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Abstract 

Optimization of multiproduct processes is vital for process performance, especially during 

dynamic transitions between operating points. However, determining the optimal operating conditions can 

be a challenging problem, since many aspects must be considered, such as design, control, and 

scheduling. This problem is further complicated by process disturbances and parameter uncertainty, 

which are typically randomly distributed variables that traditional methods of optimization are not 

equipped to handle. Multi-scenario approaches that consider every possible realization are also 

impractical, as they quickly become computationally prohibitive for large-scale applications. Therefore, 

new methods are emerging for generating robust solutions without adding excessive complexity. This 

thesis focuses on the development of two optimization methods for the integration of design, control, and 

scheduling for multi-product processes in the presence of disturbances and parameter uncertainty. 

Firstly, a critical set method is presented, which decomposes the overall problem into flexibility 

and feasibility analyses. The flexibility problem is solved under a critical (worst-case) set of disturbance 

and uncertainty realizations, which is faster than considering the entire (non-critical) set. The feasibility 

problem evaluates the dynamic feasibility of the entire set, and updates the critical set accordingly, adding 

any realizations that are found to be infeasible. The algorithm terminates when a robust solution is found, 

which is feasible under all identified scenarios. To account for the importance of grade transitions in 

multiproduct processes, the proposed framework integrates scheduling into the dynamic model by the use 

of flexible finite elements. The critical set method is applied to two case studies, a continuous stirred-tank 

reactor (CSTR) and a plug flow reactor (PFR), both subject to process disturbance and parameter 

uncertainty. The proposed method is shown to return robust solutions that are of higher quality than the 

traditional sequential method, which determines the design, control, and scheduling independently. 

This work also considers the development of a back-off method for integration of design, control, 

and scheduling for multi-product systems subject to disturbances and parameter uncertainty. The key 
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feature of this method is the consideration of stochastic random variables for the process disturbance and 

parameter uncertainty, while most works discretize these variables. This method employs Monte Carlo 

(MC) sampling to generate a large number of random realizations, and simulate the system to determine 

feasibility. Back-off terms are determined and incorporated into a new flexibility analysis to approximate 

the effect of stochastic uncertainty and disturbances. The back-off terms are refined through successive 

iterations, and the algorithm converges, terminating on a solution that is robust to a specified level of 

process variability. The back-off method is applied to a similar CSTR case study for which optimal 

design, control, and scheduling decisions are identified, subject to stochastic uncertainty and disturbance. 

Another scenario is analyzed, where the CSTR is controlled in open-loop, and the control actions are 

determined directly from the optimization. The back-off method successfully produces solutions in both 

scenarios, which are robust to specified levels of variability, and consider stochastic representations of 

process disturbance and parameter uncertainty. 

The results from the case studies indicate that there are interactions between optimal design, 

control, scheduling, disturbance, and uncertainty, thus motivating the need for integration of all these 

aspects using the methods described in this thesis. The solutions provided by the critical set method and 

the back-off can be compared, since the methods are applied to the same CSTR case study, aside from the 

differences in disturbance and uncertainty. The back-off method offers a slightly improved solution, 

though the critical set method demands much less computational time. Therefore, both methods have 

benefits and limitations, so the optimal method would depend on the available computational time, and 

the desired quality and robustness of the solution. 
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Chapter 1: Introduction 

Multiproduct processes are widely used in different sectors due to their versatility and 

convenience, e.g. oil & gas (Harjunkoski et al., 2009), pharmaceutical (Nie and Biegler, 2012), and 

polymer production (Harjunkoski et al., 2009; Terrazas-Moreno et al., 2008). To remain competitive, 

companies are required to operate their systems at nearby optimal conditions that can efficiently produce 

their products under environmental, safety and product specification constraints. Most major chemical 

companies have invested in large computing networks that are dedicated to solving large-scale process 

optimization problems (Seferlis and Georgiadis, 2004). Finding optimal operating conditions can be very 

challenging, especially for large systems, where there are many aspects that can influence the process 

economics, such as design, control, and scheduling. The sequential method offers the simplest approach, 

where each aspect is optimized separately, in small independent problems. Though this method is fast, it 

relies on a large amount of assumptions, which can heavily influence the final solution, rendering it 

suboptimal or infeasible. Despite those limitations, the sequential method is widely used in industry to its 

superior speed and ease of implementation. Theoretically, the integrated method is a better approach, 

where the design, control, and scheduling are solved simultaneously in one large optimization problem. 

This method accounts for all the interactions between the aspects, but the high computational complexity 

limits the practical applications of this method. Decomposition algorithms have been proposed to break 

the integrated method into two sub-problems, with the goal of reducing problem complexity while 

maintaining the same solution quality. Such algorithms have been widely researched for integration of 

design and control, but the addition of scheduling has only been considered by a few publications. 

Furthermore, uncertainty and process disturbances can have a significant effect on process 

optimality and feasibility, as model parameters and external perturbations are typically not known a priori 

with absolute certainty, resulting in variability in process output. For a process that is optimized only at 

nominal conditions, i.e. uncertain parameters and disturbances set to their nominal (expected) values, the 

solution can become suboptimal or infeasible when it is subjected to parameter uncertainty and process 
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disturbance, as operating limits are surpassed. Therefore, it is necessary to find robust solutions that can 

accommodate a specified level of uncertainty. Robust solutions are typically more conservative than 

nominal solutions, but the advantage is that they can accommodate uncertainty. A very basic method of 

producing robust solutions is the use of overdesign factors, where a decision variable is altered from its 

optimal point, to reduce the effect of uncertainty. This method does not guarantee an optimal result under 

uncertainty, but it is usually sufficient, and simple to implement, leading to its widespread use in industry 

for accommodating uncertainty (Brengel and Seider, 1992). More advanced methods are emerging with 

the potential to provide higher quality solutions at the cost of higher computational complexity (Ricardez 

Sandoval et al., 2008). The multi-scenario method and the back-off method will be described in the 

literature review. 

 

1.1 Research Objectives 

The objective of this study is to develop optimization methods for integration of design, control, 

and short-term scheduling, subject to disturbance and uncertainty. The novelty of this work is that it 

considers the non-linear dynamic process model, along with disturbances and parameter uncertainty, 

whereas most previous works on integrated optimization have disregarded one or more of those aspects. 

The scheduling sequence and transition times are explicitly accounted for in the dynamic model by the 

use of orthogonal collocation on finite elements, where a flexible implementation allows the finite 

elements to vary in size.  

This thesis will investigate two different methods for optimization under uncertainty: the critical 

set method and the back-off method. The critical set method consists of an iterative algorithm that finds 

critical (worst-case) realizations of disturbance and uncertainty, and optimizes with respect to the “critical 

set” so that all realizations can be accommodated by the solution. The back-off method also employs an 

iterative approach, using Monte Carlo (MC) sampling to simulate the system and generate back-off terms. 
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These back-off terms and incorporated into the optimization to approximate the effect of stochastic 

uncertainty and disturbances. Both of the methods in this thesis have the potential to provide higher 

quality solutions than traditional methods. The methods will be tested on a multi-product continuous 

stirred tank reactor (CSTR) and a plug flow reactor (PFR). In each of these case studies, the optimal 

design, control, and scheduling decisions are identified, subject to uncertainty and disturbance. 

The methods are applied to two case studies: a non-isothermal CSTR, and an isothermal PFR. 

The solutions are compared to the sequential method, which determines the optimal design, control, and 

scheduling one at a time, ignoring interactions. The solutions are compared in terms of solution quality 

and computational complexity, to demonstrate the merit of the methods presented in this thesis, and 

expand upon research in the area of integrated process optimization. 

 

1.2 Structure of Thesis 

This thesis is organized into chapters as follows:  

Chapter 2 provides a detailed literature review, outlining the variety of methods that have been used for 

integration of design, control, and/or scheduling. Methods for dealing with uncertainty, such as the back-

off method, are also presented. Relevant contributions are discussed in detail, to highlight the expansions 

made in the present work. 

Chapter 3 presents the critical set method. The overall problem is defined, and the conceptual 

optimization is shown. The time discretization is explained, and the approximations for uncertainty and 

disturbance are presented. The critical set method is explained using an algorithm flowchart and a formal 

mathematical representation. This method is applied to two case studies, a CSTR system and a PFR 

system, and the results are analyzed. The content in this chapter has been published in Computers & 

Chemical Engineering (Koller and Ricardez-Sandoval, 2017a), and in the conference proceedings of the 

27th European Symposium on Computer-Aided Process Engineering (Koller and Ricardez-Sandoval, 
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2017b). Those papers were written entirely by myself, and were edited by my supervisor, Luis Ricardez-

Sandoval. Permission has been granted from the publisher to use the published content in this thesis. 

Chapter 4 presents the back-off method. The problem definition and time discretization are the same as 

with the previous method, and the differences in uncertainty and disturbance definitions are described. 

This method is also explained using an algorithm flowchart and a formal mathematical representation. 

The back-off method is applied to the CSTR case study, considering two different controller 

configurations, and the results are analyzed. A standard PI controller is tested, as well as a dynamic 

controller, which determines the control actions directly from the optimization. The content in this chapter 

has been submitted to the American Institute of Chemical Engineers (AIChE) Journal. That paper was 

written entirely by myself, and was edited by my supervisor, Luis Ricardez-Sandoval, and a collaborator, 

Lorenz T. Biegler at Carnegie Mellon University. 

Chapter 5 summarizes the methods and results of this thesis, and presents the conclusions. Based on the 

limitations of the proposed methods, recommendations are provided for future work in the area of 

integration of design, control, and scheduling. 
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Chapter 2: Literature Review 

Determining the optimal design, control, and scheduling for a process can vary greatly in 

difficulty depending on the method used. The sequential method and the integrated method are two 

general methods that are explained in this section, and the contributions of relevant works are 

summarized. The effect of disturbance and uncertainty on process optimization is discussed, along with 

an outline of methods that can account for these unknown variables. The multi-scenario approach and the 

back-off approach can generate solutions that are robust to uncertainty, although they approach the 

problem very differently. The benefits and limitations of all these approaches are discussed in this section. 

The expected contribution of the work in this thesis is explained, as it fills a gap in the research area. 

 

2.1 Integration of Design, Control, and Scheduling 

The simplest approach to address optimal process design, scheduling and control for large process 

networks is the sequential approach, where the design, control, and scheduling of the system are all 

considered separately (Patil et al., 2015; Zhuge and Ierapetritou, 2012). This approach is popular in many 

industries (Mohideen et al., 1996) because solutions can be obtained very quickly, due to the 

independence of the sub-problems. Although the sequential method is practical and easy to implement, 

there are many limitations. Since each sub-problem is solved independently, the interactions between 

design, control, and scheduling are neglected, even though it has been recognized that these interactions 

can be significant (Flores-Tlacuahuac and Grossmann, 2011; Pistikopoulos and Diangelakis, 2015; Zhuge 

and Ierapetritou, 2012). Furthermore, assumptions need to be made in each sub-problem, e.g. steady-state 

operation or adding overdesign factors, and these assumptions may be invalid or return expensive plant 

designs. Hence, the solution generated by the sequential approach is likely to be suboptimal, and may 

become dynamically infeasible in some cases leading to the specification of invalid designs and 
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scheduling sequences (Chu and You, 2014a). These limitations have motivated the development of more 

reliable and robust methods of determining design, control, and scheduling. 

