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Abstract

Methods of controlling molecular rotations using linearly polarized femtosecond

and picosecond pulses are considered and analyzed theoretically. These laser pulses,

typically in the infrared, are highly non-resonant with respect to the electronic

degrees of freedom of the molecules and have intensities of ∼ 1013 to 1014 W/cm2.

It is shown how these laser pulses can force small linear molecules to align with the

direction of the electric field vector of the laser both in the presence of the laser

field as well as after the application of a short laser pulse. Recent experiments on

laser-induced molecular alignment are modeled and excellent agreement between

experiment and theory is found.

Additional methods of controlling molecular rotational dynamics are outlined.

The first method considers the forced rotational acceleration of diatomic molecules,

called the optical centrifuge. Here, the direction of polarization of a linearly polar-

ized laser field is made to smoothly rotate faster and faster. The molecules, which

tend to align with the polarization vector of the laser field, follow the rotation of

the laser polarization and are accelerated to high angular momentum. The second

method considers the control of field-free rotational dynamics by applying phase

shifts to the molecular wave function at select times called fractional revivals. At

these select moments, an initially localized wave function splits into several copies

of the initial state. Adding phase shifts to the copies then induces interference ef-

fects which can be used to control the subsequent evolution of the rotational wave

function. This same control scheme has a close link to quantum information and

this connection is outlined. Finally, a recently proposed method of controlling the

quantum dynamics of the classically chaotic kicked rotor system [J. Gong and P.

Brumer, Phys. Rev. Lett. 86, 1741 (2001)] is analyzed from a phase space per-

spective. It is shown that the proposed quantum control can be linked to small

islands of stability in the classical phase space. An experimentally feasible variant

of this control scenario using wave packets of molecular alignment is proposed.

Two applications of molecular alignment are discussed. The first application

uses field-free aligned molecules as a non-linear medium for compression of a laser
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pulse to the 1 fs regime at optical wavelengths. At such durations, these laser pulses

contain nearly a single oscillation of the electric field and represent the shortest

laser pulses physically achievable for such frequencies. The second application uses

molecular alignment to create a sort of gas phase ”molecular crystal” which forms

a basis for laser-induced electron diffraction and imaging of the aligned molecules.

Here, a first laser pulse aligns the molecules in space. A second laser pulse is

then used to ionize outer-shell electrons, accelerate them in the laser field, and

steer them back to collide with the parent ion creating a diffraction image with

sub-femtosecond and sub-Angstrom resolution.
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Chapter 1

Introduction

The idea that light can exert forces on matter dates back to the time of Kepler. In

his 1619 treatise De Cometis, the hypothesis was put forth that solar ray pressure

acting on the tails of comets is responsible for the observation that these tails

point away from the sun. However, a quantitative understanding of the forces

that light could exert on matter came only in the 1870s with Maxwell’s theory

of electromagnetism and the calculation of the momentum flux density of light.

Shortly after came experimental demonstrations by Lebedev in 1901 [1] and Nichols

and Hull in 1901 and 1903 [2,3]. Using torsion balances in vacua, these experiments

demonstrated that light can exert a minute pressure on small reflective surfaces.

The quantum nature of the light pressure was found by Einstein in 1917 when he

postulated that quanta of light carry momentum p = h/λ where λ is the wavelength

of the light and h is Planck’s constant [4]. Any emission or absorption of light quanta

by matter must then be accompanied by a corresponding transfer of momentum.

The observation of the forces exerted by light on individual atoms came in 1933

when Frisch measured the deflection of an atomic beam of sodium with radiation

from a sodium resonance lamp [5]. This experiment demonstrates the manipulation

of the external degrees of freedom of atoms, namely their linear momentum. The

effects of light on the internal degrees of freedom of atoms, namely their angular

momentum, were seen in the early 1950s in the work of Kastler [6, 7] on optical
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pumping techniques. With the invention of the laser, these methods of controlling

atoms with light were much studied and greatly refined. Eventually these studies

lead to the successes of laser cooling and trapping of atoms [8–11] and the realization

of Bose-Einstein condensates [12,13].

The methods of controlling atomic motion with lasers take advantage of isolated

transitions present in the atomic level structure and the large dynamic polarizabil-

ities associated with near-resonant excitation. Such methods, however, can not be

readily carried over to the control of molecules. A much more complex and dense

level structure exists in molecules due to the many nuclear and electronic degrees

of freedom making isolated transitions the exception rather than the rule. One

possible alternative is to use highly non-resonant low frequency fields when trying

to control molecules with lasers. Unfortunately, the molecular polarizabilities in

the regime of highly non-resonant (with respect to electronic degrees of freedom)

excitation are essentially static polarizabilities that are much smaller than the dy-

namic polarizabilities arising from near-resonant excitation. For many years laser

technology was not capable of providing enough intensity to make use of these non-

resonant interactions. For example, using near-resonant interactions with large

dynamic polarizabilities, researchers were able to focus an atomic beam using a

focused laser beam as early as 1978 [14]. The intensity needed to accomplish a sim-

ilar feat with molecular beams in the regime of non-resonant excitation, however,

is much larger than that needed in the atomic case due to the low polarizabilities

in the non-resonant regime. The focusing of a molecular beam using lasers was not

realized until 1998 [15, 16], a full two decades after the focusing of atomic beams.

The development in laser technology largely responsible for achieving the necessary

intensities for non-resonant control of molecules was the chirped-pulse amplification

(CPA) of ultrashort pulses in 1985 [17]. In the years following the invention of CPA,

modern laser systems have evolved to the point where interaction energies of ∼50
meV lasting hundreds of picoseconds are now routinely available for molecules in

strong non-resonant laser fields [16]. These energies surpass the thermal energy at

room temperature of 25 meV showing that the control of even room temperature

molecules is possible.
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The present thesis considers the control of rotations of small linear molecules

using strong non-resonant ultrashort laser pulses in the range of ∼ 1013 to 1014

W/cm2 and ∼ 50 fs to 100 ps. Due to very low laser frequency compared to the

ionization potential, even these relatively high intensities lie just below the threshold

of molecular ionization for these time scales. Ionization in this regime occurs in a

manner similar to tunnel ionization in static electric fields and is termed ”optical

tunneling” [18]. These laser pulses are essentially the largest fields one can apply

to molecules for tens to hundreds of picoseconds without destroying the molecules.

The first control scenario considered is that of molecular alignment. In this process,

all the molecules in the focus of the laser are forced by the laser field to align with

the direction of the electric field vector.

Molecular alignment induced by a strong non-resonant laser field was first stud-

ied theoretically by Zon and Katsnelson [19] in 1975. However, the current burst

of activity in this field was initiated by the work of Friedrich and Herschbach [20]

and Seideman [21] the mid-90s. To date there have been both theoretical proposals

and experimental realizations of (i) in-field alignment of small molecules [20–24],

(ii) field-free alignment of small molecules wherein alignment occurs after the in-

teraction with the laser pulse [25–35], (iii) multi-pulse enhancement of field-free

molecular alignment [36–40], (iv) 3-dimensional alignment (that is, the confine-

ment of all three Euler angles) of polyatomic molecules using elliptically polarized

laser fields [41].

Chapter 2 begins with a description of the computational tools required to model

strong field molecular alignment. The discussion then moves on to illustrate the

methods of adiabatic alignment, short-pulse alignment, two-pulse alignment, and

alignment by switched wave packets. This choice of topics reflects recent experi-

ments on strong field alignment of N2, O2, and CO2 undertaken by the groups of

Paul Corkum [31, 38] and Albert Stolow [34] of the National Research Council of

Canada in Ottawa. The experimental results are compared against the theoretical

predictions and excellent agreement is found.

Chapter 3 considers other methods of controlling rotational dynamics of small

linear molecules, again based on the non-resonant interactions. The first section
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outlines a method of forced rotational acceleration of molecules called the optical

centrifuge [42–45]. In this scenario, the molecules are trapped in the angular po-

tential well created by a linearly polarized laser field. The polarization vector of

the electric field is then made to rotate, forcing the molecules follow. Using such a

method, the molecules can be accelerated to such a high angular momentum that

rotational dissociation occurs due to centrifugal forces.

The second section outlines the idea of controlling field-free dynamics of ro-

tational wave packets (i.e., superpositions of field-free eigenstates) by applying

angular-dependent phase shifts to the rotational wave function [46]. These phase

shifts are induced by short laser pulses and are applied at moments of fractional

revivals, moments where the wave packet has split into multiple copies of the ini-

tial wave packet by field-free time evolution. The multiple copies effectively act as

multiple slits in an interference experiment. Just as changing the relative phase of

the wave function at the various slits in a multi-slit experiment would change the

observed interference in the evolution beyond the slits, changing the relative phase

of the wave packet copies at the fractional revivals changes the interferences, and

hence the dynamics, in the subsequent evolution of the rotational wave function.

This same control scenario can also be viewed from a quantum logic perspective

[47]. The wave-packet shape and symmetry at the moments of fractional revivals

can be used to encode qubits. Field-free evolution together with phase shifts at

the moments of fractional revivals can be used to construct a logarithmically small

number of gates to exert complete control over the encoded qubits. Using this

formalism, one could construct complex wave-packet control scenarios from a small

set of basic operations in the same way that a quantum computer executes large

algorithms using a small set of fundamental gates. The formalism is general and

can be applied to any type of wave packets. Although this perspective could be

illustrated using molecular rotations, the discussion deviates a bit from this theme

and wave packets of molecular vibrations are used as an example.

The third section examines a recently proposed scenario for the quantum con-

trol of a classically chaotic system, namely the kicked rotor model [48, 49]. The

quantum mechanics of classically chaotic systems is qualitative different than the
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quantum mechanics of classically regular systems. The level spacings of a chaotic

system exhibits Wigner statistic while the spacings of regular systems exhibit Pois-

sonian statistics [50]. The wave functions can not be approximated by standard

semiclassical methods (such as WKB or EBK quantization [51]) but are instead

well described by random matrix theory and exhibit occasional ’scars’ of unsta-

ble periodic orbits [52]. Little at present is known about the control of quantum

motion in classically chaotic systems, or even if there is a difference between con-

trol in this regime and control in the classically regular regime. In this section,

a strong connection between quantum control of the kicked rotor system in the

mildly chaotic regime and small regular structures in the classical phase space is

found. These regular structures in the classical phase space are too small to effect

the classical dynamics but are seen to strongly influence the quantum system. Fur-

thermore, it is shown that the kicked rotor system can be implemented in small

linear molecules using strong non-resonant laser interactions and that a variant of

the Gong-Brumer control scenario [48, 49] can be implemented using wave packets

of molecular alignment.

In Chapter 4, the discussion shifts to consider applications of molecular align-

ment. The first application presented uses molecular alignment for compression of

laser pulses.

To create a short laser pulse one must first create a large coherent bandwidth of

frequencies. After the creation of a large bandwidth, the phases across the spectrum

must be adjusted to compress this bandwidth into a short pulse. Ideally, all the

frequencies in the pulse should be in phase. This leads to a transform limited pulse

and is the shortest pulse that can be obtained for a given bandwidth. Currently, the

most advanced techniques of pulse compression create a large bandwidth in a short

pulse using self-phase modulation in a gas-filled hollow-core fiber. The phases of the

resulting broad spectrum are then adjusted after the fiber using gratings, chirped

mirror, and/or pulse-shaping devices [53, 54]. Using such compression methods,

pulses of ∼5 fs in the optical regime can be obtained [55–58].

The method of pulse compression by self-phase modulation, however, has lim-

itations. The phase-adjusting optical components after the fiber can not easily
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accommodate the particular phase profiles that result from self-phase modulation

for an arbitrarily large spectrum. This limits the size of the controllable spectrum

and hence the limits the smallest pulse durations attainable. One might then con-

sider using some form of pre-shaping of the pulse before spectral broadening in the

fiber to help control the phases of the generated spectrum at the output of the fiber.

In the case of self-phase modulation, however, this leads to a non-linear optimiza-

tion problem since the pulse itself creates the non-linear interaction used to broaden

the spectrum. Such non-linear optimization problems often lead to complex and

unstable optimal solutions.

An alternate route of pulse compression is proposed to circumvent these prob-

lems [32, 33]. Instead of generating a broad spectrum by self-phase modulation, a

strong ’pump’ pulse is used to first create field-free rotational wave packets in a

molecular gas contained in a hollow-core fiber. A second ’probe’ pulse (the pulse

one is interested in compressing) is then sent through the fiber timed to propagated

on one of the rotational revivals. The time-dependent alignment of the molecules

during the revival creates a time-dependent refractive index which broadens the

spectrum of the probe pulse. Since the creation of the non-linear response of the

medium (i.e. the creation of the rotational wave packets) is now decoupled from

the pulse one is interested in compressing, pre-shaping of the probe pulse at the

input of the fiber to optimize the particular phase profile of the probe spectrum at

the output of the fiber no longer leads to a non-linear optimization problem. Using

this method, it should be possible to compress optical pulses to ∼1 fs. At these

durations, optical pulses contain essentially one oscillation of the electric field and

are the shortest pulses physically obtainable for such wavelengths.

The second application of molecular alignment presented is time-resolved laser-

induced electron diffraction and imaging of molecules [59]. By controlling the align-

ment of molecules in a gas, a sort of ’gas phase crystal’ structure can be made

in which all the molecules of the gas are aligned to the same direction in space.

Diffraction images of such optically-induced ’molecular crystals’ can taken using

the molecules’ own electrons. A low frequency non-resonant near-single-cycle laser

pulse is used to liberate outer-shell electrons by tunnel ionization. These elec-
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trons are then accelerated to ∼100 eV energies in the laser field and sent back to

collide with the parent molecules once the oscillating electric field vector of the

near-single-cycle pulse has changed direction. The collision of the electrons with

the parent molecule lasts only a few hundred attoseconds. Diffraction images of

small molecules with sub-Angstrom and sub-femtosecond accuracy is then possible,

improving existing electron diffraction imaging resolution of gas phase molecular

dynamics [60] by several orders of magnitude.
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Chapter 2

Strong Field Molecular Alignment

2.1 Calculation of Rotational Wave-Packet Dy-

namics

2.1.1 Angle-dependent AC Stark Shift

Any non-spherical polarizable particle placed in an electric field will experience a

torque due to the angular-dependent interaction (potential) energy U between the

induced dipole moment ~p = ~α · ~E and the field ~E . This potential energy term arises

as follows [61]. Consider, for simplicity, a linear particle having one dominant axis

of polarizability α‖ > α⊥ as shown in Figure 2.1. When placed in the field ~E the

potential energy is given by U = −~p · ~E . The change in the potential energy for a

small change of the field strength d~E would be

dU = −~p · d~E = −p‖dE‖ − p⊥dE⊥, (2.1)

where the directions ‖ and ⊥ are parallel and perpendicular to the dominant axis

of the particle. After substitution of the components of the induced dipole moment

pi = αiEi, dU becomes

dU = −α‖E‖dE‖ − α⊥E⊥dE⊥ (2.2)
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Figure 2.1: Geometry of an anisotropic particle in an electric field ~E .

which can be integrated to give

U = −1

2

[
α‖E2‖ + α⊥E2⊥

]
. (2.3)

By using the angle θ between the dominant axis of the particle and the electric field
~E this can be written as

U(θ) = −1

2

[
α‖E2 cos2 θ + α⊥E2 sin2 θ

]

= −1

2
α⊥E2 −

1

2
∆αE2 cos2 θ. (2.4)

with ∆α = (α‖ − α⊥).

This potential contains a constant term and an angular-dependent term. The

constant term, however, is just a coordinate-independent shift which does not in-

troduce any torques and can hence be dropped for convenience. Furthermore,

when dealing with the particular case of diatomic molecules placed in infrared or

near-infrared laser fields E(t) ∼ E0 sinωt which are far off-resonant with rotational

frequencies, as is typical in experiments of strong field control of molecular rota-
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Figure 2.2: Schematic plot of the angular-dependence of potential energy U and the
torque ∼ dU/dθ felt by the molecules in a strong non-resonant laser field (right).
The molecules will tend to rotate toward the electric field of the laser (left).

tions, the oscillating electric field switches direction too fast for the nuclei to follow

directly. These oscillations can be removed from the potential energy by considering

instead the time-average of the energy U(θ) over one cycle

U(θ, t) =

∫ 2π

0

1

2
∆αE20f 2(t) sin2(t′) cos2 θdt′

= −1

4
∆αE20f 2(t) cos2 θ (2.5)

where E0 is the maximum field strength of the laser and f(t) represents the envelope

of the laser pulse which varies much slower than the field oscillations. This laser-

induced potential energy is known as the angular AC Stark shift [20]. Note that any

permanent dipole of the molecule would give a zero contribution to the potential

energy upon time-averaging over one cycle of the laser field.

The potential energy U(θ) as well as the corresponding torque ∝ −dU/dθ is

plotted schematically in Figure 2.2. The interaction with the laser field creates two

potential wells located at θ = 0 and θ = π. The molecules feel a torque which

pushes them toward the direction of the laser polarization. Molecules with angles
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0 < θ < π/2 feel a negative torque and are pushed toward θ = 0 while molecules

with angles π/2 < θ < π feel a positive torque and are pushed toward θ = π.

The maximum Stark shift U that can be achieved in a molecule is limited by

ionization: if the field strength is increased too much, the outer most electrons

of the molecule will be removed by tunnel ionization. Judging by the structure

of the Stark shift 2.5, one might immediately assume that larger Stark shifts can

be achieved in molecules with larger polarizabilities before ionization becomes im-

portant. However, this is not the case. As the molecular polarizability decreases,

the ionization potential typically increases. Molecules with lower polarizabilities

can then withstand larger intensities which compensates for their low polarizabili-

ties [16]. Stark shifts of 50 meV can be obtained on hundred picosecond time scales

for most diatomics. The angular well created by the stark shift is then deep enough

to trap most small molecules even at room temperature where kT = 25 meV.

2.1.2 Initial Ensemble

The specific systems being considered are molecular gases interacting with linearly

polarized infrared laser pulses. Before the laser pulse interacts with the molecular

gas, the system is assumed to be in a thermal ensemble characterized by a tempera-

ture T . In the quantum picture, this system is described by a statistical mixture of

angular momentum states. Each molecule finds itself in a definite state of angular

momentum |J,M〉 where J is the orbital momentum J = 0, 1, 2,... The M is the

projection of the angular momentum onto the z-axis of the coordinate system and

can take on the values M = −J , −(J − 1), ..., J − 1, J . The coordinate wave func-

tions of this basis are the spherical harmonics Y J
M(θ, φ). The distribution of angular

momentum amongst the various molecules in the gas is given by the Boltzmann

distribution

PJ ∼ (2J + 1) exp(−EJ/kT ) (2.6)

where EJ is the rotational energy of the state |J,M〉. The (2J + 1) term accounts

for the degeneracies within a given J level because of the different M sub-levels.

In the case of homonuclear diatomics, there is an additional factor gJ in the
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Boltzmann distribution arising from the nuclear spin statistics [62]

PJ ∼ gJ(2J + 1) exp(−EJ/kT ). (2.7)

This factor controls the relative weight between even and odd J states. The nuclear

spin statistics are best understood using a short example. Consider the case of N2.

Each N atom has spin 1 and is therefore a boson. When the two N atoms are

brought together to form an N2 molecule, their spins can add in different ways to

give one of the following possible spin states |S,Ms〉

S = 0 : |0, 0〉 : 1 state

S = 1 : |1,−1〉, |1, 0〉, |1, 1〉 : 3 states

S = 2 : |2,−2〉, |2,−1〉, |2, 0〉, |2, 1〉, |2, 2〉 : 5 states.

(2.8)

For N2, these spin states are equally populated in a thermal ensemble. Since the

two N atoms are bosons, the total nuclear wave function Ψspin × Ψ(θ, φ) must be

symmetric under the exchange of these two particles. There are in total 6 possibil-

ities of symmetric spin wave functions, which must be accompanied by symmetric

coordinate wave functions, and 3 antisymmetric spin wave functions, which must

be accompanied by antisymmetric coordinate wave functions. Therefore, due to

the spin statistics, the relative weights of the even and odd J in the case of N2 will

be

gJ =

{
2, for even J

1, for odd J.
(2.9)

In some species of diatomics, only one of the possible spin states will be present

in the thermal distribution. This is the case for O2. In such a situation, only one

of the two symmetries of J states (even or odd) will be present. The gJ weights

for the molecules considered in this work as well as relevant rotational constants

and polarizabilities are tabulated in Table 2.1.2. Note that although CO2 is not

actually a homonuclear diatomic, the two O atoms are indistinguishable and hence

symmetrization of the wave function with respect to these two particles must still

be enforced which leads to the presence of a gJ for CO2.
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Molecule B0 (cm
−1) D0 (cm

−1) ∆α (Å3) geven godd

N2 1.989581 5.76× 10−6 1.0 2 1
O2 1.4297 4.839× 10−6 1.15 0 1
CO2 0.3902 0.135× 10−6 2.0 1 0

Table 2.1: Molecular properties for the different species considered in this work
[62–65].

