estimate the chronology of these cores: the linear model and the 

constant rate of supply (CRS) model. The linear model assumes that the sediment accumulation rate 

does not vary over time, while CRS allows the dry mass accumulation to vary over time while the 

burial rate of unsupported 210 Pb is considered constant in time (Appleby and Oldfield, 1978). The 

Constant Rate of Supply (CRS) model was used to date core MAL 4, MAL 10 and MAL 14. For core 

intervals beyond the supported 210 Pb, chronology for this study assumes a constant sedimentation rate 

based on an average of the last five CRS modeled sedimentation rates. 
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137 Cs was used in an attempt to corroborate dates over the last 50 years. The half-life of 137 Cs 

is 33 years and a peak of 137 Cs is associated with a peak in nuclear testing (1963) which can be 

tracked in most sediment around the world (Appleby and Oldfield, 1978). Redistribution and 

deposition of the initial bomb fallout is believed to have taken one year approximately, therefore 1964 

is commonly assumed to date the peak concentration of 137 Cs in sediments (Blais et al., 1995).  

Chronology for core M98-11MC is based on varve counts, since core laminations extend to 

51 cm and date to 1655 AD. Chronology and percent biogenic silica data for core M98-11MC is 

available at the NOAA website (http://www.ngdc.noaa.gov/paleo/paleolim/paleolim.html). 

 

SEDIMENTARY BIOGENIC SILICA CONTENT & INFLUX 

Biogenic silica (BSi) is the amorphorous silica component within sediments and diatoms account for 

much of the sedimentary BSi found in most freshwater systems (Berglund, 1986). Biogenic silica in 

sediments provides an estimate of diatom productivity, with increased sedimentary BSi often 

signaling an increased sedimentation of diatoms (Schelske, 1999; Schelske et al., 1983). In Lake 

Malawi, lacustrine sediments are known to be composed predominantly of diatom valves, however 

riverine inputs of biogenic silica are often laden with siliceous phytoliths from terrestrial plant matter 

(Bootsma et al., 2003).  

Biogenic silica analyses were performed by L. Powers and Y. Chan at the Department of 

Geological Sciences, University of Minnesota, Duluth, MN following DeMasters (1979) time series 

digestion technique. Sediment BSi is represented as both weight percent biogenic silica (%BSi) with a 

precision of + 1% SiO2 and biogenic silica influx (BSi influx) following standard calculations 

(Berglund, 1986). 

 

SEDIMENTARY CARBON & NITROGEN CONTENT 

Organic carbon content in offshore sediments can provide a qualitative record of lacustrine 

productivity when the terrestrial inputs of organic matter are minimal and when mixing regimes and 
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degradation remain unaltered over time (Cohen, 2003). Nitrogen is essential in all organisms in the 

formation of amino acids and nucleic acids, and in most sediments, nitrogen is bound to organic 

matter (Berglund, 1986; Cohen, 2003). Carbon:nitrogen ratios in lacustrine sediments are often used 

to distinguish the origin of organic sediments and provide an index of aquatic productivity (Berglund, 

1986).The carbon to nitrogen ratio (C:N) can provide a good indication of whether organic matter is 

mainly from terrestrial or aquatic origin, since terrestrial plant matter is composed of a relatively large 

quantity of carbon in the form of cellulose, which phytoplankton lack (Cohen, 2003). Carbon:nitrogen 

molar ratios greater than 20 typically indicate terrestrial debris while, C:N less than 10 are due to 

deposition of aquatic plant matter (Cohen, 2003). Analyses of particulate organic carbon and 

particulate nitrogen were performed at the Freshwater Institute in Winnipeg and reported in Ramlal 

(2002) and the POC and PN influxes were calculated using the CRS modeled sedimentation rates to 

account for the recent increased sedimentation rates. 

 

FOSSIL DIATOMS 

Samples from cores MAL 4, MAL 10 and MAL 14 were provided as freeze-dried, ground sediment, 

having been used in previous analyses of carbon and nitrogen content, as well as stable isotopes 

analyses of carbon (δ13C) and nitrogen (δ15N) (Ramlal, 2002). Core M98-11MC was provided as wet 

sediment (Johnson et al., 2001). Subsamples of dried sediment (0.1g) and wet sediment (0.5g) were 

weighed out and prepared following standard methods (Hall and Smol, 1992). A small volume of 

synthetic microspheres at a known concentration was added to diatom slurries in order to estimate the 

concentration of diatoms per dry sediment mass, following methods of Battarbee and Kneen (1982). 

Slides and remaining diatom slurries were labeled and stored at the University of Waterloo 

Environmental Change Research Laboratory.  

Diatoms were identified to highest possible taxonomic resolution (typically to species or 

subspecies) and at least 400 diatom valves were counted per sample. A number of valves were broken 

in shallow water cores MAL 10 and MAL 14, so, to avoid underestimating the actual diatom 
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concentration or misrepresenting taxa, fragments larger than 1/3 were summed together. Taxonomic 

identifications listed in Appendix A were based largely on Cocquyt (1998) and Gasse (1986), but 

other publications were used to aid taxonomic identifications (Cocquyt and Vyverman, 1994; Gasse, 

1986; Klee and Casper, 1992, 1995; Krammer and Lange-Bertalot, 1986, 1988, 1991a, b; Müller, 

1895, 1903, 1904, 1905, 1911; Schmidle, 1899). Digital photos of key taxa are presented in Appendix 

B. Appendix C tabulates diatom concentrations and diatom influx alongside chronology, 

sedimentation rates, %BSi, BSi influx, POC, PN and POC:PN. Appendix D presents diatom percent 

abundance data. (Battarbee and Kneen, 1982; Gasse, 1986) 
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RESULTS 

CHRONOLOGY 

Chronology of northern core M98-11MC was previously developed by Johnson et al. (2001) and core 

chronology of central and southern cores MAL 4, MAL 10 and MAL 14 were by Ramlal (2002). 

210 Pb activity declined approximately monotonically down core in accordance with the 

natural radioactive decay of 210 Pb (Appleby and Oldfield, 1978) for both the northern core M98-

11MC and central core MAL 4 (Figure 4). In contrast, 210 Pb activities for the southern cores, MAL 

10 and MAL 14, were low and relatively constant throughout the upper 15 cm, followed by a decline 

towards bottom sediments. Core MAL 14 also exhibited variable 210 Pb activity between 11 cm and 16 

cm depth. Breaks in the expected monotonic decline may indicate episodic additions of ‘older’ 

sediments or increased sedimentation rates, which can be accounted for by the CRS model.  

A peak of 137 Cs activity is commonly used as a stratigraphic marker corresponding with peak 

deposition in 1964, due to nuclear bomb testing (Appleby and Oldfield, 1978). In this study, 137 Cs 

activity was not useful in validating chronologies based on 210 Pb methods. 137Cs peaks were detected 

in the near surface sediments of cores MAL 4, MAL 10 and MAL 14, and do not correspond with 

210Pb activity assigned date of 1964 AD. Rather, they aligned with ca. 1990-1995 based on 210Pb dates 

(Figure 4). Since all three cores analyzed show the presence of 137Cs in the surface sediments, the 

thirty-year discrepancy between 137Cs and 210Pb techniques were consistent with upward displacement 

of the 137Cs peak (Blais et al., 1995). Appleby and Oldfield (1983) state that the 137 Cs peak can be 

mobile in undisturbed anoxic sediments. As well, Blais et al. (1995) found a strong correlation 

between low conductivity lakes with organic-rich sediments and 137Cs mobility. No lakes as large as 

Lake Malawi were included in these studies, but Lake Malawi does have low conductivity and 

sediments are organic-rich and anoxic, which may explain the discrepancy. Since 137 Cs activity 

profiles maintained a sharp increase to the surface sediment without any indication of disturbance of 

the 137 Cs peak, it was assumed that mixing was unlikely to have strongly affected these sediment 



 21

cores and that near constant 210Pb activities in the upper stratigraphy of core MAL 10 and MAL 14 

are consistent with rapid sedimentation rates.  

Chronology for core M98-11MC used varve counts (Figure 5) and dates to 1655 AD at 51 cm 

depth. At turbidite layers, in core M98-11MC, dating was based upon a correlation between other 

varved cores taken at the same time in the same region of Lake Malawi with similarly aligned 

laminae to complete the chronology (Johnson et al., 2001). For comparative purposes, dating based 

on 210 Pb activity corresponded closely with the upper 23 cm of the varve count profile or ca.1878 AD 

with CRS dating and 1866 AD with varve counts for core M98-11MC.  

Sediment chronologies for cores MAL 4, MAL 10 and MAL 14 (Figure 5) were estimated 

using both linear and CRS models. In order to allow for known recent increased sediment 

contributions from southern rivers (Hecky et al., 2003; Hecky et al., 1999; Ramlal et al., 2003), the 

CRS model was selected as the most appropriate technique to estimate chronology for cores MAL 4, 

MAL 10 and MAL 14. The CRS model is appropriate when analyzing different cores within the same 

lake and when a lake is exposed to human perturbations, such as deforestation and forest fires, which 

alter sedimentation rates in response to erosion or eutrophication (Appleby and Oldfield, 1978).  

 

SEDIMENTATION RATES 

In southern cores MAL 10 and MAL 14, CRS calculated sedimentation rates tripled after ca. 1970 

(Figure 6), whereas sedimentation rates before ca. 1970 were relatively constant and comparable to 

the central and northern cores. After ca. 1980, sediment accumulation rates in cores M98-11MC and 

MAL 4 increased as well, but to a lesser extent than in the southern sites. The range in sedimentation 

rates for core MAL 14 was the greatest of all four Lake Malawi cores, with the 1990’s being the 

greatest period of continual increase in sedimentation rate, at 133 g/m2/yr average increase over the 

course of the decade. In core M98-11MC, the profile exhibited the greatest sedimentation rates in ca. 

1870 AD, after which sedimentations rates decline to the 20th century, unlike the other three coring 
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sites. Changes in sedimentation rate for core MAL 4 are subtle as compared to the other Lake Malawi 

cores in this study, remaining at on average 190 g/m2/yr. 

 

SEDIMENTARY BIOGENIC SILICA CONCENTRATION & INFLUX 

The southern cores MAL 10 and MAL 14 were relatively low and constant in sedimentary % BSi and 

influx prior to ~1940 (Figure 7), but, after ~1940 % BSi doubled and influx increased five to tenfold 

in both cores, comparable to the pattern of increase in sedimentation rates (Figure 6). In contrast, 

cores M98-11MC and MAL 4 showed no strong trend in recent decades in % BSi and influx. In core 

M98-11MC, the greatest biogenic silica influx rate occurred in ca. 1870 AD (Figure 7).  

 

DIATOM CONCENTRATION & INFLUX 

Diatom concentrations and influxes (Figure 8) exhibit a sharp increase in southern cores MAL 10 and 

MAL 14 since ~1960 and 1970 respectively, similar to the trends in % BSi and silica influx profiles 

(Figure 7) and sedimentation rates (Figure 6). The more offshore core, MAL 10, has both a greater 

concentration and influx of diatoms than the more nearshore core, MAL 14. Diatom concentrations 

post ~ 1970 in both cores MAL 10 and MAL 14 increased fivefold as compared to values before 

~1970. However, diatom influxes in core MAL 10 increased twentyfold in near surface sediments as 

opposed to the sixfold increase in core MAL 14. In addition to these pronounced changes, cores M98-

11MC, MAL 4 and MAL 10 exhibited a substantial increase in diatom concentration and influx to the 

sediments during ca. 1880 to 1910 AD, but not core MAL 14 as the data are missing due to the poor 

preservation of diatoms and high amounts of clastics on the slide. Northern core M98-11MC also 

displays more distinct variability with periods of high diatom concentrations alternating with intervals 

of low diatom concentrations.  

 

SEDIMENTARY CARBON & NITROGEN INFLUX AND POC:PN RATIOS 

Influx of POC and PN for both southern cores MAL 10 and 14 nearly doubled and tripled 
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respectively after ~1940 (Figure 9) (Ramlal, 2002), while a recent increased influx in core MAL 4 is 

more subdued. POC and PN influx for core M98-11MC were not readily available. In cores MAL 10, 

MAL 14, and to a lesser extent MAL 4, POC:PN declined upcore after ~1940 (Ramlal, 2002).  

 

PERCENT ABUNDANCE & INFLUX OF DIATOM TAXA 

Comparison of diatom percent abundance profiles amongst the four cores in this study identifies a 

pronounced change in the diatom assemblages in the central and southern cores beginning after ~1980 

that is not present in the northern core.  

 

Southern Cores MAL 10 & MAL 14 

Integrity of diatom valves was generally poor in cores MAL 10 and MAL 14, with many damaged 

and fragmented frustules, yet both cores shared the same trend in diatom community composition 

change at 1980. From ca. 1700 to 1980 AD the diatom community composition in cores MAL 10 and 

MAL 14 were relatively constant (Figure 10). Contrary to core M98-11MC and MAL 4, these 

southern cores were dominated by Aulacoseira nyassensis and Fragilaria africana, while 

Stephanodiscus spp. and Cyclostephanos malawiensis had low relative abundance during this early 

time period. Influx of diatoms also remained low (Figure 8 & 11). However, in the more offshore 

core, MAL 10, there is one diatom influx spike between 1880-1900 AD (Figure 8 & 11), dominated 

by Aulacoseira and Fragilaria species.  

After ca. 1980, the community composition of southern Lake Malawi changed directionally, 

with a decline in relative abundance of Aulacoseira and Fragilaria species and a pronounced rise in 

relative abundance of Stephanodiscus, Cyclostephanos malawiensis, Cymbellonitzschia minima and 

Nitzschia species, as well as a rise in sedimentation rate, POC, PN, % BSi, BSi influx, diatom 

concentrations and influxes (Figure 12 & 13). A few discrepancies between these two cores were 

noted; the more nearshore core MAL 14 contains a variety of small forms of Fragilaria (F. 

leptostaurons var. dubia and F. pinnata), which declined upcore in relative abundance, whereas in the 
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more offshore core, MAL 10, these species remained abundant in upper sediments (Figure 10). As 

well, Aulacoseira nyassensis and Fragilaria africana influxes declined in core MAL 14 after ca. 1985 

(Figure 11) along with a decline in S. muelleri abundance in ca. 1995, which was not observed in the 

more offshore core, MAL 10.  

Sediment profiles show a sharp change in diatom relative abundance between consecutive 

samples, as opposed to homogenized diatom assemblages, which occur with sediment mixing. These 

sediment profiles have not only presented a clear change in the paleoecological records, but cores 

MAL 10 and MAL 14 replicate the same pattern of changing sediment parameters at similar dates. 

Thus, concerns regarding sediment disturbances artificially producing high sedimentation rates can be 

eliminated. 

 

Central Core MAL 4  

Core MAL 4 fossil diatoms were less fragmented but as abundant as cores MAL 4 and MAL 14 

(Figure 8). Overall the diatom assemblage was dominated by planktonic centric species 

Cyclostephanos malawiensis, Stephanodiscus minutulus, S. muelleri, S. nyassae, Aulacoseira 

nyassensis and pennate Nitzschia taxa (Figure 10 & 11). However, littoral species such as Amphora 

pediculus, Cocconeis neothumensis, Fragilaria africana and Navicula scutelloides were highly 

abundant in core MAL 4 as compared to the other three Lake Malawi cores (Figure 10).  

Diatom assemblages from ca. 1700 to 1920 AD remained relatively unaltered, with the 

pelagic species Cyclostephanos malawiensis dominating (Figure 10). Interestingly, diatom influxes 

for all common diatom taxa increased during ~1890-1910 AD (Figure 8 & 11).  

By ~1980, Cyclostephanos malawiensis and Stephanodiscus nyassae declined to their lowest 

relative abundances, while A. nyassensis reached a maximum relative abundance (Figure 10). As 

well, sedimentation rates declined in ca. 1980. After ca. 1980, A. nyassensis declined in relative 

abundance while S. nyassae, and to a lesser extent Cyclostephanos malawiensis, rose in percent 

abundance (Figure 10), in association with a rise in POC, PN, % BSi, BSi influx, diatom 
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concentration and influx (Figure 14). Combined with the increased diatom influxes (Figure 11) ca. 

1980, these changes resemble the pattern of diatom community composition change found in the 

sediment profiles of cores MAL 10 and MAL 14.  

 

Northern Core M98-11MC 

Core M98-11MC fossil diatom assemblages were most abundant and well preserved with little 

fragmentation. The diatom assemblage is composed of the same centric species as in core MAL 4 and 

characteristic of open-water, well-mixed conditions (Figure 10 & 11). Overall, the diatom community 

composition in core M98-11MC showed little evidence of directional change, but had high decadal 

scale variability, the greatest being the substantial influx in diatoms in ca. 1880 AD (Figure 8 & 11).  

Basal sedimentary diatom assemblages consist of relatively high abundance of Aulacoseira 

nyassensis, (38 % average) in ca. 1655 AD (Figure 10), corresponding with a volcanic tephra layer at 

48.5cm depth near the base of the core.  

During ca. 1670 to 1710 AD, the diatom community composition shifted towards increased 

relative abundance of periphytic Nitzschia species (Nitzschia epiphytica, N. fonticola, N. frustulum 

and N. paleacea) and Stephanodiscus nyassae (Figure 10). At the same time, %BSi and diatom 

concentrations increased and POC:PN values decreased substantially (Figure 15).  

From 1840 to 1865 AD, a turbidite layer disrupts the chronology in association with a 

maximum sedimentation rate and increased POC:PN ratios (Figure 15). In subsequent samples 

upcore, ca. 1875, POC:PN ratios declined and diatom influx doubled, with the greatest contribution 

by S. nyassae (Figure 11). This influx of diatoms was unprecedented within the last 150 year (the 

period for which sedimentation rates can be estimated) in Lake Malawi, and the timing of this 

maximum diatom influx compares closely with peak influxes in cores MAL 4 and MAL 10.  
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SPATIAL DISTRIBUTION OF DIATOM COMMUNITY COMPOSITION 

Spatial distributions of the average abundance of common diatom taxa (Figure 16) for cores M98-

11MC, MAL 4, MAL 10 and MAL 14 were divided into three time periods in order to assess the 

main spatial patterns of diatom community composition relative to the diatom community change. A 

decadal average from 1880-1890 AD (representing baseline community composition), 1980-1990 AD 

and 1990-1997/98 AD were compared to highlight the rapid community composition change between 

the 1980s and the 1990s as compared to a century’s change in diatom community composition 

between the 1880s and the 1980s. Diatom taxa are divided into the following categories: Aulacoseira 

nyassensis & varieties, other Aulacoseira, Stephanodiscus & Cyclostephanos sp., Nitzschia sp., and 

other diatoms, consistent with microfossil classifications of Owen and Crossley (1992). The southern 

cores MAL 10 and MAL 14 exhibit the greatest amount of change between 1980 and 1990 AD, 

characterized by an increased abundance of Nitzschia spp. and Stephanodiscus & Cyclostephanos, 

and a decline of Aulacoseira nyassensis & varieties and other Aulacoseira. Central core MAL 4 

exhibits the greatest increase during 1880-1980 in Aulacoseira nyassensis relative abundance. 

Meanwhile, community composition in northern core M98-11MC remained relatively unaltered 

during 1880-1990 AD.  

Overall, the relative proportion of each the diatom taxa categories within each site varied 

among the study sites of Lake Malawi. An abundance of Stephanodiscus & Cyclostephanos 

dominates the northern core, with decreasing representation southwards in all three periods. The 

categories Aulacoseira nyassensis & varieties, other Aulacoseira and other diatoms (composed 

primarily of Fragilaria spp. in this study) are most abundant in the southern cores, with decreasing 

abundance northward. Lastly, Nitzschia percent abundances are greatest in the northern core with 

recent increased abundance of .Nitzschia in the southern cores ~1990AD. 

