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Abstract

The development of the field of reinforcement learning was based on psychological stud-
ies of the instrumental conditioning of humans and other animals. Recently, reinforcement
learning algorithms have been applied to neuroscience to help characterize neural activity
and animal behaviour in instrumental conditioning tasks. A specific example is the hybrid
learner developed to match human behaviour on a two-stage decision task [18]. This hybrid
learner is composed of a model-free and a model-based system. The model presented in this
thesis is an implementation of that model-based system where the state transition proba-
bilities and Q-value calculations use biologically plausible spiking neurons. Two variants of
the model demonstrate the behaviour when the state transition probabilities are encoded
in the network at the beginning of the task, and when these probabilities are learned over
the course of the task. Various parameters that affect the behaviour of the model are
explored, and ranges of these parameters that produce characteristically model-based be-
haviour are found. This work provides an important first step toward understanding how
a model-based system in the human brain could be implemented, and how this system
contributes to human behaviour.

iii



Acknowledgements

I would like acknowledge my supervisor, Chris Eliasmith, for providing inspiration and
guidance; Terry Stewart, for all the help and infectious enthusiasm; Brent Komer and
Sugandha Sharma, for helping me clarify and crystallize my ideas; and Ivana Kajić and
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Chapter 1

Introduction

This thesis presents a novel model of how the state transition probabilities used in model-
based reinforcement learning (RL) may be represented and learned by a network of spiking
neurons. In this chapter, we will provide a brief overview of the relevant RL background,
including Markov Decision Processes and the differences between model-free and model-
based RL. Some basic concepts related to modelling spiking neurons will also be introduced.
Throughout the chapter, how computational theories of RL have informed psychological
and neuroscientific studies of human and animal reinforcement learning will be discussed.
By the end of this chapter, it should be apparent that the computational processes un-
derlying biological model-based RL are not as well understood as those of model-free RL,
thus producing one motivation for the research presented in this thesis.

1.1 Historical background

The basic idea of reinforcement learning has been around for centuries, for as long as
humans have tried to train other creatures to do things they might not otherwise be in-
clined to do. It was first scientifically formalized by the behaviourists, psychologists in the
late 19th to early 20th century who rejected the idea of understanding the mind through
introspection, and instead characterized minds as black boxes that could only be under-
stood through a thorough examination of input-output relations [64]. One major paradigm
developed by the behaviourists is known as operant, or instrumental, conditioning.

Instrumental conditioning is based on Thorndike’s Law of Effect [75], which states that
animals are likely to repeat actions that produce pleasant effects and unlikely to repeat
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actions that produce unpleasant effects. In instrumental conditioning, an animal is trained
towards performing specific actions through administering reinforcers, which increase the
frequency of the preceding behaviour, and punishers, which decrease the frequency of the
behaviour [46]. More recently, computer scientists have borrowed ideas from instrumental
conditioning to develop the field of reinforcement learning (RL).

1.2 Reinforcement learning

Central to reinforcement learning (RL) are the terms “state”, “action”, and “reward”. A
state is a description of an RL agent’s environment at a given point in time. Actions are
the behaviours available to the agent in that environment. Rewards are signals from the
environment that (roughly) tell the agent if what it is doing is good or bad. Rewards
usually take the form of integers or real numbers that can be positive or negative. Positive
numbers are analogous to reinforcers and negative numbers are punishers, yet they are
both referred to as rewards.

RL has been described as a third type of machine learning, unlike supervised or unsu-
pervised learning. RL is unlike supervised learning because an RL agent is not explicitly
told if the action it selects at any point is right or wrong. It is unlike unsupervised learning
because it does not look for patterns in unlabelled data [73]. Instead, an RL agent learns
through trial-and-error, performing actions, receiving rewards, and using this information
to gradually learn over time which actions accrue the most reward in which circumstances.
The goal in RL is to choose a course of action (called a policy) that maximizes the reward
signal [72]. How ‘good’ an action is in a particular state, or how much it helps towards the
goal of reward maximization, is called the value. In the branch of RL used in this thesis,
these values are calculated according to the Bellman equation, where Q is the value. For
this reason, values are often called Q-values.

1.2.1 Markov Decision Processes

States, actions, and rewards are three of the four components of a Markov Decision Process
(MDP). MDPs are widely used in RL to describe the structure of a task (also known as a
model of the world) that an RL agent is learning. An MDP consists of a set S of states
s, a set A of actions a, a reward function R(s, a) that describes the expectation of reward
given action a performed in state s, and a state transition function P (s, a, s′) that describes
the probability of transitioning to state s′ after performing action a in state s. The state
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transition probability function is the main focus of the neural model developed in this
thesis.

1.2.2 Q-values

Let us now return to the topic of Q-values, as defined by the Bellman equation [12]:

Q(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′) max
a′

Q(s′, a′). (1.1)

The Q-value of a state s and action a pair is not just the expected reward R(s, a), but
also some discounted amount (γ) of the best Q-values of future states multiplied by the
probabilities P (s, a, s′) of reaching those states. The future states are discounted with γ
both to keep the expected values from going to infinity in continuing tasks [71], and to align
with the idea that humans and other animals tend to prefer current rewards to rewards
received some time in the future [50].

This appears to be a relatively straightforward calculation, but in practice it is complex.
First, larger state and action spaces rapidly increase the number of multiplications needed,
since the agent must iterate over every state-action pair. Second, if P (s, a, s′) and R(s, a)
are not known (and they usually are not), it is also necessary to have a method to learn
these functions. This problem is again compounded in tasks with large state spaces.

For these reasons, most research in RL has focused on developing methods of approx-
imating Q-values by ignoring the full description of the world model as specified by the
MDP. These methods are thus called model-free RL. One common model-free RL technique
is called temporal-difference learning [71].

1.2.3 Temporal-difference learning

Temporal-difference (TD) learning [73, 55] is a paradigm for how to estimate the value
function for a given policy. In general, an agent using TD learning attempts to estimate
the Q-values by learning from experience; that is, sampling the environment by trying out
actions in states and observing the resulting reward. Without R(s, a) and P (s, a, s′) to
provide an explicit model of the environment, the only information the agent has about the
reward structure is the immediately observed reward r of a state-action pair. The agent
also has an internal memory of the Q-values of previously observed state-action pairs.
Suppose the agent has observed every state-action pair at least once, and has built up a
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table of Q-values based on the observed rewards. The Q-values of each state-action pair
can be thought of as the sum of the immediate reward and some amount (discounted by a
factor of γ) of the future reward:

Q(s, a) ≈ r + γQ(s′, a′), (1.2)

where a′ is the action taken in state s′ according to the policy. To initially build up the
Q-value table, Q(s, a) for a previously unobserved s, a is simply defined as r.

As the agent continues sampling the space, it will find some difference between the
expected Q-values and those actually observed. This difference is known as the TD error:

δTD(s, a)
.
= r + γQ(s′, a′)−Q(s, a). (1.3)

This error can be used to signal to the agent how to improve its Q-value estimate after
making an observation.

One strategy for learning Q-values from experience is to explore the environment, and
after every observation, recalculate Q(s, a), and add this result to a running average of
past calculations of Q(s, a):

Q(s, a)← (1− α)Q(s, a) + α[r + γQ(s′, a′)], (1.4)

where α is a learning rate parameter. This is known as the SARSA [59] update formula.
SARSA stands for (s, a, r, s′, a′) the current state and action, the reward, and the future
state and action.

1.3 Reinforcement learning in neuroscience

Aspects of reinforcement learning theory were adopted by psychologists and neuroscien-
tists in their investigation and description of some forms of human and animal learning.
The most notable of these approaches has been the reward prediction error hypothesis
of dopamine neuron activity [7, 49, 61, 34, 60, 9]. This theory is based on findings that
the activity of neurons in the brain that use dopamine as a neurotransmitter can be in-
terpreted as a signal of error in the prediction of reward. Namely, the output activity of
dopaminergic neurons reduces when rewards were predicted but not received, and increases
when rewards were received but not predicted, i.e., surprises. This reward prediction error
(RPE) is likened to the TD error shown in Eq. 1.3.
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Many studies have been done comparing human and animal behaviour on various re-
inforcement learning tasks to that produced by artificial agents using model-free RL al-
gorithms, e.g., [7, 49, 61]. In most cases, and unsurprisingly, humans have been found
to exhibit behaviours other than those predicted by purely model-free strategies. Some
authors [19, 5] have posited the existence of two systems: one where habits are built up
through trial-and-error, and one where actions are planned so as to reach a certain goal.
The habit system and the goal-directed system are marked by different behavioural char-
acteristics. In particular, once a habit has formed, it is difficult for behaviour to change
even when the reward contingencies change. Goal-directed behaviour is much more flexi-
ble. For instance, when a certain state-action pair suddenly stops delivering reward, the
goal-directed system reacts much more quickly to compute a new policy to maximize re-
ward, while the habit system would spend a great deal more time attempting to improve
its policy through trial-and-error.

