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Abstract

Quantum protocols for many communication tasks have been found which significantly improve
on their classical counterparts. However, many of these protocols are beyond the reach of current
technology. In this work, we find more readily implementable protocols for the tasks of quantum
fingerprinting and appointment scheduling. Our protocols maintain a quantum advantage even
under realistic experimental imperfections.

In the task of quantum fingerprinting, two parties wish to evaluate the equality function on two
n-bit strings in the simultaneous message passing model. The original quantum fingerprinting
protocol uses a tensor product of a small number of O(logn)-qubit highly entangled signals
[14], whereas a recently-proposed optical protocol uses a tensor product of O(n) single-qubit
signals, while maintaining theO(logn) information leakage of the original protocol [4]. The low-
dimensionality of each signal in the recently proposed optical protocol makes it more amenable
to experimental implementation [68, 32], but due to limited coherence times the large number of
signals remains a significant barrier to observing a quantum advantage in information leakage. In
contrast, the original protocol sends few signals, but the dimension of each signal is prohibitively
high. We find a family of protocols which interpolate between the original and optical protocols
while maintaining the O(logn) information leakage, thus demonstrating a trade-off between the
number of signals sent and the dimension of each signal, and opening the door for experimental
implementations to find a “sweet spot” for which the number of signals sent and the dimension
of each signal are both amenable to current technology.

In [68, 32] the recently proposed optical protocol is implemented using coherent states. We
develop a coherent state protocol which reduces the number of signals by a factor 1/2 from the
recently proposed optical protocol, while also reducing the information leakage. We consider
several natural generalizations of this protocol to other coherent state protocols which further
reduce the number of signals, but find numerical evidence that they have greater information
leakage in the ideal setting and also under realistic experimental imperfections. Using a similar
technique, we improve a recently proposed coherent state protocol for evaluating the Euclidean
distance between two real unit vectors [41] by reducing the number of signals by a factor 1/2
while also reducing the information leakage. We also extend this protocol to handle complex
unit vectors. Along the way, we find a simple beamsplitter measurement to perform optimal
unambiguous state comparison between two coherent states.

In the task of appointment scheduling, two parties each have n-bit strings, and they wish to find
a common intersection in the interactive communication model. The known quantum appoint-
ment scheduling protocol of [15] performs this task with O(

√
n logn) qubits of communication,

a nearly quadratic improvement over the classical lower bound of Ω(n) bits [39]. However,
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this protocol requires quantum states of high dimension and global unitary operations. We find
appointment scheduling protocols which are more feasible for implementation and maintain a
quantum advantage over the classical lower bound in terms of information cost, even under ex-
perimental imperfections. Our main protocols require the generation of coherent states of a fixed
set of amplitudes, along with phase shifters and beamsplitters on two modes with relatively low
splitting angle. They also require the parties to transfer two modes back-and-forth multiple times
with relatively low loss. Although our protocols make progress towards the experimental imple-
mentation of quantum appointment scheduling, we expect that they still remain outside the scope
of current technology.
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Chapter 1

Quantum communication

Quantum communication is a field of quantum information concerned with the processing and
storage of information using quantum states and channels under various constraints of nonlocal-
ity. A plethora of quantum protocols for communication tasks have been found which drastically
outperform their classical counterparts. For example, quantum key distribution protocols have
been found which produce provably secure secret keys for private communication, a task that is
classically impossible. There are also many communication tasks for which there exist quantum
protocols that use exponentially fewer resources than any classical protocol.

In recent years, experimental technology has progressed to the point where realization of some
quantum protocols which exhibit such an advantage is possible. However, many existing quan-
tum protocols remain unrealized because the resources required are not within reach of current
technology. In this thesis we modify existing quantum protocols and develop new quantum pro-
tocols which are easier to implement using current technology and maintain a quantum advantage
over classical protocols.

We develop practical quantum communication protocols for the tasks of quantum fingerprinting
and appointment scheduling. Quantum fingerprinting is a task in which two parties each have
some classical data, and they communicate with a single referee to determine whether or not their
data is the same. We find practical quantum protocols to perform this task which maintain an ad-
vantage over the classical lower bound in terms of information leakage. Appointment scheduling
is a task in which two parties each have calendars, and they communicate between each other in
order to find a date in which they are both free. We find practical quantum protocols to perform
this task while maintaining an advantage over the classical lower bound in terms of information
cost.

This thesis is organized as follows. In the remainder of this chapter we introduce some mathe-
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matical objects of quantum information that we will use in this thesis. In Chapter 2 we introduce
coherent states and linear optics, which are the primary quantum states and channels that we use
in our protocols. In Chapter 3 we introduce the fields of quantum communication complexity
and quantum information complexity, and the notions of information that we use to analyze our
protocols. In Chapter 4 we present our results in quantum fingerprinting, and in Chapter 5 we
present our results in appointment scheduling.

1.1 Mathematical objects of quantum information

Here we review the mathematical objects of quantum information that we will use in this work.
We avoid explicit definitions of several standard objects, for which we refer the reader to the
manuscript of John Watrous’ book [67]. We have made an effort to refer to most objects by
similar names to those given in [67].

We primarily consider finite-dimensional Hilbert spaces, which we call complex Euclidean spaces.
We refer to the abstract physical container which holds states acting on some complex Euclidean
space A as a register, which we denote by A, and define the classical state set A of A as the
(finite and non-empty) set for which A = CA. We refer the reader to [67] for formal definitions
of these objects.

We primarily use the symbols A,B,C,X ,Y,Z to refer to registers with associated complex Eu-
clidean spaces A,B,C,X ,Y,Z and classical state sets A,B,C,X,Y,Z. For brevity, when in-
troducing these objects we frequently only introduce the registers and implicitly introduce the
associated classical state sets and complex Euclidean spaces with the above notation. Registers
referred to with the symbols X ,Y,Z are frequently (but not always) classical registers.

We define the Euclidean inner product function 〈·, ·〉 with the conjugate-transpose taken on the
first argument. We define (·)† as the conjugate-transpose map, (·)T as the transpose map, and (·)
as the complex conjugation map.

We frequently use Dirac notation: |v〉 ∈ A denotes a column vector, and 〈v |= (|v〉)†. We define
the standard basis elements of A as |a〉 for a ∈ A. For two vectors |v〉, |w〉 ∈ A, we sometimes
use the shorthand 〈v,w〉 := 〈|v〉, |w〉〉 to denote their inner product.

We define log(·) as the base-two logarithm.

We now list some standard objects that we will use.
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Some standard objects we will use

• S(A): The set of unit vectors on A (S is for unit sphere).

• L(A,B): The set of linear operators from A to B, and L(A) := L(A,A): The set of
linear operators on A.

• Herm(A): The set of Hermitian operators on A.

• Pos(A): the set of positive semi-definite operators on A.

• D(A): The set of quantum states (or simply, states) on A (D is for density operators).

• SepD(A : B): The set of separable states on A⊗B.

• U(A,B): The set of isometries fromA to B, and U(A) := U(A,A): The set of unitary
operators on A.

• C(A,B): The set of quantum channels from L(A) to L(B).

• GL(A): The general linear group of invertible linear operators on A, under standard
matrix multiplication.

• L2(R): The Hilbert space of square-integrable functions from R to C.

3



Chapter 2

Coherent states and linear optics

The coherent states of position and momentum are pure quantum states which well-approximate
the states of light produced by a laser [28], and therefore are practical states for optical imple-
mentation. Linear optics transformations are a class of unitary operators on Hilbert space which
are also amenable to implementation. As such, we make frequent use of these objects in this the-
sis. In this chapter, we introduce these objects and use them to describe a general coherent state
mapping (developed in [3]) from a broad class of quantum protocols to coherent state protocols.
We use this mapping in Chapter 5 to develop coherent state versions of existing appointment
scheduling protocols.

In Section 2.1 we construct the coherent states from the position and momentum operators, and
show that they form a resolution of the identity operator and saturate Heisenberg’s uncertainty
principle. This treatment is largely of theoretical interest to the author, and will not be needed in
the remainder of the thesis. In Section 2.2 we introduce linear optics transformations and show
that they are unitary operators on Hilbert space. We also review beamsplitters and phase shifters,
two fundamental building blocks of linear optics transformations that we frequently use in this
thesis. The reader comfortable with linear optics transformations can safely skip this section. In
Section 2.3 we review the coherent state mapping of [3].

Coherent states and linear optics transformations are operators on an infinite dimensional Hilbert
space (usually L2(R)). In the following treatment, we omit some technicalities which arise from
this fact, and make an effort to inform the reader when we have omitted an element of rigor.
For example, we frequently refer to the creation and annihilation operators â, â†, which are
unbounded operators on infinite dimensional Hilbert space. As such, it must be verified that
every object acted on by â, â† is in the domain of â, â†. We will omit such verification, and refer
the interested reader to, e.g., [34].
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2.1 Coherent states

Here we construct the coherent states from any linear operator â∈L(H) acting on some complex
Hilbert spaceH residing in some register A which obeys the commutation relation

[â, â†] = 1H (2.1)

and satisfies â |0〉 = 0 for some unit vector |0〉. Following the standard language of quantum
optics, we refer to the register A as a mode. We can already infer that H is infinite-dimensional,
as Tr([â, â†]) = 0 and Tr(1H) = dim(H) in the finite case.

We will write the coherent states as a linear combination of a countably infinite set of orthogonal
vectors in H, which are constructed as follows: Define N̂ = â†â. By the commutation relation
(2.1) it follows that

N̂â†n |0〉= nâ†n |0〉 (2.2)

for all n ∈N. As N̂ is a normal matrix and the vectors â†n |0〉 have distinct eigenvalues, they are
all orthogonal. Now we normalize each â†n |0〉. Define unit vectors |n〉 such that a†n |0〉= cn |n〉
for some cn ∈R. Then

c2
n = 〈0 | ânâ†n |0〉
= 〈0 | ân−1(1H+ N̂)â†n−1 |0〉
= nc2

n−1

for all n = 1,2, . . . , where the second equality follows from the commutation relation (2.1). As
c0 = 1, then cn =

√
n!, so

a†n |0〉=
√

n! |n〉, (2.3)

which implies

â† |n〉=
√

n+1 |n+1〉
â |n〉=

√
n |n−1〉 . (2.4)

For any α ∈ C, define the coherent state |α〉 as

|α〉 := e
−|α|2

2

∞

∑
n=0

αn
√

n!
|n〉 . (2.5)
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Using equation (2.4) it can be shown that the coherent states are eigenvectors of the operator â:

â |α〉= α |α〉 . (2.6)

We find it convenient to write the coherent states as

|α〉= D0(α) |0〉 (2.7)

for a unitary D0(α) ∈ U(H) (written as the output of a function D0 :C→U(H)), which we now
define. Recall the Baker-Hausdorff lemma:

Lemma 1 (Baker-Hausdorff). For any Hilbert space H, and any linear operators Â, B̂ ∈ L(H)
satisfying [[Â, B̂], Â] = [[Â, B̂], B̂] = 0, it holds that

eÂeB̂ = e
1
2 [Â,B̂]eÂ+B̂ = e[Â,B̂]eB̂eÂ. (2.8)

By the Baker-Hausdorff lemma, the commutation relation (2.1) and equation (2.4) it follows that

D0(α) := eα â†−α â (2.9)

satisfies (2.7). We refer to the unitary operators D0(α) as the displacement operators.

Now we observe that the function D :R×C→U(H) defined as

Dλ (α) := eiλ D0(α) (2.10)

for each λ ∈ R and α ∈ C forms a representation of the Heisenberg group. We will use this
observation in the next section to prove that the coherent states of position and momentum form
a resolution of the identity operator.

Definition 2. We define the Heisenberg group (H, ·) as the set of matricesH(α,λ ) =

1 Re(α) λ

0 1 Im(α)
0 0 1

 ∈R3 : α ∈ C,λ ∈R

 (2.11)

equipped with standard matrix multiplication.

Definition 3. For a Hilbert spaceH and group (G, ·), we say a function A : G→ GL(H) forms
a representation of G if

A (g1 ·g2) = A (g1)A (g2) (2.12)

for all g1,g2 ∈ G (i.e. A is a homomorphism).
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Definition 4. We say a representation A of a group (G, ·) is irreducible if the only subspaces of
A which are invariant under A (g) for all g ∈ G are the null space and A itself.

Observing that D forms a representation of the Heisenberg group is straightforward. Indeed, the
action of the Heisenberg group is given by

H(α,λ )H(β ,ν) = H(α +β ,λ +ν + Im(αβ )) (2.13)

and by the Baker-Hausdorff lemma,

Dλ (α)Dν(β ) = eIm(αβ )Dν(β )Dλ (α)

= Dλ+ν+Im(αβ )(α +β ). (2.14)

This representation is known as the Schrödinger representation. In the following section we will
show that this representation is irreducible.

2.1.1 Coherent states of position and momentum

Now we focus our interest on a particular set of coherent states residing in the Hilbert space
L2(R), for which â is given by

â =
1√
2
(X̂− D̂) (2.15)

where X̂ , D̂ ∈ L(L2(R)), defined as

(X̂ f )(x) = x f (x) (2.16)

D̂ f =
d f
dx

, (2.17)

are known as the position and momentum operators, respectively. Under this choice it can be
shown that

â† =
1√
2
(X̂ + D̂). (2.18)

For the remainder of this text, when we refer to coherent states, we refer to the “coherent states
of position and momentum” arising from â andH defined as above.

In what follows, we describe some notable properties of coherent states. Namely, we show that
the coherent states form a resolution of the identity operator, and that they are states of minimum
uncertainty.
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Resolution of the identity operator

Here we show that integration over all coherent states produces a scalar multiple of the identity
operator ∫

α∈C
|α〉〈α|d2

α = π1∞, (2.19)

where d2
α = dRe(α)dIm(α). We leave calculation of the numerical factor π to the reader, and

only show that the lefthand side of (2.19) is some scalar multiple of the identity. To prove the
statement, we use Schur’s lemma:

Theorem 5 (Schur’s lemma). Let A be an irreducible representation of a group G on a complex
Hilbert space A and let B̂ ∈ L(A) be a linear operator satisfying

B̂A (g)v = A (g)B̂v (2.20)

for all g ∈ G and all v ∈ A (i.e. B̂ is an intertwining map). Then B̂ = λ1H for some λ ∈ C.

It is straightforward to show that Dλ (α) commutes with the lefthand side of (2.19) for all α ∈C,
λ ∈R, so by Schur’s lemma it remains only to show that D forms an irreducible representation
of the Heisenberg group. First, we pause to prove Schur’s lemma.

Proof sketch of Schur’s Lemma [33]. As B̂ is a linear operator on a vector space over an alge-
braically closed field (C), then it must have at least one eigenvalue λ ∈ C. Let W ⊆A denote
the corresponding eigenspace for B̂. Then,

B̂A (g)w = λA (g)w (2.21)

for all g ∈ G, w ∈W , so the subspaceW is invariant under A . Since λ is an eigenvalue,W 6= 0
which impliesW =A by irreducibility of A , so B̂ = λ1H on all of A.

Now we show that D forms an irreducible representation of the Heisenberg group, which by
Schur’s lemma will complete the proof that the lefthand side of (2.19) is a scalar multiple of the
identity. For each f ,g∈ L2(R) define a function (the “Fourier-Wigner Transform” [26]) M( f ,g) :
C→ C as M( f ,g)(α) = 〈D0(α) f ,g〉. It can be shown [26] that for all f1,g1, f2,g2 ∈ L2(R),

〈M( f1,g1),M( f2,g2)〉= 〈 f1, f2〉〈g1,g2〉 . (2.22)

Irreducibility of D follows:
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Proposition 6 ([26]). The representation D is irreducible.

Proof sketch. SuposeW ⊂ L2(R) is a nonzero subspace invariant under Dλ (α) for all (λ ,α) ∈
R×C, and f 6= 0 ∈W . If g ⊥W then M( f ,g) = 0, which by (2.22) implies ‖ f‖2‖g‖2 = 0, so
g = 0, which impliesW = L2(R).

This completes the proof that the lefthand side of (2.19) is a scalar multiple of the identity.

Saturation of Heisenberg’s uncertainty relation

In this section we state and prove Heisenberg’s uncetainty relation, and then show that it is
saturated by the coherent states. For any Hermitian operator Â ∈ Herm(H), define the variance
(∆ f Â)2 of Â with respect to f ∈H as

(∆ f Â)2 := 〈 f , Â2 f 〉−〈 f , Â f 〉2. (2.23)

Corresponding to any Hermitian operator Â ∈ Herm(H) is a projective measurement onto the
eigenvectors of Â which assigns to each outcome a real number given by the eigenvalue of each
eigenvector. The variance (∆ f Â)2 is a commonly studied value which informally quantifies how
far each numerical outcome deviates from the average numerical outcome obtained by the mea-
surement, or (also informally) how much uncertainty one has about the numerical outcome that
will be obtained in the measurement corresponding to Â on the state f before performing the
measurement.

The measurements corresponding to the Hermitian operators X̂ and iD̂ translate physically to
measurements of the position and momentum of the input state, respectively (with some con-
stant prefactors which depend on one’s choice of units) [28]. Heisenberg’s uncertainty relation
stipulates that for any state, the uncertainty (variance) of its position and momentum cannot both
be low. If the state has low uncertainty in one quantity then it necessarily has high uncertainty in
the other.

Lemma 7 (Heisenberg’s uncertainty relation). (∆ f X̂)(∆ f iD̂)≥ 1/2 for any state f ∈ S(L2(R))
in the domain of both X̂iD̂ and iD̂X̂ .

Proof sketch. It is straightforward to verify that

(∆ f X̂)2 = 〈g,g〉, (2.24)
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where

g = (X̂−〈 f , X̂ f 〉1∞) f , (2.25)

and

(∆ f iD̂)2 = 〈h,h〉, (2.26)

where

h = (iD̂−〈 f , iD̂ f 〉1∞) f . (2.27)

By the Cauchy-Schwartz inequality,

(∆ f X̂)(∆ f iD̂)≥ |〈g,h〉| (2.28)

=
1
2i
〈 f , [X̂ , iD̂] f 〉 (2.29)

=
1
2
, (2.30)

where the first equality follows from straightforward calculation and the second equality follows
from [X̂ , iD̂] = i1∞, which is easily verified from (2.31) and (2.1).

Using (2.1), (2.6), and the relations

X̂ =
1√
2
(â+ â†)

D̂ =
1√
2
(â†− â) (2.31)

it is straightforward to verify that (∆α X̂)= (∆α iD̂)=
√

1/2 for any coherent state |α〉 ∈S(L2(R)).
Thus, (∆α X̂)(∆α iD̂)= 1/2, so coherent states give rise to the minimum possible value of (∆ f X̂)(∆ f iD̂)
over all states f ∈ S(L2(R)).

Heisenberg’s uncertainty relation seems counterintuitive in comparison to our experience of the
world. To the naked eye it seems the position and momentum of objects are both readily mea-
surable without uncertainty. Because of this intuition, many use (∆ f X̂)(∆ f iD̂) to measure the
level of non-classicality of f . As the coherent states give rise to the minimum possible value of
(∆ f X̂)(∆ f iD̂), they are interpreted as the most classical states.
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2.2 Linear optics

Here we introduce a family of unitary operators on L2(R)⊗n for finite n ∈N that are known as
linear optics transformations. We first define the operators in this family and then show that
they are unitary. We then review beamsplitters and phase shifters, two fundamental linear optics
transformations that we frequently use in this thesis.

We define a linear optics transformation by its action on each element of the following orthonor-
mal basis of L2(R)⊗n (known as the Fock basis):

F = {
â† j1

1 . . . â† jn
n√

j1! · · · jn!
|0〉⊗n ∈ L2(R)⊗n : j1, . . . , jn ∈N}, (2.32)

where

â†
i := 1⊗i−1⊗ â†⊗1⊗n−i ∈ L(L2(R)⊗n) (2.33)

for each i = 1, . . . ,n (see, e.g., [34]). We often omit the normalization factors
√

j1! · · · jn! for
brevity.

For any linear operator U ∈ L(Cn) define VU ∈ L(L2(R)⊗n) as

VU a† j1
1 . . .a† jn

n |0〉
⊗n

=

(
n

∑
i=1

U1,ia
†
i

) j1

. . .

(
n

∑
i=1

Un,ia
†
i

) jn

|0〉⊗n (2.34)

for each j1, . . . , jn ∈N. As shorthand, we can define the action of VU by

a†
j →

n

∑
i=1

U j,ia
†
i (2.35)

for each j = 1, . . . ,n.

Definition 8. We say an operator V ∈ L(L2(R)⊗n) is a linear optics transformation if V = VU
for some unitary U ∈ U(Cn).

Note that every unitary operator U ∈ U(Cn) can be written as U = e−iH for some Hermitian
operator H ∈Herm(Cn). It can be shown that the linear optics transformation VU ∈ U(L2(R)⊗n)
is then given by [55],[45]

VU = exp

[
−i

n

∑
j,k=1

a†
jH

T
j,kak

]
. (2.36)

We omit a proof of this fact, and simply prove from the definition (2.34) that VU is unitary.
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Lemma 9. Every linear optics transformation is unitary.

Proof sketch. To prove the lemma, we first compute the adjoint map of VU for any linear map
U ∈ L(Cn). We then show that for any unitary U , VUV †

U =V †
UVU = 1⊗n

∞ .

The adjoint map V †
U is defined by 〈 f ,VU g〉 =

〈
V †

U f ,g
〉

for all f ,g ∈ L2(R)⊗n. Since F forms a

basis of L2(R)⊗n, this is equivalent to〈
a†k1

1 . . .a†kn
n |0〉

⊗n,

(
n

∑
i=1

U1,ia
†
i

) j1

. . .

(
n

∑
i=1

Un,ia
†
i

) jn

|0〉⊗n

〉
=
〈

V †
U a†k1

1 . . .a†kn
n |0〉

⊗n,a† j1
1 . . .a† jn

n |0〉
⊗n
〉

(2.37)

for all j1, . . . , jn,k1, . . . ,kn ∈N. We prove that the action of V †
U is given by

a†
j →

n

∑
i=1

U†
j,ia

†
i (2.38)

by showing that (2.37) holds under this choice. Indeed,〈
a†k1

1 . . .a†kn
n |0〉

⊗n,

(
n

∑
i=1

U1,ia
†
i

) j1

. . .

(
n

∑
i=1

Un,ia
†
i

) jn

|0〉⊗n

〉

= k1! . . .kn! ∑
J∈Mn such that

Ji,l∈N ∀i,l=1,...,n
∑

n
l=1 Ji,l= ji ∀i=1,...,n

∑
n
i=1 Ji,l=kl ∀l=1,...,n

n

∏
i=1

(
ji

J1,i, . . . ,Jn,i

) n

∏
p,q=1

UJp,q
p,q

= j1! . . . jn! ∑
J∈Mn such that

Ji,l∈N ∀i,l=1,...,n
∑

n
l=1 Ji,l= ji ∀i=1,...,n

∑
n
i=1 Ji,l=kl ∀l=1,...,n

n

∏
i=1

(
ki

Ji,1, . . . ,Ji,n

) n

∏
p,q=1

UT
p,q

Jq,p

= j1! . . . jn! ∑
K∈Mn such that

K(i,l)∈N ∀i,l=1,...,n
∑

n
l=1 Ki,l=ki ∀i=1,...,n

∑
n
i=1 Ki,l= jl ∀l=1,...,n

n

∏
i=1

(
ki

K1,i, . . . ,Kn,i

) n

∏
p,q=1

UT
p,q

Kp,q

=

〈(
n

∑
i=1

U†
1,ia

†
i

)k1

. . .