The category Nitzschia species is commonly composed of long thinly silicified taxa such as 

Nitzschia acicularis, N. gracilis and N. nyassensis (Hecky and Kling, 1987; Patterson and Kachinjika, 

1995). Diatom slides did show a presence of long, thinly silicified Nitzschia species, yet, high 
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fragmentation of these delicate morphotypes made them unquantifiable and resulted in the 

enumeration of only short, more heavily silicified morphotypes, predominately Nitzschia amphibia, 

N. epiphytica, N. fonticola, N. frustulum, N. inconspicua and N. paleacea. Haberyan (1990) had found 

that lightly silicified Nitzschia and Synedra species declined in relative abundance during deposition 

(Haberyan, 1990; Haberyan and Mhone, 1991) due to several potential factors such as differential 

silica dissolution (Reynolds, 1986) or preferential grazing by zooplankton (Irvine and Waya, 1999; 

Owen and Crossley, 1992). All of these preservation factors are assumed to remain unchanged for the 

duration of the sediment core profiles (Hecky et al., 1999). Therefore, interpretations of Nitzschia spp. 

in this study refer only to smaller, more densely silicified morphotypes.
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Figure 5. Total 210Pb (●) activity profiles of sediment cores M98-11MC, MAL 4, MAL 10 and MAL 

14, and 137Cs (o) activity profiles of sediment cores MAL 4, MAL 10 and MAL 14 from Lake 

Malawi, East Africa. Sediment stratigraphy including legend for Core M98-11MC inserted. Error bars 

represent + one standard deviation. Data for M98-11MC from T.C. Johnson et al. (2001) & for MAL 

4, MAL 10 and MAL 14 from P. Ramlal (2002) 
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Figure 6. Results of varve counts (∆), linear (o) and constant rate of supply (●) dating models for 

sediment cores M98-11MC, MAL 4, MAL 10 and MAL 14 from Lake Malawi. The vertical dashed 

lines denote the year 1850 AD, before which total 210 Pb activities equate to supported 210 Pb 

concentrations and after which a constant sedimentation rate was used to extrapolate older dates. Data 

for M98-11MC modified from Johnson et al. (2001) and data for MAL 4, MAL 10 and MAL 14 

modified from Ramlal (2002). 
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Figure 7. Estimated sedimentation rates for sediment cores M98-11MC, MAL 4, MAL 10 and MAL 

14 from Lake Malawi, based on constant rate of supply model applied to 210 Pb activity data. Note the 

x-axis scale of core MAL 14 is greater than the three other plots. Data for M98-11MC from T.C. 

Johnson (pers. comm.) & data for MAL 4, MAL 10 and MAL 14 from P. Ramlal (2002). 
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Figure 8. Percent biogenic silica (%BSi) and biogenic silica influx (BSi influx) profiles for sediment 

cores M98-11MC, MAL 4, MAL 10 and MAL 14 from Lake Malawi, East Africa. %BSi is measured 

with a precision of + 1% SiO2. Note the x-axis scale varies among plots. Data for core M98-11MC 

profile modified from Johnson et al. (2001).  
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Figure 9. Diatom concentrations and diatom influx profiles for sediment cores M98-11MC, MAL 4, 

MAL 10 and MAL 14 Lake Malawi, East Africa. Note the x-axis scale varies among plots.  
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Figure 10. Influx of particulate organic carbon and particulate nitrogen and the particulate organic 

carbon:particulate nitrogen ratio of sediment cores M98-11MC, MAL 4, MAL 10 and MAL 14 of 

Lake Malawi, East Africa. Data for core M98-11MC from Isla Castaneda (pers. comm.) and for cores 

MAL 4, MAL 10 and MAL 14 from P. Ramlal (2002).  
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Figure 11. Summary profiles of relative diatom abundances for major diatom taxa from cores M98- 

11MC, MAL 4, MAL 10 and MAL 14, Lake Malawi, East Africa. Note that date scales differ with 

respect to the length of each coring record and diatom abundances are represented as percent. Terms 

'Navicula spp.' and 'Nitzschia spp.' refer to the sum of all enumerated taxa from these genera. 

'Fragilaria spp.' includes all Fragilaria species except F. africana. 
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Figure 12. Summary profiles of diatom influx rates (values x109/m2/yr) for major diatom taxa from 

cores M98- 11MC, MAL 4, MAL 10 and MAL 14, Lake Malawi, East Africa. Terms 'Navicula spp.' 

and 'Nitzschia spp.' refer to the sum of all enumerated taxa from these genera. 'Fragilaria spp.' 

includes all Fragilaria species except F. africana. 
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Figure 13. Summary stratigraphy of sedimentary analyses with diatom relative abundances represented as percent for southern core MAL 14, 

Lake Malawi, East Africa 
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Figure 14. Summary stratigraphy of sedimentary analyses with diatom relative abundances represented as percent for southern core 

MAL 10, Lake Malawi, East Africa 
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Figure 15. Summary stratigraphy of sedimentary analyses with diatom relative abundances represented as percent for central core MAL 4, Lake 

Malawi, East Africa 
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Figure 16. Summary stratigraphy of sedimentary analyses with diatom relative abundances represented as percent for northern core M98-11MC, 
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Figure 17. Spatial variation of diatom community abundance averaged over three time periods. 

Bottom sediments date from 1880-1910 AD (labeled 1890 AD) and near surface sediments date from 

both 1980-1989 AD (labeled 1980 AD) and 1990-1997/98 (labeled 1990 AD) of cores M98-11MC, 

MAL 4, MAL 10 and MAL 14 from Lake Malawi, East Africa. Legend categories follow Owen and 

Crossley (1992).  
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DISCUSSION 

EVIDENCE OF RECENT CULTURAL EUTROPHICATION  

The most conspicuous trend within the sediment cores profiles, which has not previously been 

documented, is the unprecedented sequence of limnological changes in cores MAL 4, MAL 10 and 

MAL 14, indicative of eutrophication in Lake Malawi commencing after ~1940 (Figure 12-14). The 

southern cores indicated a relatively stable community composition and lower sedimentation rates 

from ca. 1700-1940 AD, with an abundance of Aulacoseira nyassensis and Fragilaria africana. 

These diatom assemblages are indicative of well-mixed waters relatively high silica availability, 

which is consistent with known nutrient dynamics of the region (Bootsma, 1993b; Hecky and Kling, 

1981; Talling, 1969). Sedimentation rates, biogenic silica content, particulate organic carbon and 

particulate nitrogen influx increased beginning as early as ~1940, while particulate organic carbon to 

particulate nitrogen (POC:PN) ratios decreased in southern cores MAL 10 and MAL 14 (Figure 12 & 

13). This pattern of change could be interpreted to represent increased deposition of autochthonous 

organic matter and biogenic forms of silica. P. Ramlal (2002) found that autochthonous inputs are the 

primary source of organic carbon in Lake Malawi. This increased organic matter sedimentation may 

be linked to the historic rise in water level that led to the reconnection of the Shire River outflow in 

ca. 1937 (Calder et al., 1995; Drayton, 1984), yet, impacts are expected to be muted as the steep sides 

of the basin restrict the expansion of nearshore habitats in Lake Malawi. Another, more likely 

scenario that could account for the rise in productivity in ca. 1940 in Lake Malawi is increased 

anthropogenic perturbations in the southern catchments. In Lake Victoria, for example, human 

impacts arose as early as the 1940s corresponding with European colonization and increased 

agricultural activity, which caused increased nutrient inputs and elevated primary production of the 

lake (Hecky, 1993; Verschuren et al., 2001). The decline in POC:PN ratios up core in MAL 4, MAL 

10 and MAL 14 could be due to the effects of incomplete diagenesis, as more labile nitrogen-bearing 

compounds are preserved in the uppermost sediments(Cohen, 2003). Yet, C:N ratios correspond with 
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increasing % BSi, POC and PN influx trends, which is counter to the effects of diagenesis alone and 

in support of increased lake productivity starting ca. 1940.  

Diatom production in southern Lake Malawi began to accelerate into the 1970’s, as indicated 

by increased rates of sedimentation, increased diatom influx to the sediments and increased A. 

nyassensis (in core MAL 10 & MAL 14) and F. africana (core MAL 14) relative abundances. The 

central core, MAL 4, shows a similar rise in A. nyassensis abundance, with a six-fold increase from 

ca. 1940 to 1980. At this time, rising A. nyassensis abundance (and F. africana abundance in the 

southern cores) likely required relatively high concentration of silica to support the increased 

production of these heavily silicified diatoms (Kilham et al., 1986).  

The increased nutrients required to sustain elevated diatom influxes by ca. 1980 could be due 

to either increased river discharge to the south, or increased wind speeds, which disrupt the layers of 

stratification and reintroduce nutrient-rich metalimnetic waters (Bootsma et al., 1996a; Bootsma and 

Hecky, 1999). For Lake Malawi, meteorological data are sparse and the nearest approximation is by 

way of extrapolating values from regional historic data. Lake level fluctuations and wind speeds from 

1948 to 2003 (Figure 17) show that from 1972 wind speeds declined as water levels rose. The period 

from 1978 to 1982 exhibited the lowest wind speeds and highest water level recorded over Lake 

Malawi. Therefore, increased wind speeds do not appear to drive the increased nutrients required to 

increase diatom influxes by ca. 1980. 1977-1979 was one of the wettest periods over Lake Malawi 

during the past 60 years, resulting in high water levels in 1980 and an abyssal cooling event (Vollmer 

et al., in press). During the rainy season in Lake Malawi, high inflow of cold river water and reduced 

summer insolation due to increased cloudiness enhanced convective cooling and promoted vertical 

mixing (Vollmer et al., in press). Precipitation over Lake Malawi is greatest in the north end 

(Nicholson, 1996) and limnological impacts of heavy rainfall years would be anticipated in northern 

core M98-11MC. The diatom assemblage in M98-11MC shows no response consistent with increased 

precipitation ca. 1980 (Figure 5). However, runoff may be greater for the same amount of rainfall 

during 1977-1979 because of the loss of natural vegetation due to intensive deforestation 
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Figure 18. Lake level fluctuations (solid line) and annual wind speeds represented as a three-year 

running mean (dashed line) for Lake Malawi. Grey zone denotes 1972-1982 when lake levels rose 

and wind speeds declined. Lake level data provided by M.K. Vollmer (pers. comm.) wind speed data 

provided by G. Silsbe (pers. comm.).  

Wind speed data compiled from the meteorological dataset from the National Centers for 
Environmental Prediction-National Center for Atmospheric Research project. NCEP-NCAR uses 
state-of-the-art analysis/forecast system to perform data assimilation using global datasets (Kistler 
2001). Monthly wind speed and direction data from 10 m height for 1948 to 2003, downloaded from 
the Climate Diagnostic Center (http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.derived.html) from 
an area delineated by 30°E, 40°E, 15°S and 5°S, with a spatial grid of 2.5 x 2.5°. Wind speeds, 
direction for each grid point, and temporal observations were geospatially interpolated on a 10 x 10 
km grid from which mean monthly wind speeds were spatially extracted over Lake Malawi. To 
facilitate comparison with historic data, wind speeds were converted from 10 m to 2 m using the 
formula U10 = U2 [ln (10/zo)].[ln(2/zo)]-1 (Brutseart 1982) where UZ = wind speed measurement at 
height z and zo = roughness height (0.1 mm, Chow et al. 1988).  
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and agriculture in Lake Malawi’s Linthipe River catchment (Calder et al., 1995; Lam et al., 2002). 

The release of nitrogen and phosphorus from the terrestrial environment increases with increasing 

runoff (Likens and Bormann, 1974; Likens et al., 1970). The Linthipe River is located along the 

southwestern shore of Lake Malawi and is considered the most anthropogenically disturbed river 

within the catchment, producing the highest yields of suspended sediments (498.5 tons/km2/y) and 

nutrients (49.7 megamoles/y TP) (Hecky et al., 2003). The trend in accelerated nutrient inputs is due 

most likely to land use changes in the southern catchments of Lake Malawi that began as early as ca. 

1940 and continued into the present. As well, high runoff years may amplify the effects of increased 

runoff and nutrient inputs (Hecky et al., 2003).  

Both southern cores, MAL 10 and MAL 14, record a decline in silica availability after ~1980 

as inferred by the decline in relative abundance of heavily silicified A. nyassensis and F. africana and 

the rise in relative abundance of more lightly silicified Stephanodiscus, Cyclostephanos, 

Cymbellonitzschia and Nitzschia taxa (Figure 12 & 13). Thus, limnological conditions appear to 

favour diatom assemblages with reduced silica requirements after 1980. In Lake Victoria, East Africa, 

cultural eutrophication led to a doubling in primary production and a tenfold reduction of silica 

concentrations in the water column to < 1.0 µmol, resulting in conditions largely responsible for the 

loss of Aulacoseira from phytoplankton communities by 1990 AD (Kling et al., 2001). The sequence 

of events in Lake Malawi are not unlike the pattern of diatom community composition change of 

Lake Victoria, which pass from an abundance of Aulacoseira to Stephanodiscus to a succession of 

long, lightly-silicified Nitzschia acicularis and Cyclostephanos species (Hecky, 1993; Kling et al., 

2001). The relative abundance of these growth-limiting nutrients (Si:P) has been demonstrated to 

dictate the competitive outcome of phytoplankton community compositions in the African Great 

Lakes (Kilham et al., 1986) and a silica deficiency in the mixolimnion may be controlling this shift in 

diatom community composition since ca. 1980. The most revealing trend is the absolute decline in 

Aulacoseira influx in core MAL 14, which is also similar to that noted by Hecky (1993) in Lake 

Victoria. 
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An increased loading of phosphorus and nitrogen may have reduced soluble reactive silica 

relative availability in the southern end of Lake Malawi by way of increased sedimentation of 

siliceous diatoms (Figure 7). Diatoms sequester soluble reactive silica during the formation of their 

siliceous frustules (Reynolds, 1986). The % BSi profiles displayed by Lake Malawi’s southern cores 

follow a pattern comparable to those found in the Laurentian Great Lakes, Lake Michigan and Lake 

Huron in North America (Schelske, 1999; Schelske et al., 1986) and Lake Victoria in Africa (Hecky 

et al., 2003; Verschuren et al., 1998). These deep-water Laurentian Great Lakes sedimentary biogenic 

silica content increased in response to increased phosphorus inputs from agriculture, sewage and grey 

water discharge (Schelske, 1999). These same trends in the African Great Lakes are dependent on 

phosphorus loading in the form of soil bound phosphorus (Hecky et al., 2003; Verschuren et al., 

1998). Increased riverine inputs of terrestrial biogenic silica from phytoliths may also amplify this 

increase in southern Lake Malawi (Bootsma et al., 2003), however no trend in phytoliths content 

amongst cores was seen.  

Catchment disturbances in Lake Malawi increase phosphorus relative to dissolved silica 

inputs (Hecky et al., 2003) and response times to these critical nutrients are rapid (Bootsma and 

Hecky, 1999). Relatively low levels of phosphorus enrichment can lead to increased diatom 

productivity (Guildford et al., 1999) and increased silica sedimentation rates (Hecky, 2000; Schelske 

et al., 1986) that result in a decline in water column Si:P ratios. Suspended nitrogen and phosphorus 

loads are greater in the southernmost rivers impacted by human perturbation than other less impacted 

rivers that drain into Lake Malawi. The Linthipe River alone delivers nearly 50% of the riverine 

annual load of total phosphorus and over 40% of the total nitrogen relative to in a dozen of the major 

Malawian rivers measured in 1997 (Hecky et al., 2003). As well, riverine inputs constitute the second 

largest component of the phosphorus budget after metalimnetic inputs (Hecky et al., 1996). In 1993, 

sediment cores taken from Lake Malawi found that phosphorus sedimentation had increased since 

1950 in the south end of the lake (Hecky et al., 1999) most likely due to mobilization of terrestrial 

nutrients by current land-use practices. Silica to phosphorus ratios may have continued to decline as 
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nutrient loading to Lake Malawi progressed. Aulacoseira influxes to the nearshore core MAL 14 

declined by ca. 1990 relative to the peak levels in ca. 1985 (Figure 11) indicating that conditions are 

becoming much less favourable for these poor silica competitors. This decline in Aulacoseira 

abundance ca. 1990 also correlates with recent increased occurrences of bluegreen algae Anabaena 

and Planktolyngbya nyassensis in phytoplankton samples (Hecky et al., 1999). Should nitrogen and 

silica become more limiting to primary producers as anthropogenic nutrient inputs continue, 

cyanobacteria will likely become a dominant component in the phytoplankton community resulting in 

increased abundances of noxious algal species and a decline in water quality, as in Lake Victoria in 

1994-95, where nearly 70% of the mean phytoplankton biomass consisted of cyanophytes, 

predominately Anabaena, Cylindrospermopsis and Planktolyngbya species. 

The effects of eutrophication-induced silica limitation in Lake Malawi appear to have 

extended into the central core MAL 4, with peak abundances of Stephanodiscus nyassae and 

Cyclostephanos malawiensis in ca. 1996 (Figure 14), but land-use effects do not extend as far as the 

northern core M98-11MC (Figure 15). The change in diatom community composition in central core 

MAL 4 is linked to relative increases in sedimentation rate and elevated influxes of silica and diatoms 

to the sediment (Figure 14), suggesting that effects of anthropogenic eutrophication coincide with the 

gradient of land use intensity, with the earliest and greatest effects at the south end of the lake; later, 

modest effects in the mid-lake region; and currently, no discernable effects at the north end of the 

lake.  

 

EVIDENCE OF LAKE LEVEL RISE CA. 1860 AD 

Northern core M98-11MC, mid core MAL 4 and southern core MAL 10 profiles provide evidence of 

a lake-wide event late during the 19th century that are consistent with a lake-level rise. These cores 

exhibit a large influx of diatoms to the sediment from ca. 1860-1905 AD (Figure 8), due most likely 

to a climatic event, since no human perturbations are known to extend throughout the entire basin. 

Core MAL 14 of this study does not exhibit a similar trend in diatom influx since the sample within 
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this time period was poorly preserved with high clastics, which prevented enumeration and 

identification of the diatoms.  

The most probable cause for this lake-wide event is a climate-induced substantial (nine-

meter) rise in water level (Figure 2) estimated at ca. 1860 AD in Lake Malawi (Owen et al., 1990). 

These lake level reconstructions are based on measured data (1898-1997 AD) by Vollmer (pers. 

comm.) and historical information (1650-1898 AD) compiled from paleolimnological, archaeological, 

and oral histories by Owen et al. (1990) and Nicholson (1998). In Lake Malawi, rising lake level is 

controlled largely by increased precipitation (Nicholson, 1996) and decreased evaporation (Hamblin 

et al., 2002) as would occur with prolonged cool rainy periods. Evidence of lake level rise at this time 

period is the presence of a turbidite layer (23-24.5 cm depth) ca. 1866 AD in core M98-11MC. A 

turbidite layer is the displacement of lacustrine sediments from upslope of the coring site, often due to 

deepwater currents or cold, well-oxygenated, riverine waters plunging deep below the oxycline 

(McCullough, 1999; Pilskaln, 2004; Vollmer et al., in press). Precipitation to Lake Malawi is greater 

at the north end than in the south, and the steep relief in combination with the increased river inflow 

likely carried a greater amount of terrestrial and inorganic particulates to the northern coring site and 

entrained older sediments from upslope (Lezzar et al., 1996). Increased allochthonous inputs are 

likely responsible for the rise in both sedimentation rates and POC:PN ratios (Figure 6 & 9). The 

subsequent increased nutrient availability and mixing of the water column may have resulted in the 

increased diatom influx and reduced POC:PN ratios in northern sediments, as represented by core 

M98-11MC. However, increased diatom productivity ~ 1880 is not associated with a change in 

nutrient ratios or community composition change within any of the cores analyzed. Thus, the inferred 

cultural eutrophication signal in ~1980 AD has had substantial impacts on the limnology (in particular 

the Si:P) of present day Lake Malawi as compared to large-scale climatic events like a nine-meter rise 

in water level, which had no obvious effect on diatom community composition. 
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CONTRIBUTIONS TO PALAEOCLIMATOLOGY 

Northern core M98-11MC is evidently unaffected by cultural eutrophication and observed 

stratigraphic variability may more strongly reflect climatically driven hydrological and limnological 

changes. The northern core M98-11MC from Lake Malawi spans a period of over 350 years and 

displays considerable decadal- and centennial-scale variability in the diatom community composition 

profile.  

The period of time encompassed by core M98-11MC (Figure 15) overlaps with a climatic 

period, known as the Little Ice Age ~1350-1850AD, in which global temperatures declined (Johnson 

et al., 2001). Johnson and his colleagues found that core M98-11MC, in combination with several 

other cores from Lake Malawi, revealed prolonged elevated biogenic silica content composed 

primarily of A. nyassensis from ca. 1550 to 1820 (Johnson et al., 2001). During ca. 1655-1665 AD, 

Lake Malawi’s northern waters were likely exposed to increased wind intensity and cooler air 

temperatures as indicated by the abundance of Aulacoseira nyassensis in the diatom community 

composition in core M98-11MC (Figure 15). Dominance by A. nyassensis in the north requires 

increased wind energy to entrain the negatively buoyant, chain-forming populations from deeper in 

the water column or from sediment surfaces, and is possibly related to increased intensity of 

northwesterly trade winds during this time (Johnson et al, 2001). These high winds enhance 

circulation of metalimnetic waters that are rich in phosphorus and silica. At the same time, a tephra 

layer produced by volcanic ash deposition that most likely originated from the northern Rungwe 

volcanoes may have increased surface water silica concentrations and contributed to the abundance of 

A. nyassensis (Haberyan and Hecky, 1987). Johnson et al. (2001) found increased % BSi associated 

with Aulacoseira abundance existed until ca. 1820, however closer examination of core M98-11MC 

diatom community composition reveals that periods of high % BSi are not linked solely to high 

abundances of Aulacoseira, but may be related to elevated abundances of Nitzschia, Cyclostephanos 

and Stephanodiscus as well (Figure 10). Diatom productivity in northern core M98-11MC over the 

course of the Little Ice Age is more variable than %BSi profiles interpreted by Johnson et al. (2001), 
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as indicated by the changing community composition, the sedimentary diatom concentrations and the 

POC:PN ratios (Figure 15), suggesting that this global decline in temperatures is not the sole 

determinant in Lake Malawi’s paleoecology. Thus, sedimentary biogenic silica content may be useful 

in determining large scale climatic events, yet historic impacts on the biological community within 

the lake appear to be more dynamic, taking place on smaller time scales.  