A specific example of the differences between habitual and goal-directed learning occurs
in conditioning paradigms in which an animal (say, a rat) is trained to perform a task, such
as pressing a lever, to gain a reward, such as a drop of sugar water [25]. After a time, the
sugar water is replaced by a bitter solution which the rat does not like. If the rat continues
to push the lever it is operating under the influence of the habit system, and if it stops
pushing the lever, its actions are said to be goal-directed.

The habit-based system can be seen as using a model-free RL strategy, supported by
evidence from neural systems, such as the reward prediction error hypothesis of dopamine
neuron activity. It is not as well understood how the goal-directed system may be realized
in the brain, but it is proposed that it uses a form of what is known as model-based RL.

1.4 Model-based reinforcement learning

Model-based RL learns an explicit model of the world (the P (s, a, s′) and R(s, a) functions
as defined by the theory of MDPs) in order to directly calculate the Q-values according to
Eq. 1.1, as opposed to the implicit representation developed through model-free approaches
[1, 71]. As noted earlier, learning P (s, a, s′) and R(s, a) can be difficult, as iterating over
all state-action pairs in large state spaces can be computationally expensive. However,
there are benefits of model-based approaches, including their flexibility to changing reward
contingencies and the ability to learn from less data [3, 13].

There are many different approaches to implementing model-based RL, including dy-
namic programming [71], Dyna variants, e.g.. [72], AIXI [79], and R-max [37, 17]. The
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approach used in this thesis is novel in that it is designed to be implemented with spiking
neurons, and focuses on the the representation, calculation, and learning of state transition
probabilities.

1.4.1 State transition probabilities

As defined earlier, the probability of transitioning to a given state after performing a
specific action in a given previous state is the state transition probability. In an MDP,
these probabilities are represented by the function P (s, a, s′). In model-based algorithms
that explicitly represent this function, the probabilities are generally stored in look-up
tables (which can become impractically large in tasks with large state spaces).

In their paper, Gläscher and colleagues pointed out that model-based reasoning does
not require the reward prediction error signal from dopamine [33]. Instead, it uses a state
prediction error (SPE), defined by:

δSPE(s, a, s′) = 1− P (s, a, s′) (1.5)

for a second state s′ for which a transition is observed. Gläscher et al. outlined a model-
based algorithm that learns state transition probabilities by updating P (s, a, s′) after an
observed transition to s′ by:

P (s, a, s′)← P (s, a, s′) + ηδSPE, (1.6)

where η is a learning rate, and decreasing all other possible second states s′′ according to:

P (s, a, s′′)← P (s, a, s′′)(1− η). (1.7)

Once learned, these probabilities can then be used to directly compute the Q-values with
a variant of Bellman’s equation [18]:

Q(s, a) =
∑
s′

P (s, a, s′) max
a′

Q(s′, a′). (1.8)

In studies of human goal-directed behaviour, some evidence has been found of state
transition probabilities (or action-outcome contingencies as they are often called [20]),
being represented in ventromedial prefrontal cortex (vmPFC) [74, 42, 22] or hippocam-
pus [78, 47]. The evidence for hippocampal involvement comes mostly from the well-known
literature on spatial and cognitive maps in hippocampus [51, 76]. Humans do appear to
learn and store state transition probabilities (though probably not in a look-up table). One
goal of this thesis is to investigate how neurons might be able to learn, store, and use these
probabilities.
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1.5 Model-free vs. model-based behaviour

As discussed earlier, researchers have drawn comparisons between the habit system and
model-free RL, and by analogy, the goal-directed system and model-based RL [19]. The
differences between model-free and model-based behaviour have been studied by cognitive
and computational neuroscientists alike. This section will examine some of the psycholog-
ical studies that have been done to differentiate these behaviours, as well as some of the
work done to characterize how these two systems could work together from a computational
perspective.

In the case of humans, it is certain that we use a more sophisticated learning strategy
than simple model-free reinforcement learning; we do not require extensive amounts of data
in order to learn, and can react quickly to changing goals. Citing evidence from studies on
latent learning and cognitive maps, Tolman [76] argued that learning (even non-human) is
primarily goal-directed (model-based). Nevertheless, humans still form habits, and when
they do, demonstrate insensitivity to changing goals [77], which suggests that humans
use a model-free system as well. Given that there are (at least) two learning systems, the
question arose as to how these systems might work together to produce a single behavioural
output [54]. Some researchers have argued that these systems are mutually exclusive and
competitive, with the Q-value of only one system being ultimately used for action selection,
e.g., [19, 15, 57]. Others think that humans may use a complementary mixture of both
strategies, so that the final Q-value is a weighted average of those produced by both
systems [66, 25].

Keramati, Dezfouli, and Piray [40] looked at how to arbitrate between the goal-directed
and habit systems, from a computational perspective. They argued that this is done by
placing more weight on values calculated by one or the other system based on a speed/accu-
racy trade-off. In situations where a course of action is needed quickly, it makes more sense
to rely on model-free reasoning, but when an accurate response is required, model-based
reasoning is preferred.

In fact, it is difficult to experimentally differentiate model-based from model-free be-
haviours [25]. The most common type of studies in psychology or neuroscience that aim
to separate model-free and model-based characteristics are known as sequential decision
tasks. Sequential decision tasks consist of multiple stages with one or more possible states
in each stage. In each state, a number of actions are possible. Usually, reward is not
delivered until an action is performed in a final, or terminal, state. Sequential decision
tasks can be succinctly expressed as a decision tree, with each node representing a state,
and connections representing actions and state transition probabilities.
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Daw et al. [18] have done a great deal of work in identifying characteristics of both
model-free and model-based approaches in human data.1 These authors developed a hy-
brid RL model which incorporates traditional model-free and model-based systems, with
behaviour determined by a weighted sum of the values produced by the two systems. They
found that through adjusting this weight, the hybrid model could be well fit to human
behavioural data, which they claimed supported the idea that humans use a mixture of
both strategies.

The hybrid algorithm used by Daw et al. [18] was based on that used by Gläscher et
al. [33]. Their algorithm is almost identical, except that the state transition probabilities
were predetermined and hardcoded into the Q-value calculations, and not learned in the
way decribed in section 1.4.1 [18]. The model-based algorithms used in these two papers
provide a foundation for the two versions of the neural model developed in this thesis.

1.6 Biological plausibility

Recently, theoretical and computational neuroscientists have begun combining both the
computer science and cognitive neuroscience approaches to reinforcement learning by de-
veloping neural models of RL. The aim of such models is to potentially provide insight into
how the brain learns the values of state-action pairs in model-free RL, or how a model of the
world is learned in model-based RL. In order to do this, it is important to place constraints
on the computations and representations available for explaining the behaviour so that the
neural model is biologically plausible. Some of the constraints that are incorporated into
the model presented in this thesis are: neural spiking and timing effects (including synaptic
time constants), distributed representations, and local synaptic plasticity.

1.6.1 Neurons

This section provides a brief overview of concepts relevant to the biologically plausible
modelling of neurons. First, a neuron consists of dendrites, a soma or cell body, and an
axon. Dendrites receive information from other neurons and send it to the soma, where
this information accumulates until a threshold is reached. Once it is reached, an electrical
action potential, or spike, is released and propagated down the axon, which connects to the
dendrites of other neurons. A spike can be characterized mathematically as a Dirac delta
function, since it is a rapid rise and fall of electrical activity from a baseline level [21]. The

1A more extensive description of the task developed by [18] can be found in section 2.1.
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pattern of spikes sent by neurons over some time period is often referred to as the neuron’s
activity, and how quickly the neuron sends spikes is called the firing rate.

Axons and dendrites are connected through synapses, where the arrival of a spike signals
the release of a chemical neurotransmitter that travels between the axon and the receiving
dendrite. Some synapses are excitatory, meaning the release of the neurotransmitter in-
creases the firing rate of the receiving neuron, and some are inhibitory, meaning the firing
rate of the receiving neuron decreases [32]. Information is propagated through the dendrite
in an electrical postsynaptic current (PSC), which can be excitatory (EPSC) or inhibitory
(IPSC). Neurotransmitters at a synapse are associated with a time constant, which is de-
fined as the rate of exponential decay of the EPSC or IPSC. Longer time constants can
produce a smoothing effect on the Dirac delta function-like spike of the presynaptic neuron.

The spiking behaviour of neurons has been characterized with various neuron models.
These models vary in computational complexity and biological realism, and the choice of
neuron model used in simulations affects the type of conclusions that can be drawn. Very
simple neuron models may not be biologically plausibly enough to provide insight into the
behaviour of real neurons. A model with more realistic neural dynamics may provide more
insight, but it may also take an impractically long time to run due to the larger number
of calculations required.