The integrated approach is a more advanced method, in which the design, control, and scheduling 

are optimized simultaneously, for the purpose of considering interactions. This approach has the potential 

to provide attractive solutions, which are more optimal and reliable (Chu and You, 2014b; Mendez et al., 

2006; Nie et al., 2015; Patil et al., 2015). However, optimization of large-scale and/or complex systems 

involving various factors can be challenging, particularly with multiproduct process units, where the 

process operation depends on many aspects, such as design (equipment sizing), control (controller 

structure and tuning), and scheduling (product sequencing and transitions). While several studies have 

considered integration of design and control (Ricardez-Sandoval et al., 2009; Sakizlis et al., 2004; Yuan 

et al., 2012), integration of scheduling with design and control decisions has not been deeply explored. In 

the case of multi-product plants, it can be advantageous to account for scheduling decisions at the design 

stage since it dictates the dynamic transitions between the different products to be produced, which in 

turn, depend on design and control (Bhatia and Biegler, 1996; Flores-Tlacuahuac and Grossmann, 2011; 

Pistikopoulos and Diangelakis, 2015). For large-scale problems, the integrated method has a high 

computational cost due to the large number of variables involved, including the binary variables 

considered in the scheduling formulation. To solve such large problems, assumptions would have to be 

made to reduce the problem size. Despite the growing interest in integrated optimization, there is no 

commercial software which is specifically designed to solve these types of problems (Pistikopoulos and 

Diangelakis, 2015). Methods that have been used for solving such problem are discussed in the next 

subsection, along with a discussion on process disturbances and parameter uncertainty. 

As shown in Table 1, previous publications primarily focus on design and control, but 

publications are also available for integration of design and scheduling, or control and scheduling. Due to 

problem complexity, few publications address the integration of design, control, and scheduling. In one of 

the first studies, the design, control, and scheduling of a methyl-methacrylate process are optimized 
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simultaneously (Terrazas-Moreno et al., 2008). The scheduling decisions include production order and 

transition times, which account for process dynamics. That formulation included parameter uncertainty, 

as values that are selected from a discrete set; process disturbances were not considered. In lieu of a 

closed-loop control scheme, the profile of the manipulated variable was directly obtained from dynamic 

optimization. In another study (Patil et al., 2015), the integration was applied to multiproduct processes 

under disturbance and uncertainty. Decisions were made on equipment sizing, steady-state operating 

conditions, control tuning, production sequence, and transition times between product grades. The total 

cost was based on the worst-case disturbance frequency, which was identified using frequency response 

analysis on the linearized process model. One limitation is that the non-linear process model was 

linearized around the steady state operating conditions, which reduced the complexity of the problem, but 

introduced approximations to the model behavior and therefore to the resulting solution. A recent work 

presents a generalized software solution for integrated optimization problems, summarizes recent efforts 

in the subject area, and presents simultaneous design and operational optimization of heat and power 

cogeneration units (Pistikopoulos and Diangelakis, 2015). 

The main drawbacks of previous publications are discussed in this paragraph. Many papers that 

consider scheduling in their formulation do not consider dynamic operation of the process (Chu and You, 

2014b, 2014c; Zhuge and Ierapetritou, 2012). Instead, they assume a perfect controller, providing an ideal 

profile for the controlled variable. This allows the scheduling component to be solved independently, 

greatly simplifying the problem. In this thesis, the dynamic process model will be used to accurately 

simulate the process dynamics, which are especially relevant during scheduling transitions. Many 

publications linearize their process model, which simplifies the optimization problem, and allows the use 

of frequency analysis to determine a critical frequency for the process disturbance. This reduces the 

computational complexity, but the linearization introduces error into the solution, especially in highly 

non-linear cases. This thesis will use the full non-linear process model to maintain solution accuracy. 
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Table 1: Previous Works on Integration of Design, Control, and/or Scheduling  

Topic Authors Contributions 

Design & 

Control 

Brengel and Seider, 1992 Fermentation process with model predictive control 

(MPC) 

Luyben and Floudas, 1994 Binary distillation with PI control 

Mohideen et al., 1996 Mixing tank and distillation column with PI control 

Kookos and Perkins, 2001 Evaporator and binary distillation with multiple PI 

controllers 

Bansal et al., 2002 Mixed-integer dynamic optimization of distillation with 

five PI controllers 

Seferlis and Georgiadis, 2004 Book, discussing many aspects of integration of design 

and control 

Ricardez Sandoval et al., 2008 Mixing tank with PI control using a robust modelling 

approach 

Sanchez-Sanchez and Ricardez-Sandoval, 2013 Single stage optimization of CSTR and ternary 

distillation with PI control 

Alvarado-Morales et al., 2010 Model-based optimization of bioethanol process 

Bahakim and Ricardez-Sandoval, 2014 Stochastic optimization using MPC, and application to 

a wastewater treatment plant using PI control 

Mansouri et al., 2016 Reactive distillation involving multiple elements 

Mehta and Ricardez-Sandoval, 2016 CSTR optimization using back-off approach and power 

series expansion (PSE) 

Ricardez-Sandoval et al., 2009;  

Sakizlis et al., 2004;  

Sharifzadeh, 2013;  

Vega et al., 2014;  

Yuan et al., 2012; 

Reviews on integration of design and control 

Control & 

Scheduling 

Chatzidoukas et al., 2003 Optimal grade transitions for fluidized bed reactor with 

PI control 

Flores-Tlacuahuac and Grossmann, 2011 Non-isothermal PFR 

Zhuge and Ierapetritou, 2012 Multiproduct CSTR with PI control 

Engell and Harjunkoski, 2012 Review on integration of control and scheduling 

Chu and You, 2014b Multiproduct CSTR with optimal control profile 

Chu and You, 2014c Multiproduct CSTR with optimal control profile 

Zhuge and Ierapetritou, 2016 Methyl-methacrylate production with optimal control 

profile 

Design & 

Scheduling 

Bhatia and Biegler, 1996;  

Birewar and Grossmann, 1989;  

Castro et al., 2005;  

Heo et al., 2003;  

Lin and Floudas, 2001 

Multiproduct design and scheduling of batch processes 

Design, 

Control, & 

Scheduling 

Terrazas-Moreno et al., 2008 Two stage optimization of methyl-methacrylate 

production with optimal control profile. 

Patil et al., 2015 Multiproduct process with disturbance and uncertainty, 

linearized process model, and frequency analysis. 

Pistikopoulos and Diangelakis, 2015 Generalized software for multi-parametric 

optimization. Summary of recent efforts towards 

integration of design, control, and scheduling. 
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2.2 Process Disturbances and Parameter Uncertainty 

Process optimization can be complicated by considering dynamic evolution of the system subject 

to process disturbances and uncertainty in the model parameters. Explicitly solving an integrated 

optimization problem under disturbance and uncertainty is very challenging due to how quickly the 

problem complexity can grow. In addition, it is difficult to incorporate realistic approximations of 

uncertainty into the model. The optimization approach can differ, depending on if measurements are 

available for the parameters of interest. Parameters that are measurable can be explicitly optimized, as 

their values can be found, and measurement-based optimization methods can be applied (Srinivasan et al., 

2002). On the other hand, unmeasurable parameters cannot be determined exactly; robust optimization 

methods must therefore be applied (Janak et al., 2007; Trainor et al., 2013). To generate robust solutions, 

decomposition algorithms can be used to simplify the problem into smaller steps (Chu and You, 2013; 

Heo et al., 2003; Mohideen et al., 1996). Decomposition algorithms for robust optimization typically 

consist of two sub-problems: a flexibility analysis and a feasibility analysis (Sakizlis et al., 2004; 

Sanchez-Sanchez and Ricardez-Sandoval, 2013; Seferlis and Georgiadis, 2004). In the flexibility sub-

problem, a solution is chosen such that total cost is minimized and all constraints are satisfied, subject to 

an approximation of the process disturbances and parameter uncertainty. In the feasibility sub-problem, 

the solution from the flexibility sub-problem is tested for feasibility at all realizations of disturbance and 

uncertainty. Based on the solutions from the feasibility analysis, the approximations of disturbance and 

uncertainty are updated, and the algorithm returns to the flexibility problem. The algorithm typically 

terminates when all realizations are feasible at the given solution, though specifics of the algorithm 

operation can vary, depending on its implementation. Decomposition algorithms are usually used in the 

context of the multi-scenario approach, but they can be extended to a variety of methods. 

The multi-scenario approach considers multiple different realizations of the process disturbance 

or parameter uncertainty in the optimization problem. A simple implementation of the multi-scenario 

approach considers every scenario simultaneously. However, that implementation is rarely used because it 
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greatly increases the problem size, which increases the computational complexity. For example, 

considering ten realizations simultaneously could increase the problem size by a factor of ten, and 

increase the computational time by an even greater factor. Therefore, although multi-scenario methods 

may consider a large number of scenarios, many implementations focus on a small subset of these 

scenarios. A “critical set” of scenarios is typically selected based on process dynamics in the feasibility 

analysis, where infeasible realizations are added to the critical set, so that the optimization problem can 

focus on searching for solutions that can accommodate those critical realizations (Mohideen et al., 1996; 

Seferlis and Georgiadis, 2004). The first method presented in this thesis, the critical set method, uses such 

an approach. During the algorithm, a critical set is built from infeasible realizations from a two-

dimensional set of process disturbance and parameter uncertainty.  

The second method developed in this thesis, the back-off method, is presented in this paragraph. 

The back-off method introduces back-off terms to the optimization, which approximate the effect of 

uncertainty and process disturbances, to “back off” from the optimal nominal solution without adding 

much complexity. The back-off method is a stochastic method, meaning it considers probabilistic 

representations of process disturbances and parameter uncertainty, in contrast to the discrete realizations 

considered by the multi-scenario approach. Thus, the back-off method makes fewer approximations and is 

more applicable to a variety of disturbances and uncertainty types. The back-off method for integration of 

design and control has been researched extensively. Early efforts involved solving dynamic systems as an 

improvement over steady-state optimization, using open-loop control (Figueroa et al., 1996) and PI 

control (Bahri et al., 1995). Advances in computational power have enabled the implementation of more 

challenging optimization formulations that consider the complete non-linear plant model (Kookos and 

Perkins, 2016; Mehta and Ricardez-Sandoval, 2016). Furthermore, stochastic simulations can be 

performed, to allow for statistical calculation of back-off terms (Galvanin et al., 2010; Shi et al., 2016). 