In reconstructions of Lake Malawi’s water level, archaeological finding suggest a rapid high 

stand occurred around 1700 AD (Figure 2) and core M98-11MC’s profiles corroborate such an event 

(Figure 15). Varve counts suggest a rapid sedimentation rate around this time period, as sediment 

slices 46-47 cm and 47-48 cm date to ca. 1674 to 1676 AD (Figure 5). With elevated lake levels and 

high river inflow, nutrient loading from atmospheric deposition and riverine and metalimnetic waters 

is enhanced (Vollmer et al., in press). These, in turn, stimulate diatom production and increased 

autochthonous production in the lake ca. 1680-1700, resulting in elevated sedimentary diatom 

concentrations (Figure 8), increased sedimentary biogenic silica content (Figure 7) and decreased 

POC:PN ratios (Figure 9). The impacts of greater rains and increased cloud cover may have led to 

both reduced wind speeds and the decline of A. nyassensis in favour of S. nyassae and Nitzschia 

abundance. A reduction of the Si:P ratio may have been the result of increased wet and dry deposition 

of phosphorus and phosphorus loading from river runoff (which is rainfall dependent), which are the 

major phosphorus inputs. Atmospheric inputs of silica however, amount to only 5% of the total 

estimated silica budget (Bootsma et al., 2003). As a result limnological conditions favoured S. 

nyassae and Nitzschia, which are better competitors of silica and are less negatively buoyant than 

Aulacoseira, with lower sinking rates due to their shell morphology. The Nitzschia percent abundance 

profiles are composed primarily of N. frustulum, N. fonticola and N. epiphytica. The obligate 

heterotroph N. fonticola proliferates with host colonies of Microcystis (Kilham et al., 1986) requiring 

a reduction of wind speeds commonly occurring during wetter periods (Nicholson, 1996) as seen in 

Figure 17. Thus, a diatom community composition dominated by Nitzschia and Stephanodiscus 
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nyassae is likely the result of increased precipitation and reduced wind speeds (Figure 17), leading to 

a lake level rise. 
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CONCLUSION 

Paleolimnological investigations have shown both lake-wide similarities and contrasting 

stratigraphies from north to south in Lake Malawi. Previous studies by Ramlal (2002) found that 

autochthonous inputs had increased in the southern end of the basin ca. 1920, likely due to changes in 

land-use practices. This study provides paleolimnological evidence of effects of cultural 

eutrophication on biogeochemical cycling and biotic communities in the south and central region of 

Lake Malawi since ca. 1940 AD which surpass the range of natural variability (including a 9 m rise in 

water level) observed during the past 300 years, whereas sedimentary analyses in the north end of 

Lake Malawi do not exhibit any anthropogenically-induced change. Central and southern cores reveal 

increased diatom production after ca. 1970 due to increased nutrient availability, which far exceeds 

the nutrient inputs observed during the previous 300 years. By ca. 1980, a shift in diatom community 

composition from Aulacoseira nyassensis and Fragilaria africana to Stephanodiscus, Cyclostephanos 

and Nitzschia species, and increased silica burial indicate that eutrophication has not only led to an 

alteration of the biological community structure due to species competition for available silica, but, 

that eutrophication has also led to altered biogeochemical cycling of silica due to greater permanent 

burial of available silica. This study has detected the impacts of recent land use change in the 

southern catchment, providing an early warning that proper stewardship of the lake is required and 

appropriate management of both the lake and the catchment must be implemented to avoid 

widespread water quality deterioration. (Kidd, 1983) 

 

FUTURE IMPLICATIONS 

Unlike Lake Malawi, the eutrophication of Lake Victoria was not detected in advance of deleterious 

effects and Lake Victoria is now dominated by cyanobacteria year round (Kling et al., 2001). The 

abundance of bluegreen algae, in particular the nuisance species Cylindrospermopsis, Anabaena, 

Aphanizomenon and Microcystis, are now responsible for fish kills, either directly through phycotoxin 

production or indirectly by increased seston, respiration and deoxygenation of Lake Victoria’s 
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hypolimnion (Kling et al., 2001). Lake Victoria has also experienced a dramatic loss of species 

diversity, especially in endemic cichlids, due mostly to the combined effects of cultural 

eutrophication and the introduction of Nile perch (Bootsma and Hecky, 1993; Cohen et al., 1996). 

Lake Malawi shares the same cichlid diversity in the shallow-water margins and many of these 

haplochromine fish have high trophic specializations (Bootsma et al., 1996b) and require transparent 

water to maintain behavioral barriers to hybridization (Seehausen et al., 1997). The effects of 

eutrophication threaten the entire food web, with increased suspended solids transported into the lake 

reducing oxygenation and water clarity and causing silica depletion. 

Effects of human perturbations to the terrestrial environment have had implications for Lake 

Malawi’s aquatic ecosystem. Elevated inputs of suspended nutrients are the result of a very 

complicated set of dynamics unique to a developing country such as Malawi. Approximately 90 % of 

Lake Malawi’s riparian population resides in rural agricultural settings, where cultivation of crops is 

the dominant form of employment (Central Intelligence Agency, 2002). Subsistence farming 

predominates, such as slash and burn practices, and are not sustainable for long periods of time 

(World Food Programme, 2001). Amendments to the soil through agricultural inputs, such as 

livestock waste or chemical fertilizers, are unavailable or unaffordable to most farmers in Malawi 

(Cooper et al., 1996). Reduced soil fertility is compensated by increased cultivation of arable land, 

increasing the expanse of land exposed to weathering and erosion (Mkanda, 2002). Employment is 

based largely on agricultural production and the populations are expanding at a rate of approximately 

2.2 % per year, (while developed countries such as Canada and the United States of America average 

0.93 % annually,) (Central Intelligence Agency, 2002). Decreasing soil fertility and increasing 

infection by the human immunodeficiency virus (HIV and AIDS) combine to exacerbate the demand 

for maximum agricultural yields (World Food Programme, 2001). Climatic events such as the severe 

drought of 1991/92 also increased the demand for higher agricultural yields and food imports. This 

resulted in decreased food production, increased dependence on international financing and decreased 
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food security (World Food Programme, 2001). As a result, management strategies must consider both 

the ecological and socio-economic implications of any future recommendations. 

Adjustments to the current deforestation and agricultural practices are necessary, yet must 

account for agricultural yields, income and employment, and result in decreased soil erosion and 

nutrient inputs. Mkanda (2002) found that the use of fertilizers was insufficient and that increased 

applications to maize and tobacco crops increased yields and decreased the need for expansion of the 

cultivated lands, thus decreasing soil erosion. A study of the Linthipe watershed found that a 50% 

reforestation would lead to an estimated reduction of one-third the amount of total phosphorus input 

during initial peak flows (Lam et al., 2002). However strategic reforestation as opposed to random 

reforestation of sensitive high slopes would be even more effective. Forest in the southern basin is an 

important asset to the dense populations for both domestic fuelwood used for cooking and 

commercial fuelwood for smoking fish (Abbot and Homewood, 1999). Researchers have begun to 

experiment with possible solutions to the demands for cheap fuel while mitigating soil degradation; 

one such solution may be the implementation of agroforestry in this region (Cooper et al., 1996).  

Development in Lake Malawi’s mountainous northern region is a particular concern, as it will 

yield substantial suspended sediment loads if steep slopes are brought into agricultural production. 

Maximum loading of nutrients into Lake Victoria was observed in pasturelands characterized by high 

discharges and steep topography (Lindenschmidt et al., 1998), suggesting that deforestation along 

Lake Malawi’s escarpment would accelerate transport of particulate bound nutrients. Due to the 

relative abundance of low-nutrient indicator diatom taxa and the sensitivity of the northern coring 

location to changing climatic conditions, development in the north would likely lead to rapid 

degradation of water quality. The growing human populations in the north have already begun 

development in the Songwe River watershed (Hecky et al., 2003) and management of this region 

must be ecologically sound to avoid unacceptable water-quality deterioration. Hecky, et al. (2003) 

concluded that maintaining protection of the forested escarpment slopes will be essential in 

controlling yields of sediment and nutrients to Lake Malawi. 
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Persistent long-term warming trends may also become a problem with Lake Malawi (Vollmer 

et al., in press), however paleolimnological evidence does not show evidence of a substantially altered 

thermal regime. Recent evidence shows that the monimolimnion has warmed by 0.7˚C from 1940-

2000 in Lake Malawi due to decreasing cold-water convection (Vollmer et al., in press). Verburg et 

al. (2003) have found a similar trend in Lake Tanganyika’s abyssal layer and several ecological 

consequences are anticipated. The thermal inertia of these large African Great Lakes has led to a 

gradual warming of the monimolimnion, resulting in increased density gradients and decreased 

vertical mixing (Verburg et al., 2003). Nutrient recycling and oxygenation of deep-waters in Lake 

Tanganyika has declined, as a result phytoplankton biomass and diatom abundance has declined 

(Verburg et al., 2003). Should the warming trend persist in this region it is likely that Lake Malawi’s 

diatom community will come under stress, not only by the eutrophication-induced silica depletion in 

the mixolimnion in the south, but by the reduced vertical mixing. The loss of diatoms as an edible 

food source for grazers will undoubtedly affect Lake Malawi’s food chain and the increased thermal 

stratification and elevated phosphorus inputs flushed in from the southern catchment will favour 

cyanobacteria species capable of regulating their buoyancy and fixing atmospheric nitrogen where 

nitrogen is most likely to limit algal growth (Guildford and Hecky, 2000; Guildford et al., 2003). 



 55

REFERENCES  

Abbot, J.I.O. and Homewood, K., 1999. A history of change: causes of miombo woodland decline in 

a protected area in Malawi. Journal of Applied Ecology, 36: 422-433. 

Appleby, P.G. and Oldfield, F., 1978. The calculation of lead-210 dates assuming a constant rate of 

supply of unsupported 210Pb to the sediment. Catena, 5: 1-8. 

Battarbee, R.W., Charles, D.F., Dixit, S.S. and Renberg, I., 1999. Diatoms as indicators of surface 

water acidity. In: E.F. Stoermer and J.P. Smol (Editors), The diatoms: applications for the 

environmental and earth sciences. Cambridge University Press, Cambridge, UK, pp. 85-127. 

Battarbee, R.W., Jones, V.J., Flower, R.J., Cameron, N.G., Bennion, H., Carvalho, L. and Juggins, S., 

2001. Diatoms. In: J.P. Smol, H.J.B. Birks and W.M. Last (Editors), Tracking Evironmental 

Change Using Lake Sediments. Kluwer Academic Publishers, Dordrecht, the Netherlands, 

pp. 155-202. 

Battarbee, R.W. and Kneen, M.J., 1982. The use of electronically counted microspheres in absolute 

diatom analysis. Limnology and Oceanography, 27(1): 184-188. 

Beauchamp, R.S.A., 1953. Hydrological data from Lake Nyasa. Journal of Ecology, 41: 226-239. 

Berglund, B.E., 1986. Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & 

Sons, Chichester, UK. 

Blais, J.M., Kalff, J., Cornett, R.J. and Evans, R.D., 1995. Evaluation of 210 Pb dating in lake 

sediments using stable Pb, Ambrosia pollen, and 137 Cs. Journal of Paleolimnology, 13: 169-

178. 

Bootsma, H.A., 1993a. Algal dynamics in an African Great Lake, and their relation to hydrographic 

and meteorological conditions. PhD. Thesis, University of Manitoba, Winnipeg, MB, 311 pp. 

Bootsma, H.A., 1993b. Spatio-temporal variation of phytoplankton biomass in Lake Malawi, Central 

Africa. Verhandlungen. Internationale. Vereinigung fur theoretische und german angewandte 

Limnologie, 25: 882-886. 



 56

Bootsma, H.A., Bootsma, M.J. and Hecky, R.E., 1996. The chemical composition of precipitation and 

it's significance to the nutrient budget of Lake Malawi. In: T.C. Johnson and E.O. Odada 

(Editors), The limnology, climatology and paleoclimatology of the East African Lakes. 

Gordon and Breach, Amsterdam, pp. 251-265. 

Bootsma, H.A. and Hecky, R.E., 1993. Conservation of the African Great Lakes: a limnological 

perspective. Conservation Biology, 7: 1-13. 

Bootsma, H.A. and Hecky, R.E., 1999. Nutrient cycling in Lake Malawi/Nyasa. In: H.A. Bootsma 

and R.E. Hecky (Editors), Water Quality Report: Lake Malawi/Nyasa biodiversity 

conservation project, pp. 215-242. 

Bootsma, H.A. and Hecky, R.E., 2003. A comparative introduction to the biology and limnology of 

the African Great Lakes. Journal of Great Lakes Research, 29(Supp. 2): 3-18. 

Bootsma, H.A., Hecky, R.E., Hesslein, R.H. and Turner, G.F., 1996. Food partioning among Lake 

Malawi nearshore fishes as revealed by stable isotope analyses. Ecology, 77(4 (June)): 1286-

1290. 

Bootsma, H.A., Hecky, R.E., Johnson, T.C., Kling, H.J. and Mwita, J., 2003. Inputs, outputs, and 

internal cycling of silica in a large, tropical lake. Journal of Great Lakes Research, 

29(Supplement 2): 121-138. 

Calder, I.R., Hall, R.L., Bastable, H.G., Gunston, H.M., Shela, O., Chirwa, A. and Kafundu, R., 1995. 

The impact of land use change on water resources in sub-Saharan Africa: a modeling study of 

Lake Malawi. Journal of Hydrology, 170: 123-135. 

Central Intelligence Agency, C.I.A., 2004. The World Factbook. Washington, D.C. 

Cocquyt, C. and Vyverman, W., 1994. Composition and diversity of the algal flora in the East 

African Great Lakes: a comparative survey of lakes Tanganyika, Malawi (Nyasa), and 

Victoria. Archive fur Hydrobiologie Beih. Ergebn. Limnol., 44: 161-172. 

Cohen, A.S., 2003. Paleolimnology: the history and evolution of lake systems. Oxford University 

Press, New York, N.Y., 500 pp. 



 57

Cohen, A.S., Kaufman, L. and Ogutu-Ohwayo, R., 1996. Anthropogenic threats, impacts and 

conservation strategies in the African Great Lakes: a review. In: T.C. Johnson and E.O. 

Odada (Editors), The limnology, climatology and paleoclimatology of the East African lakes. 

Gordon and Breach Publishers, Toronto, pp. 575-624. 

Cooper, P.J.M., Leakey, R.R.B., Rao, M.R. and Reynolds, L., 1996. Agroforestry and the mitigation 

of land degradation in the humid and sub-humid tropics of Africa. Experimental Agriculture, 

32: 235-290. 

Drayton, R.S., 1984. Variations in the level of Lake Malawi. Hydrological Sciences Journal, 29(1): 1-

12. 

Ebinger, C.J., Crow, M.J., Rosendahl, B.R., Livingstone, D.A. and LeFournier, J., 1984. Structural 

evolution of Lake Malawi, Africa. Nature, 308: 627-629. 

Eccles, D.H., 1962. An internal wave in Lake Nyasa and its probable significance in the nutrient 

cycle. Nature, 194(4831): 832-833. 

Eccles, D.H., 1974. An outline of the physical limnology of Lake Malawi (Lake Nyasa). Limnology 

and Oceanography, 19(5): 730-742. 

Frey, D.G., 1988. What is paleolimnology? Journal of Paleolimnology, 1: 5-8. 

Gasse, F., 1986. East African diatoms: taxonomy, ecological distribution, Bibliotheca Diatomologica: 

Band 11. Gebrüder Borntraeger Verlagsbuchhandlung, Berlin, Germany, 201 pp. 

Gonfiantini, R., Zuppi, G., Eccles, D.H. and Ferro, W., 1979. Isotope investigation of Lake Malawi, 

Isotopes in lake studies. International Atomic Energy Agency, Vienna, pp. 195-207. 

Guildford, S.J., Bootsma, H.A., Fee, E.J., Hecky, R.E. and Patterson, G., 2000. Phytoplankton 

nutrients status and mean water column irradiance in Lake Malawi and Superior. Aquatic 

Ecosystem Health and Management, 3: 35-45. 

Guildford, S.J., Bootsma, H.A., Hendzel, L.L., Hecky, R.E. and Barlow-Busch, L., 1999. Factors 

controling pelagic algal abundance and composition in Lake Malawi/Nyasa. In: H.A. 



 58

Bootsma and R.E. Hecky (Editors), Water Quality Report: Lake Malawi/Nyasa biodiversity 

conservation project, pp. 143-182. 

Guildford, S.J. and Hecky, R.E., 2000. Total nitrogen, total phosphorus, and nutrient limitations in 

lakes and oceans:  is there a common relationship? Limnology and Oceanography, 45(6): 

1213-1223. 

Guildford, S.J., Hecky, R.E., Taylor, W.D., Mugidde, R.M. and Bootsma, H.A., 2003. Nutrient 

enrichment experiments in tropical Great Lakes Malawi/Nyasa and Victoria. Journal of Great 

Lakes Research, 29(Supplement 2): 89-106. 

Haberyan, K.A., 1990. The misrepresentation of the planktonic diatom assemblage of traps and 

sediments: southern Lake Malawi, Africa. Journal of Paleolimnology, 3: 35-44. 

Haberyan, K.A. and Hecky, R.E., 1987. The late pleistocene and holocene stratigraphy and 

paleolimnology of Lakes Kivu and Tanganyika. Palaeogeography, Palaeoclimatology, 

Palaeoecology, 61: 169-197. 

Haberyan, K.A. and Mhone, O.K., 1991. Algal communities near Cape Maclear, southern Lake 

Malawi, Africa. Hydrobiologia, 215: 175-188. 

Hall, R.I. and Smol, J.P., 1992. A weighted-average regression and calibration model for inferring 

total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater 

Biology, 27: 417-434. 

Hamblin, P.F., Bootsma, H.A. and Hecky, R.E., 2003. Modeling nutrient upwelling in Lake 

Malawi/Nyasa. Journal of Great Lakes Research, 29(Supplement 2): 34-47. 

Hamblin, P.F., Verburg, P., Roebber, P., Bootsma, H.A. and Hecky, R.E., 2002. Observations, 

evaporation and preliminary modelling of over-lake meteorology on large african lakes. In: 

E.O. Odada and D.O. Olago (Editors), The East African Great Lakes: limnology, 

palaeolimnology and biodiversity. Kluwer Academic Publishers, Dordrecht, The Netherlands, 

pp. 121-151. 



 59

Hecky, R.E., 1993. The eutrophication of Lake Victoria. Verhandlungen. Internationale. Vereinigung 

fur theoretische und german angewandte Limnologie, 25: 39-48. 

Hecky, R.E., 2000. A biogeochemical comparison of Lake Superior and Malawi and limnological 

consequences of an endless summer. Aquatic Ecosystem Health and Management, 3: 23-33. 

Hecky, R.E., Bootsma, H.A. and Kingdon, M.J., 2003. Impact of land use on sediment and nutrient 

yields to Lake Malawi/Nyasa (Africa). Journal of Great Lakes Research, 29(Supplement 2): 

139-158. 

Hecky, R.E., Bootsma, H.A., Mugidde, R.M. and Bugenyi, F.W.B., 1996. Phosphorus pumps, 

nitrogen sinks, and silicon drains: plumbing nutrients in the African Great Lakes. In: T.C. 

Johnson and E.O. Odada (Editors), The limnology, climatology and paleoclimatology of the 

East African Lakes. Gordon and Breach, Toronto, ON, pp. 205-224. 

Hecky, R.E. and Kling, H.J., 1981. The phytoplankton and protozooplankton of the euphotic zone of 

Lake Tanganyika: species composition, biomass, chlorophyll content, and spatio-temporal 

distribution. Limnology and Oceanography, 26(3): 548-564. 

Hecky, R.E. and Kling, H.J., 1987. Phytoplankton ecology of the great lakes in the rift valleys of 

Central Africa. Archive fur Hydrobiologie Beih. Ergebn. Limnol., 25: 197-228. 