2.1.3 Quantum Evolution

When the laser pulse interacts with the molecular gas, rotational wave packets (i.e.

superpositions of the field-free eigenstates |J,M〉) are created in each molecule. The

particular wave packet created in a given molecule will depend on its initial angular

momentum state. Hence, to calculate the response of the molecular medium, the

induced wave packet starting from each initial state in the thermal distribution

must be calculated.

Consider a laser pulse with the electric field linearly polarized along the z-axis

as in Figure 2.1. The interaction of laser pulse with the molecule is described by

the Schrödinger equation [20]

iΨ̇(θ, φ, t) =
[
BJ2 − U0(t) cos2 θ

]
Ψ(θ, φ, t) (2.10)

where θ is the angle between the laser polarization and the molecular axis, BJ2 is

the rotational energy operator, and U0(t) = 1
4
∆αE20f 2(t). Here, and throughout

this work, equations are written in atomic units (e = melectron = ~ = 1). The pulse

shapes considered typically have the form

f 2(t) =

{
sin2

(
πt
2τon

)
, 0 ≤ t < 2τon

0 , for all other t
(2.11)

where τon gives the time for the pulse to rise from zero to peak amplitude and is

also the full width at half maximum (FWHM) of the sin2 pulse.

Rovibrational coupling is included by writing the BJ2 operator as B0J(J +

1) − D0[J(J + 1)]2 in the angular momentum basis [62]. The D0 term accounts
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for bond stretching at high angular momentum. Further corrections to the kinetic

energy arising from vibrational excitation can be neglected since (i) essentially

no thermal vibrational excitation exists for the molecular species considered herein

(for example, less than 10−5 N2 molecules are vibrationally excited for temperatures

smaller than 300 K [62]), (ii) homonuclears are IR inactive, and hence no Raman

resonances with vibrations will occur during the interaction with the pulse.

The evolution of the wave function for the duration of the aligning pulse was

calculated numerically in the angular momentum basis |J,M〉. The time-dependent

wave function is first expanded in the |J,M〉 basis

|Ψ(t)〉 =
∑

J,M

AJ,M (t)|J,M〉. (2.12)

In this basis, the Hamiltonian H(t) = [BJ2 − U0(t) cos2 θ] becomes

〈J,M |H(t)|Ψ(t)〉 =
{
B0J(J + 1)−D0[J(J + 1)]2

}
AJ,M −

U0(t)CJ,J+2,MAJ+2,M − U0(t)CJ,J,MAJ,M −
U0(t)CJ,J−2,MAJ−2,M (2.13)

where

CJ,J,M = 〈J,M | cos2 θ|J,M〉
CJ,J+2,M = 〈J,M | cos2 θ|J + 2,M〉
CJ,J−2,M = 〈J,M | cos2 θ|J − 2,M〉. (2.14)

The Hamiltonian (2.13) does not couple even and odd J . All transitions occur

between J ↔ J + 2 and J ↔ J − 2. This is a consequence of the symmetry of the

angular potential cos2 θ with respect to the point θ = π/2. Furthermore, different

M states do not couple. This is a consequence of the cylindrical symmetry of the

angular potential (i.e. no φ dependence).

Due to the lack of M coupling, the original Schrödinger equation (2.10) for θ

and φ reduces to a single 1-dimensional equation when the initial state is assumed
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to be a single eigenstate of angular momentum. The solution of this equation is

calculated numerically using the following method. The formal solution to the

time-dependent Schrödinger equation

i
∂

∂t
Ψ(t) = HΨ (2.15)

for an infinitesimal time step dt is

Ψ(t+ dt) = e−iHdtΨ(t). (2.16)

The exponential operator is now split into two parts

e−iHdt =
e−iHdt/2

e+iHdt/2
(2.17)

and the formal solution is re-written as

e+iHdt/2Ψ(t+ dt) = e−iHdt/2Ψ(t). (2.18)

Expanding the exponentials in a Taylor series and writing the infinitesimal dt as a

small but finite time step ∆t then gives

[
1 + i

∆t

2
H(t+∆t)

]
Ψ(t+∆t) =

[
1− i∆t

2
H(t)

]
Ψ(t). (2.19)

This is the Cranck-Nicholson method [66]. In the angular momentum representation

this Cranck-Nicholson equation becomes a tridiagonal set of linear equations for the

amplitudes AJ,M(t) ≡ At
J,M

F t+∆t
1 At+∆t

J+2,M + (1 + F t+∆t
2 )At+∆t

J,M + F t+∆t
3 At+∆t

J−2,M =

−F t
1A

t
J+2,M + (1− F t

2)A
t
J,M − F t

3A
t
J−2,M (2.20)
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where,

F t
1 = −i∆t

2
U0(t)CJ,J+2,M

F t
2 = i

∆t

2

[
B0J(J + 1)−D0[J(J + 1)]2 − U0(t)CJ,J,M

]

F t
3 = −i∆t

2
U0(t)CJ,J−2,M .

Efficient methods of solution exist to solve tridiagonal systems of equations [66].

These methods are used to calculate the unknown amplitudes at the next time step

At+∆t
J,M from the amplitudes at the present time At

J,M .

With the rotational superposition at the end of the pulse expanded in angular

momentum states (recall that different M don’t couple so the sum is now over J

only)

Ψ =
∑

J

AJ,M |J,M〉, (2.21)

the field-free evolution of the wave packet becomes

Ψ(t) =
∑

J

AJ,Me
−iEJ t|J,M〉. (2.22)

where EJ is the eigenenergy EJ = B0J(J + 1)−D0[J(J + 1)]2.

2.1.4 The 〈cos2 θ〉 Measure of Alignment

There is really no unique way to define the degree of alignment of a rotational wave

packet or angular distribution. Some intuitively clear ways would be to track, for

example, the full width at half maximum or perhaps the standard deviation of the

angular distribution. Both of these measures would certainly be good indicators

of alignment. However, the standard measure of alignment is defined in a slightly

different way and is given by the average value of cos2 θ

〈cos2 θ〉 = 〈Ψ| cos2 θ|Ψ〉. (2.23)
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This measure would give a value of 〈cos2 θ〉 = 1 for an angular distribution perfectly

peaked along the ’poles’ θ = 0 and π, 〈cos2 θ〉 = 0 for a distribution peak along the

’equator’ θ = π/2, and 〈cos2 θ〉 = 1/3 for an isotropic distribution evenly distributed

across all θ.

During the interaction with the laser pulse, this measure is simply obtained by

numerical integration over the computed wave function. For field-free propagation,

the time-dependent measure of alignment is given by

〈cos2 θ〉(t) = 〈Ψ(t)| cos2 θ|Ψ(t)〉 (2.24)

=
∑

J

[
|AJ,M |2CJ,J,M

+|AJ,M ||AJ+2,M | cos
(
ωJt+ ϕJ,J+2

)
CJ,J+2,M

]

where

ωJ = EJ+2 − EJ (2.25)

and ϕJ,J+2 denotes the relative phase between the states |J,M〉 and |J + 2,M〉 at
the start of the field-free evolution. Note that during the field-free evolution the

〈cos2 θ〉(t) signal is composed of the discrete frequencies ωJ .

The alignment signal is further averaged over an initial Boltzmann distribution

of angular momentum states for a given initial temperature T . This is accomplished

by calculating the rotational wave-packet dynamics for each initial rotational state

in the Boltzmann distribution, and then incoherently averaging the 〈cos2 θ〉(t)J,M
signal from each initial state |J,M〉 weighted by the Boltzmann probability

PJ ∼ gJ(2J + 1) exp(−EJ/kT ) (2.26)

to give

〈cos2 θ〉(t) =
∑

J,M gJe
−EJ/kT 〈cos2 θ〉(t)J,M∑

J PJ
(2.27)

where the rotational energies are EJ = B0J(J + 1)−D0[J(J + 1)]2.
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2.2 Adiabatic Alignment

2.2.1 Adiabatic Quantum Evolution

The first ideas and experiments using the AC Stark shift for molecular alignment

considered the case of adiabatic alignment [20–24]. In this regime, a laser field is

slowly turned on such that the molecules can adiabatically adjust to the changing

potential energy and ”smoothly fall” into the potential wells at θ = 0 and π.

For such adiabatic evolution it is useful to think in terms of eigenstates ψj(t) of

the instantaneous Hamiltonian H(t) such that

H(t)ψj(t) = Ej(t)ψj(t) (2.28)

at any particular time t. By turning on the field slowly, one expects that an initially

populated eigenstate of the field-free system ψj(0) will simply follow the eigenstate

ψj(t) without making transitions to other states. The criterion for what ’slowly’

means in this case is given by the adiabatic theorem [67]

∣∣∣∣
〈ψi|∂H/∂t|ψj〉
(Ei − Ej)2

∣∣∣∣
2

¿ 1 (2.29)

which says that the time rate of change of the matrix element of the Hamiltonian

divided by the energy separation squared must be small. In (2.29), the level j is

the initially populated eigenstate and the level i would be the level with smallest

energy difference from the populated eigenstate.

This condition implies that adiabatic evolution is possible as long as there are no

level crossings or degeneracies in the level structure during the evolution. Otherwise

Ei−Ej would be zero and the adiabatic condition could not be satisfied. This might

initially seem to cause a problem for adiabatic alignment since at the beginning of

the evolution every J level has (2J + 1) degenerate M sub-levels. Fortunately, the

matrix element in the numerator of the adiabatic criterion removes the difficulty:

only states to which the populated eigenstate can couple need to be considered.
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Since the Hamiltonian in the case of laser alignment does not couple different M

states, these degeneracies are not a problem.

For the case of adiabatic alignment, the set of instantaneous eigenstates can

be written as ψj = {|J̃ ,M〉}. This labeling makes clear that each instantaneous

eigenstate in the field correlates to a specific |J,M〉 in the field-free case. Figures

2.3 and 2.4 illustrate this point for the first 6 eigenstates of the M = 0 case in

N2. Figure 2.3(a) shows the field-free eigenstates. Figures 2.3(b) and (c) show

the corresponding even and odd in-field eigenstates for a laser intensity1 of I0 =

0.5 × 1014 W/cm2 along with the −U0 cos2 θ potential. Such intensity creates a

well depth of U0 = 54.4 meV in N2. Note that the |J̃ ,M〉 states are localized in

the potential wells at θ = 0 and π, i.e. they are aligned with the direction of the

laser field. Furthermore, unlike the field-free states |J,M〉, the |J̃ ,M〉 states are

now organized into even and odd ”tunneling pairs” split by the potential barrier at

θ = π/2.

Figure 2.4 shows the evolution of the eigenenergies for these states as the field

strength is changed. It can also be seen on this plot that the neighbouring even and

odd states are grouping to form ”tunneling pairs” of degenerate energies. These

degeneracies, however, do not cause any problems for adiabatic evolution because

the even and odd states do not mix. The spectrum for large intensities is seen to

approach the spectrum of a harmonic oscillator. In this regime the eigenstates lie

deep in the well and a harmonic expansion about the minimum of the well can be

used

−U0 cos2 θ ≈ −U0 + U0θ
2. (2.30)

The energy spacings in this limit can then be found by solving the harmonic oscil-

lator problem with the potential (2.30). Note also that the energy spacing become

larger as the field strength is increased. This implies that an estimate for adia-

batic turn on only needs to consider the field-free levels since, as the field becomes

large, the level spacings increase and the adiabatic condition will actually be better

fulfilled.

1Intensity I0 in W/cm2 can be related to E2 atomic units by: I0 (in W/cm2) / 3.5 × 1016 =
E2 (in a.u.).
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Figure 2.3: Field-free and in-field eigenstates for adiabatic alignment in the case of
M = 0 for N2. (a) First six field-free eigenstates |J, 0〉 centred vertically around the
corresponding eigenenergy. Even (b) and odd (c) eigenstates |J̃ , 0〉 in the laser field
with I0 = 0.5 × 1014 W/cm2 (well depth U0 = 54.4 meV). The angular potential
−U0 cos2 θ is shown in (b) and (c) for reference.
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Having now a general understanding of the level structures and how they apply

to the adiabatic evolution, a simple estimate for the turn on time can be made. The

smallest level spacing between the field-free states is the energy difference between

J = 0 and J = 2, ∆E = E2−E0 ≈ 6B0. The time scale associated with a transition

between these to level will be ∆t ∼ 2π/∆E = 2π/(6B0). The turn on necessary for

adiabatic evolution should then be much larger than this time scale

τon À
1

B0
. (2.31)

2.2.2 An Example of Adiabatic Alignment: N2

The condition for adiabatic turn on for N2 is τon À 3 ps. A pulse duration of

τon = 48.4 ps is chosen to illustrate alignment of N2 in the adiabatic regime. The

results are shown in Figure 2.5. The maximum intensity of the laser pulse was

I0 = 0.5×1014 W/cm2 (U0 = 54.4 meV). Panel (a) shows adiabatic alignment of N2

at three different temperatures: 20 K (—), 90 K (- -), and 295 K (· · ·). The measure

of alignment shows a value of 〈cos2 θ〉 = 1/3 before the application of the pulse

indicating an initial homogeneous distribution of angles. As the laser pulse interacts

with the molecular distribution, the average alignment toward the direction of the

laser polarization increases. The colder ensemble reaches a much larger degree of

alignment. This is because lower initial J states, having less rotational energy, fall

deeper into the angular well and are more localized. The colder initial ensemble

consists of more low-J states and hence shows a higher degree of average alignment.

The inset of panel (a) plots the degree of adiabatic alignment of N2 as a function

of laser intensity. The initial alignment at low laser intensities is seen to follow

a linear increase. This is the region of perturbative alignment where the wave

functions of the initial field-free rotational states are not too strongly distorted.

For stronger laser intensities, the alignment deviates from this linear behaviour

and is seen to start to saturate. For the present example, strong saturation of the

alignment is only seen in the coldest (20 K) distribution.

Figures 2.6(b) and (c) show a couple of representative plots of wave function
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Figure 2.5: Adiabatic alignment of N2. (a) The average alignment of N2 for three
different temperatures: 20 K (—), 90 K (- -), and 295 K (· · ·). The inset shows the
average alignment as a function of laser intensity for the same three temperatures.
(b) Laser pulse used to calculated the alignment in panel (a).
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Figure 2.6: Wave function evolution during adiabatic alignment. (a) Distribution
of initial |J〉 states for 20 K and 295 K. (b) and (c) Quantum carpets |Ψ(θ, t)|
for two representative states |1, 0〉 and |6, 1〉 corresponding to the maximum of the
distributions in (a). Black represents zero amplitude.
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evolution, called quantum carpets [68–70], for the two initial state |1, 0〉 and |6, 1〉
during the adiabatic alignment process. These quantum carpets are plots of the

time-dependent wave function |Ψ(θ, t)| with amplitude represented by the shading.

The distribution of initial |J〉 states for 20 K and 295 K is shown in panel (a).

The gJ factor reflecting the nuclear spin statistics was neglected in these plots for

simplicity. The two initial states chosen for the carpets are seen to lie near the

maximum of the 20 K and 295 K distributions. In both carpets, the wave function

localizes near the θ = 0 and π regions during the application of the laser pulse.

The maximum localization occurs at the maximum of the laser pulse. After the

pulse is over (t > 100 ps), the wave functions return completely to the field-free

eigenstates in which they started and no residual excitation remains. This affirms

the adiabatic character of this alignment scenario.
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2.3 Short-Pulse Alignment

2.3.1 Alignment and Revival Structure

Contrary to adiabatic alignment considered above, the idea of short-pulse alignment

is to use the AC Stark shift to give the molecules a rapid ’kick’ toward the axis of

the laser field. Following the short pulse, the molecules move through a moment

of collective alignment. However, since they are field-free, they continue to rotate

and the moment of alignment is only short-lived.

The reason for a moment of collective alignment following the short kick can be

understood as follows. In the impulsive limit of short pulse excitation, the molecules

have no time to move during the interaction time with the laser. Classically, in such

a situation, a short pulse imparts angular momentum to a molecule in proportion to

the angle θ that the molecule makes with the electric field. The angular momentum

transfered is proportional to the torque

∆J ∝ −dU(θ)
dθ

∝ − sin(2θ). (2.32)

At small angles, the torque is roughly proportional to −2θ. The molecules will then

receive a push proportional to the angle θ. Hence, molecules with larger θ will be

able to catch up with the molecules which started closer to θ = 0 and they move

through the alignment axis at roughly the same time.

The same process can be understood quantum mechanically. Consider the zero

momentum wave function of a rotor in a plane Ψ(θ) = 1/
√
2π. In the limit of a

delta-kick f 2(t) = δ(t), the pulse will add a phase to this wave function of −U0 cos2 θ

Ψ −→ e−iU0 cos2 θΨ. (2.33)

The exponential term can be expanded into a Bessel series using exp[−iK sin θ] =
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∑
n exp[−inθ]Jn(K) to give

e−iU0 cos2 θΨ =
e−iU0/2

√
2π

∑

n

Jn(U0/2)e
−inπ/2e−i2nθ. (2.34)

The delta-kick pulse has populated the angular momentum states of the rotor in the

plane up to n ∼ U0/2. The maximum localization of the wave function following the

kick will occur when all the phases of the populated states e−i2nθ are roughly equal.

The phases of these states immediately after the kick are given by ϕn = −nπ/2.
For the rotor in a plane, the field-free evolution will add the phase of ϕn = B0n

2t

to the state n. A short period of field-free evolution can then adjust the phases

such that approximate localization is reached.

This process of alignment by a short pump pulse is shown in Figure 2.7. In this

plot, a pulse with intensity I0 = 0.5× 1014 W/cm2 (U0 = 54.4 meV) and duration

τon = 48.4 fs was used to align N2. Results are shown for the three temperatures 20

K, 90 K, and 295 K. Note that now the duration of the laser pulse is much less then

the characteristic time scale of rotations in N2 estimated to be ∼3 ps indicating

that the excitation process is no longer in the adiabatic regime. Consequently,

after the laser pulse is over, the wave function will no longer return to the initial

field-free eigenstate. Instead, it will be in a superposition of states and will exhibit

field-free dynamics. Following the interaction with the laser, the molecules exhibit

a short moment of large collective alignment and then quickly dephase away from

this aligned configuration due to field-free propagation. Again it is seen that the

colder molecular distribution shows better alignment. This is a generic feature of

laser induced molecular alignment using either the adiabatic or short-pulse method.

Upon comparing the degree of alignment obtained using the short pulse method

(Figure 2.7) with the alignment obtained using the adiabatic method (Figure 2.5)

one might conclude that the short-pulse method gives smaller maximum alignment

for equal maximum intensities I0. This, however, is not the case. The degree of

alignment obtained in the short-pulse method is sensitive the duration of the pump

pulse [see Figure 4.1(a) and related discussion]. Therefore, the alignment can be

increased by optimizing the pulse duration. As a result, the degree of alignment
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Figure 2.7: The average alignment of N2 for three different temperatures 20 K (—),
90 K (- -), and 295 K (· · ·) following excitation by a short pump pulse (thin line)
of intensity I0 = 0.5× 1014 W/cm2 and duration τon = 48.4 fs.

obtained using the short-pulse method can be comparable to the one obtained with

the adiabatic approach. Physically, this optimal pulse duration corresponds to the

natural time scale of rotations of the molecules as they fall into the potential well.

A simple analogy would be pushing a person on a swing. To be able to transfer

the maximum amount of energy to the swing, one must push the swing with the

same time scale at which the swing would naturally like to oscillate. Pushing the

swing too rapidly or too slowly leads to smaller oscillations then those achieved

when pushing in resonance with the swing’s natural frequency.