Although many different works make use of back-off terms in their optimization problems, the algorithms 

and approximations can vary significantly. In three recent works (Mehta and Ricardez-Sandoval, 2016; 
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Rafiei-Shishavan et al., 2017a; Rafiei-Shishavan and Ricardez-Sandoval, 2017b), power series expansion 

(PSE) approximations are developed for the constraints and the objective function, with respect to 

decision variables, process disturbance, and parameter uncertainty. The process disturbance is specified a 

priori and the parameter uncertainty is discretized to a finite number of realizations. The corresponding 

PSE functions are embedded within a PSE-based optimization formulation, which aims to provide the 

search direction for the optimal design and control scheme. To the author’s knowledge, the back-off 

approaches presented in the literature have only been considered for integration of design and control, 

while the current work extends the back-off method to include scheduling. 

 

2.3 Section Summary 

The most commonly used approach for total process optimization is the sequential method, which 

provides a quick solution, but makes many assumptions and may not always provide a feasible solution. 

The integrated approach offers high quality solutions, as it can determine design, control, and scheduling 

simultaneously, though this method is held back by excessive computational complexity. Decomposition 

algorithms have been developed to break down the problem into smaller steps, and account for process 

disturbance and parameter uncertainty, forming the basis of the methods presented in this thesis. Both the 

critical set method and the back-off method are built from decomposition algorithms. The critical set 

method builds a set of critical (infeasible) realizations during the algorithm, and uses that critical set to 

determine a robust solution that can accommodate a discrete set of disturbance and uncertainty. On the 

other hand, the back-off method considers probabilistic representations of disturbance and uncertainty, 

performing process simulations to determine back-off terms, which are used to determine a robust 

solution that can accommodate a specified level of variability. Both methods produce robust solutions, 

and can be applied to the integration of design, control, and scheduling. 

Many studies exist featuring the integration of design and control, for both the critical set method 

and the back-off method. However, very few studies consider scheduling in addition to design and 
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control, and this thesis aims to fill that gap in research. This thesis combines design, control, and 

scheduling into one optimization problem, considering disturbance and uncertainty, while making as few 

assumptions as possible. To the author’s knowledge, the combination of all these aspects has not been 

previously addressed. Process disturbances and parameter uncertainty are typically very simple in many 

previous publications, featuring only a step change disturbance, or a small number of realizations. This 

thesis considers disturbance and uncertainty at the same time, with many realizations each. In the second 

method of this thesis, the back-off method, normal distributions are assigned to the disturbance and 

uncertainty, mimicking real-world variables. This is a novelty of the current work, as the back-off 

approach has yet to be applied to integration of design, control, and scheduling.  
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Chapter 3: Critical Set Methodology 

 This section presents the critical set methodology that is proposed to address simultaneous design, 

control, and short-term scheduling of multi-product plants, subject to disturbance and uncertainty. This 

method considers discrete realizations of uncertainty, and builds a critical set of realizations as the 

algorithm runs. First, the formal optimization formulation is presented for the conceptual problem. The 

approximations made to the original formulation are explained next, followed by the decomposition 

algorithmic framework developed for this method. This work has been published in Computers & 

Chemical Engineering (Koller and Ricardez-Sandoval, 2017a) and the ESCAPE-27 Conference 

Proceedings (Koller and Ricardez-Sandoval, 2017b). 

 

3.1 Problem Definition 

 Consider a multiproduct processing unit that operates continuously, alternating production 

between various grades of a product in a wheel fashion, i.e. the sequence restarts at the beginning upon 

finishing. A cycle consists of transition and production regions for each product grade, therefore the total 

number of regions 𝐼 is twice the number of grades 𝐺. During the transition region, the process set-point is 

changed linearly (in a ramp fashion) to the next set-point, to allow the system to smoothly transition to the 

new operating conditions. Following each transition region, a production region begins. The production 

region ends after a fixed time interval for each grade, after which the transition region begins for the next 

product grade. This process repeats until the demands for all grades have been satisfied. The duration of 

each region 𝑖 is denoted as ∆𝑡𝑖. Additionally, since the processing unit is expected to operate continuously 

in a wheel fashion, the initial conditions in the first region must be equal to the final conditions in the 

final region, as shown in Figure 1. Note that Figure 1 is not drawn to scale, as production regions are 

typically far larger than transition regions. 
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Figure 1: General production schedule of a multiproduct processing unit 

This study assumes that the following are given: the actual process model representing the 

system’s dynamic behavior, model parameters that are known with certainty (e.g. reaction rate constant, 

inlet flow rate), the control scheme, the required product grades and amounts to be produced and process 

constraints. It is also assumed that mathematical descriptions describing the process disturbances and 

uncertain parameters are provided. The methods presented in this work aim to provide solutions that 

specify the optimal equipment sizing, the optimal steady state operating conditions for each product 

grade, the optimal control scheme tuning parameters, the sequence of grades to be produced, and the 

transition times between production of each grade. The optimal solutions will be dynamically operable in 

the presence of disturbances and model uncertainty. 

 

3.2 Conceptual Formulation 

The explicit formulation to address the integration of design, scheduling, and control is presented 

in problem (1). The problem aims to minimize the total expected cost of the process 𝑧, by manipulating 

design, control, and scheduling decisions, while subject to time-dependent process disturbances, and 

uncertainty in model parameters. The design variables 𝓓 consist of equipment design parameters and 
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operating conditions. The control parameters 𝓒 consist of controller tuning parameters (e.g. 𝐾𝑐 and 𝜏𝑖). 

The scheduling variables consist of binary variables 𝓢 that determine the production sequence, and 

continuous variables 𝚫𝒕 that determine the duration of each time region. For simplicity, all these variables 

will be referred to collectively as the decision variables 𝓔 = {𝓓,𝓒, 𝓢, 𝚫𝒕}. Note that each of these 

decisions are independent (i.e. transition durations 𝚫𝒕 do not depend on control parameters or process 

dynamics, but are instead obtained explicitly from optimization). 

min
𝓔={𝓓,𝓒,𝓢,𝚫𝒕}

max
𝒅(𝑡),𝒑

 𝑧(𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒚𝒔𝒑(𝑡), 𝒅(𝑡), 𝒑,𝓓,𝓒, 𝓢, 𝚫𝒕)                                                                          (1) 

𝑠. 𝑡. 

𝒇(𝒙(𝑡), 𝒙̇(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒚𝒔𝒑(𝑡), 𝒅(𝑡), 𝒑,𝓓, 𝓒, 𝓢, 𝚫𝒕) = 𝟎                                                                         

𝒈(𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒚𝒔𝒑(𝑡), 𝒅(𝑡), 𝒑,𝓓, 𝓒, 𝓢, 𝚫𝒕) ≤ 𝟎                                              

𝒉(𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒚𝒔𝒑(𝑡), 𝒅(𝑡), 𝒑,𝓓, 𝓒, 𝓢, 𝚫𝒕) = 𝟎                                          

𝒚𝒔𝒑(𝑡) = 𝝍(𝓢,𝚫𝒕)                                                                                                               

𝒅𝑙𝑜 ≤ 𝒅(𝑡) ≤ 𝒅𝑢𝑝                                                                                                                                        

𝒑𝑙𝑜 ≤ 𝒑 ≤ 𝒑𝑢𝑝                                                                                                                                           

𝓔𝑙𝑜 ≤ 𝓔 ≤ 𝓔𝑢𝑝                                                                                                                                               

𝓢 ∈ {0,1}                                                                                                                                                              

𝑡 ∈ [0, 𝑡𝑒𝑛𝑑]                                                                                                                                                   

The process states 𝒙(𝑡) and its derivatives 𝒙̇(𝑡) are typically described by differential equations 

and are represented here by the closed-loop process model 𝒇. The process constraints can take the form of 

inequality constraints 𝒈 (physical constraints, safety constraints, quality constraints, stability constraints, 

and scheduling constraints) or equality constraints 𝒉 (typically representing the process model algebraic 

equations). As shown in problem (1), the output set-points 𝒚𝒔𝒑(𝑡) are determined from the binary 

sequencing decisions 𝓢 and the lengths of each time region 𝚫𝐭, using the function 𝝍. The vector of 

process disturbances 𝒅(𝑡) is time-varying but is assumed to be bounded by a lower limit 𝒅𝑙𝑜 and an upper 

limit 𝒅𝑢𝑝 whereas the vector of uncertain parameters 𝒑 is assumed to be time-invariant and bounded by a 
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lower limit 𝒑𝑙𝑜 and an upper limit 𝒑𝑢𝑝. The conceptual formulation shown in problem (1) can be 

considered a robust optimization formulation given that the optimal solution is required to remain valid at 

the worst-case critical realizations of process disturbances and parametric uncertainty, thus resulting in a 

minimax optimization problem. Also, the formulation presented in problem (1) makes no approximations 

about the disturbances and the uncertain parameters, i.e. 𝒅(𝑡) and 𝒑 are defined as continuous variables 

encompassing an infinite number of possible realizations. Therefore, problem (1) can be classified as an 

infinite-dimensional mixed integer non-linear dynamic optimization problem. A large-scale problem of 

this type is very challenging to solve for many reasons, notably the infinite search space for disturbance 

and uncertain parameter domains, the combination of scheduling (binary) and continuous decisions, and 

the corresponding solution of differential equations at each step in the optimization. This provides 

motivation for the development of efficient algorithms that can circumvent these difficulties, and make 

the problem tractable.  

 In the following sub-sections, the assumptions used to make the bulk problem (1) tractable are 

explained. The time domain is discretized, reformulating all continuous variables into discrete points. 

Following that, the approximations for process disturbances and parameter uncertainty are presented, for 

both the Critical Set Method and the Back-Off Method. The algorithms for each method are explained, 

with a detailed description of each step. 

 

3.3 Time Discretization 

The problem under consideration includes time-dependent variables described by ordinary 

differential equations (ODEs), which are embedded within the closed-loop dynamic model of the system 

defined by the vector function 𝒇. In addition, binary variables 𝓢 are considered in the analysis to account 

for scheduling decisions. Thus, presence of these time-dependent and integer variables makes the overall 

problem a mixed-integer non-linear dynamic optimization (MIDO) problem. These types of problems can 

be solved using two approaches: the shooting method, and the simultaneous method. In the shooting 
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method, the ODEs are solved at fixed levels of the decision variables, and this is repeated multiple times 

in a sensitivity analysis to calculate the gradients of the objective and constraints. The gradients are then 

used to update the decision variables, and the process is repeated. In the simultaneous method, the ODEs 

are discretized, reformulating the differential equations as algebraic equations, which are then 

implemented into a bulk model along with the decision variables. More details about the shooting method 

and the simultaneous method can be found elsewhere (Biegler, 2010). The analytical gradients can be 

determined, and an optimal solution can be approached. In this work, the simultaneous approach has been 

used to reduce the computational costs and facilitate the integrated optimization of design, control, and 

scheduling decisions. Accordingly, the ODEs representing the closed-loop dynamic equations 𝒇 are 

transformed into algebraic form using orthogonal collocation on finite elements, resulting in an overall 

problem that is a mixed-integer non-linear program (MINLP).  