The leaky-integrate-and-fire (LIF) [41] neuron model is one of the most commonly
used model due to its computational simplicity while maintaining some biological plausi-
bility [56]. LIF neurons are used in this research. LIF neurons integrate their input over
time, increasing their voltage until some threshold is reached, when a spike is released and
the voltage is reset. The subthreshold dynamics of LIF neurons are given by a simple
differential equation [31]:

τRC
dV

dt
= −V + J , (1.9)

where V is the membrane voltage, J is the input current, and τRC is a time constant that
describes how quickly the voltage changes. LIF neurons are called “leaky” because the
voltage is not integrated perfectly as it approaches the firing threshold, approximating the
loss of charged neurons through the cell membrane observed in biological neurons. LIF
neuron models often incorporate a refractory period, where the neuron dynamics are paused
for a period of time after the threshold is reached and the voltage is reset, to capture a
similar period observed in real neurons..

Historically, there has been significant debate about how neurons represent the world.
Some researchers proposed so-called “grandmother cells” [36], where the brain was assumed
to have a single neuron for every single thing in the world, so that one neuron would fire
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whenever, say, a person saw her grandmother’s face. There are many issues with this
view which we will not discuss here, and it is now generally accepted that a population of
neurons can represent a range of inputs through a distributed representation. In this case,
each neuron in the population has a different tuning curve; that is, each neuron will fire
at a different rate for each of the possible stimulus values.

1.6.2 Continous time in RL

Real life operates in continuous time, and so, clearly, do biological neural systems. As
discussed in the previous section, the timing of spikes and synapses can have a large effect
on the functioning of a neural system. However, in traditional MDP reinforcement learning,
timing is essentially arbitrary, and usually thought of in terms of discrete time steps, where
state presentation, action selection, and the receipt of reward from the previous time step
all take place within one time step [71]. Although work has been done to extend RL to
continuous time, many RL tasks are defined with discrete time steps, even those used to
investigate human behaviour. The model presented in this thesis highlights some of the
effects of using a continuous system to approximate a discrete task.

1.6.3 Neural learning

Section 1.6.1 describes how neurons work, how they pass information to other neurons, and
how a population of neurons can together represent a range of stimuli. Another important
feature of neurons is their ability to learn. This section will provide some background
regarding how neural representations can change over time.

Neurons can adjust their representations over time through synaptic plasticity, or the
ability to change the strength of synapses. This is usually done by changing the amount
of neurotransmitter released by the presynaptic neuron or the amount able to be taken up
by the postsynaptic neuron [53]. One of the earliest hypotheses for how neurons learn is
often paraphrased as “neurons that fire together, wire together.” Now known as Hebbian
learning, the idea is that two neurons connected by a synapse will strengthen that synapse
if the presynaptic neuron’s firing frequently leads to the postsynaptic neuron firing [39].

Spike-timing dependent plasticity (STDP) [44] extends Hebbian learning by including
a rule for synapses to weaken. As in Hebbian learning, synapses are strengthened when
the presynaptic neuron spikes within some short time before the postsynaptic neuron,
and additionally, synapses are weakened when the postsynaptic neuron spikes before the
presynaptic neuron.
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In neural modelling, the strength of a synapse between two neurons is approximated by a
weighted connection. Synaptic plasticity, then, is accomplished by adjusting those weights
given some learning rule. Neural network learning rules range in biological plausibility,
from traditional backpropagation [58], to Prescribed Error Sensitivity (PES) [43], to the
Bienenstock-Cooper-Munro (BCM) rule [14]. For the current work, the PES rule was used,
which is described in section 2.4.

1.7 Neural models of model-free RL

Many biologically plausible neural models of RL have been developed [6, 28, 29, 52, 63, 69],
most of which focus on associative RL, where the model only learns the immediate rewards.
These were created mainly to demonstrate the biological plausibility of a neural learning
rule, rather than to create an agent capable of learning complex tasks through RL.

Perhaps the most detailed spiking neural model of model-free RL was developed by
Rasmussen and Eliasmith [55]. Their model consists of neural populations representing
the current state, all possible actions, and an error signal, as well as incorporating a
model of the basal ganglia [70] for action selection. The Q-values were represented by the
connections between the action populations and the basal ganglia. Learning was done over
these connections using the PES rule. Additionally, this model was capable of learning tasks
that were defined by Semi-Markov Decision Processes, where reward, state transitions,
and action selection are not constrained to take place within one time step. Rasmussen
and Eliasmith later extended this model to perform hierarchical reinforcement learning
(HRL) [56], which is more effective at handling large problem domains than basic RL [8].

1.8 Previous neural models of model-based RL

As discussed in section 1.7, a large amount of work has been done on the computational
basis of the habit system, often using the TD learning paradigm. In contrast, computations
underlying goal-directed control are not as well studied [66], with a particular lack of
research into how these computations may be performed by biologically plausible neurons.
Some neural models of model-based reinforcement learning reframe the problem from a
framework of MDPs and Q-values to one of probabilistic inference [16, 66].

To our knowledge, only one other spiking neural model of model-based reinforcement
learning using the MDP framework has been published. In Friedrich and Lengyel’s [30]
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model, each state-action pair is represented by a specific neuron2, with lateral inhibition
between neurons that represent the same state but different actions. The resulting neural
network structure is very similar to the decision tree structure of the task being considered.
In sequential decision tasks, the state transition probabilities were encoded into the weights
of excitatory synapses between neurons in different stages. Although the model did learn
the state transition probabilities, it did not do so in the normal fashion of trial-and-error
and gradually learning from experience. Instead, the appropriate reward was presented
simultaneously and continuously to every neuron representing a terminal state, and the
connection weights were adjusted according to a local plasticity learning rule.

In their theory, the spiking rate is directly related to the Q-value of that state-action
pair, thus, to obtain the behavioural results of their model, Friedrich and Lengyel [30] ran
the simulation for some length of time and calculated the policy based on the Q-values
indicated by the spiking activity over that time period. This is not especially biologically
plausible, because humans and other animals operate in real time, possibly needing to
make decisions based on state-action values at any point.

1.9 Summary

This chapter has provided an overview of the two entwined threads of inquiry into rein-
forcement learning: the psychological/neuroscientific; and the computational. It is clear
that these threads have been very successful in characterizing the habit system through
model-free reinforcement learning. It is equally clear that how goal-directed behaviours
may come about through model-based algorithms implemented in spiking neurons is not
well-understood.

Subsequently, this thesis presents a novel spiking neural model of the state transition
probabilities often used in model-based reinforcement learning. It is not a complete model-
based RL system, but rather focuses on how neurons can learn the portion of the world
model specified by the MDP and use that model to calculate the model-based values of
state-action pairs. This thesis investigates the effect of a number of parameters on two
versions of the system: one in which the state transition probability function is explicitly
represented by connection weights in the neural network, and one in which the probabilities
are learned from experience over time, by adjusting the connection weights using a learning
rule.

2or a group of neurons that all represent all states and actions to different degrees, using function
approximation to produce a distributed representation.
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Chapter 2 provides a complete description of the model developed for this thesis, includ-
ing a thorough explanation of the task used to evaluate its performance and the parameters
that were investigated in order to characterize the model’s behaviour. Chapter 3 presents
the results of this parameter exploration, and some discussion of the effects of modelling
discrete-time tasks using continuous-time components. Chapter 4.3 continues this dis-
cussion, proposes areas for future work, and summarizes the overall contributions of this
thesis.
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Chapter 2

Model Implementation and Method

The model developed for this thesis is based on the model-based algorithm used by Daw et
al. [18] to simulate ideal model-based behaviour on their two-stage sequential decision task.
The neural components of the model implement the representation of the state transition
probabilities and the multiplication of these probabilities by the appropriate Q-values using
spiking leaky-integrate-and-fire (LIF) neurons. The remaining parts are implemented using
traditional reinforcement learning approaches.

As mentioned in section 1.5, there are two versions of the neural model, a static model
in which the state transition probabilities are directly encoded into the connection weights,
comparable to the method used by Daw et al. [18], and a learning model in which these
probabilities are learned using a state prediction error signal similar to that done by
Gläscher et al. [33]. However, neither of these previous models was designed to be im-
plemented using spiking neurons. This chapter lays out the structure of the static model
(which does not learn the state transition probabilities) in section 2.3, followed by the ex-
tensions necessary for learning the state transition probabilities in section 2.4. The research
in this thesis focuses specifically on the neural computations required for model-based RL,
performing other computations directly. This approach is justified by the existence of
models already thoroughly characterizing model-free RL using similar methods.

Preceding the model descriptions, section 2.1 provides a detailed explanation of the
two-stage decision task introduced by [18], which is used to evaluate the models’ perfor-
mance and behaviours. Section 2.2 presents some additional background on the underlying
methodology used to create the neural network model.
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Figure 2.1: Tree diagram of the two-stage decision task. Adapted from [2] and reproduced
from [45].

2.1 Two-stage decision task

The task used to evaluate the model’s behaviour is the two-stage decision task described
in [18], though the model can be easily extended to work on any task with similar char-
acteristics (i.e., sequential decision tasks with discrete time, finite states and actions).
The two-stage task was chosen for this thesis because it was designed to produce clearly
differentiable behaviours between purely model-free and purely model-based agents.