Although the alignment after the short pulse does not persist indefinitely, due

to a quantum mechanical effect arising from the discrete spectrum of angular mo-

mentum states, the molecules will eventually re-align. When neglecting the rovi-

brational coupling (i.e D0 = 0), the field-free energies become

EJ = B0J(J + 1). (2.35)
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Using these energies, the field-free evolution given by Equation (2.22) is

Ψ(t) =
∑

J

AJe
−iB0J(J+1)t|J,M〉. (2.36)

Setting t = π/B0 gives

Ψ(t = π/B0) =
∑

J

AJe
−iB0J(J+1)(π/B0)|J,M〉

=
∑

J

AJe
−iJ(J+1)π|J,M〉

=
∑

J

AJ |J,M〉 = Ψ(t = 0) (2.37)

where the fact that J(J+1) is always an even integer and hence exp[−iJ(J+1)π] =

1 was used. This shows that after a field-free evolution of t = π/B0 ≡ Trev the

wave function will exactly reproduce the wave function at t = 0. Such behaviour

is called a wave-packet revival [71, 72]. Hence, a time of π/B0 after the point of

maximum alignment seen in Figure 2.7 the molecular distribution will again revive

to a point of strong alignment.

Figure 2.8(a) shows the further evolution of the short-pulse alignment of N2 at

90 K seen in Figure 2.7. The revivals of alignment can clearly be seen. The full

revival period is Trev = 8.38 ps for N2 and hence the alignment signal begins to

repeat every 8.38 ps. There are also moments of strong alignment that are seen

to occur at smaller intervals. These correspond to points of fractional revivals at

times of t = Trev/4, Trev/2, and 3Trev/4. These fractional revivals will be further

explored in Section 3.2.1.

The difference in amplitudes of the various fractional and full revivals arises

from the different weights of the even and odd states in the initial distribution.

Figure 2.8(b) and (c) plot the same revival signal including (a) only even states

and (c) only odd states. It can be seen on the figure that at the 1/4, 3/4, 5/4,...

revivals the odd distribution has maxima (minima) whereas the even distribution

has minima (maxima). During the 1/2, 1, 3/2,... revivals, however, the minima and

29



0 5 10 15 20 25
0.2

0.35

0.5

〈c
os

2 θ〉

Time (ps)

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58
0

10

20

30

40

F
ou

rie
r 

A
m

p.

ω / B
0

0 5 10 15 20 25
0.2

0.35

0.5

〈c
os

2 θ〉

Time (ps)

0 5 10 15 20 25
0.2

0.35

0.5

〈c
os

2 θ〉

Time (ps)

(a) 

(b) 

(c) 

(d) 

0 1/4 1/2 3/4 1 5/4 3/2 7/4 2 9/4 5/2 11/4

Figure 2.8: Alignment revivals in short-pulse excitation of N2 at 90 K from a
laser pulse with duration 48.4 fs and intensity 0.5× 1014 W/cm2 (well depth U0 =
54.4 meV. The fractions appearing above the plot label the revivals for discussion
in the text. (a) Alignment signal averaged over all states. (b) Alignment signal
including only even states. (c) Alignment signal including only odd states. (d)
Fourier transform of complete alignment signal shown in panel (a).
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maxima of the even and odd distributions coincide. Hence, when these two signals

are averaged together taking into account the weight factor gJ , half the alignment

peaks partially cancel while the other half add constructively.

In between the revivals, the alignment does not return to the value of 〈cos2 θ〉 =
1/3 characteristic of an isotropic distribution but instead is a bit larger 〈cos2 θ〉 ≈
0.35. This deviation from an isotropic distribution is due to the fact that the AC

stark interaction spreads each initial angular momentum state to higher J but does

not change M . Hence, on average, the populations of |J,M〉 states will be missing

contributions from the J ≈M states for the highest J in the ensemble. Classically,

this means that the molecules are rotating preferentially in planes which included

the direction of the laser polarization while molecules rotating in the equatorial

plane are less probable.

Using the energies (2.35), the beat frequencies ωJ = EJ+2−EJ contained in the

alignment signal become

ωJ = B0(4J + 6). (2.38)

Looking at the Fourier transform of the alignment signal 〈cos2 θ〉, as shown in Figure

2.8(d), indeed reveals this set of discrete frequencies. Furthermore, the nuclear spin

statistics term gJ weighting the even and odd states, gJ , can also be seen in this

spectrum giving rise to the factor of 2 difference in peak heights between the beat

frequencies arising from even states (ωeven/B0 = 6, 14, 22, 30,...) and odd states

(ωodd/B0 = 10, 18, 26, 34,...). There is a strong peak building near ω = 0 which

represents the DC part of the alignment signal [Equation (2.24)].

Figure 2.9 shows quantum carpets |Ψ(θ, t)| for the two states |1, 0〉 [panel (b)]
and |6, 1〉 [panel (c)] during the process of short-pulse alignment. The top panel of

the figure plots the average alignment for reference. Unlike the case for adiabatic

alignment, here the wave functions exhibit rich dynamics after the pulse is over

which accounts for the revivals in the average alignment. Panel (c) plots the angular

probability function |Ψ(θ, t)|2 sin θ averaged over all states in the distribution. Much

of the fine scale features seen in the evolution of the individual wave functions is

seen to disappear after thermal averaging. Little except the dynamics at the full

31



0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

Time (ps)

〈c
os

2 θ〉

Time (ps)

θ 
(π

)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Time (ps)

θ 
(π

)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

θ 
(π

)

Time (ps)
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

(a) 

(b) 

(c) 

(d) 

Figure 2.9: Quantum carpets of rotational revivals in short-pulse alignment of N2
at 90 K. (a) The 〈cos2 θ〉 measure showing the time-dependent alignment of the
distribution. (b) and (c) Quantum carpets |Ψ(θ, t)| for the two initial states |1, 0〉
and |6, 1〉. (d) The angular probability function |Ψ(θ, t)|2 sin θ averaged over all
states in the distribution. In (b), (c), and (d) black represents zero amplitude.
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Figure 2.10: Alignment revivals in short-pulse excitation of O2 at 90 K from a laser
pulse with duration 48.4 fs and intensity 0.43× 1014 W/cm2 (well depth U0 = 54.4
meV). (a) Alignment signal averaged over the initial distribution which, for O2,
included only odd states. (b) Fourier transform of alignment signal shown in panel
(a).

and fractional revivals remains.

Turning now to O2, a molecule where the spin statistics allows the population

of only odd states, a slightly different behaviour can be seen. Figure 2.10(a) shows

the calculation of short-pulse excitation of O2 with a 48.4 fs pulse of intensity

I0 = 0.43×1014 W/cm2 (U0 = 54.4 meV). The full revival time for O2 is Trev = 11.7

ps. Unlike the case for N2, here the initial distribution includes only odd states and,

consequentially, all the revivals appear with roughly equal amplitudes. Turning to

the Fourier amplitudes of the revivals, Figure 2.10(b), one sees that only the beat

frequencies corresponding to odd initial states (ωodd/B0 = 10, 18, 26, 34, ...) are
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present.

Finally, it should be noted that the inclusion of the rovibrational coupling D0

in the energies EJ will simply perturb the beat frequencies ωJ a little, adding

nonlinearity to the spectrum. This causes small dephasing (or chirping) of the full

and fractional revivals for larger times. This effect, as will be seen the following

section, is responsible for smearing the shape of the revivals at large revival times.

2.3.2 Experimental Demonstration: N2 and O2

Figure 2.11 shows experimentally2 measured alignment revival dynamics in N2.

This data was collected using a pump-probe time and angle resolved Coulomb

explosion technique [31]. The pump pulse creating the alignment in the experiment

was estimated to be ∼45 fs in duration with a peak intensity of ∼ 1.4 × 1014

W/cm2 and is timed to arrive at t = 0 on the plot. Due to technical details of

the experimental setup, the angle measured in the experiment is not exactly the

polar angle θ which ranges from 0 to π but rather is closer to the azimuthal angle φ

ranging from 0 to 2π. Due to aperture effects in the resolution of the experiment,

however, the experimental angle is somewhat a mixture of the polar and azimuthal

angles (for more details refer to [31]). For this reason, the isotropic distribution of

angles measured before the arrival of the aligning pulse gives a measure of 〈cos2 θ〉 =
1/2. Note, however, the qualitative agreement between this experimental alignment

signal and the simulated signal shown previously [Figure 2.8(a)]. The bottom three

panels show experimentally measured angular distributions (thick line) for three

moments of time corresponding to maximum and minimum alignment of the revival

signal. Note that in these plots the aligning laser points along θ = 0 and is oriented

along the horizontal. Also shown for comparison are simulated angular distributions

which were calculated for the specific parameters of the experiment. The above

estimates for the experimental parameters (intensity, pulse duration, temperature)

were fine tuned using a fitting procedure as will be elaborated below.

2The experimentally measured data shown in this section was collected by P.W. Dooley, I.V.
Litvinyuk, and K.F. Lee [31].
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Figure 2.11: (a) Experimentally measured alignment revival structure for N2. (b)-
(d) Plots of measured (thick) and simulated (thin) angular distributions for select
times along the revival structure.
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Figure 2.12: Fourier amplitudes of the experimental alignment signal. (a) Data for
N2. (b) Data for O2.

Figure 2.12(a) shows the measured Fourier amplitudes of the revival signal for

N2 [Figure 2.11(a)]. As expected, the measured Fourier spectrum shows alternating

peak heights due to the nuclear spin statistics factor gJ . Furthermore, all the beat

frequencies3 agree with the predicted sequence ωJ/B0 = (4J + 6) = 6, 10, 14, 18, ...

Figure 2.12(b) shows the Fourier amplitudes for an experimentally measured align-

ment revival signal in O2. Here again all frequencies present match the expected

sequence. Only frequencies arising from odd states (ωJ/B0 = 10, 18, 26, ...) are

seen.

In order to best simulate the measured alignment revivals, it is necessary to fine

tune the estimated experimental parameters. To this end, the initial temperature T ,

the laser intensity I0, and the width of the pulse τon were varied until the calculated

revival structure best matched the measured revivals. The comparison was done

using the Fourier transform of the alignment signal [Equation (2.24)] which readily

3The units of frequency used on the experimental Fourier spectrum, ω1/2, are the same as
those used in the theoretical plots, ωJ/B0.
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gives an estimate of the distribution of populated |J〉 states through the amplitude

terms |aJ ||aJ+2| labeled by the corresponding frequencies ωJ ≈ B0(4J + 6). In the

case of N2, the best agreement was seen for the laser parameters of τon = 48.4 fs and

I0 = 1.7× 1014 W/cm2 with an initial temperature of 105 K. Figure 2.13 shows the

theoretical and experimental alignment signal near the first, second, sixth, and tenth

full revivals (t ≈ Trev, 2Trev, 6Trev, and 10Trev). Recall that the experimental angle

θ and the theoretical θ are not exactly the same angle, and hence that the absolute

magnitude of the revival signals is not expected to match. However, the simulations

do successfully predict the times of maximum net alignment as well as the shape of

each successive revival. The small time shift seen in the tenth revival between the

experimental and simulated revival has been ascribed to timing resolution errors

in the experiment [73]. As alluded to previously, the stretching or chirping of the

revivals at long times is due to the rovibrational coupling term D0 in the rotational

energy spectrum. This term causes small nonlinearities and perturbs the perfect

revivals predicted by Equation (2.37). More specifically, when D0 is included in

the energy spectrum of the rotor, the relation e−iEjt = 1 for t = π/B0 is no longer

exact but now only approximate. Deviations from this relation result in distortions

of the wave packet’s shape at revivals for large times.
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Figure 2.13: Selected full revivals for N2. The measured time dependence of 〈cos2 θ〉
(dots) and the simulated results for the (a) first, (b) second, (c) sixth, and (d) tenth
wave-packet revivals.

38



2.4 Two-Pulse Alignment

2.4.1 Recipe for Enhanced Two-Pulse Alignment

The degree of alignment obtained using the above methods of adiabatic and short-

pulse excitation are both limited by ionization of the molecule in the laser: there

exists a maximum intensity, and hence a maximum aligning strength, beyond which

the laser pulse will simply destroy the molecule. A simple way to get around this

maximum intensity limit imposed by ionization is to use multiple pulses. Alignment

is created with a first pulse, then the distribution is squeezed to a better degree of

alignment with subsequent pulses.

This idea of using multiple pulses was first considered by Averbukh and col-

leagues [36,37]. In [36], the configuration of a pulse train was worked out to quickly

and efficiently reach a high level of alignment. In [37], optimal control theory was

applied to the specific cases of two-pulse and three-pulse scenarios to find the best

pulse parameters for multi-pulse alignment. The solutions found in these studies

were repeated in the present work with the inclusion of temperature, which had

not been previously considered. The inclusion of temperature changed some minor

details of the optimal solutions (for example, in [37] it was found that the best

delay between the two pulses in the two-pulse scenario considered was ∼ (1/2)Trev,

but with temperature included the optimal delay becomes ∼ (3/4)Trev). However,

the new optimal multi-pulse solutions retained the same qualitative features as the

previous 0 K solutions. These features allow one to define a simple recipe for setting

up enhanced two-pulse alignment.

In addition to extending the results of [36,37] to the case of non-zero tempera-

ture, many exploratory simulations were carried out for the present work to study

two-pulse alignment. An example is shown in Figure 2.14. Here two-pulse align-

ment of O2 at 90 K is considered. The two pulses are both of intensity 2 × 1014

W/cm2, duration τon = 48.4 fs, and are separated by a delay of τd. The x-axis is

the time t from the first pulse. The y-axis is the time delay between the two pulses

τd. The z-axis is the alignment signal 〈cos2 θ〉. Although this plot is a bit hard to
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Figure 2.14: A study of two-pulse alignment of O2.
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read at first glance, it represents essentially a complete map of the two-pulse align-

ment for the given parameters. It can be used to locate the best pulse delay τd by

comparing the maximum alignment obtained from a single pulse to the maximum

alignment obtained following the application of two pulses for all possible delays.

In all such studies for a variety of intensities and temperatures, the best two-pulse

alignment solutions again showed uniform qualitative features which will now be

outlined.

Step 1: Share available energy between pulses

Energy should be balanced such that the first pulse has about 40% of the total

available energy. This accomplishes two things: i) Balancing the total energy ap-

proximately equally between the two pulses minimizes the maximum instantaneous

intensity as seen by the molecules and hence allows one to maximize the total en-

ergy pumped into the rotations by setting the energy of each pulse just below the

ionization threshold. Any other distribution of energies between the two pulses

would necessarily have a lower total energy content, since the strongest pulse can

never increase in intensity beyond the ionization threshold. Therefore, diverging far

from a roughly 50/50 distribution will simply force the weaker pulse to loose energy

without equal increase of energy in the strong pulse. ii) Having a bit more energy

in the second pulse was seen to be a generic feature of the optimal solution [37]

and this was also found to hold true in the present simulations once temperature

effects were included.

Step 2: Find optimal delay for second pulse

The optimal delay of the second pulse is located just before the maximum point of

alignment during a strong revival after the first pulse. One then needs to find a

strong revival with large alignment created by the first pulse [Figure 2.15(a)]. The

optimal delay is then typically just a short time before the maximum as illustrated

in Figure 2.15(b). With such a timing, the second pulse catches the molecules as
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Figure 2.15: (a) Generic alignment signal showing a strong revival chosen for double
pulse alignment. (b) Region just before maximum of revival where the optimal
second pulse delay is located.

they are approaching the alignment peak and pushes then just a bit more toward

an even stronger degree of alignment.

Step 3: Tweak parameters to optimize the alignment

The new point of maximum alignment after the two pulses have been applied should

appear a few hundred femtoseconds after the second pulse, Figure 2.16. The region

of increased alignment will also appear in subsequent full revivals from this point.

Once this maximum is found, the pulse delay as well as the pulse intensity and

duration could be tweaked a bit to further optimize the alignment.
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ment using only the first pulse. The thick solid line shows the increased alignment
with the inclusion of the second pulse (thin line).
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2.4.2 Experimental Demonstration: N2

This recipe for increased two-pulse alignment has been verified experimentally4

using the pump-probe time and angle resolved Coulomb explosion technique [38].

Shown in Figure 2.17 is the experimentally measured revival signal for N2 with the

first aligning pulse arriving at t = 0 ps. The ”\\” region (Pulse 2 Region) shows

the particular revival chosen for enhanced two-pulse alignment and is the region in

which the second pulse will be placed. The ”//” region (Observed Revival), one

full revival later than the ”\\” region, is the region of observation to measure the

increased alignment.

Figure 2.18 shows the results of including the second pulse on the alignment

signal. In panel (a), the line 1 shows the alignment in the ”\\” region created

by the first pulse. The vertical bars show the maximum and minimum alignment

attained in the observation region ”//” when the second pulse is timed to arrive at

the time where the particular bar is located. Panel (b) shows the alignment in the

observation region without the second pulse (curve 2), with the pulse located at

8.41 ps (curve ◦) which corresponds to the case of maximal increase of alignment,

and with the second pulse located at 8.31 ps (curve 4). The two vertical bars in

panel (a) corresponding to these last two cases were plotted with the corresponding

shapes as indicators. This experiment shows that the preceding recipe for two-pulse

alignment does indeed lead to an enhancement of the alignment signal.

4The experimentally measured data shown in this section was again collected by P.W. Dooley,
I.V. Litvinyuk, and K.F. Lee [38].
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Figure 2.17: Experimental single-pulse revival signal used to choose the timing the
second pulse in the two-pulse alignment experiment.
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Figure 2.18: Enhanced two-pulse alignment in N2. (a) Single-pulse alignment signal
(curve 1) in the region where the second pulse is to be placed. Vertical bars indicated
the maximum and minimum alignment attained in the observation region when the
second pulse arrived timed to that point along the revival. (b) Alignment signal in
the observation region showing the single-pulse alignment (curve 2), the alignment
with the second pulse timed at t2 − t1 = 8.41 ps (curve ◦), and with the second
pulse timed at t2 − t1 = 8.32 ps (curve 4).
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2.5 Switched Wave Packets

2.5.1 Preparation and Switching Effects

Another method of creating field-free alignment, called switched wave packets, in

a sense mixes the regimes of adiabatic and short-pulse alignment. First, the laser

field is slowly turned on to align the molecules, as in adiabatic alignment. Then,

at the peak of the field, the pulse is abruptly switched off, projecting these aligned

eigenstates immediately onto the field-free basis populating non-stationary wave

packets of the field-free system. These wave packets will then continue to evolve

field-free exhibiting revival dynamics as in the case of short-pulse alignment.

Figure 2.19 demonstrates this idea for a distribution of N2 at 50 K (note that

only even states were included in this illustrative example.) The pulse shape used

(top panel) had a turn-on time of 15 ps, and was turned off instantaneously at

the peak of the field. The alignment of the distribution (bottom panel) is seen to

adiabatically increase as the field is turned on and exhibit revival dynamics after

the truncation of the field. Angular distributions (middle panel) are shown for

various points in time given by the position of the distribution along the time.

The requirements for adiabatic turn on have already been discussed. However,

in the case of switched wave packets, a condition for the switching time is also

needed. The aligned wave packet at the peak of the laser pulse can be expanded in

the field-free basis

Ψ =
∑

J

AJ,M |J,M〉. (2.39)

If the pump pulse were to be instantaneously switched off, as is the case in the

example seen in Figure 2.19, the state Ψ would evolve as

Ψ(t) =
∑

J

AJ,Me
−iB0J(J+1)t|J,M〉. (2.40)

In a realistic case, however, the switching time can not be made arbitrarily short and

the superposition in Equation (2.39) will necessarily be perturbed (AJ,M → A′
J,M)

by the time the field is off. This means that the degree of alignment obtained in
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Figure 2.19: Creation of a rotational switched wave packet in N2 at 50K. Top:
The well depth, U0(t), showing the shape of the aligning laser field. Middle: The
averaged angular probability distribution of the ensemble for select times. Bottom:
The averaged time-dependent alignment of the ensemble.
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the revivals will not match the degree of alignment of the wave packet at the peak

of the field. Instead, the alignment during the revival will be lower due to the

distortion of the wave packet during the turn-off. However, a good projection of

the aligned state at the peak of the laser field can still be made on to the field-free

states if the switching time is short enough that the expansion coefficients do not

change appreciably A′
J,M ≈ AJ,M .