 
Figure 2: Visualization of time discretization into regions, finite elements, and collocation points 

As shown in Figure 2, the time domain is divided into 𝐼 regions, which alternate between 

transition regions and production regions. Each region contains 𝐽 finite elements, and each finite element 

contains 𝐾 collocation points which are spaced according to Gauss-Legendre quadrature. The duration of 

each region 𝑖 (∆𝑡𝑖) is directly determined from optimization, allowing differently sized regions to be 

explicitly accounted for in the MINLP formulation. As the size of each region 𝑖 changes, the size of the 
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contained finite elements (𝛿𝑡𝑖), and their collocation points, also changes. In each region 𝑖, the size of 

finite elements 𝛿𝑡𝑖 is related to the total region size ∆𝑡𝑖 as shown in Eq. 2. 

∆𝑡𝑖 = 𝐽𝛿𝑡𝑖       ∀𝑖                                                                                                                                                             (2)  

 Based on the above descriptions, the process states 𝒙(𝑡) can be discretized and defined as 𝒙𝑖𝑗𝑘, as 

shown in Eq. 3, where 𝑖 is the index of time regions, 𝑗 is the index of finite elements, and 𝑘 is the index of 

collocation points. For brevity, commas between 𝑖, 𝑗, and 𝑘 are omitted in most cases. All time-dependent 

variables (i.e. 𝒚𝒔𝒑(𝑡), 𝒖(𝑡), 𝒅(𝑡)  etc.) and functions (i.e. 𝒈, 𝒉) are discretized in the same fashion. The 

value of time at each point is a function of 𝑖, 𝑗, 𝑘 and the region lengths 𝚫𝒕. Moreover, the time derivative 

for process states 𝒙̇(𝑡) can be discretized using the orthogonal collocation matrix 𝓐, which is defined in 

Appendix A, and the finite element size 𝛿𝑡𝑖 in each region 𝑖. Furthermore, the time-dependent variables 

are defined using two more indices (𝜃,𝜔), where 𝜃 and 𝜔 are the indexes corresponding to particular 

realizations in parameter uncertainty, and process disturbances, respectively. 

𝒙̇(𝑡) = 𝒇(𝒙(𝑡), 𝒚𝒔𝒑(𝑡), 𝒖(𝑡), 𝒅(𝑡), 𝒑) →∑𝓐𝑘𝑘′𝒙𝑖𝑗𝑘′
𝜃,𝜔

𝑘′

= 𝛿𝑡𝑖 𝒇(𝒙𝑖𝑗𝑘
𝜃,𝜔, (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝒖𝑖𝑗𝑘

𝜃,𝜔, 𝒅𝑖𝑗𝑘
𝜔 , 𝒑𝜃 )              

𝑖 ∈ {1,2,… , 𝐼}, 𝑗 ∈ {1,2,… , 𝐽}, 𝑘 ∈ {1,2,… , 𝐾}      𝜔 ∈ {1, 2,… , Ω}, 𝜃 ∈ {1, 2, … , Θ}                                 (3) 

 As shown in problem (1), the region lengths 𝚫𝒕 (i.e. transition and production durations) are 

decision variables in the optimization. The effect of scheduling on the model equations can be seen 

directly in Eq. (3), which includes the finite element size 𝛿𝑡𝑖 for each region 𝑖 directly in the process 

model. Also, Eq. (3) depends on the set-points of the system at each discrete point in time 𝑖, 𝑗, 𝑘 (i.e. 

(𝒙𝑠𝑝)𝑖𝑗𝑘), where the corresponding set-points imposed on the process at any time point 𝑖, 𝑗, 𝑘 are 

determined from the function 𝝍, which depends on the binary sequencing matrix 𝓢 and the region lengths 

𝚫𝒕, i.e. scheduling decisions. The process to obtain (𝒙𝑠𝑝)𝑖𝑗𝑘  is described in detail in Appendix B. This 

represents a novelty in the present formulation since scheduling decisions are explicitly accounted for in 
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the optimal design and control of multi-product systems under the effect of disturbances and uncertainty; 

an aspect that, to the authors’ knowledge, has not been addressed in the literature. 

 To ensure zero- and first-order continuity between regions, and between finite elements, 

additional constraints (4-7) are added to the formulation. These are described in detail in Appendix A. 

𝒙𝑖,𝑗,𝐾
𝜃,𝜔 = 𝒙𝑖,𝑗+1,1

𝜃,𝜔        ∀𝑖, 𝑗 ⋀  ∀(𝜃, 𝜔) ∈ 𝒄                                                                                                                   (4) 

𝒙𝑖,𝐽,𝐾
𝜃,𝜔 = 𝒙𝑖+1,1,1

𝜃,𝜔      ∀𝑖  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄                                                                                                                       (5) 

∑ 𝒜𝐾,𝑘′𝒙𝑖,𝑗,𝑘′
𝜃,𝜔

𝑘′

𝛿𝑡𝑖
=
∑ 𝒜1,𝑘′𝒙𝑖,𝑗+1,𝑘′

𝜃,𝜔
𝑘′

𝛿𝑡𝑖
      ∀𝑖, 𝑗  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄                                                                            (6) 

∑ 𝒜𝐾,𝑘′𝒙𝑖,𝐽,𝑘′
𝜃,𝜔

𝑘′

𝛿𝑡𝑖
=
∑ 𝒜1,𝑘′𝒙𝑖+1,1,𝑘′

𝜃,𝜔
𝑘′

𝛿𝑡𝑖+1
    ∀𝑖  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄                                                                                 (7) 

 

3.4 Approximation of Disturbance and Uncertainty 

 As shown in the conceptual problem (1), the process disturbances 𝒅(𝑡) have been initially 

defined as bounded time-varying continuous variables, which makes problem (1) computationally 

challenging. To circumvent this issue, the present analysis approximates the disturbances as a set of 

possible functions specified a priori, as shown in Eq. (8). For example, the set of disturbances can take 

the form of sinusoidal waves with different frequency content (i.e. variability). The index 𝜔 refers to the 

particular realization that the disturbance can take during operation; e.g. the frequency for a sinusoidal 

disturbance. Similarly, the uncertain parameters 𝒑 are approximated as a set of possible realizations 

defined a priori. The index 𝜃 refers to the particular realization that the parameter uncertainty vector 𝒑 

can take during operation, as shown in Eq. (9). To clarify, a finite list of possible values is known, but the 

exact value is not known. The realizations corresponding to 𝜔 = 0 or 𝜃 = 0 represent the nominal 

operating condition considered for those parameters. The sets of realizations for disturbance and 

uncertainty should be selected carefully, as different sets will affect the solution provided by the 
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algorithm. Note that increasing the number of discrete realizations is expected to have a diminishing 

effect on the solution (i.e. the problem is expected to converge to the same solution as the number of 

scenarios grows sufficiently large). 

𝒅𝑖𝑗𝑘
𝜔 ∈ {𝒅𝑖𝑗𝑘

0 , 𝒅𝑖𝑗𝑘
1 , 𝒅𝑖𝑗𝑘

2 , … , 𝒅𝑖𝑗𝑘
Ω }     ∀ 𝑖, 𝑗, 𝑘             𝜔 ∈ {0,1, 2,… , Ω}                        (8) 

𝒑𝜃 ∈ {𝒑0, 𝒑1, 𝒑2, … , 𝒑Θ}                                    𝜃 ∈ {0, 1, 2, … , Θ}                        (9) 

In the present analysis, a critical set 𝒄 is introduced in Eq. (10) as a set of (𝜔,𝜃) pairs. This set is used to 

define the realizations among those defined in Eq. (8) and (9) that have the most critical impact on 

process performance, potentially resulting in infeasibility under some conditions. Note that when a 

realization is referred to as critical, it is with respect to the discrete set of disturbance and uncertain 

realizations, which are defined a priori. Each set of pairs in 𝒄 is a subset of all combinations of (𝜔,𝜃) 

considered in the disturbance and uncertain parameter sets, i.e. all (Ω × Θ) combinations. 

𝒄 ⊆ 𝜔 × 𝜃 = [
(0,0) ⋯ (0,Θ)
⋮ ⋱ ⋮

(Ω, 0) ⋯ (Ω, Θ)
]                                             (10) 

 

3.5 Algorithm Formulation 

Using the approximations described above, the conceptual problem (1) is transformed into a 

minimax MINLP. Furthermore, due to the complexity of solving a minimax problem, a decomposition 

algorithm is implemented. As shown in Figure 3, the proposed algorithm decomposes the problem into a 

Flexibility Analysis and a Feasibility Analysis. These sub-problems contain the actual process model and 

non-linear constraints (in discrete form), and also include orthogonal collocation constraints, Eq. (4-7), 

which are required to ensure continuity of the process state variables 𝒙𝑖𝑗𝑘
𝜃,𝜔

 and their derivatives due to the 

discretization scheme employed in this work.  
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Figure 3: Critical Set Algorithm Flowchart  

The flexibility analysis formulation is presented in problem (11). This problem is initialized with 

a critical set 𝒄, which specifies the realizations of process disturbances 𝒅𝑖𝑗𝑘
𝜔  and parameter uncertainty 𝒑𝜃 

to be considered in the analysis. As shown in Figure 3, the critical set can be initialized in the first 

iteration (n = 1) with the corresponding nominal values (i.e. 𝒅𝑖𝑗𝑘
0 , 𝒑0). For a fixed critical set 𝒄, the 

flexibility analysis searches for the design, control, and scheduling scheme that minimizes the expected 

cost in the objective function and accommodates the realizations considered in critical set 𝒄. As shown in 

problem (11), each critical realization is weighted by a user-defined factor 𝜁𝜃,𝜔, which must be defined a 

priori and represents the likelihood or confidence that realization (𝜃, 𝜔) may occur during operation. 

min
𝓔={𝓓,𝓒,𝓢,𝚫𝐭}

 ∑ 𝜁𝜃,𝜔𝑧𝜃,𝜔(𝒙𝑖𝑗𝑘
𝜃,𝜔, 𝒚𝑖𝑗𝑘

𝜃,𝜔, (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝓓, 𝓒, 𝓢, 𝚫𝒕)

(𝜃,𝜔)∈𝒄

                                                                                       (11)    

𝑠. 𝑡. 