Hecky, R.E., Kling, H.J., Johnson, T.C., Bootsma, H.A. and Wilkinson, P., 1999. Algal sedimentary 

evidence for recent changes in the water quality and limnology of Lake Malawi/Nyasa. In: 

H.A. Bootsma and R.E. Hecky (Editors), Water Quality Report: Lake Malawi/Nyasa 

Biodiversity Conservation Project. SADC/GEF, Salima, Malawi, pp. 191-214. 

Higgins, S.N., Hecky, R.E. and Taylor, W.D., 2001. Epilithic nitrogen fixation in the rocky littoral 

zones of Lake Malawi, Africa. Limnology and Oceanography, 46(4): 976-982 (notes). 

Hudak, A.T. and Wessman, C.A., 2000. Deforestation in Mwanza District, Malawi from 1981 to 

1992, as determined from Landsat MSS imagery. Applied Geography, 20: 155-175. 

Irvine, K. and Waya, R., 1999. Spatial and temporal patterns of zooplankton standing biomass and 

production in Lake Malawi. Hydrobiologia, 407: 191-205. 



 60

Johnson, T.C., Barry, S.L., Chan, Y. and Wilkinson, P., 2001. Decadal record of climate variability 

spanning the past 700 yr in the southern tropics of East Africa. Geology, 29(1): 83-86. 

Kidd, C.H.R., 1983. A water resources evaluation of Lake Malawi and the Shire River. UNDP Project 

MLW/77/012, World Meteorological Organization, Geneva. 

Kilham, P., 1990a. Ecology of Melosira species in the Great Lakes of Africa. In: M.M. Tilzer and C. 

Serruya (Editors), Large lakes: ecological structure and function. Springer-Verlag, Berlin, pp. 

414-427. 

Kilham, P., Kilham, S.S. and Hecky, R.E., 1986. Hypothesized resource relationships among African 

planktonic diatoms. Limnology and Oceanography, 31(6): 1169-1181. 

Kilham, S.S., 1984. Silicon and phosphorus growth kinetics and competitive interactions between 

Stephanodiscus minutus and Synedra sp. Verhandlungen. Internationale. Vereinigung fur 

theoretische und german angewandte Limnologie, 22: 435-439. 

Kilham, S.S., 1990b. Relationship of phytoplankton and nutrients to stoichiometric measures. In: 

M.M. Tilzer and C. Serruya (Editors), Large lakes: ecological structure and function. 

Springer-Verlag, Berlin, pp. 401-413. 

Klee, R. and Casper, S.J., 1992. New centric diatoms (Thalassiosirales) of Lake Malawi (Formerly 

Lake Nyassa; Malawi, East Africa. Archiv fuer Protistenkunde, 142: 179-192. 

Klee, R. and Casper, S.J., 1995. Stephanodiscus nyassae Klee et Casper nov. spec., a new centric 

diatom (Thalassiosirales) from Lake Malawi (Malawi, East Africa). Archiv fuer 

Protistenkunde, 146: 293-297. 

Kling, H.J., Mugidde, R.M. and Hecky, R.E., 2001. Recent changes in the phytoplankton community 

of Lake Victoria in response to eutrophication. In: M. Munawar and R.E. Hecky (Editors), 

The Great Lakes of the World (GLOW): food-web, health and integrity. Backhuys 

Publishers, Leiden, The Netherlands, pp. 47-65. 

Krammer, K. and Lange-Bertalot, H., 1986. Bacillariophyceae. 1. Teil: Naviculaceae. 

Susswasserflora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Stuttgart, 876 pp. 



 61

Krammer, K. and Lange-Bertalot, H., 1988. Bacillariophyceae. 2. Teil: Bacillariaceae, 

Epithemiaceae, Surirellaceae. Susswasserflora von Mitteleuropa, Band 2/2. Gustav Fischer 

Verlag, Stuttgart, 611 pp. 

Krammer, K. and Lange-Bertalot, H., 1991a. Bacillariophyceae. 3. Teil: Centrales, Fragilarioceae, 

Eunotiaceae. Susswasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Stuttgart, 

576 pp. 

Krammer, K. and Lange-Bertalot, H., 1991b. Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische 

Erganzungen zu Navicula (Lineolata) und Gomphonema Gesamtliteraturverzeichnis Teil 1-4. 

Susswasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, Stuttgart, 437 pp. 

Lam, D.C.L., Leon, L., Hecky, R.E., Bootsma, H.A. and McCrimmon, R.C., 2002. A modelling 

approach for Lake Malawi/Niassa: integrating hydrological and limnological data. In: E.O. 

Odada and D.O. Olago (Editors), The East African Great Lakes: limnology, palaeolimnology 

and biodiversity. Canadian  Crown, The Netherlands, pp. 189-208. 

Lezzar, K.E., Tiercelin, J.-J., De Batist, M. and Cohen, A.S., 1996. New seismic stratigraphy and Late 

Tertiary history of the North Tanganyika Basin, East African Rift system, deduced from 

multichannel and high-resolution reflection seismic data and piston core evidence. Basin 

Research, 8: 1-28. 

Likens, G.E. and Bormann, F.H., 1974. An experimental approach in New England landscapes. 

Coupling of land and water systems, Ecological Studies 10: 7-29. 

Likens, G.E., Bormann, F.H., Johnson, N.M., Fisher, D.W. and Pierce, R.S., 1970. Effects of forest 

cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed 

ecosystem. Ecological Monitoring, 40: 23-43. 

Lindenschmidt, K.-E., Suhr, M., Magumba, M.K., Hecky, R.E. and Bugenyi, F.W.B., 1998. Loading 

of solute and suspended solids from rural areas flowing into Lake Victoria in Uganda. Water 

Resources, 32(9): 2776-2786. 



 62

McCullough, G., 1999. Transport of Linthipe River suspended sediments in Lake Malawi/Nyasa. In: 

H.A. Bootsma and R.E. Hecky (Editors), Water Quality Report Lake Malawi/Nyasa 

Biodiversity Conservation Project, Salima, Malawi, pp. 71-84. 

Mkanda, F.X., 2002. Contribution by farmers' survival strategies to soil erosion in the Linthipe River 

Catchment: implications for biodiversity conservation in Lake Malawi/Nyasa. Biodiversity 

and Conservation, 11(8): 1327-1359. 

Mugidde, R.M., Hecky, R.E., Hendzel, L.L. and Taylor, W.D., 2003. Pelagic nitrogen fixation in 

Lake Victoria (East Africa). Journal of Great Lakes Research, 29(Supplement 2): 76-88. 

Müller, O., 1895. Rhopalodia, ein neues genus der Bacillariaceen. Botanische Jahrbucher fur 

Systematik, Pflanzengeschichte und Pflanzengeographie., 22: 54-71. 

Müller, O., 1903. VII. Bacillariaceen aus Nyassalande und einigen benachbarten Gebieten. 

Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie., 34: 9-

38. 

Müller, O., 1904. VII. Bacillariaceen aus Nyassalande und einigen benachbarten Gebieten. 

Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie., 34: 256-

301. 

Müller, O., 1905. VII. Bacillariaceen aus Nyassalande und einigen benachbarten Gebieten. 

Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie., 36: 137-

205. 

Müller, O., 1911. VIII. Bacillariaceen aus Nyassalande und einigen benachbarten Gebieten. 

Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie., 45: 69-

122. 

Munthali, S.M. and Mkanda, F.X., 2002. The plight of Malawi's wildlife: is trans-location of animals 

the solution? Biodiversity and Conservation, 11: 751-768. 



 63

Nicholson, S.E., 1996. A review of climate dynamics and climate variability in Eastern Africa. In: 

T.C. Johnson and E.O. Odada (Editors), The limnology, climatology and paleoclimatology of 

the East African Lakes. Gordon and Breach Publishers, The Netherlands, pp. 25-55. 

Nicholson, S.E. and Yin, X., 2002. Mesoscale patterns of rainfall, cloudiness and evaporation over 

the Great Lakes of East Africa. In: E.O. Odada and D.O. Olago (Editors), The East African 

Great Lakes: limnology, palaeolimnology and biodiversity. Kluwer Academic Publishers, 

The Netherlands, pp. 93-119. 

Owen, R.B. and Crossley, R., 1992. Spatial and temporal distribution of diatoms in sediments of Lake 

Malawi, Central Africa, and ecological implications. Journal of Paleolimnology, 7: 55-71. 

Owen, R.B., Crossley, R., Johnson, T.C., Tweddle, D., Kornfield, I., Davison, S., Eccles, D.H. and 

Engstrom, D.E., 1990. Major low levels of Lake Malawi and their implications for speciation 

rates in cichlid fishes. Journal of the Linnean Society of London. Botany, 240: 519-553. 

Patterson, G. and Kachinjika, O., 1993. Effect of wind-induced mixing on the vertical distribution of 

nutrients and phytoplankton in Lake Malawi. Verhandlungen. Internationale. Vereinigung fur 

theoretische und german angewandte Limnologie, 25: 872-876. 

Patterson, G. and Kachinjika, O., 1995. Limnology and phytoplankton ecology. In: A. Menz (Editor), 

The fishery potential and productivity of the pelagic zone of Lake Malawi/Niassa. Natural 

Resources Institute, Chatham, UK, pp. 1-67. 

Pilskaln, C.H., 2004. Seasonal and interannual particle export in an African rift valley lake: a 5-yr 

record from Lake Malawi, southern East Africa. Limnology and Oceanography, 49(1): 964-

977. 

Pilskaln, C.H. and Johnson, T.C., 1991. Seasonal signals in Lake Malawi sediments. Limnology and 

Oceanography, 36(3): 544-557. 

Ramlal, P.S., 2002. Sources, transport and sinks of organic matter in Lake Malawi and Lake Victoria, 

East Africa. University of Waterloo Thesis, Waterloo, ON, 164 pp. 



 64

Ramlal, P.S., Hecky, R.E., Bootsma, H.A., Schiff, S.L. and Kingdon, M.J., 2003. Sources and fluxes 

of organic carbon in Lake Malawi/Nyasa. Journal of Great Lakes Research, 29(Supplement 

2): 107-120. 

Reynolds, C.S., 1986. Diatoms and the geochemical cycling of silicon. In: B.S.C. Leadbeater and R. 

Riding (Editors), Biomineralization in lower plants and animals. The Systematics Association 

Special Volume. Oxford University Press, Oxford, pp. 269-290. 

Schelske, C.L., 1999. Diatoms as mediators of biogeochemical silica depletion in the Laurentian 

Great Lakes. In: E.F. Stoermer and J.P. Smol (Editors), The diatoms: applications for the 

environmental and earth sciences. Cambridge University Press, Cambridge, UK, pp. 73-84. 

Schelske, C.L., Conley, D.J., Stoermer, E.F., Newberry, T.L. and Campbell, C.D., 1986. Biogenic 

silica and phosphorus accumulation in sediments as indices of eutrophication in the 

Laurentian Great Lakes. Hydrobiologia, 143: 79-86. 

Schelske, C.L., Stoermer, E.F., Conley, D.J., Robbins, J.A. and Glover, R.M., 1983. Early 

eutrophication in the lower great lakes: new evidence from biogenic silica in sediments. 

Science, 222: 320-322. 

Schmidle, W., 1899. Uber Planktonalgen und Flagellaten aus Nyassassee. Botanische Jahrbucher fur 

Systematik, Pflanzengeschichte und Pflanzengeographie., 27: 229-237. 

Seehausen, O., van Alphen, J.J.M. and Witte, F., 1997. Cichlid fish diversity threatened by 

eutrophication that curbs sexual selection. Science, 227: 1808-1811. 

Snoeks, J., 1998. Taxonomy and ichthyodiversity research on the African Great Lakes: a comparison. 

In: L. Coetzee, J. Gon and C. Kulongowski (Editors), International conference for the Paradi 

Association and the fisheries society of Africa. FISA/PARADI, Grahamstown, South Africa, 

pp. 72. 

Spigel, R.H. and Coulter, G.W., 1996. Comparison of hydrology and physical limnology of the East 

African Great Lakes: Tanganyika, Malawi, Victoria, Kivu and Turkana (with reference to 

some North American Great Lakes). In: T.C. Johnson and E.O. Odada (Editors), The 



 65

limnology, climatology and paleoclimatology of the East African Lakes. Gordon and Breach, 

Amsterdam, pp. 103-139. 

Talling, J.F., 1966. The annual cycle of stratification and phytoplankton growth in Lake Victoria 

(East Africa). Int. Revue ges. Hydrobiol., 51(4): 545-621. 

Talling, J.F., 1969. The incidence of vertical mixing, and some biological and chemical consquences, 

in tropical African lakes. Verhandlungen. Internationale. Vereinigung fur theoretische und 

german angewandte Limnologie, 17: 998-1012. 

Talling, J.F. and Talling, I.B., 1965. The chemical composition of African lake waters. Int. Revue 

ges. Hydrobiol., 50(3): 421-463. 

Tamatamah, R.A., Hecky, R.E. and Duthie, H.C., in press. The atmospheric deposition of phosphorus 

in Lake Victoria (East Africa). Biogeochemistry, xx(xx): 1-20. 

Tiercelin, J.-J. and Lezzar, K.E., 2002. A 300 million years history of rift lakes in central and east 

africa: and updated broad review. In: E.O. Odada and D.O. Olago (Editors), The East African 

Great Lakes: limnology, palaeolimnology and biodiversity. Kluwer Academic Publishers, 

Netherlands, pp. 3-60. 

Tweddle, D., 1992. Conservation and threats to the resources of Lake Malawi. Mitt. Internat. Verein.  

Limnol., 23: 17-24. 

Verburg, P., Hecky, R.E. and Kling, H.J., 2003. Ecological consequences of a century of warming in 

Lake Tanganyika. Science, 301: 505-507. 

Verschuren, D., Edgington, D.N., Kling, H.J. and Johnson, T.C., 1998. Silica depletion in Lake 

Victoria: sedimentary signals at offshore stations. Journal of Great Lakes Research, 24(1): 

118-130. 

Verschuren, D., Johnson, T.C., Kling, H.J., Edgington, D.N., Leavitt, P.R., Brown, E.T., Talbot, M.R. 

and Hecky, R.E., 2001. History and timing of human impact on Lake Victoria, East Africa. 

The Royal Society: 289-294. 



 66

Vollmer, M.K., Bootsma, H.A., Hecky, R.E., Patterson, G., Halfman, J.D., Edmond, J.M., Eccles, 

D.H. and Weiss, R.F., in press. Deep-water warming trend in Lake Malawi, East Africa. 

Limnology and Oceanography, xx(xx): 1-14. 

Vollmer, M.K., Weiss, R.F. and Bootsma, H.A., 2002. Ventilation of Lake Malawi/Nyasa. In: E.O. 

Odada and D.O. Olago (Editors), The East African Great Lakes: limnology, paleolimnology 

and biodiversity. Kluwer Academic Publishers, Netherlands, pp. 209-233. 

World Food Programme, W.F.P., 2001. Annual report of the World Food Programme. 



 67

 

 

 

 

 

 

 

 

 

 

APPENDICES



 68

APPENDIX A.  

Table 2. List of identified diatom taxa and authority encountered in sediment multicores M98-11MC, MAL 4, MAL 10, and MAL 14 from Lake 
Malawi. 

Diatom taxon and Authority Diatom taxon and Authority 
Achnanthes buccula Cholnoky  A. subarctica (O. Müller) Haworth 
A. clevei var. bottnica (Grunow) Clevei  A. valida (Grunow) Krammer 
A delicatula ssp. englebrechtii (Cholnoky) Lange-Bertalot Caloneis bacillum (Grunow) Cleve 
A. exilis Kützing Capartogramma crucicula (Grunow ex Cleve) Ross 
A. grischuna Wuthrich Capartogramma karstenii (Zanon) Ross 
A. holsatica Hustedt Cocconeis neodiminuta Krammer 
A. lanceolata ssp. rostrata (Østrup) Lange-Bertalot C. neothumensis Krammer 
A. marginulata Grunow C. placentula var. eglypta (Ehrenberg) Cleve 
A. minutissima Kützing C. placentula var lineate (Ehrenberg) Van Heurck 
A. subhudsonis Hustedt Cyclostephanos damasii (Hustedt) Stoermer & Håkansson 
A. suchlandtii Hustedt C. malawiensis Klee & Casper 
Amphora copulata Kützing C. novaezeelandiae (Cleve) Round 
A. inariensis Krammer Cyclotella bodanica var. lemanica (O. Müller) Bachmann 
A. pediculus (Kützing) Grunow C. krammeri Håkansson 
A. tanganyikae Caljon C. meneghiniana Kützing 
Aulacoseira ambigua (Grunow) Simonsen C. ocellata Pantocsek 
A. crassipunctata Krammer C. radiosa (Grunow) Lemmermann 
A. crenulata (Ehrenberg) Thwaites C. stelligera Cleve & Grunow 
A. granulata (Ehrenberg) Simonsen C. tripartate Håkansson 
A. granulata var. angustissima (O. Müller) Simonsen Cymatopleura solea (Brébisson) W. Smith 
A. italica (Ehrenberg) Simonsen Cymbella budayana Pantocsek 
A. laevissima (Grunow) Krammer C. minuta Hilse 
A. lirata (Ehrenberg) Ross C. muellerii Hustedt 
A. muzzanensis (Meister) Krammer C. subaequalis Grunow 
A. nyassensis O. Müller C. caespitosa (Kützing) Brun 

6 8
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Table 2. Continued… 

Diatom Taxa & Authority  Diatom Taxa & Authority  
Cymbellonitzschia minima Hustedt M. undulata (Ehrenberg) Kützing 
Diploneis ovalis (Hilse) Cleve Navicula absoluta Hustedt 
D. parma Cleve N. atomus (Kützing) Grunow 
D. pseudovalis Hustedt N. arvensis Hustedt 
Epithemia adnata (Kützing) Brébisson N. bacilloides Hustedt 
Eunotia incisa Gregory  N. barbarica Hustedt 
E. intermedia (Krasske) Nörpel & Lange-Bertalot N. capitata Ehrenberg var. hungarica (Grunow) Ross 
E. subarcuatoides Alles N. capitoradiata Germain 
Fragilaria africana Hustedt N. cincta (Ehrenberg) Ralfs 
F. brevistriata Grunow N. confervacea (Kützing) Grunow 
F. capucina var. rumpens (Kützing) Lange-Bertalot N contenta Grunow 
F. construens (Ehrenberg) Grunow N. costulata Grunow 
F. construens f. venter (Ehrenberg) Hustedt N. cryptotenella Lange-Bertalot 
F. heidenii Østrup N. damasii Hustedt 
F. leptostauron (Ehrenberg) Hustedt N. decussis Østrup 
F. leptostauron var. dubia (Grunow) Hustedt N. elkab O. Müller 
F. pinnata Ehrenberg N. exiguiformis Hustedt 
F. pinnata var. intercedens (Grunow) Hustedt N. gastrum (Ehrenberg) Kützing 
F. sp. 2 PIRLA Camburn  N. gastrum var. signata Hustedt 
F. ulna (Nitzsch) Lange-Bertalot N. halophila (Grunow) Cleve  
Gomphonema affine Kützing N. ignota var accepta (Hustedt) Lund 
G. clevei Fricke N. Insociabilis Krasske 
G. gracile Ehrenberg N. kuelbsii Lange-Bertalot 
G. parvulum (Kützing) Kützing N. minima Grunow 
Gyrosigma attenuatum (Kützing) N. modica Hustedt 
Gyrosigma nodiferum (Grunow) Reimer N. mutica Kützing 
Hantzschia amphioxys (Ehrenberg) Grunow N. muticoides Hustedt 
Mastogloia elliptica var. dansei (Thwaites) Cleve N. nyassensis O. Müller 
Melosira arentii (Kolbe) Nagumo & Kobayasi N. peliculosa (Brébisson) Hilse 

6 9
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Table 2. Continued… 
Diatom Taxa & Authority  Diatom Taxa & Authority  
N. perlatoides Hustedt N. gracilis Hantzsch 
N. placentula (Ehrenberg) Grunow N. inconspicua Grunow 
N. platycephala O. Müller N. lacuum Lange-Bertalot 
N. pupula Kützing N. lancettula O Müller 
N. pupula Kützing var. pupula Hustedt N. leibetruthii Rabenhorst 
N. rhynchocephala Kützing N. nyassensis O. Müller 
N. rotunda Hustedt N. palea (Kützing) W. Smith 
N. schoenfeldii Hustedt N. paleacea Grunow 
N. scutelloides W. Smith N. pura Hustedt 
N. seminuloides Hustedt N recta Hantzsch 
N. subatomoides Hustedt N. reversa W. Smith 
N. sublucidula Hustedt N. sigma (Kützing) W. Smith 
N. submisicula Manguin N. sigmoides (Nitzsch) W. Smith 
N. submuralis Hustedt N. subacicularis Hustedt 
N. subrotundata Hustedt N. valdecostata Lange-Bertalot & Simonsen 
N. trivialis Lange-Bertalot N. vermicularis (Kützing) Hantzsch 
N. utermoehlee Hustedt Orthoseira roeseana (Rabenhorst) O’Meara 
N. vitabunda Hustedt Pinnularia mesolepta (Ehrenberg) W. Smith 
N. zanonii Hustedt Rhoicosphenia abbreviata (C. Agardh) Lange-Bertalot 
Neidium ampliatum (Ehrenberg) Krammer Rhopalodia gibba (Ehrenberg) O. Müller var. gibba Hustedt 
Nitzschia acicularis (Kützing) W. Smith R. gracilis O. Müller 
N. adnata Hustedt Stephanodiscus hantzschii Grunow 
N. amphibia Grunow S. medius Håkansson 
N. bacillum  Hustedt S. minutulus (Kützing) Round 
N .communis Rabenhorst S. mülleri Klee & Casper 
N. compressa (Bailey) Boyer vexans (Grunow) Lange-Bertalot S. niagara Ehrenberg 
N. dissipata (Kützing) Grunow S. nyassae Klee & Casper 
N. epiphytica O Müller Surirella nyassae O. Müller 
N. fonticola Grunow Synedra ulna (Nitzsch) Ehrenberg 
N. frustulum (Kützing) Grunow Tabellaria fenestrata (Lyngbye) Kützing 

7 0
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APPENDIX B. 