A simple method to estimate the switching time considers the field-free spread-

ing of the ground state wave packet of the molecule in the aligning potential during

the time scale of the turn-off. Using a harmonic approximation for the potential

near the minimum, the ground state wave function is approximately

Ψg(θ) ≈ A exp

[
− θ2

2a2

]
(2.41)

where A is a normalization constant and a2 =
√
B0/U0. The field-free spreading of

this wave packet with time is

Ψg(θ, t) =
aA√

a2 + i2B0t
exp

[
− θ2

2(a2 + i2B0t)

]
. (2.42)

The time-dependent probability density is

|Ψg(θ, t)|2 =
A2√

1 + (2B0t/a)2
exp

[
− θ2

a2 + (2B0t/a)2

]
. (2.43)

The switching time required for negligible spreading of this wave packet is then

found from the denominator of the exponential

a2 > (2B0τsw/a)
2 −→ τsw <

1

2
√
U0B0

. (2.44)

Another method of finding the condition on the switching time comes from

the uncertainty principle. The size of the wave packet can be estimated from the

ground state of the harmonic approximation which gives ∆θ ≈ a = 4

√
B0/U0. The
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uncertainty principle allows one to estimate the angular momentum

∆θ∆J ∼ 1 −→ ∆J ∼ 1/∆θ. (2.45)

Requiring that the rotor with this angular momentum moves less than, say, the size

of the wave packet during the switching time gives

τsw∆J/I < ∆θ −→ τsw < I∆θ2 =
1

2
√
B0U0

, (2.46)

where I = 1/(2B0) is the moment of inertia. Again the same estimate for the

switching time is found.

2.5.2 Experimental Demonstration: CO2

Experimental demonstration5 of a switched wave packet was carried out on a CO2

gas [34]. The unusually shaped laser pulse required for switched wave packets was

created as follows. First, a roughly 200 ps pulse was chosen for the adiabatic turn-

on. The abrupt truncation of this pulse was achieved by using a plasma shutter

triggered by a strong 80 fs pulse. The femtosecond pulse was timed with the peak

of the picosecond pulse [34]. In this setup, the two pulses are focused into a liquid

jet. The picosecond pulse is keep at lower intensity and sees a transparent jet. The

arrival of the much stronger femtosecond pulse, however, initiates a plasma in the jet

immediately creating a reflective surface. This suddenly turns off the transmission

of the picosecond pulse. Using such method, a switching time of τsw = 110 fs was

achieved. The resulting picosecond pulse with τon = 125 ps and sharp turn-off τsw

= 110 fs, as measured in a cross correlation experiment with an 80 fs pulse, is shown

in Figure 2.20(a). This pulse fulfills the estimated limits (2.31) and (2.44) for the

required adiabatic turn-on τon À 14 ps and fast turn-off τsw ¿ 2 ps.

This laser pulse, with intensity ∼ 1011 W/cm2 was then focused into a CO2 gas

at room temperature. The rotational wave packet thus induced in the CO2 gas was

5The experimentally measured data shown in this section was courtesy of J. Underwood and
A. Stolow
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Figure 2.20: Experimental demonstration of a switched wave packet. (a) Cross
correlation (C.C.) of the switching 1.064 µm pulse with an 80 fs, 800 nm pulse: τon
= 125 ps, τsw = 110 fs. (b) Optical Kerr effect signal (∝ 〈cos2 θ〉) generated by the
switching laser pulse when focused into a CO2 gas.
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measured using the Optical Kerr effect (OKE) of a lower intensity 80 fs probe pulse,

i.e. the rotation of the polarization of the probe pulse due to the non-homogeneous

angular distribution of the molecules. The light from the OKE signal was mixed

with a second field of constant amplitude in a heterodyned measurement. In this

technique, the measured signal is proportional to [74]

signal ∝ [〈cos2 θ〉 − 1/3 + C]2 (2.47)

where the constant C describes the heterodyned signal contribution. Figure 2.20(b)

plots the observed signal showing the adiabatic increase of the molecular alignment

during the slow turn-on of the laser and the subsequent rotational revival dynamics

following the abrupt turn-off. The exponential decay of the revival amplitudes was

caused by collision-induced decoherence of the rotational wave packets due to the

large density of CO2 used in this particular experiment.

Turning now to the spectrum of this signal, it is first noted that since the

basic alignment signal 〈cos2 θ〉 is squared in the heterodyned measurement (2.47),

the expected frequencies will included more than just the ωJ previously discussed.

In particular, there will be sum and difference frequencies which arise from the

squaring of a signal with multiple frequencies, for example,

[cosω1t+ cosω2t+ C]2 = cos2 ω1t+ cos2 ω2t+ C2 +

2 cosω1t cosω2t+ 2C cosω1t+ 2C cosω2t

=
1

2
[cos 2ω1t+ cos 2ω2t+ cos(ω1 + ω2)t+ cos(ω1 − ω2)t] +

2C[cosω1t+ cosω2t+ C] + constants. (2.48)

Here, the square of the signal includes the original frequencies (ω1 and ω2) plus the

sum (2ω1, 2ω2, and ω1 + ω2) and difference (ω1 − ω2) frequencies.

Figure 2.21 plots both the experimental spectrum of the measured signal along

with the results of a simulation modeling the same signal. The simulation used a

pulse with τon = 125 ps, τsw = 110 fs, and I0 = 1× 1011 W/cm2. The initial CO2

distribution was at room temperature (295 K). Three progressions can be seen in
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the spectra corresponding to the three series of frequencies: the low-ω progression

(0 to ∼100) is the difference frequencies, the mid-ω progression (∼10 to ∼200)
is the original frequencies, and the high-ω progression (∼80 to ∼250) is the sum

frequencies.
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Chapter 3

Control of Rotational

Wave-Packet Dynamics

3.1 Optical Centrifuge: Forced Acceleration of

Molecular Rotations

[Note: Much of the work presented in this section pertaining to the optical centrifuge

was previously submitted to the University of Waterloo as part of the author’s 4th

year undergraduate research project. However, both the author and the author’s

supervisor of the present Ph.D. thesis wish to included a sample of results on the

optical centrifuge for the sake of completeness of the author’s work on strong field

control of molecular rotations.]

3.1.1 Basic Idea

Forced molecular rotation induced by strong laser fields, a specific example of molec-

ular control first proposed in [42] and named optical centrifuge, was recently ob-

served in experiment [43]. Here, a strong non-resonant laser pulse is used to rota-

tionally accelerate diatomic molecules from low angular momentum states to the
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point of rotational dissociation. The process can be understood by a simple exten-

sion of the ideas of molecular alignment in strong fields. An anisotropic molecule

placed in a linearly polarized field tends to align with the polarization vector via the

AC Stark shift. Gently rotating the laser polarization will carry along the molecule

in the angular well and force the molecule to rotate as the laser polarization turns.

The process of initial trapping and rotational acceleration to the point of disso-

ciation [44] is outlined in this section. A stability analysis of the optical centrifuge

with respect to noise in the experimental laser pulse has also been considered and

can be found elsewhere [45].

A linearly polarized laser field with slowly rotating polarization can be written

as
~E(t) = E0f(t) cosωt

(
x̂ cosφL(t) + ŷ sinφL(t)

)
(3.1)

Here f(t) is the pulse envelop and ωL is the carrier frequency of the laser pulse. The

angle φL is the instantaneous direction of the laser polarization. To achieve angular

acceleration, the laser polarization needs to be smoothly rotated. The discussion

considers the case of linear acceleration

φL =
βt2

2
(3.2)

in the following calculations. It can be checked that this field is simply a com-

bination of two counter-rotating circularly polarized beams which are oppositely

chirped relative to one another

~E =
E0
2
[x̂ cos(ωt+ φL(t)) + ŷ sin(ωt+ φL(t))]

+
E0
2
[x̂ cos(ωt− φL(t))− ŷ sin(ωt− φL(t))]. (3.3)

Consider a linearly polarized field with the polarization slowly rotating in the

xy-plane as shown in Figure 3.1. A diatomic molecule placed in this field will tend

to align with the laser polarization. The resulting angular potential arising from
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Figure 3.1: Geometry of the problem. θ and φ are the angular coordinates of the
molecular axis in a fixed frame. ELASER is confined to the xy-plane, with φL the
angle between the laser polarization and the x-axis.

the AC Stark shift is

V (θ, φ, t) = −U0(t) sin2(θ) cos2(φ− φL(t)) (3.4)

where the depth of the angular potential well, U0, is

U0(t) =
1

4
E2(t)(α‖ − α⊥). (3.5)

The full Hamiltonian of the system, in spherical coordinates, is

H = − ~2

2µ
∇2 + V (θ, φ, t) + V (R) (3.6)

with

∇2 = 1

R2
∂

∂R

(
R2

∂

∂R

)
+

1

R2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

R2 sin2 θ

∂2

∂φ2
(3.7)

where µ is the reduced mass of the molecule; µ = 17.73 amu for Cl2. The bond
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Figure 3.2: Ground state Cl2 Morse potential including the centrifugal contribution
for a subset of J states. By J=400 there is no longer a radial well an the molecule
is forced to slide down the potential hill and dissociate.

potential, V (R), is modeled as a Morse potential

V (R) = D0

(
1− e−γ(R−Re)

)2
(3.8)

with parameters matching Cl2 (D0 = 2.479 eV, Re=1.988 Å, γ = 1.07). Although

a full numerical solution to the 3D Hamiltonian is not unattainable, there exist

several factors permitting the use of lower dimensional approximations to Equation

(3.6), which will greatly reduce the computational workload.

Figure 3.2 shows the radial potential including the centrifugal contribution.

During the early stages of the rotational acceleration process, when the angular

momentum of the molecule J is smaller than ∼100 (in units of ~), the internuclear

separation is not expected to change appreciably, as can be seen in Figure 3.2. If

initially the molecule is vibrationally cold, the R dependence of the Hamiltonian

(3.6) can be neglected, leading to a 2D rigid rotor model for the early trapping
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stages with the Hamiltonian

Hθφ = −~2

2I

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
+ V (θ, φ, t). (3.9)

Here I = µR2e is the moment of inertia of the molecule at the bond equilibrium.

As the angular acceleration progresses and the molecule gains angular momen-

tum of J >100, the bond stretch can not be ignored any longer. Furthermore, if

any attempt to model dissociation is to be made, the bond stretch must be taken

into account. However, at large J another simplification becomes possible. Due

to selection rules, the molecules trapped by the centrifuge pulse gain angular mo-

mentum only about a well-defined axis given by the direction of propagation of the

laser pulse, the z-axis in the chosen frame. This means that the molecules make

transitions to and from states where J ≈ Jz. At values of J >100, these J ≈ Jz

states are extremely well localized in the xy-plane. The θ dependence of the full

Hamiltonian (3.6) can now be neglected and the system can be represented, in 2D

polar coordinates, by the Hamiltonian

HRφ = − ~2

2µ

(
∂2

∂R2
+

1

R

∂

∂R
+

1

R2
∂2

∂φ2

)
+ V (φ, t) + V (R) (3.10)

where V (φ, t) = V (θ, φ, t)
∣∣
θ=π/2

.

To sum up, two model systems are considered. The first is a 3D rigid rotor

on a sphere and is useful for the early trapping stages of the centrifuge process.

This model will also be used to illustrate a method of single high-J state creation.

The second model includes one rotational and one vibrational degree of freedom

and is accurate in simulating high J and Jz dissociation dynamics of the optical

centrifuge. The two models could be meshed together by fitting the trapped Jz

probability distribution near J ≈ 100. The particular numerical methods used to

calculate the quantum evolution of these two models can be found elsewhere [44].
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3.1.2 Initial Trapping of Rotational Wave Packet

If the laser polarization rotates with angular acceleration, the molecule will follow

provided that the acceleration is not too high. The upper limit on the angular

acceleration β follows from the Newton law,

β ¿ max∇V/I ≈ U0/I (3.11)

where I is the moment of inertia and max∇V ≈ U0 is the maximum torque that can

be applied to a molecule by the angular potential (3.4).

In addition to this restriction on β, there are also important restrictions on the

centrifuge turn-on time ton that arise in the case of constant linear chirp considered

herein. Firstly, it is impossible in the classical picture to get the highest possi-

ble angular trapping efficiency with an instantaneous laser turn-on [42]. To trap

molecules of all orientations the laser must sweep out an angle of about π during the

turn-on, βt2on/2 > π. This puts a lower bound on the laser turn-on time. Secondly,

there is an upper bound to the turn-on. It comes from the fact that if the turn-on is

too long, the angular trap will be rotating too quickly to confine a molecule by the

time the pulse has reached full intensity. The kinetic energy gained by a molecule

during the laser turn-on is K ≈ U0/2 + I(βton)
2/2. Here the first term comes from

the virial theorem and the second is due to the rotation of the frame. The molecule

will stay trapped after the turn-on if K < U0. Together, these two arguments lead

to the approximate restriction for ton

√
2π

β
< ton <

√
U0
Iβ2

. (3.12)

Choosing a well depth of U0 = 50 meV and using ICl2 = 4.564×105 au, Equation
(3.11) leads to β ¿ 4.0 × 10−9 au. Then by choosing β = 6.0 × 10−10 au, which

clearly satisfies the previous condition on β, Equation (3.12) leads to ton ≈ 2.5 ps.

Figure 3.3 shows the dependence of the trapping probability on the laser chirp
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β. Here, and for all following trapping simulations, the pulse envelop was

f(t) =





sin2
(

πt
2ton

)
if t ≤ ton

1 if t > ton.
(3.13)

The laser turn-on was fixed at ton = 2.42 ps which is typical in the experiment [43].

The plots were calculated from the time propagation of Hθφ. An initial state with

fixed J and Jz was propagated under the influence of the centrifuge pulse until a

good separation between the trapped and non-trapped packets was achieved. The

inset on Figure 3.3 shows the time-evolution of a particular case corresponding

to β = 6 × 10−10 au and an initial angular momentum state of |J, Jz〉 = |6,−6〉.
The non-trapped part of the wave function forms a wave packet oscillating around

Jz = 0, while the trapped part of the wave function forms a wave packet that gains

angular momentum as it accelerates with the trap. The trapped packet oscillates

in the angular well with its harmonic frequency of ωh =
√

2U0/I.

The two curves shown correspond to initial angular momentum states of |6, 6〉
and |6,−6〉. J = 6 is a typical experimental value of the initial angular momentum

of Cl2 at T = 30 K (note J '
√
kT/I) and Jz = J and -J correspond to the expected

highest trapping and lowest trapping cases respectively. For Jz = J , the molecule

is initially rotating strongly with the angular trap and can be easily trapped. For

Jz = -J , the molecule is initially rotating strongly against the angular trap and can

easily fall out of the trap. There is seen to be good trapping efficiency (>80%) for

the range of β = 2 × 10−10 to 6 × 10−10 au, which corresponds to the laser chirp

rate β = 0.12 to 0.35 nm/ps.

The drop in trapping probability seen for values of β greater than the above

range, most prominent in the Jz =-6 curve, agrees with the suggested maximum

chirp of β ≈ U0/(2πI) = 6.3 × 10−10 au from [42]. This drop at high β values has

a simple explanation. Since ton is fixed in these simulations, increasing β means

increasing the angular velocity of the trap at t = ton. For large values of β, the

laser polarization is spinning too fast by the time the molecule feels the trap for

the molecule to respond. The molecule is therefore not trapped.
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Figure 3.3: The dependence of the trapping probability on the laser chirp β. Laser
turn-on was 2.42 ps. Jz = 6 and Jz=-6 correspond to the expected highest and
lowest trapping probabilities. Inset shows the time-evolution of the Jz probability
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in the plot of wave function evolution.
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Figure 3.4 shows the dependence of the trapping probability on the laser turn-on

time. The laser chirp was fixed at β = 6× 10−10 au = 0.35 nm/ps. The plots were

calculated from the time propagation of Hθφ. Jz = 6 and Jz=-6 correspond again

to the expect highest and lowest trapping probabilities.

As previously mentioned, it is impossible to get the highest possible angular

trapping efficiency with an instantaneous laser turn-on. This effect is clearly seen

in the trapping plots. If the turn-on is too short, the portion of the wave packet

located on the peaks of the angular trap does not have time to react and fall into the

well and can therefore not be accelerated with the trap. As the turn-on is increased

the trapping efficiency is seen to pass through an optimum trapping region. The

classically derived estimate for the optimum turn-on is, from (3.12), 2.47 ps < ton <

2.53 ps for the chosen parameters. The actual optimum region is seen to be a bit

lower in turn-on value with 1.5 ps < ton < 2.5 ps. For large turn-on values, the

laser polarization is once again spinning too fast by the time the molecule feels the

angular trap for the molecule to respond, as was the case for large β values, and

the molecule will not be trapped.

The optical centrifuge, as can be seen in the inset of Figure 3.3, produces a

spread of J states within a single wave packet even when starting from a single ro-

tational state. The reason for this is two fold. Firstly, a quick, highly non-adiabatic

laser turn-on is needed to efficiently trap the molecules if a linear chirp is used (see

Equation (3.12)). This non-adiabatic trapping process will cause population of

many eigenstates states of the angular trap. Secondly, the optical centrifuge lacks

any adiabatic return to the field-free system. Such an adiabatic return could be

achieved by a slow and smooth turn-off of the laser field. A method of removing

this spread of J states from the process, at least when starting from a pure state

(i.e. no temperature), will now be outlined.

First, the non-adiabatic turn-on necessary for efficient trapping in the case of

linear chirp must be removed. This can be achieved by using adiabatic alignment

prior to the centrifuge pulse to prepare the rotational wave packet in a single eigen-

state of the potential. The centrifuge pulse would then follow immediately after the

peak of the adiabatic alignment pulse. Although the molecules are now starting
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in an eigenstate of the angular well as the laser polarization starts to rotate, it

must be ensured that a negligible number of transitions between the instantaneous

eigenstates are induced by the rotational acceleration of the angular trap. This can

easily be ensured by using a small chirp rate β for the centrifuge pulse.

A specific J = Jz state can then be selected by halting the rotational acceleration

of the trap at a specific rotational frequency given by

Ωf ≈
~J̃z
I

(3.14)

where Ωf is the final rotational frequency of the angular trap and J̃z is the target

J = Jz state. Once the rotational acceleration of the trap has stopped, the trap

continues to rotate with frequency Ωf .

The last step is to slowly and smoothly turn off the laser adiabatically to prevent

transitions between the trap states.

Figure 3.5 shows the results of a simulation that illustrates the above outlined

scheme. The initial state of the system was the ground state of the angular trap

assumed to be prepared by adiabatic alignment. The laser intensity was at full

strength at t = 0. The trap underwent constant acceleration (φL = βt2/2) with

β = 0.5 × 10−10 au for a time of t = 0 → T0 where T0 = 36 ps. For times greater

than T0, the trap was spun at a constant frequency of Ωf = φ̇L(T0) = βT0 while

the laser was slowly turned off over a time of 360 ps. From Equation (3.14), this

Ωf should selectively excited the Jz ≈ 34.25 state. The simulations show excellent

selective population of the Jz = 36 state. Analysis of the full θ − φ final wave

function showed this Jz = 36 state to be the |J, Jz〉 = |36, 36〉 state.

3.1.3 Rotational Acceleration and Dissociation

Figure 3.6 shows the full evolution of the optical centrifuge propagated with HRφ.

The laser underwent a 2.42 ps laser turn-on after which the pulse intensity was left

constant for the duration of the centrifuge acceleration process. The initial state

was |n, Jz〉 = |0, 0〉 where n is the vibrational quantum state of the radial Morse
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Figure 3.6: Top: Optical centrifuge evolution. Initial State |n, Jz〉 = |0, 0〉,
β = 4.6 × 10−10 au, U0 = 50 meV, and ton = 2.42 ps. Low-Jz wave packet was
absorbed at about t = 8.5 ps. Dissociation probability was 73%. White represents
zero amplitude in the plots of wave function evolution. Bottom: Final Jz and R
distributions (see text).

potential. Values of β = 4.6×10−10 au, U0 = 50 meV, and ton = 2.42 ps were used.

The low-Jz wave packet was absorbed at about t = 8.5 ps, as can be seen in the Jz

evolution plot. The bottom line plots show the final Jz and R distributions of the

undissociated molecules.