∑𝒜𝑘𝑘′𝒙𝑖𝑗𝑘′
𝜃,𝜔

𝑘′

= 𝛿𝑡𝑖𝒇(𝒙𝑖𝑗𝑘
𝜃,𝜔, 𝒖𝑖𝑗𝑘

𝜃,𝜔, 𝒚𝑖𝑗𝑘
𝜃,𝜔, (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝒅𝑖𝑗𝑘

𝜔 , 𝒑𝜃, 𝓓, 𝓒, 𝓢, 𝛿𝑡𝑖),      ∀𝑖, 𝑗, 𝑘  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄    

Feasibility Analysis: Problem (12) 

NO 

YES 

𝒄 = 𝒄 ∪ (𝜔, θ)
𝑛
 

 

  𝛷𝑛 ≤ 𝟎? 

Flexibility Analysis: Problem (11) 
(MINLP) 

Initialization 
𝑛 = 1 , 𝒄 = {(0,0)} 

Optimal solution 𝓔∗ 

𝑛 = 𝑛 + 1 

𝓔𝑛 

𝛷𝑛, (𝜔, θ)𝑛 
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𝒈(𝒙𝑖𝑗𝑘
𝜃,𝜔, 𝒖𝑖𝑗𝑘

𝜃,𝜔, 𝒚𝑖𝑗𝑘
𝜃,𝜔, (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝒅𝑖𝑗𝑘

𝜔 , 𝒑𝜃, 𝓓, 𝓒, 𝓢, 𝛿𝑡𝑖) ≤ 𝟎 ,     ∀𝑖, 𝑗, 𝑘  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄                                 

𝒉(𝒙𝑖𝑗𝑘
𝜃,𝜔, 𝒖𝑖𝑗𝑘

𝜃,𝜔, 𝒚𝑖𝑗𝑘
𝜃,𝜔, (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝒅𝑖𝑗𝑘

𝜔 , 𝒑𝜃, 𝓓, 𝓒, 𝓢, 𝛿𝑡𝑖) = 𝟎 ,     ∀𝑖, 𝑗, 𝑘  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄 

(𝒚𝑠𝑝)𝑖𝑗𝑘 = 𝝍𝑖𝑗𝑘(𝓢),     ∀𝑖, 𝑗, 𝑘  ⋀  ∀(𝜃, 𝜔) ∈ 𝒄                                                                           

𝓔𝑙𝑜 ≤ 𝓔 ≤ 𝓔𝑢𝑝                                                                                                                                               

𝓢 ∈ {0,1}     

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (4) − (7) 

The optimal solution for design, control, and scheduling returned by the flexibility problem is 

only guaranteed to be valid for the critical realizations considered in 𝒄. Thus, a feasibility analysis is 

needed to ensure a robust solution that is immune to any combination of disturbance and parameter 

uncertainty. Therefore, the solution from the flexibility problem at the nth iteration (𝓔𝑛) is held constant 

and is passed to the feasibility problem. As shown in problem (12), a formal feasibility analysis 

optimization formulation can be formulated to search for the combination of (𝜔, 𝜃) in the disturbances 

and uncertain parameters that produces the maximum (positive) deviation in the slack variables 𝜶, at any 

point in time 𝑖, 𝑗, 𝑘, for constraint 𝑔𝑎 ∈ 𝒈. Binary variables (𝑌𝑎,𝑖𝑗𝑘
𝜃,𝜔

) are incorporated into the formulation 

to indicate which realization produces the worst-case infeasibility. The problem in (12) is an integer 

optimization (IP) problem, as all the decisions are made on binary variables. Active set strategies 

(Mohideen et al., 1996) and structured singular value analysis (Trainor et al., 2013) have been proposed to 

solve such problems. Although the search space is finite, the problem is challenging to solve directly due 

to the curse of dimensionality, as the number of integer variables grows prohibitively large. However, the 

finite search space lends itself very well to rigorous simulations. Recent studies have used simulations to 

evaluate feasibility (Mansouri et al., 2016; Pistikopoulos et al., 2015; Ricardez-Sandoval, 2012; Shi et al., 

2016; Zhuge and Ierapetritou, 2016). In this work, and with the aim of reducing computational 

complexity, process simulations are performed to calculate the values of the process variables (e.g. 𝒙𝑖𝑗𝑘
𝜃,𝜔

) 

and constraint violations 𝛼𝑎,𝑖𝑗𝑘
𝜃,𝜔

, over the entire discrete set of process disturbances and parameter 

uncertainty, as shown in problem (12A).  
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𝜙 = max
𝒀
 ∑ 𝑌𝑎,𝑖𝑗𝑘

𝜃,𝜔  𝛼𝑎,𝑖𝑗𝑘
𝜃,𝜔

𝑎,𝑖,𝑗,𝑘,𝜃,𝜔

                                                                                                                              (12) 

𝑠. 𝑡. 

∑𝓐𝑘𝑘′𝒙𝑖𝑗𝑘′
𝜃,𝜔

𝑘′

= 𝛿𝑡𝑖 ∗ 𝒇(𝒙𝑖𝑗𝑘
𝜃,𝜔, 𝒖𝑖𝑗𝑘

𝜃,𝜔, 𝒚𝑖𝑗𝑘
𝜃,𝜔, (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝒅𝑖𝑗𝑘

𝜔 , 𝒑𝜃 , 𝓓, 𝓒, 𝓢, 𝛿𝑡𝑖)       ∀ 𝑖, 𝑗, 𝑘  

𝑔𝑎,𝑖𝑗𝑘
𝜃,𝜔 (𝒙𝑖𝑗𝑘

𝜃,𝜔, 𝒖𝑖𝑗𝑘
𝜃,𝜔, 𝒚𝑖𝑗𝑘

𝜃,𝜔, (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝒅𝑖𝑗𝑘
𝜔 , 𝒑𝜃, 𝓓, 𝓒, 𝓢, 𝛿𝑡𝑖) = 𝛼𝑎,𝑖𝑗𝑘

𝜃,𝜔  ,     ∀ 𝑎, 𝑖, 𝑗, 𝑘    

𝒉(𝒙𝑖𝑗𝑘
𝜃,𝜔, 𝒖𝑖𝑗𝑘

𝜃,𝜔, 𝒚𝑖𝑗𝑘
𝜃,𝜔, (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝒅𝑖𝑗𝑘

𝜔 , 𝒑𝜃, 𝓓, 𝓒, 𝓢, 𝛿𝑡𝑖) = 𝟎 ,       ∀ 𝑖, 𝑗, 𝑘 

∑ 𝑌𝑎,𝑖𝑗𝑘
𝜃,𝜔

𝑎,𝑖,𝑗,𝑘,𝜃,𝜔

= 1    

𝑌𝑎,𝑖𝑗𝑘
𝜃,𝜔 ∈ {0,1}    ∀ 𝜃, 𝜔, 𝑎, 𝑖, 𝑗, 𝑘 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (4) − (7) 

 

𝛷 = max
𝜃,𝜔

 max
𝑎,𝑖,𝑗,𝑘

 𝛼𝑎,𝑖𝑗𝑘
𝜃,𝜔                                                                                                                                                (12𝐴) 

𝑠. 𝑡. 

∑𝓐𝑘𝑘′𝒙𝑖𝑗𝑘′
𝜃,𝜔

𝑘′

= 𝛿𝑡𝑖 ∗ 𝒇(𝒙𝑖𝑗𝑘
𝜃,𝜔, 𝒖𝑖𝑗𝑘

𝜃,𝜔, 𝒚𝑖𝑗𝑘
𝜃,𝜔, (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝒅𝑖𝑗𝑘

𝜔 , 𝒑𝜃 , 𝓓, 𝓒, 𝓢, 𝛿𝑡𝑖)       ∀ 𝑖, 𝑗, 𝑘  

𝑔𝑎,𝑖𝑗𝑘
𝜃,𝜔 (𝒙𝑖𝑗𝑘

𝜃,𝜔, 𝒖𝑖𝑗𝑘
𝜃,𝜔, 𝒚𝑖𝑗𝑘

𝜃,𝜔, (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝒅𝑖𝑗𝑘
𝜔 , 𝒑𝜃, 𝓓, 𝓒, 𝓢, 𝛿𝑡𝑖) = 𝛼𝑎,𝑖𝑗𝑘

𝜃,𝜔  ,     ∀ 𝑎, 𝑖, 𝑗, 𝑘    

𝒉(𝒙𝑖𝑗𝑘
𝜃,𝜔, 𝒖𝑖𝑗𝑘

𝜃,𝜔, 𝒚𝑖𝑗𝑘
𝜃,𝜔, (𝒚𝑠𝑝)𝑖𝑗𝑘 , 𝒅𝑖𝑗𝑘

𝜔 , 𝒑𝜃, 𝓓, 𝓒, 𝓢, 𝛿𝑡𝑖) = 𝟎 ,       ∀ 𝑖, 𝑗, 𝑘 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (4) − (7) 

 

The realization with the highest objective function (i.e. the most infeasible realization) in the 

feasibility problem is deemed the “worst case” realization for the current iteration of the algorithm, 

represented as (𝜔, θ)
𝑛
 as shown in Figure 3. Associated with that realization is a vector of slack 

variables 𝜶(𝜔,θ)𝑛, where positive values represent infeasible operating conditions. As shown in Problem 

(12A) and Figure 3, if 𝛷𝑛 ≥ 0, i.e. any slack variables related to the “worst case” realization (𝜔, θ)𝑛 in 

iteration 𝑛 are greater than zero, then the system is dynamically infeasible because a constraint is violated. 

If this is the case, then the algorithm continues to the next iteration, adding the worst case realization 
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(𝜔, θ)𝑛 to the critical set c, and solving the flexibility problem subject to the updated critical set. 

Conversely, if 𝛷𝑛 ≤ 0, i.e. all the slack variables are less than or equal to zero (i.e. all operating 

conditions are dynamically feasible), the algorithm terminates, and returns the current solution 𝓔𝑛 to be 

the most optimal solution 𝓔∗. This is a robust solution that is dynamically feasible for all the discrete 

realizations of disturbance and uncertainty that have been considered; however, it is not guaranteed to be 

optimal for the entire set of realizations in the disturbance and uncertain parameters. Furthermore, 

dynamic feasibility cannot be guaranteed for realizations other than at the discrete points in Eq. (8) and 

(9). Adding more realizations in the disturbances and uncertain parameter sets will improve the 

robustness of the resulting design, control and scheduling scheme at the expense of solving more 

intensive and challenging optimization problems. Structural decisions (e.g. control schemes, integer 

design decisions) can be considered in the flexibility analysis using additional integer variables, at the 

cost of increased complexity. Though the solution is robust, it may be overly conservative, especially in 

cases of very rare critical realizations. This can be partially remedied by careful selection of the weights 

𝜁𝜃,𝜔 for each realization. However, robust solutions always remain conservative to some degree. Current 

research carried out by the authors is focused on developing new numerical approaches that can reduce 

the conservatism in the solution. 