(
n

∑
i=1

U†
n,ia

†
i

)kn

|0〉⊗n,a† j1
1 . . .a† jn

n |0〉
⊗n

〉
, (2.39)
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which proves the claim.

Now we show that for U unitary, VUV †
U =V †

UVU = 1⊗n
∞ . Indeed for U unitary, for any basis vector

a† j1
1 . . .a† jn

n |0〉⊗n,

V †
UVU a† j1

1 . . .a† jn
n |0〉

⊗n

=V †
U

(
n

∑
i=1

U1,ia
†
i

) j1

. . .

(
n

∑
i=1

Un,ia
†
i

) jn

|0〉⊗n

=

(
n

∑
i=1

U1,i

n

∑
l=1

U†
i,la

†
l

) j1

. . .

(
n

∑
i=1

Un,i

n

∑
l=1

U†
i,la

†
l

) jn

|0〉⊗n

= a† j1
1 . . .a† jn

n |0〉
⊗n, (2.40)

and similarly

VUV †
U a† j1

1 . . .a† jn
n |0〉

⊗n = a† j1
1 . . .a† jn

n |0〉
⊗n, (2.41)

so VUV †
U =V †

UVU = 1⊗n
∞ . This completes the proof.

For a basis vector a† j1
1 . . .a† jn

n |0〉⊗n we refer to j1 + · · ·+ jn as the total photon number. Note
that the inner product (2.37) is zero for any two basis vectors with different total photon num-
bers. Thus, the unitary VU can be decomposed as a direct sum of unitary operators on invariant
subspaces of fixed total photon number.

Beamsplitters and phase shifters

Now we introduce the linear optics transformations beamsplitters and phase-shifters. A beam-
splitter across modes 1 ≤ j,k ≤ n with j 6= k specified by splitting angle θ ∈ [0,2π) and phase
φ ∈ [0,2π) is the linear optics transformation corresponding to the unitary

B̂ j,k(θ ,φ) = 1n−| j〉〈 j|− |k〉〈k|+
(
| j〉 |k〉

)( cos(θ) −sin(θ)e−iφ

sin(θ)eiφ cos(θ)

)(
〈 j |
〈k |

)
. (2.42)

We define the 50/50 beamsplitter as the linear optics transformation corresponding to B̂ j,k(π/4,0)
(the Hadamard gate). We define the light port and the dark port of the 50/50 beamsplitter as the
modes j and k, respectively, immediately after they have passed through the beamsplitter.
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A phase-shifter on mode 1 ≤ j ≤ n with phase φ ∈ [0,2π) is the linear optics transformation
corresponding to the unitary

P̂j(φ) = 1n−| j〉〈 j|+ eiφ | j〉〈 j|. (2.43)

Using Lemma 1 (Baker-Hausdorff) it can be shown that the action of beamsplitters on coherent
states is given by

VB̂ j,k
(θ ,φ) |α〉 j |β 〉k =

∣∣∣cos(θ)α + eiφ sin(θ)β
〉

j

∣∣∣−sin(θ)e−iφ
α + cos(θ)β

〉
k
, (2.44)

where

|ψ〉 j := |0〉⊗( j−1) |ψ〉 |0〉⊗n− j . (2.45)

This action gives some intuition for why we assign the names light port and dark port to the
modes j and k, respectively. If α = β , mode k will be in the vacuum state (dark), and mode j
will be in state |

√
2α〉 (light). Note that if α =−β these roles are reversed. In Section 4.4 we use

this fact to show that the beamsplitter measurement with single photon threshold detectors placed
at both the dark and light ports can be used to perform optimal unambiguous state comparison
on {|α〉, |−α〉} when the states are given with equal a priori probability.

The action of phase shifters on coherent states is given by

VP̂j
(φ) |α〉 j =

∣∣∣eiφ
α

〉
j
. (2.46)

Note that P̂j(π)B̂ j,k(0,0) gives a control-NOT gate. Any unitary operator can be implemented
with control-NOT gates, Hadamard gates B̂ j,k(π/4,0), and phase gates P̂j(π/4) [48]. Thus, any
linear optics transformation can be implemented with beamsplitters and phase shifters [54].

2.3 Coherent state mapping

Arrazola and Lütkenhaus recently proposed a mapping from any quantum protocol which uses
pure quantum states, unitary operations, and standard basis measurements to a corresponding
protocol which uses coherent states, linear optics transformations, and single photon detectors
[3]. Here we review this mapping, and in Chapter 5 we apply it to the protocol of appointment
scheduling.
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For any quantum protocol which uses pure states |ψ〉 ∈ S(Cn) for some finite n ∈N and unitary
operations U ∈ U(Cn), the coherent state mapping proceeds as follows: For fixed α ∈ C, each
pure state |ψ〉 is mapped to a tensor product of coherent states according to the function

fα : Cn→ L2(R)⊗n (2.47)

defined as

fα

(
n

∑
i=1

λi |i〉
)

=
n⊗

i=1

|λiα〉i, (2.48)

and each unitary U ∈ U(Cn) is mapped to the linear optics transformation VU ∈ U(L2(R)⊗n).
The unitary VU can be shown to satisfy VU fα(|ψ〉) = fα(U |ψ〉) for all |ψ〉 ∈ Cn, which ensures
that at a given stage in the protocols, the state of the mapped protocol is equal to fα applied to
the state of the original protocol.

Standard basis measurement in the original protocol is mapped to photon number counting mea-
surement performed on each mode. Arrazola and Lütkenhaus show that the probability distri-
bution of the number of photons measured in each mode is equal to that obtained from repeated
canonical basis measurements of the state of the original quantum protocol, where the number
of repetitions is drawn from a Poisson distribution with mean |α|2. Alternatively, standard basis
measurement can be mapped to single-photon threshold detection (described by the two-outcome
measurement {|0〉〈0|⊗n,1− |0〉〈0|⊗n}), which is easier to implement at the cost of not having
such a direct connection with the original measurement.

A notable property of the mapped states fα(|ψ〉) derived in [3] is that they are close in trace
distance to states of O(logn) qubits, just like the original protocol:

Theorem 10 (Adapted from [3]). For any α ∈ C the following holds: for any ε > 0 there exists
a sequence of subspacesHα,n ⊂ L2(R)⊗n such that

dim(Hα,n) =O(logn) (2.49)

and for all |ψ〉 ∈ S(Cn) the states

gα(|ψ〉) =
ΠHα,n fα(|ψ〉)
‖ΠHα,n fα(|ψ〉)‖2

(2.50)

satisfy

‖|gα(|ψ〉)〉〈gα(|ψ〉)|− | fα(|ψ〉)〉〈 fα(|ψ〉)|‖1 ≤ ε. (2.51)
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In Chapters 4 and 5 we extend this result to show that the asymptotic behaviour of the information
leakage and information cost of many quantum communication protocols are preserved under the
coherent state mapping. The apparent usefulness of this mapping leads us to ask whether other
mappings might exist from general quantum protocols to protocols which are more realistic for
implementation, while retaining certain figures of merit. We ask, for example, whether one might
find such a mapping to protocols using tensor products of qubits or other easily implementable
states.
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Chapter 3

Communication complexity and
information complexity

Here we review two subfields of quantum communication: communication complexity and in-
formation complexity. Communication complexity is concerned with the amount of resources
(e.g. bits, qubits, and entanglement) exchanged during communication protocols. Figured more
prominently in this work is information complexity, which is concerned with the amount of infor-
mation exchanged during communication protocols, and which has recently received heightened
interest in part because the quantities studied can be easier to work with than those of commu-
nication complexity. One commonly studied quantity of information complexity is the amount
of resources needed per task to execute asymptotically many copies of the same task. These
quantities are useful for proving lower bounds on the amount of resources used in the single shot
setting. Information complexity also studies various quantifiers of privacy, i.e. how much one
party learns about another’s private information as a result of their communication.

Despite an early result of Holevo [36], stating that no fewer than n qubits must be used to transmit
n bits from one party to another, there have been many examples in quantum communication in
which quantum resources outperform their classical counterparts. We review a few of these
results, borrowing ideas from the useful 2010 review [13].

We begin with a review of some results in communication complexity. Two of the earliest ex-
amples of a quantum improvement were found by Buhrman et al. [15] in the interactive com-
munication setting (formally defined in Section 3.3), in which two parties (Alice and Bob) com-
municate back and forth to execute a task. In the first task, Alice and Bob each receive n-bit
strings x,y ∈ {0,1}n which are guaranteed to be either equal or differ by n/2 bits, and they wish
to evaluate the equality function on x and y with zero error. Buhrman et al. found a quantum
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protocol using log(n) qubits of communication, whereas any classical protocol must use at least
0.007n bits of communication [27]. In the second task (known as appointment scheduling), Alice
and Bob again receive x,y ∈ {0,1}n (which can now be arbitary), and find a common index i for
which xi = yi = 1. Buhrman et al. exhibited a quantum protocol in this case which uses nearly
quadratically fewer qubits than the classical lower bound.

Another communication setting that has been studied is known as the simultaneous message
passing model (formally defined in Section 3.2), in which Alice and Bob communicate one-way
to a referee, who helps them peform some task. The first task with a quantum advantage in this
model was found by Buhrman et al. [14]. Here, Alice and Bob each receive n-bit strings (which
can now be arbitrary, in contrast to the equality task described above), and they communicate to a
referee to evaluate the equality function. Buhrman et al. again found an exponential improvement
over the classical lower bound in this setting. Since these early protocols, many more protocols
have been found which exhibit quantum advantages in communication complexity under various
resource and locality restrictions.

We now shift our focus to information complexity, which will be the primary framework we
use to analyze communication protocols in this thesis. We first review some fundamental re-
sults in information complexity which quantify the asymptotic amount of resources needed to
perform the primitive communication tasks of source coding and channel coding. We then use
these primitives to form notions of information for tasks in the more complicated settings of the
simultaneous message passing model and the interactive communication model, which we use
in Chapters 4 and 5 to analyze the information content of practical quantum fingerprinting and
appointment scheduling protocols that we have developed. See the 2012 review [11] for fur-
ther reading on classical information complexity, and see [64] for further reading on quantum
information complexity.

3.1 Background

In this section we motivate several entropic quantities which we will use to quantify information
in this work through the settings of source coding and channel coding. For a positive operator
ρ ∈ Pos(ABC) with eigenvalues λa, a ∈ A×B×C, define the entropy of ρ as

H(ρ) = ∑
a∈A×B×C

λa log
(

1
λa

)
(3.1)

(with the definition 0log(1/0) := 0) and the mutual information between registers A and B as

I(ρA : ρ
B) = H(ρA)+H(ρB)−H(ρAB). (3.2)
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We will frequently write H(A) = H(ρA) and I(A : B) = I(ρA : ρB) as shorthand. Define the
conditional entropy as

H(A|B) = H(AB)−H(B) (3.3)

and the conditional mutual information as

I(A : B|C) = H(A|C)+H(B|C)−H(AB|C). (3.4)

When ρ ∈ D(ABC) is a state, the mutual information somehow characterizes the amount of
information that register A contains about register B. We will see several motivations for this in-
tuition, but as a first motivation note the limiting behaviour: the mutual information is minimized
to zero when ρ is a product state between the two input registers, and it is maximized when ρ is
maximally entangled between the two input registers.

In Section 3.1.1 (source coding) we motivate the entropy and mutual information as asymptotic
quantifiers of the minimum size to which the input state can be compressed and then successfully
decompressed. In Section 3.1.2 (channel coding) we motivate the mutual information as an
asymptotic quantifier of the maximum size of classical message that can be encoded into register
A and decoded from register B.

3.1.1 Source coding

Here we state source coding theorems, which motivate both the entropy and mutual information
functions as optimal asymptotic communication rates. First we consider a classical scenario
in which Alice records the outcomes of some stochastic process, which she wishes to transmit
to Bob through a perfect channel using the least number of bits possible. To avoid introducing
more notation, we use the (somewhat bloated) language of quantum information for this scenario.
Instead of Alice recording the outcomes of some classical random variable, we say she measures
some classical state P ∈ D(C) contained in some classical register C in the standard basis. She
then sends the outcome through a classical encoding channel, after which Bob applies a classical
decoding channel and measures in the standard basis in hopes of recovering the outcome. A
classical register is a register whose state is always diagonal with respect to the standard basis. A
classical channel is any channel which can be written as ∆Φ∆, where Φ is some quantum channel
and ∆ is the completely dephasing channel with respect to the standard basis. An achievable rate
is then defined as follows:
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Definition 11. We say a positive number S is an achievable rate for source coding of a classical
state P ∈ D(C) if there exists a sequence of classical registers XN satisfying

lim
N→∞

N
log(|XN |)

= S (3.5)

and corresponding sequences of classical encoding channels ΨE,N ∈C(C⊗N ,XN), and classical
decoding channels ΨD,N ∈C(XN ,C⊗N) such that

lim
N→∞

∑
cN∈C⊗N

〈cN |P⊗N |cN〉〈cN |ΨD,NΨE,N(|cN〉〈cN |) |cN〉= 1, (3.6)

i.e. the average probability of successful decoding goes to one in the limit N→ ∞.

Shannon’s source coding theorem states that the optimal rate is exactly given by the entropy
function:

Theorem 12 (Shannon’s source coding theorem [59]). The infimum over all achievable rates for
source coding of a classical state P ∈ D(C) is equal to H(P). Conversely, for every sequence of
classical registers XN satisfying

lim
N→∞

N
log(|XN |)

< H(P), (3.7)

every sequence of classical encoding channels ΨE,N ∈C(C⊗N ,XN) and classical decoding chan-
nels ΨD,N ∈C(XN ,C⊗N) satisfies

lim
N→∞

∑
cN∈C⊗N

〈cN |P⊗N |cN〉〈cN |ΨD,NΨE,N(|cN〉〈cN |) |cN〉= 0, (3.8)

i.e. the average success probability goes to zero in the limit N→ ∞.

Now we state a generalization of Shannon’s source coding theorem in which C is a quantum
register and P is an arbitrary quantum state (which we now denote ρ). Here, Alice sends ρC

to Bob while preserving correlations with a purifying register R, i.e. the purification ρCR is
effectively unchanged by the encoding and decoding maps. Accordingly, we now generalize the
above definition of an achievable rate to quantum states.

Definition 13. We say a positive number S is an achievable rate for a state ρ ∈ D(C) if there
exists a sequence of registers XN satisfying

lim
N→∞

N
log(|XN |)

= S (3.9)
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and corresponding sequences of encoding channels ΨE,N ∈C(C⊗N ,XN), and decoding channels
ΨD,N ∈C(XN ,C⊗N) such that

lim
N→∞

F
(
(ΨD,NΨE,N⊗1R)(ρ

⊗N
CR ),ρ⊗N

CR

)
= 1 (3.10)

for any purification register R.

Schumacher’s generalization of Shannon’s source coding theorem states that the optimal rate is
again given by the entropy function.

Theorem 14 (Schumacher’s source coding theorem [56]). The infimum over all achievable rates
for source coding of any quantum state ρ ∈ D(C) is given by H(ρ). Conversely, for every se-
quence of registers XN satisfying

lim
N→∞

N
log(|XN |)

< H(ρ), (3.11)

every sequence of encoding channels ΨE,N ∈C(C⊗N ,XN) and decoding channels ΨD,N ∈C(XN ,C⊗N)
satisfies

lim
N→∞

F((ΨD,NΨE,N⊗1R)(ρ
⊗N
CR ),ρ⊗N

CR ) = 0. (3.12)

for every purification register R.

Now we note that Schumacher’s theorem also provides an interpretation of the mutual infor-
mation which further motivates its use as a quantifier of information. Recall the definition
I(A : B) = H(A)+H(B)−H(AB). By Schumacher’s theorem, the mutual information is exactly
the difference between the following two quantities: one, the asymptotic rate of communication
needed to transmit ρA and then ρB separately; and two, that needed to transmit the entire state
ρAB at once. In this way, the mutual information somehow quantifies the amount of information
that register A contains about register B (and vice versa).

Now we consider a yet more general task known as state redistribution [69][23] and motivate
the conditional mutual information as the optimal rate for this task. In this task, two parties
(Alice and Bob) share a state ρABC with some purification ρABCR. The state ρABCR is known to
(but not held by) both Alice and Bob. In the beginning, Alice holds register AC and Bob holds
register B. Alice wishes to transmit the register C to Bob (using the minimum number of qubits)
through a perfect channel. We will see that Alice and Bob can substitute some of their quantum
communication for entanglement in this task, and they can even generate entanglement in some
circumstances.
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Define |Φ+〉 = 1√
2
(|00〉+ |11〉) the canonical maximally entangled state, and for two registers

X and X ′ with |X| = |X′| a power of two, define |Φ+〉〈Φ+|XX ′ = |Φ+〉〈Φ+|⊗ log |X| ∈ D(XX ′),
where the first qubit of each maximally entangled state is contained in register X , and the second
is contained in register X ′.

Definition 15. We say a two-tuple (S,E) of positive numbers is an achievable rate tuple for
state redistribution from Alice to Bob for the state ρABC if there exists a sequence of registers
XN ,T in

A,N ,T
in

B,N ,T
out

A,N ,T
out

B,N satisfying |Tin
A,N |= |Tin

B,N |, |Tout
A,N |= |Tout

B,N |,

lim
N→∞

N
log(|XN |)

= S, (3.13)

and

lim
N→∞

N
log(|Tin

A,N |)− log(|Tout
A,N |)

= E, (3.14)

and corresponding sequences of encoding channels ΨE,N ∈ C(A⊗NC⊗NT in
A ,A⊗NXNT out

A ) and
decoding channels ΨD,N ∈C(B⊗NXNT in

B ,B⊗NC⊗NT out
B ) satisfying

lim
N→∞

F
(

TrT out
A,NT out

B,N
ΨD,NΨE,N

(
ρ
⊗N
ABCR⊗|Φ

+〉〈Φ+|T
in

A,NT in
B,N

)
,ρ⊗N

ABCR

)
= 1 (3.15)

and

lim
N→∞

F
(

Tr¬T out
A,NT out

B,N
ΨD,NΨE,N

(
ρ
⊗N
ABCR⊗|Φ

+〉〈Φ+|T
in

A,NT in
B,N

)
, |Φ+〉〈Φ+|T

out
A,NT out

B,N

)
= 1, (3.16)

where we have implicitly tensored the encoding and decoding channels with 1⊗N
B ⊗ 1R and

1⊗N
A ⊗1R, respectively. We say S is the communication rate and E is the entanglement cost of

the rate tuple (S,E).

Note that the quantity E can be negative, in which case entanglement is generated rather than con-
sumed. The following theorem equates the optimal rate communication rate with the coniditonal
mutual information.

Theorem 16 (State redistribution [69][23]). For any state ρABC, any rate tuple (S,E) satisfying
S > 1

2 I(C : R|B) and S+E > H(C|B) is achievable. Conversely, no tuple (S,E) with S < 1
2 I(C :

R|B) or S+E < H(C|B) is achievable.

A strong converse to this theorem also holds:
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Theorem 17 (Strong converse to state redistribution [43][9]). For any two-tuple (S,E) of positive
numbers for which S < 1

2 I(C : R|B) or S+E < H(C|B), the following holds: for every sequence
of registers XN ,T in

A,N ,T
in

B,N ,T
out

A,N ,T
out

B,N satisfying |Tin
A,N |= |Tin

B,N |, |Tout
A,N |= |Tout

B,N |,

lim
N→∞

N
log(|XN |)

= S, (3.17)

and

lim
N→∞

N
log(|Tin

A,N |)− log(|Tout
A,N |)

= E, (3.18)

and corresponding sequences of encoding channels ΨE,N ∈ C(A⊗NC⊗NT in
A ,A⊗NXNT out

A ) and
decoding channels ΨD,N ∈C(B⊗NXNT in

B ,B⊗NC⊗NT out
B ),

lim
N→∞

F
(

TrT out
A,NT out

B,N
ΨD,NΨE,N

(
ρ
⊗N
ABCR⊗|Φ

+〉〈Φ+|T
in

A,NT in
B,N

)
,ρ⊗N

ABCR

)
= 0. (3.19)

In [43] and [9] these state redistribution theorems are also proven in the scenario when Alice
and Bob are allowed interactive (two-way) communication to redistribute the state ρ (instead of
the strictly forward communication scenario we have presented here), and the same results are
obtained.

3.1.2 Channel coding

Here we further motivate the mutual information as a quantifier of information through results
in channel coding. In the previous section we determined, for a fixed state held by Alice (and
known to Bob), the asymptotic number of (qu)bits she needs to send through a perfect channel to
transmit the state to Bob while maintaining correlations with other registers. For channel coding,
we instead fix a channel, and determine the asymptotic number of arbitrary (qu)bits per channel
use that can be sent.

Unfortunately, both the source coding and channel coding quantities of interest are frequently
referred to as the rate of the state and channel, respectively. Note that we wish to minimize
the rate for source coding, while we wish to maximize the rate for channel coding. To avoid
ambiguity, we use the symbol R to denote an achievable rate for channel coding.
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Classical capacity of channels

First we consider a classical communication scenario in which one party (Alice) wishes to com-
municate a classical message x ∈ X for some classical state set X to another party (Bob) with
high probability using a channel Φ ∈C(A,B). To do so, Alice prepares |x〉〈x| ∈ L(X ) in a clas-
sical register X and applies an encoding channel ΨE ∈C(X ,A), the output of which she sends
through Φ. Bob then applies a decoding channel ΨD ∈ C(B,X ) in hopes of recovering |x〉〈x|.
We define various error probabilities associated with the channel ΨDΦΨE ∈C(X ) as follows:

Pre(x) = 1−〈x |ΨDΦΨE(|x〉〈x|) |x〉
Pre(ΨDΦΨE) = max

x∈X
Pre(x)

Pre(ΨDΦΨE) =
1
|X| ∑x∈X

Pre(x),

the probability that Bob fails to recover x on input x, the worst case such probability over all
x ∈ X, and the average such probability over all x ∈ X, respectively.

We now define an achievable rate for classical channel coding and the classical capacity of a
channel:

Definition 18. For a channel Φ ∈C(A,B), we say a positive number R is an achievable rate for
classical channel coding if there exists a sequence of classical registers XN satisfying

lim
N→∞

log |XN |
N

= R (3.20)

and a corresponding sequence of encoding channels ΨE,N ∈C(XN ,A⊗N), and decoding chan-
nels ΨD,N ∈C(B⊗N ,XN) such that

lim
N→∞

Pre(ΨD,NΦ
⊗N

ΨE,N) = lim
N→∞

Pre(ΨD,NΦ
⊗N

ΨE,N) = 0. (3.21)

We define the classical capacity C(Φ) as the supremum over all achievable rates.

Now we present the Holevo-Schumacher-Westmoreland theorem for the classical capacity of a
channel. This theorem strengthens our intuition for the mutual information as an asymptotic
quantifier of the information shared between two registers. First, we need the following defini-
tion.

24



Definition 19. For some registers A and B we define the set of classical-quantum states
CQ(X :A)⊂D(XA) as those states which can be written as

∑
x∈X

P(x)|x〉〈x|⊗σ
A
x (3.22)

for some probability distribution P ∈ Pr(X) and states σA
x ∈ D(A).

Now we state the theorem.

Theorem 20 (Classical capacity of a channel [35][57]). For any channel Φ ∈C(A,B),

C(Φ) = lim
l→∞

1
l

sup
Y

sup
σ∈CQ(Y:A⊗l)

I(Y : B⊗l)(1Y⊗Φ⊗l)(σ) (3.23)

where the left supremum is taken over all classical registers Y .

Theorem 20 equates the classical capacity of a channel with the limiting behaviour of the mutual
information. We now restrict our attention to a set of channels for which the channel capacity
is given by a single expression of the mutual information (rather than some limiting behaviour).
This will solidify our intuition for expressions involving the mutual information (without limiting
behaviour) as quantifiers of information.