The dashed low-Jz, low-R distributions are those of the absorbed part of the

wave function that was not angularly trapped and stayed at low-J . They are not

calculated exactly, but inferred from the corresponding Jz, R distributions before

low-Jz absorption. The solid lines represent the directly calculated final high-Jz and

high-R distributions of the trapped but non-dissociated molecules. As the trapped

wave packet is accelerated to the point of dissociation and escapes from the radial

potential, it quickly spreads and is absorbed at the grid boundary. This is why

there is very little density beyond R/Req ≈ 1.25. The final calculated dissociation

probability was 73%.
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The pulse envelope f(t) remains constant after the laser turn-on. Therefore,

Figure 3.6 illustrates the features of the centrifuge dynamics that are independent

of (possibly non-ideal) pulse profiles and is valid for pulses longer than seen in the

experiment [43]. The harmonic oscillations of frequency ωh present in the trap-

ping simulations (Figure 3.3) are seen to persist coherently up to the dissociation

event. Jz increases linearly with time until just before dissociation. This linear

regime is indicative of adiabatic evolution. Here the molecules on average follow

the acceleration of the trap with small oscillations in the well decoupled from the

accelerated motion. Just before dissociation Jz is seen to diverge from linearity.

This is consistent with the classical model [42] in which both J̇z and −φ undergo

a fast increase just before dissociation. The wave packet starts to lag behind the

rotating trap, and as a result some of the population falls from the angular trap.

This lost population is the wave packet seen at high-Jz and high-R (R ≈ 1.2) after

the dissociation event.
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3.2 Control of Revival Dynamics

3.2.1 Rotational Revival Dynamics

As seen in the case of short-pulse and switched wave packet alignment, once a

field-free localized wave packet is excited, its initial localization is quickly lost (see

Figure 2.9 or Figure 3.7). However, the quantized nature of the spectrum may lead

to periodic revivals of the wave packet localization, as is the case for rotational

wave packets. As will be seen below, at the moments of fractional revivals the wave

packet re-localizes into several equally spaced1 copies with well-defined relative

phases. The central idea of the control scheme presented in this section is to

control the wave-packet evolution by inducing relative phase shifts between these

wave packet copies at fractional revivals. This approach combines aspects of the

control methods of Tannor, and Rice [75] and Brumer and Shapiro [76]. Like the

former, it uses wave-packet motion. Like the latter, it relies on the interference of

multiple pathways – but here these pathways originate from multiple copies of the

initial wave packet. Created at fractional revivals, they play the role of ’slits’ in

further evolution.

Dealing with wave-packet dynamics, e.g. in molecules, one is often interested in

seemingly simple choices: is a molecular axis aligned or not, where is the vibrational

wave packet localized, etc. At this level one is only interested in the general aspects

of wave-packet evolution rather than detailed information such as amplitudes and

phases of specific eigenstates. Such limited information is further justified when

the wave packet is created from a thermal initial distribution.

It is shown here that, if only a limited amount of information about the wave-

packet position or localization is desired, its evolution can be effectively mapped

onto a few-state system. The number of ’states’ is determined by the amount of

information one wants to track and/or the degree (detail) of control one wants to

exert. The existence of the mapping relies on the presence of revival structures

1In action-angle variables, these copies are equally spaced in the angle of their motion along
the orbit.
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Figure 3.7: (a) Evolution of an angular wave packet initially placed at θ = 0 and
θ = π. Absolute value of the wave function is shown by brightness with black
being zero amplitude. (b) Angular distribution for initial wave packet Ψ(t). (c)
Time evolution of wave packet’s alignment. (d) Aligned (A) and anti-aligned (AA)
regions on the rotor’s trajectory.

in the wave-packet dynamics. The basis states of the effective few-state system

are time-periodic on the fractional revival time scale, reminiscent of the Floquet

states. They track the evolution of the wave-packet symmetries on the spatial and

temporal scales of the fractional revivals.

These ideas are illustrate using molecular alignment and orientation as exam-

ples. It is shown that relatively weak and short control pulses can implement analogs

of π/2-pulses in the effective few-state system, turning off and on previously induced

field-free alignment. Furthermore, these pulses can (partially) convert alignment

into field-free orientation.

Consider first a 2D rigid rotor confined to a plane without temperature (3D

molecular rotors which include temperature effects are discussed later). Its eigen-

states are ψM(θ) = (1/
√
2π)eiMθ and the spectrum is EM = BM 2, where B is the

rotational constant. A linearly polarized laser field creates the angular potential

U(θ) = −U0 cos2 θ. It aligns the rotor with the direction of laser polarization, cre-

ating a rotational wave packet Ψ(θ, t = 0) =
∑

M aMψM(θ) localized near θ = 0
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and π. Note that U(θ) is π-periodic and does not change the parity of the initial

state.

Consider now the free evolution of an initially aligned even state Ψ(θ, t = 0) ∝
exp(−βθ2)+exp(−β(θ−π)2), which only contains evenM ≡ 2n states (the following

discussion could have equally used only odd states). The spectrum of this subset

is En = 4Bn2. The ”up” and ”down” (θ = 0 and θ = π) are not distinguished.

Shifting θ by π is equivalent to the 2π rotation of the effective angular variable

θ̃ = 2θ: ψn(θ) ∼ ei2nθ = einθ̃.

Figure 3.7(a) shows spreading and revivals of this wave packet Ψ(t) with β =

20.0 and B = 1 [Figure 3.7(b)], over the revival period Trev ≡ 2π/(E ′′
n/2!) = π/2B.

At Trev/2 the initial wave packet revives into a single copy shifted by π/2, and at

Trev/4 it splits into two copies spaced by π/2. In general, at Trev/2K the wave

packet splits into K copies. These copies are the ’slits’ from which the multiple

pathways in Figure 3.7(a) originate: modifying their phases controls interferences

in the subsequent evolution.

Figure 3.7(c) shows that the commonly used measure of alignment – 〈cos2 θ〉
– provides only limited information about the rich dynamics between the revivals.

However, if one is only interested in controlling alignment, this measure is adequate:

it is enough to know whether the wave packets are localized in the aligned (A) or

anti-aligned (AA) regions [Figure 3.7(d)].

While |Ψ(t = 0)〉 ≡ |A〉 is maximally localized in the aligned region, |Ψ(t =

Trev/2)〉 ≡ |AA〉 is maximally localized in the anti-aligned region and is |A〉 rotated
by θ = π/2 (θ̃ = π). Their free evolution during Trev/4 is:

e−iH0Trev/4|A〉 =
1√
2

[
−eiπ/4|A〉+ eiπ/4|AA〉

]
(3.15)

e−iH0Trev/4|AA〉 =
1√
2

[
−eiπ/4|AA〉+ eiπ/4|A〉

]
. (3.16)

Superpositions of |A〉 and |AA〉 can yield arbitrary alignment between its max-

imal and minimal values. If one only cares about wave-packet localization in the A

or AA regions, as does the measure 〈cos2 θ〉 in Figure 3.7(c), then one needs only
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to look at the rotor at multiples of Trev/4. Equations (3.15) and (3.16) allow one

to find eigenstates of the evolution over Trev/4:

|0〉 = 1√
2
[|A〉+ |AA〉] ; |1〉 = 1√

2
[|A〉 − |AA〉] . (3.17)

These are analogs of the Floquet states: each revives at every multiple of Trev/4,

up to a global phase which defines the quasienergy of the state. Using Equations

(3.15) and (3.16) one can check that the quasienergies are ε0 = 0 for |0〉 and

ε1 = 2π/Trev for |1〉. Figures 3.8(a) and (b) shows the evolution of |0〉 and |1〉 for
the 2D rotor. They reproduce themselves every Trev/4; the dynamics in between

remains unnoticed by 〈cos2 θ〉.

3.2.2 Control by Phase Shifts

The field-free alignment revivals can be switched on or off by controlling the relative

phase of the aligned and anti-aligned wave packets at Trev/4. Indeed, the field-free

evolution turns the initially aligned state |A〉 ∝ |0〉+|1〉 (Figure 3.7) into |0〉−i|1〉 at
Trev/4, with anti-aligned lobes shifted by π/2 relative to the aligned ones. Adding

π/2 phase to the aligned lobes transforms the state (|0〉 − i|1〉)/
√
2 to |0〉 (up to

a global phase), switching off alignment revivals. In Figure 3.8(c) and 3.8(d) an

instantaneous phase kick K(θ) = exp [i(π/2) cos2 θ], i.e. Ψ(θ) → K(θ)Ψ(θ) was

applied at t = Trev + Trev/4. The control pulse stops the evolution observed by the

〈cos2 θ〉 measure [Figure 3.8(d)]. Adding the ±π/2 phase to these lobes again at

t = 2Trev + 3Trev/4 changes |0〉 back to |0〉 ± i|1〉, resurrecting the revivals.

Thus, given the ability to perform phase operations on the wave packets, the

rotor dynamics at the level of the 〈cos2 θ〉 measure could be treated and controlled

as if dealing with only a two-level system. A short linearly polarized pulse acting on

a polarizable molecule which turns V (θ, t) = −U(t) cos2 θ on and off before the wave

packets had a chance to move imparts the phase δϕ = exp[−i
∫
V (θ, t)dt] where

the integral extends over the duration of the pulse. δϕ can be used to induce phase

shifts between different packets at fractional revivals. Results of finite-time control
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Figure 3.8: (a,b) Evolution of the states |0〉 and |1〉 on the revival time scale. Wave-
function amplitude is shown by brightness and the phase is shown by color (or hue
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the alignment being switched off and on. Arrows indicate the moments when the
laser pulses are applied.
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pulses acting on a thermal ensemble of O2 molecules are shown below (Figure 3.10).

In addition to controlling alignment dynamics, this control scheme can be ex-

tended to control orientation dynamics of dipolar molecules. For homonuclear

diatomics, there is nothing to distinguish ”up” from ”down” once the molecule is

aligned. However, heteronuclear diatomics, once aligned, can still see a difference

between ”up” and ”down”: one aligned configuration of the heteronuclear would

have atom A on top and atom B on the bottom, while the other configuration would

have atom B on top and A on the bottom. Forcing all the heteronuclear molecules

into the same configuration, for example having all A atoms on top, would be called

orientation.

So far only a rotor without the permanent dipole moment not distinguishing

between ”up” and ”down” directions in Figure 3.7(d) has been considered consid-

ered. Consequently, only even M = 2n were used. Consider now an oriented rotor

with a permanent dipole µ and spectrum E(M) = BM 2 where M is both even and

odd. The revival period now is Trev ≡ 2π/(E ′′
M/2!) = 2π/B. Similar to alignment,

the evolution can be described on the most coarse-grained scale as a succession of

superpositions of oriented |up〉 and anti-oriented |down〉 states, with basis states

|0′〉 = (|up〉 + |down〉)/
√
2 and |1′〉 = (|up〉 − |down〉)/

√
2. Up to the replacing

θ ⇔ θ̃, the quantum carpets for |0′〉 and |1′〉 are qualitatively similar to those in

Figures 3.7 and 3.8.

At Trev/4 the oriented state |up〉 = (|0′〉+ |1′〉)/
√
2 becomes (|0′〉 − i|1′〉)/sqrt2

and is similar to an aligned state. This suggests that an aligned state can be

converted into the oriented one. If the aligned state is made of even M , it looks

like |0′〉 and is converted into (|0′〉− i|1′〉)/sqrt2 by a π/2 relative phase shift of the

”up” lobe. Further free evolution turns it successfully into |down〉 (anti-oriented),
(|0′〉+ i|1′〉)/sqrt2 and |up〉 (oriented) after Trev/4, Trev/2, and 3Trev/4 respectively.

The required phase shift can be imparted by a ”half-cycle” THz pulse [77, 78]

interacting with a permanent dipole, V (θ, t) = −µE(t) cos θ.

Initial temperature adds a serious complication: for odd M the aligned state is

similar to |1′〉. The same π/2 relative phase shift of the upper lobe converts it into

(|0′〉 + i|1′〉)/sqrt2, yielding |up〉 (oriented), (|0′〉 − i|1′〉)/sqrt2 and |down〉 (anti-
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oriented) after Trev/4, Trev/2, and 3Trev/4 respectively. Equal incoherent mixture

of |0′〉 and |1′〉 (thermal ensemble) yields zero net orientation at these times.

This difficulty is overcome by manipulating the wave-packet interferences at a

finer time scale, applying phase shifts at multiples of Trev/8 rather than Trev/4. To

describe arbitrary revival pattern at multiples of Trev/8, one must break the orbit

θ = 0..2π into four parts and look at the superpositions of the four localized states,

|right〉, |left〉, |up〉, and |down〉. Diagonalizing exp[−iH0Trev/8] as a 4× 4 matrix

in the basis of these states, four Floquet-like eigenstates which revive every Trev/8

are found:2

|00〉 = (|up〉+ |left〉+ |down〉+ |right〉)/2
|01〉 = (|up〉+ |left〉 − |down〉 − |right〉)/2
|10〉 = (|up〉 − |left〉+ |down〉 − |right〉)/2
|11〉 = (|up〉 − |left〉 − |down〉+ |right〉)/2

(3.18)

All four orthogonal states are either odd or even on the whole orbit 0..2π and on

each of its halves. The state |00〉 has quasienergy ε00 = 0, the states |01〉 and |11〉
have ε01 = ε10 = 2π/Trev, and ε11 = 8π/Trev.

The two aligned states are expressed in this basis as |0′〉 = (|00〉 + |10〉)/
√
2,

and |1′〉 = (|01〉+ |11〉)/
√
2. Their evolution at Trev/8 and 3Trev/8 is different: |0′〉

revives at the equator (θ = π/2, 3π/2) while |1′〉 revives at the poles (θ = 0, π)

[Figure 3.9(a) and (b)]. The half-cycle pulse U(θ, t) = −µE(t) cos θ applied, say, at

3Trev/8 imparts the phase shift to the two lobes of |1′〉 while inducing no relative

phase shift to the two lobes of |0′〉. After Trev/4, the state |1′〉 becomes oriented

while |0′〉 is again localized at the equator [Figure 3.9(a) and (b)]. For an equal

mixture of even and odd M states in the initial ensemble, half of the ensemble can

be oriented while another half of the ensemble remains unoriented and localized at

the equator, Figure 3.9(c). The pulse also kicks the lobes of the state |1′〉 at the

equator, but the acquired momentum is small compared to the momentum spread

there: only small orientation of |1′〉 is created (Figure 3.9(c), thin line).

So far only the 2D rotor has been considered. However, the same scheme can

2The two-qubit notation in Equation (3.18) connects control of the wave-packet symmetries
with quantum logic as outline in Section 3.2.3
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Figure 3.9: (a,b) Evolution of the states |0′〉 and |1′〉 in the control scenario discussed
in the text. Brightness shows probability density. (c) Orientation of the state |1′〉
(dashed line), |0′〉 (thin line), and of their incoherent sum (thick line). Laser pulse
is shown by the arrows.
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be used in 3D, with minor adjustments. Firstly, in 3D |right〉 and |left〉 overlap
due to axial symmetry, but the cos2 θ potential does not act on them. Secondly,

at Trev/8 the linear term in the 3D spectrum E(J) = J(J + 1) shifts revived wave

packets by π/4 from the poles and the equator. The control pulses are applied

slightly before or after the exact revival, when the revived wave packets are at the

pole and the equator.

Figure 3.10(a) demonstrates switching off and on rotational revivals for an en-

semble of O2 molecules with temperature T = 50 K. (Note that the θ used for

these 3D simulations is again the polar angle used throughout the thesis, and no

longer the 2D rotational angle used above in this section.) The initial alignment

is created using a sin2 pulse with with peak intensity I0 = 1.5 × 1014 W/cm2 and

FWHM duration of the pulse τon = 50 fs. This pump pulse was chosen to match

that used in recent experiments [31] where the peak intensity was set just below the

ionization threshold to ensure strong alignment. The aligning pulse has its peak at

t = 50 fs in the figure. The revivals are switched off and on by applying a weaker

control pulse (I0 = 0.18× 1014 W/cm2, τon = 50 fs) at times 4.30 and 10.15 ps.

Figure 3.10(b) shows how a half-cycle pulse converts alignment of the OCS

molecule (B = 0.2039 cm−1, ∆α = 4.1Å3 , µ = 0.709 [79]) into orientation. The

initial alignment is created using a pulse with I0 = 8.26×1011 W/cm2 and τon = 50

fs. The half-cycle pulse used to create orientation E(t) = E0 exp [−4 ln 2(t/τ 2hc)] has
amplitude E0 = 8.11× 105 V/cm and duration τhc = 500 fs and was applied 20.536

ps after the aligning pulse.

Unlike other schemes of laser orientation of dipolar molecules [80] where the

degree of orientation is determined by the strength of the half-cycle pulse, here the

degree of orientation is determined by the aligning pulse. This aspect is similar to

Ref. [81] which uses a strong laser field and a weaker DC field to orient a molecule.

However, in [81] the strength of the interaction with the DC field µE must amount

to kT to get strong orientation, while in the present scheme it is the strength of the

aligning laser pulse alone that determines the degree of orientation. The half-cycle

pulse simply cause interferences which converts the alignment into orientation.

This control scheme is not limited to rotors, but is applicable to any system with
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Figure 3.10: (a) Alignment of O2 molecules at 50 K with (thick line) and without
(thin line) the control pulses. (b) Alignment (thin line) and orientation (thick line)
of OCS molecules at 10 K with the control pulse.

a quadratic spectrum, with or without the initial temperature, as long as the control

interactions depend on the wave-packet position. A wave packet centred around n0

in a system with a quadratic spectrum can be viewed as a carrier Ψn0
modulated

by the envelope f(φ, t) [82], where the angle φ is the phase of the corresponding

classical motion. The envelope spreads and revives exactly like a 2D rotor. As for

the 2D rotor, the Floquet-like states track the symmetries of the envelope shifted

by the linear motion.

This scheme also gives insight to controlling wave packets for thermal ensembles,

when the system starts with an incoherent superposition of many initial eigenstates

n(i). The initial laser pulse has to be strong enough to create similar wave packets

Ψ(i) for every n(i). If the revival pattern of Ψ(i) is independent of its central state n
(i)
0

(determined by the initial state n(i)), then the control pulses in this scheme would

act in a similar way on all wave packets Ψ(i) and one needs only be concerned with

the phase shifts of the wave-packet replicas, unrelated to kT .

Control of thermal ensembles is also possible when the revival dynamics for
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different n
(i)
0 is not the same. This is the case with orientation. From the orientation

perspective, incoherence of the initial distribution is not removed by the aligning

pulse. In the envelope description, the wave packet with odd n0 can be viewed as

that with even n0 (e.g. n0 even = n0 odd−1), with an additional envelope modulation

that turns the even n0 into odd. An initially incoherent mixture of even and odd

states is turned into a mixture of the the even (|0′〉) and the odd (|1′〉) envelopes for
the aligned states. Different revival patterns for |0′〉 and |1′〉 allowed us to selectively

affect only one of these states while leaving the other virtually unchanged, yielding

an incoherent mixture of the oriented state and a state localized near the equator.

3.2.3 Quantum Logic Perspective

This control scheme of applying phase shifts at moments of fractional revivals can

also be viewed from a quantum logic perspective [47]. Here, analogs of logical qubits

are defined using wave-packet shape and symmetries. The control pulse acting at

the fractional revivals are then view as gates implementing transformations between

the qubits of the system. This view is outlined using wave packets of molecular

vibrations.

Consider a wave packet Ψ(t) =
∑

nCn(t)φn, with amplitudes Cn(t) ∝ exp(−iEnt)

distributed around a state |n0〉 (En, φn are the energies and wave functions of the

states). Just as with a superposition of optical waves, the wave packet can be de-

scribed by a carrier and an envelope [82–85]. The carrier is given by the stationary

wave function φn0
while the wave-packet envelope f is defined as:

f(t, θ̃) ≡
∑

n

Cn(t) exp[i(n− n0)θ̃] (3.19)

It moves along the classical orbit associated with |n0〉 and θ̃ is the phase (angle)

of that motion [82–85]. For an equidistant spectrum En − En0
= ω0(n − n0) the

envelope is f(t, θ̃) = f(θ̃ − ω0t) = f(θ) and its shape is unchanged during the

motion, which occurs with the period T0 = 2π/ω0. Anharmonicity in the spectrum

En−En0
= ω0(n−n0)+Ω(n−n0)2 leads to the wave-packet spreading and revivals:
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Figure 3.11: Wave packet (|Ψ|2) made of ∼8 eigenstates in a Morse oscillator at
t = T0/8 + Trev/8 and its envelope as the function of the classical angle θ (inset).

after time Trev = 2π/Ω the wave packet re-localizes (revives) at its initial position.

At the fractional revival time Trev/2M the wave packet splits into M orthogonal

clones Fi(θ) spaced by ∆θ = 2π/M [72].