 

3.6 Application of Critical Set Method to Non-Isothermal CSTR 

This section describes the case study that was adopted for the application of the critical set 

method. The results presented in this work were obtained using GAMS on a system running Windows 7, 

using an Intel® Core™ i7-2600 CPU 3.40 GHz and 8.00 GB RAM. For MINLP problems, SBB is the 

chosen solver. For NLP (non-linear program) and CNS (constrained non-linear system) problems, 

CONOPT is selected. Hence, the present analysis accepts locally optimal solutions. Preliminary analysis 

showed that these solvers provided better performance than other solvers (e.g. DICOPT, IPOPT) for this 

case study.  
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The approach described in the previous section has been applied to a non-isothermal continuous 

stirred tank reactor (CSTR), which is shown in Figure 4. This case study is intended to be of similar 

complexity to the case studies used in other works on integrated design, control and/or scheduling 

optimization (Mehta and Ricardez-Sandoval, 2016; Patil et al., 2015; Terrazas-Moreno et al., 2008; Zhuge 

and Ierapetritou, 2016, 2012). The reactor has constant volume, due to an overflow outlet. The reactor 

temperature is not constant with respect to time, but it is uniform within the reactor, as the reactor is 

assumed to be well mixed. Multiple grades of product B must be produced via an irreversible first-order 

reaction that converts reactant A into product B. The various product grades are produced one at a time, 

i.e. in a wheel fashion. Scheduling decisions include the production sequence and the transition durations 

(i.e. region lengths 𝚫𝒕) between product grades. During the production regions, deviation from the 

concentration set-point is penalized in the cost function. 

 
Figure 4: Schematic of CSTR system 

 
 As shown in Figure 4, the feed to the reactor consists entirely of species A, at a concentration of 

𝐶𝐴𝑖𝑛 (3.0 𝑚𝑜𝑙/𝐿), flow rate 𝑞𝑖𝑛, and temperature 𝑇𝑖𝑛 (40°C). The feed must be converted to product B via 

an exothermic reaction. The reaction is assumed to follow first order Arrhenius kinetics as in Eq. (13). 

𝑟𝐴 = 𝑘𝑜𝐶𝐴 exp (
−𝐸𝑅
𝑅 𝑇

)                                                                                                                                               (13) 

PI 

𝑪𝑩 

𝑪𝑩
𝒔𝒑

 

CA,in, qin, Tin  

 q, T  

  

QH 
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where 𝐶𝐴 is the concentration of species A in the reactor, 𝑘𝑜 is the pre-exponential constant (1.3 𝑠−1), 𝑅 

is the gas constant (8.3144 𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1 ), 𝑇 is the temperature in the reactor, and 𝐸𝑅 is the activation 

energy of the reaction (20000 𝐽/𝑚𝑜𝑙). The dynamic behavior of the state variables 𝒙𝐶𝑆𝑇𝑅 = {𝑇, 𝐶𝐵} is 

described in Eq. (14)-(15). Equations are shown in continuous form and have been discretized before 

implementation as shown in Section 3. Orthogonal collocation for this case study is discussed further in 

Appendix A. 

𝑑𝑇

𝑑𝑡
=
𝑞𝑖𝑛(𝑇𝑖𝑛 − 𝑇)

𝑉
+
∆𝐻𝑅𝑘𝑜(𝐶𝐴𝑖𝑛 − 𝐶𝐵)

𝜌 𝐶𝑃
exp (

−𝐸𝑅
𝑅 𝑇

) −
𝑄𝐻
𝜌𝐶𝑃𝑉

                                                                       (14) 

𝑑𝐶𝐵
𝑑𝑡

= 𝑘𝑜(𝐶𝐴𝑖𝑛 − 𝐶𝐵) exp (
−𝐸𝑅
𝑅 𝑇

) +
𝑞𝑖𝑛𝐶𝐵
𝑉

                                                                                                         (15) 

where 𝐶𝐵 is the concentration of species B (product) in the reactor, 𝑉 is the volume of liquid in the 

reactor, ∆𝐻𝑅 is the heat of reaction (4780 𝐽/𝑚𝑜𝑙), 𝜌 is the density of the liquid in the reactor (1 𝑘𝑔/𝐿), 

𝐶𝑃 is the specific heat capacity of the liquid (4.1813 𝐽 ∙ 𝑔−1 ∙ 𝐾−1), and 𝑄𝐻 is the rate at which heat is 

added/removed to the system.  

The control scheme consists of a PI controller that uses the heating rate 𝑄𝐻 to control the product 

concentration 𝐶𝐵 at the outlet. As shown in Eq. (16), the concentration set-point is denoted by 𝐶𝐵
𝑠𝑝

 

whereas the controller parameters are represented by the proportional gain 𝐾𝑐, and the integral time 𝜏𝑖. 

The steady state (nominal) heating rate is 𝑄𝐻̅̅ ̅̅ . Due to large differences between typical values of 𝐶𝐵(𝑡) 

and 𝑄𝐻(𝑡), the value of 𝐾𝑐 is scaled by 106 (not shown), for clarity of results. 

𝑄𝐻(𝑡) = 𝑄𝐻̅̅ ̅̅ + 𝐾𝐶(𝐶𝐵
𝑠𝑝
− 𝐶𝐵(𝑡)) +

𝐾𝑐
𝜏𝑖
∫ (𝐶𝐵

𝑠𝑝
− 𝐶𝐵(𝑡

′))
𝑡

0

𝑑𝑡′                                                                     (16) 

For safety reasons, the temperature inside the reactor must be maintained between 0°C and 400°C 

during operation, as shown in Eq. (17). Additionally, the rate of change in the manipulated variable (heat 

input 𝑄𝐻) is constrained, as shown in Eq. (18), to prevent drastic changes in the heat input. This case 

study considers five set-points 𝐶𝐵
𝑠𝑝

 shown in Eq. (19), which are also referred to as set-points 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 
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respectively. To simplify the present analysis, the demand for each grade is assumed to be constant and 

equal for this case study. However, this is not required by the methodology and can be extended to 

consider unequal production of different product grades. As described in Section 2, there is a 

corresponding transition and production region for each set-point. Therefore, the total number of regions I 

is equal to 10 (i.e. there are 5 transition regions 𝑖𝑡 ∈ {1, 3, 5, 7, 9} and 5 production regions 𝑖𝑝 ∈ 

{2, 4, 6, 8, 10}). As described in Section 3.3, all variables are discretized into regions 𝑖, finite elements 𝑗, 

and collocation points 𝑘. In this case study, each region 𝑖 contains 100 finite elements, i.e. J=100. Within 

each finite element, there are 𝐾=5 collocation points, including the boundary points. The number of finite 

elements and collocation points were selected a priori based on a preliminary analysis of computational 

effort against accuracy in the solution. 

To account for grade transitions, the duration Δti of each region i is an optimization variable in 

the transition regions (odd numbered regions), and is bounded as shown in Eq. (20) to resemble a real 

process where there may be scheduling/operational limits imposed on time. In production regions (even 

numbered regions), the region duration is fixed at 4,000 seconds. As discussed in Section 3.2.3, additional 

constraints are necessary to ensure zero- and first-order continuity between finite elements and regions. 

Details on the implementation for this case study are discussed in Appendix A.  

0°C ≤ 𝑇(𝑡) ≤ 400°C                                                                                                                                                 (17) 

−50 kW/s ≤
𝑑𝑄𝐻(𝑡)

𝑑𝑡
≤ 50 kW/s                                                                                                                         (18) 

𝐶𝐵
𝑠𝑝
∈ {0.7, 0.9, 1.2, 1.5, 1.7} 𝐿/𝑚𝑜𝑙                                                                                                                      (19) 

10 𝑠 ≤ Δ𝑡𝑖 ≤ 300 𝑠        𝑖 ∈ 𝑖𝑡                                                                                                                                  (20) 

The objective of the optimization problem is to minimize total cost of the process. The total cost 

𝑧𝐶𝑆𝑇𝑅 shown in Eq. (21) is assumed to be the sum of capital cost, scheduling cost, and variability cost. 

Capital cost is a direct function of reactor volume 𝑉, scheduling cost is a function of the length of each 
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transition region Δ𝑡𝑖, and variability cost is a function of the integral of squared error 𝐼𝑆𝐸𝑖 of the outlet 

product concentration in each production region. Gaussian quadrature is used in place of a traditional 

integral to calculate 𝐼𝑆𝐸𝑖, as shown in (22), where 𝜑𝑘 is the Gaussian weight of each discrete point. Note 

that the weights assigned to each of the cost function terms were arbitrarily selected. 

𝑧𝐶𝑆𝑇𝑅 = 10𝑉 + 20∑Δ𝑡𝑖 

𝑖∈𝑖𝑡

+ 10∑ 𝐼𝑆𝐸𝑖
𝑖∈𝑖𝑝

                                                                                                           (21) 

𝐼𝑆𝐸𝑖 = ∑ ∑
𝜑𝑘
2
𝛿𝑡𝑖  (𝐶𝐵𝑖𝑗𝑘

𝑠𝑝
− 𝐶𝐵𝑖𝑗𝑘)

2

𝑘∉{1,𝐾}𝑗

        ∀ 𝑖                                                                                           (22) 

The decision variables for this case study are the reactor volume 𝑉 (design decisions), the 

controller tuning parameters 𝐾𝐶 and 𝜏𝑖 (control decisions) and the sequence of production (binary 

matrix 𝓢) and the transition region lengths 𝚫𝒕 (scheduling decisions). The lengths of the production 

regions are fixed at 4000 s, based on product demand. Although such short production periods may not be 

realistic, the weighting of the production regions can be manipulated to mimic the effect of a longer 

production region, without increasing the problem complexity. The flexibility analysis also includes 

constraints on the production sequence such that only one grade is produced at a time (Eq. (23)), and that 

all grades are produced by the end of the time horizon (Eq. (24)). Due to the repeating production 

schedule as mentioned in Section 3.1, there are many production sequences which are identical (e.g. A-B-

C-D-E and B-C-D-E-A, etc.). Therefore, to reduce the computational costs, the first set-point is fixed so it 

is always the first grade (0.7 𝑚𝑜𝑙/𝐿). 

∑𝒮𝑔,𝑔′

𝑔′

= 1      ∀𝑔                                                                                                                                                   (23) 

∑𝒮𝑔,𝑔′

𝑔

= 1      ∀𝑔′                                                                                                                                                  (24) 
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3.6.1 Scenario A: Comparison to Nominal Optimization 

In this scenario, the results from two implementations are compared. The first problem (Scenario 

A1) considers that the selected process disturbance, i.e. the inlet flow rate 𝑞𝑖𝑛, is set to its nominal 

operating condition while the second problem (Scenario A2) considers an oscillating inlet flow rate 𝑞𝑖𝑛. In 

both problems, design, control, and scheduling are optimized simultaneously using the proposed 

algorithm. The purpose of this scenario is to illustrate the effect that disturbance has on the optimal 

design, control, and scheduling. 