PLATE 1. Figures 1-11 (X 1000) 

Fig. 1-2: Aulacoseira nyassensis O. Müller 

Fig. 3: Aulacoseira nyassensis O. Müller (girdle view) 

Fig. 4-6: Cyclostephanos malawiensis Klee & Casper 

Fig. 7-8: Stephanodiscus minutulus (Kützing) Round 

Fig. 9-10: Stephanodiscus nyassae O. Müller 

Fig. 11: Stephanodiscus muelleri Klee & Casper 
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PLATE 2. Figures 1-24 (X 1000) 

Fig. 1: Amphora pediculus (Kützing) Grunow 

Fig. 2: Cocconeis neothumensis Krammer 

Fig. 3: Diploneis pseudovalis Hustedt 

Fig. 4: Cymbellonitzschia minima Hustedt 

Fig. 5: Cymbellonitzschia minima Hustedt (girdle view)  

Fig. 6: Nitzschia amphibia Grunow 

Fig. 7: Nitzschia leibetruthii Rabenhorst 

Fig. 8-9: Nitzschia epiphytica O Müller 

Fig. 10: Nitzschia fonticola Grunow 

Fig. 11-12: Fragilaria africana Hustedt 

Fig. 13: Fragilaria africana Hustedt (girdle view)  

Fig. 14: Fragilaria brevistriata Grunow 

Fig. 15: Fragilaria leptostauron var. dubia (Grunow) Hustedt 

Fig. 16: Fragilaria leptostauron var. dubia girdle view (Grunow) Hustedt 

Fig. 17: Fragilaria construens f. construens (Ehrenberg) Grunow 

Fig. 18: Fragilaria construens f. venter (Ehrenberg) Hustedt 

Fig. 19: Navicula seminuloides Hustedt 

Fig. 20: Navicula barbarica Hustedt 

Fig. 21: Navicula gastrum (Ehrenberg) Kützing 

Fig. 22: Navicula subrotunda Hustedt 

Fig. 23: Navicula cryptotenella Lange-Bertalot 

Fig. 24: Navicula scutelloides W. Smith 
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APPENDIX C.  

Table 2. Summary of parameters for northern core M98-11MC  

Slice Date Sediment- 
ation Rate 

Diatom 
Conc. 

Diatom 
Influx

% BSi BSI 
Influx

POC 
Influx

PN 
Influx 

POC :PN

1 1997 248.73 1.06E+08 2.65E+10 17.95 44.65  9.09
2 1992 242.67 6.14E+07 1.49E+10 17.6 42.71  9.21
3 1987 225.74 9.67E+07 2.18E+10 15.17 34.25  9.33
4 1981 214.25 6.70E+07 1.43E+10 12.74 27.30  8.64
5 1975 175.31 7.61E+07 1.33E+10 10.73 18.81  8.66
6 1970 208.51 8.07E+07 1.68E+10 14.84 30.94  8.77
7 1965 178.93 5.41E+07 9.68E+09 14.83 26.54  8.27
8 1960 190.88 6.09E+07 1.16E+10 14.27 27.24  8.21
9 1954 214.59 3.86E+07 8.29E+09 12.73 27.32  9.84

10 1951 243.52 5.76E+07 1.40E+10 na na  9.51
11 1939 216.89 7.69E+07 1.67E+10 12.5 23.78  9.49
12 1934 190.26 1.39E+08 2.65E+10 17.8 38.93  9.42
13 1927 204.48 7.69E+07 1.57E+10 19.44 55.60  9.60
14 1921 218.69 1.12E+08 2.44E+10 15.57 54.38  9.67
15 1912 252.36 7.84E+07 1.98E+10 12.7 41.74  9.06
16 1905 286.02 7.37E+07 2.11E+10 14.07 67.52  8.74
17 1899 317.64 4.45E+07 1.41E+10 16.66 70.04  9.16
18 1892 349.25 1.20E+08 4.18E+10 11.25 41.10  8.34
19 1886 338.94 1.36E+08 4.60E+10 14.38   8.31
20 1881 328.63 3.32E+08 1.09E+11 13.56   8.25
21 1875 404.25 1.87E+08 7.56E+10 9.55   8.91
22 1869 479.87 8.15E+07 3.91E+10 13.95   9.51
23 1866 450.13 4.55E+07 2.05E+10 20.25   8.65
24 1837 420.39 8.57E+07 3.60E+10 16.78  8.07
25 1831 392.87 1.60E+08 6.27E+10 15.23  8.17
26 1824 365.35 1.12E+08 4.10E+10 13.33  7.69
27 1817  6.97E+07  17.31  8.13
28 1811  1.18E+08  14.78  8.14
29 1806  1.37E+08  23.97  7.75
30 1802  1.51E+08  21.74  7.93
31 1797  7.53E+07  23.22  7.59
32 1789  1.40E+07  na  7.88
33 1782  1.15E+08  31.2  7.81
34 1776  1.13E+08  29.38  7.91
35 1767  1.21E+08  32.37  9.33
36 1759  1.56E+08  27.35   8.29
37 1759  1.17E+08  20.17  9.06
38 1751  6.23E+07  28.73   9.27
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Table 2 Continued. Summary of parameter for northern core M98-11MC. 

Slice Date Sediment-
ation Rates 

Diatom 
Conc. 

Diatom 
Influx

% BSi BSi 
Influx

POC 
Influx 

PN 
Influx 

POC :PN 

39 1743  3.93E+07  25.08   9.00
40 1736  2.52E+07  24.9   9.45
41 1722  6.72E+07  16.11   9.86
42 1713  5.84E+07  18.67   9.61
43 1704  9.47E+07  22.32   9.90
44 1696  1.05E+08  19.26   9.54
45 1688  2.55E+08  26.98   9.05
46 1681  1.81E+08  25.35   7.55
47 1676  1.95E+08  16.08   7.98
48 1674  8.70E+07  26.89   9.18
49 1667  6.73E+07  12.55   9.25
50 1659  6.95E+07  15.95   9.15
51 1655  1.57E+08  15.55    8.71
52   1.10E+08  18.51    8.51

 



 77

 

Table 3. Summary of parameters for central core MAL 4 

Slice Date Sediment- 
ation Rate 

Diatom 
Conc.

Diatom 
Influx

% BSi BSi 
Influx 

POC 
Influx 

PN 
Influx 

POC :PN 

1 1997 219.81 2.11E+07 4.51E+10 28.49 62.63 1079 117.8 9.16

3 1993 249.05 1.40E+07 3.29E+10 21.47 53.47 1029 108.4 9.50

5 1987 149.82 1.41E+07 2.05E+10 23.77 35.61 1128 121.8 9.26

7 1978 190.78 8.46E+06 1.55E+10 26.11 49.81 957 101.6 9.42

9 1970 139.15 1.77E+07 2.41E+10 24.59 34.21 1038 109.1 9.51

11 1959 140.06 1.45E+07 1.94E+10 17.88 25.05 909 91.8 9.90

13 1942 182.30 1.25E+07 2.22E+10 27.82 50.71 845 86.3 9.79

15 1931 251.17 8.67E+06 2.02E+10 21.64 54.36 870 89.7 9.70

17 1917 208.57 3.55E+06 7.18E+09 19.69 41.07 888 89.5 9.93

19 1905 207.40 2.23E+07 4.49E+10 23.48 48.69 849 84.7 10.02

21 1886 180.21 1.26E+07 2.24E+10 27.95 50.37 734 72.4 10.14

23 1850 154.69 9.85E+06 1.41E+10 28.57 44.20 617 60.8 10.14

25 1818  3.80E+07  32.77    9.95

27 1789  1.71E+07  28.73    9.74

29 1762  2.75E+07  30.75    9.52

31 1734  6.72E+06  20.39    9.85

33 1704  5.25E+06  15.02    10.04
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Table 4. Summary of parameters for southern core MAL 10  

Slice Date Sediment- 
ation Rate 

Diatom 
Conc.

Diatom 
Influx

% BSi BSi 
Influx 

POC 
Influx 

PN 
Influx 

POC :PN 

1 1997 556.28 1.50E+08 8.33E+10 20.45 113.76 2415 282.3 8.55
2 1997 538.37 7.59E+07 4.09E+10 na na 2473 271.1 9.12
3 1996 521.79 8.22E+07 4.29E+10 19.27 100.55 2339 267.3 8.75
4 1995 495.29 7.88E+07 3.90E+10 16.51 81.77 2284 259.4 8.80
5 1994 492.48 7.98E+07 3.93E+10 18.27 89.98 2282 251.4 9.08
6 1992 459.52 5.85E+07 2.69E+10 17.38 79.86 2153 245.4 8.77
7 1990 447.14 7.29E+07 3.26E+10 18.98 84.87 2137 242.1 8.83
8 1989 430.36 8.94E+07 3.85E+10 16.79 72.26 2092 237.5 8.81
9 1987 417.82 6.93E+07 2.90E+10 17.25 72.07 2025 232.0 8.73

10 1985 399.38 4.66E+07 1.86E+10 na na 2037 224.9 9.06
11 1983 370.29 4.76E+07 1.76E+10 14.67 54.32 1954 215.9 9.05
12 1979 347.61 6.96E+07 2.42E+10 16.51 57.39 1881 206.4 9.11
13 1975 322.57 6.40E+07 2.07E+10 16.76 54.06 1819 199.8 9.10
14 1970 289.37 3.66E+07 1.06E+10 14.95 43.26 1780 195.9 9.09
15 1965 277.36 6.15E+07 1.71E+10 11.26 31.23 1730 185.3 9.33
16 1960 290.16 5.03E+07 1.46E+10 11.58 33.60 1724 183.1 9.42
17 1955 310.20 3.27E+07 1.01E+10 9.38 29.10 1685 176.7 9.53
18 1949 309.96 2.29E+07 7.11E+09 7.78 24.12 1681 172.2 9.76
19 1943 306.59 2.55E+07 7.81E+09 8.07 24.74 1634 167.6 9.75
20 1937 290.39 2.42E+07 7.02E+09 7.1 20.62 1563 160.3 9.75
21 1926 238.97 2.34E+07 5.60E+09 6.4 15.29 1485 149.2 9.96
22 1908 239.14 2.07E+07 4.95E+09 5.79 13.85 1346 134.5 10.01
23 1890 220.53 1.50E+08 3.32E+10 6.05 13.34 1254 124.1 10.11
24 1871 223.91 1.66E+07 3.71E+09 5.96 13.35 1177 117.3 10.04
25 1856 354.96 3.02E+07 1.07E+10 6.81 24.17 1120 111.2 10.07
26 1849 931.30 3.45E+07 3.21E+10 6.47 60.26 1089 109.4 9.95
27 1844 882.38 4.13E+07 3.64E+10 7.79 68.74 2415 282.3 9.99
28 1832  5.53E+07 8.26  10.06
29 1820  2.91E+07 8.72  10.03
30 1808  1.89E+07 6.58  10.09
31 1794  2.94E+07 5.36  10.14
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Table 5. Summary of parameters for southern core MAL 14 

Slice Date Sediment-
ation Rate 

Diatom 
Conc.

Diatom 
Influx

% 
BSi 

BMAR POC 
Influx 

PN 
Influx 

POC :PN 

1 1997 799.32 4.13E+07 3.30E+10 9.45 75.52 2759 315.9 8.73
3 1995 798.61 2.98E+07 2.38E+10 11.25 89.86 2691 310.4 8.67
5 1993 716.75 2.62E+07 1.88E+10 10.66 76.40 2571 286.3 8.98
7 1991 666.22 3.06E+07 2.04E+10 9.10 60.62 2641 289.3 9.13
9 1988 614.50 3.99E+07 2.45E+10 10.45 64.21 2432 272.2 8.94

11 1984 925.01 2.35E+07 2.17E+10 11.07 102.35 2596 285.7 9.09
13 1979 559.15 1.61E+07 9.00E+09 8.38 46.86 2519 271.5 9.28
15 1971 465.10 8.90E+06 4.14E+09 9.85 45.82 2320 248.3 9.34
17 1961 463.03 1.11E+07 5.13E+09 7.51 34.77 2110 222.0 9.50
19 1952 430.39 na na 6.39 27.48 2001 207.5 9.64
21 1939 458.12 8.55E+06 3.92E+09 4.31 19.75 1950 198.8 9.81
23 1915 339.26 7.07E+06 2.40E+09 3.34 11.33 1722 172.8 9.97
25 1887 345.17 8.57E+06 2.96E+09 4.79 16.52 1618 159.2 10.17
27 1860 429.58 na na 3.95 16.96 1487 142.0 10.47
29 1839 766.86 1.01E+07 7.73E+09 3.29 25.25 2759 315.9 10.27
31 1816  4.56E+06 10.26

 
 



           Appendix D.            
           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval 0-1 1-2 2-3 3-4 4-5 5-6  6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14
Sediment Midpoint 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5
Diatom Taxa
Achnanthes buccula 3.3 1.8 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
A. delicatula spp. englebrechtii 0.6 1.0 0.0 0.0 0.2 0.9 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.2
A. holsatica 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. lanceolata var rostrata 0.0 0.4 0.2 0.4 0.0 0.4 0.6 0.0 0.4 0.0 0.4 0.5 0.0 0.2
A. minutissima 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. suchlandii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. subhudsonis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. sp 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Amphora copulata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0
A. pediculus 0.6 0.4 0.7 0.2 0.2 0.7 0.4 1.3 0.4 1.2 0.0 1.2 0.7 0.2
Aulacoseira ambigua 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
A. crassipunctata 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
A. crenulata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. granulata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. granulata var. angustissima 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
A. muzzanensis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.0 0.2 0.2 0.0 0.0
A. nyassensis 11.2 18.0 14.3 5.2 12.3 7.5 2.7 15.5 14.3 11.4 5.1 5.5 6.9 2.1
A. subarctica 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Caloneis bacillum 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Capartogramma karstenii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cocconeis neodiminuta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.4 0.0
C. neothumensis 0.2 2.0 0.9 1.2 1.2 1.6 2.1 1.1 2.4 0.4 0.7 0.0 0.4 0.2
C. placentula var lineata 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0
C. placentula var. eglypta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cyclostephanos malawiensis 10.3 8.1 9.4 13.8 11.9 7.5 18.9 12.6 11.3 8.2 17.6 23.1 8.2 24.0
C. novaezeelandiae 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.4 0.0 0.0 1.6 0.0 0.4 0.0
Cyclotella bodanica var. lemanica 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C. stelligera 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0
C. ocellata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C. tripartate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cymatopleura solea 0.2 0.0 0.0 0.8 0.5 0.0 0.4 0.0 0.0 0.4 0.0 0.0 0.2 0.4
Cymbella caespitosa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C. minuta 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0
C. muelleri 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval 0-1 1-2 2-3 3-4 4-5 5-6  6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14
Sediment Midpoint 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5
Diatom Taxa
Cymbellonitzschia minima 2.4 0.2 1.1 0.4 0.0 1.1 1.9 1.5 1.1 1.4 0.9 0.7 0.4 0.0
Diploneis pseudovalis 0.0 0.2 0.4 0.0 0.0 0.0 0.2 0.0 0.0 0.4 0.0 0.0 0.0 0.0
Epithemia adnata 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Eunotia incisa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E. intermedia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E. subarcuatoides 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fragilaria africana 0.0 0.6 0.4 0.0 0.0 0.0 0.0 1.5 0.0 0.4 0.0 0.2 0.7 0.0
F. brevistriata 0.0 0.0 0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0
F.construens f. venter 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
F. heidenii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
F. leptostauron var. dubia 0.7 0.0 1.5 0.4 0.0 0.9 0.0 0.8 1.9 0.0 0.0 0.0 0.0 0.0
F. pinnata 0.7 2.4 2.2 0.6 1.2 0.9 0.4 1.5 0.4 1.2 0.4 0.0 2.0 0.8
F. PIRLA sp. 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gomphonema affine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
G. clevei 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
G. gracile 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0
G. parvulum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gyrosigma nodiferum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Melosira arentii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M. undulata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Navicula aff. minima 0.0 1.0 0.0 0.0 0.0 0.0 0.4 0.2 0.4 0.0 0.0 0.0 0.0 0.0
N. bacilloides 0.0 0.0 0.2 0.0 0.0 0.0 0.8 0.0 0.0 0.2 0.2 0.0 0.0 0.0
N. bacillum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. barbarica 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.4 0.0 0.0 0.0 0.0 0.0
N. capitata var. hungarica 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. cincta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
N .contenta 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. costulata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. cryptotenella 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. decussis 0.0 0.4 0.0 0.0 0.4 0.4 0.8 0.2 0.9 0.4 0.9 0.9 0.0 0.4
N. gastrum 0.0 0.2 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.4 0.0
N. insociabilis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. minima 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. minisculoides 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval 0-1 1-2 2-3 3-4 4-5 5-6  6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14
Sediment Midpoint 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5
Diatom Taxa
N. mutica 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. nyassensis 0.0 0.0 0.0 0.2 0.4 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
N. perlatoides 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. pupula 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. rotunda 0.0 0.2 0.9 0.0 0.4 1.1 1.2 0.0 0.4 0.2 0.7 0.9 0.0 0.0
N. scutelloides 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
N. seminuloides 0.2 0.4 0.7 0.4 0.9 1.1 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.2
N. sp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0
N. submuralis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. subrotundata 0.0 0.2 0.0 0.2 0.7 0.0 0.0 1.5 0.0 0.0 0.2 0.0 0.2 0.6
N. vitabunda 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Neidium ampliatum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nitzschia acicularis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. adnata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1
N. amphibia 0.0 1.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. bacillum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. communis 0.7 0.4 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 2.2 0.0 0.0 0.4
N. compressa v. vexans 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
N. disspata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. epiphytica 4.4 4.8 2.0 6.2 8.7 2.7 7.1 1.1 3.6 12.2 1.3 0.2 6.0 5.6
N. epiphyticoides 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. fonticola 9.4 1.6 1.8 0.6 1.1 0.4 0.0 0.4 1.5 0.8 0.0 0.0 1.3 3.3
N. frustulum 1.7 1.4 0.0 0.4 2.1 2.7 1.2 0.0 0.2 0.0 0.7 0.0 0.0 2.5
N. gracilis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
N. inconspicua 1.3 1.8 0.2 1.0 1.6 0.2 2.7 2.1 1.3 0.8 1.1 1.8 2.2 0.6
N. lacuum 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. lancettula 0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.4 0.2 2.0 0.0 0.2 0.2 0.2
N. leibetruthii 0.4 0.6 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0
N. nyassensis 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 0.0 0.0 0.4
N. palaea 0.7 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.8
N. paleacea 1.1 0.2 0.0 1.0 2.1 0.9 0.6 0.0 0.0 1.2 0.4 0.5 0.0 0.4
N. recta 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. sigma 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.4
N. sigmoides 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval 0-1 1-2 2-3 3-4 4-5 5-6  6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14
Sediment Midpoint 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5
Diatom Taxa
N. sp 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.2 0.0 0.0 0.2 0.2 2.9
N. subacicularis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. roeseana 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. mesolepta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rhoicosphenia abbreviata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rhopalodia gibba 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
R. gracilis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stephanodiscus minutulus 4.4 5.3 14.3 8.7 17.2 20.4 21.8 20.6 8.4 21.2 25.4 35.6 21.1 23.4
S. mulleri 9.7 12.7 19.7 28.2 12.4 12.4 15.6 11.8 12.4 12.4 37.3 8.1 8.2 6.4
S. niagara 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
S. nyassae 33.9 30.9 26.8 27.6 23.3 32.6 18.5 22.3 36.4 22.6 0.0 18.5 36.4 19.9
Surirella nyassae 0.2 0.4 1.3 0.6 0.4 0.2 0.2 0.2 0.2 0.2 0.0 0.5 0.0 0.0
Synedra ulna 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tabellaria fenestra 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval
Sediment Midpoint
Diatom Taxa
Achnanthes buccula
A. delicatula spp. englebrechtii
A. holsatica
A. lanceolata var rostrata
A. minutissima
A. suchlandii
A. subhudsonis
A. sp 
Amphora copulata
A. pediculus
Aulacoseira ambigua
A. crassipunctata
A. crenulata
A. granulata 
A. granulata var. angustissima
A. muzzanensis
A. nyassensis 
A. subarctica
Caloneis bacillum
Capartogramma karstenii
Cocconeis neodiminuta
C. neothumensis
C. placentula var lineata
C. placentula var. eglypta
Cyclostephanos malawiensis
C. novaezeelandiae
Cyclotella bodanica var. lemanica
C. stelligera
C. ocellata
C. tripartate
Cymatopleura solea 
Cymbella caespitosa
C. minuta
C. muelleri