We first consider the set of entanglement breaking channels, i.e. channels Φ ∈ C(A,B) for
which (1Y ⊗Φ)(σ) ∈ SepD(Y : B) for all states σ ∈ D(YA). We then present a corollary for
classical-quantum channels (a subset of entanglement breaking channels), which we will use in
Section 3.2 as motivation for the definition of the information leakage of simultaneous message
passing model protocols.

Corollary 21 ([61]). Let Φ ∈C(A,B) be an entanglement breaking channel. Then

C(Φ) = sup
Y

sup
σ∈CQ(Y:A)

I(Y : B)(1Y⊗Φ)(σ), (3.24)

where the left supremum is taken over all classical registers Y.

Proof. The inequality

1
l

sup
Y ′

sup
σ∈CQ(Y ′:A⊗l)

I(Y ′ : B⊗l)(1Y ′⊗Φ⊗l)(σ) ≥ sup
Y

sup
σ∈CQ(Y:A)

I(Y : B)(1Y⊗Φ)(σ) (3.25)
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for any channel Φ ∈C(A,B) and any l ∈N follows from the easily-ascertained fact that for any
classical-quantum state σ ∈ CQ(Y :A),

1
l

I(Y⊗l : B⊗l)(1⊗l
Y ⊗Φ⊗l)(ρ) = I(Y : B)(1Y⊗Φ)(σ) (3.26)

for ρ =Wσ⊗lW † ∈ D(Y⊗lB⊗l), where W ∈ U((YB)⊗l,Y⊗lB⊗l) is defined as

W |y1b1 . . .ylbl〉= |y1 . . .ylb1 . . .bl〉 (3.27)

for each y1, . . . ,yl ∈ Y and b1, . . . ,bl ∈ B.

Now we prove the reverse inequality when Φ is entanglement breaking. As Φ is entanglement
breaking, then for any classical register Y ′ and state σ ∈ CQ(Y ′ :A⊗l),

(1Y ′⊗Φ
⊗l)(σ) = ∑

y∈Y′
P(y)|y〉〈y|⊗ρy,1⊗·· ·⊗ρy,l (3.28)

for some probability vector P ∈ Pr(Y′) and states ρy, j ∈ D(B). Thus,

I(Y ′ : B⊗l)(1Y ′⊗Φ⊗l)(σ) = H

(
∑

y∈Y′
P(y)ρy,1⊗·· ·⊗ρy,l

)
− ∑

y∈Y′

l

∑
j=1

P(y)H(ρy, j)

≤
l

∑
j=1

[
H

(
∑

y∈Y′
P(y)ρy, j

)
− ∑

y∈Y′
P(y)H(ρy, j)

]

=
l

∑
j=1

I(Y ′ : B)(1Y ′⊗Φ)(σ j)

≤ l max
j∈[l]

I(Y ′ : B)(1Y ′⊗Φ)(σ j)

for states σ j = ∑y∈Y′ P(y)ρy, j ∈ D(A), j = 1, . . . , l. The first equality follows from additivity of
entropy under tensor product. The first inequality follows from Lemma 44 (subadditivity), and
the rest of the above (in)equalities are straightforward. The result follows.

In summary, Corollary 21 tells us that for entanglement breaking channels, the classical capacity
is simply the supremum (taken over all inputs to the channel) of the mutual information between
the purifying register of the input and the output of the channel.

Now we present a corollary for the special case of classical-quantum channels. A channel
Φ ∈C(A,B) is a classical-quantum channel if it can be written as Φ = Ψ∆, where ∆ is the com-
pletely dephasing channel with respect to the register A. Note that such channels are uniquely
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defined by their action on classical inputs. The following is an easy corollary to Corollary 21
for classical-quantum channels, and demonstrates an even more direct connection between the
classical capacity and the mutual information.

Corollary 22 (Classical capacity of a CQ channel). Let Φ ∈ C(A,B) be a classical-quantum
channel defined as Φ(|a〉〈a|) = σB

a . For any probability vector Q ∈ Pr(A), define

σ
AB
Q = ∑

a∈A
Q(a)|a〉〈a|⊗σ

B
a . (3.29)

Then,

C(Φ) = sup
Q∈Pr(A)

I(A : B)
σAB

Q
. (3.30)

For classical-quantum channels, a strong converse theorem also holds:

Theorem 23 (Strong converse to classical capacity of a CQ channel [49]). Let Φ be a classical-
quantum channel defined as above, and for any probability vector Q ∈ Pr(A) let σAB

Q be defined
as above. Then for any sequence of registers XN and corresponding sequences of encoding and
decoding channels ΨE,N ∈C(XN ,A⊗N) and ΨD,N ∈C(B⊗N ,XN), if

lim
N→∞

log |XN |
N

> sup
Q∈Pr(A)

I(A : B)
σAB

Q
, (3.31)

then

lim
N→∞

Pre(ΨD,NΦ
⊗N

ΨE,N) = lim
N→∞

Pre(ΨD,NΦ
⊗N

ΨE,N) = 1. (3.32)

In Section 3.2 we use the above result for classical-quantum channels to motivate the definition
of the information leakage of protocols in the simultaneous message passing model.

Quantum capacity of channels

Now we consider a scenario in which Alice wishes to communicate arbitrary quantum states
ρ ∈D(X ) to Bob using a quantum channel Φ∈C(A,B). One motivation for this scenario is that
Alice wishes to communicate ρ through a communication channel which introduces loss/noise
which can be described by Φ. For example, we could have X = C2 and a channel Φ that imple-
ments a bit flip or phase flip with some probability. We include quantum channel coding because
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it is instructive to see how the classical capacity theorems generalize to the quantum case, but the
results presented in this section will not be used in the remainder of this thesis.

Now we define an achievable rate for quantum channel coding and the quantum capacity of a
channel.

Definition 24. For a quantum channel Φ∈C(A,B) , we say a positive number R is an achievable
rate for quantum channel coding if there exists a sequence of registers XN satisfying

lim
N→∞

log |XN |
N

= R (3.33)

and a corresponding sequence of encoding and decoding channels ΨE,N ∈C(XN ,A⊗N), ΨD,N ∈
C(B⊗N ,XN) such that

lim
N→∞

inf
R

inf
ρ∈D(XNR)

F
((

ΨD,NΦ
⊗N

ΨE,N⊗1R
)
(ρ ),ρ

)
= 1 (3.34)

where the left infimum is taken over all registers R. We define the quantum capacity Q(Φ) as the
supremum over all achievable rates.

To state the quantum capacity theorem, we need the following definition.

Definition 25. For any bipartite state ρ ∈ D(XY), define the coherent information as

Ic(X > Y )ρ := H(Y )−H(XY ). (3.35)

Now we state the quantum channel capacity theorem.

Theorem 26 (Quantum capacity of a channel [44][60][22]). For any channel Φ ∈C(A,B),

Q(Φ) = lim
l→∞

1
l

sup
R

sup
σ∈D(RA⊗l)

Ic(R > B⊗l)(1R⊗Φ⊗l)(σ) (3.36)

where the left supremum is taken over all registers R.

Now we state a corollary of this theorem for degradable channels, proven in [21]. A channel Φ is
degradable if there exists a channel Ψ such that ΦC = ΨΦ, where ΦC is the complement of the
channel Φ. The quantum capacity of a degradable channel takes a similar form to the classical
capacity of an entanglement breaking channel.
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Corollary 27 (Quantum capacity of a degradable channel [21]). For any degradable channel
Φ ∈C(A,B),

Q(Φ) = sup
R

sup
σ∈D(RA)

Ic(R > B)(1R⊗Φ)(σ) (3.37)

where the left supremum is taken over all registers R.

There has been work on strong converse theorems for quantum channel coding (along with some
negative results). A “pretty strong” converse theorem for the quantum capacity of a degradable
channel was proven in [46].

3.2 Simultaneous message passing model

The simultaneous message passing model is a communication setting consisting of three par-
ties: Alice, Bob, and the referee. For some classical state sets X and Y, Alice and Bob re-
ceive inputs x ∈ X and y ∈ Y, respectively, chosen according to some probability distribution
P ∈ Pr(X×Y). Conditioned on x and y, Alice and Bob send some (quantum or classical) states
σx ∈ D(A),σ ′y ∈ D(B) to the referee. The registers held by Alice, Bob, and the referee are
constricted to be uncorrelated at the start of the protocol (besides the correlations introduced
by P). Also disallowed are back communication from the referee to Alice and Bob, and any
communication between Alice and Bob.

We frequently consider simultaneous message passing model protocols in which the referee per-
forms a measurement on register AB to attempt to determine some relationship between x and y.
In Chapter 4 we consider simultaneous message passing model protocols for which the referee
determines the equality function on x and y with high probability. We also consider the case in
which x and y are unit vectors and the referee determines the Euclidean distance between them
with high probability.

Denoting the above general protocol by the symbol Π, we define the information leakage of Π

as follows.

Definition 28. For some input distribution P and protocol Π defined as above, let

ρP = ∑
x∈X,y∈Y

P(x,y)|xy〉〈xy|⊗σx⊗σ
′
y, (3.38)

and define the information leakage of Π on input P as

QIL(Π,P) = I(XY : AB)ρP (3.39)
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and the (prior free) information leakage of Π as

QIL(Π) = sup
P∈Pr(X×Y)

I(XY : AB)ρP. (3.40)

Using our intuition for the mutual information as a quantifier of the amount of information one
register contains about the other, the information leakage quantifies the amount of information
Alice and Bob leak to the referee about their inputs by sending them the registers A and B.
Furthermore, note that QIL(Π) is equal to the classical capacity of the classical-quantum channel
Φ ∈C(XY,AB) defined as Φ(|xy〉〈xy|) = σx⊗σ ′y. As a corollary, in the limit of infinitely many
repetitions of the protocol, the information leakage upper bounds the number of bits of Alice
and Bob’s joint input that the referee can obtain per protocol repetition, without error probability
going to one by Theorem 23 (strong converse to classical capacity of CQ channels).

For protocols in which σx,σ
′
y are pure states for all x ∈ X and y ∈ Y, the information leakage

also has a source coding interpretation. Indeed, since the entropy of pure states is zero, then
H(AB|XY ) = 0 for any input distribution P, so QIL(Π) = supP H(AB). Thus, by Schumacher’s
theorem, the information leakage gives the optimum rate at which register AB can be compressed
for communication to the referee (maximized over all input distributions P). The states σx,σ

′
y

are pure for every simultaneous message passing model protocol that we consider in this thesis.

3.3 Interactive model

The interactive model is a communication setting consisting of two parties (Alice and Bob)
who use quantum communication, local operations, and fixed pre-shared entanglement ψT in

A T in
B

to implement some channel Φ ∈C(AinBin,AoutBout) using an interactive protocol Π, as shown
in Figure 3.1. Although we avoided generalizing the simultaneous message passing model to
quantum inputs ρ , we find it instructive to present this generalization in the interactive model.

In reference to Figure 3.1, we have chosen

A′0 = AinT in
A

B′0 = BinT in
B

B′M = B′M+1 = BoutB′left

A′M+1 = AoutA′left

B′i = B′i−1 for odd i with 1≤ i < M
A′i = A′i−1 for even i with 1 < i≤M.
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In this way, for odd i, Ui ∈ U(A′i−1Ci−1,A′iCi) and for even i, Ui ∈ U(B′i−1Ci−1,B′iCi), where C0
is the trivial register. These definitions implicitly assume M is even (as in Figure 3.1) but they
can be easily adapted for M odd.

For any such protocol Π acting on input state ρ ∈ D(AinBin), we define

ρi =Ui . . .U1(ρ⊗ψ)U†
1 . . .U

†
i (3.41)

for all i = 1, . . . ,M + 1, where we have implicitly extended each isometry to the appropriate
space by tensoring with the identity matrix. We let R be any register which purifies ρi for all
i = 1, . . . ,M+1.

Definition 29 ([63]). For an interactive communication protocol Π defined as above, define the
information cost of Π on input ρAinBin as

QIC(Π,ρ) =
M

∑
i=1
odd

I(Ci : R|B′i−1)ρi +
M

∑
i=2
even

I(Ci : R|A′i−1)ρi,

and the (input-independent) information cost of Π as

QIC(Π) = sup
ρ∈D(AinBin)

QIC(Π,ρ).

For certain protocols we will find a convenient form for the information cost which intuitively
represents the flow of information in the protocol. For the general form above, it is shown in
[63] using Theorem 16 (state redistribution) that the information cost is equal to the asymptotic
rate of communication needed to execute the protocol Π(ρ) using preshared entanglement when
both parties have knowledge of ρ and M is finite.

3.3.1 Safe classical-quantum interactive protocols

In this section we restrict our attention to protocols Π which implement classical-quantum chan-
nels Φ. This set includes any protocol which performs a classical task (for example, appointment
scheduling). For classical inputs ρ ∈D(AinBin) we instead use the notation P ∈D(XY), replac-
ing the symbol ρ with P, register Ain with X , and register Bin with Y . At times we abuse notation
and use the symbol P to refer to both the classical state as well as the associated probability
distribution on X×Y, and trust that the intended use will be clear from the context.

We further restrict that the protocol Π is safe:
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Purification

Alice

Bob

ρ

R

Ain

Bin

T in
A

T in
B

AinT in
A = A′0

BinT in
B = B′0

U1

|ψ〉

A′1

C1

U2

A′2

C2

B′2

U3

A′3

C3

B′3

· · ·

A′M−1

CM−1

B′M−1

UM

A′M

CM

Bout

B′left

UM+1

A′left

Aout
A′leftAout = A′M+1

B′leftBout = B′M = B′M+1

Φ(ρ)

Figure 3.1: Interactive quantum communication protocol Π to implement the channel Φ. Bor-
rowed from [42].
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Definition 30. We say a classical-quantum protocol Π is safe if Alice and Bob only use their
respective input registers as control registers. Equivalently, the state of register XY is equal to
PXY throughout the protocol.

The set of safe protocols contains any protocol which executes a classical task in which Alice
and Bob receive classical inputs that they are not allowed to manipulate in any way. This set
includes every interactive protocol that we consider in this thesis. The term “safe” was coined in
[38].

In what follows, we will show that for safe protocols on classical inputs the information cost can
be interpreted as a quantifier of the amount of information Alice and Bob learn about eachother’s
inputs as a result of the protocol.

We will frequently consider safe classical-quantum interactive protocols in which Alice and Bob
perform measurements on the registers Aout, Bout, respectively, to attempt to determine some
relationship between their classical inputs. In Chapter 5 (appointment scheduling) we consider
interactive protocols for which X = Y = {0,1}n, and on inputs x,y ∈ {0,1}n Alice and Bob wish
to determine some index i such that xi = yi = 1, or determine with high probability that no such
index exists.

For any safe protocol, we define registers Ai and Bi such that A′i = XAi and B′i =Y Bi, respectively
for each i = 1, . . . ,M and Aleft and Bleft such that A′left = XAleft and B′left = Y Bleft. Under this
definition, the information cost of any safe classical-quantum interactive protocol Π takes the
following form, which follows from the fact that the purification register R is now given by X ′Y ′,
where X ′ and Y ′ are copies of the registers X and Y , respectively.

Lemma 31 (QIC: Safe classical-quantum protocols [42]). The quantum information cost of any
safe classical-quantum interactive protocol Π on input P ∈ Pr(X×Y) is given by

QIC(Π,P) =
M

∑
i=1

QICi(Π,P),

where

QICi(Π,P) = I(Ci : X |Y Bi)ρi + I(Ci : Y |XAi)ρi.

Using our intuition for the mutual information as the amount of information that one register
contains about another, the information cost of each message quantifies the amount of new infor-
mation contained in the communication register about Alice’s register given Bob’s memory, plus
the corresponding quantity with the roles of Alice and Bob reversed.

Another information-theoretic quantity of interest for safe classical-quantum protocols is the
Holevo information cost:
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Definition 32. Define the Holevo information cost of a safe classical-quantum interactive pro-
tocol Π on input P as

HIC(Π,P) = I(X : BoutBleft|Y )ρM+1 + I(Y : AoutAleft|X)ρM+1 (3.42)

and the (input-independent) Holevo information cost of Π as

sup
P∈Pr(X×Y)

HIC(Π,P). (3.43)

The HIC quantifies the amount of information left over from the protocol: the amount of new
information Bob’s output contains about Alice’s input as a result of Π, plus the corresponding
quantity with the roles of Alice and Bob reversed. For safe classical-quantum protocols, the
information cost upper bounds the HIC:

Lemma 33 ([42]). For any safe classical-quantum protocol Π on input P,

QIC(Π,P)≥ HIC(Π,P), (3.44)

and thus

QIC(Π)≥ HIC(Π). (3.45)

This lemma thus gives another interpretation of the information cost as an upper bound on the
amount of information each party learns about the other party’s input as a result of the protocol.

Note that for classical protocols the information cost is equal to the HIC [42].
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Chapter 4

Quantum fingerprinting

Quantum fingerprinting is a task in the simultaneous message passing model (reviewed in Chap-
ter 3) in which Alice and Bob receive inputs x ∈ X and y ∈ Y for X = Y = {0,1}n, chosen
according to some prior distribution P ∈ Pr(X×Y), and they wish to evaluate the quality func-
tion on x and y. Using classical states, the information leakage is lower bounded by Ω(

√
n) [5].

In contrast, there exist protocols using quantum states with information leakageO(logn) [14, 4].

The original quantum fingerprinting protocol uses O(logn)-qubit highly entangled signals and a
controlled-swap measurement [14]. A more recent and experimentally realizable “optical” pro-
tocol uses a tensor product ofO(n) single-qubit signals and a beamsplitter comparison measure-
ment on each signal [4]. In this work, we find a family of protocols which interpolate between
these two, thus demonstrating a trade-off between the number of signals sent and the dimension
of each signal. We show that this family of protocols has information leakage O(logn).

There has been interest in experimental realizations of the optical protocol of [4] using coherent
states [68, 32], but for large n the number of signals required is a significant barrier to experi-
mental demonstration of a quantum advantage in information leakage due to limited coherence
times. We introduce several families of optical coherent state protocols which reduce the number
of signals below that of the existing optical protocol. We improve on the existing optical proto-
col by utilizing the imaginary component of the phase space representation of coherent states,
which reduces the number of signals by a factor 1/2 while also reducing the information leakage.
We introduce several natural generalizations of this protocol which further reduce the number of
signals, but find numerical evidence that the information leakage of these protocols is higher in
both the ideal and experimental settings, even under the optimal measurement performed by the
referee.

Using a similar technique, we also reduce the number of signals and information leakage of a
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recently-proposed optical protocol for evaluating the Euclidean distance between two real unit
vectors [41], and find a similar protocol which evaluates the Euclidean distance between complex
unit vectors.

Along the way, we find a simple beamsplitter measurement which can be used to perform optimal
unambiguous state comparison (USC) between any two coherent states of equal amplitude and
opposite phase when the states are given with equal a priori probabilities. Optimal USC of
two unknown quantum states given with equal a priori probabilities was first solved in [8] and
generalized to arbitrary a priori probabilities in [40]. A method to realize the optimal USC of two
single-photon states prepared with arbitrary a priori probabilities is proposed in [51], but to our
knowledge optimal USC has not yet been experimentally realized. Our scheme has the advantage
of being more experimentally realizable, with the drawback of being sub-optimal for not-equal a
priori probabilities. A related comparison task on coherent states using a beamsplitter has been
proposed in [2].

This chapter is organized as follows. In Section 4.1 we interpolate between the original and
existing optical equality protocols. In Section 4.2 we introduce our improvements to the existing
optical equality and Euclidean distance protocols, and review our numerical evidence that several
natural generalizations of our equality protocol have higher information leakage. In Section 4.3
we derive a bound on the information leakage of the protocols considered. In Section 4.4 we find
a simple beamsplitter measurement which performs optimal unambiguous state comparison of
two coherent states.

4.1 Interpolation

In this section we interpolate between the original equality protocol, which uses a small number
of O(logn)-qubit signals, and the existing optical equality protocol, which uses O(n) single-
qubit signals; thus demonstrating a trade-off between the number of signals sent and the dimen-
sion of each signal. In Sections 4.1.1 and 4.1.2 we introduce slight adaptations to the existing
protocols which are more natural candidates for the interpolation, and in Section 4.1.3 we inter-
polate between these adaptations.

Before proceeding, we outline a general protocol framework which holds for all equality proto-
cols that we consider in this work. First, Alice and Bob receive inputs x,y ∈ {0,1}n respectively,
conditioned on which they send pure states |ψx〉, |ψy〉 to the referee which are sufficiently distin-
guishable when x 6= y. The referee then performs a comparison measurement on |ψx〉 |ψy〉 and
outputs either Equal or NotEqual. We define the error probability of the protocol as the worst
case error probability over all x,y ∈ {0,1}n. In the ideal setting, the error probability of every
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protocol is one-sided: if the inputs are equal the referee will always output Equal. In every pro-
tocol, the states |ψx〉 are product vectors. We refer to individual tensor factors of |ψx〉 as signals.
For many protocols that we consider, the state |ψx〉 will be a tensor product of multiple copies of
identical states, each composed of signals.

To make |ψx〉, |ψy〉 sufficiently distinguishable to the referee when x 6= y, inputs x,y are mapped
to codewords E(x),E(y) ∈ {0,1}m of an error-correcting code characterized by some minimum
distance. The codewords are then encoded into states whose overlap is a decreasing function of
the distance between codewords, which ensures that they are sufficiently distinguishable to the
referee. The code E is chosen to have constant minimum distance and constant rate, which we
will see ensures the O(logn) information leakage of all protocols.

4.1.1 Adaptation of existing optical equality protocol

Here we review the existing optical equality protocol (in the ideal setting) and propose a slight
adaptation which is a more natural candidate for the interpolation. In the existing protocol, each
signal consists of one of two qubits, which the referee measures with a beamsplitter setup. The
desired error probability is attained by adjusting the inner product between the two possible
qubit signals to make them sufficiently distinguishable. In our adapted protocol, we instead fix
the inner product between the two possible qubit signals, and attain the desired error probability
by sending multiple identical copies of each signal.

We show that when the desired error probability is attained with equality, the states used in the
existing optical protocol and our adapted protocol are equal up to a change of basis, i.e. there
exists an isometry mapping the states of the existing optical protocol to the states of our adapted
protocol. We will use Property 3 of [17] that two sets of pure states {|va〉 ∈ Hv}a∈Z,
{|wa〉 ∈ Hw}a∈Z are equal up to change of basis if and only if there exist real numbers θa,a ∈ Z
such that 〈va,vb〉 = ei(θa−θb) 〈wa,wb〉 for all a,b ∈ Z, and an easy corollary that equality up to
change of basis is transitive. By the invariance of entropy under isometries, the information
leakage (defined in Section 4.3) is equal for protocols using states that are equal up to change of
basis.

In the original formulation of the existing optical protocol, the qubit signals are written in a basis
as coherent states. We begin by introducing the existing optical protocol in this basis before
converting to the qubit picture and introducing our adapted protocol. In the existing optical
protocol, the j-th signal is one of two coherent states depending on the j-th codeletter of the
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codeword E(x) ∈ {0,1}m:

|αx〉EQ,1 =
m⊗

j=1

∣∣∣∣(−1)E(x) j
α√
m

〉
j
. (4.1)

For each index j, the referee interferes the j−th pair of signals received from Alice and Bob
in a beamsplitter, and measures the dark port with a single photon threshold detector, obtaining
one of two outcomes: “dark port detection” or “no dark port detection”. The referee outputs
NotEqual if at least one outcome “dark port detection” occurs. On input |βa〉 |βb〉, outcome “no
dark port detection” occurs with probability

|〈βa,βb〉|= e−
1
2 |βa−βb|2. (4.2)

It follows that the error probability given different inputs x 6= y is equal to | 〈αx,αy〉 |, and the
error probability given equal inputs is zero. The worst case error probability occurs when the
codewords differ by minimum distance δm bits, and is equal to exp[−2 |α|2 δ ], which is brought
to within any ε > 0 through appropriate choice of α .