Figure 3.11 is obtained by propagating the initial wave packet on the Cl2-like

potential modeled as a Morse oscillator V (x) = D[1− e−ax]2−D with x = R−Req,

D = 2.47 eV, a = 1.07 a.u. The wave packet with reduced mass m = 31270

a.u. starts as Gaussian, Cv(t = 0) ∝ e−(v−v0)
2/σ2

, with v0 = 38 and σ = 4/
√
ln 2

(i.e. FWHM=8 levels). Near v = 38 the vibrational period is T0 =130 fs and

Trev ≈8.31 ps. The fractional revival about t = Trev/8 is immediately visible in the

envelope representation [Equation (3.19) and Figure 3.11, inset], which removes

carrier oscillations and brings out the underlying symmetries in the wave function.

The definition of wave packet ’bits’ in terms of f(θ) is illustrated in Figure 3.12

for a two-bit system. These states are defined as four orthogonal superpositions of

the ’basis’ wave packets Fi obtained from the initial wave packet at the fractional

revival time Trev/8 (the four orthogonal clones in Figure 3.11, inset.) In general,
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Figure 3.12: Four orthogonal basis states of the envelope function for the two-bit
system. The signs give relative phases of the basis wave packets.

for K bits one divides θ̃ = 0...2π in 2K equal intervals. The states of the bits are

determined by the symmetry of f(θ) with the resolution increasing in powers of 2.

Reminiscent of the Fast Fourier transform, the lowest bit distinguishes between f(θ)

even or odd on the whole orbit, the second bit distinguishes parity on every half

of the orbit, the third would do it for every quarter, etc. For K-bit computation,

structures finer than 2π/2K in f(θ) are unresolved.

Thus, all basis wave packets in phase correspond to the ground state |0...00〉.
A flip of the first (lowest) bit corresponds to multiplying f(θ) by eiπ = −1 on the

second half of the phase orbit, θ = π...2π. A flip of the second bit corresponds to

multiplying f(θ) by eiπ on the second and the fourth quarters of the orbit, thus

doubling the modulation frequency. To flip the third bit one doubles the modulation

frequency again, etc.

Each wave-packet bit distinguishes, on its own scale, not only between ’odd’

and ’even’, but also between ’left’ and ’right’. As clear from Figure 3.12, the states

(|0〉+ |1〉)
/√

2 and (|0〉 − |1〉)
/√

2 of the first bit correspond to the wave function
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concentrated on the left side (θ < π) or on the right side (θ > π) of the whole orbit.

The states (|0〉+ |1〉)
/√

2 and (|0〉 − |1〉)
/√

2 of the second bit describe the wave

function concentrated on the left or the right sides of each half-orbit, the third bit

would do the same for each quarter-orbit, and so on.

Analogs of single-bit and two-bit logical operations are now to be constructed.

They are demonstrated for a two-bit system in a Morse oscillator. First considered

are analogs of Rabi oscillation in a single qubit.

As seen from Figure 3.12, flipping the first bit requires changing the phases of

two basis wave packets on the right side of the orbit by π. This operation flips the

first bit independently of the state of the second bit, i.e. performs both |00〉 ⇔ |01〉
and |10〉 ⇔ |11〉 transitions. In general, for the j-th bit the phase orbit θ = 0..2π is

divided into J = 2j equal parts, and on every second one of these parts the envelope

f(θ) is multiplied by exp(iφ). This procedure performs the operation

UR = eiφ/2

(
cosφ/2 −i sinφ/2
−i sinφ/2 cosφ/2

)
(3.20)

on the j-th bit while all others are unaffected. Equation (3.20) can be derived by

applying the above procedure to the (|0〉 ± |1〉)
/√

2 states of the j − th bit: one is

unaffected while the other acquires a global phase exp(iφ). Up to the phase factor

eiφ/2, UR is equivalent to Rabi oscillation between the states |0〉 and |1〉 of the j-th
qubit.

A phase shifter can be implemented by a local modification of the potential,

i.e. by non-resonantly coupling it to another potential energy surface. This results

in a position-dependent AC Stark shift, i.e., slightly shifts the potential near the

turning point while the laser field is on. A wave packet moving through the turning

point acquires extra phase ei∆S where ∆S is the change in the classical action. The

non-resonant pulse must be timed within the window that the wave packet spends

near the turning point. This restricts the number of basis wave packets that can be

cleanly addressed, the number of qubits that can be encoded and, hence, the control

over the wave-packet shape: a one-bit control does not resolve below a half-orbit,

82



two-bit control does not resolve below a quarter-orbit, etc.

Numerical simulations [Figure 3.13(a)] show how such phase shifter flips the

first bit for the same initial wave packet and surface as in Figure 3.11 (see Figure

3.13 caption for the pulse parameters). The pulse non-resonantly couples the main

surface near the inner turning point to an auxiliary surface also chosen as a Morse

oscillator. Shifted down by the energy of one photon, the auxiliary surface is

V ′(x) = D′(1 − exp(−a′(x + δ)))2 − D′ + ∆E with D′ = 5.44 eV, ∆E = 4.02

eV, δ = 0.2 and a′ = 1 a.u. The electronic dipole matrix element is assumed R-

independent. Figure 3.13(a) shows that the phase of the last two basis wave packets

is flipped by π, as desired. Errors such as narrowing or widening of the basis wave

packets are visible in Figure 3.13 but remain unresolved (until accumulated) by the

two-bit description, which does not see below a quarter-orbit.

A phase shifter can be also used for multi-bit gates. For K bits, phase shifting

of a single basis wave packet results in a K-bit operation. Figures 3.13(b) and

(c) show the result of numerical simulation for the CNOT-type gate in the two-bit

system. Applying the laser pulse for the quarter-period when the wave packet F2

passes the turning point does not change the second bit if the first bit is in the

state (|0〉+ |1〉) /
√
2 [’left’, Figure 3.13(b)], but flips the second bit if the first one

is in (|0〉 − |1〉) /
√
2 [’right’, Figure 3.13(c)].

Changing the phases of basis wave packets is not sufficient – one also needs to

change their relative amplitudes. This yields the ability to approximate arbitrary

single-bit gate. For example, the Hadamard states of the first bit used in the previ-

ous example require merging half of the basis wave packets with their counterparts

which are half-orbit away. To implement the Hadamard transform on the first bit

the state |00〉 has to be transformed into (|00〉+ |01〉) /
√
2 (’left’), the state |01〉

into (|00〉 − |01〉) /
√
2 (’right’), and likewise for the states |10〉 and |11〉 – all using

the same operation.

Wave-packet spreading and revivals give a natural way to accomplish this goal.

Indeed, waiting for a fractional revival Trev/4 and correcting phases one transfers a

single basis wave packet into two packets on the opposite sides of the orbit with ar-

bitrary relative phase. Similarly, four packets with arbitrary phases can be obtained
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Figure 3.13: Numerical simulations of first bit flip (a), CNOT-type gate (b), (c),
and Hadamard transform on the first bit (d). Transitions are labeled on the
panels. Solid line: |f(θ)|2, dashed - phase of f(θ) Pulse envelope is e−(t/σT )

8

.
(a) FWHM=T0/2=65 fs with coupling µE = 5.47 × 10−3 a.u., (b) and (c)
FWHM= T0/4=32.5 fs and µE = 6.04 × 10−3 a.u., (d) FWHM=T0/2=65 fs and
µE = 5.47× 10−3/

√
2 a.u.
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from a single wave packet at Trev/8, using the phase operation. Conversely, any

four or two wave packets can be merged into one. This gives a guideline for imple-

menting Hadamard transforms. Figure 3.13(d) shows a simulation of revival-based

Hadamard transform Ĥ1 for the first bit, for the same model system as above. It

is achieved by applying π/2 phase shift on the θ > π part of the orbit and waiting

for Trev/4. Hadamard transforms for higher bits are less trivial, but still possi-

ble. For example, Hadamard transform Ĥ2 for the second bit can be implemented

as Ĥ2 = Φ̂†
1

̂(Trev/8) Φ̂3 ̂(Trev/4) Φ̂2 ̂(Trev/8) Φ̂1 where T̂ denotes free evolution

over the time T and Φ̂m are diagonal 4x4 matrices with main diagonals as follows:

Φ̂1 : (e
−iπ/4, 1,−e−iπ/4, 1), Φ̂2 : (eiπ/2, 1,−1, 1), Φ̂3 : (1, 1, 1, eiπ/2).

As an example of possible control schemes, Figure 3.14 shows how the bit op-

erations control the revival structure and evolution within vibrational period. The

pulse parameters (see Figure 3.14) are well within the present-day technology. Panel

(a) shows 〈R(t)〉 = 〈Ψ(t)|R|Ψ(t)〉 of the same vibrational wave packet as used for

Figures 3.11 and 3.13. Oscillations of the initially localized wave packet are damped

by its spreading. Strong re-localization of the wave packet occurs near the half

(t = Trev/2) and the full revival.

The only difference between Ψ(Trev/4) and Ψ(3Trev/4) is that the first bit is

flipped. Hence, flipping the first bit at Trev/4 will bring the system to 3Trev/4.

This is shown in Figure 3.14(b): the revival near t = Trev/2 is now π out of phase

compared to t = Trev/2 but identical to t = Trev in Figure 3.14(a). Thus, the arrival

of the revived wave packet to the turning point is shifted by half of the vibrational

period T0/2. Small oscillations of 〈R〉 immediately after the first bit-1 flip, are the

result of small errors of the operation. However, these errors are removed by the

second flip of the first bit at t/Trev = 3/4.

The difference between Ψ(Trev/8) and Ψ(7Trev/8) is a π/2 rotation of the second

bit. The control pulse in Figure 3.14(c) performs π/2 rotation of the bit 2 at t/Trev

= 1/8, 3/8, 5/8,... Now full revivals are accelerated to occur at every Trev/4. The

amplitude of subsequent revivals decreases: the errors add constructively. Here

every π/2 rotation was implemented by adding a π/2 phase shift to packets 1 and

3. Alternatively, one can first apply a π/2-shift to packets 0 and 4 at Trev/8 followed
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Figure 3.14: Control of wave-packet revivals by logical operations. Dashed lines
show when short control pulses with envelope e−(t/σT )

8

are applied. (a) - free evo-
lution, (b) each operation uses FWHM=65 fs pulses with µE = 5.47 × 10−3 a.u.,
(c) each operation uses two FWHM=32.5 fs pulses with µE = 6.04× 10−3/

√
2 a.u.

applied to packets 2 and 4, (d) each operation uses two FWHM=32.5 fs pulses with
µE = 6.04× 10−3/

√
2 a.u. applied in alternating manner to packets 1,3 and 0,2
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by a π/2-shift to packets 1 and 2 at 3Trev/8, etc (i.e., alternating π/2 and −π/2
rotation of the second bit), see Figure 3.14(d). Now the errors add destructively:

the amplitude no longer decreases as in (c).

The multilevel analogs of quantum gates do not make a scalable quantum com-

puter in a single wave packet. Adding one qubit requires doubling the number of

states (or basis wave packets). Since the system is non-degenerate, the maximal fre-

quency needed for control grows as Nω0. Still the above approach could be usefully

applied for quantum information processing: it shows how one can use multilevel

structure of many existing physical systems effectively, encoding several qubits in

the quantum state of a single particle. Moreover, one does not have to worry about

level-by-level addressability: as soon as free evolution commutes with the overall

symmetry of the wave function, the symmetry can be used to encode quantum

information. The wave-packet bits can be individually addressed, and a universal

set of logical operations was constructed with only two physical operations – phase

shift and free evolution – applied over a sequence of fixed time intervals T0/N and

Trev/2N . Moreover, computational output can be measured in a bitwise manner

with standard femtosecond techniques which naturally distinguish between ’left’

and ’right’ states of each bit: time-resolved fluorescence, ionization, or dissociation

can tell whether the wave packet is on the right or the left half of the orbit, in the

first or third vs the second or fourth quadrant, etc.
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3.3 Quantum Control of Chaotic Kicked Rotors

The delta-kicked rotor has served as a paradigm for both classical and quantum

chaos for many years. It is interesting, however, to note that although analogous

(and beautiful) experiments in atom optics have been carried out (e.g. [86,87]), this

long studied theoretical system has yet to be experimentally implemented with ac-

tual rotor systems, despite the long-time existence of a simple experiment proposal

using polar molecules in a pulsed microwave field [88].

Recently, Gong and Brumer proposed a model for quantum control of chaotic

diffusion in the delta-kicked rotor [48]. The authors then extended their model to

the same experimental scenario of molecules in microwave fields mentioned above

[49]. The initial superposition state considered in the Gong-Brumer model consisted

of two rotational states.

The work presented in this section has two essential objectives. The first is to

elucidate the physical mechanism behind the Gong-Brumer quantum control sce-

nario. The second is to present an novel and experimentally feasible model of the

kicked rotor system using polarizable linear molecules interacting with a strong

laser through the AC Stark shift. In this model, the Gong-Brumer scenario can be

extended to use wave packets of molecular alignment comprised of many field-free

rotational states. Furthermore, the control scenario is shown to be temperature ro-

bust if using these aligned wave packets, which makes the experiment much simpler

from the implementation point of view.

3.3.1 Kicked Rotor Dynamics

The classical Hamiltonian of the kicked rotor in a plane is given by

H =
L2

2I
+ A0 cos θ

∑

j

δ(t/T − j) (3.21)

where L is the angular momentum, I is the moment of inertia, A0 is the kick

strength, and T is the period of the kick. Hamilton’s corresponding equations
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of motion for the classical trajectories can be written in the form of a discrete

mapping [50]

Ln+1 = Ln + A0T sin θn (3.22)

θn+1 = θn + TLn+1/I. (3.23)

By defining the reduced momentum ln = TLn/I and introducing K = A0T
2/I, the

mapping becomes

ln+1 = ln +K sin(θn + ln/2) (3.24a)

θn+1 = θn + (ln+1 + ln)/2 (3.24b)

which is known as the standard map. Physically, the mapping as written above

kicks the rotor in the middle of the interval T and is seen to depend only on the

single parameter K. For values of K >≈ 1 the classical dynamics exhibits chaotic

motion and unbounded diffusive energy growth [50].

The quantum equation of motion starts with the canonical quantization L →
L̂ = −i~∂/∂θ to give

Ĥ = −~2

2I

∂2

∂θ2
+ A0 cos θ

∑

j

δ(t/T − j). (3.25)

Here as well an analytical solution for the one-period propagation can be found [50]

and is given by the propagator

Û = exp

[
i
τ

4

∂2

∂θ2

]
exp [−ik cos θ] exp

[
i
τ

4

∂2

∂θ2

]
(3.26)

where the parameters τ = ~T/I and k = A0/~ were introduced and the kick was

again placed in the middle of the interval T . In the basis of field-free eigenstates
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〈θ|m〉 = (1/
√
2π) exp [imθ], m = 0,±1,±2...,

〈m′|Û |m〉 ≡ Um′m

= (−i)m′−me−i
τ
4
(m′2+m2)Jm′−m(k). (3.27)

where Jm(x) are Bessel functions. Unlike the classical case, the quantum propagator

has two independent parameters, τ and k. The product of these two parameters

gives the classical K, while τ is the reduced Planck constant of the system. Note

that in this notation the reduced momentum is l = τm.

3.3.2 Two-state Coherent Control

The recently proposed control [48, 49] considers an initial two-state quantum su-

perposition with phase coherence, for example,

|Ψ0〉 = |2〉 ± |1〉. (3.28)

The two quantum standard map parameters are chosen to be τ = 1 and k = 5 which

are typical of those used in the previous studies. The observable to be controlled

is the average energy of the quantum system after n kicks

〈En〉 = 〈Ψn|
1

2
l̂2|Ψn〉 (3.29)

The classical dynamics for initial classical distributions with sharp momentum of

l = 1 and/or l = 2 show unbounded diffusive behaviour: the average classical

energy

Ẽn =
1

2J

J∑

j=1

[
l(j)n
]2
, (3.30)

where the sum over j implies a sum over the initial distribution, grows linearly

within the number of kicks. In general for K > 1, Ẽ grows linearly according

to the diffusion law Ẽ ' D(K)n, where n is the number of kicks applied to the

rotor and D(K) is an oscillating but increasing function of K [89, 90]. Figure
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Figure 3.15: Quantum energy diffusion and localization: (a) Time evolution of the
average energy 〈En〉 for the initial states |2〉 (thick) and |1〉 (thin). (b) Average
energy for initial states |2〉+ |1〉 ≡ |Ψ+〉 (thick) and |2〉 − |1〉 ≡ |Ψ−〉 (thin).

3.15(a) shows the quantum energy diffusion for the two initial |m〉 propagated

individually. Firstly, the quantum energy does not show unbounded growth but

instead fluctuates around some mean energy of localization in the long time (or

many kick) limit. Secondly, there are only minor differences between the evolution

and localization of the |2〉 and |1〉 states. Figure 3.15(b) plots the average energy for

|Ψ0〉 = |2〉+ |1〉 ≡ |Ψ+〉 (thick line) and |2〉− |1〉 ≡ |Ψ−〉 (thin line). There is now a

large difference in the long time energy localization when the phased superpositions

|2〉 ± |1〉 are used, demonstrating the coherent control via initial phase coherence

of the two eigenstates.

An interesting quantum-classical connection emerges if the control scenario is

considered from a phase-space perspective. The classical Poincaré section for the

chosen parameters was seen to exhibit predominantly chaotic dynamics spotted

with small islands of stable dynamics. Figure 3.16(a) shows a Poincaré section

of the system. The Poincaré section was constructed by dense sampling of the

remaining islands of stability, which appear as solid areas, and sparse sampling of

the chaotic region. The momenta of the quantum eigenstates involved are plotted

as horizontal lines at l = 1 = 0.318π and l = 2 = 0.636π. Note that the momentum

of the eigenstates are seen to lie near to and cross one of the islands of stability.

A common estimate of the regions of classical phase-space which are relevant

to the quantum dynamics is given by the Husimi distribution, which is a quantum

analog of a classical phase-space distribution. The Husimi distribution H(θ0, l0)
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Figure 3.16: Comparison of the classical phase space with the quantum Husimi
distributions. (a) Classical Poincaré section. (b) Husimi distribution for the state
|Ψ+〉 and (c) for the state |Ψ−〉 [white is zero amplitude, black is large amplitude].

can be given as the amplitude of projection onto Gaussian wave packets

H(θ0, l0) = |〈θ0, l0|Ψ〉| (3.31)

where

|θ0, l0〉 ∝ exp[(θ − θ0)2 + il0(θ − θ0)] (3.32)

Figure 3.16(b) and (c) show the Husimi distributions for the two initial state |Ψ+〉
and |Ψ−〉 respectively. The interference caused by the phasing of the eigenstates is

seen to effect the θ-localization. In the |Ψ+〉 case, there is destructive interference

of the phase-space in the region overlapping with the classical island of stability,

while constructive interference is seen in this region for the |Ψ−〉 superposition.
Since the superposition which shows good overlap with the island of stability is

also the superposition with localizes to the lower energy, these plots suggest that

the suppression of energy absorption seen in the control scenario arises by trapping

quantum population in classical islands of stability.

Further evidence for this interpretation is found by following the time-dependence

of the wave function. Figures 3.17(a) and (b) plot intensity maps of the time-

dependent probability in θ-space |Ψ(θ, t)|2 between the 150th and the 200th kicks.
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Figure 3.17: Quantum carpets during kicked rotor evolution which plots |Ψ(θ, t)|2
[white is zero amplitude, black is large amplitude]. (a) Evolution of the initial state
|Ψ+〉 = |2〉 + |1〉 and (b) of the state |Ψ−〉 = |2〉 − |1〉. (c) Classical trajectories
from the island of stability overlapped by the Husimi distribution for the initial
|Ψ−〉 state.

Panel (a) is for |Ψ+〉 while panel (b) corresponds to |Ψ−〉. The evolution of |Ψ+〉
is seen to have an essentially random distribution over θ with time while that of

|Ψ−〉 shows localization around θ = π. Panel (c) of the figure plots a few classical

trajectories sampled from the overlapping island of stability. These classical tra-

jectories exhibit qualitatively similar character as the pattern of θ-localization seen

panel (b). These trajectories then play a strong role in the quantum dynamics and

indeed one could say all of the control is a result of trapping a large portion of the

quantum population in the classical island of stability.