14-15 15-16 16-17 17-18 18-19 19-20  20-21 21-22 22-23 23-24 24-25 25-26 26-27 27-28
14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5

0.0 0.0 0.4 0.0 0.0 0.2 0.4 0.0 0.0 0.2 0.0 0.2 0.0 0.0
0.4 0.2 0.0 0.2 0.0 0.0 0.2 0.0 0.2 0.2 0.0 0.0 0.0 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.2 0.2 0.0 0.0 0.2 0.9 0.0 0.0 0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.0 30.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.4 0.0
0.0 0.4 0.4 0.0 0.4 0.6 0.4 0.7 0.8 0.0 0.4 0.0 0.4 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
20.9 22.9 11.8 6.7 8.5 4.5 7.3 6.4 12.8 12.5 7.2 14.4 11.0 16.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
0.8 0.4 2.2 1.4 0.4 0.8 0.2 1.3 1.0 1.1 0.2 0.8 0.5 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.2
3.8 3.5 12.5 9.3 10.5 19.1 18.3 19.5 18.0 11.3 13.8 10.5 15.3 13.7
0.4 0.0 0.4 0.4 0.4 0.0 0.0 0.0 1.5 0.4 0.2 0.0 0.2 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.4 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval
Sediment Midpoint
Diatom Taxa
Cymbellonitzschia minima
Diploneis pseudovalis
Epithemia adnata
Eunotia incisa
E. intermedia
E. subarcuatoides
Fragilaria africana
F. brevistriata
F.construens f. venter
F. heidenii
F. leptostauron var. dubia
F. pinnata
F. PIRLA sp. 2
Gomphonema affine
G. clevei
G. gracile
G. parvulum
Gyrosigma nodiferum
Melosira arentii
M. undulata
Navicula aff. minima
N. bacilloides
N. bacillum
N. barbarica
N. capitata var. hungarica
N. cincta
N .contenta 
N. costulata
N. cryptotenella 
N. decussis
N. gastrum
N. insociabilis
N. minima
N. minisculoides

14-15 15-16 16-17 17-18 18-19 19-20  20-21 21-22 22-23 23-24 24-25 25-26 26-27 27-28
14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5

2.9 0.4 0.9 0.8 0.4 1.0 0.0 0.9 0.0 0.8 0.8 0.4 2.3 0.0
0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.4 0.0 0.0 0.0 0.7
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.9 1.3 1.3 0.0 0.4 0.0 0.9 0.4 1.7 0.0 0.0 1.0 0.0 0.0
1.2 0.2 0.4 0.2 0.4 0.4 0.0 0.0 1.5 0.8 0.0 1.6 0.5 0.9
0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.2 0.2 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.9 0.2 0.0 0.0 0.0 0.2 0.2 0.0 0.8 0.4 0.0 0.0
0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval
Sediment Midpoint
Diatom Taxa
N. mutica
N. nyassensis
N. perlatoides
N. pupula 
N. rotunda
N. scutelloides
N. seminuloides
N. sp
N. submuralis
N. subrotundata
N. vitabunda
Neidium ampliatum
Nitzschia acicularis
N. adnata
N. amphibia
N. bacillum
N. communis
N. compressa v. vexans
N. disspata
N. epiphytica
N. epiphyticoides
N. fonticola
N. frustulum
N. gracilis
N. inconspicua
N. lacuum
N. lancettula
N. leibetruthii
N. nyassensis
N. palaea
N. paleacea
N. recta
N. sigma
N. sigmoides

14-15 15-16 16-17 17-18 18-19 19-20  20-21 21-22 22-23 23-24 24-25 25-26 26-27 27-28
14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.7 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.7 0.0 0.0 0.0 0.4 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.4
0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.6 0.0 0.0 0.4 0.0 0.0
0.0 0.4 0.4 0.0 0.8 0.4 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.0 0.0 0.0 1.2 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.2 0.0
0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.4 0.0 0.0 0.0 1.2 0.0 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.8 0.0 0.2 0.0 0.2 0.4 0.4 0.0 0.4 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.8 15.2 11.2 10.3 4.9 4.3 4.5 3.3 5.0 5.7 10.8 6.9 7.4 4.2
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.8 1.8 0.0 2.6 5.5 6.7 2.4 1.1 0.6 3.4 3.6 4.0 2.5 6.2
1.3 4.0 0.6 1.4 2.4 3.0 3.2 0.4 0.4 2.3 0.6 2.4 1.8 2.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0
0.8 0.9 1.7 1.6 1.0 0.0 0.9 0.2 0.8 0.4 0.8 1.2 0.0 0.0
0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.0 0.4 0.0 0.0 0.8 0.0 0.2 0.2 0.2 0.0 0.0 0.2 0.0
0.6 0.0 0.6 0.2 0.0 0.0 0.0 0.7 0.6 0.2 0.2 0.2 0.4 0.0
0.2 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.2 0.2 0.6 0.0 0.0 0.0
0.0 2.2 0.0 0.8 0.0 0.4 0.4 0.0 0.0 0.6 0.0 0.0 0.0 0.0
0.8 0.0 0.0 0.0 0.0 3.1 3.2 0.9 0.4 0.4 5.2 0.8 0.7 1.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval
Sediment Midpoint
Diatom Taxa
N. sp
N. subacicularis
N. roeseana
N. mesolepta
Rhoicosphenia abbreviata
Rhopalodia gibba
R. gracilis
Stephanodiscus minutulus
S. mulleri
S. niagara
S. nyassae
Surirella nyassae
Synedra ulna
Tabellaria fenestra

14-15 15-16 16-17 17-18 18-19 19-20  20-21 21-22 22-23 23-24 24-25 25-26 26-27 27-28
14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5

0.4 0.0 0.0 0.0 0.2 1.2 0.4 0.0 0.4 0.0 0.8 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15.9 16.0 17.6 19.2 9.3 15.6 0.0 20.1 14.4 30.6 16.2 21.9 10.5 15.6
6.9 7.0 7.5 3.0 5.3 4.5 18.3 12.6 9.2 6.4 2.0 7.1 5.4 5.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
31.5 19.8 26.5 41.5 46.4 28.0 6.5 27.0 27.2 20.2 34.9 22.7 37.9 31.3
0.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval
Sediment Midpoint
Diatom Taxa
Achnanthes buccula
A. delicatula spp. englebrechtii
A. holsatica
A. lanceolata var rostrata
A. minutissima
A. suchlandii
A. subhudsonis
A. sp 
Amphora copulata
A. pediculus
Aulacoseira ambigua
A. crassipunctata
A. crenulata
A. granulata 
A. granulata var. angustissima
A. muzzanensis
A. nyassensis 
A. subarctica
Caloneis bacillum
Capartogramma karstenii
Cocconeis neodiminuta
C. neothumensis
C. placentula var lineata
C. placentula var. eglypta
Cyclostephanos malawiensis
C. novaezeelandiae
Cyclotella bodanica var. lemanica
C. stelligera
C. ocellata
C. tripartate
Cymatopleura solea 
Cymbella caespitosa
C. minuta
C. muelleri

28-29 29-30 30-31 31-32 32-33 33-34  34-35 35-36 36-37 37-38 38-39 39-40 40-41 41-42
28.5 29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 37.5 38.5 39.5 40.5 41.5

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.0
0.0 0.0 0.6 0.2 0.0 0.2 0.0 0.0 0.5 0.7 0.4 0.2 0.4 0.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.2 0.2 0.2 0.0 0.2
0.0 0.0 0.6 0.0 0.7 0.0 0.4 0.0 0.5 0.0 0.4 0.5 0.9 0.0
0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.4 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.6 0.5
20.8 10.0 22.6 14.1 17.1 12.8 12.6 18.3 8.7 4.6 16.7 28.8 13.9 27.5
0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.7 0.0 0.2 0.4 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5
0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0
1.0 0.2 0.2 0.9 1.5 0.4 0.0 0.0 0.7 0.0 0.2 1.4 2.7 1.2
0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.4 0.0 0.0 0.9 0.0 1.1 0.0
25.7 17.5 6.3 9.9 8.2 22.8 21.4 22.0 48.1 28.1 27.9 7.6 8.2 6.9
1.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
0.0 0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.4 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval
Sediment Midpoint
Diatom Taxa
Cymbellonitzschia minima
Diploneis pseudovalis
Epithemia adnata
Eunotia incisa
E. intermedia
E. subarcuatoides
Fragilaria africana
F. brevistriata
F.construens f. venter
F. heidenii
F. leptostauron var. dubia
F. pinnata
F. PIRLA sp. 2
Gomphonema affine
G. clevei
G. gracile
G. parvulum
Gyrosigma nodiferum
Melosira arentii
M. undulata
Navicula aff. minima
N. bacilloides
N. bacillum
N. barbarica
N. capitata var. hungarica
N. cincta
N .contenta 
N. costulata
N. cryptotenella 
N. decussis
N. gastrum
N. insociabilis
N. minima
N. minisculoides

28-29 29-30 30-31 31-32 32-33 33-34  34-35 35-36 36-37 37-38 38-39 39-40 40-41 41-42
28.5 29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 37.5 38.5 39.5 40.5 41.5

0.8 0.0 1.3 2.1 0.7 0.4 0.0 0.0 0.9 0.7 0.0 0.5 2.1 0.0
0.0 0.2 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.2 3.9 0.0 0.0 0.0 0.7 0.2 1.1 0.0 1.1 0.0 1.0
0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.4 8.1 0.7 0.0 0.0 0.0 0.0 0.7 0.9 0.9 1.3 0.5
1.2 0.7 0.4 3.2 0.4 0.0 0.9 0.0 0.0 0.0 1.3 1.1 2.1 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.8 0.2 0.4 0.0 0.4 0.2 0.0 0.0 0.2 0.7 0.0 1.6 1.1 0.7
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.4 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.7 0.0 0.0 0.0 0.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval
Sediment Midpoint
Diatom Taxa
N. mutica
N. nyassensis
N. perlatoides
N. pupula 
N. rotunda
N. scutelloides
N. seminuloides
N. sp
N. submuralis
N. subrotundata
N. vitabunda
Neidium ampliatum
Nitzschia acicularis
N. adnata
N. amphibia
N. bacillum
N. communis
N. compressa v. vexans
N. disspata
N. epiphytica
N. epiphyticoides
N. fonticola
N. frustulum
N. gracilis
N. inconspicua
N. lacuum
N. lancettula
N. leibetruthii
N. nyassensis
N. palaea
N. paleacea
N. recta
N. sigma
N. sigmoides

28-29 29-30 30-31 31-32 32-33 33-34  34-35 35-36 36-37 37-38 38-39 39-40 40-41 41-42
28.5 29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 37.5 38.5 39.5 40.5 41.5

0.0 0.0 0.0 0.0 0.4 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.2 0.7 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0
0.0 0.0 0.0 0.4 0.4 0.0 1.7 0.0 0.2 0.5 0.0 1.8 1.5 1.7
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.0 0.4 1.1 0.0 0.0 0.4 0.5 2.3 0.0
0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.2 0.0 0.2 0.7 0.0 0.0 0.0
0.0 0.4 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.9 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0
9.6 6.7 13.8 2.6 10.3 9.3 10.5 5.1 0.5 0.5 4.2 5.9 7.4 6.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 2.7 2.7 1.9 6.9 4.3 7.2 1.3 0.5 0.5 0.9 0.0 0.8 1.0
0.0 1.1 0.0 0.4 0.7 0.4 0.7 0.4 0.0 0.0 0.7 0.5 0.0 0.0
0.0 0.0 0.0 0.9 0.4 0.0 0.0 0.4 0.0 0.2 0.2 0.2 0.6 0.7
0.0 0.7 1.9 0.4 0.4 0.9 1.3 1.3 1.1 1.1 0.7 1.4 1.7 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.4 0.0 0.0 0.0 0.2 0.9 0.0 0.9 0.7 0.0 0.2 0.0
0.0 0.2 0.0 0.0 1.1 0.9 0.2 0.0 0.0 0.2 0.7 1.4 2.1 0.0
0.0 1.3 0.4 1.7 0.0 0.2 0.0 0.2 0.0 0.2 0.7 0.5 0.0 0.0
0.0 0.7 0.4 0.6 0.0 3.0 0.0 0.0 0.0 0.2 0.4 0.0 0.0 0.0
0.0 4.7 3.6 1.7 1.1 0.0 0.9 2.2 0.2 0.5 0.0 0.9 0.4 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval
Sediment Midpoint
Diatom Taxa
N. sp
N. subacicularis
N. roeseana
N. mesolepta
Rhoicosphenia abbreviata
Rhopalodia gibba
R. gracilis
Stephanodiscus minutulus
S. mulleri
S. niagara
S. nyassae
Surirella nyassae
Synedra ulna
Tabellaria fenestra

28-29 29-30 30-31 31-32 32-33 33-34  34-35 35-36 36-37 37-38 38-39 39-40 40-41 41-42
28.5 29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 37.5 38.5 39.5 40.5 41.5

0.4 0.4 0.2 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.2 0.0 0.2 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
8.0 16.4 13.0 13.3 20.0 20.8 12.9 23.2 13.7 23.5 13.0 20.1 21.4 19.4
3.4 4.7 4.6 8.4 11.1 7.8 9.2 9.6 10.1 11.6 8.6 8.9 16.5 10.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
26.3 28.8 22.9 15.4 14.5 14.1 16.6 9.4 11.7 21.9 16.5 11.4 9.9 16.0
0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Megan Puchniak
              91



           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval
Sediment Midpoint
Diatom Taxa
Achnanthes buccula
A. delicatula spp. englebrechtii
A. holsatica
A. lanceolata var rostrata
A. minutissima
A. suchlandii
A. subhudsonis
A. sp 
Amphora copulata
A. pediculus
Aulacoseira ambigua
A. crassipunctata
A. crenulata
A. granulata 
A. granulata var. angustissima
A. muzzanensis
A. nyassensis 
A. subarctica
Caloneis bacillum
Capartogramma karstenii
Cocconeis neodiminuta
C. neothumensis
C. placentula var lineata
C. placentula var. eglypta
Cyclostephanos malawiensis
C. novaezeelandiae
Cyclotella bodanica var. lemanica
C. stelligera
C. ocellata
C. tripartate
Cymatopleura solea 
Cymbella caespitosa
C. minuta
C. muelleri

42-43 43-44 44-45 45-46 46-47 47-48  48-49 49-50 50-51
42.5 43.5 44.5 45.5 46.5 47.5 48.5 49.5 50.5

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
0.8 0.2 0.4 0.0 0.0 0.4 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
0.4 0.0 0.4 0.4 0.0 0.0 0.5 0.9 0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.0 1.1 0.4
22.0 11.3 10.8 5.8 16.6 13.2 16.0 37.9 26.8
0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2
0.2 1.4 0.0 0.2 0.0 0.6 0.5 2.1 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.4 0.0 0.0 0.4 0.9 0.0 0.9
8.1 12.6 8.1 9.4 7.0 7.8 14.9 12.6 11.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval
Sediment Midpoint
Diatom Taxa
Cymbellonitzschia minima
Diploneis pseudovalis
Epithemia adnata
Eunotia incisa
E. intermedia
E. subarcuatoides
Fragilaria africana
F. brevistriata
F.construens f. venter
F. heidenii
F. leptostauron var. dubia
F. pinnata
F. PIRLA sp. 2
Gomphonema affine
G. clevei
G. gracile
G. parvulum
Gyrosigma nodiferum
Melosira arentii
M. undulata
Navicula aff. minima
N. bacilloides
N. bacillum
N. barbarica
N. capitata var. hungarica
N. cincta
N .contenta 
N. costulata
N. cryptotenella 
N. decussis
N. gastrum
N. insociabilis
N. minima
N. minisculoides

42-43 43-44 44-45 45-46 46-47 47-48  48-49 49-50 50-51
42.5 43.5 44.5 45.5 46.5 47.5 48.5 49.5 50.5

2.3 0.8 0.4 1.9 1.2 1.9 1.1 0.0 1.1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.0 0.0 5.8 0.0 0.6 0.2 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.0 0.8 0.8 0.0 0.9 0.2 0.5 0.4
0.6 0.6 0.0 0.0 0.4 1.3 0.9 0.5 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
0.0 0.2 0.0 0.0 0.0 0.0 0.5 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.6 0.0 0.4 0.0 0.2 0.4 2.3 0.0 0.9
0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval
Sediment Midpoint
Diatom Taxa
N. mutica
N. nyassensis
N. perlatoides
N. pupula 
N. rotunda
N. scutelloides
N. seminuloides
N. sp
N. submuralis
N. subrotundata
N. vitabunda
Neidium ampliatum
Nitzschia acicularis
N. adnata
N. amphibia
N. bacillum
N. communis
N. compressa v. vexans
N. disspata
N. epiphytica
N. epiphyticoides
N. fonticola
N. frustulum
N. gracilis
N. inconspicua
N. lacuum
N. lancettula
N. leibetruthii
N. nyassensis
N. palaea
N. paleacea
N. recta
N. sigma
N. sigmoides

42-43 43-44 44-45 45-46 46-47 47-48  48-49 49-50 50-51
42.5 43.5 44.5 45.5 46.5 47.5 48.5 49.5 50.5

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.2 0.0 0.0 0.2 0.5 0.0 0.0
0.0 0.0 0.4 0.0 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
0.6 0.2 0.0 0.4 0.0 0.4 0.9 0.2 0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.2 0.0 0.2 0.0 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.6 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.2 0.4 0.0 0.5 0.0 0.0 0.0 0.9
9.8 6.0 9.1 11.3 14.7 10.6 3.4 8.3 10.6
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.1 3.9 11.2 7.0 10.2 7.8 1.1 2.8 4.7
2.6 0.0 0.4 0.4 0.5 0.0 0.0 0.5 0.9
0.0 0.8 0.4 0.4 0.9 0.6 0.0 0.0 0.0
0.9 0.4 0.4 1.9 1.2 0.6 0.9 0.5 1.3
0.0 0.8 0.0 0.4 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.4 0.0 0.2 0.0 0.7 0.7 0.0
1.9 0.2 1.4 0.0 2.5 0.2 0.5 0.0 1.1
0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.2
1.5 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.4
0.4 2.5 4.5 4.3 2.6 0.4 0.9 0.5 1.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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           Table 6. Percent abundances of diatom taxa from core M98-11MC northern Lake Malawi 

Sediment Interval
Sediment Midpoint
Diatom Taxa
N. sp
N. subacicularis
N. roeseana
N. mesolepta
Rhoicosphenia abbreviata
Rhopalodia gibba
R. gracilis
Stephanodiscus minutulus
S. mulleri
S. niagara
S. nyassae
Surirella nyassae
Synedra ulna
Tabellaria fenestra

42-43 43-44 44-45 45-46 46-47 47-48  48-49 49-50 50-51
42.5 43.5 44.5 45.5 46.5 47.5 48.5 49.5 50.5

0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.1 1.9 0.4 0.2 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12.4 17.1 20.5 20.2 18.2 20.3 23.9 8.3 10.4
8.3 6.8 5.9 3.8 3.3 10.0 10.6 10.3 6.8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
22.8 33.4 20.7 23.0 16.5 18.6 16.9 11.5 17.0
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
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         Table 7. Percent abundance of diatom taxa from core MAL 4 mid Lake Malawi