In the existing optical protocol, the set of two possible coherent states for each signal span a two-
dimensional space, and thus can be written in a basis as two qubits |qε

0〉, |qε
1〉 with inner product

determined by ε . In our adaptated protocol, instead of using qubit signals with inner product
determined by ε , the parties instead fix qubits |q′0〉, |q′1〉 independent of ε , and send the minimum
number r of identical copies of each qubit signal needed to attain ε (we refer to each individual
copy as a signal). The referee uses the same beamsplitter measurement (converted to the qubit
basis) on each signal, and outputs NotEqual if any outcome “dark port detection” occurs. See
Section 4.4 for an explicit description of the beamsplitter measurement in the qubit basis.

Now we show that if ε is attained with equality in both the existing protocol and our adapted
protocol, then the states used in each protocol are equal up to a change of basis. Specifically, we
show that the set of signals {| α√

m〉, |
−α√

m〉} used in the existing optical protocol are equal up to

change of basis to the set of states {|q′0〉
⊗r, |q′1〉

⊗r} containing the r copies of each signal used in
our adapted protocol. Indeed, the error probability is given by ε = | 〈q′0,q′1〉 |

δmr = | 〈−α√
m ,

α√
m〉 |

δm,
so | 〈q′0,q′1〉 |

r = | 〈−α√
m ,

α√
m〉 |, which completes the proof by Property 3 of [17] (reviewed above).

4.1.2 Adaptation of original equality protocol

Here we describe the original quantum fingerprinting protocol, and propose a slight adaptation
that is a more natural candidate for the interpolation.
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Similar to the adapted optical protocol, Alice and Bob send the minimum number r of identical
signals

|ψ(m)
x 〉=

1√
m

m

∑
i=1
|i〉 |E(x)i〉 (4.3)

needed to attain worst case error probability ε . We rewrite a single copy of the combined signal
|ψ(m)

xy 〉 := |ψ(m)
x 〉|ψ(m)

y 〉 as

|ψ(m)
xy 〉=

1
m

m

∑
i=1
|i〉 |E(x)i〉 |i〉 |E(y)i〉+

1
m

m

∑
l,h=1
l 6=h

|l〉 |E(x)l〉 |h〉 |E(y)h〉 . (4.4)

In the original protocol, the referee performs the controlled-swap measurement (a projective
measurement onto the symmetric and anti-symmetric subspaces) on each pair of signals |ψ(m)

xy 〉,
and outputs NotEqual if any outcome “anti-symmetric” occurs. The worst case error probability
occurs when the codewords differ by minimum distance δm bits, and is given by (1−δ (1− δ

2 ))
r

[14].

In our adapted protocol, the referee performs the beamsplitter measurement described in Sec-
tion 4.1.1 on each pair of qubits in the first term of the decomposition (4.4), and performs the
controlled-swap measurement on the second term. The referee outputs NotEqual if any outcome
“dark port detection” or “anti-symmetric” occur. In Appendix A.0.1 we show that this protocol
has worst case error probability

PrI
m(Err) =

[
1−δ

(
1− δ

2
+

1
2m

)]r

, (4.5)

a minor improvement over the original protocol.

In Section 4.1.1 we show that the beamsplitter measurement in the qubit basis can be decom-
posed as a direct product of a controlled-swap measurement with an unambiguous state compar-
ison measurement. Thus, the full adapted measurement can also be decomposed into these two
measurements.

4.1.3 Interpolation between adapted protocols

Here we interpolate between the adapted protocols described in Sections 4.1.1 and 4.1.2, demon-
strating a trade-off between the number of signals sent and the dimension of each signal.
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For the interpolation protocol with block-size k, blocks of k bits of E(x) are encoded into each
signal:

|ψ(k)
x 〉=

dm/ke⊗
j=1

[
1√
k

∑
i∈I[ j,k]

|i〉
∣∣∣q(k)E(x)i

〉]
∈ (Ck⊗C2)⊗d

m
k e (4.6)

where |q(k)0 〉, |q
(k)
1 〉 are qubits. The set I[ j,k] indexes the j-th block of k bits, i.e. it is the set of

integers in the range [( j− 1)k+ 1, jk]. If k does not divide m the remaining qubits in the final
signal are set to |q(k)0 〉. As before, Alice and Bob send the minimum number r of identical copies

of the state |ψ(k)
x 〉 needed to attain the desired error probability ε .

The referee’s measurement proceeds similarly to that of our adapted original protocol. We rewrite
the j-th pair of signals contained in the combined state |ψ(k)

xy 〉 := |ψ(k)
x 〉|ψ(k)

y 〉 as

1
k ∑

i∈I[ j,k]

[
|i〉
∣∣∣q(k)E(x)i

〉
|i〉
∣∣∣q(k)E(y)i

〉]
+

1
k ∑

l,h∈I[ j,k]
l 6=h

[
|l〉
∣∣∣q(k)E(x)l

〉
|h〉
∣∣∣q(k)E(y)h

〉]
. (4.7)

For each index j, the referee performs the beamsplitter measurement on each pair of qubits in the
first term of this decomposition, and performs the controlled-swap measurement on the second
term. If outcome “dark port detection” or “anti-symmetric” occur for any index j the referee
decides NotEqual. The worst case error probability is derived in Appendix A.0.1. As noted in
the previous section, this measurement can equivalently be described as a direct product of a
controlled-swap measurement with an unambiguous state discrimination measurement.

As evidenced by (4.6), each signal encodes k qubits, each chosen from the set {|q(k)0 〉, |q
(k)
1 〉}.

We choose these qubits to satisfy | 〈q(k)0 ,q(k)1 〉 | = 1− k/m, which ensures that the interpolation
converges to the adapted orginal and optical protocols for k = m and k = 1 respectively. Further-
more, for fixed error ε , this choice gives rise to fixed repetition number r, which allows us in
Section 4.3.1 to bound the information leakage as O(logn) for every block-size k.

In summary, this family of protocols interpolates between the adapted original and optical pro-
tocols while maintaining information leakage O(logn). For block-size k = 1, . . . ,m, our inter-
polation uses rdm/ke signals, each of dimension 2k, thus demonstrating a trade-off between the
number of signals sent and the dimension of each signal.
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4.2 Optical protocols

In this section we consider several families of optical coherent state simultaneous message pass-
ing model protocols which reduce the number of signals from that of the existing protocols. In
Section 4.2.1 we introduce optical protocols for equality and Euclidean distance which reduce
the number of signals by a factor 1/2 and reduce the information leakage from the existing optical
protocols of [4] and [41] for equality and Euclidean distance, respectively. In Section 4.2.2 we
introduce two families of optical equality protocols which further reduce the number of signals,
but find numerical evidence that these families increase the information leakage in both the ideal
and experimental settings, even under the optimal measurement.

4.2.1 Improved optical protocols for equality and euclidean distance

In our improved optical equality protocol, two bits of E(x) are encoded into each signal by
utilizing the imaginary component of the phase space representation of coherent states, which
reduces the number of signals by a factor 1/2. Codeletters 01/10 are encoded into phases ±i,
and codeletters 00/11 are encoded into phases±1, as shown in Figure 4.1. Explicitly, the parties
send the states

|αx〉EQ,2 =
m⊗

j=1
odd

∣∣∣∣∣(−1)E(x) j × (i)E(x) j⊕E(x) j+1
α√
m/2

〉
j

. (4.8)

The referee uses the same beamsplitter measurement as in the existing optical protocol: she
interferes pairs of signals in a beamsplitter, measures the dark port with a single photon threshold
detector, and decides NotEqual if at least one outcome “dark port detection” occurs.

The above states have the same total mean photon number |α|2 and give rise to the same error
probability as the existing optical protocol. The second statement follows from the expression
(4.2) for the probability of “no dark port detection” in terms of the squared distance between the
complex amplitudes of the incoming coherent state signals, along with the fact that for pairs of
codeletters (E(x) j,E(x) j+1) and (E(y) j,E(y) j+1) which differ by one bit this distance is given
by w2 = |α|2/m as in the existing optical protocol (see Figure 4.1), and for such pairs which
differ by two bits this distance is 2w2, which gives rise to probability of “no dark port detection”
equal to the probability of “no dark port detection” occuring for both signals j and j + 1 in
the existing optical protocol. More details are given in Appendix A.0.2. By the information
leakage bound∼O(|α|2 logmk) (where mk is the number of signals) derived in Appendix B, our
improved protocol has lower information leakage than the existing protocol. It can be shown that
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this statement also holds under the stronger bound derived in Section 4.3.2 for |α|2� mk using
standard approximation techniques. Below we will refer to this protocol, including its use of the
beamsplitter measurement, as the two-bit protocol.

Re[β ]

Im[β ]

w w

√
2w110 000

101

011

001

100

010

111

Figure 4.1: Gray coding of k−bit blocks into a ring of coherent states in phase space for k = 1
(blue), k = 2 (blue and red combined), and k = 3 (blue, red and green combined).
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We improve the existing optical Euclidean distance protocol of [41] in similar fashion. In the
existing protocol, Alice and Bob receive real unit vectors u,v ∈ Rs respectively and prepare the
states

|αu〉ED,1 :=
s⊗

j=1

|u jα〉 j. (4.9)

The referee interferes each pair of signals received from Alice and Bob in a beamsplitter and
measures both output ports with single photon threshold detectors. The quantity ‖u− v‖2 is a
function of |α|2 and the expected difference between the number of detections observed in the
two output ports, so using Chernoff bounds the referee can estimate ‖u−v‖2 to within an additive
constant ε with probability at least 1−δ by repeating this process O(log(1/δ )/ε2) times.

As in our improved equality protocol, our improved Euclidean distance protocol utilizes the
imaginary component of the phase space representation of coherent states to reduce the number
of signals by a factor 1/2. Alice and Bob prepare the states

|αu〉ED,2 :=
s⊗

j=1
odd

|(u j + iu j+1)α〉 j, (4.10)

and the referee uses the same measurement as before. These states have the same total mean
photon number |α|2 as before, and using nearly identical analysis to that of [41] it can be shown
that this protocol attains the same error probability as the existing protocol. Thus, as before, our
protocol has lower information leakage than the existing protocol under the information leakage
bound of Appendix B. Alternatively, one can adapt the existing protocol to evaluate the Euclidean
distance between two complex unit vectors u,v ∈ Cs using the same measurement and the states
(4.9).

4.2.2 Families of optical equality protocols

In this section we introduce two families of optical coherent state equality protocols which further
reduce the number of signals. In Section 4.2.2 we find numerical evidence that these protocols
have higher information leakage than the two-bit protocol in the ideal setting, even under the
optimal measurement. In Section 4.2.2 we find numerical evidence of this behaviour under
realistic experimental imperfections.
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Ideal setting

We first describe our families of optical equality protocols in the ideal setting. In the ring (lattice)
protocol with block size k, blocks of k bits of E(x) are encoded into one of 2k coherent state
signals arranged in a ring (lattice) in phase space using a Gray code, as shown in Figure 4.1. The
size of the ring (lattice) is determined by the referee’s measurement and the desired worst case
error probability ε , and is held constant for all signals.

The ring (lattice) Gray code is a mapping from k-bit strings to a ring (lattice) of coherent state
signals which satisfies the property that all nearest neighbour signals differ in exactly one bit
[30, 20, 16]. Note that in the ring encoding, each coherent state signal has two nearest neighbours,
while in the lattice encoding a given coherent state signal can have as many as four nearest
neighbours. We have chosen this code so that a greater number of bit differences between two
k-bit blocks of E(x) and E(y) corresponds to greater distinguishability between the two coherent
state signals. In Appendix A.0.2 we prove that this is the optimal encoding of k-bit blocks of
binary codewords for all k = 2,3,4, and that it outperforms an analogous encoding of q−ary
codewords.

Now we introduce the two measurements performed by the referee that we consider. The beam-
splitter measurement proceeds identically to that of Section 4.1.1: the referee interferes pairs
of signals in a beamsplitter and measures the dark port with a single photon threshold detector.
She decides NotEqual if at least one outcome “dark port detection” occurs. Recall that the error
probability under the beamsplitter measurement is one-sided, i.e. there is zero error for equal
inputs. We also consider the optimal one-sided error measurement, which is described in Ap-
pendix A.0.3, and is shown to have error probability lower bounded by the square of the error
probability of the beamsplitter measurement.

In Figure 4.2 we plot the information leakage of the ring encoding under the bound of Sec-
tion 4.3.2, compared to the classical information leakage lower bound of [5]. We have optimized
over δ and assumed the code saturates the Gilbert-Varshamov bound [29, 66, 65]

n
m

= 1−h(δ ). (4.11)

For k = 1,2,3 we plot the information leakage under the beamsplitter measurement, and for
k = 4,5,6 we lower bound the information leakage under the optimal measurement using the
quadratic bound on the error probability derived in Appendix A.0.3. We see that the one-bit and
two-bit protocols have the lowest information leakage (they are numerically indistinguishable).
We have observed the same result for ε in the range [10−10,10−2] in both the ring and lattice
protocols.
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Figure 4.2: Information leakage of ring protocols in the ideal setting for ε = 0.01.

Before continuing on to consider experimental imperfections, we argue that for fixed block-size
k, both the ring and lattice protocols have asymptotic information leakage O(logn) in the ideal
setting. In Appendix B we show that any simultaneous message passing model protocol which
uses mk coherent state signals and maximum total mean photon number µmax has information
leakage∼O(µmax logmk). Note that mk = m/k =O(n) by the fact that E is a constant rate code.
Furthermore, in Appendix A.0.2 we show that any fixed error probability is attained with µmax
constant in n. Together, these results imply that the information leakage is O(logn).

Experimental Setting

For larger block-sizes in the experimental setting, the states have fewer signals, so dark counts
have less effect on the error probability. In this section we find numerical evidence that this effect
does not change the observed ideal behaviour, and speculate the same result holds for the lattice
protocol.

The experimental ring protocol uses the same states and beamsplitter measurement as in the
ideal setting. However, to account for transmittivity η the initial total mean photon number
is rescaled to µ/η , and to account for dark count probability pdark the referee uses a different
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criteria to decide Equal or NotEqual. The referee decides NotEqual if the number of outcomes
“dark port detection” exceeds a threshold value Tk which is chosen to minimize the worst case
error probability over all inputs x,y ∈ {0,1}n (which is no longer one-sided when pdark > 0).

Now we determine the optimal threshold value Tk. Define a random variable DE,k for the number
of outcomes “dark port detection” given equal inputs. Define DD,k identically, but for different
inputs which have the lowest expected number of outcomes “dark port detection”. For a given
threshold value T ′k , the worst case error probability is then given by max{Pr(DE,k ≥ T ′k ),
Pr(DD,k < T ′k )}. As the first (second) element is monotonically decreasing (increasing) with T ′k ,
it follows that the optimal threshold value Tk satsifies

Pr(DE,k ≥ Tk) = Pr(DD,k < Tk), (4.12)

which is also the worst case error probability of the protocol under this choice. Actually, as both
probabilities are step functions, it is possible that (4.12) can only be attained with approximate
equality.

For m� k it can be shown that the number of clicks are well-approximated by binomial distri-
butions DE,k ∼ Bin(m/k, pE,k) and DD,k ∼ Bin(m/k, pD,k), where

pD,k = (1− (δk−bδkc))
(

1− e−
µ

m/k

[
1−cos

(
2π

2k bδkc
)])

+(δk−bδkc)
(

1− e−
µ

m/k

[
1−cos

(
2π

2k (bδkc+1)
)])

+ pdark

pE,k = pdark (4.13)

for all k = 1, . . . ,6 under the Gray code (see Appendix A.0.2). We have used this approximation
to calculate the optimal value of Tk and the corresponding worst case error probability (4.12).

In Figure 4.3 we plot the information leakage of the ring protocols under realistic experimental
imperfections, compared to the classical information leakage lower bound of [5]. As before,
we have optimized over δ and assumed the code satisfies the Gilbert-Varshamov bound (4.11).
We have chosen worst case error probability ε = 0.01, transmittivity η = 0.3, and dark count
probability pdark = 7.3×10−11. We include a plot of of the existing optical protocol with inter-
ferometric visibility 99% for reference. We observe the same hierarchy as the ideal setting, but
as dark counts have less effect for protocols sending fewer signals, the k = 2 (two-bit) protocol
now has visibly lower information leakage than the k = 1 protocol. We have also observed the
same hierarchy for pdark in the range [0,10−6] and ε in the range [10−10,10−2]. We speculate the
same behaviour holds for the lattice protocol under experimental imperfections.
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Figure 4.3: Information leakage of ring protocols to attain error probability ε = 0.01 under
transmittivity η = 0.3 and dark count probability pdark = 7.3×10−11. Existing optical protocol
with interferometric visibility 99% included for reference.
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4.3 Information leakage

In this section we bound the information leakage of any simultaneous message passing model
protocol Π in which conditioned on x ∈ X and y ∈ Y Alice and Bob send pure states |ψx〉〈ψx|,
|ψ ′y〉〈ψ ′y| which can be written in a basis as states |φx〉〈φx|, |φ ′y〉〈φ ′y| with diagonal entries equal
to some fixed probability vector Λ for all x ∈ X, y ∈ Y as 2H(Λ). We find such a basis in
both the interpolation and optical ring protocol families, and bound the information leakage of
every protocol in either family as O(logn). In Appendix B we bound the information leakage
of the optical lattice protocol family as O(logn). The bound of Appendix B also holds for the
optical ring protocols, but we have found numerically that the bound of Section 4.3.2 is 15−40%
lower in the considered parameter regime. The intuition for this improvement is that the bound
of Section 4.3.2 takes into account the particular structure of the coherent states used in the
protocol, whereas the bound of Appendix B only uses the fact that every state has the same total
mean photon number.

Recall from Section 3.2 that the information leakage of any pure state protocol is given by

QIL(Π) = max
P∈Pr(X×Y )

I(XY : AB)ρP = max
P∈Pr(X×Y )

H(AB), (4.14)

where

ρP = ∑
x∈X,y∈Y

P(x,y)|xy〉〈xy|⊗ |ψx〉〈ψx|⊗ |ψ ′y〉〈ψ ′y|.

Define a state σAB
P as the state ρAB

P with each pure state |ψx〉〈ψx| and |ψ ′y〉〈ψ ′y| replaced by
|φx〉〈φx| and |φ ′y〉〈φ ′y| respectively. By the definition of change of basis (see Section 4.1.1), there
exists an isometry between ρAB

P and σAB
P , so by the invariance of quantum entropy under isome-

tries, H(ρAB
P ) = H(σAB

P ). As the diagonal entries of each pure state in σAB
P are equal, then

Diag(σAB
P ) = Λ⊗2 for all P ∈ Pr(X×Y). Thus, by the Schur-Horn theorem [58, 37], σAB

P � Λ⊗2

for all P ∈ Pr(X×Y), which implies H(σAB
P ) ≤ H(Λ⊗2) for all P ∈ Pr(X×Y) (see, e.g. [47]).

By additivity of entropy under tensor product,

QIL(Π)≤ 2H(Λ). (4.15)

In the what follows, we apply this bound to the interpolation and optical ring protocol families.

4.3.1 Information leakage: Interpolation

Here we bound the information leakage of the interpolation under the choice of qubit overlap
| 〈q(k)0 ,q(k)1 〉 |= 1− k/m as O(logn):
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Proposition 34. For any fixed error probability ε > 0, there exists a constant C ≥ 0 such that
for all n ≥ 1 the following holds: for all k = 1, . . . ,m (where m is the length of the codewords
E(x)∈ {0,1}m), the information leakage of the interpolation protocol with block-size k and qubit
overlap | 〈q(k)0 ,q(k)1 〉 |= 1− k/m is no greater than C log(n).

As a corollary, for block-size k any function of n such that k(n) ∈ [m] for each n, the family of
protocols which uses the interpolation family with block-size k(n) for each n will have informa-
tion leakage O(logn). For example, k could be held to a fixed constant as in the existing optical
protocol, or the ratio k/m could be held fixed as in the original protocol.

Proof. We prove that the information leakage is upper bounded by C′r logn for some C′ > 0.
In Appendix A.0.1 we show that for fixed error probability ε , the repetition number r is fixed,
completing the proof.

We first write the states |ψ(k)
x 〉
⊗r

in a basis with the desired form. First, by Property 3 of [17]

(reviewed in Section 4.1.1), the states |ψ(k)
x 〉
⊗r

can be written in a basis as

|φ (k,r)
x 〉=

dm/ke⊗
j=1

[√
1− pk |00〉+

√
pk

2k ∑
i∈I[ j,k]

|i〉
(
|0〉+(−1)E(x)i |1〉

)]⊗r

,

because the states |φ (k,r)
x 〉 preserve the overlap structure. The diagonal entries of |φ (k,r)

x 〉〈φ (k,r)
x |

are equal for all x ∈ {0,1}n, and are given by the probability vector

Λ
⊗dm/ker
I,k =

(
1− pk,

pk

2k
, . . . ,

pk

2k

)⊗dm/ker
. (4.16)

Thus, by (4.15) the information leakage of the interpolation protocol with block-size k under the
choice pk = k/m is upper bounded by

QIL(ΠI
k)≤ 2dm/kerH(ΛI,k)

= 2dm/ker
[
(1− k/m) log

(
1

1− k/m

)
+(k/m) log(2m)

]
≤ 2r(2+(1+ k/m) log(2m)). (4.17)

As E is a constant rate code, then m is linear in n, so this quantity is upper bounded by C′r logn
for some fixed constant C′ > 0. In Appendix A.0.1 we show that for fixed error probability ε the
repetition number r is also fixed, which completes the proof.
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4.3.2 Information leakage: Optical ring protocols

Here we bound the information leakage of the optical ring protocol family described in Sec-
tion 4.2.2. In Appendix B we use a method similar to that used in Theorem 1 of [4] to bound the
information leakage of both the ring and lattice protocol families asO(logn) for fixed block-size
k. We have found numerically that for the ring protocols the bound of this section is lower than
that of Appendix B by 15−40%.

We use a similar technique as in the interpolation, and write the states in a basis for which the
diagonal entries are equal for all x ∈ {0,1}n. For block-size k and total mean photon number
µk, each signal consists of one of 2k coherent states equally spaced on a ring with amplitude
βk = µk/(m/k). Formally, each signal is contained in the set

Sk =
{∣∣ω j

βk
〉〈

ω
j
βk
∣∣, j = 0, . . . ,2k−1

}
, (4.18)

where

ω = exp
[

2πi
2k

]
. (4.19)

Now we show that the set Sk can be written in a basis such that the diagonal entries are equal for
all j = 0, . . . ,2k−1. As ω jl = ω jn for all n≡ l mod 2k, then the states in Sk are equal to

∣∣ω j
βk
〉
= e

−|βk|2
2

2k−1

∑
l=0

ω
jl

∑
n≡l mod 2k

β n
k√
n!
|n〉 (4.20)

for j = 0, . . . ,2k−1, which can be written in a basis as

2k−1

∑
l=0

ω
jl

λl |l〉 (4.21)

for

λl = e
−|β |2

2

√√√√ ∑
n≡l mod 2k

|β |2n

n!
. (4.22)

In this basis, the diagonal entries of each state in Sk form the probability vector ΛO,k =(λ 2
0 , . . . ,λ

2
2k−1).