One might note that the θ-localization seen in the quantum probability does not

follow exactly the path of the classical trajectories. This is due in large part to the
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choice of the reduced Planck constant: for smaller values of τ the quantum dynamics

is more classical-like and the θ-localization more closely resembles the classical

path. However, in the case of smaller τ (and hence more classical-like behaviour),

the degree of control over the quantum localization of the energy diffusion becomes

smaller and the θ-localization becomes less pronounced. Furthermore, the quantum

dynamics for the chosen value of τ exhibit tunneling effects between the overlapped

stability island and its mirror image at (θ, l) ≈ (π,−0.7π). The classical trajectories
for this mirror image island are identical to those of Figure 3.17(c) except for a time

shift of T (i.e. when the trajectories started in the upper island are at θ = π +∆θ

those started in the lower island are at θ = π − ∆θ.) The correspondence of the

θ-localization with the classical paths from a single island is then distorted due to

flow of population between these two classically isolated sets of stable trajectories.

As final evidence of the link between the character of the quantum dynamics and

the islands of stability, it is shown that excitation of the higher energy island located

at (θ, l) ≈ (0, 1.3π) is possible based on the above developed ideas. Overlap with

this region of phase-space can be achieved by choosing the two states |5〉 (l = 1.59π)

and |6〉 (l = 1.91π) for the initial superposition. The Husimi distributions for

|Ψ−〉 = |5〉 − |6〉 and |Ψ+〉 = |5〉 + |6〉 are as those for the states |5〉 − |6〉 and
|5〉 + |6〉 respectively except they are now centered about l = 1.75π as opposed

to l = 0.477π in the previous case. Inspection of the Poincaré section Figure

3.16(a) shows that now the superposition which gives high amplitude near θ = 0

(i.e, |5〉+ |6〉) will have the larger overlap with the relevant island of stability and

hence it should be this superposition which shows strong θ-localization and lower

asymptotic energy localization.

Figs.3.18(a) and (b) show the time-dependence of the probability |Ψ(θ, t)|2 for
the |5〉 ± |6〉 states but this time panel (a) is for |Ψ−〉 and panel (b) is for |Ψ+〉. It
is indeed the |Ψ+〉 state which exhibits strong localization in θ-space. As this ob-

served θ-localization suggests, it is also |Ψ+〉 which localizes to the lower asymptotic

average energy in this case.

The classical support for the θ-localization seen in Figure 3.18(b) is shown in

Figure 3.18(c). These trajectories were sampled from the (θ, l) ≈ (0, 1.3π) island
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Figure 3.18: Quantum carpets during kicked rotor evolution which plots |Ψ(θ, t)|2
[white is zero amplitude, black is large amplitude]. (a) Evolution of the initial state
|Ψ−〉 = |5〉 − |6〉 and (b) of the state |Ψ+〉 = |5〉 + |6〉. (c) Classical trajectories
from the island of stability overlapped by the Husimi distribution for the initial
|Ψ+〉 state.

in question as well as from its tunneling partner located at (θ, l) ≈ (0, 2.7π) with

which the quantum dynamics shares population. Again the classical trajectories

qualitatively mimic the θ-localization seen in the quantum dynamics.

Additional tracks of localized density in the |Ψ+(θ, t)|2 plot can be seen. The

dashed lines in Figure 3.18(c) show segments of unstable periodic classical trajec-

tories which closely resemble these additional tracks suggesting that they are in

fact scars, regions of increase density localized around isolated classical unstable

periodic trajectories. Unlike the θ-localization around the islands of stable classical

motion which can be clearly identified for all times in the region of energy local-

ization, these scars were seen to appear and disappear as function of time. For
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example, the scars are well resolved in the second half of the Figure 3.18(b) but

seem to be smeared and distorted in the first half of the plot. It is quite interesting

that the corresponding classical trajectory supporting the scar is nowhere near the

initial Husimi distribution in phase-space. In fact, the classical support for the scar

has negative momentum. This shows that, in addition to the effects of stable islands

in the classical phase, scars can also play a role in trapping quantum population in

the control scenario.

3.3.3 Control with Aligned Wave Packets

The preceding section showed that the coherent control proposed in the kicked

rotor system can be related to small residual islands of stability in the classical

phase space allowing for trapping of a large portion of the probability density at

low angular momentum. The field-free dynamics of aligned rotational wave packets

offers another method of control since the specific angular distribution, and hence

overlap with the classical space, can be controlled simply by inducing a time delay

between the creation of the rotational wave packet and the start of the chaos-

inducing pulse train.

The kicks needed to model the kicked rotor system are applied to the molecu-

lar wave packet by a train of (ideally) delta-kick laser pulses interacting with the

molecular rotor through the AC Stark shift

Ĥ =
Ĵ2

2I
− A0 cos2(θ)

∑

n

δ(t/τ0 − n), (3.33)

where A0 = 1
4
(α‖ − α⊥)I0 is the effective kick strength for laser intensity I0. In

practice it is not possible to create ideal delta-kick pulses. However, as long as the

pulse duration is much less than the rotational response of the molecule in question,

the delta-kick picture is a good approximation.

The laser-included potential has a periodicity in θ double that of the kicked

rotor studied above. However, the classical dynamics using the cos2 θ potential for

the kick can be reduced to the standard map with θ re-scaled by a factor of 2.
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With the notation τ = ~τ0/I, k = A0τ0/~, J̃ = 2Jτ/~, and θ̃ = 2θ, the map can

be written as

J̃N = J̃N−1 + (2kτ) sin(θ̃N−1 + J̃N−1/2) (3.34)

θ̃N = θ̃N−1 + (J̃N + J̃N−1)/2.

For values of 2kτ > 5, the classical dynamics is predominantly chaotic and

the average energy of any given ensemble simply grows linearly with the number

of kicks. The diffusion rate of the energy in this regime depends only on the

parameter 2kτ and is independent of any particular initial phase space structure:

the trajectories quickly diffuse and completely fill the energetically available phase

space. In the simulations which follow, the parameters chosen give 2kτ = 9.1 and

it was checked that the classical dynamics for this value of 2kτ is independent of

the degree of alignment in the initial classical phase-space distribution.

The model system considered is an initially aligned distribution of N2 molecules

subject to a pulse train with τ0 = 1.21 ps and A0 = 27.2 meV. A delay between the

moment of alignment and the start of the pulse train is used to induce phase shifts

between the populated eigenstates using field-free evolution. The initial alignment

of the molecules was created by the short-pulse method with a turn-on time of τon

= 48.4 ps and a well depth of U0 = 54 meV. The quantum dynamics governed by

Equation (3.33) was calculated numerically.

Figure 3.19 shows the results for an initial rotational temperature of T = 0 K

(i.e. only J = 0 in the initial distribution before the alignment pulse.) Plot (a) shows

the average energy of the wave packet, Ē = 〈Ĵ2/2I〉, after 87 kicks as a function

of the time delay between the turn off of the aligning field and the first kick in the

pulse train. Recall that the effect of the time delay is to vary the relative phases

of the eigenstates in the aligned superposition by field-free evolution. One can see

that varying the phases by field-free evolution leads to quite strong enhancement

or suppression (about a factor of 5) of the average energy of the system. Plot (b)

shows the average energy of the system as a function of the number of kicks applied

for the maximum and minimum cases of plot (a). This shows that by controlling
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Figure 3.19: Degree of control over the chaotic diffusion for a rotationally cold
ensemble (T = 0 K).

only the relative phases in the quantum superposition one can control the quantum

localization of the classically chaotic system.

Figure 3.20 shows a similar calculation but now for an initial rotational temper-

ature of T = 50 K. Plot (a) showing the energy as a function of the turn-off/pulse

train time delay was taken after 38 kicks. There remain fringes in the average en-

ergy as a function of time delay but the contrast is less than in the T = 0 K case,

the variation is ∼35% of the maximum energy for number of kicks greater than

∼100. When the calculations were again repeated for T = 100 K (not shown), the

fringes were reduced to ∼20% of the maximum energy.
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Figure 3.20: Degree of control over the chaotic diffusion for a rotational temperature
of T = 50 K.
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Chapter 4

Applications of Molecular

Alignment

4.1 Pulse Compression

Molecular phase modulation opens the route to pulse compression to the single-cycle

regime in the visible and near-UV [32, 91–97]. In this approach, a laser pulse or

pulses induce vibrational or rotational excitation of molecules. Interaction with the

resulting time-dependent modulation of the refractive index is used for compression.

Two opposite limits of this scheme have been studied experimentally. In the first

limit [91, 92], molecules interact with two concurrent long pulses. Careful tuning

of pulse frequencies at the medium input above the Raman resonance results in a

train of compressed ∼2fs pulses at the output. In the second limit [93–96], the input

pump pulse is short compared to the response time (vibrational or rotational) of

the molecules. This ensures uniform excitation of the medium as seen by a delayed

probe pulse which is then compressed to a single short pulse. In this limit the

medium excitation is relatively weak, limiting the rate at which new bandwidth is

generated.

Considered here is an intermediate excitation regime, combining strong molec-

ular excitation characteristic for the first limit with the compression of a single
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pulse characteristic for the second limit. Similar to [93–97], the pump-probe ap-

proach is used, but the pump duration is increased beyond the impulsive regime

to increase the molecular excitation and the rate at which the new bandwidth is

generated. This shortens the required propagation length, and hence lessens the

effects of medium dispersion which become detrimental for large bandwidth. The

pump pulse is now long enough to be modified by the Raman response during

propagation, leading to non-uniform excitation across the propagation length. By

optimizing the duration and intensity of the input pulse, (i) the molecular excita-

tion is in turn optimized (a combination of alignment strength and duration), (ii)

the non-uniformity of the excitation across the fiber as the pump is modified during

the propagation is minimized, (iii) the propagation length is shortened to minimize

effects of dispersion, and (iv) effects of ionization due to the strong pump pulse are

ensured to be negligible.

The pump-probe approach decouples the medium response from the details

of the probe pulse being compressed. The probe can then be pre-shaped at the

input [32] (when its bandwidth is still narrow and can be handled by standard

techniques [53, 54]) to pre-compensate for dispersion in the Raman medium and

optical elements after the fiber.

From a theoretical standpoint, the intermediate regime requires the solution of

the time-dependent Schroedinger equation for the Raman response of the medium

concurrent with the Maxwell equation for the pump. The non-perturbative Raman

response, electronic Kerr effect, linear dispersion in the molecular medium and the

effect of the free electrons created by the pump are included in the propagation as

well as self-steepening and pump/probe walk-off. Input probe pulses at both 800

nm and 400 nm are considered.
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4.1.1 Pump Pulse Propagation

The Maxwell equation for the strong pump pulse propagating in the hollow core

fiber can be written, in atomic units, as

∂Es

∂x
+

1

c

∂Es

∂t
= −2π

c

∂Ps
∂t

. (4.1)

This equation does not assume the slowly varying envelope approximation, but

instead includes the reflected waves to first order only [98].

The polarization Ps is given by

Ps = Pθ + PK + Pf.e. (4.2)

where Pθ, PK , and Pf.e. are due to molecular orientation, the electronic Kerr re-

sponse, and the free electrons respectively. Pθ is [32]

Pθ = N [α⊥(ω) + ∆α(ω)〈cos2 θ〉(x, t)]Es(ω) (4.3)

where N is the molecular number density, α⊥(ω) and α‖(ω) are the perpendicular

and parallel polarizabilities of the molecule, and ∆α(ω) = α‖(ω) − α⊥(ω). The

polarizabilities are normalized to their static values, α⊥,‖(ω) = α
(0)
⊥,‖f⊥,‖(ω) with the

functions f⊥,‖(ω) given by f⊥(ω) ≈ f‖(ω) ≈ f(ω) with f(ω) taken from Ref. [99].

The average alignment 〈cos2 θ〉 is calculated by solving the Schrödinger equation [32]

i
∂

∂t
Ψ(θ, x, t) =

[
Ĵ2

2I
− ∆α|Es|2(x, t)

4
cos2 θ

]
Ψ(θ, x, t) (4.4)

and averaging cos2 θ over both the wave packet and an initial Boltzmann distribu-

tion for a given temperature. The electronic Kerr response is PK = χ(3)(N)|Es|2
where χ(3)(N) is the third-order susceptibility of the medium (see e.g. Ref. [61]).

The free electron contribution is

Pf.e. = −N [W (x, t)/ω2]Es(ω) (4.5)
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where W (x, t) is the ionization probability calculated using [100].

From a computational perspective, Equation (4.1) is solved by first going to the

moving frame τ = t − x/vs where vs is about the speed at which the pump pulse

propagates. The wave equation then becomes

∂Es

∂x
= −2π

c

∂Ps
∂τ
−
[
1

c
− 1

vs

]
∂Es

∂τ
≡ L̂Es. (4.6)

The pump pulse is specified for all time at the input of the hollow core fiber (x = 0),

and then is propagated through the fiber by standard finite difference methods

Es

∣∣t
x+1

= Es

∣∣t
x−1

+ 2∆xL̂Es

∣∣t
x

(4.7)

where ∆x is the step size in the x direction. Pθ and Pf.e. are handled by writing

them as

Pθ = N [α
(0)
⊥ +∆α(0)〈cos2 θ〉(x, τ)]F̂T{f(w)Es(ω)} (4.8)

and

Pf.e. = −NW (x, τ)F̂T{[1/ω2]Es(ω)}. (4.9)

where F̂T means Fourier transform. These forms of Pθ and Pf.e. assume that 〈cos2 θ〉
andW vary negligibly over one period of the laser cycle for the frequencies involved.

The needed time derivatives in L̂ are calculated again by finite difference methods

∂F/∂τ = [F t+1 − F t−1]/2∆τ where F = Es, Pθ, PNL, or Pf.e. as needed and ∆τ is

the step size in time.

The pump pulse at the input was Es(x = 0) = Es exp[−(τ/στ )2 − iωsτ ] with

ωs corresponding to 800 nm. The molecular medium, N2, was at 90 K and density

of 1020 cm−3. To optimize the pump, the pump intensity is first fixed to obtain

about 0.1% ionization at the end of the pulse and the pulse duration was varied.

The maximum of the resulting field free alignment as a function of pulse duration is

shown in Figure 4.1, with strongest alignment for σ
(0)
τ ≈ 105 fs. For the propagation,

pulse durations somewhat less than σ
(0)
τ were started with as a first guess since the

pump stretches during the propagation. Propagating the pump through the full

length of the fiber (15 cm), the intensity and duration of the pump is then adjusted
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Figure 4.1: Propagation of the optimized pump pulse, στ = 60 fs, for intensity
6.5 × 1013 W/cm2. (a) Alignment at the input of the fiber vs pump duration for
8× 1013 W/cm2 (b) Pump pulse (solid) and alignment (dashed) at the input of the
fiber for στ = 60 fs vs time. (c) Same at the fiber output. (d) Alignment recurrence
at the input and output of the fiber used to compress the probe
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until desirable alignment (combination of alignment strength and duration) across

the full length of the fiber was achieved. Figs.4.1(b) and (c) show the pump pulse

at both the input (x = 0 cm) and the output of the fiber (x = 15 cm) along with

the alignment 〈cos2 θ〉(t).

As the pump propagates through the medium, the alignment induced by the

pump causes it to see a higher index of refraction on the trailing end. This results

in a modification of the pump across the medium. The strong pump also undergoes

small but noticeable self-phase modulation due to the χ(3) term. Ionization by the

pump was low, so that the free electron dispersion caused only small perturbations

to the propagation. The resulting recurrence in the molecular alignment to be used

to modulate the weak probe pulse is shown in Figure 4.1(d) at both the input and

the output of the fiber. Although the recurrence structure also changes across the

medium due to the modification of the pump, the modulation depth and structure

is still adequate to compress the probe pulse.

4.1.2 Compression of Probe Pulse

The weak probe Ew is propagated using the same Equation (4.1) with polarization

Pw due to molecular alignment and free electrons:

Pw = Pθ + Pf.e. (4.10)

Pθ = N [α⊥(ω) + ∆α(ω)〈cos2 θ〉(x, τ − τd)]Ew(ω)

Pf.e. = −N [W (x)/ω2]Ew(ω)

Now 〈cos2 θ〉 is a known function calculated during the propagation of the pump.

The pump-probe delay τd is an optimization parameter and W (x) is the ionization

probability at the end of the pump pulse throughout the medium. The intensity of

the probe is limited by requiring negligible nonlinear effects as it compresses in the

glass, as well as negligible modification of the prepared rotational response in the

fiber.

A part of the compression scheme is a 0.2 mm CaF2 window after the fiber.
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The optimal probe at the input of the fiber was found by propagating a 1 fs target

pulse backward through first the CaF2 window (using a Sellmeier-type formula) and

then the fiber. Both the fiber length and the time delay τd were varied until the

minimum bandwidth pulse was obtained at the fiber input. Typical τd correspond

to ∼4200 fs in Figure 4.1(d).

This optimization process yields an input spectrum with narrow FWHM but

broad wings [32]. Since it could be difficult to experimentally shape these wings, it is

demanded in the optimization that they be absent in the input probe. Thus, a mask-

ing function is applied to the optimal input spectrum obtained by the backward

propagation. The truncated input probe was then propagated forward through the

fiber and the CaF2 window to obtain the compressed output pulse.

The 800 nm probe (Figure 4.2) was optimized with a propagation length of

15 cm, limited by medium dispersion, while the 400 nm probe (Figure 4.3) used

6.5 cm (phase modulation rate ω(dn/dt) scales with ω.) Plots (a) show the probe

pulses along with the instantaneous frequency at the input after the wings in the

spectra of the optimal solutions were truncated. With the pulses written as E(τ) =

|E(τ)| exp[−iφ(τ)], where |E(τ)| is real, the instantaneous frequency is defined

as ω(τ) ≡ dφ(τ)/dτ . The thick lines in plots (b) show the corresponding input

spectra. For the 800 nm probe, the input bandwidth corresponding to a 5 fs pulse

was allowed. For the 400 nm probe, the allowed bandwidth corresponded to 10 fs

pulse. Although not shown on the plots, the phase of input spectrum already varied

less than π/2 from one pixel to the next when discretized into only 128 pixels.

Plots (c) and (d) show these probe pulses and their spectra after the fiber and the

CaF2 window. The 800 nm probe has compressed to FWHM = 1.2 fs and the 400

nm probe has compressed to FWHM = 1.4 fs. To characterize the wings of a pulse,

the effective full width EFM =
√

8 ln 2〈(t− 〈t〉)2〉 is used (for a Gaussian pulse

EFW = FWHM, for a sech(t/σ) pulse EFW = 1.4 FWHM). The EFW measures

for the two compressed pulses shown above are 2.7 fs for the 800 nm probe and 3.8

fs for the 400 nm probe. If only 10 fs bandwidth is allowed for 800 nm probe, the

optimized results are FWHM=1.7 fs and EFW=2.4 fs.

The thin lines in Figures 4.2(c) and refFig400nm(c) show alternate optimized
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Figure 4.2: Compression of 800 nm probe pulse. (a) The amplitude (thick) and
instantaneous frequency (thin) of the probe at the fiber input. (b)Optimized spec-
trum (thick) of the probe in (a) and the spectrum of an alternate probe (thin, see
text) at the fiber input. (c) Compressed probe (envelope-thick, field-thin) and (d)
spectrum after propagation through the medium and through the CaF2 window.
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Figure 4.3: As Figure 4.2 but for probe optimized for 400 nm at the input of the
fiber.
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pulses where the additional criterion of a smooth input spectrum was enforced.

Using these alternate input pulses, the 800 nm probe was compressed to FWHM =

1.5 fs (EFW = 2.5 fs) with a propagation length of 10 cm, and the 400 nm probe

was compressed to FWHM = 2.1 fs (EFW = 3.0 fs) with a propagation length of

5.25 cm.
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4.2 Laser-Induced Electron Diffraction

4.2.1 Diffraction in a Strong Laser Field

Intense laser pulses can generate a diffraction image of a molecule using the molecule’s

own electrons [101–103], with sub-Å spatial and nearly 1 fs temporal resolution. Af-

ter strong-field ionization, the electron wave packet is first pulled away from the

ion by the electric field of the laser. Within the same laser cycle, the electric field

reverses its direction and the electron can be driven back to re-collide with the

parent ion. Elastic scattering takes the diffraction image of the parent molecule

(Figure 4.4) [102].