Sediment Interval  0-1  2-3  4-5  6-7  8-9  10-11  12-13  14-15  16-17  18-19  20-22  24-26 28-30 32-34 36-38 40-42 44-46
Sediment Midpoint 0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5 21.0 25.0 29.0 33.0 37.0 41.0 45.0
Diatom Taxa
Achnanthes buccula 0.0 0.7 0.0 0.8 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.2 0.6 0.0 0.7 0.0
A. clevei var. bottanica 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. delicatula spp. englebrechtii 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. exilis 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. holsatica 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0
A. lanceolata var rostrata 0.2 1.1 1.2 0.4 2.4 1.6 0.4 0.2 2.1 1.0 0.4 0.4 0.6 0.2 0.0 0.5 2.4
A. marginulata 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. minutissima 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. sp 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
A. subhudsonis 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. suchlandii 0.0 1.9 0.0 0.0 0.6 2.4 1.1 0.0 0.0 0.2 1.0 1.2 0.4 0.8 0.0 0.2 0.0
Amphora copulata 0.0 0.4 0.2 0.4 0.8 1.4 0.4 0.2 0.8 0.8 0.4 0.4 0.0 0.2 0.3 0.2 0.2
A. pediculus 0.4 1.7 2.9 3.4 3.8 3.7 1.6 0.8 3.5 1.0 1.4 1.0 1.5 1.6 0.5 2.0 0.9
A. sp 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. tanganyikae 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Aulacoseira ambigua 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.4
A. ambigua var angustissima 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 1.1
A. crassipunctata 0.0 0.6 0.0 1.6 1.0 0.4 0.0 0.0 0.0 0.2 0.4 0.2 0.0 0.2 0.0 0.0 0.2
A. crenulata 0.0 0.2 0.7 0.2 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0
A. granulata 1.6 0.0 0.7 0.2 0.0 0.0 0.0 0.0 2.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. granulata var. angustissima 0.4 0.7 0.0 0.0 0.8 0.8 3.6 0.2 0.4 0.0 0.0 0.8 0.2 0.0 0.0 0.7 0.0
A. lirata 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. muzzanensis 0.0 1.1 2.2 2.8 1.2 2.0 0.2 0.0 0.0 0.2 0.8 1.6 0.2 0.4 0.5 1.6 2.8
A. nyassensis 2.5 14.3 11.1 25.9 8.1 8.1 3.8 5.4 8.9 7.6 5.1 3.1 2.5 3.5 5.8 8.2 7.0
A. sp. 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Caloneis bacillum 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
Capartogramma crucicula 0.0 0.2 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
Cocconeis neodiminuta 0.0 0.0 0.3 0.2 0.6 1.0 0.2 0.0 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.4 0.2
C. neothumensis 2.2 2.8 2.1 1.4 6.2 2.6 2.0 1.7 2.1 1.8 3.3 0.6 0.6 0.2 1.0 2.7 6.8
C. placentula var lineata 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.2 0.0
Cyclostephanos malawiensis 13.0 6.7 4.0 5.4 3.6 2.4 8.7 13.1 9.6 14.1 16.5 24.2 29.0 40.7 28.2 37.1 24.1
C. damasii 0.0 3.3 2.1 2.8 3.6 2.4 4.7 3.9 0.0 2.7 4.3 0.0 1.3 3.9 2.3 1.3 0.7
Cyclotella krammeri 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0
C. meneghiniana 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.4
C. ocellata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
C. tripartate 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
Cymatopleura solea 0.0 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
Cymbella budayana 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C. caespitosa 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C. minuta 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.4 0.0 0.8 0.0 0.0 0.0 0.0
C. muelleri 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
C. subaequalis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0
Cymbellonitzschia minima 1.8 0.6 1.9 0.8 2.2 1.8 1.5 1.5 1.0 0.6 0.2 1.8 1.5 1.6 2.0 0.0 0.0
Diploneis ovalis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
D. pseudovalis 0.7 1.7 0.5 0.4 0.8 0.4 0.4 0.2 0.6 0.0 0.2 0.0 0.0 0.0 0.2 0.7 0.2
Epithemia adnata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
E. subarcuatoides 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.0
Fragilaria africana 2.9 1.7 4.3 1.6 2.2 3.0 2.0 1.0 0.4 3.3 1.9 1.2 1.1 1.4 0.3 2.5 5.9
F. brevistriata 3.1 3.3 0.9 6.4 4.4 1.4 5.8 0.6 2.7 0.4 1.9 1.8 0.6 1.2 0.3 4.6 3.9
F. capucina var. rumpens 0.0 0.6 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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         Table 7. Percent abundance of diatom taxa from core MAL 4 mid Lake Malawi

Sediment Interval  0-1  2-3  4-5  6-7  8-9  10-11  12-13  14-15  16-17  18-19  20-22  24-26 28-30 32-34 36-38 40-42 44-46
Sediment Midpoint 0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5 21.0 25.0 29.0 33.0 37.0 41.0 45.0
Diatom Taxa
F. construens 1.8 0.0 4.1 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0
F.construens f. venter 0.0 0.2 0.0 0.4 0.2 0.2 0.0 0.0 6.9 0.2 0.0 0.8 0.0 0.0 0.0 0.4 0.0
F. heidenii 0.0 0.0 0.0 0.0 0.0 0.2 0.0 1.9 0.0 1.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0
F. leptostauron var. dubia 0.0 0.7 0.0 4.2 8.7 3.9 2.9 6.6 0.0 2.5 4.5 4.1 1.7 3.7 0.3 5.7 3.3
F. pinnata 1.1 5.4 3.1 4.2 6.2 3.9 4.9 4.6 9.4 4.1 3.5 2.0 1.9 3.1 3.7 3.4 3.1
F. pinnata var. intercedens 0.0 0.6 4.8 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.8 0.0 0.0 0.7 0.0 0.0
F. PIRLA sp. 2 0.9 3.3 0.0 0.0 5.2 5.9 2.4 0.2 1.2 1.2 1.2 2.0 3.2 1.6 1.5 0.7 0.0
F. sp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gomphonema sp. 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Navicula atomus 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.5 0.4
N. bacilloides 0.0 0.2 0.0 0.0 1.8 0.0 0.0 1.2 0.0 1.0 0.0 0.0 0.4 0.0 0.0 0.9 0.0
N. barbarica 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.4 0.2 0.4 0.0 0.0 0.3 0.5 0.0
N. cryptotenella 0.0 0.4 0.0 0.0 0.2 0.4 0.0 0.0 0.8 0.2 0.0 0.4 0.0 0.0 0.3 0.0 0.0
N. decussis 1.3 1.5 0.5 0.6 0.4 1.8 0.5 1.7 1.7 0.8 0.4 0.6 0.6 0.0 0.2 0.0 1.8
N. exiguiformis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2
N. gastrum 0.0 0.7 1.2 0.6 1.6 1.0 0.7 1.0 1.0 1.2 0.2 0.8 0.4 0.4 0.2 0.7 0.4
N. gastrum var. signata 0.0 0.2 0.0 0.6 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.4
N. ignota var accepta 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. insociabilis 0.0 0.4 0.0 0.0 0.2 0.8 0.4 0.0 0.0 0.6 0.0 0.4 0.0 0.4 0.0 0.4 0.7
N. minima 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.8 0.0 0.2 0.2 0.0 0.0 0.0 0.0
N. muticoides 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
N. nyassensis 0.2 0.0 0.5 0.2 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.4 0.0 0.0 0.3 0.0 0.2
N. peliculosa 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. pupula 0.2 0.2 0.0 0.0 0.0 0.0 0.4 0.0 0.0 1.0 0.2 0.4 0.4 0.0 0.0 0.2 0.0
N. pupula var. pupula 0.0 0.2 0.0 0.2 0.0 0.8 0.0 0.8 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.0 1.3
N. rhynchocephala 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. rotunda 0.0 0.0 0.0 0.6 1.6 0.6 0.0 0.2 0.0 2.9 0.6 0.0 0.6 0.6 0.0 0.4 0.0
N. schoenfeldii 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. scutelloides 0.2 0.2 1.2 1.0 0.8 1.8 0.5 1.9 1.7 0.8 0.4 1.4 0.4 0.6 0.3 1.3 1.3
N. seminuloides 0.0 2.4 0.3 3.4 2.6 2.6 2.4 0.8 0.0 2.0 2.7 1.6 0.0 1.6 0.0 1.1 1.3
N. sp. 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
N. subatomoides 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.9
N. sublucidata 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. submisicula 3.4 0.0 0.5 0.4 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
N. submuralis 0.0 0.0 0.0 0.0 0.0 0.4 0.5 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
N. subrotundata 0.0 0.0 0.7 1.4 0.0 2.6 0.0 0.2 0.0 0.0 0.0 1.0 0.2 0.2 1.2 0.0 0.0
N. trivialis 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. utermoehlee 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0
Neidium ampliatum 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0
Nitzschia amphibia 3.1 0.0 1.7 0.0 0.0 1.6 0.2 0.0 1.0 0.0 0.0 0.6 0.2 0.8 0.8 0.9 0.2
N. bacillum 0.0 2.6 3.3 0.4 3.0 0.4 3.3 0.4 0.0 1.2 3.5 7.2 2.3 0.8 0.7 0.9 0.4
N. communis 0.0 0.0 0.3 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0
N. epiphytica 0.0 0.7 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. fonticola 0.7 0.6 0.2 0.0 1.2 0.0 1.1 0.8 0.0 0.8 1.9 1.6 1.1 0.0 0.0 0.0 0.0
N. frustulum 0.0 0.7 0.0 0.0 0.2 0.4 0.4 0.0 0.2 0.0 1.6 0.4 0.4 1.0 16.7 0.0 0.4
N. inconspicua 0.0 2.0 0.3 2.0 1.0 1.4 3.1 0.2 3.1 2.5 1.2 0.8 2.5 1.9 0.0 1.1 1.3
N. lacuum 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0
N. lancettula 0.0 0.0 0.0 0.4 0.0 0.0 0.4 1.2 0.0 1.2 0.4 0.0 0.0 0.2 0.0 0.0 0.4
N. leibetruthii 0.0 0.4 0.0 0.6 1.0 1.2 1.6 1.2 0.0 1.6 0.4 0.6 0.0 0.4 0.0 0.4 0.0
N. nyassensis 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0
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         Table 7. Percent abundance of diatom taxa from core MAL 4 mid Lake Malawi

Sediment Interval  0-1  2-3  4-5  6-7  8-9  10-11  12-13  14-15  16-17  18-19  20-22  24-26 28-30 32-34 36-38 40-42 44-46
Sediment Midpoint 0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5 21.0 25.0 29.0 33.0 37.0 41.0 45.0
Diatom Taxa
N. paleacea 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.8 0.0 0.0 0.0 0.0
N. recta 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
N. sigma 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
N. sp. 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.2 0.4 0.0 0.2 1.0 4.2 0.2 0.0
N. subacicularis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0
N. valdecosta 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rhopalodia pusilla 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0
Stephanodiscus minutulus 4.5 5.4 8.6 2.0 6.2 8.1 16.2 9.3 2.7 13.7 16.0 9.8 13.8 7.0 3.8 8.9 16.2
S. mulleri 6.7 10.9 10.4 8.8 7.3 16.2 12.0 25.1 16.2 8.4 8.2 9.4 5.3 4.9 10.0 3.9 4.4
S. nyassae 41.6 15.7 19.2 6.0 5.2 3.0 8.2 8.1 10.6 14.3 11.9 10.0 21.6 10.5 10.5 2.5 3.1
Surirella nyassae 0.0 0.2 0.0 0.2 0.2 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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        Table 8. Percent abundances of diatom taxa from core MAL 10 southern Lake Malawi

Sediment Interval  0-1  1-2  2-3  3-4  4-5  5-6  6-7  7-8  8-9  9-10  10-11  11-12  12-13  13-14  14-15  15-16  16-17
Sediment Midpoint 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5
Diatom taxa 
Achnanthes buccula 0.4 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.2
A. clevei var. bottanica 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0
A. delicatula spp. englebrechtii 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. grischuna 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. holsatica 0.0 1.2 0.0 0.4 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. kuelbsii 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. lanceolata var rostrata 0.2 0.5 0.2 0.8 0.4 0.6 0.0 0.3 0.7 0.2 0.7 1.2 0.4 1.1 0.5 0.4 1.0
A. minutissima 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. sp 0.0 0.0 0.0 0.0 0.6 0.0 2.2 0.5 0.0 0.4 0.2 1.4 0.2 0.0 0.2 0.0 1.2
Amphora copulata 0.2 0.9 0.3 0.4 0.4 0.2 0.2 0.0 0.6 0.5 0.6 0.7 0.2 0.0 0.2 0.0 1.0
A. pediculus 0.4 0.9 1.8 0.4 0.6 0.6 0.0 0.0 0.2 0.5 0.9 0.0 0.0 0.4 1.5 0.0 0.9
A. sp 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Aulacoseira ambigua 0.6 0.3 1.0 0.8 0.7 1.2 0.4 0.2 0.2 0.4 0.9 1.2 1.8 0.2 1.9 1.9 2.6
A. ambigua var angustissima 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.7 0.0 0.0 0.0 0.7 0.0 0.0 1.0 0.8 0.2
A. crassipunctata 0.0 1.2 0.8 0.8 0.2 0.0 1.2 1.4 0.7 1.6 1.7 2.8 1.8 0.0 1.3 1.7 3.1
A. crenulata 0.4 0.0 0.5 0.2 0.0 0.0 1.2 0.0 0.2 0.0 0.9 0.0 0.6 0.2 0.2 0.0 0.3
A. distans 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. granulata 0.6 0.0 1.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.7 0.0 8.0 0.0 0.0 0.0
A. granulata var. angustissima 2.5 0.6 0.2 0.0 0.6 0.0 0.0 0.5 0.0 0.2 0.4 0.0 0.2 0.9 0.3 0.0 0.0
A. italica 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. laevissima 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. lirata 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.2 0.2 0.0 0.2 0.0 0.6 0.0 0.0 0.0 0.0
A. muzzanensis 0.2 1.2 3.2 3.0 4.8 6.1 3.0 7.5 4.8 5.7 12.4 8.9 9.6 3.3 7.9 9.5 12.8
A. nyassensis 16.5 19.0 12.1 9.8 13.3 10.7 18.6 8.7 9.8 23.0 12.1 21.7 29.5 37.7 31.0 26.2 16.6
A. sp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. subarctica 0.0 0.0 1.0 0.0 0.0 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.2 1.0
A. valida 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.2
Caloneis bacillum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Capartogramma crucicula 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
Cocconeis neodiminuta 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0
C. neothumensis 1.1 0.3 1.3 1.6 2.2 2.1 0.2 1.7 2.4 1.4 3.0 1.9 0.0 2.4 1.2 3.5 1.2
C. placentula var lineata 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.4 0.2
Cyclostephanos damasii 0.9 1.1 1.3 1.8 1.1 2.0 2.4 1.2 2.8 2.1 1.3 0.9 1.2 0.4 0.7 1.0 1.2
C. malawiensis 14.2 17.3 11.1 16.1 8.1 13.1 16.2 8.7 7.8 4.1 6.9 4.0 1.8 2.6 1.5 0.8 1.7
C. novaezeelandiae 0.0 0.8 3.7 1.6 7.2 5.9 2.0 3.1 3.3 2.0 1.3 1.2 1.2 0.2 0.7 1.2 0.5
Cyclotella iris 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C. krammeri 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
C. meneghiniana 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C. ocellata 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.2 0.0 0.0 0.0 0.2 0.0
C. tripartate 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cymbella minuta 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
C. muelleri 0.4 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.0 0.5 0.0 0.2
C. caespitosa 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cymbellonitzschia minima 0.8 1.5 1.2 1.2 0.7 0.4 1.4 0.9 0.2 1.1 2.4 0.3 0.0 0.2 0.0 2.3 0.0
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        Table 8. Percent abundances of diatom taxa from core MAL 10 southern Lake Malawi

Sediment Interval  0-1  1-2  2-3  3-4  4-5  5-6  6-7  7-8  8-9  9-10  10-11  11-12  12-13  13-14  14-15  15-16  16-17
Sediment Midpoint 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5
Diatom taxa 
Diploneis ovalis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.4 0.0
D. pseudovalis 0.2 0.8 1.0 0.4 0.6 0.2 0.4 0.5 0.4 0.5 0.6 0.2 0.0 0.7 0.3 0.2 0.0
Eunotia subarcuatoides 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0
Fragilaria africana 7.6 1.5 5.2 4.3 5.0 7.4 3.4 9.9 8.9 6.6 7.1 12.2 12.5 6.3 9.6 11.4 13.4
F. brevistriata 0.0 1.1 1.3 3.7 2.6 1.4 2.4 1.4 3.9 3.2 4.3 3.7 2.9 2.2 3.0 6.0 4.7
F. capucina var. rumpens 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
F. construens 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 1.1 0.0 0.0 0.5
F. construens f. construens 0.4 0.2 0.0 0.4 0.4 0.2 3.2 0.3 0.0 0.9 0.4 1.6 0.0 10.2 1.2 0.0 0.0
F. heidenii 0.0 0.0 2.2 0.8 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
F. leptostauron 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0
F. leptostauron var. dubia 5.7 4.6 6.2 6.1 3.3 6.6 3.6 5.0 8.7 5.0 11.1 5.1 5.5 1.1 7.2 4.5 12.1
F. pinnata 7.4 2.0 4.4 6.1 4.6 2.9 3.4 5.1 5.5 3.4 3.7 4.4 8.2 5.9 10.4 6.0 7.1
F. pinnata var. intercedens 0.0 1.8 0.0 0.0 0.4 0.0 0.2 0.5 0.9 1.1 0.9 0.0 0.8 0.0 5.4 1.9 0.7
F. PIRLA sp. 2 2.1 0.8 1.7 2.0 0.9 0.2 0.0 0.3 4.3 4.3 0.6 1.7 1.0 0.0 0.2 2.5 1.4
F. sp. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
F. ulna var. angustissima 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
Gomphonema affine 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
G. clevei 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gyrosigma nodiferum 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
Melosira arentii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M. undulata 0.0 0.0 0.0 0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
Navicula bacilloides 0.0 0.0 0.0 0.6 0.2 0.0 0.0 0.2 0.0 0.0 0.6 0.0 0.0 0.0 0.5 0.4 0.0
N. barbarica 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. capitoradiata 0.0 0.0 0.3 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
N. cryptotenella 0.0 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0
N. damasii 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5
N. decussis 0.0 0.2 0.7 0.8 0.4 1.2 0.4 0.2 0.4 0.0 0.2 0.2 0.6 0.0 0.0 0.6 0.2
N. elkab 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. exiguiformis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0
N. gastrum 0.2 0.3 0.3 0.6 0.2 0.2 0.6 0.2 0.4 0.0 0.0 0.0 0.2 0.2 0.5 0.0 0.0
N. gastrum var. signata 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. insociabilis 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.2 0.0 0.3 0.2 0.5
N. minima 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.3
N. modica 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.5
N. muticoides 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 1.0 0.2
N. nyassensis 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.4 0.0
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        Table 8. Percent abundances of diatom taxa from core MAL 10 southern Lake Malawi