Writing each signal of the states used in the optical ring protocol in this basis, the diagonal
entries of the transformed states are given by Λ

⊗m/k
O,k . By (4.15) and additivity of entropy under
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tensor product, the information leakage of the optical ring protocol ΠO
k with block-size k is upper

bounded by

QIL(ΠO
k )≤ 2m/kH(ΛO,k). (4.23)

The righthand side is straightforward to calculate for practical values of n. It can also be used to
bound the limiting behaviour as O(logn) using standard asymptotic techniques. We have found
that this bound gives an advantage of 15-40% over the bound of Appendix B.

4.4 Optimal unambiguous state comparison with a beamsplit-
ter

Here we explicitly write any set of two coherent states {|β0〉, |β1〉} in a basis as qubits, and con-
struct a measurement in this basis (based on a measurement introduced in [8]) which reproduces
the outcome probabilities of the beamsplitter measurement described in Section 4.1.1. Using a
result of [8] we then find that a beamsplitter measurement with single photon threshold detectors
placed at both output ports performs optimal unambiguous state comparison on {|β 〉, |−β 〉} for
any complex number β when the states are given with equal a priori probabilities.

We begin by writing {|β0〉, |β1〉} in a basis as qubits. Let β = 1
2(β0−β1) and

|qa〉= e
−|β |2

2

[√
cosh(|β |2) |0〉+(−1)a

√
sinh(|β |2) |1〉

]
=
√

1− p |0〉+(−1)a√p |1〉 (4.24)

for p = exp[−|β |2]sinh(|β |2). It is straightforward to verify that |〈q0,q1〉| = |〈β0,β1〉|, so by
Property 3 of [17] (reviewed in Section 4.1.1), the sets {|q0〉, |q1〉} and {|β0〉, |β1〉} are equal up
to a change of basis.

Now we review a measurement (introduced in [8]) in the qubit basis which reproduces the out-
come probabilities of the beamsplitter measurement described in Section 4.1.1, i.e. on input

|qa〉 |qb〉=(1− p) |00〉+(−1)a+b p |11〉
+
√

p(1− p)[(−1)b |01〉+(−1)a |10〉] (4.25)
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for a,b ∈ {0,1}, it outputs “dark port detection” with probability 1−|〈qa,qb〉|, and outputs “no
dark port detection” with probability |〈qa,qb〉|. To avoid confusion with the quantum fingerprint-
ing protocols when we transition to describe the unrelated setting of unambiguous state compar-
ison, we now change notation and rename the outcome “dark port detection” to “different” and
outcome “no dark port detection” to “no difference detection”.

We describe the qubit measurement as a direct sum of measurements on the first and second
terms of the above decomposition. The first term takes one of two forms depending on the equal-
ity of a and b. On this term, the measurement performs unambiguous state discrimination (USD)
between these two forms. In particular, it uses the USD measurement which is optimal for the
case in which each form is given with equal a priori probability [50]. Of course, this choice is
sub-optimal for different a priori probabilities, but we make it because it gives rise to a measure-
ment which reproduces the outcome probabilities of the beamsplitter measurement. We refer to
the two unambiguous outcomes of this measurement as “plus” and “minus” corresponding to the
two forms of the first term of (4.25), and the inconclusive outcome as “?”. On the second term
of (4.25), a controlled-swap measurement is performed (which projects onto the symmetric and
anti-symmetric subspaces). Outcomes “minus” and “anti-symmetric” are mapped to a single out-
come “different” (previously “dark port detection”, see above) which unambiguously determines
a 6= b, and occurs with probability 1−|〈qa,qb〉| [8], thus reproducing the outcome probabilities
of the beamsplitter measurement.

Following [8], we map outcomes “plus” and “symmetric” to a single outcome “same” which
unambiguously determines a = b with probability 1−

∣∣〈qa,qb

〉∣∣ for b = 1⊕ b [8]. In [8] it is
shown that when Pr(a,b) = 1/4 for all a,b ∈ {0,1} this measurement performs optimal unam-
biguous comparison between the cases a = b and a 6= b, i.e. it minimizes the probability of an
inconclusive outcome “?”.

On input |(−1)aβ 〉
∣∣(−1)bβ

〉
to a beamsplitter with single photon threshold detectors placed at

both the light and dark ports, a dark port detection occurs with probability 1−|〈(−1)aβ ,(−1)bβ 〉 |
and a light port detection occurs with probability 1− |〈(−1)aβ ,(−1)bβ 〉 |, which are identical
to the outcome probabilities of the above optimal unambiguous state comparison measurement
in the qubit basis. Thus, this beamsplitter measurement performs optimal unambiguous state
comparison on {|β 〉, |−β 〉} when the states are given with equal a priori probabilities.

4.5 Discussion

In this chapter we developed several families of practical quantum fingerprinting protocols. One
family demonstrated a trade-off between the number of signals sent and the dimension of each
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signal, thus opening the possibility for experimental implementations to find a “sweet spot” for
which the number of signals and dimension of each signal are both technologically feasible. The
other two families use coherent state signals arranged in a ring and lattice in phase space, re-
spectively. We found that one such protocol reduced the number of signals from the existing
coherent state protocol by a factor 1/2, while also reducing the information leakage. Although
the other protocols in the ring and lattice families use even fewer signals, we found convincing
numerical evidence that they have higher information leakage under the bounds we have used.
We ask whether any other family of coherent state protocols might be used to reduce the num-
ber of signals and information leakage, and whether our information leakage bounds could be
improved for these protocols.

Along the way, we discovered a simple beampslitter measurement to perform optimal unambigu-
ous state comparison between two coherent states of equal amplitude and opposite phase when
the states are given with equal a priori probability. We next ask whether a similar measurement
could be used to perform optimal unambiguous state comparison of coherent states for arbitrary
a priori probabilities.
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Chapter 5

Appointment scheduling

Appointment scheduling is a task in the interactive communication setting (reviewed in Chap-
ter 3) in which Alice and Bob receive inputs x ∈ X and y ∈ Y for X = Y = {0,1}n, chosen ac-
cording to some prior distribution P ∈ Pr(X×Y), and they wish to find an index i for which
xi = yi = 1. The original appointment scheduling protocol was developed in [15] and uses
O(
√

n logn) qubits of communication, but only works when x and y intersect in exactly zero
or one index i. This protocol was extended in [10], [18] to a protocol which works on any two
inputs with again O(

√
n logn) qubits of communication. This protocol has a nearly quadratic

improvement over the classical communication complexity lower bound Ω(n) of appointment
scheduling [53, 39]. In essense, this protocol uses a distributed version of the Grover search
algorithm [31]. Accordingly, we refer to it as the distributed Grover search protocol. A lower
bound of Ω(

√
n) for the quantum communication cost of appointment scheduling was proven in

[52], and a protocol attaining this bound was developed in [1].

In this chapter we present several appointment scheduling protocols which use coherent states
and linear optics. We first present a protocol which implements the coherent state mapping de-
scribed in Section 2.3 of the distributed Grover search protocol of [10], [18], and in Appendix C.3
we prove that it has information cost O(

√
n logn). This is again a nearly quadratic improvement

over the classical information cost lower bound of Ω(n) proven in [7] and [19] for the zero-error
and nonzero-error cases, respectively. The distributed Grover search protocol consists of two
unitaries repeatedly applied in succession: oracle calls and inversion about the mean. We find a
method to implement the linear optics transformation corresponding to oracle calls which uses
only local phase-shifters and swapping of two modes. Unfortunately, the linear optics trans-
formation corresponding to inversion about the mean requires a global transformation on many
modes, which poses a potential barrier to implementation of this protocol.
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We circumvent this issue with appointment scheduling protocols which run a two-bit AND pro-
tocol subroutine on each pair of bits of x,y, a method introduced in [12]. We develop two sub-
routine AND protocols. Our first subroutine AND protocol is the direct coherent state mapping
described in Section 2.3 applied to a qubit subroutine AND protocol used in [12] and originally
developed in [38]. This protocol requires the exchange of coherent states in two modes, beam-
splitters of high transmittivity, phase shifters, and single photon threshold detectors. Our second
subroutine AND protocol is newly developed in this work, and it only requires the exchange of
coherent states in two modes, beamsplitters of high transmittivity, and coherent state preparation.
We design both protocols to handle experimental imperfections of loss and dark counts.

Although the asymptotic information cost of these protocols is O(n) (matching the classical
lower bound), in Appendix C we find that the second protocol reduces the QIC in the finite
setting by a factor of nearly 1/2 below the classical lower bound in the low loss regime of 99%
transmittivity and dark count probability 4×10−8. For the first protocol, we find that the factor
of nearly 1/2 improvement comes for 99.9% transmittivity and dark count probability 4×10−8.
Due to the low loss required for a quantum advantage, we believe these protocols are still outside
the scope of current technology.

5.1 Distributed Grover search protocol

In this section we describe the distributed Grover search protocol of [15, 10, 18], and then pro-
ceed to describe our implementation of the protocol’s coherent state mapping (defined in Sec-
tion 2.3).

5.1.1 Original distributed Grover search protocol

In the distributed Grover search protocol of [15, 10, 18] Alice and Bob receive x,y ∈ {0,1}n

distributed according to some probability distribution P ∈ Pr(X×Y), which either have no inter-
section or intersect in k unknown indices a1, . . .ak. These works describe a protocol which uses
O(
√

n logn) qubits of communication to either find a common intersection or determine with
high probability that x and y do not intersect. In this section we review the protocol of [10][18]
under the simplifying assumption k� n (see [18] for an analysis without this assumption). We
first consider the case in which k is known, and briefly discuss the extension to unknown k at the
end of this section.
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Now we describe the distributed Grover search protocol, which always outputs No Intersection
on non-intersecting inputs, and outputs No Intersection on intersecting inputs with probability at
most ε (with probability 1− ε it finds an intersection).

Distributed Grover search appointment scheduling protocol
First, Alice prepares the state

|s〉= 1√
n

n

∑
i=1
|i〉 . (5.1)

Choose iteration number r = bπ/(4θ)c, for θ satisfying sin2
θ = k/n. Then the following is

iterated r times:

1. Alice and Bob jointly perform the oracle call unitary

UA = 1−2
k

∑
j=1
|a j〉〈a j| (5.2)

using the protocol outlined below.

2. Alice performs the inversion about the mean unitary

US = 2|s〉〈s|−1. (5.3)

Then, Alice measures the state in the canonical basis, obtaining some outcome i ∈ [n],
and sends (i,xi) to Bob. Bob then sends yi to Alice. If they find that xi = yi = 1,
they output this index. Otherwise, they repeat the protocol. If they repeat the protocol
K = dlog(1/ε)/ log(n/k)e times without finding an intersection, they output No Intersec-
tion.

The iteration number r is chosen as above because if x and y intersect in k indices, then the
probability that Alice’s measurement produces a non-intersecting index i is no greater than k/n
under this choice (as discussed further below). The repetition number K is chosen to attain error
probability ε .
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In more details, the protocol evolves as follows. Let

|t〉= 1√
1− (k/n)

(
|s〉− 1√

n

k

∑
j=1
|ai〉
)

(5.4)

and

|ã〉= 1√
k

k

∑
j=1

∣∣a j
〉
, (5.5)

then as shown in [10], after l applications of USUA the state is given by

(USUA)
l |s〉= sin((2l +1)θ) |ã〉+cos((2l +1)θ) |t〉, (5.6)

for θ defined as above. In [10] it is shown that for r = bπ/(4θ)c, the probability cos2((2r+1)θ)
that Alice’s measurement does not output an intersecting index i satisfies cos2((2r+1)θ)≤ k/n.

Now we detail how Alice and Bob jointly perform the oracle call unitary UA.

Procedure to implement oracle call unitary UA

Alice prepares auxilliary qubits |0〉 |−〉, so the state of her entire register is |ψ〉 |0〉 |−〉, where
|ψ〉 ∈ S(Cn) is the resultant state from the previous step in the appointment scheduling pro-
tocol.

1. Alice applies (Ux⊗12) and sends the entire state to Bob.

2. Bob applies (1n⊗W )(V )(1n⊗W ) and sends the entire state back to Alice.

3. Alice applies (Ux⊗12), and discards the qubits |0〉 |−〉.

Where Ux,Uy ∈ U(Cn⊗C2) act as

Ux |i〉 |z〉= |i〉 |xi⊕ z〉 for all i = 1, . . . ,n (5.7)
Uy |i〉 |z〉= |i〉 |yi⊕ z〉 for all i = 1, . . . ,n, (5.8)

(which Alice and Bob can implement, respectively), W ∈U(C2⊗C2) is the swap operator which
acts as

W |i〉 | j〉= | j〉 |i〉 for all i, j = 1,2, (5.9)
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and V is the control-Uy gate, where Uy acts on the first two systems, and the state of the third
system is the control.

It is straightforward to show that

(Ux⊗12)(1n⊗W )(V )(1n⊗W )(Ux⊗12) |i〉 |0〉 |−〉= (UA⊗12⊗12) |i〉 |0〉 |−〉 (5.10)

for all i ∈ [n], so the above procedure implements UA.

Thus, for each application of UA, Alice and Bob exchange 2(log(n) + 2) qubits. For k � n,
UA must be implemented at most Kr = O(

√
n/k) times. For each repetition of the protocol,

Alice sends Bob her measurement outcome i (which is logn bits) along with xi (which is one
bit), and Bob sends Alice yi (which is one bit). Thus, the amount of communication in these
stages is upper bounded by K(logn + 2) = O(logn) bits. Thus, the protocol uses a total of
O(
√

n/k log(n)) qubits of communication.

Now we consider the case in which k is unknown to either party, but is known to be much less
than n (see [18] for an analysis without this assumption). The implementation of the unitaries US
and UA is independent of k, so they can still be applied, but the iteration number r is a function of
k (and n), and must now be chosen in a different manner. The protocol proposed in [10], [18] uses
a randomized algorithm to choose the iteration number r, and finds a common intersection (or
determines no intersection with high probability) while maintaining theO(

√
n log(n)) behaviour.

5.1.2 Coherent state distributed Grover search with practical oracle calls

We proceed to describe the coherent-state mapping of Section 2.3 applied to the distributed
Grover search protocol. We find a protocol for which the linear optics transformation VA cor-
responding to the oracle call UA uses only local phase shifters and the swapping of two modes.
Unfortunately, the linear optics transformation VS corresponding to the inversion about the mean
US still requires a global transformation of the state. In Appendix C.3 we prove that this protocol
has information cost O(

√
n logn), a nearly quadratic improvement over the classical informa-

tion cost lower bound of Ω(n) proven in [7] and [19] for the zero-error and nonzero-error cases,
respectively.

We again consider only the case in which x and y either have no intersection or intersect in k
unknown indices a1, . . .ak for k� n. We suggest that this protocol could be adapted in similar
fashion to [10], [18] if this is not the case.

We first describe the coherent state mapping of the distributed Grover search protocol in terms of
VS and VA. Let |ψ〉 = ∑

n
i=1 λi |i〉 ∈ S(Cn) be an arbitrary pure state, which will help us describe
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the action of VS and VA. The following coherent state mapping of the distributed Grover search
protocol always outputs No Intersection on non-intersecting inputs, and outputs No Intersection
on intersecting inputs with probability at most ε (with probability 1− ε it finds an intersection).

Coherent state mapping of distributed Grover search protocol
For some constant α ∈ C (which can be optimized over), Alice prepares the state

n⊗
i=1

∣∣α/
√

n
〉

i (5.11)

Choose iteration number r = bπ/(4θ)c, for θ satisfying sin2
θ = k/n. Then the following is

repeated r times:

1. Alice and Bob jointly perform the linear optics transformation VA corresponding to the
oracle call UA, which acts as

VA fα(|ψ〉) =
n⊗

i=1

∣∣(−1)xi∧yiλiα
〉

i, (5.12)

using the protocol outlined below.

2. Alice performs the linear optics transformation VS corresponding to the inversion about
the mean US, which acts as

VS fα(|ψ〉) =
n⊗

i=1

|(2v−λi)α〉i, (5.13)

for ν = (λ1 + · · ·+λn)/n.

Alice measures each mode with single photon threshold detectors. If no detectors click, she
announces this and the parties repeat the protocol. Otherwise, she chooses a random index
i for which she received a click, and sends (i,xi) to Bob. Bob then sends yi to Alice. If
xi = yi = 1, the parties output this index. Otherwise, they repeat the protocol. If they repeat
the protocol

K =

⌈
log(1/ε)

/
log
(

1

1− e−|α|
2 k

n + e−|α|
2

)⌉
(5.14)

times without finding an intersection, they output No Intersection.
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The iteration number r is chosen as above because if x and y intersect in k indices, then the
probability that Alice’s measurement produces a non-intersecting index i is no greater than (1−
e−|α|

2 k
n ) under this choice (as discussed further below). The repetition number K is chosen to

attain error probability ε . The extra term e−|α|
2

is the probability that no clicks occur.

In more details, the protocol evolves as follows. After l applications of VSVA, coherent states in
intersecting modes will have amplitude sin((2l+1)θ) α√

k
, and coherent states in non-intersecting

modes will have amplitude cos((2l+1)θ) α√
n−k

. This follows directly from (5.6) and the coherent
state mapping. Thus, after r iterations of VSVA, coherent states in intersecting modes will have

mean photon number sin2((2r + 1)θ) |α|
2

k ≥
1−k/n

k |α|2 and coherent states in non-intersecting

modes will have mean photon number cos2((2r+ 1)θ) |α|
2

n−k ≤
k

n(n−k) |α|
2. Thus, at least one of

the n− k non-intersecting modes i will click with probability no greater than

1− e−|α|
2 k

n(n−k) (n−k)
= 1− e−|α|

2 k
n . (5.15)

No clicks occur with probability

e−|α|
2
. (5.16)

Thus, when x and y intersect in k locations, the probability that Alice sends Bob a non-intersecting
index i or that no clicks occur is upper bounded by 1−e−|α|

2 k
n +e−|α|

2
, which justifies the above

choice of repetition number K.

Now we describe Alice and Bob’s procedure to implement VA.

60



Procedure to implement linear optics transformation VA corresponding to oracle call
UA

First, Alice prepares n auxilliary modes initialized to |0〉, so the state of her entire register is

n⊗
i=1

(|λiα〉 |0〉), (5.17)

where
⊗n

i=1 |λiα〉 is the resultant state from the previous step in the coherent state protocol.
Then,

1. For each i in which xi = 1, Alice swaps the i-th pair of modes |λiα〉 |0〉 → |0〉 |λiα〉
(and otherwise applies the identity map), and sends the entire state to Bob.

2. For each i in which yi = 1, Bob flips the sign of the second mode corresponding to
index i using a phase shifter, and sends the entire state back to Alice.

3. Alice repeats the first step: For each i in which xi = 1, she swaps the i-th pair of modes
|λiα〉 |0〉 → |0〉 |λiα〉 (and otherwise applies the identity map). Alice then discards the
n auxilliary modes.

It is straightforward to show that this procedure implements VA exactly.

5.2 Bitwise-AND protocols: Ideal setting

Here we present a protocol for appointment scheduling using a two-bit AND protocol as a sub-
routine, a method introduced in [12]. We then develop two subroutine AND protocols. Our first
subroutine AND protocol is the direct coherent state mapping described in Section 2.3 applied
to a qubit subroutine AND protocol used in [12] and originally developed in [38]. Our second
subroutine AND protocol is newly developed in this work. In this section we present these proto-
cols in the ideal setting, and in Section 5.3 we extend these protocols to handle the experimental
imperfections of loss and dark counts.

As we will see in Appendix C.2, both of our coherent state two-bit AND protocols have high in-
formation cost when the inputs xi,yi ∈ {0,1} have high probability of intersection. This follows
intuitively from the fact that when AND(xi,yi) = 1, Alice and Bob both gain full knowledge of
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the other’s input. To avoid this effect in the case when the input strings x,y ∈ {0,1}n intersect
in many coordinates with high probability, the parties first classically randomly sample some
number s of the n bits and check whether any intersect. If any of these bits intersect, the pro-
tocol terminates, and if not the protocol proceeds with a bitwise-AND quantum protocol. If no
intersection is found in the s randomly chosen bits, then the remaining bits have low probability
to intersect in many locations, which reduces the information cost of the protocol. This classical
subsampling is an adaptation of the protocol of [12], which instead uses pre-shared entanglement
for this stage to attain lower information cost at the expense of being more difficult to implement.

In the ideal setting, both the two-bit AND protocols we consider are zero-error protocols, i.e.
they always evaluate the AND function correctly. We now construct a zero-error appointment
scheduling protocol from any such two-bit AND protocol. Note that this protocol differs from the
Grover search protocol in that the Grover search protocol had some probability of error, whereas
this protocol has zero error in the ideal setting.

Zero-error appointment scheduling protocol ΠD running zero-error protocol ΠA for
two-bit AND as subroutine

1. Alice randomly samples with replacement s coordinates, and sends coordinate set S to
Bob.

2. Alice sends xi to Bob for each i ∈ S.

3. If Bob finds any i ∈ S with xi = yi = 1, he sends smallest such i to Alice, and both
parties output this index, else:

4. Alice and Bob run ΠA on remaining n− s coordinates xi,yi.

5. If they find any index i ∈ [n] such that AND(xi,yi) = 1, both output smallest such i

6. If they find AND(xi,yi) = 0 for all i ∈ [n], they output No Intersection.

In the following sections we describe our two coherent state two-bit AND protocols.

5.2.1 Coherent state mapping of qubit two-bit AND protocol

In this section we describe the zero-error two-bit AND protocol used in [12] and originally
developed in [38], and its coherent state mapping (as defined in Section 2.3), which will be the

62



first of two coherent state two-bit AND protocols that we consider.

Qubit Protocol

We first recall the zero-error qubit two-bit AND protocol of used in [12] and originally developed
in [38]. On inputs xi,yi ∈ {0,1} given to Alice and Bob respectively, this protocol computes
AND(x,y) in r rounds for any even positive integer r.

First, let θ = π

4r and |v〉= cos(θ) |0〉+sin(θ) |1〉. Let Uv be the unitary operator reflecting about
the vector |v〉, i.e. Uv |0〉 = cos(2θ) |0〉+sin(2θ) |1〉 and Uv |1〉 = sin(2θ) |0〉−cos(2θ) |1〉. Let
U0 be the operator reflecting about |0〉, i.e. U0 |0〉= |0〉 and U0 |1〉=−|1〉.
The unambiguous qubit AND protocol of [38] proceeds as follows.

Qubit AND protocol of [38]

First, Alice prepares a qubit-register C initialized to the state |0〉. Then, on each round, Alice
and Bob do the following:

1. On xi = 0 (xi = 1), Alice performs the identity map (Uv map) on the register C and
sends it to Bob.

2. On yi = 0 (yi = 1), Bob performs the identity map (U0 map) on the register C and sends
it to Alice.

After r rounds the state of register C will be |0〉 (−|1〉) if AND(xi,yi)= 0 (1). Alice measures
C in the standard basis to determine the result, which she communicates to Bob. Clearly this
is an unambiguous two-bit AND protocol with zero probability of an inconclusive outcome.

Coherent state version

The first coherent state AND protocol Π̃1
A that we consider is the direct coherent-state mapping of

Section 2.3 applied to the above qubit protocol. As we will see, in contrast to the qubit protocol,
Π̃1

A has some probability p of an inconclusive outcome. We therefore modify protocol Π̃1
A to a

protocol Π1
A(Π̃

1
A) with zero-error as follows:

Definition 35. Given a protocol Π̃ which can be inconclusive, and such that Alice and Bob
always agree on whether a run was inconclusive or not, we recursively define Π(Π̃) as follows:
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Protocol Π(Π̃):

1. Run Protocol Π̃.

2. If Π̃ returns an output, return this output.

3. Else, if Π̃ is inconclusive, rerun Π(Π̃).

Now we explicitly define Π̃1
A. Define a unitary V0 as

V0 |α〉 |β 〉= |α〉 |−β 〉, (5.18)

which acts as a phase flip on the second mode. Clearly, V0 fα(|ψ〉) = fα(U0 |ψ〉) for every state
|ψ〉 used in the qubit protocol.