Fig. 2.1 shows a schematic tree diagram of the two-stage task. In the first stage, there is
one state, the initial state, which has two possible actions (a and b) [45]. The second stage
has two terminal states (A and B), which also each have two possible actions. Choosing
action a in the initial state commonly leads to a state transition to state A, and rarely leads
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(a) Ideal model-free
behaviour

(b) Ideal model-based
behaviour

(c) Human behaviour

Figure 2.2: Characteristic two-stage decision task stay probability behaviour for ideal
model-free and model-based agents, as well as human data collected by [18]. State transi-
tion probabilities are common (C, prob. = 0.7) or rare (R, prob. = 0.3). Trials rewarded
by a value of 1 are denoted with +, and − denotes unrewarded trials (rewarded with 0).
Adapted from [18] and reproduced from [45].

to a state transition to state B. Conversely, choosing action b in the initial state commonly
transitions to state B, and rarely transitions to state A. Common state transitions are set to
have a probability of 0.7 and rare state transitions have a probability of 0.3. Actions chosen
in the initial state only result in a state transition; they are not rewarded. Actions chosen
in the terminal states are rewarded with a value of 1 (reward) or 0 (no reward) with some
probability. A single trial consists of a full traversal of this tree, with an agent selecting an
action in both stages and receiving reward at the end; then the task resets to the initial
state (transitions with probability=1 to initial state), continuing in this fashion for many
trials. Whether the agent is rewarded is determined according to reward probabilities in
the range [0.25, 0.75], changed slightly each time step by a Gaussian random walk (mean
0, SD 0.025) [18]. Daw and colleagues [18] included this randomness to ensure the agent or
human participant learns continually throughout the task, since constantly changing the
reward probabilities changes the values of the terminal state-action pairs, and by extension
the initial state-action pairs.

In this task, purely model-free behaviours are discriminated from purely model-based
behaviours using the stay probability. The stay probability looks only at actions chosen in
the initial state, and describes the likelihood of choosing the same action in two contigu-
ous trials [18]. Figures 2.2a and 2.2b show the typical model-free and model-based stay
probability patterns of behaviour, respectively. For a model-free agent, if a terminal state
action is unrewarded (−), the Q-value of choosing the same action in the next trial’s first
state decreases, and so the stay probability following unrewarded trials is lower than that
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of the rewarded trials (+). Whether the transition to the terminal state (given the action
in the initial state) is rare (R) or common (C) has no effect on this general trend. In
contrast, for a model-based agent, the state transition probability has a large effect on the
stay probability for rare terminal states. For example, if a model-based agent performs an
action in a rare terminal state and is not rewarded (R−), it would decrease the Q-value of
that second state, and increase the Q-value of the action it took in the first stage, since that
action is actually unlikely to lead to this same terminal state. This would have the effect
of increasing the stay probability of R− relative to C−. Similarly, in a rare rewarded state
(R+), the model-based agent would increase the Q-value of the second state and decrease
the Q-value of the action taken in the first state because it is unlikely to lead back to the
high-Q-valued second state.

A specific thought experiment of model-based reasoning may make this more clear.
Model-based stay probability behaviour differs from model-free on this task only when
there is a rare state transition. So, say the model-based agent is in state B after choosing
action a. The agent then chooses action b and receives a reward, which increases the
Q-value of being in that state. Roughly, this Q-value increase (assuming the result is a
higher Q-value than state A) will make the agent “want”1 to return to state B. To do this,
the agent knows it should choose action b in the initial state, so it will increase the Q-value
of action b in the initial state and decrease the Q-value of action a in that same state. In
contrast, a model-free agent in this same situation would increase the value of action a in
the initial state.

As shown in Fig. 2.2c, human stay probability behaviour demonstrates a mixture of
model-free and model-based characteristics [18]. Like a model-free agent, the stay proba-
bilities of unrewarded trials are lower than rewarded trials. However, like a model-based
agent, there is a statistically significant effect of state transition probability. One of the
aims of this thesis is to investigate how a purely model-based system may be implemented
in neurons, as a step toward the goal of understanding how model-free and model-based
systems in the human brain may produce human behaviours.

2.2 Neural Engineering Framework

The neural components of the model proposed in this thesis are implemented using the prin-
ciples of the Neural Engineering Framework (NEF) [26]. The three principles comprising

1The examples in this chapter will attribute knowledge, desires, and memory to a generic agent for clar-
ity of explanation, and not because agents necessarily have such higher level concepts. That philosophical
discussion is beyond the scope of this thesis.

17



the NEF (representation, transformation, and dynamics) enable the construction of large-
scale neural models. Representation and transformation are described in sections 2.2.1 and
2.2.2 respectively. A full explanation of the principle of dynamics is not required for the
description of the model implementation.

2.2.1 Representation

In the NEF, populations of neurons represent information as vectors of real numbers that
vary over time. Given an n-dimensional stimulus vector x(t) = [x1(t), x2(t), ...., xn(t)] that
varies with time t, a population of neurons encodes this through its activities ai(x(t)),
defined according to the NEF as:

ai(x) = Gi[αix(t) · ei + J biasi ], (2.1)

where i indexes the neurons in the population, Gi is the nonlinear function describing the
neuron’s spiking response, αi is a gain and conversion factor, ei is the encoding vector
which picks out the “preferred stimulus” of the neuron (consistent with the standard idea
of a preferred direction vector [62]), and J biasi is a bias current that accounts for background
activity. The terms inside the square brackets describe the current entering the soma of
the neuron from the dendrites. In the model presented in this thesis, Gi is the leaky
integrate-and-fire (LIF) neuron model [41].

Given the encoding in Eq. 2.1, the original stimulus vector x(t) can be decoded into an
estimate x̂(t) with:

x̂(t) =
∑
i

ai(x(t)) ∗ h(t)di, (2.2)

where di are the decoding vectors and h(t) is the postsynaptic current, modelled in LIF
neurons as the exponential filter 1

τ
exp(−t/τ) [26]. The NEF typically finds these decoding

vectors, or representational decoders, using least squares optimization to minimize the
difference between the actual x and the decoded x̂. The combination of nonlinear encoding
in Eq. 2.1 and weighted linear decoding in Eq. 2.2 defines a population code, a distributed
representation of x over the population of neurons.

2.2.2 Transformation

Single populations of neurons can represent time varying vectors, but connecting two dis-
tinct neural populations allows us to compute functions of these vector variables, through
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a transformation [26]. That is, if we have a neural population representing x, we can ap-
proximate the function y = f(x) through the connections to a second neural population
y.

To perform a transformation f(x) in the NEF, the decoding can be reweighted using

transformational decoders d
f(x)
i [26]. In much the same way as representational decoders,

transformational decoders can be found using least squares optimization, this time mini-
mizing the difference between the actual f(x) and the decoded estimate f̂(x). The decoding
equation is modified slightly when computing transformations:

f̂(x(t)) =
∑
i

ai(x(t))d
f(x(t))
i . (2.3)

This method can compute both linear and non-linear functions of the encoded vector x.
In addition, NEF encoders and decoders can be used to define connection weights between
neurons with wij = αjej · di, where i indexes neurons in the presynaptic population and j
indexes the postsynaptic population.

2.3 Static model structure

This section outlines, in detail, the structure of the static model, with the state transition
probabilities directly encoded into a neural transformation using the principle of transfor-
mation (see section 2.2.1) of the NEF. The model was constructed using the Nengo neural
simulator [10], a Python software package that is based on the NEF principles. Fig. 2.3
shows a schematic diagram of the static model.

The static model uses the NEF to construct two components of a model-based RL
agent using spiking LIF neurons [45]. The first component is the representation of the
state transition probabilities P (s, a, s′), and the second component is the multiplication of
P (s, a, s′) by the Q-values of future states as in Eq. 1.8. All other necessary components
of a model-based agent are implemented using traditional computation. These traditional
computations are performed by a Nengo Node (a Python object that allows the non-neural
processing of neural outputs and the provision of input signals to a neural model) called
Environment, shown in rectangles in Fig. 2.3. A full description of the Environment node
can be found later, in section 2.3.1.

The two neural populations of the model use orthogonal, five-dimensional vectors to
represent states and actions [45]. NEF methods allow x(t) vectors to be non-orthogonal and
arbitrarily large, and so this model can be extended in future. The current model uses the
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Figure 2.3: Static model diagram. Neural populations are shown as oval shapes. Elements
in rectangles use traditional computation. Reproduced from [45].

simplest possible form (given the task structure) for exploration and validation purposes.
As such, three dimensions are used to indicate the presence of one of the three states, and
two dimensions indicate the two actions. For purposes of explanation in this chapter, three-
dimensional vectors are used (i.e., the representation of the considered action is ignored).
Let us assume that state A is represented by SA = [1, 0, 0], state B by SB = [0, 1, 0], and
the initial state by S0 = [0, 0, 1].