From the ion’s perspective, during the recollision the electron current density

exceeds 1010 A/cm2 and is concentrated within a small fraction of the laser cycle

(< 1fs) [103], exceeding these characteristics in conventional approaches to ultrafast

electron diffraction (see e.g. [60]) by many orders of magnitude. The energy W of

the returning electron reaches 3.17Up [104], where Up = E2/4ω2 is the average

electron oscillation energy and E, ω are the field amplitude and frequency (atomic

unites are used everywhere). For the Ti:Sapph laser W ≈ 133 eV at the intensity

I ≈ 7 × 1014 W/cm2 and can be increased as λ2 by increasing the wavelength λ,

yielding sub-Å spatial resolution. A laser pulse can also be used to align [105]

molecules, emphasizing the diffraction pattern.

These advantages do not come for free: the nature of the electron pulse and the

presence of the strong laser field lead to several complexities. These complexities

are identified and analyzed numerically and analytically. Procedures for recovering

the undistorted diffraction image are described. The main ingredients in the recipe

are: (i) tunnel ionization regime, (ii) special cuts in the photo-electron spectra,

(iii) the use of nearly single-cycle pulses E(t) cos(ωt + ϕ) with stabilized carrier-

envelope phase ϕ. Ref. [106] describes 3-dimensional ab initio numerical simulations

which demonstrate how the internuclear distance for diatomics can be identified in

multiphoton regime. This work suggests a general recipe for obtaining the overall

diffraction image.
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Figure 4.4: Diffraction during strong-field ionization. Inset sketches ground state
in the velocity space, with shades of gray coding the probability.

An example of a diatomic molecule aligned perpendicular to the field E cosωt

polarized along the x axis is used, see Figure 4.4. Numerically, the same H+2 -like

2D model as in [102] is used with the soft-Coulomb electronic potential (a = 0.5

a.u.)

VM(x, y|R) = VA(x, y −R/2) + VA(x, y +R/2) =

= − 1√
x2 +

(
y − R

2

)2
+ a2

− 1√
x2 +

(
y + R

2

)2
+ a2

(4.11)

The internuclear distance is frozen at R = 4 a.u. (Ip = 0.96 a.u.). Reading the

re-collision induced diffraction image forces one to deal with several unavoidable

complexities outlined below.

(1) Imprint of the initial state during tunneling. Consider the limit of tunnel

ionization γ2 = Ip/2Up ¿ 1, where Ip is the ionization potential. For each mo-

ment of ionization t0, the newly created electronic wave packet in the continuum
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∆Ψ(v⊥, t0) depends on the transverse velocity v⊥ as (see e.g. [18]):

∆Ψ(v⊥, t0) ∝ 〈v⊥|Ψi〉e−
v2

2
τT (t0) (4.12)

Here τT (t0) is the tunneling time, ωτT (t0) cosωt0 = γ. The Gaussian shape due to

tunneling filters the Fourier-transform 〈v⊥|Ψi〉 of the initial orbital Ψi which already

carries the imprint of the orbital’s structure (Figure 4.4, inset). This distorts the

shape of the ionizing wave packet. The laser parameters are chosen to minimize

such distortions.

(2) Holographic-type structures. The nonzero width of the Gaussian velocity

distribution ∆v ∼ 1/
√
τT Equation (4.12) gives rise to a holographic-type inter-

ference in the final electron spectrum. For example, the deflection of the electron

recolliding with the velocity v ‖ x creates transverse component v⊥ after the scat-

tering. If v⊥ is within the ∆v, the scattered wave will interfere with the reference

wave that has started with nonzero v⊥ and has missed the ion. Similar interference

occurs for an atom.

(3) Large scattering angles. For typical recollision energies ∼ 100 eV, deflection

with relevant transverse velocities v⊥ ∼ π/R corresponds to large scattering angles

θ. Quickly decreasing cross sections dσ(θ) distort the diffraction image.

(4) Distortions induced by the laser field. After the scattering, the electron’s

longitudinal velocity is changed by the laser field while the transverse velocity

remains unaffected. Therefore, for a given recollision energy, the electron’s final

energy after the ’elastic’ scattering depends on the deflection angle. The angle-

resolved spectrum for a fixed final energy does not correspond to the diffraction

pattern for a given recollision energy.

(5) Interference between diffraction images taken at different energies. The

recollision energy ranges from 0 to ∼ 3.2Up [104]. In the absence of the laser field

energy-resolved spectra would discriminate between the diffraction images taken at

different energies. However, in the presence of a laser field, electrons re-colliding

with different energies at different times t may end up with the same final velocity

vector v. The resulting interference is caused exclusively by the laser field.
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4.2.2 Recovering the Diffraction Image

The first step in recovering the diffraction pattern is to account for the laser-induced

change in the electron energy after the scattering. In the strong low-frequency field,

large electron oscillation amplitude α = E/ω2 (α ≈ 40 a.u. at I ≈ 7× 1014 W/cm2

and λ = 800 nm) separates the recollision into three stages: (i) electron approach

with the velocity v, (ii) fast recollision during an interval ∆t ∼ R/v much shorter

than the laser cycle (in a quarter-cycle the electron covers the distance α À R),

(iii) free oscillation in the laser field after the recollision. Since ω∆t¿ 1, scattering

occurs at a well-defined phase φ = ωt and velocity v(t). Without the laser field,

the elastic scattering means v2x+v
2
y = v2 where v is the incoming velocity and vx, vy

are the parallel and perpendicular velocities after the scattering. The laser-induced

oscillation changes this to

(vx − v0 sinωt)2 + v2y = v2(t); v0 = E/ω (4.13)

where vx, vy are the final velocities at the detector and v(t) is the incoming ve-

locity (along x-axis). Equation (4.13) assumes a fast collision and means that the

diffraction image taken at a given energy v(t)2/2 lies on the circular cut through

the electron spectrum with the radius v(t) and the origin shifted by v0 sinωt. Each

time of recollision defines its own circle (both the radius and the shift); the overall

spectrum is their superposition.

A simple recollision model [104] assumes that after tunneling at t0 the trajectory

starts near the origin with negligible velocity. In this model v(t) = v0(sinωt0 −
sinωt) and the time of ionization t0 corresponding to t is given by

ω(t− t0) sinωt0 + (cosωt− cosωt0) = 0 (4.14)

Equation (4.14) means that at t the electron returns to its initial position at t0.

However, after tunneling the electron appears at some distance x(t0) from the

origin. For a given recollision moment t, this changes the recollision energy. In

the tunneling limit the correction is [107] v2(t)/2⇒ v2(t)/2− Ipdt0/dt where t0(t)
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is still defined by Equation (4.14). The cut in the electron spectrum for a given

recollision energy from Equation (4.13) becomes

(vx − v0 sinωt)2 + v2y = v20(sinωt0 − sinωt)2 − 2Ip
dt0
dt

(4.15)

or, introducing dimensionless velocity u ≡ v/v0,

(ux − sinωt)2 + u2y = (sinωt0 − sinωt)2 − γ2dt0
dt
, (4.16)

For the most energetic (' 3.17Up) trajectories dt0/dt ' 0.32: the correction is small

in the tunneling regime.

To check this simple recipe for removing the effect of the laser field, re-scattering

for a single phase of birth ωt0 = 17◦ is simulated, which corresponds to the max-

imum return energy. First, a classical trajectory starting at the ’exit’ of the tun-

neling barrier x0 ≈ Ip/E cosωt0 is propagated from ωt0 = 17◦ to the zero of the

laser field ωt∗ = π/2. The position and velocity of the trajectory at ωt∗ = π/2

is used to initialize a Gaussian wave packet which is then propagated by solving

the time-dependent Schroedinger equation in 2D for the model molecule Equation

(4.11), starting at ωt∗ = π/2. The wave-packet width is set equal to that found by

solving the Schrödinger equation over one half-cycle, starting in the ground state.

Propagation in the electric field E cosωt with ω = 0.057 a.u. and E = 0.14 contin-

ues until ωt = 2π. With such a setup, the first re-collision is completed, the later

returns have not occurred yet, and the vector-potential A(t) = −v0 sinωt is equal

to zero at the turn-off, resulting in the zero velocity shift due to the instantaneous

turn-off.

Figure 4.5(a) shows the |Ψ| at ωt = 2π in the velocity space. Figure 4.5(b)

shows the calculation for an identical initial condition for a single scattering center

V = −1.3/
√
x2 + y2 + a2 which provides an atomic-like reference with the same

ionization potential. As expected, the spectrum lies on the circle with a shifted

origin. The circular cut [Figure 4.5(c)] has the diffraction minima and maxima at

the expected positions. The triple-peaked structure of the zero-order maximum

is due to the holographic-type interference, which is also present in the reference
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Figure 4.5: Recollision-induced diffraction for a single phase of birth. (a) |Ψ(vx, vy)|
for a model diatomic molecule, each new color corresponds to the next order of
magnitude; (b) Reference signal for a model atom; (c) Circular cuts for the atom
(dashed) and the molecule (solid)

atomic-like signal and disappears when the transverse velocity width is set to zero

by setting Ψ(x, y) = Ψ(x, 0) at ωt∗ = π/2. The hologram region is narrow due to

narrow transverse distribution in the initial wave packet.

Having learned how to make proper cuts and how to identify holograms, laser-

induced interference of different trajectories in the final spectrum can now be ana-

lyzed.

Direct vs re-scattered trajectories. The amplitude a(v) to detect an electron

with velocity v has contributions from both direct (no re-collision) and re-scattered

electrons: a = ad + ar. The energy spectrum of the direct electrons has a cutoff

at 2Up and is narrowly focused along the laser polarization; see [18] and Equation

(4.12). The holographic interference is also present there. Outside this region, only

re-scattered trajectories and their interference is present.

Interference of long and short rescattered trajectories. In the strong field limit,

the amplitude ar(v) factorizes into the product of the amplitudes of the consecutive

processes of tunnel ionization aion, propagation in the laser field apr, scattering asc
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and propagation to the end of the pulse:

ar(vx, vy) =
∑

t

aion[t0(t)]apr[t0(t)→ t]×

× asc[(v(t), 0)→ (vx − v0 sinωt, vy)] apr[t→∞] (4.17)

The summation is carried over all moments of recollision t which lead to the same

final vx, vy. In contrast to standard above-threshold ionization, where such interfer-

ence of ’quantum trajectories’ (see e.g. [108]) is studied for a given final energy, here

the angular pattern is taken at a given recollision energy. Such t = const cuts do

not correspond to a fixed final energy, changing the set of interfering trajectories:

one of the moments of t in the sum Equation (4.17) is fixed for all vx, vy; others

change as vx, vy are changed along the cut.

To minimize the number of interfering trajectories, phase-stabilized nearly single-

cycle pulses with zero carrier-envelope phase, E(t) = Ef(t) cosωt, are used in the

simulations. This suppresses contributions of rescattered trajectories that start

with phases other than 0 < ωt0 < π/2, as well as the contributions of late and

multiple returns. However, this does not eliminate the interference of two trajec-

tories that start within the same quarter-cycle (0 < ωt0 < π/2) and return within

the same cycle (ωt < 2π). These are the short (ωt < φ∗) and long (ωt > φ∗)

trajectories, where φ∗ ' 4.4 is the phase of the highest energy trajectory (3.17Up).

The key problem for diffraction related to these trajectories is that their recollision

energies are different.

The interfering trajectories and phases can be identified for given vx, vy using

Equation (4.16). For brevity, the small term γ2dt0/dt is dropped, which makes

the analysis Ip-independent. In the dimensionless variables u = v/v0, immediately

after scattering the outgoing velocity in the x direction is

u(out)x = ±
√

(sinωt0 − sinωt)2 − u2y (4.18)

for the forward (+) and backward (−) elastic scattering. Here ’forward’ and ’back-

ward’ mean that, without the laser field, the scattering angle would have been below
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or above π/2. The velocity at the detector is

ux = u(out)x + sinωt = sinωt±
±

√
(sinωt0(t)− sinωt)2 − u2y ≡ F±(t, uy) (4.19)

The functions F±(φ, uy) vs φ are shown in Figure 4.6(a) for uy = 0.9. For each vy,

F±(φ, uy) form a loop which means that there are always two different moments

of return, corresponding to the same final vx. Note that the corresponding ener-

gies of return [Figure 4.6(a)] are different. The horizontal lines separate different

regions of interference: forward-forward (FF) between two forward scattered tra-

jectories, backward-backward (BB) between two backward scattered trajectories,

and forward-backward (FB) between one of each. Local maxima (minima) of F+

(F+) define the energy cutoffs for each value of vx. Figure 4.6(b) combines such

points to show the classical cutoff of the angle-resolved spectrum and different areas

of interference. Dashed circle in Figure 4.6(b) is the cut for φ ' 4.4 (recollision

energy ' 3.17Up), which contains no interference in the ’BB’ area.

Figure 4.7 shows numerical simulations of the time-dependent Schroedinger

equation for the model potential Equation (4.11), with the peak field E = 0.14

a.u. and ω = 0.057 a.u. Panel (a) shows the electron spectrum for 1.25-cycle long

cosωt pulse with constant amplitude. The pulse starts at ωt = −π/2 and ends

at ωt = 2π. The ground state is projected out at ωt = π/2. Therefore, (i) the

ionization occurs predominantly during the half-cycle −π/2 < φ0 < π/2, (ii) in-

terference of long and short trajectories is not obscured by multiple returns and

(iii) terminating the pulse abruptly at ωt = 2π causes no shift in the free electron

velocity. The shape of the angle resolved spectrum is the same as expected from

the analytical analysis shown in Figure 4.6(b). The interference of long and short

trajectories leads to high-frequency (the corresponding phase difference scales as

Up/ω) ring-like structures in Figure 4.7(a) and (c). It does not mask the diffrac-

tion pattern, which is clearly visible along the cut corresponding to the maximum

recollision energy in Figure 4.7(a) [see Figure 4.7(b)].

Panels (c) and (d) show simulations for a short pulse with the envelope f(t) =
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Figure 4.7: (a) Electron spectrum |Ψ(vx, vy)| for 1.25-cycle pulse with constant
amplitude, E = 0.14a.u. (I ≈ 6.9 × 1014W/cm2 and λ = 800nm, each new colour
represents order of magnitude; (b) Spectral cut for fixed moment of recollision
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cos2(πt/2T ) for |t| < T and f(t) = 0 otherwise, for T = 5 fs (FWHM=5 fs). The

diffraction pattern is still clear along similar cuts, see panel (d). Note that there

are now two overlapped spectra similar to Figure 4.7(a), one reflected through

vy = 0. They originate from ionization events near ωt0 = 0 (left image) and near

ωt0 = −π/2 (right image). The images are not mirror-symmetric, as would have

been the case for the long pulse. The first ionization event near ωt0 = −π/2 has

lower probability but higher recollision energy due to the minimal change of the

envelope during the oscillation. For the second ionization event, the maximum

recollision energy is reduced by the quickly decreasing envelope.

The ring-like structures in the interference of long and short trajectories can

be reproduced by the stationary phase analysis Equation (4.17) (which contains no

contribution from direct of electrons and hence no hologram). Figure 4.8 shows

ℵ(v) =
∣∣∣∣∣
∑

n

exp[−iS1(t(n), t(n)0 )− iS2(v, T, t(n)) + iIpt
(n)
0 ]

∣∣∣∣∣

2

. (4.20)

which singles out the interference by setting weights associated with ionization and

scattering to unity and omitting the structural contribution. The summation index

n = 1, 2 goes over the two trajectories that start at 0 < ωt0 < π/2 and end up with

the same final velocity v. The corresponding moments of re-collision t(n) are found

from Equation (4.16) (neglecting the γ2 term) and t
(n)
0 = t0(t

(n)) are the solutions

of Equation (4.14). The actions accumulated before and after the recollision are

S1(t, t0) =
1

2

∫ t

t0

dt′[−v0 sinωt′ + v0 sinωt0]
2

S2(v, T, t) =
1

2

∫ T

t

dt′[v − exv0 sinωt0]
2. (4.21)

The number of interference fringes counted along the vy = 0 cut in Figure 4.8 is only

slightly less then that counted in Figure 4.7(a). This small difference is currently

attributed to the effects of the Coulomb potential.

Thus, despite a series of complications, the diffraction image of the parent

molecule can be distilled out of the electron spectrum generated by intense-field
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ionization.

One of the most interesting directions suggested by this work is the opportu-

nity to use holographic structures to image the molecule. Unlike diffraction, the

hologram records both the magnitude and phase of the scattering amplitude. In

the present calculation, the hologram barely distinguishes atom from molecule: the

molecule is aligned perpendicular to the laser field and the initial spread in the

transverse velocity is too small to provide sufficient spatial resolution. However,

changing the alignment of the molecule would allow one to use the large longitudinal

velocity component for holography, increasing the resolution. Another possibility is

to use elliptical polarization, either constant or time dependent, to move the wave

packet by its half-width along the molecular axis, enhancing the holographic signal

near the first maximum while retaining the zero maximum. One can also stretch

the molecule.
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Chapter 5

Summary and Outlook

Using modern ultrafast laser technology, it is now possible to control the motion

of small molecules with lasers. This development contributes to a long history of

using light to exert forces on and control matter.

The work presented in this thesis considered the specific case of controlling

molecular rotations using strong highly non-resonant low frequency laser fields.

Methods of creating both in-field as well as field-free laser-induced molecular align-

ment have been outlined. The experimental observations of molecular alignment

included in the thesis demonstrate that these ideas are not the crazy dreams of a

theorist, but are instead readily achievable with modern femtosecond and picosec-

ond laser systems.

Future directions for molecular alignment lie with the 3-dimensional alignment

of asymmetric top molecules and in particular field-free 3-dimensional alignment.

In linear molecules, there is only one rotational axis and hence only one revival

time scale, making field-free alignment using rotational revivals relatively simple.

Asymmetric top molecules, on the other hand, have three distinct rotational axes

all having different revival time scales. This makes the creation of field-free 3-

dimensional alignment a much more difficult problem than in the case of linear

molecules.

Additional control scenarios for molecular rotations were considered including
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the optical centrifuge, control using phase shifts at fractional revivals, and quantum

control of the classically chaotic kicked rotor. Although these control methods are

interesting from a fundamental perspective of learning exactly what is possible using

light to control molecular rotations, they also fit into a larger context of coherent

control [76] and strong field control (e.g. [109] and [110]) of molecules. These fields

seek to use quantum control methods to effect and control the outcome of molecular

processes with the ultimate goal being laser-control of chemical reactions. The idea

is to learn how one can create and control unique quantum superpositions in the

hope that such novel quantum states of molecules can effect subsequent molecular

processes.

Two applications of aligned molecular states were presented. The first is to use

revivals of molecular alignment as a non-linear medium for laser pulse compression.

With this method, compression of optical pulse to the nearly single-cycle regime is

possible. Similar ideas of pump-probe pulse compression techniques can be applied

using dielectrics as a non-linear medium [111, 112]. Using such a setup, nearly

single-cycle pulses can be achieved, not only in the optical regime but also in the

mid-infrared with compressible wavelengths ranging from 400 nm to 3 µm. These

nearly single-cycle pulses represent the shortest pulses physically achievable for

these wavelength. In order to go beyond the femtosecond regime, it is necessary

to move to shorter wavelengths and higher frequencies. The latest developments in

ultrafast pulses lie with extreme ultra-violet attosecond pulse generation [113].

The second application of aligned molecular states was that of laser-induced

electron diffraction and imaging. Future directions in this work lie with holography.

It was shown herein that the process of laser-induced electron recollision leads not

only to diffraction, but also to holography. It remains to be learned how to best

read these holographic images taken in the presence of a strong laser field, just as

learning how to read the diffraction images in a strong laser field was necessary.

Also, implementing these ideas of laser-induced diffraction and imaging in larger

molecules offers interesting directions. The next step here would be to apply this

technique of diffraction and imaging to triatomics.

Drawing from the developments in laser control of atoms, interesting directions
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for the laser control of molecules in general would certainly include cooling and

trapping of molecules and the realization of molecular Bose-Einstein condensates.

No efficient method of directly cooling a molecular gas is currently known. Attempts

at creating ultracold molecules follow the route of photoassociation of ultracold

atoms or recombination of ultracold atom pairs using a Feshbach resonance. Using

this technique, a molecular Bose-Einstein condensate of about 105 Li2 molecules has

just recently been achieved [114]. Although this is indeed an interesting success,

the method can not be used to create condensates of arbitrary molecules. A more

interesting route would be the development of general methods to directly cool the

translational, vibrational, and rotational degrees of freedom of molecules.
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