Define a unitary Rθ as

Rθ |α〉 |β 〉= |cos(θ)α− sin(θ)β 〉 |sin(θ)α + cos(θ)β 〉 (5.19)

which acts as a beamsplitter specified by angle θ . Define a unitary Vv =RθV0R†
θ

, where R†
θ
= R−θ .

It can be shown that Vv fα(|ψ〉) = fα(Uv |ψ〉) for every state |ψ〉 used in the qubit protocol.

The protocol Π̃1
A then proceeds as follows.

Coherent state mapping Π̃1
A of qubit AND protocol

First, Alice prepares a two-mode register C in state |α,0〉, for some α > 0. On each of the r
rounds, Alice and Bob do the following:

1. On xi = 0 (xi = 1), Alice performs the identity map (Vv map) on the register C and
sends it to Bob.

2. On yi = 0 (yi = 1), Bob performs the identity map (V0 map) on the register C and sends
it to Alice.

After r rounds, Alice measures each mode of C with single photon threshold detectors and
communicates the result to Bob.
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In ideal implementations, after all unitaries are performed Alice ends up with |α,0〉 on inputs
(0,0), (0,1) and (1,0), and with |0,−α〉 on input (1,1). Thus, she might detect a photon in the
first mode only if the output to AND is 0 and she might detect a photon in the second mode
only if the output to AND is 1. If she does not detect any photon, she tells Bob that the run was
inconclusive. Note that Alice obtains a click with probability 1− e−|α|

2
for any input. Thus, this

protocol never outputs a wrong answer, and has some uniform probability p = e−|α|
2

of outcome
“Inconclusive”. For clarity, we explicitly write down how the protocol evolves for different
inputs:

Evolution of Π̃1
A for different inputs:

On (0, 0): |α,0〉 →A |α,0〉 →B |α,0〉 →A · · ·

On (0, 1): |α,0〉 →A |α,0〉 →B |α,0〉 →A · · ·

On (1, 0):

|α,0〉 →A |cos(2θ)α,sin(2θ)α〉 →B |cos(2θ)α,sin(2θ)α〉
→A |α,0〉 →B |α,0〉
→A |cos(2θ)α,sin(2θ)α〉 →B |cos(2θ)α,sin(2θ)α〉
→A |α,0〉 →B |α,0〉
...

...

On (1, 1):

|α,0〉 →A |cos(2θ)α,sin(2θ)α〉 →B |cos(2θ)α,−sin(2θ)α〉
→A |cos(4θ)α,sin(4θ)α〉 →B |cos(4θ)α,−sin(4θ)α〉
...

...
→A |cos(2rθ)α,sin(2rθ)α〉 →B

∣∣cos(π

2 )α,−sin(π

2 )α
〉

=|0,−α〉

On (0,0) and (0,1) Alice and Bob’s manipulations leave the state unchanged. On (1,0) Alice
performs Vv and Bob does nothing. Since Vv is its own inverse, the state oscillates between two
forms in this case. On (1,1) Alice and Bob’s manipulations bring the state to |0,−α〉 after r
rounds.

Having described the first coherent state two-bit AND protocol, we now proceed to describe the
second protocol.
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5.2.2 Zero-state injection two-bit AND protocol

Now we propose a second coherent state two-bit AND protocol Π̃2
A which only requires Alice to

apply beamsplitters and Bob to prepare coherent states. The second protocol has the advantage
of being potentially more easily implementable than the first, and it also has lower information
cost under the bounds derived in Appendix C.2. We call this protocol the zero-state injection
protocol because it is the coherent state mapping (see Section 2.3) of a qubit AND protocol in
which Bob replaces the state of the communication register with |0〉 in some cases. For brevity,
we avoid explicit description of this qubit protocol and proceed directly to the coherent state
protocol.

As in protocol Π̃1
A, protocol Π̃2

A computes AND with some probability p of an inconclusive out-
come. We recursively define the zero-error AND protocol Π2

A(Π̃
2
A) from Π̃2

A as in Definition 35.
In contrast to protocol Π̃1

A, any positive integer number of rounds r can be chosen for protocol
Π̃2

A.

Zero-state injection coherent state AND protocol Π̃2
A

First, Alice prepares a two-mode register C in state |α,0〉 and Bob prepares a 2r-mode regis-
ter B in state |α,0〉⊗r. On each of the r rounds, Alice and Bob do the following:

1. On xi = 0 (xi = 1), Alice applies the identity map (Rθ map with θ = π

2r ) to the register
C and sends the transformed state to Bob.

2. On yi = 0, for round j, Bob swaps the state of register C with his j-th copy of |α,0〉
and sends it to Alice. On yi = 1, Bob applies the identity map to register C and returns
it to Alice.

After r rounds, Alice measures each mode of C with single photon threshold detectors and
communicates the result to Bob.

In ideal implementations, after all unitaries are performed, Alice ends up with |α,0〉 on inputs
(0,0), (0,1) and (1,0), and with |0,α〉 on input (1,1). Thus, (as in protocol Π̃1

A) she might detect
a photon in the first mode only if the output to AND is 0 and she might detect a photon in the
second mode only if the output to AND is 1. If she does not detect any photon, she tells Bob that
the run was inconclusive. This protocol never errs, and is inconclusive with probability e−|α|

2
.

For clarity, we explicitly write down how the protocol evolves on different inputs. The terms in
parentheses denote Bob’s memory.
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Evolution of Π̃2
A for different inputs:

On (0, 0): |α,0〉(|α,0〉⊗r) →A |α,0〉(|α,0〉⊗r) →B |α,0〉(|α,0〉⊗r) →A · · ·
On (0,1): |α,0〉(|α,0〉⊗r) →A |α,0〉(|α,0〉⊗r) →B |α,0〉(|α,0〉⊗r) →A · · ·
On (1, 0):
|α,0〉(|α,0〉⊗r)

→A |cos(θ)α,sin(θ)α〉(|α,0〉⊗r) →B |α,0〉(|cos(θ)α,sin(θ)α〉 |α,0〉⊗r−1)

→A |cos(θ)α,sin(θ)α〉(|cos(θ)α,sin(θ)α〉 |α,0〉⊗r−1)

→B |α,0〉(|cos(θ)α,sin(θ)α〉⊗2 |α,0〉⊗r−2)

→A |cos(θ)α,sin(θ)α〉(|cos(θ)α,sin(θ)α〉⊗2 |α,0〉⊗r−2)

→B |α,0〉(|cos(θ)α,sin(θ)α〉⊗3 |α,0〉⊗r−3)
...

...
→A |cos(θ)α,sin(θ)α〉(|cos(θ)α,sin(θ)α〉⊗r−1 |α,0〉⊗1)

→B |α,0〉(|cos(θ)α,sin(θ)α〉⊗r)

= |α,0〉(|cos(θ)α,sin(θ)α〉⊗r)
On (1, 1):
|α,0〉(|α,0〉⊗r)

→A |cos(θ)α,sin(θ)α〉(|α,0〉⊗r) →B |cos(θ)α,sin(θ)α〉(|α,0〉⊗r)

→A |cos(2θ)α,sin(2θ)α〉(|α,0〉⊗r) →B |cos(2θ)α,sin(2θ)α〉(|α,0〉⊗r)
...

...
→A |cos(rθ)α,sin(rθ)α〉(|α,0〉⊗r) →B

∣∣cos(π

2 )α,sin(π

2 )α
〉
(|α,0〉⊗r)

= |0,α〉(|α,0〉⊗r).

On (0,0) and (0,1) Alice and Bob’s manipulations leave the state unchanged. On (1,0) Alice
rotates the state and then Bob replaces it with |α,0〉 on each round. On (1,1) Alice and Bob’s
manipulations bring the state to |0,α〉 after r rounds.

This concludes the description of the second coherent state two-bit AND protocol.

5.3 Bitwise-AND protocols: Experimental imperfections

In this section we extend the zero-error protocol ΠD for appointment scheduling described in
Section 5.2 to a protocol which handles channel transmitivity η and noisy detectors characterized
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by dark count probability pd (the probability that a detector will click even when no incident
photons from the signal are present). We define the extended appointment scheduling protocol
ΠD(η , pd,ε) based on any extended subroutine ΠA(η , pd,ε) which evaluates two-bit AND with
one-sided error ε ≥ 0 (which can be set to zero only if pd = 0). That is, if AND(xi,yi) = 1,
ΠA returns “1” with probability at least 1− ε and returns “0” with probability at most ε , and if
AND(xi,yi) = 0, ΠA always returns “0”. We then describe extensions of the two coherent state
two-bit AND protocols described above to protocols ΠA(η , pd,ε) which attain one-sided error
ε .

The extended protocol ΠD(η , pd,ε) for Appointment Scheduling (running protocol ΠA(η , pd,ε)
for AND as subroutine) is exactly the same as the protocol ΠD described in Section 5.2 with
ΠA extended to ΠA(η , pd,ε). If x and y do not intersect, this protocol will always output No
Intersection. If x and y do intersect in, say, k positions, then this protocol will erroneously output
No Intersection with probability no greater than εk ≤ ε .

Now we extend the protocols Πl
A, l = 1,2 described in Section 5.2 to Πl

A(η , pd,ε). We de-
fine both protocols simultaneously. In similar spirit to Definition 35, we recursively define
Πl

A(η , pd,ε) = Πl
A(Π̃

l
A(η),ε) from a subroutine Π̃l

A(η), defined as follows:

Subroutine protocol Π̃l
A(η), for l = 1,2:

1. In the initialization phase, for Π̃1
A(η) Alice prepares |α/ηr,0〉. For Π̃2

A(η) Alice pre-

pares |α/ηr,0〉 and Bob prepares
∣∣∣α/ηr−1/2,0

〉∣∣∣α/ηr−3/2,0
〉
. . .
∣∣∣α/η1/2,0

〉
.

2. The parties then perform the same operations as in Π̃l
A(1) (the original Π̃l

A of Section
5.2) and Alice measures both modes with single photon threshold detectors. Note that
if pd = 0, the first (second) mode might click only if AND(x,y) = 0(1), and if pd > 0,
any input could give rise to a click in either mode (or both).

3. If only the second mode clicks, Alice sends xi to Bob and Bob sends yi to Alice. They
then output “0” or “1” corresponding to the value of AND(xi,yi).

4. If neither mode clicks or both modes click, Alice sends the result to Bob and both
parties output “Inconclusive”.

5. If only the first mode clicks, Alice sends the result to Bob and both parties output
“Zero?”.
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The two-bit AND protocol Πl
A

(
Π̃l

A(η), pd,ε
)

is defined for any ε ≥ 0 in the case pd = 0 and
any ε > 0 in the case pd > 0, and proceeds as follows:

Two-bit AND protocol Πl
A

(
Π̃

j
A(η), pd,ε

)
for l = 1,2:

Initialize K′ = 0.

1. Run Protocol Π̃l
A(η).

2. If Π̃l
A(η) returns “0” or “1”, return this output.

3. If Π̃l
A(η) returns “Inconclusive,” restart Πl

A

(
Π̃l

A(η),ε
)

.

4. If Π̃l
A(η) returns “Zero?” and pd = 0, return “0”.

5. If Π̃l
A(η) returns “Zero?” and pd > 0, set K′ = K′+1.

6. If K′ ≥ log(1/ε)
log(1/ps)

, return “0.” Else, restart Πl
A

(
Π̃l

A(η), pd,ε
)

.

Where

ps = e−|α|
2
(1− pd)pd (5.20)

is the probability that only the second mode clicks for non-intersecting inputs.

It is straightforward to show that the above protocol computes AND with one-sided error ε . This
concludes the description of the two coherent state two-bit AND subroutine protocols.

5.4 Numerical results

In this section we present our numerical results on our bitwise-AND coherent state appointment
scheduling protocols.

In Figure 5.1 we plot QIC/n of the bitwise-AND protocol running Π̃2
A as subroutine in the

ideal setting for ε = 0, and under experimental imperfections pd = 4× 10−8 and η = 0.99 for
ε = 4×10−8, using the bounds derived in Appendix C. We compare these results to the classical
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Figure 5.1: QIC/n in the ideal setting for ε = 0, and under experimental imperfections
pd = 4×10−8 and η = 0.99 for ε = 4× 10−8, compared with the classical lower bounds of
[7], [19]

lower bounds derived in [7] and [19] for the zero-error and non-zero error settings, respectively,
and find that our appointment scheduling protocol has lower QIC than the classical lower bound
by a factor of nearly 1/2. We have optimized over the mean photon number, the number of
rounds, and the number of bits of classical subsampling and settled on |α|2 = 1, r = 50, and
s = 0.01n, respectively.

For the bitwise-AND protocol running Π̃1
A as subroutine, we have found a factor of nearly 1/2

improvement for pd = ε = 4× 10−8 and η = 0.999. As this protocol performs worse than Π̃2
A

and seems more difficult to implement in practice, we neglect an explicit plot of this result.

5.5 Discussion

In this chapter we developed quantum appointment scheduling protocols using coherent states.
We first developed a coherent state version of the original distributed Grover search protocol.
This protocol is largely still of theoretical interest due to the experimental infeasibility of the
required global linear optics transformation of inversion about the mean. We also developed bit-
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wise AND protocols for appointment scheduling which require coherent states and linear optics
on just two modes. Although these protocols seem significantly more realistic for implemen-
tation than the distributed Grover search, they still appear to be outside the realm of current
technology, primarily due to the low channel loss required.

We have made repeated use of the mapping of [3] (described in Section 2.3) from quantum
protocols using pure states in Cn to optical protocols using a tensor product of n coherent states.
The apparent usefulness of this mapping leads us to ask whether similar mappings might exist
to, say, protocols using a tensor product of qubits, or some other readily implementable states.

We hope that this work might inspire further developments towards practical appointment schedul-
ing, and that the techniques we have developed in Appendix C to analyze the information cost of
our protocols might be useful in other settings.
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Chapter 6

Conclusion

In this thesis we have developed quantum communication protocols for quantum fingerprinting
and appointment scheduling which are feasible for experimental implementation and outper-
form their classical counterparts, even under experimental imperfections. Along the way, we
have developed tools for analyzing the information content of quantum communication proto-
cols. Looking ahead, we hope that these protocols and our methods to analyze their information
content might inspire and inform further work towards practical quantum communication.

72



References

[1] Scott Aaronson and Andris Ambainis. Quantum search of spatial regions. In Proceedings of
the 44th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’03, pages
200–, Washington, DC, USA, 2003. IEEE Computer Society.

[2] Erika Andersson, Marcos Curty, and Igor Jex. Experimentally realizable quantum compar-
ison of coherent states and its applications. Phys. Rev. A, 74:022304, Aug 2006.

[3] Juan Miguel Arrazola and Norbert Lütkenhaus. Quantum communication with coherent
states and linear optics. Phys. Rev. A, 90:042335, Oct 2014.

[4] Juan Miguel Arrazola and Norbert Lütkenhaus. Quantum fingerprinting with coherent
states and a constant mean number of photons. Phys. Rev. A, 89:062305, Jun 2014.

[5] Juan Miguel Arrazola and Dave Touchette. Quantum advantage on information leakage for
equality. arXiv:quant-ph/1607.07516, Jul 2016.

[6] Koenraad M R Audenaert. A sharp continuity estimate for the von neumann entropy. Jour-
nal of Physics A: Mathematical and Theoretical, 40(28):8127, 2007.

[7] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. SIAM Journal on Computing, 42(3):1327–1363, 2013.

[8] Stephen M. Barnett, Anthony Chefles, and Igor Jex. Comparison of two unknown pure
quantum states. Physics Letters A, 307(4):189 – 195, Feb 2003.

[9] M. Berta, M. Christandl, and D. Touchette. Smooth entropy bounds on one-shot quantum
state redistribution. IEEE Transactions on Information Theory, 62(3):1425–1439, March
2016.

[10] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight Bounds on Quantum Searching.
Fortschritte der Physik, 46:493–505, 1998.

73



[11] Mark Braverman. Coding for interactive computation: progress and challenges. In Pro-
ceedings of the 50th Annual IEEE Allerton Conference on Communication, Control, and
Computing, pages 1914–1921. IEEE, 2012.

[12] Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao, and Dave Touchette. Near-
optimal bounds on bounded-round quantum communication complexity of disjointness. In
Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science,
pages 773–791. IEEE, 2015.

[13] Harry Buhrman, Richard Cleve, Serge Massar, and Ronald de Wolf. Nonlocality and com-
munication complexity. Rev. Mod. Phys., 82:665–698, Mar 2010.

[14] Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. Quantum fingerprint-
ing. Phys. Rev. Lett., 87:167902, Sep 2001.

[15] Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum vs. classical communication
and computation. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, STOC ’98, pages 63–68, New York, NY, USA, 1998. ACM.

[16] C Campopiano and B Glazer. A coherent digital amplitude and phase modulation scheme.
IRE Transactions on Communications Systems, 10(1):90–95, 1962.

[17] Anthony Chefles, Richard Jozsa, and Andreas Winter. On the existence of physical trans-
formations between sets of quantum states. International Journal of Quantum Information,
02(01):11–21, 2004.

[18] Goong Chen, Stephen A Fulling, Hwang Lee, and Marlan O Scully. Grover’s algorithm for
multiobject search in quantum computing. Lecture Notes in Physics-New York then Berlin-,
pages 165–175, 2001.

[19] Yuval Dagan, Yuval Filmus, Hamed Hatami, and Yaqiao Li. Trading information complex-
ity for error. arXiv:quant-ph/1611.06650, 2016.
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Appendix A

Quantum fingerprinting error analysis

In Appendix A.0.1 we calculate the worst case error probability of the interpolation for each
block-size k = 1, . . . ,m, which we use in Section 4.3.1 to show that the interpolation has infor-
mation leakage O(logn).

In Appendix A.0.2 we calculate the worst case error probability of the optical ring protocols
described in Section 4.2.2, which we use in Section 4.3.2 and Appendix B to bound the infor-
mation leakage of these protocols. We also prove optimality of this protocol over several similar
protocols which use coherent state signals arranged in a ring in phase space, and state without
proof analogous results for the lattice protocols.

In Appendix A.0.3 we determine the optimal one-sided error measurement for any simultaneous
message passing model equality protocol, and show that the worst case error probability is lower
bounded by the square of the error probability of the beamsplitter measurement.

For most protocols that we consider, each signal encodes several bits of E(x) ∈ {0,1}m. For
different inputs x 6= y ∈ {0,1}n, the error probability depends on the distribution of the bit dif-
ferences between the codewords across the signals. For a given code, the worst case distribution
over the particular 2n codewords could be difficult to calculate. Instead, for most arguments we
make the following simplifying assumption.

Remark 36. In calculating the worst case error probability of any protocol, we assume that the
code is uncharacterized apart from its minimum distance, and take the worst case over all strings
EA 6= EB in the output space of the code which differ by at least the minimum distance.
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A.0.1 Interpolation error probability

Here we calculate the worst case error probability of the interpolation protocol with block-size
k, and then show that under the choice | 〈q(k)0 ,q(k)1 〉 | = 1− k/m the error probability is upper

bounded by 2−δ r, for repetition number r denoting the number of identical copies of |ψ(k)
x 〉 sent.

This implies that for a given desired error probability, r can be fixed independent of n. We use
this fact in the proof of Proposition 34 that the information leakage of the interpolation for fixed
error probability is O(logn).

As mentioned in Remark 36, the worst case is taken over all strings EA 6= EB ∈ {0,1}m which
differ by minimum distance δm bits. To determine the worst case over this set, we first calculate
the probability that the referee’s measurement on the j-th pair of signals of |ψ(k)

xy 〉 returns “dark-
port detection” or “anti-symmetric” under the assumption that EA,i 6= EB,i for d indices i ∈ I[ j,k].
Recall that a direct product of beamsplitter measurements are performed on the first component
of (4.7), and the controlled-swap is performed on the second component. Recall (4.2) that on
input |q(k)0 〉 |q

(k)
1 〉, the beamsplitter measurement outputs “dark-port detection” with probability

pk := 1−|〈q(k)0 ,q(k)1 〉 |. Thus, when d bits differ the direct product of beamsplitter measurements
on the first component of (4.7) outputs “dark-port detection” (“D”) with probability

PrI
k(“D”|d bits differ) =

d pk

k2 . (A.1)

On input |ψ〉 ∈ A⊗B, the controlled-swap outputs “anti-symmetric” with probability ‖1
2(1−

W ) |ψ〉‖2. It follows that the controlled-swap on the second component of (4.7) outputs “anti-
symmetric” with probability

PrI
k(“A-S”|d) = 1

4k2 ∑
i,l∈I[ j,k]

i 6=l

∥∥∥|q(k)E(x)i
〉 |q(k)E(y)l

〉−|q(k)E(y)i
〉 |q(k)E(x)l

〉
∥∥∥2

=
1

2k2

(
k(k−1)− (k−d)(k−d−1)

−2d(k−d)(1− pk)−d(d−1)(1− pk)
2
)
.

Let “no detection” (“ND”) denote the event that neither “dark-port detection” nor “anti-symmetric”
occur for a given signal. After simplification, the probability PrI

k(“ND”|d) of outcome “no de-
tection” when the two k-bit blocks differ by d bits is given by

PrI
k(“ND”|d) = 1−PrI

k(“D”|d)−PrI
k(“A-S”|d)

= 1− d
k

pk

(
1− (d−1)pk

2k

)
, (A.2)
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so for a given distribution of bit differences d1, . . . ,dm/k beetween two codewords among the m/k
blocks, the total error probability is given by

PrI
k(Err|d1, . . . ,dm/k) =

m/k

∏
i=1

PrI
k(“ND”|di), (A.3)

which reproduces (4.5) for pk = 1 and k = m for the worst case d = δm as expected.

Now we prove that the worst case error probability for each block-size k occurs when all bit
differences between the codewords are consolidated into the fewest number of signals. Indeed,
by straightforward calculation it can be shown that for all 0 ≤ pk ≤ 1, for every pair of integers
1≤ d,c≤ k−1 such that d ≥ c,

PrI
k(d)PrI

k(c)≤ PrI
k(d +1)PrI

k(c−1),

which proves the claim. Thus, the worst case error probability is given by

PrI
k(Err) =

[
1− pk

(
1− (k−1)pk

2k

)]b δm
k cr [

1− pk
t
k

(
1− (t−1)pk

2k

)]r

(A.4)

for t the remainder of δm
k given by δm

k =
⌊

δm
k

⌋
+ t

k .

In the remainder of this section, we show that under the choice pk = k/m the worst case error
proability is upper bounded by a constant to the power r. This implies that any fixed error ε > 0
can be attained with fixed r. We use this fact in Proposition 34 to show that the information
leakage of the interpolation under this choice is O(logn).