Rather than directly computing traditional model-based equations in neurons, the
model gains some efficiency by exploiting the natural parallelism of neural implementa-
tions [45]. In particular, state transition probabilities are represented in parallel by a
function computed in the connection between two neural populations. This connection
maps the state-action pairs represented in the first neural population to a distribution of
state transition probabilities with:

P (s, a) = [P (s, a, SA), P (s, a, SB), P (s, a, S0)]. (2.4)

Given a state-action pair, this function returns the probabilities of reaching each of the
three states in the task. For example, in the two stage task, P (S0, a) = [0.7, 0.3, 0.0] because
when the agent chooses action a in the initial state S0, state A is reached with a probability
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of 0.7, state B with a probabiltiy of 0.3, and the initial state is never immediately reached.
Similarly, for any action a, P (SA, a) = [0.0, 0.0, 1.0]. Other tasks with more than three
states would have more elements in that probability distribution vector.

The first of the two neural populations is called State and Action (see Fig. 2.3) [45]. In
the model, it is a 10-dimensional population that represents vectors for both the current
state s and the current action a. The second population, called Product, is used to calculate
the Q-values of the initial state-action pairs.

Traditional model-based agents update the Q-values of the initial state using Eq. 1.8 [18].
Since this neural model uses the parallel representation P (s, a) instead of P (s, a, s′), the
calculation of the model-based Q-values is done with the following dot product [45]:

Q(s, a) = P (s, a) ·Q(a′). (2.5)

Q(a′) is the vector of the best possible action for every state, and is provided to the
neural model by the Environment node (see section 2.3.1). The first step of this dot prod-
uct is a multiplication performed by the Product population. Generally, multiplications
are nonlinear; however, a well-characterized neural implementation was demonstrated by
Gosmann [35] that does not require nonlinear interactions (unlike Solway and Botvinick’s
planning-as-inference model [66]). Gosmann [35] also showed how the NEF can accurately
implement this characterization. Using that implementation, the Product population per-
forms an element-wise multiply. The final result of Eq. 2.5 is computed by a summation
over the output connections from Product.

It is worth emphasizing that while the state transition probabilities are computed in
parallel, the model-based Q-values for the two actions are not [45]. If the Q-values were
computed in parallel, it would require having separate groups of neurons for each possible
action, which could become problematic in tasks with large or unknown numbers of actions,
because the number of neurons would need to grow accordingly. Instead, to update the
Q-values of both possible actions in the initial state, the model uses a serial strategy where
both actions are considered one after the other over time. This allows the same group of
neurons to be reused for however many actions need to be considered.

Let us look at another specific example to clarify the neural calculation of model-based
Q-values [45]. Assume the agent is in the initial state and is currently considering action a,
so it “wants” the result of Q(S0, a) from Eq. 1.8. As earlier, P (S0, a) = [0.7, 0.3, 0.0]. Say
the vector of actions with the highest Q-values in each state Q(a′) = [0.25, 0.75, 0.33]. The
dot product of these two vectors produces a Q-value of Q(S0, a) = 0.4. Then the agent
performs the same procedure to find the Q-value of action b (P (S0,b) = [0.3, 0.7, 0.0])
and finds the result of Q(S0,b) = 0.6. The agent can then use these Q-values to select
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an action. In this model, action selection and the calculation of Q(a′) are done by the
Environment node.

2.3.1 The Environment node

The Environment node stores the current state, the currently considered action, and the
Q-values for each state-action pair, and sends these values as input to the appropriate
neural populations. It receives the output from the neural calculation of the initial state’s
Q-values. The Environment node also manages the action selection, delivering the reward,
updating the Q-values of the second stage states, changing the reward probabilities as
determined by a Gaussian random walk, and doing all of the above at the appropriate
time as determined by the time interval (the length of time between state transitions).

As a slight aside, “Environment” may not be the most accurate name, since in addition
to handling the traditionally “environmental” actual state transitions and reward presen-
tation, the node also stores Q-values and performs action selection. However, while these
components are not external to the “agent”, they are external to the neural aspects of the
model, and so referring to all non-neural components as “Environment” is a convenient
shorthand.

The two-stage decision task is thought of as a discrete task in most simulations. Each
state presentation and choice of action are taken as a single time step. However, biological
neural systems operate continuously, which is simulated in Nengo by discretizing time into
very small steps. Thus, when using a Nengo model to represent the two-stage task, there
are two levels of time step: the Nengo continuous approximation (usually around 1ms)
and the task’s much longer length of time of state presentation (usually more than 50ms).
The Environment node keeps track of how much time has passed, and selects actions and
transitions to an appropriate state at the correct time.

The neural components of the model calculate the Q-values of the initial state in a
model-based manner. In contrast, the Q-values of actions in terminal states are learned
using a model-free update strategy:

Q(s, a)← (1− α)Q(s, a) + αr, (2.6)

where α is a model-free learning rate parameter, and r is the reward received at the end
of a trial. Using model-based calculations for the first stage and model-free calculations
for the terminal stage is consistent with previous non-neural models of sequential decision
tasks [18, 33, 2]. Eq. 2.6 differs slightly from the standard SARSA update (Eq. 1.4) because
there are no future states after the terminal states.
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As mentioned earlier, the Environment node provides the vector Q(a′) (the vector of
the Q-values of the best possible action for every state) as input to the Product network.
This is simply the maximum Q-value for each state.

In order to ensure exploration, the Environment node performs action selection by
approximating a softmax [45]. That is, for a given state, before selecting the action with
the highest Q-value, a small amount of Gaussian noise (mean 0, SD 0.05) is added to all
the Q-values of the possible actions in that state.

After a reward is given (at the end of a terminal state), the reward probabilities are
updated according to a Gaussian random walk with a standard deviation of 0.025, bounded
by [0.25, 0.75] [18]. This is implemented by determining the noise values to be added to
each of the reward probabilities. Before the addition is done, it is checked whether the
result would fall outside the specified range, and if so, the value is instead subtracted.

Pseudocode for the Environment node is shown in Listing 2.1. It anticipates the next
section (2.4) slightly, because the version of the model that learns the state transition
probabilities requires an extra vector to be provided to the neural components – that of
the currently chosen action. Otherwise, the Environment node has the same functionality
in both versions of the model.

Listing 2.1: Environment node pseudocode

-pick an action to consider first

-for each Nengo time step:

-if after the first half of the time interval:

-set first half of time interval to one time interval later

-store the Q-value that has been calculated by the neurons

-switch to considering the other action

-if after the second half of the time interval:

-set second half of time interval to one time interval later

-store the Q-value that has been calculated by the neurons

-select action

-if in the second stage , give reward and determine new

reward probabilities

-switch back to considering the first action

-find the max values in each state to form Q(a’) vector

-send to the neural parts the vectors representing the current

state , the currently considered action , and Q(a’)

-(if learning , also send the currently chosen action)
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2.4 Learning model structure

The state transition probabilities represented by the connection between the State and
Action and the Product populations can also be learned. Learning the function P (s, a, s′),
or in the neural formulation, the distribution P (s, a) in Eq. 2.4, can be done in a number of
well-studied ways that involve adjusting the connection weights between these two neural
populations (see section 1.6.3). As mentioned earlier, the model uses the PES rule to do
this.

PES [43] is an online learning rule that minimizes the error E between the response
obtained, yd, and the response required, y. The PES rule changes the decoders di by:

∆di = κ(y − yd)ai = κEai, (2.7)

where κ is a scalar learning rate and ai is again the neural activities. The PES rule can be
put in terms of the connections weights wij by multiplying by the encoder e and gain2 α of
the postsynaptic neurons j, the result of which is a form of error-driven Hebbian learning:

∆wij = καjej · Eai. (2.8)

The intuitive way to incorporate learning into this model would be to include an Error
population that calculates (y − yd) from Eq. 2.7, the error between the predicted state
and the state that was observed, and uses that to modify the decoders on the connection
between the State and Action population and the Product network. However, simply doing
this leads to two problems: that of timing; and that of learning over the correct neural
activities.

The first problem, timing, arises because of the structure of the static model. The
Environment node can send the current state to the State and Action and the Error
populations, but the Product population sends the predicted next states to the Error
population. The state transition probabilities predict the likelihoods of observing the
possible next states given the current state, so they are essentially predictions of the future.
Clearly, the error between the future prediction and the current state is not the correct error
to minimize. Instead, we need the error between the prediction and the actual next state,
which is unknown until the next time interval. The strategy chosen to solve this problem
uses a pure time delay [80] of the length of the time interval on the connection between

2The gain parameter αj should not be confused with the model-free learning rate parameter α from
Eq. 2.6. When varying the parameter α in chapter 3, we will exclusively refer to the model-free learning
rate.
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the Product network and the Error population (highlighted in red in Fig. 2.4). This will
then calculate the error between the current state and the previous time interval’s state
prediction. However, now this error is the error of the previous time interval, and cannot
be used to directly modify the decoders on the State and Action to Product connection.
To solve this problem, a similar delay can be set on the learning rule, so that the error
modifies the decoders of the past time interval. The result of this is a network that learns
to predict the future states [68].