As shown in Eq. (25), the inlet flow rate 𝑞𝑖𝑛 is assumed to oscillate around a nominal point 

𝑞𝑖𝑛𝑛𝑜𝑚 (0.4 L/s) following a sinusoidal wave with an amplitude of 𝑞𝑖𝑛𝑎𝑚𝑝  (0.08 L/s),. The oscillation 

frequency 𝜈 is assumed to be an unknown parameter chosen from a discrete set of frequencies shown in 

Eq. (26). Accordingly, 𝜔 ∈ {0,1,2,… ,10} refers to a particular disturbance realization, similar to Eq. (8) 

in Section 3.4. All realizations are assumed to be equally likely, i.e. 𝜁𝜔 = 1/11. In Scenario A1, the inlet 

flow rate is assumed to be equal to the nominal value, i.e. 𝜈 = 0. 

𝑞𝑖𝑛 = 𝑞𝑖𝑛𝑛𝑜𝑚 + 𝑞𝑖𝑛𝑎𝑚𝑝 sin(𝜈𝑡)                                                                                                                              (25) 

𝜈 ∈ {0, 0.001, 0.002, 0.004, 0.007, 0.01, 0.02, 0.04, 0.07, 0.1, 0.2} 𝑠−1                                                       (26) 

Table 2: Summary of Results from Scenario A 

Scenario Scenario A1 Scenario A2 

Optimal Process Cost ($) 177 388 

CPU Time (s) 494 4,649 (four iterations) 

Reactor Volume 𝑉(𝐿) 13.6 15.4 

Controller 𝐾𝐶, 𝜏𝑖 1.95, 146 5.00, 346 

ISE of concentration 1.22 17.63 

Production sequence A-B-C-E-D A-C-E-D-B 

Transition durations 𝚫𝒕 (s) 46.2, 10.0, 18.3, 63.3, 10.0 33.9, 66.5, 119, 25.0, 46.6 

Critical set c 𝒄 = {(𝜔 = 0)} 𝒄 = {(𝜔 = 0), (𝜔 = 5),  
          (𝜔 = 2), (𝜔 = 4)} 
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The results for these implementations are summarized in Table 2. Scenario A1 requires a single 

flexibility problem to generate a solution subject to nominal conditions. Scenario A2 requires four 

iterations of the proposed algorithm to converge to an optimal solution that is feasible for all the 

realizations considered. Note that the solution provided by Scenario A1 does not remain feasible under all 

realizations of process disturbance (not shown for brevity). The size of the flexibility analysis (11) in 

Scenario A2 grows in each successive iteration, because the problem must be solved over all realizations 

in the critical set, which is expanded following each feasibility analysis, as shown in Figure 3. In the final 

iteration of the algorithm for Scenario A2, the flexibility problem consisted of 119,529 equations and 

89,553 variables, while the feasibility simulations consisted of 21,507 equations and variables. The use of 

simulations in the feasibility analysis is justified, as the formal optimization in (12) would have contained 

50,000 binary variables, resulting in a nearly intractable IP problem. Conversely, the computational time 

for the feasibility analysis simulations in (12A) required only 25 seconds.  

The problem size of Scenario A1 is smaller than that of Scenario A2, consisting of 46,519 

equations and 36,543 variables. As expected, the CPU time is much higher for Scenario A2 (at least one 

order of magnitude) since the problem is larger and requires multiple iterations. As expected, the total 

process cost and ISE are higher in Scenario A2, due to the presence of disturbance. Note that both 

scenarios returned different scheduling solutions, in terms of sequencing and transition durations, aside 

from the starting point (which was fixed). Scenario A2 has lower transition durations, to account for 

process disturbances. Control parameters are also significantly different, due to the differences in 

scheduling. Furthermore, the reactor volume is 13% larger in Scenario A2 than in Scenario A1. These 

results highlight the importance of taking scheduling decisions into account while performing the optimal 

design of a multiproduct system. The concentration profile from each of the scenarios is displayed in 

Figure 5, showing nominal operation with no disturbance (Scenario A1) and disturbed operation with 

critical disturbance (Scenario A2). The differences in sequence, transition times, and control tuning can be 

observed.  
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Figure 5: Concentration profile comparison for Scenario A 

 

3.6.2 Scenario B: Comparison to Sequential Method 

In this scenario, results from the proposed methodology (Scenario B1) are compared to the results 

from the sequential method (Scenario B2) and the sequential method with overdesign factors (Scenario 

B3). The purpose of this scenario is to compare these competing methodologies in terms of solution 

quality and computational time. The problems are solved subject to the process disturbance described in 

the previous scenario. Additionally, uncertainty is considered for two parameters in this process: heat of 

reaction ∆𝐻𝑅, and activation energy 𝐸𝑅. The corresponding value of these parameters is determined by the 

uncertainty realization 𝜃 ∈ {0,1,2,3,4} as shown in Table 3. Note that the complexity of the problem 

increases since all the combinations of disturbance (11 realizations) and uncertainty (5 realizations) are 

considered, resulting in 55 possible realizations. The decomposed algorithm is initialized with 𝜔 = 0 (see 

Eq. (25)) and 𝜃 = 0, to represent nominal values.  
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Table 3: Uncertainty Realizations for Scenario B 

Realization 𝜃 
Heat of Reaction ∆𝐻𝑅 

(𝐽/𝑚𝑜𝑙) 
Activation 

Energy 𝐸𝑅 (𝐽/𝑚𝑜𝑙) 

0 5000  20000  

1 6000  21000  

2 4000  19000  

3 4000  21000  

4 6000  19000  

 
For Scenario B2 and B3, the sequential method consists of three consecutive sub-problems (i.e. 

design, control, and scheduling), where the solution from each sub-problem is fixed in the calculations 

and passed to the next sub-problem; hence, there is no interaction between the different sub-problems. 

Due to the independence of the sub-problems in the sequential method, it is much less complex than the 

integrated approach. Once a solution is determined using the sequential method, the solution is tested 

against the full set of realizations of disturbance and uncertainty. The worst-case solution (i.e. the most 

infeasible solution) is returned as the final solution. This is to provide a fair comparison to the proposed 

method, which also returns the solution that accommodates the worst-case (critical) realizations in 𝜔 

and 𝜃. The solution obtained from the sequential approach (Scenario B2) contained multiple infeasible 

realizations. Hence, an overdesign factor of 1.5 was applied to the reactor volume in Scenario B3 to 

prevent dynamic infeasibility, based on a preliminary analysis of overdesign factors ranging from 1.1 to 

2.0, in increments of 0.05. With the overdesigned sequential approach (Scenario B3), all the realizations 

become feasible and comparison to the integrated approach is possible. 

For Scenario B1, five iterations of the proposed algorithm are required before convergence is met. 

Results following the flexibility problem from each iteration are summarized in Table 4. The critical set c 

is initialized with the nominal point (0,0), and a new realization in the disturbance and uncertain 

parameters is added to the critical set in each iteration. The effects of the expanding critical set can be 

seen as the problem size increases and the solution changes slightly in each iteration. Given that the 

present approach uses the solution from the previous iteration to initialize the problem at the current 

iteration, then a direct relationship between computational costs and problem size shall not be expected 
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since it also depends on other factors such as initial conditions and non-linearities. In the final iteration, 

all realizations are identified as feasible in the feasibility analysis, so the algorithm is terminated, and the 

design, control and scheduling scheme corresponding to that iteration is reported as the optimal solution 

(𝓔∗) as shown in Figure 3. 

Table 4: Summary of Flexibility Analyses in Scenario B1  

Iteration Critical Set Solution  
CPU 

Time 

# of equations 

# of variables 

1 𝒄 = {(0,0)} 

V = 13.48 

𝐾𝑐 , 𝜏𝑖 = 2.11, 823 

Sequence: A-B-C-D-E 

𝚫𝒕 = 88, 52, 40, 48, 10 

183 s 
23,269 

18,293 

2 
𝒄 = {(0,0), 
(8,1)} 

V = 18.51 

𝐾𝑐 , 𝜏𝑖 = 5.00, 130 

Sequence: A-B-C-D-E 

𝚫𝒕 = 114, 10, 10, 10, 10 

249 s 
41,524 

31,548 

3 
𝒄 = {(0,0), 
(8,1), (9,1)} 

V = 18.54 

𝐾𝑐 , 𝜏𝑖= 5.00, 137 

Sequence: A-B-C-D-E 

𝚫𝒕 = 101, 40, 10, 10, 10 

469 s 
59,779 

44,803 

4 

𝒄 = {(0,0), 
(8,1), (9,1), 
(7,1)} 

V = 18.56 

𝐾𝑐 , 𝜏𝑖= 5.00, 251 

Sequence: A-B-E-D-C 

𝚫𝒕 = 52, 10, 99, 10, 10 

1271 s 
78,034 

58,058 

5 

𝒄 = {(0,0), 
(8,1), (9,1), 
(7,1), (5,1)} 

V = 18.89 

𝐾𝑐 , 𝜏𝑖 = 5.00, 764 

Sequence: A-B-E-D-C 

𝚫𝒕 = 155, 51, 281, 35, 28 

920 s 
96,289 

71,313 

 
 

Table 5 presents the results obtained from Scenario B. As shown in this table, the optimal process 

cost provided by the integrated approach (Scenario B1) is 17% lower than the solution provided by the 

overdesigned sequential approach (Scenario B3), and every component of the cost function is also lower. 

Scenario B2 has the lowest process cost out of all scenarios considered though it returns a dynamically 

infeasible design. The computational cost of the integrated approach (Scenario B1) is approximately three 

times higher than that of Scenario B3, due to the increased complexity of the integrated problem, as 

mentioned above.  
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Table 5: Summary of Results from Scenario B 

Method 
Integrated approach 

(Scenario B1) 

Sequential approach 

(Scenario B2) 

Overdesign Sequential 

approach (Scenario B3) 

Optimal Process Cost ($) 607 385 (Infeasible) 735 

       Capital Cost ($) 189 150 225 

       Transition Cost ($) 110 27 119 

       Variability Cost ($) 308 208 391 

CPU Time (s) 4,147 (5 iterations) 1,016 (sum of all stages) 801 (sum of all stages) 

Reactor Volume 𝑉(𝐿) 18.9 15.0 22.5 

Controller 𝐾𝐶, 𝜏𝑖 5.00, 764 5.00, 137 5.00, 456 

Production sequence A-B-E-D-C A-B-D-E-C A-C-B-E-D 

Transition times 𝚫𝒕 (s) 155, 51.0, 281,   

35.4, 27.9 

39.5, 20.9, 34.9,        

10.1, 29.1 

284, 178, 55.8, 48.4, 32.6 

Critical set 𝒄 𝒄 = 

{(0,0), (8,1), (9,1), 
(7,1), (5,1), (9,3)} 

Dynamically Infeasible Dynamically Feasible 

 
 

As shown in Table 5, the controller integral time is significantly different for each approach, and 

the lower variability cost indicates that the integrated approach offers better set-point tracking 

performance than Scenario B3. The reactor volume is also lower in the integrated approach, leading to a 

16% lower design cost compared to Scenario B3. Note that the reactor volume from the integrated 

approach (V = 18.9) is only 26% greater than Scenario B2 (V = 15), which was found to be dynamically 

infeasible. This indicates that by integrating design with control and scheduling decisions, the reactor 

volume was able to remain relatively low without resulting in dynamically infeasible (invalid) designs in 

the presence of disturbance and parameter uncertainty. Additionally, it is likely that reactor volume has a 

large effect on process dynamics; thus, the reactor sizing in the sequential approach is suboptimal because 

it is determined in the first stage of optimization (before control and scheduling have been determined). 