Under the choice pk = k/m, the worst case error probability is upper bounded by 2−δ r:

PrI
k(Err|pk = k/m) =

[
1− k

m

(
1− (k−1)

2m

)]b δm
k cr [

1− t
m

(
1− (t−1)

2m

)]r

≤
[

1− k
m

(
1− k

2m

)]b δm
k cr [

1− t
m

(
1− t

2m

)]r

≤
[

1− k
m

(
1− k

2m

)] δm
k r

≤ 2−δ r (A.5)

for all 1≤ k ≤ m. The equality follows from simplification of (A.4). The first and third inequal-
ities are straightforward, and the second follows from the fact that the function [1− x(1− x

2)]
1/x

is strictly increasing with x for all 0 < x < 1.
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A.0.2 Error analysis of optical protocols

Here we derive the worst case error probabilities of the optical ring protocols described in Sec-
tion 4.2.2. We also prove that for all k = 1, . . . ,4 the ring Gray encoding is an optimal encoding
of k-bit blocks of binary codewords into coherent states arranged in a ring in phase space. We
then show that the ring Gray encoding outperforms an alternative which uses q−ary codewords.
We state without proof analogous statements for the optical lattice protocols.

Lemma 37. For any positive integer k, the ideal ring protocol described in Section 4.2.2 using
the Gray encoding, states of total mean photon number µk, and the beamsplitter measurement
described in Section 4.1.1, satisfies the following.

The worst case error probability PrO
k (Err) satisfies

PrO
k (Err)≤ exp

[
−µk

[
(1− (δk−bδkc))

(
1− cos

(
2πbδkc

2k

))
+(δk−bδkc)

(
1− cos

(
2π(bδkc+1)

2k

))]]
. (A.6)

Furthermore, if the worst case error probability is taken over all codewords EA 6= EB ∈ {0,1}m

which differ by at least the minimum distance δm bits (as described in Remark 36), this bound is
attained with equality for all 0≤ δ ≤ 3/k.

As a corollary, since every binary code with more than two codewords has minimum distance
δ ≤ 1/2, then for all k = 1, . . . ,6, the worst case error probability PrO

k (Err) is given by (A.6) with
equality in the ideal setting, and can be used to derive equation (4.13) for the approximate error
probability in the experimental setting.

Proof. The error probability of the beamsplitter measurement is given by the probability that
“no dark-port detection” (“ND”) occurs for every pair of signals. The worst case error probabil-
ity depends on the worst case distribution of the bit differences between the codewords across
the signals. To upper bound the worst case error probability, we first bound the probability
PrO

k (“ND”|d) of “ND” when a pair of k-bit blocks differ by d bits. As a property of the Gray en-
coding, nearest-neighbour coherent state signals in phase space correspond to blocks which differ
by one bit. Thus, for any pair of blocks which differ by d bits, the corresponding pair of coherent
state signals must be spaced at least d steps apart on the ring. It follows that PrO

k (“ND”|d) is
upper-bounded by the probability of “ND” when the pair of coherent state signals are spaced d
steps apart on the ring, which is given by

PrO
k (“ND”|d)≤ exp

[
−µk

m/k

(
1− cos

(
2πd
2k

))]
, (A.7)
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which follows from straightforward calculation using equation 4.2, along with the fact that the
ring has amplitude βk = µk/(m/k) (a necessary condition for total mean photon number µk). For
d = 1,2,3 under the Gray code, (A.7) is satisfied with equality (see Figure 4.1 or [30]).

Now we upper bound the worst case error probability using the bound (A.7) for each signal. For
a given distribution of bit differences d1, . . . ,dm/k among the blocks, the error probability is given
by

PrO
k (Err|d1, . . . ,dm/k) =

m/k

∏
i=1

PrO
k (“ND”|di)

≤ exp

[
−µ

m/k

(
m/k−

m/k

∑
i=1

cos
(

2πdi

2k

))]
. (A.8)

Note that

cos
(

2πd
2k

)
+ cos

(
2πc
2k

)
≤ cos

(
2π

2k

⌊
d + c

2

⌋)
+ cos

(
2π

2k

⌈
d + c

2

⌉)
for all 1 ≤ d,c ≤ k. This can be proven by direct calculation for k = 3; for k ≥ 4 it follows
from the fact that the function cos(2πν)+ cos(2π(a−ν)) is a strictly decreasing function of ν

whenever 0≤ ν < a−ν < 1
4 , along with the fact that k

2k ≤ 1
4 .

It follows that the righthand side of (A.8) is maximized for strings EA 6= EB ∈ {0,1}m such
that the bit differences d1, . . . ,dm/k are evenly distributed among the m/k blocks and differ by
minimum distance δm bits (this is the bound (A.6)).

If δ ≤ 3/k, then δm ≤ 3m/k, so when the δm bit differences are evenly distributed among the
m/k blocks, di ≤ 3 for all i = 1, . . . ,m/k. As mentioned above, under the Gray code such inputs
satisfy (A.7) with equality for every signal, and thus also satisfy (A.6) with equality.

Now we prove statements of optimality for the Gray encoding in the optical ring protocols.
Analogous results also hold for the lattice protocols.

Proposition 38. In all protocols considered below, assume the referee uses the beamsplitter
measurement described in Section 4.1.1, and that the worst case error probability is taken over
all codewords EA 6= EB ∈ {0,1}m which differ by at least the minimum distance δm bits, as
described in Remark 36.

For any positive integer k, the ideal ring protocol described in Section 4.2.2 using total mean
photon number µk satisfies the following: For all 0≤ δ ≤ 2/k, the Gray encoding minimizes the
worst case error probability over all encodings of k-bit blocks of binary codewords into a ring of
equally spaced coherent state signals in phase space.
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As a corollary, since every binary code with more than two codewords has minimum distance
δ ≤ 1/2, the Gray encoding is optimal for all k = 1, . . . ,4.

Proof. We prove optimality of any encoding in which nearest neighbour coherent state signals
differ by one bit (this set of encodings includes the Gray encoding). First we show that for any
such encoding, the worst case error probability is given by (A.6) with equality. For any such
encoding, any pair of coherent state signals which are second-nearest neighbours correspond to
a pair of blocks which differ by two bits, and thus satisfy (A.7) with equality. Thus, by the same
arguments used to prove Lemma 37, the worst case error probability for all δ ≤ 2/k under any
such encoding is given by (A.6) with equality.

Now we show that any encoding for which there exist nearest-neighbour coherent state signals
which differ by d′ ≥ 2 bits has worst case error probability greater than (A.6). The inequalities
δ ≤ 2/k and d′ ≥ 2 imply δm ≤ d′m/k. Thus, there exist codewords which differ in δm bits
and for which the bit differences d1, . . . ,dm/k are distributed among the m/k blocks such that
di = d′ for δm/d′ indices i, and all other bit differences are zero. Furthermore, the codewords
can be chosen so that for every index i satisfying di = d′, the corresponding pair of coherent
state signals are nearest neighbours in phase space. Such codewords clearly give rise to error
probability greater than (A.6). Here we have assumed d′ divides δm, but similar techniques can
be used to prove the same statement in the case when d′ does not divide δm.

We have shown that under certain conditions, the Gray encoding is an optimal encoding of binary
codewords into a ring. We now consider another family of optical ring protocols which map q-ary
codewords into q equally-spaced nodes on a ring. Under the assumption that all codes saturate
the Gilbert -Varshamov bound, we show that the Gray encoding of binary codewords outperforms
this family for all q powers of two. An analogous result holds for the lattice protocols.

Proposition 39. In all protocols considered below, assume all codes saturate the Gilbert-Varshamov
bound. Furthermore, assume that the referee uses the beamsplitter measurement described in
Section 4.1.1, and that the worst case error probability is taken over all codewords EA 6= EB
in the output space of the code which differ by at least the minimum distance of the code, as
described in Remark 36.

Let q be any power of two. For all ε > 0, for any q-ary ring protocol described above which
attains error probability ε with total mean photon number µq and mq signals, the k = logq-bit
ring protocol described in Section 4.2.2 with Gray encoding can attain the same error probability
ε with the same total mean photon number µq and fewer than mq signals.

As a corollary, because the logq-bit ring protocol uses the same total mean photon number and
fewer signals than the q-ary ring protocol, then it has lower information leakage under the bound
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derived in Appendix B. It can also be shown that this statement holds under the stronger bound
derived in Section 4.3.2 for n� µq using standard approximation techniques.

Proof. Let mq denote the length of the q−ary code (i.e. the number of “qits” in the code),
and let δqmq denote the minimum distance (i.e. the minimum number of differing qits between
codewords). It is easy to see that the worst case error probability occurs when the codewords
EA 6= EB ∈ [q]mq differ by δqmq qits, and every pair of differing qits correspond to nearest-
neighbour coherent state signals; and is given by

Prq(Err) = exp
[
−µqδq

(
1− cos

(
2π

q

))]
. (A.9)

As the q−ary code saturates the Gilbert-Varshamov bound, the quantity δq satisfies
n

mq
= logq−δq log(q−1)−h(δq) (A.10)

and 0≤ δq < 1−1/q [65]. Note that (A.10) is the ratio of n to the number of signals contained
in each state.

Now consider the k = logq-bit ring protocol using the Gray encoding, the same total mean photon
number, the beamsplitter measurement, and minimum distance

δ =
δq

logq
≤

1− 1
q

logq
≤ 2

logq
. (A.11)

The first inequality follows from δq < 1−1/q and the second is straightforward. By Lemma 37,
the inequality (A.11) implies that the worst case error probability is given by (A.9) with equality.
As the code saturates the Gilbert-Varshamov bound, the ratio of n to the number signals is given
by

n
m/ logq

= (1−h(δq/ logq)) logq. (A.12)

For all 0 ≤ δq < 1− 1/q, we now show that the righthand side of (A.10) is no greater than the
righthand side of (A.12), which implies that this protocol sends fewer signals than the q-ary ring
protocol, completing the proof.

After substituting logq = k and δq = δk, the desired inequality becomes

h(δ )
δ
− h(δk)

δk
≤ log(2k−1) (A.13)

for all 0≤ δ ≤ (1−2−k)/k. Using standard calculus techniques, it can be shown that the lefthand
side of (A.13) is a strictly increasing function of δ . Thus, the inequality need only be shown for
δ = (1−2−k)/k, which is proven using standard techniques.
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A.0.3 Optimal measurement

Here we derive the optimal one-sided error (i.e. zero error for equal inputs) measurement for any
simultaneous message passing model equality protocol, and show that the worst case error prob-
ability is lower bounded by the square of the error probability of the beamsplitter measurement.

Consider a general setting in which the referee receives a state ρAB
z for z ∈ Z chosen according to

some probability distribution P ∈ Pr(Z). For some partition Z = EQtNEQ, the referee wishes
to determine whether z is contained EQ or NEQ under the constraint that if z ∈ EQ she never
errs. Assuming p(z) > 0 for all z ∈ EQ, it is straightforward to show that the measurement
{ΠEQ,1−ΠEQ} (the projection onto the space spanned by the image of the states ρAB

z∈EQ and
its orthogonal complement) minimizes the worst case error probability (and the average error
probability) of this task.

Proposition 40. In the setting described above, under the definitions

Z = {(x,y) : x,y ∈ {0,1}n}
EQ = {(x,x) : x ∈ {0,1}n}

NEQ = {(x,y) : x 6= y ∈ {0,1}n}, (A.14)

if

ρ
AB
(x,y) = |ψx〉〈ψx|⊗ |ψy〉〈ψy| (A.15)

for all x,y ∈ {0,1}n, then the error probability on input x 6= y ∈ {0,1}n is lower bounded by∣∣〈ψx,ψy
〉∣∣2.

As a corollary, since the error probability of the beamsplitter measurement in the optical proto-
cols is given by | 〈ψx,ψy〉 | (see (4.2) and the subsequent discussion), then the error probability
of the optimal measurement is lower bounded by the square of the error probability of the beam-
splitter measurement.

Proof. The error probability is lower bounded by〈
ψxψy

∣∣ΠEQ
∣∣ψxψy

〉
≥

2
∣∣〈ψx,ψy

〉∣∣2
1+
∣∣〈ψx,ψy

〉∣∣2 ≥ ∣∣〈ψx,ψy
〉∣∣2 .

The second inequality is straightforward and the first is derived by considering only the first two
terms of the decomposition

ΠEQ = |ψxψx〉〈ψxψx|+ |φ〉〈φ |+ . . . , (A.16)

where |φ〉 is the normalized component of
∣∣ψyψy

〉
orthogonal to |ψxψx〉.
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Appendix B

Information leakage of optical quantum
fingerprinting protocols

Here we bound the information leakage of any pure state simultaneous message passing model
protocol in which every state

∣∣ψxy
〉

is a tensor product of mk coherent states with total mean
photon number lying in a fixed range [µmin,µmax] for all x ∈ X,y ∈ Y.

In Appendix B.0.1 we give a practical bound on the information leakage using a continuity bound
on entropy. Due to the dimension dependence of continuity bounds, this bound does not give the
desiredO(logmk) limiting behaviour, but has the advantage of being straightforward to calculate
in practice. In Appendix B.0.2 we bound the asymptotic behaviour as O(logmk).

B.0.1 Practical information leakage bound

Here we use an extension of Theorem 1 of [4] and a continuity bound on entropy to bound the in-
formation leakage of any simultaneous message passing model protocol satisfying the conditions
outlined above.

Recall that for pure state protocols the information leakage is equal to the entropy of ρAB
P , max-

imized over prior distributions P ∈ Pr(X×Y). We use the Fannes-Audenart continuity bound,
which bounds H(ρAB

P ) in terms of H(σ),
∥∥ρAB

P −σ
∥∥

1, and |A×B| for any state σ [25][6]. We
choose σ = Π0ρAB

P Π0/Tr(Π0ρAB
P ), where Π0 projects onto a “typical subspace” of ρAB

P , given
by the set of Fock states of total photon number lying within some radius ∆ ∈N of the interval
[µmin,µmax], as in [4]. By straightforward extension of Theorem 1 of [4],
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〈
ψxy
∣∣Π0

∣∣ψxy
〉
≥ 1−max

{
0,e−µmin

(
eµmin

µmin−∆

)µmin−∆
}

− e−µmax

(
eµmax

µmax +∆

)µmax+∆

, (B.1)

and

logdim(Π0)≤ (µmax +∆) log(µmax +∆+mk−1)
+ log(µmax−µmin +2∆+1). (B.2)

We choose any ε ′> 0 (which can be optimized over), and fix ∆ such that
〈
ψxy
∣∣Π0

∣∣ψxy
〉
≥ 1−ε ′.

We now bound the quantities H(σ),
∥∥ρAB

P −σ
∥∥

1, and |X×Y| for a given choice of ε ′. First, by
the dimension bound on entropy, H(σ) is upper bounded by (B.2). Second,∥∥∥ρ

AB
P −σ

∥∥∥
1

≤ ∑
x∈X,y∈Y

P(x,y)
∥∥∥∥|ψxy〉〈ψxy|−

Π0|ψxy〉〈ψxy|Π0

Tr(Π0ρAB)

∥∥∥∥
1

≤ 2 ∑
x∈X,y∈Y

P(x,y)
√

1−
∣∣〈ψxy

∣∣Π0
∣∣ψxy

〉∣∣2
≤ 2
√

2ε ′ (B.3)

where the first inequality is the triangle inequality, the second is the Fuchs-van de Graaf inequal-
ity along with Tr(Π0ρAB

P ) ≤ 1, and the third is (B.1). Third, as there are |X×Y| states |ψxy〉,
they span at most a |A×B|-dimensional space. Combining these bounds, for 2

√
2ε ′ ≤ 1/2 the

Fannes-Audenart continuity bound gives

H(ρAB
P )≤ logdim(Π0)+ log(|X×Y|)

√
2ε ′+h(

√
2ε ′). (B.4)

The quantity (B.4) is independent of the distribution P, and thus upper bounds the information
leakage. Although this bound is easily calculable in practice, it is linear in log(|X×Y|). For the
optical quantum fingerprinting protocols, log(|X×Y|) = 2n = O(mk), so this bound does not
give the desired O(logmk) asymptotic behaviour in this case.
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B.0.2 Information leakage asymptotic analysis

Here we prove theO(logmk) asymptotic information leakage of any simultaneous message pass-
ing model protocol satisfying the conditions outlined above.

Recall that the information leakage of any pure state protocol is equal to the entropy of ρAB
P ,

maximized over prior distributions P∈ Pr(X×Y). We bound H(ρAB
P ) asO(logmk) by projecting

ρAB
P onto Fock states lying within telescoping neighbourhoods ∆0,∆1, . . . of [µmin,µmax].

In general, consider any projective measurement {Π0,Π1 . . . ,} (with possibly infinitely many
measurement operators), and define an isometry

V =
∞

∑
i=0

Πi⊗|i〉⊗|i〉 ∈ U(AB,ABD1D2). (B.5)

Then,

H(AB)ρP = H(ABD1D2)V ρPV †

= H(D1)+H(AB|D1D2)

≤ H(D1)+H(AB|D1)

≤ H(D1)+
∞

∑
i=0

Pr(D1 = i) logdim(Πi), (B.6)

where the first equality follows from the fact that isometries preserve entropy and the second
equality follows from the chain rule and H(D1D2) = H(D1). The first inequality follows from
strong subadditivity, and the second inequality follows from the dimension bound on quantum
entropy.

For a fixed positive integer ∆, let

∆0 = {N ≥ 0 : µmin−∆≤ N ≤ µmax +∆}
∆i = {N ≥ 0 : i∆+1≤ µmin−N ≤ (i+1)∆

or i∆+1≤ N−µmax ≤ (i+1)∆} (B.7)

for each i = 0,1, . . . . Let Πi be the projection onto the space of Fock states with total photon
number lying in the set ∆i. Then the set {Π0,Π1, . . .} forms a measurement.

We now show that Pr(D1 = i) decreases exponentially with i and logdim(Πi) is O(logmk) for
each i (with prefactors not growing too quickly with i) to bound (B.6) as O(logmk). Using
similar techniques to those used to prove Theorem 1 of [4], it can be shown that

Pr(D1 = i)≤ e−µmax

(
eµmax

µmax + i∆

)µmax+i∆

(B.8)
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for all i = 0,1, . . . under the simplifying assumption ∆ > µmax, and

logdim(Πi)≤ (µmax +(i+1)∆) log(µmax +(i+1)∆+mk−1)
+ log(∆) for all i = 1,2, . . . (B.9)

It is straightforward to show that under these bounds the infinite sum appearing in the second term
of (B.6) converges and is O(logmk). It is also straightforward to show that H(C1) is no greater
than the entropy of the µmax Poisson distribution, which is finite and is well-approximated by
1
2 log(2πeµmax) when µmax� 1 [24]. Thus, the asymptotic information leakage is O(logmk).
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Appendix C

Information cost for appointment
scheduling protocols

C.1 Properties of information cost and entropic quantities

Before analyzing the information cost of the appointment scheduling protocols, we state some
properties of the quantum information cost and other entropic quantities that we will use.

C.1.1 Properties of entropic quantities

We first introduce useful properties of entropic quantities that we will use. Proofs of many of
these statements can be found in, e.g. [67].

Lemma 41 (Conditioning on a classical register is taking the average). If

ρ = ρ
ABCD = ∑

c
p(c)|c〉〈c|⊗ρ

ABD
c

is a classical-quantum state with classical register C, then

H(A|CD)ρ = Ec
[
H(A|D)ρc

]
,

I(A : B|CD)ρ = Ec
[
I(A : B|D)ρc

]
,

Lemma 42 (CQ dimension bound). If ρ = ρABCD = ∑c p(c)|c〉〈c|⊗ρABD
c is a classical-quantum

state with classical register C, then

I(A : C|D)ρ ≤ logdim(C).
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Lemma 43 (Pure states have no entropy). If ρ = ρAB = |ψ〉〈ψ|A⊗ρB is pure on register A, then

H(A|B)ρ = 0.

Lemma 44 (Strong subadditivity). For any quantum state ρABC,

H(A|BC)ρ ≤ H(A|B)ρ . (C.1)

Lemma 45 (Isometric invariance). For any quantum state ρA and any isometry V ∈ U(A,B),

H(A)ρ = H(B)V ρV †. (C.2)

Lemma 46 (Dimension bound). For any quantum state ρA ∈ D(A),

H(A)≤ logdim(A). (C.3)

We also use the following bound on the entropy of any rank-two state:

Lemma 47. Consider any state ρ ∈ D(A) which can be written as a convex combination

ρ = p|ψ〉〈ψ|+(1− p)|φ〉〈φ |

of two pure states |ψ〉〈ψ| and |φ〉〈φ |. Let F = |〈ψ,φ〉|. Then,

H(A)ρ = H
(

1
2
− 1

2

√
1−4p(1− p)(1−F2)

)
(C.4)

≤ H
(

1
2
(1−F)

)
. (C.5)

C.1.2 Properties of the information cost of safe interactive protocols on
classical inputs

We also make use of the following properties of the information cost of safe interactive protocols
on classical inputs, the proofs of which can be found in [12, 64, 63, 42]. For brevity, we implicitly
assume Π is a safe interactive protocol on classical inputs for every statement in this section, and
avoid writing down this assumption for each statement.

Lemma 48 (QIC: Concavity in input distribution). Let ν be a distribution over a set of input
distributions on X×Y and denote P̄ = EP∼ν [P]. Then

EP∼ν [QIC(Π,P)]≤ QIC(Π, P̄). (C.6)
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Lemma 49 (QIC: Quasi-convexity in input distribution). For any p ∈ [0,1] and any two input
distributions P1 and P2 on X×Y, let P = pP1 +(1− p)P2. The following then holds for any
M-message protocol Π:

QIC(Π,P)≤ pQIC(Π,P1)+(1− p)QIC(Π,P2)+2MH(p). (C.7)

Note that Lemma 49 gives the following bound for any distribution P with mass w≤ 1/2 on a par-
ticular element x′×y′ ∈X×Y: Let P1(x,y) = 1

1−wP(x,y) for all (x,y) 6= (x′,y′) and P1(x′,y′) = 0;
P2(x′,y′) = 1, and p = 1−w. Then

QIC(Π,P)≤ (1−w)QIC(Π,P1)+2MH(w), (C.8)

which follows from QIC(Π,P2) = 0.

Lemma 50 (QIC: subadditivity). Let Π1 be a protocol acting on input distributions on X1×Y1
and Π2 be a protocol acting on input distributions on X2 ×Y2. For any input distribution
P12 ∈ Pr(X1×Y1×X2×Y2),

QIC(Π1⊗Π2,P12)≤ QIC(Π1,P1)+QIC(Π2,P2), (C.9)

where P1 and P2 denote the marginals of P12 restricted to X1×Y1 and X2×Y2, respectively.

Information cost of protocols with side-information

Here we present known results on the information cost of safe interactive protocols on classical
inputs with side-information. Side-information to a protocol is information contained in an addi-
tional register held by Alice and/or Bob which could affect their knowledge of eachother’s inputs
(i.e. it could be correlated with registers X and Y ), and thus it could affect the information cost
of the protocol.

These results will be useful, for example, in bounding the information cost of the two-bit AND
protocol Π

j
A, j = 1,2, which runs protocol Π̃

j
A as a subroutine with both Alice and Bob storing

side information about the outcome of each run, along with potentially any leftover quantum
information from each run.

In general, say a protocol Π acts on the state of register XY . Additionally, assume Alice has
side-information stored in register Ã, and Bob has side-information stored in register B̃. Then
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the quantum information cost of protocol Π in this case is equal to that defined in (C.1.2) with
registers Ã and B̃ added to Alice and Bob’s memories, respectively:

QIC(Π,P|σ) = ∑
i

I(Ci : X |Y BiB̃)ρi + I(Ci : Y |XAiÃ)ρi

in which σ ∈ D(XY ÃB̃) is the combined state of Alice and Bob’s inputs along with their side
information, and satisfies σXY = P. Note that we have written QIC(Π,P|σ) to denote the infor-
mation cost of protocol Π on input distribution σXY ÃB̃. Of course, the protocol Π still only acts
on the reduced state P.

We will make use of the following inequality:

Lemma 51 (QIC: Increasing under discarding of side-information).