This modification may raise the question of why predicting the future state is necessary,
since it seems that learning the present state from past predictions should be mostly equiv-
alent to learning the future state from current predictions. To illustrate why predicting
the future state is necessary, a variant of the learning model was created. This variant
only includes a pure time delay on the connection between the Environment and the State
and Action population. With this modification, the Error population is still calculating
the difference between the current state and the previous time interval’s state prediction;
however, the Q-value calculation done on the connection from Product to Environment
is now one time-step behind. Section 3.2.4 presents the results of this modification, and
demonstrates clearly why future state prediction is needed.

One final change must be made to ensure that this network learns over the correct neural
activities. In the static model, the action sent from the Environment to the State and
Action population is the currently considered action, not the action that will be ultimately
chosen. The Environment node of the learning model must keep track of the action that
was chosen in the previous time interval and use this information in a new Gate node. The
Gate node allows the error signal to pass through to the learning rule on the State and
Action to Product connection only when the considered action is the same as the chosen
action, otherwise it sends an error of 0. The resulting model is shown in Fig. 2.4.

2.5 Parameter exploration

To investigate and characterize the behaviour of the static and learning models on the
two-stage decision task, several parameters are explored:

1. The learning rate α of the model-free Q-value update of the terminal states, as
in Eq. 2.6. This parameter determines the extent to which the receipt of a reward
affects the stored Q-values. Higher values of α put more emphasis on the most
recently received reward.
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State and 
Action

Product

Environment

State

Considered action

 Q-values

Initial state Q-values

Error

Gate

Chosen action

Figure 2.4: Diagram of state transition probability-learning model. As in Fig. 2.3, the
components of the model shown in oval shapes are simulated populations of neurons and
the rectangular components are directly computed without neurons. The connection be-
tween the State and Action population and the Product population (highlighted in blue)
represents the state transition probabilities that are learned over time using the PES rule.
The connection highlighted in red has a pure time delay.
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2. The number of neurons in each of the State and Action, Product, and Error pop-
ulations (where applicable). In general, increasing the number of neurons should
increase the accuracy of the representations and transformations.

3. When instantiating a network, Nengo uses a random seed to determine the random
properties of the neurons, such as the neural tuning curves. Therefore, different
individual seeds may produce different behaviours.

4. The time interval3 between state transitions. Time intervals must be sufficiently
long for the neurons to compute the Q-values, otherwise they are expected to produce
uniform stay probability behaviour.

5. The synapse length on the connection between the Product network’s value cal-
culation and Environment ’s Q-value store. Increasing the synaptic time constant
effectively takes an average of the neural activity over a longer time period, which
can produce a smoothing effect on the decoded signal. This may produce more
consistent stay probability behaviour between variations of the other parameters.

Each simulation is run for 10000 trials. Each parameter variation is tested with twenty
simulations with different individual seeds. When the individual seed itself is tested, each
simulation uses a different random seed for the Environment node. The Environment
random seed is used to make state transitions based on the state transition probability,
and to produce random noise for the action selection and the random walks of reward
probabilities.

3The time intervals used in the simulations are much shorter than that used in human experiments
(participants had to respond within 2s, but it was not reported how long participants actually took [18]),
however, using human time scales was not practical for the model simulations because they would take
an infeasibly long time to run. Also, a human has many more processes happening in that 2s time frame,
including sensory processing and motor control, so the shorter time intervals for the model’s more limited
computations is probably not unreasonable.
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Chapter 3

Results

This chapter presents the results of the parameter exploration of the static model imple-
mentation in section 3.1 and the learning model in section 3.2. These parameters are the
model-free learning rate (α), the number of neurons in the neural populations, the Nengo
individual, the time interval between state transitions, and (for the static model only) the
synaptic time constant.

The results presented in this chapter are in the form of stay probabilities. The four
cases of common-rewarded (C+), common-unrewarded (C−), rare-rewarded (R+), and
rare-unrewarded (R−) were calculated for each simulation after all trials in a simulation
were run. For every trial, we recorded the action chosen in the initial state, the resulting
terminal state, and whether the action in the terminal state was rewarded. These values
were used to determine whether a state transition was rare or common and whether there
was a stay. Then the stay probability was calculated by diving the number of stays in each
case by the total number of instances of each case.

The patterns of stay probabilities, or the stay probability behaviour, are tested for
significance using 95% bootstrap confidence intervals. For all of the data plots presented
in this chapter, the error bars show these confidence intervals. In cases where error bars
are not visible, the data points are larger than the confidence intervals.

3.1 Static model

While varying the parameters described in the following subsections, default values for the
other parameters are used, unless otherwise specified. These values are:
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• learning rate alpha = 0.3

• number of State and Action neurons = 500

• number of Product neurons per dimension = 200

• time interval = 0.05s

• synapse time constant = 0.005s

• Nengo time step = 0.001s

3.1.1 Learning rate α

Fig. 3.1 shows the stay probabilities for four different learning rates [45]. For α values of 0.3
and higher, the stay probability behaviour is characteristically model-based, as expected.
These examples also show that higher learning rates produce higher stay probabilities for
the C+ and R− cases, and lower stay probabilities for R+ and C− cases. That is, the
behaviour becomes more characteristically model-based. This general trend is also shown
in Fig. 3.2.

Equation 2.6 shows that higher values of α decrease the model-free learning of the
terminal states’ Q-values, which suggests that the model-based system may have a stronger
influence on the model’s behaviour as α increases [45]. This suggestion is supported by
the trend found. For instance, when α = 1.0, there should be no influence of model-
free learning and therefore the most separation between C+, R− and R+, C− cases (see
Fig. 3.1d). With a much lower α, the terminal states’ Q-values are learned much more
slowly, to such an extent that it interferes with the model-based reasoning and produces
more uniform stay probabilities (see Fig. 3.1a).

3.1.2 Number of neurons

The number of neurons in the State and Action population determines the accuracy of the
neural approximation of the state transition probabilities [45]. Since increasing the number
of neurons in a population usually improves the accuracy of the neural approximation, we
would expect that increasing the number of neurons in the State and Action population
would improve the accuracy of the model-based computations, and therefore have a similar
effect to increasing the learning rate α. As shown in Fig. 3.3a, the characteristic separation
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(a) α = 0.05 (b) α = 0.3

(c) α = 0.7 (d) α = 1

Figure 3.1: Examples of stay probability behaviours of various learning rates α. Adapted
from [45].
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Figure 3.2: Stay probabilities of the different learning rates α. Adapted from [45].

between cases does increase as the number of neurons increases, with populations of more
than 100 neurons producing clearly model-based behaviour.

The number of neurons per dimension in the Product population does not have much
effect on the overall behaviour of the static model, as shown in Fig. 3.3b [45]. This suggests
that the precision of this calculation is not critical to the performance of the network.

3.1.3 Individual seeds

When the static model’s behaviour is averaged across individual seeds, it appears to be
characteristically model-based [45]. However, there are large individual differences be-
tween seeds, which fall into one of three categories: model-based, human-like, and opposite.
Fig. 3.4 shows examples of each of these categories. Characteristically model-based be-
haviour is shown in Fig. 3.4a. Fig. 3.4b demonstrates a significant differences between the
stay probabilities of the R+ and C− cases that is reminiscent of that found in human data
by [18] (human-like). The third category, shown in Fig. 3.4c, has a significant difference
between R+ and C− cases in the opposite direction to human data. The number of in-
dividuals (out of twenty simulations) that show these three categories of stay probability
behaviour is shown in Table 3.1. Most individual seeds show characteristically model-based
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(a) State and Action population. Model-based behaviour is
clearly distinguishable with 100 or more neurons.

(b) Product population.

Figure 3.3: Stay probabilities of different numbers of neurons. Adapted from [45].
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(a) seed = 8 (b) seed = 1 (c) seed = 7

Figure 3.4: Examples of individual differences between Nengo seeds: (a) pure model-based
stay probability behaviour, (b) stay probability behaviour suggestive of human data, and
(c) stay probabilities opposite to those in (b). Reproduced from [45].

behaviour.

Table 3.1: Individual seed differences in static model

Stay probability behaviour Model-based Human-like Opposite
Number of individuals 11 4 5

3.1.4 Time interval

The stay probabilities of different time intervals between state transitions are shown in
Fig. 3.5 [45]. Time intervals 0.05s or longer show characteristic model-based behaviour,
and as expected, shorter time intervals are insufficient for neurons to compute the Q-
values. When averaged over individual seeds, there is no noticeable difference in the stay
probability behaviours for time intervals longer than 0.1s.

However, within an individual seed, there are differences in the stay probability be-
haviour between time intervals that are not dependent on the length of the time interval,
nor on any other systematic difference that we have yet investigated [45]. Fig. 3.6 shows
examples of the three categories of stay probability behaviour when the individual seed is
1. The almost mirrored stay probability behaviours of Figs. 3.6b and 3.6c is particularly
surprising, since there is only a 0.01s time difference between the time intervals.
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Figure 3.5: Stay probabilities of different time intervals.