Sediment Interval  0-1  1-2  2-3  3-4  4-5  5-6  6-7  7-8  8-9  9-10  10-11  11-12  12-13  13-14  14-15  15-16  16-17
Sediment Midpoint 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5
Diatom taxa 
N. placentula 0.0 0.0 0.3 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0
N. pupula 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. pupula var. pupula 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
N. rotunda 0.4 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.6 0.0 0.0 0.2 0.4 0.0 0.2 0.2 0.0
N. schoenfeldii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.2
N. scutelloides 0.6 0.5 0.3 1.2 0.4 0.2 0.8 0.0 1.1 0.9 0.4 1.0 0.8 0.9 0.3 1.4 1.2
N. seminuloides 0.0 0.5 0.8 0.0 0.9 1.6 0.4 0.5 0.6 1.8 0.4 1.2 0.4 0.0 1.2 1.4 1.7
N. sp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0
N. subrotundata 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.2 0.0 1.2 0.0 0.0 0.4 0.0 0.0 0.0 0.0
N. trivialis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. vitabunda 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0
Neidium ampliatum 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
Nitzschia acicularis 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. adnata 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. amphibia 0.0 2.6 0.0 0.4 0.0 1.6 1.0 0.0 0.2 0.4 0.0 1.4 0.0 0.7 0.0 0.8 0.3
N. bacillum 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. communis 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. dissipata 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.7 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0
N. epiphytica 0.8 2.9 3.2 1.2 0.7 2.1 2.2 1.0 1.7 1.1 1.1 0.7 0.0 0.0 0.0 0.0 0.0
N. fonticola 4.6 0.6 3.7 3.9 5.0 2.3 0.0 3.1 2.0 0.7 2.8 0.0 1.4 0.0 0.0 0.0 0.0
N. frustulum 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.3 1.1 0.0 0.6 0.9 0.2 0.0 0.0 0.4 0.0
N. gracilis 0.8 0.0 0.3 0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. inconspicua 0.6 1.1 2.2 0.4 0.0 4.9 0.0 1.5 0.9 1.1 0.9 0.3 0.0 0.0 1.0 0.0 0.3
N. lacuum 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. lancettula 0.0 0.0 0.8 0.6 0.0 0.4 0.0 1.2 0.7 0.0 0.4 0.0 0.4 0.0 0.2 0.0 0.0
N. leibetruthii 0.0 0.0 0.7 0.0 0.4 0.2 0.0 0.3 0.0 0.2 0.4 0.9 0.0 0.0 0.0 0.0 0.5
N. nyassensis 3.0 0.8 0.0 0.2 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
N. palaea 0.0 0.0 0.7 0.0 0.0 0.6 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
N. paleacea 0.8 0.9 1.7 0.4 1.3 0.8 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. pura 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. reversa 0.0 0.0 0.0 0.6 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. sigma 0.0 0.2 0.0 0.4 0.7 0.6 0.6 0.0 0.0 0.0 0.0 0.5 0.6 0.0 0.3 0.0 0.0
N. sp 0.2 3.2 1.8 4.1 1.5 2.3 1.6 1.4 0.6 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.2
Orthoseira roeseana 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0
Rhoicosphenia abbreviata 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rhopalodia gibba var. gibba 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
R. gracilis 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0
Stephanodiscus minutulus 6.6 4.5 3.7 5.7 6.3 6.6 7.3 11.1 10.5 4.8 7.6 3.5 4.5 1.3 2.5 2.3 2.9
S. mulleri 5.1 9.7 2.5 4.1 5.5 5.3 7.3 4.8 3.0 7.3 3.5 6.5 4.5 5.0 2.5 3.9 3.1
S. nyassae 10.2 8.2 11.7 9.6 14.8 8.8 4.7 9.4 7.6 6.8 5.4 2.4 2.5 2.8 0.8 0.2 1.0
Surirella nyassae 0.2 0.3 0.2 0.2 0.0 0.2 0.2 0.5 0.2 0.2 0.4 0.0 0.4 0.2 0.0 0.0 0.0
Synedra ulna 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.6 0.0
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        Table 8. Percent abundances of diatom taxa from core MAL 10 southern Lake Malawi

Sediment Interval
Sediment Midpoint
Diatom taxa 
Achnanthes buccula
A. clevei var. bottanica
A. delicatula spp. englebrechtii
A. grischuna
A. holsatica
A. kuelbsii
A. lanceolata var rostrata
A. minutissima
A. sp 
Amphora copulata
A. pediculus
A. sp
Aulacoseira ambigua
A. ambigua var angustissima
A. crassipunctata
A. crenulata
A. distans
A. granulata
A. granulata var. angustissima
A. italica
A. laevissima
A. lirata
A. muzzanensis
A. nyassensis
A. sp
A. subarctica
A. valida
Caloneis bacillum
Capartogramma crucicula
Cocconeis neodiminuta
C. neothumensis
C. placentula var lineata
Cyclostephanos damasii
C. malawiensis
C. novaezeelandiae
Cyclotella iris
C. krammeri
C. meneghiniana
C. ocellata
C. tripartate
Cymbella minuta
C. muelleri
C. caespitosa
Cymbellonitzschia minima 

 17-18  18-19 19-20  20-22 22-24  24-26  26-28  28-30  30-32  32-34  34-36  36-38  38-40 40-42
17.5 18.5 19.5 21.0 23.0 25.0 27.0 29.0 31.0 33.0 35.0 37.0 39.0 41.0

0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.6 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.3 0.0 0.4 1.3 1.0 0.8 0.2 0.0 0.6 0.4 0.8 0.4 0.6
0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.0 1.0 0.0 1.1 0.0 0.0 1.0 0.0 0.0 0.0
0.6 0.4 0.4 0.4 1.3 0.0 0.4 0.4 1.6 1.0 0.6 0.6 0.4 0.2
1.2 1.5 0.6 0.6 0.2 0.0 0.4 0.0 0.0 0.2 0.4 0.8 0.2 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.1 1.9 4.3 5.7 4.3 5.0 6.0 5.3 5.1 3.4 3.7 4.1 4.0 4.0
0.6 0.0 1.2 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0
2.5 0.0 0.8 0.6 0.4 0.0 1.0 1.1 1.2 1.0 1.9 0.4 0.2 0.0
3.5 0.4 2.9 1.1 2.2 3.3 2.4 3.4 1.8 1.5 0.0 0.8 0.6 2.4
0.0 4.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.2 0.0 0.0 1.2
0.0 1.3 0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 1.4
0.2 0.0 0.4 0.4 0.6 0.4 0.0 0.0 0.2 0.2 0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.2 0.6 0.0 2.0 0.4 3.0 1.1 0.2 0.2 2.1 0.0
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.4 0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0
5.1 8.6 8.4 3.6 2.2 7.5 3.0 7.9 1.8 4.4 3.7 5.4 10.0 6.2
20.7 28.4 15.0 23.0 22.8 26.5 22.4 21.2 20.2 22.4 18.9 19.0 19.8 25.1
0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0
0.0 0.0 0.0 0.6 1.1 0.6 1.2 1.5 0.8 0.2 0.4 0.6 0.6 1.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0
0.2 0.4 0.2 0.0 0.0 0.0 0.2 0.0 0.8 0.0 0.0 0.2 1.0 0.0
2.5 3.8 2.7 1.3 1.9 1.0 0.8 0.4 0.2 1.0 1.2 0.8 0.0 0.8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0
0.8 0.4 1.2 0.2 0.0 1.5 0.2 3.8 0.6 0.6 1.7 0.6 0.0 2.4
0.8 3.8 1.9 0.8 0.9 1.0 1.4 0.4 1.8 2.5 3.5 2.9 3.8 2.6
1.0 0.0 0.2 0.0 0.2 0.2 0.2 0.8 0.2 0.0 1.0 0.0 0.2 0.6
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 1.0 2.3 0.0 0.0 0.6 0.4 0.4 0.4 0.0 0.8 0.4 0.2
0.0 0.0 0.0 0.4 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2
0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.2 0.4 0.0 0.0 0.0 0.0 0.4 0.2 0.0 0.2 0.4 0.0
0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.8 0.0 0.2 0.0 0.4 0.0 0.4 0.0 0.0 0.2 0.4 1.0
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        Table 8. Percent abundances of diatom taxa from core MAL 10 southern Lake Malawi

Sediment Interval
Sediment Midpoint
Diatom taxa 
Diploneis ovalis
D. pseudovalis
Eunotia subarcuatoides
Fragilaria africana
F. brevistriata
F. capucina var. rumpens
F. construens
F. construens f. construens
F. heidenii
F. leptostauron
F. leptostauron var. dubia
F. pinnata
F. pinnata var. intercedens
F. PIRLA sp. 2
F. sp.
F. ulna var. angustissima
Gomphonema affine
G. clevei
Gyrosigma nodiferum
Melosira arentii
M. undulata
Navicula bacilloides
N. barbarica
N. capitoradiata
N. cryptotenella 
N. damasii
N. decussis
N. elkab
N. exiguiformis
N. gastrum
N. gastrum var. signata
N. insociabilis
N. minima
N. modica
N. muticoides
N. nyassensis

 17-18  18-19 19-20  20-22 22-24  24-26  26-28  28-30  30-32  32-34  34-36  36-38  38-40 40-42
17.5 18.5 19.5 21.0 23.0 25.0 27.0 29.0 31.0 33.0 35.0 37.0 39.0 41.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.4 0.8 0.6 0.0 0.0 0.2 0.4 0.0 0.2 1.0 0.8 0.6 0.6
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0
15.8 13.0 16.5 18.2 20.9 18.6 26.4 14.0 23.0 19.7 11.6 21.2 13.1 7.8
4.7 0.8 4.3 3.4 3.0 2.7 0.8 3.4 1.6 4.4 7.3 5.2 4.0 3.0
0.2 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.0 1.1 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8
1.6 4.4 1.2 0.0 0.6 4.6 1.4 0.0 0.8 1.5 3.7 0.2 0.6 0.6
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 1.6 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
9.6 2.9 7.6 7.2 6.7 4.0 4.4 6.8 6.7 13.4 12.0 8.2 8.5 12.0
7.4 8.0 10.1 10.4 14.2 5.0 10.2 2.8 13.3 5.4 11.0 11.1 6.9 4.0
4.3 0.0 2.3 1.1 0.4 6.7 0.0 3.4 1.4 1.0 1.2 0.6 0.6 0.4
0.2 0.0 0.8 0.4 0.0 0.0 0.4 1.1 0.8 1.0 0.0 0.0 3.8 0.8
0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8
0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
0.2 0.0 0.6 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.2 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0
0.4 0.0 0.6 0.0 0.2 0.0 0.8 0.0 0.2 0.2 0.0 0.2 0.4 0.0
0.0 0.0 0.6 0.0 0.0 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.2 1.1 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.4 0.0 0.2 0.6 0.0 0.2 0.4 0.0 0.0 0.0 0.4 0.0
0.0 0.0 0.0 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.0 0.2 0.0 0.2 0.0 0.2 0.2 0.4 0.6 0.2 0.0 0.2 0.0
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.2 0.4
0.0 0.4 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0
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        Table 8. Percent abundances of diatom taxa from core MAL 10 southern Lake Malawi

Sediment Interval
Sediment Midpoint
Diatom taxa 
N. placentula
N. pupula
N. pupula var. pupula
N. rotunda
N. schoenfeldii
N. scutelloides
N. seminuloides
N. sp
N. subrotundata
N. trivialis 
N. vitabunda
Neidium ampliatum
Nitzschia acicularis
N. adnata
N. amphibia
N. bacillum 
N. communis
N. dissipata
N. epiphytica
N. fonticola
N. frustulum
N. gracilis
N. inconspicua
N. lacuum
N. lancettula
N. leibetruthii
N. nyassensis 
N. palaea
N. paleacea
N. pura
N. reversa
N. sigma
N. sp
Orthoseira roeseana
Rhoicosphenia abbreviata
Rhopalodia gibba var. gibba
R. gracilis
Stephanodiscus minutulus
S. mulleri
S. nyassae
Surirella nyassae
Synedra ulna

 17-18  18-19 19-20  20-22 22-24  24-26  26-28  28-30  30-32  32-34  34-36  36-38  38-40 40-42
17.5 18.5 19.5 21.0 23.0 25.0 27.0 29.0 31.0 33.0 35.0 37.0 39.0 41.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.4 0.0 0.4 0.2 0.0
0.6 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
1.4 1.5 0.6 1.5 2.4 2.3 1.0 1.7 1.8 1.0 1.7 1.0 2.5 1.4
0.4 0.0 0.6 0.2 0.4 0.0 0.8 0.6 0.2 0.4 0.4 0.0 0.6 0.6
0.0 0.8 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 1.2 0.0 0.0 1.2
0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.4 1.1 0.0 0.4 0.4 0.0
0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0
0.8 0.0 0.4 0.0 0.4 0.0 0.0 1.1 0.0 0.6 0.0 0.2 0.0 0.0
0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2
0.4 0.0 0.0 0.2 0.2 0.0 0.0 0.8 0.2 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.0 0.0 0.0 0.0
0.0 0.4 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.2 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.4 0.2 0.2 0.0
0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.2 0.0 0.0
3.3 0.2 4.3 2.3 2.4 0.0 2.8 4.0 1.4 1.1 0.8 1.2 2.1 3.4
2.0 4.8 2.1 4.0 3.4 0.0 4.0 1.1 3.8 4.8 5.2 5.6 7.1 4.4
0.4 3.4 0.6 2.3 1.7 0.0 0.2 0.2 0.0 0.4 0.0 1.4 1.0 1.6
0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.4 0.0 0.0 0.0
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         Table 9. Percent abundances of diatom taxa from core MAL 14 southern Lake Malawi 

Sediment Intervals  0-1  2-3  4-5  6-7  8-9  10-11  12-13  14-15  16-17 18-19 20-22 24-26 28-30 32-34
Sediment Midpoint 0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5 21.0 25.0 29.0 33.0
Diatom taxa
A. buccula 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0
A. delicatula spp. englebrechtii 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
A. grischuna 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. lanceolata var rostrata 0.0 0.0 0.4 0.3 0.4 0.2 0.8 0.7 0.0 0.0 0.0 0.0 0.0 0.0
A. sp 0.6 0.0 0.0 0.0 0.2 0.2 0.6 0.0 0.2 0.5 0.2 0.2 0.2 0.2
Amphora inariensis 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. copulata 0.4 0.2 0.6 0.0 0.6 0.0 0.0 1.6 0.2 1.1 0.4 0.0 0.0 0.4
A. ovalis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
A. pediculus 0.4 0.0 0.2 0.6 0.4 0.7 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Aulacoseira ambigua 0.7 0.4 0.8 0.8 1.6 1.4 1.9 1.8 1.2 7.3 6.0 10.3 8.3 10.9
A. crassipunctata 0.2 0.0 0.0 0.3 0.6 2.3 0.4 0.0 0.0 1.1 0.8 1.6 0.0 1.6
A. crenulata 0.2 0.0 1.7 0.2 1.4 0.7 0.0 0.0 3.8 1.6 3.3 0.0 7.0 4.5
A. distans 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
A. granulata 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.4 0.3 0.0 0.0 0.0 0.0 0.0
A. granulata var. angustissima 0.6 0.6 0.0 0.3 0.0 0.0 0.4 0.0 0.0 0.0 0.2 0.0 0.4 0.0
A. italica 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A. lirata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
A. muzzanensis 0.0 1.0 3.7 3.7 8.2 5.1 5.3 0.9 8.1 2.6 4.9 4.7 2.5 3.8
A. nyassensis 10.6 16.3 20.8 22.0 29.6 35.3 31.4 21.0 39.4 24.9 21.4 27.3 36.4 29.7
A. subarctica 0.0 0.0 0.0 0.0 0.2 0.0 0.0 1.1 1.0 0.7 0.8 1.4 0.2 0.2
A. valida 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Capartogramma crucicula 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
Cocconeis neodiminuta 0.0 0.0 0.0 0.3 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2
C. neothumensis 1.9 1.6 2.9 1.2 2.4 1.2 0.4 0.7 0.7 0.0 0.4 0.0 0.0 0.2
C. pediculus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0
C. placentula var lineata 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cyclostephanos damasii 0.0 0.8 2.1 5.1 2.4 1.8 1.5 0.0 1.0 2.2 4.3 2.3 2.7 2.2
C. malawiensis 14.9 11.1 5.4 5.1 3.4 3.0 0.2 1.1 0.3 0.7 0.4 0.0 1.2 1.3
C. novaezeelandiae 0.0 0.0 0.6 0.5 0.0 2.1 1.1 0.0 1.3 0.2 0.6 0.5 0.4 0.2
Cyclotella ocellata 0.0 0.0 0.0 0.0 0.4 0.0 0.6 0.0 0.0 0.0 1.4 0.0 0.4 1.1
C. radiosa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0
C. tripartate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0
Cymatopleura solea 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
Cymbella minuta 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C. muelleri 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.4 0.0 0.0 0.2 0.0 0.2 0.2
C. caespitosa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
Cymbellonitzschia minima 0.4 0.4 0.6 0.2 0.0 0.0 0.0 0.2 0.2 0.4 0.0 0.0 0.2 0.0
Diploneis ovalis 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.7 0.0 0.0 0.0 0.0
D. parma 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
D. pseudovalis 0.4 0.6 1.5 0.9 0.8 1.2 0.4 1.1 1.3 0.2 0.2 1.4 1.0 0.7
Epithemia adnata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
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         Table 9. Percent abundances of diatom taxa from core MAL 14 southern Lake Malawi 

Sediment Intervals  0-1  2-3  4-5  6-7  8-9  10-11  12-13  14-15  16-17 18-19 20-22 24-26 28-30 32-34
Sediment Midpoint 0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5 21.0 25.0 29.0 33.0
Diatom taxa
Eunotia subarcuatoides 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Fragilaria africana 6.3 4.2 7.3 7.4 8.6 7.6 13.3 21.0 10.0 22.5 27.6 20.3 17.0 13.4
F. brevistriata 0.2 2.4 1.0 2.2 2.0 4.1 4.6 7.4 1.6 5.5 3.3 2.8 1.7 1.1
F. construens 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 2.1 0.2 0.0 0.5 0.0 0.0
F. construens f. construens 0.4 0.4 0.0 1.6 1.2 1.4 1.3 3.1 0.0 0.0 1.4 2.8 1.5 1.1
F. heidenii 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
F. leptostauron var. dubia 6.5 3.8 2.1 5.7 2.8 9.7 5.7 7.6 2.5 2.2 4.3 2.6 3.1 4.5
F. pinnata 8.2 5.0 1.0 5.4 7.6 7.8 8.4 12.5 1.5 5.5 4.3 4.7 6.8 4.9
F. pinnata var. intercedens 0.0 0.0 1.5 0.0 0.0 0.0 1.9 0.7 1.0 0.5 0.0 1.9 0.2 0.0
F. PIRLA sp. 2 3.9 3.2 0.8 2.9 2.8 4.6 3.0 1.8 5.8 6.6 0.8 0.0 0.6 1.3
F. sp. 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
F. ulna var. angustissima 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
Gomphonema parvulum 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gyrosigma attenuatum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
G. nodiferum 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Hantzschia amphioxys 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Mastogloia elliptica var dansei 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
Navicula absoluta 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. arvensis 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. bacilloides 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2
N. barbarica 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
N. cincta 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. confervacea 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0
N. cryptotenella 0.4 0.0 0.0 0.0 0.0 0.5 0.0 0.4 0.0 0.2 0.0 0.0 0.0 0.0
N. decussis 0.0 0.0 0.0 0.2 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.4 0.0
N. gastrum 0.6 0.8 0.0 0.3 0.8 0.2 0.8 0.9 1.0 0.0 0.0 0.0 0.0 0.0
N. gastrum var. signata 0.0 0.0 0.0 0.0 0.2 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. halophila 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. insociabilis 0.0 0.0 0.0 0.3 0.0 0.2 0.0 0.0 0.0 0.4 0.2 0.0 0.0 0.0
N. kuelbsii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0
N. minima 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. modica 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
N. muticoides 0.0 0.0 0.0 0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.4
N. nyassensis 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
N. platycephala 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. pupula 0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.0 0.0 0.6 0.2
N. pupula var. pupula 0.4 0.0 0.0 0.3 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. rotunda 1.1 0.6 0.2 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
N. scutelloides 0.4 0.2 0.4 0.2 0.0 1.2 1.1 1.6 0.8 1.8 1.2 3.3 1.5 2.9
N. seminuloides 0.0 0.2 0.2 1.1 1.6 1.2 1.1 0.4 0.0 0.4 1.0 0.9 0.6 0.2
N. sp 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0
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         Table 9. Percent abundances of diatom taxa from core MAL 14 southern Lake Malawi 

Sediment Intervals  0-1  2-3  4-5  6-7  8-9  10-11  12-13  14-15  16-17 18-19 20-22 24-26 28-30 32-34
Sediment Midpoint 0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5 21.0 25.0 29.0 33.0
Diatom taxa
N. subatomoides 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. submisicula 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. subrotundata 0.9 0.0 0.0 0.0 0.0 0.5 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0
N. vitabunda 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0
N. zanonii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
Neidium ampliatum 0.0 0.0 0.0 0.5 0.0 0.0 0.4 0.0 0.0 0.4 0.0 0.0 0.4 0.0
Nitzschia amphibia 0.0 0.0 2.5 0.5 1.0 0.0 0.0 0.0 0.2 0.4 0.2 0.0 0.0 0.0
N. dissipata 0.7 1.8 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. epiphytica 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. fonticola 2.4 1.6 0.0 0.2 0.0 0.5 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
N. frustulum 0.7 0.0 0.0 0.9 0.0 0.0 0.8 0.0 0.0 0.0 0.4 0.0 0.0 0.0
N. inconspicua 0.9 1.4 0.0 0.0 0.0 0.5 0.0 0.2 0.0 1.5 0.0 0.0 0.0 0.4
N. lacuum 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. lancettula 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
N. leibetruthii 0.2 0.2 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
N. nyassensis 2.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. paleacea 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. sigma 0.6 0.4 0.0 0.0 0.0 0.5 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0
N. sp 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N. vermiculus 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pinnularia mesolepta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
Rhopalodia gibba var. gibba 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
R. gracilis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2
Stephanodiscus minutulus 8.9 14.5 8.5 7.6 5.4 0.0 3.0 2.9 1.0 3.1 1.4 0.5 2.3 4.2
S. muelleri 2.6 3.4 8.7 7.0 6.8 0.0 3.2 3.4 8.6 3.5 5.8 6.1 1.7 4.0
S. nyassae 20.1 18.5 18.7 12.7 4.2 0.0 1.1 1.6 1.6 0.4 0.8 0.7 0.2 1.1
Surirella nyassae 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.2
Tabellaria fenestra 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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