QIC(Π,P|σ)≤ QIC(Π,P).

Now we consider the case in which σXY ÃB̃ takes the form

σ
XY ÃB̃ = ∑

o∈O
Q(o) ∑

x∈X,y∈Y
Po(x,y)|xy〉〈xy|⊗ |o〉〈o|Ã⊗|o〉〈o|B̃ (C.10)

for some classical state set O and some set of probability distributions Po ∈ Pr(X×Y). For us,
this analysis will be helpful in evaluating the information cost of Π

j
A: for each iteration of the

subroutine Π̃
j
A, the classical state set O will represent the classical outcomes of the previous runs

of the protocol (which both Alice and Bob posess at the end of each run).

For any such input σ , the information cost takes the following form, which is an easy corollary
to the above expression for information cost with side information and Lemma 41 (Conditioning
on classical register is taking the average).

Lemma 52 (QIC: Conditioning on classical register is taking the average). For any input distri-
bution σXY ÃB̃ taking the form (C.10) for some classical state set O,

QIC(Π,P|σ) = ∑
o∈O

Q(o)QIC(Π,Po).

Note that, using this result, one can prove the special case of Lemma 51 for when σ takes the
form (C.10) using Lemma 48 (concavity in input distribution) along with ∑o∈O Q(o)Po = P.
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Information cost of pure state protocols

Here we simplify the expression for the information cost of safe interactive protocols on classical
input distributions P for those in which, conditioned on fixed inputs x,y, pure states

∣∣φ x,y
i
〉C are

exchanged. All appointment scheduling protocols we consider fall into this category.

In this case, QICi(Π,P) simplifies to

QICi(Π,P) = I(X : Ci|Y Bi)+ I(Y : Ci|XAi)

= H(Ci|Y Bi)−H(Ci|XY Bi)+H(Ci|XAi)−H(Ci|XYAi)

= H(Ci|Y Bi)+H(Ci|XAi). (C.11)

The first and second equalities follow from the definitions. The third equality follows from
H(Ci|XY Bi) = H(Ci|XYAi) = 0, which follows from purity of the state of register Ci conditioned
on fixed inputs (x,y).

C.2 Information cost of bitwise AND protocols

In this section we analyze the quantum information cost of the modified appointment scheduling
protocol Πl

D under experimental imperfections. We have used the index l = 1,2 to indicate the
choice of subroutine Π̃l

A. As the modified protocol converges to the ideal protocol for pd =
0,η = 1, the following bound also applies in the ideal setting. First we bound the information
cost of Πl

D in terms of the information cost of protocol Π̃l
A for l = 1,2 and protocol parameters.

In Section C.2.1 we bound the information cost of Π̃l
A in terms of protocol parameters.

If pd = 0, define K = 1, and if pd > 0 (and ε > 0), define K = dlog(1/ε)/ log(1/ps)e.

Lemma 53. For all values of n and s satisfying n≥ 4 and 8ln(n)≤ s≤ n, the protocol Πl
D(η , pd,ε)

described in Section 5.3 satisfies

QIC(Πl
D)≤ s+ logs+1

+
n

1− p

1−
(

pz
1−p

)K

1− pz
1−p

[
2(2r+2)

n
+QIC0(Π̃

l
A)+2(2r+2)H

(
2lnn

s
+

1
n

)]
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for l = 1,2, where

QIC0(Π̃
l
A) := sup

P0∈Pr({0,1}2):P0(1,1)=0
QIC(Π̃l

A,P0),

0/0 := 1, p is the probability of an inconclusive outcome, ps is the probability that the second
mode clicks given non-intersecting inputs, and pz is the probability of outcome “Zero?” given
an input distribution with zero mass on (1,1). These probabilities are given by

p = e−|α|
2
(1− pd)

2 +(1− e−|α|
2
+ e−|α|

2
pd)pd

ps = e−|α|
2
(1− pd)pd

pz = (1− e−|α|
2
+ e−|α|

2
pd)(1− pd).

To prove the statement, we first prove the following bound on the information cost of the sub-
routine bitwise-AND protocols.

Lemma 54. Let P be an input distribution with weight w≤ 1/2 on (1,1). The protocol
Πl

A

(
Π̃l

A(η), pd,ε
)

described in Section 5.3 satisfies

QIC(Πl
A,P)≤

1
1− p

1−
(

pz
1−p

)K

1− pz
1−p

[QIC0(Π̃
l
A)+2(2r+2)H(w)] (C.12)

and

QIC(Πl
A,P)≤

1
1− p

1−
(

pz
1−p

)K

1− pz
1−p

2(2r+2) (C.13)

for l = 1,2.

Proof. We prove only the first inequality. The second can be proven similarly by replacing
Lemma 49 (quasi-convexity in input distribution) with Lemma 42 (CQ dimension bound) below,
and using the fact that 2r+ 2 messages are communicated in Π̃l

A, each based solely on the two
bits xi,yi ∈ {0,1}. We write Πl

A, j to denote the protocol Πl
A described in Section 5.3 with K′

initialized to j. Let Xi = Yi = {0,1}, and let ν be any input distribution on Xi×Yi with mass
w′ ≤ 1/2 on (1,1).
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Protocol Πl
A, j on input distribution ν first runs protocol Π̃l

A. With probability p, Π̃l
A is inconclu-

sive and is run again. As p is independent of the state of XiYi, then ν conditioned on outcome
“Inconclusive” is equal to ν . With some probability Pr(“Zero”|ν), protocol Πl

A, j+1 is run on in-
put distribution νz, (ν conditioned on outcome “Zero”). Therefore, the information cost of Πl

A, j
on input distribution ν is given by

QIC(Πl
A, j,ν) = QIC(Π̃l

A,ν)+ pQIC(Πl
A, j,ν |σI)+Pr(“Zero”|ν)QIC(Πl

A, j+1,νz|σz)

≤ QIC0(Π̃
l
A)+2(2r+2)H(w′)+ pQIC(Πl

A,ν)+ pzQIC(Πl
A, j+1,νz),

where σI and σZ are the states of XY ÃB̃ conditioned on outcomes “Inconclusive” and “Zero”,
respectively (the registers ÃB̃ contain all of Alice and Bob’s leftover quantum information from
this and previous steps of the protocol Πl

D). The inequality follows from Lemma 51 (QIC:
increasing under discarding of side information), the discussion subsequent to Lemma 49 (quasi-
convexity in input distribution), and Pr(“Zero”|ν) ≤ pz (recall pz is the probability of “Zero?”
given any input distribution with zero weight on (1,1), and thus upper bounds the probability of
“Zero?” given any input distribution).

Thus,

QIC(Πl
A, j,ν)≤

1
1− p

(QIC0(Π̃
l
A)+2(2r+2)H(w′)+ pzQIC(Πl

A, j+1,νz)) (C.14)

for any j = 0,1, . . . ,K−2. For the case j = K−1, the protocol ends on any outcome other than
“Inconclusive”, so we have

QIC(Πl
A,K−1,ν)≤

1
1− p

(QIC0(Π̃
l
A)+2(2r+2)H(w′)). (C.15)

Note that outcome “Zero” cannot increase the mass w′ of ν on (1,1). Thus, the mass of ν on
(1,1) for each iteration of the above recursion is upper bounded by the original mass w. Under
this bound, equations (C.14) and (C.15) define a geometric series with ratio pz

1−p and prefactor
given by (C.15). The result follows.

Note that the above bound on QIC(Πl
A,ν) strongly depends on the weight w on (1,1). As men-

tioned previously, the classical subsampling component of Πl
D serves to keep w small for each

subroutine AND protocol.

To bound QIC(Πl
D) = maxP QIC(Πl

D,P), we first bound the information cost of the classical
subsampling component of Πl

D. Alice chooses s indices uniformly at random from the set [n]
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and sends them to Bob. As these indices are independent of the state of XY , this component of
the protocol has zero information cost. Next, Alice sends xi to Bob for each i ∈ S. By Lemma 42
(CQ dimension bound), the information cost of this component is upper bounded by s. Then,
if Bob finds that xi = yi = 1 for any index i ∈ S, he sends the minimum such i to Alice, and if
not he tells Alice they should continue with the quantum bitwise AND portion of Πl

D. Thus,
by Lemma 42 (CQ dimension bound) the information cost of this stage is upper bounded by
log(s)+1. In sum, the information cost of the classical subsampling component of Πl

D is upper
bounded by s+ log(s)+1.

Now we bound QIC(Πl
D,P) directly. Let SA be a binary random variable taking value 1 with the

probability that Alice and Bob successfuly find an intersecting coordinate during the classical
subsampling component of Πl

D. Then

QIC(Πl
D,P)≤ s+ logs+1+Pr[SA = 0]QIC(Πl⊗n

A ,ν |σ0)

≤ s+ logs+1+Pr[SA = 0]QIC(Πl⊗n
A ,ν)

≤ s+ logs+1+Pr[SA = 0] ∑
i∈[n]

QIC(Πl
A,νi)

≤ s+ logs+1+Pr[SA = 0]nQIC(Πl
A,

1
n ∑

i∈[n]
νi), (C.16)

where ν is the probability distribution P conditioned on SA = 0, σ0 is the leftover (quantum) in-
formation from the classical subsampling component of ΠD, and νi is the marginal of ν on XiYi.
The first inequality follows from the above classical subsampling bound along with Lemma 52
(QIC: conditioning on classical register is taking the average) and the fact that the protocol ter-
minates if SA = 1. For the first inequality we have also upper bounded the information cost of
the portion of the protocol which runs the bitwise-AND protocol on the remaining n− s coordi-
nates by the information cost of the bitwise-AND protocol run on all n coordinates. This choice
gives a negligibly worse bound at the advantage of being easier to present. The second inequal-
ity follows from Lemma 51 (QIC: increasing under discarding of side-information). The third
inequality follows from Lemma 50 (QIC: subadditivity). The fourth inequality follows from
Lemma 48 (QIC: concavity in input distribution).

Note that the bound (C.16) strongly depends on the expected number of intersections 1
n ∑i vi. We

now formalize our intuition that the classical subsampling component should keep this expected
value low.

If Pr[SA = 0] ≤ 1/n we don’t even need to use the effect of classical subsampling to obtain a
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good bound. Simply by the dimension bound (C.13) of Lemma 54,

Pr[SA = 0]nQIC(ΠA,
1
n ∑

i∈[n]
νi)≤

1
1− p

1−
(

pz
1−p

)K

1− pz
1−p

2(2r+2). (C.17)

If Pr[SA = 0] > 1/n and 1
n ∑i∈[n]νi(1,1) ≤ 1/2, then by the bound (C.12) of Lemma 54 and

Pr[SA = 0]≤ 1,

Pr[SA = 0]nQIC(Πl
A,

1
n ∑

i∈[n]
νi)

≤ n
1

1− p

1−
(

pz
1−p

)K

1− pz
1−p

[
QIC0(Π̃

l
A)+2(2r+2)H

(
1
n ∑

i∈[n]
νi(1,1)

)]
,

which completes the proof of Lemma 53.

To finish it off, we need only show that the classical subsampling stage ensures the inequality

1
n ∑

i∈[n]
νi(1,1)≤

2ln(n)
s

+
1
n
≤ 1/2 (C.18)

for all values of n and s satisfying n ≥ 4 and 8ln(n) ≤ s ≤ n. The second inequality in (C.18)
is straightforward. For the first, let N(X ,Y ) be a random variable outputting the number of
intersecting coordinates of (x,y). Note that

∑
i∈[n]

νi(1,1) = EνN(X ,Y ) = EP|SA=0N(X ,Y )

= ∑
1≤d≤n

Pr[N(X ,Y ) = d|SA = 0]d (C.19)

and

Pr[N(X ,Y ) = d|SA = 0] =
Pr[N(X ,Y ) = d]

Pr[SA = 0]
·Pr[SA = 0|N(X ,Y ) = d]

≤ nPr[N(X ,Y ) = d](1−d/n)s

≤ nPr[N(X ,Y ) = d]exp(−ds/n), (C.20)
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where the first inequality follows from Pr[SA = 0] ≥ 1/n and Pr[SA = 0|N(X ,Y ) = d] ≤ (1−
d/n)s, and the second inequality follows from the Taylor series expansion of the exponential
function. Thus,

∑
i∈[n]

νi(1,1) = ∑
1≤d≤

⌊
2n ln(n)

s

⌋Pr[N(X ,Y ) = d|SA = 0]d

+ ∑⌊
2n ln(n)

s

⌋
<d≤n

Pr[N(X ,Y ) = d|SA = 0]d

≤ ∑
1≤d≤

⌊
2n ln(n)

s

⌋Pr[N(X ,Y ) = d|SA = 0]d

+(nexp(−ds/n))n

≤ ∑
1≤d≤

⌊
2n ln(n)

s

⌋Pr[N(X ,Y ) = d|SA = 0]d

+1

≤ 2n ln(n)
s

+1.

The first inequality follows from (C.20), the upper bound d ≤ n for all d in the range of the
second sum, and the bound n on the number of terms in the sum. The second inequality follows
from exp(−ds/n) ≤ 1/n2 (which results from 2ln(n) ≤ s ≤ n), and the third inequality follows
from d ≤ 2n ln(n)

s for all terms in the sum, along with the fact that the sum is upper bounded by a

convex combination of 1≤ d ≤
⌊

2n ln(n)
s

⌋
, which is upper bounded by the largest term

⌊
2n ln(n)

s

⌋
.

This completes the proof of the inequality (C.18), and thus the proof of Lemma 53.

C.2.1 Information cost of subroutine AND protocol

Here we detail the framework we will use to bound QIC0(Π̃
l
A(η)) for l = 1,2. A lossy channel

acting on coherent states can be modeled by a beamsplitter with transmittivity η . We assume
that channel loss resides in the communication register, and after it has been communicated it
resides in Bob’s memory. This corresponds to the case in which Bob is “honest but curious”,
i.e. he honestly performs the protocol while attempting to gain as much information as possible
about Alice’s input using his memory and the environment.

By the simplification (C.11) of the information cost of pure state protocols, the information cost
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of protocol Π̃l
A simplifies to

QIC(Π̃l
A,P0) =

2r

∑
i=1

H(Ci|Y Bi)+H(Ci|XAi)+QIC2r+1(Π̃
l
A,P0)+QIC2r+2(Π̃

l
A,P0). (C.21)

Note that the last two messages are classical, and are mixed because they depend on Alice’s
measurement outcome.

Now we simplify the above expression for P0 ∈ Pr(Xi×Yi) satisfying P0(1,1) = 0. For both
protocols, H(Ci|X = 0) = 0 for all i ≤ 2r, and H(Ci|Y = 0) = 0 for even i ≤ 2r. In the final
two messages C2r+1,C2r+2, if the second mode clicks, Alice sends x to Bob and Bob sends y
to Alice. For an input distribution with zero mass on (1,1), this occurs with probability ps.
Otherwise, in C2r+1, with probability p Alice sends “Inconclusive” and with probability pz Alice
sends “Zero?”. In this case, Bob sends nothing in the final message, so C2r+2 is trivial. For an
input distribution with zero mass on (1,1), these probabilities and the content of these messages
is independent of (x,y) and the content of register B2r+1, so these messages do not contribute
to the information cost. Thus, the only contribution to the information cost for the final two
messages is when the second mode clicks. By Lemma 42 (CQ dimension bound),

QIC2r+1(Π̃
l
A(η),P0)+QIC2r+2(Π̃

l
A(η),P0)≤ 2ps. (C.22)

By (C.11), Lemma 41 (conditioning on classical register is taking the average), and the above
analysis,

QIC(Π̃l
A,P0)≤ 2ps +

2r−1

∑
i=1,odd

H(CiBi|Y = 0)−H(Bi|Y = 0). (C.23)

In the following sections we apply the above bound to each protocol Π̃l
A.

C.2.2 Information cost for zero-state injection protocol

Here we prove the following bound on the information cost QIC0(Π̃
2
A(η)) of the subroutine

Π̃2
A(η) for the zero-state injection protocol Π2

A(η , pd,ε) for AND.

Lemma 55.

QIC0(Π̃
2
A(η))≤ 2ps +H(

1
2
(1−F1F3 . . .F2r−1)),
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in which

ps = e−|α|
2
(1− pd)pd (C.24)

is the probability that only the second mode clicks for non-intersecting inputs, and

Fi = exp

[
− |α|2

η2r−(i−1)

[
1− cos

(
π

2r

)]]
(C.25)

for all i = 1,3, . . . ,2r−1.

Corollary 56. The protocol Π2
D(η , pd,ε) described in Section 5.3 satisfies

QIC(Π2
D(η , pd,ε))≤ s+ logs+1+

n
1− p

1−
(

pz
1−p

)K

1− pz
1−p

[
2(2r+2)

n
+2ps

+H
(

1
2
(1−F1F3 . . .F2r−1)

)
+2(2r+2)H

(
2lnn

s
+

1
n

)]
,

From expression (C.23) it is clear that any content of Bi which produces an uncorrellated pure
state when conditioned on Y = 0 can be safely discarded without changing the information cost.
Therefore, we assume Bi contains only elements which do not produce an uncorellated pure state
when conditioned on Y = 0. Under this assumption, the state of the registers CiBi for odd i in the
(0,0),(0,1),(1,0) cases are as follows:
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State of registers CiBi for odd i on different inputs for protocol Π̃2
A:

On (0,0):
i odd (A→ B):(∣∣∣∣ 1

ηr−i/2 α,0
〉∣∣∣∣ √1−η

ηr−(i−1)/2
α,0

〉) i−2⊗
l=1,odd

(∣∣∣∣ 1
ηr−l/2 α,0

〉∣∣∣∣ √1−η

ηr−(l−1)/2
α,0

〉)
On (0,1): Identical to (0,0).
On (1,0):
i odd (A→ B):(∣∣∣∣ 1

ηr−i/2 α cos2θ ,
1

ηr−i/2 α sin2θ

〉∣∣∣∣ √1−η

ηr−(i−1)/2
α cos2θ ,

√
1−η

ηr−(i−1)/2
α sin2θ

〉)
i−2⊗

k=1,odd

(∣∣∣∣ 1
ηr−k/2 α cos2θ ,

1
ηr−k/2 α sin2θ

〉∣∣∣∣ √1−η

ηr−(k−1)/2
α cos2θ ,

√
1−η

ηr−(k−1)/2
α sin2θ

〉)

where the first two modes are contained in register Ci and the rest are contained in register
Bi. Note that the content of registers Ci−2Bi−2 is identical to that of register Bi. Thus, (C.23)
simplifies to

QIC(Π̃l
A,P0) = 2ps +H(C2r−1B2r−1|Y = 0)−H(B1|Y = 0)

= 2ps +H(C2r−1B2r−1|Y = 0)

≤ 2ps +H
(

1
2
(1−F1F3 . . .F2r−1)

)
, (C.26)

where the second equality follows from H(B1|Y = 0) = 0, which results from the fact that the
state of B1 is pure conditioned on Y = 0. The product F1F3 . . .F2r−1 is the overlap of the two
possible states of C2r−1B2r−1 when Y = 0 and is given by (C.25). The inequality follows from
Lemma 47. As the above bound holds for all P0 ∈ Pr({0,1}2) such that P0(1,1) = 0, then it also
bounds QIC0(Π̃

2
A).
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C.2.3 Information cost for coherent state version of qubit protocol

We prove the following bound on the information cost QIC0(Π̃
1
A(η)) of the subroutine Π̃1

A(η)
for the coherent-state protocol Π1

A(η , pd,ε) for AND.

Lemma 57.

QIC0(Π̃
1
A(η))≤ 2ps +

2r−1

∑
i=1,odd

[
H
(

1
2
(1−Fi)

)]
,

in which

ps = e−|α|
2
(1− pd)pd (C.27)

is the probability that only the second mode clicks for non-intersecting inputs, and

Fi = exp

[
− |α|2

η2r−(i−1)

[
1− cos

(
π

2r

)]]
(C.28)

for all i = 1,3, . . . ,2r−1.

Corollary 58. The protocol Π1
D(η , pd,ε) described in Section 5.3 satisfies

QIC
(
Π

1
D(η , pd,ε)

)
≤ s+ logs+1+

n
1− p

1−
(

pz
1−p

)K

1− pz
1−p

[
2(2r+2)

n
+2ps

+
2r−1

∑
i=1,odd

[
H
(

1
2
(1−Fi)

)]
+2(2r+2)H

(
2lnn

s
+

1
n

)]

Now we prove the lemma. The state of the register Ci for odd i in the (0,0),(0,1),(1,0) cases
are as follows:
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State of register Ci for odd i on different inputs for protocol Π̃1
A:

On (0,0):
i odd (A→ B): ∣∣∣∣ 1

ηr−i/2 α,0
〉∣∣∣∣ √1−η

ηr−(i−1)/2
,0
〉

(C.29)

On (1,0): Identical to (0,0).
On (0,1):
i odd (A→ B):∣∣∣∣ 1

ηr−i/2 α cos2θ ,
1

ηr−i/2 α sin2θ

〉∣∣∣∣ √1−η

ηr−(i−1)/2
α cos2θ ,

√
1−η

ηr−(i−1)/2
α sin2θ

〉
(C.30)

By (C.23), Lemma 44 (subadditivity), and Lemma 47, we have

QIC(Π̃1
A(η),P0)≤ 2ps +

2r−1

∑
i=1,odd

H(Ci|Y = 0)

≤ 2ps +
2r−1

∑
i=1,odd

H
(

1
2
(1−Fi)

)
where Fi is the fidelity between the two possible states of register Ci when Y = 0, and is given by
(C.28). This completes the proof.

C.3 Information cost of coherent state Grover search protocol

Here we bound the information cost of any r′-round safe interactive communication protocol
in which, conditioned on fixed inputs x ∈ X,y ∈ Y, pure states

∣∣φ x,y
i
〉Ci are exchanged, each of

which is a tensor product of m coherent states with total mean photon number lying in a fixed
range [µmin,µmax] for all x ∈ X,y ∈ Y, as O(r′ logm). We then apply this bound to the coherent
state Grover search protocol.

By (C.11) and Lemma 44 (subadditivity), for any such protocol Π and any input distribution
Π, QICi(Π,P) ≤ 2H(Ci), which is O(logn) by the analysis of Appendix B.0.2. Thus, after r′

rounds, the total information cost is O(r′ logm).
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Now we apply this bound to the coherent state version of the Grover search protocol. This is
a pure state protocol, and every state has total mean photon number |α|2. This follows from
VS |ψα〉= fα(US |ψ〉) and VA |ψα〉= fα(UA |ψ〉) for every state |ψ〉 used in the original protocol,
and that Alice and Bob’s manipulations of the state to jointly perform VA do not change the total
mean photon number. Each state communicated between Alice and Bob is a tensor product of n
coherent states. For K repetitions, by straightforward application of Lemma 51 (QIC: increasing
under discarding of side information), the fact that this protocol uses Kr = O(

√
n/k) rounds

of quantum communication, and the above information cost bound, the information cost of this
stage is O(

√
n/k logn).

For each repetition of the protocol, Alice sends Bob her measurement outcome i (which is logn
bits) along with xi (which is one bit), and Bob sends Alice yi (which is one bit). Or, if Alice re-
ceived no clicks she uses one bit to tell Bob. Thus, the amount of communication in these stages
is upper bounded by K(logn+2+1) =O(logn) bits, which also upper bounds the information
cost of these stages by Lemma 42 (dimension bound). Thus, in total, this protocol has informa-
tion costO(

√
n/k log(n)). The coherent state Grover search protocol thus has a nearly quadratic

improvement over the classical information cost lower bound of Ω(n) proven in [7] and [19] for
the zero-error and nonzero-error cases, respectively.
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