(a) time interval = 0.2s (b) time interval = 0.5s (c) time interval = 0.51s

Figure 3.6: Individual differences for various time intervals with seed = 1. Adapted
from [45].
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3.1.5 Synapse length

Increasing the synaptic time constant between the Product population and the Environ-
ment node can produce a smoothing effect on the decoded signal, effectively taking an
average of the neural activity over a longer time period. This means that the state transi-
tion probabilities used by the Product network are not as influenced by neural noise, and
thus could reduce the individual differences between individual seeds and time intervals.

With a long enough time interval, increasing the synapse length greatly diminishes
the individual differences between time intervals. For example, Fig. 3.7 shows the stay
probabilities with an individual seed of 1 at time intervals of 0.5s and 0.51s, with different
synapse lengths. With a synapse length of 0.1s, both time intervals show almost identical,
model-based behaviour, unlike those same time intervals with shorter synapse lengths,
including the synapse length of 0.005s shown earlier in Figures 3.6b and 3.6c.

However, synapse lengths that are too long relative to the time interval produce be-
haviour that does not fall into the three general classes defined in section 3.1.3. Fig. 3.8
compares long and short synapse lengths. This data suggests that it may be that a good
rule of thumb for the synaptic time constant to be between 10-25% of the time inter-
val length, with the caveat that time constants longer than 0.2s are very uncommon in
biological brains [67].

3.1.6 Static model summary

The static model implementation provided some insights into the factors affecting the
behaviour of a neural mode-based RL agent. The main finding is that when implemented
in neurons, the stay probability behaviour generally matches that of a traditional model-
based agent. The individual differences between individual seeds and time intervals found
with the default synaptic time constant disappears with longer time constants, suggesting
that this variation is mostly due to neural noise.

Varying the numbers of neurons in the two neural populations demonstrates the im-
portance of having an accurate calculation of the state transition probabilities. Section 3.2
describes the results of the model implementation that learns the state transition probabil-
ities throughout the task, rather than directly representing them during the initialization
of the model.
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(a) synapse = 0.01s,
time interval = 0.5s

(b) synapse = 0.01s,
time interval = 0.51s

(c) synapse = 0.025s,
time interval = 0.5s

(d) synapse = 0.025s,
time interval = 0.51s

(e) synapse = 0.1s,
time interval = 0.5s

(f) synapse = 0.1s,
time interval = 0.51s

Figure 3.7: Individual differences for time intervals of 0.5s and 0.51s as the synapse length
increases.
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(a) synapse = 0.01s,
time interval = 0.1s

(b) synapse = 0.01s,
time interval = 0.2s

(c) synapse = 0.01s,
time interval = 0.3s

(d) synapse = 0.025s,
time interval = 0.1s

(e) synapse = 0.025s,
time interval = 0.2s

(f) synapse = 0.025s,
time interval = 0.3s

(g) synapse = 0.1s,
time interval = 0.1s

(h) synapse = 0.1s,
time interval = 0.2s

(i) synapse = 0.1s,
time interval = 0.3s

Figure 3.8: Individual differences for time intervals of 0.1s, 0.2s, and 0.3s with different
synapse lengths.
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3.2 Learning Model

The default parameters used in the learning model are the same as those used in the static
model, except for the time interval between state transitions, which is 0.1s. This is because
there is considerably more variance between individual simulations for the learning model
when using a time interval of 0.05s than there is for the static model. Additionally, the
learning model has another neural population, Error, which has a default of 500 neurons.

3.2.1 Learning rate α

The learning rate again refers to that used by the model-free learning of the Q-values of
the terminal states. The general pattern found in the static model is also present in the
learning version with the default time interval of 0.1s, shown in Fig. 3.9. As the learning
rate increases, the characteristic model-based separation between the stay probabilities of
the C+ and R−, and R+ and C− cases is increased. When the time interval is 0.05s, the
C+ and R− stay probabilities start high (around 0.9) and remain there as alpha increases
(shown in Fig. 3.10). There is also more variance between individual trials in the C− and
R+ cases, as shown by the visible 95% bootstrapped confidence intervals for all values of
alpha. However, the general effect of the learning rate is not significantly altered by the
introduction of a population that learns the transition probabilities.

3.2.2 Number of neurons

The number of neurons in the State and Action population does not seem to have as much
of an effect on the learning model as on the static model (see Fig. 3.11a). This shows one
of the benefits of learning: the behaviour is more robust even when using fewer neurons.
Even with only 20 neurons, the model-based effect is clearly visible.

The Product network also seems to need fewer neurons to reproduce the stay probability
behaviour of the basic model. In fact, using only 50 neurons per dimension produces
comparable behaviour to the basic model using 200 neurons per dimension (see Fig. 3.11b).
For large numbers of neurons, the stay probabilities of all C/R and +/− cases are higher
in the learning model than the static model. This effect is unexpected. The trend may
appear because more accurate multiplication leads to higher stay probabilities, or it may
be a side effect of the time course of learning. Future work can be done to investigate
whether this still trend appears if the stay probabilities are only calculated for the trials
in some final time period of the simulation.
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Figure 3.9: Stay probabilities of different learning rates for the learning model with a time
interval of 0.1s.

Figure 3.10: Stay probabilities of different learning rates for the learning model with a
time interval of 0.05s.
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(a) State and Action population.

(b) Product population.

Figure 3.11: Stay probabilities of different numbers of neurons.
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Figure 3.12: Stay probabilities of different numbers of neurons in the Error population.

As shown in Fig. 3.12, the number of neurons in the Error population does not have a
significant effect on the stay probability behaviour when there are more than ten neurons.
This trend suggests that accurate error representation is not critical to the performance of
the model. There are a number of possible reasons for this, which can be investigated in
future work. It may be due to the simplicity of the task, with only four state transition
probabilities to learn, or it may be due to the simplicity or orthogonality of the vectors
representing the current state and action. It may be that simply representing the sign of
the error would be sufficient.

3.2.3 Individual seeds

When using the default neuron numbers, all individuals produced significantly model-based
behaviour. Table 3.2 shows the number of each pattern of stay probability behaviour for
the learning model with the default number of neurons in each ensemble, as well as with
50 State and Action neurons, 50 Error neurons, and 70 neurons per dimension in the
Product network. With the default number of neurons, there are still some small individual
differences, as shown in Fig. 3.13a. There are much larger individual differences using the
smaller number of neurons, shown in Fig. 3.13b. These results suggest that the default
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Table 3.2: Individual differences in learning model

Stay probability behaviour Model-based Human-like Opposite
Number of individuals (default) 20 0 0
Number of individuals (less neurons) 9 3 8

number of neurons should be used in situations when consistent behaviour across seeds is
desired, for instance, if this model is incorporated into a larger system.

However, to produce the same behaviour as the static model, the learning model only
needs 50 neurons in each of the State and Action and Error populations, and 70 neurons
per dimension in the Product population. In terms of total number of neurons in the two
models, the learning model requires 10% of the number of neurons used in the static model.

3.2.4 Time interval

Again as expected, longer time intervals tend to produce clearer separation between the
stay probabilities of the C+ and R−, and R+ and C− cases, with time intervals that are
too short producing uniform stay probabilities, as shown in Fig. 3.14. The main difference
between this figure and the one for the static model (Fig. 3.5) is found at the time inter-
vals of 0.05s and 0.1s. In the static model, there is no significant difference between these
time intervals, while in the learning model, there is less characteristic separation between
the cases at 0.05s, and more separation at 0.1s, leading to a difference in stay probabil-
ity behaviour. It is unclear whether this difference is statistically significant, since 95%
bootstrap confidence intervals do not take multiple comparisons into account. However,
it is significant in a practical sense, because simulations run with a 0.05s time interval
often produce almost overlapping 95% bootstrap confidence intervals so that characteristic
model-based stay probability behaviour is not clearly distinguished, as in Fig. 3.15, while
simulations using a time interval of 0.1s are much easier to distinguish.

This trend is also shown by the difference between Figures 3.11a, which shows a time
interval of 0.1s, and 3.15, which shows a time interval of 0.05s. With the shorter time
interval, increasing the number of neurons does not greatly improve the performance.

“Present” learning variant

Surprisingly, the variant of the model that learned the present rather than the future (see
section 2.4) displayed model-based stay probability behaviour when the time interval was
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(a) Stay probabilities of different individuals with the default
number of neurons in each ensemble.

(b) Stay probabilities of different individuals with a small number
of neurons in each ensemble.

Figure 3.13: Comparison of small and default numbers of neurons.
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Figure 3.14: Stay probabilities of different time intervals.

Figure 3.15: Stay probabilities of different numbers of neurons in the State and Action
population with a time interval of 0.05s.
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sufficiently short. Fig. 3.16a shows this significantly model-based behaviour present at
0.1s, followed by a rapid drop-off towards uniform stay probabilities at 0.3s. Interestingly,
stay probabilities reminiscent of human data are apparent at 0.15s, shown more clearly in
Fig. 3.16.

Learning the present rather than the future should have produced uniform stay prob-
abilities for all time intervals. The fact that shorter time intervals displayed model-based
behaviours is likely due to a continuous system learning a discrete task. At the beginning
of each time interval, due to the synaptic time constant, the spikes sent from the State and
Action population to the Product network would be still representing the state and action
of the previous time interval. Thus, there would still be a small amount of information
for the PES learning rule to use. With a longer time interval, that small amount of over-
lap from the previous time interval would become smaller relative to the total length of
the time interval. This small overlap would also occur in the standard learning model, but
since the remainder of the time interval would contain information relevant to the learning,
the overlap likely does not interfere with the overall performance.

3.2.5 Learning model summary

The learning model implementation demonstrated the effects of adding learning to the
dynamics of the model. In most cases, the general trends of the parameter explorations
were the same as those in the static model, like varying the learning rate α and the time
interval between state transitions. However, the advantage of learning the state transition
probabilities was shown by varying the number of neurons. The learning model required
considerably fewer neurons than the static model to produce comparable performance, and
when the default number of neurons was used, the performance was considerably better.
Using the default number of neurons produced relatively little variation between individ-
ual seeds, such that each seed produced characteristically model-based stay probability
behaviour.
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(a) Stay probabilities of different time intervals for the present
learning model.

(b) Stay probability of the present learning model with a time
interval of 0.15s.

Figure 3.16: “Present” learning model.
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Chapter 4

Conclusions and future work

This chapter first presents a summary and discussion of the results in section 4.1 that
demonstrates the robustness of the model-free behaviour within ranges of the parameters
explored. Next, ideas for future work and model extensions that have not been previously
discussed are presented in section 4.2, followed by a general conclusion in section 4.3.

4.1 Discussion

This section will summarize and discuss the general trends found in the parameter explo-
ration presented in chapter 3. The main goal of the two model implementations was to
produce model-based behaviour in an agent where the state transition probabilities and
model-based Q-value computations were performed using biologically plausible spiking
neurons. In general, both the static and learning models were very robust to the pa-
rameter variations, with characteristic model-based stay probability behaviour appearing
in most cases. It is difficult to compare these results to previous work, since no previ-
ous models designed for the two-stage decision task were implemented in neurons [18, 2],
and neural models of other sequential decision tasks did not perform similar parameter
explorations [30]. The one exception to this is the model-free learning rate parameter α.

For both the static and learning models, the clearest model-based stay probability
behaviour was found when α was in the range of 0.3 to 0.5. This range agrees well with
the α values chosen for other model-based agent implementations on which this model is
based [33, 18, 2]. These other models do not present a similar parameter exploration, but
instead were fit to human data [33, 18] or were simply set to 0.5 [2]. The range found
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here also provides a good balance between the model-free learning of the terminal states’
Q-values and the model-based computation of the initial state’s Q-values.

The general rule of thumb of increasing the number of neurons in a neural population
in order to increase the accuracy of the computation was found in both the static and
learning models, in that too few neurons in any of the neural populations produced uniform
stay probability behaviour. The static model functioned best when the State and Action
population had at least 100 neurons and Product population had at least 100 neurons per
dimension. However, increasing the neurons above a certain point produced no significant
change in behaviour. The State and Action population did not require more than 500
neurons, and the Product did not require more than 100 neurons per dimension. The
learning model required fewer neurons than the static model, with both State and Action
and Error populations performing well in the range of 20-50 neurons, and Product needing
around 50-200 neurons per dimension. This leads to the conclusion that the learning model
only requires 10% of the neurons of the static model for similar performance, demonstrating
that the ability to learn the state transition probabilities is a great improvement. It makes
sense that the learning model is more efficient in terms of the number of neurons required,
because learning allows for fine-tuning the weights on the neural connections that calculate
the state transition probabilities. Learning over time continually refines the accuracy of
this calculation, so that even a small number of neurons can produce results with a low
error.

However, when the learning model used a number of neurons more comparable to the
static model (500 for both State and Action and Error and 200 per dimension for Prod-
uct), the stay probability behaviour became much more consistent between individual
seeds, with all tested seeds showing characteristic model-based stay probability behaviour.
For the static model, increasing the synaptic time constant had the same effect of removing
individual differences between seeds and time intervals. That the effect of reducing indi-
vidual differences appears in the two models when different parameters are varied raises
some interesting possibilities. Firstly, increasing the number of neurons in the static model
much higher than the maximum ranges specified above may have a similar effect of re-
ducing individual differences. Although it did not appear that increasing the number of
neurons above a certain point provided any great improvement, these data were averaged
across individual seeds, thus obscuring any changes in individual differences that may have
occurred as the number of neurons increased. Differences in the 95% bootstrap confidence
intervals are also not sufficient for providing evidence for or against this possibility. Sec-
ondly, the individual differences between seeds when the learning model used the lower
number of neurons may be reduced if a longer synaptic time constant is used. Possible
future work could be done to optimize model-based behaviour in the learning model using
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fewer neurons with longer synaptic time constants.

These two possibilities are worth exploring; however, this exploration would ideally
be guided by biological evidence, and not simply model performance and computational
efficiency. For eample, the neurotransmitter most commonly used in ventromedial pre-
frontal cortex (vmPFC), an area associated with model-based reasoning [74, 42, 22] is
gamma-Aminobutyric acid (GABA), which is associated with a shorter synaptic time con-
stants [38], which suggests that it may be preferable to increase the number of neurons
rather than the length of the synaptic time constant.

4.2 Future work

Many questions were raised by the results presented in this thesis, leading to a great deal
of future work that can be done. In sections 3.2.2 and 4.1 we discussed some additional
tests that could be performed in order to more fully understand the effect of increasing
the number of neurons, and its interaction with learning the state transition probabilities.
There are many additional avenues for future work, which can be divided into further
tests to be performed on the existing models, and extensions to the model. The following
sections will propose some possibilities for both of these classes, but it is not intended to
be a comprehensive list.

4.2.1 Additional possible tests

While the model-free learning rate parameter alpha was varied in this thesis, the learning
rate of the PES rule, which controls how quickly the state transition probabilities are
learned, was not varied. The model-based agent of Akam et al. [2] had a similar parameter
varied, which they called the transition learning rate, with the effect of higher transition
learning rates reducing the stay probability in the rare-unrewarded (R−) case. This is an
unexpected trend, and they do not offer any discussion of why it may be the case. Future
work can determine whether varying the PES learning rate would produce a similar result,
and possibly provide insight into why higher learning rates affect the R− stay probability.

Other possible parameters to explore are the dimensionality and orthogonality of the
vector representations of state and action. As described in section 2.3, the current model
implementations use orthogonal vectors of the smallest possible dimensionality, although
NEF methods do not impose such constraints. It will be important to investigate the
effects of more complicated representations on the overall behaviour of the models.
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Undoubtedly, a model-based RL agent should be able to perform any RL task, and
not just the two-stage decision task used in this thesis. There are many simple variations
to the task that could be used to test the neural model’s performance. One example is
to alter the reward structure so that instead of a random walk at each trial, the reward
probabilities change after some greater number of trials. This approach can mimic studies
of change in goal structure, such as reward devaluation (e.g., [24]), and may better indicate
the strength of model-based reasoning. Another example of a task variation is to change
the state transition probabilities partway through the simulation. This new task could be
used to further evaluate the learning model’s behaviour. If the current model is tested
on modified sequential decision tasks, it will also be important to improve the method
of evaluating the performance to a more robust definition of stay probability that takes
multiple past trials into account [48].

4.2.2 Model extensions

The most urgent extension to the model presented in this thesis is to remove the parts
of the Environment node that are more properly a part of the model-based agent (see
section 2.3.1), and instead implement them using spiking neurons. Specifically, these com-
ponents are the action selection and the model-free learning of Q-values in terminal states.
Both of these components have well-characterized neural implementations using the NEF
(for action selection using the basal ganglia, see e.g., [69]; for model-free RL, see e.g., [55]).
Incorporating these components into the current neural model of state transition prob-
abilities would create a completely neural model-based RL agent, which would provide
direction for comparisons to neural and behavioural data on model-based systems in the
human brain.

Most importantly, the eventual goal is an integration of a complete neural model-based
system with a model-free system to produce a hybrid agent similar to that developed in [18].
This will allow for more plausible comparison to human behaviour on the two-stage task,
and possibly give insights into human behaviour in more general sequential decision task
problems. This is different than implementing the model-free learning of terminal states in
neurons, because previous hybrid models combine a model-free learner with a model-based
system (which includes model-free learning of select state-action pairs).
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4.3 Closing remarks

This thesis demonstrated how the state transition probabilities and Q-value calculations
of model-based reinforcement learning can be implemented using simulated populations of
spiking neurons. The two variants of the neural model, which respectively represented and
learned the state transition probabilities, generally showed characteristically model-based
behaviour. Through exploring the effects of various parameters on the stay probability
behaviour of the model, parameter values that produce non-model-based behaviours were
identified. Although more work can be done to fully characterize the behaviour of the
learning model, it was found to greatly improve the consistency of the behaviour between
individual seeds, and to require far fewer neurons than the static model. In sum, the work
done in this thesis provides a solid foundation for the construction of a completely neurally-
implemented model of human behaviour in tasks that require model-based reasoning for
optimal performance.
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