Note that the production sequence and transition durations are also significantly different. This is a clear 

indication that scheduling decisions are affected by design and control decisions, thus motivating the need 

for integration of these three aspects. Scenario B1 and Scenario B3 are feasible over all realizations of 

process disturbance and uncertainty, while Scenario B2 is dynamically infeasible. The concentration 
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profiles from Scenario B1 (integrated approach) and Scenario B3 (overdesign sequential approach) are 

shown in Fig. 6, where differences can be observed in production sequence, transition times, process 

variability and controller tuning.  

 
Figure 6: Concentration profile comparison for Scenario B 

 
In Fig. 7, it can be observed that the temperature from the integrated approach (Scenario B1) 

remains within the corresponding limits specified for this variable (see Eq. (17)), and oscillates as closely 

as possible to the limit. For Scenario B2 (the unmodified sequential approach), the temperature surpasses 

the upper bound, resulting in infeasible operating conditions. In Fig. 8, the profile of the manipulated 

variable (heat input) in Scenario B1 is illustrated. Similar to temperature, the heat input oscillates to 

correct for changes in the disturbances and the uncertain parameters (∆𝐻𝑅 and 𝐸𝑅), and no drastic changes 

are observed. 
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Figure 7: Reactor temperature profiles from Scenario B 

 

 
Figure 8: Heat input profile from Scenario B1 

 
The progression of the algorithm in the integrated approach (Scenario B1) can be observed in 

Figure 9, which displays the maximum infeasibility (𝛷𝑛) in temperature constraints detected from the 

feasibility analysis at each iteration 𝑛. Infeasibility starts out high (55 °C above upper bound), and then 

generally decreases with each iteration, although that is not guaranteed. The algorithm terminates after the 

fifth iteration, when no infeasibilities were detected, i.e. 𝛷 ≤ 0. 
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Figure 9: Algorithm convergence for Scenario B1 

 

3.6.3. Cost Function Sensitivity Analysis for Scenario B 

In this scenario, a sensitivity analysis was performed on the weights assigned to each term in the 

objective function (Eq. 21) to determine the effect on the solution obtained from Scenario B. Three 

sensitivity scenarios are considered in this analysis. In each of the scenarios, a 10% increase is applied to 

a coefficient in the objective function, either capital cost weight, scheduling cost weight or variability cost 

weight. To simplify the analysis, each sensitivity problem is initialized with the optimal solution provided 

by the critical set method in Scenario B1. Results from this analysis are displayed in Table 6. 

Table 6: Summary of Sensitivity Analyses for Scenario B 

Method 
Increased Capital 

Cost Weight 

Increased Scheduling 

Cost Weight  

Increased Variability 

Cost Weight  

Total Process Cost ($) 626 618 638 

       Capital Cost ($) 208 189 189 

       Transition Cost ($) 110 121 110 

       Variability Cost ($) 308 308 339 

Reactor Volume 𝑉(𝐿) 18.9 18.9 18.9 

Controller 𝐾𝐶, 𝜏𝑖 5.00, 764 5.00, 765 5.00, 761 

Production sequence A-B-E-D-C A-B-E-D-C A-B-E-D-C 

Transition times 𝚫𝒕 (s) 
155, 51.0, 281, 

35.4, 27.9 

155, 51.0, 281, 35.1, 

27.3 

155, 51.0, 281, 35.7, 

28.2 

0

10

20

30

40

50

60

0 1 2 3 4 5

M
ax

im
u

m
 I

n
fe

as
ib

il
it

y 
𝛷

n

Iteration number n



38 

As shown in Table 6, all three analyses returned a solution that is nearly identical to that obtained 

for Scenario B1 with negligible differences in transition times and controller integral time. The observed 

changes in the total process cost of 3.03%, 1.81% and 5.11%, respectively, are fully explained by the 

differences in cost weights, i.e. a 10% increase in the capital cost weight returned a 10% increase in the 

capital cost. These results show that the solution obtained in Scenario B1 is robust (i.e. insensitive) to 

small changes in the weights specified in the cost function. 

 

3.7 Application of Critical Set Method to Isothermal PFR 

To further test the proposed critical-set method, the simultaneous design, control and scheduling 

of a plug flow reactor (PFR) is determined. The PFR, adopted from the case study described by Flores-

Tlacuahuac and Grossmann (2011), consumes reactant A via an irreversible second-order reaction. The 

reactor is assumed to be isothermal due to an ideal heating/cooling jacket, i.e. the rate constant ko is 

constant. The reactor has a total length L and a flow rate qin. The system is described by the PDE and 

boundary conditions in Eq. (27), where CA is the reactant concentration as a function of length x and time 

t. Radial effects are assumed to be negligible. The diffusion coefficient DA (10 m2/s) and the cross-

sectional area Ac (0.785 m2) are known. A schematic of the PFR system is shown in Figure 10. 

 
Figure 10: Schematic of PFR system 

 

PI 𝐶𝐴 

𝐶𝐴
𝑠𝑝

 

𝐶𝐴𝑖𝑛 

𝑞, 𝐶𝐴 

Reactor 

𝑞𝑖𝑛 



39 

𝜕𝐶𝐴
𝜕𝑡

= 𝐷𝐴
𝜕2𝐶𝐴
𝜕𝑥2

+
𝑞𝑖𝑛
𝐴𝑐

𝜕𝐶𝐴
𝜕𝑥

− 𝑘𝑜𝐶𝐴
2                                                                                                                         (27) 

𝑠. 𝑡. 

𝐶𝐴(𝑥, 𝑡 = 0) = 𝐶𝐴,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

𝐶𝐴(𝑥 = 0, 𝑡) = 𝐶𝐴.𝑖𝑛𝑙𝑒𝑡 

𝜕𝐶𝐴(𝑥, 𝑡)

𝜕𝑥
|
𝑥=𝐿

= 0 

 

Different product grades are produced on a cyclic schedule, and demand for each grade is 

assumed to be equal. The outlet concentration of reactant A is controlled by a PI controller that 

manipulates the input flow rate 𝑞𝑖𝑛. Due to physical limitations of the pump, the inlet flow rate 𝑞𝑖𝑛 must 

remain between 0.25 and 10 m3/s at all times. This case study considers five set-points 𝐶𝐴
𝑠𝑝
∈ {50, 56, 63, 

71, 80}, which are referred to as {A, B, C, D, E}, respectively. Therefore, the total number of regions I is 

equal to 10, identical to the CSTR case study (i.e. there are 5 transition regions 𝑖𝑡 ∈ {1, 3, 5, 7, 9} and 5 

production regions 𝑖𝑝 ∈ {2, 4, 6, 8, 10}). The number of finite elements J in each region is chosen to be 

40, and the number of collocation points K is set to 5. These values were selected based on a preliminary 

analysis of computational effort against accuracy in the solution. The lengths of transition regions Δ𝑡𝑖 are 

optimization variables in the analysis, subject the same bounds as Eq. (20), while the length of each 

production regions is fixed at 360 s. Time-dependent variables are discretized in time, and spatially-

dependent variables are also discretized along the spatial domain. The number of spatial nodes is chosen 

to be 11, and finite difference equations are used at the nodes, as shown in Flores-Tlacuahuac and 

Grossmann (2011). As shown in Eq. (28), the cost function 𝑧𝑃𝐹𝑅 to be minimized is the sum of capital 

cost (reactor length), scheduling cost (duration Δ𝑡𝑖 of each transition region), and variability cost (integral 

of squared error 𝐼𝑆𝐸𝑖 of outlet concentration in each production region).  

𝑧𝑃𝐹𝑅 = 10𝐿 +∑Δ𝑡𝑖
𝑖∈𝑖𝑡

+
1

100
∑ 𝐼𝑆𝐸𝑖
𝑖∈𝑖𝑝

                                                                                                                  (28) 
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The decision variables for this case study are the reactor length 𝐿 (design decision), the controller 

tuning parameters 𝐾𝑐 and 𝜏𝑖 (control decisions), and the sequence of production 𝓢 and the transition 

durations 𝚫𝒕 (scheduling decisions). There are constraints on the production sequence such each grade is 

produced once in the time horizon, and only one grade is produced at a time. The constraints on the inlet 

flow rate 𝑞𝑖𝑛 are also considered in the analysis. Due to the wheel-like production schedule, many 

sequences are not unique (e.g. A-B-C-D-E and D-E-A-B-C, etc.). To remedy this, the first set-point is 

fixed to be the highest grade (80 mol/L). 

The process is disturbed by the inlet reactant concentration 𝐶𝐴.𝑖𝑛𝑙𝑒𝑡, which oscillates around a 

nominal point of 100 mol/L, following a sinusoidal wave with an amplitude of 15 mol/L. The oscillation 

frequency 𝜈 is unknown, but is assumed to belong to a discrete set of values {0, 1, 2, 5, 8, 10, 12, 14, 16, 

18, 20}×10-3 rad/s, as indicated by the index 𝜔 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. All realizations are 

assumed to be equally likely. Discrete parametric uncertainty is considered for the reaction rate constant 

𝑘𝑜 ∈ {1.00, 0.90, 0.95, 1.05, 1.10}×10-4 L/(mol∙s). The particular realization is indicated by 

𝜃 ∈ {1, 2, 3, 4, 5}. The analysis considers all combinations of disturbance (11 realizations) and 

uncertainty (5 realizations), for a total of 55 possible realizations. The algorithm is initialized with 𝜔 = 1 

and 𝜃 = 1 (i.e. Ω = 0 rad/s and 𝑘𝑜 = 10-4 L/(mol∙s)) to represent nominal values. 

 

3.7.1 Scenario C: PFR Comparison to Sequential Method 

The present case study was implemented on GAMS and solved using an Intel® Core™ i7-2600 

CPU 3.40 GHz and 8.00 GB RAM. Solvers used were SBB and CONOPT for the flexibility and 

feasibility analysis, respectively; these solvers were selected based on a preliminary analysis. The 

comparison case of the sequential method was generated with an overdesign design factor; reducing 

reactor length by one-third. This may seem backwards, but it does indeed allow for a robust solution. Had 

the reactor length not been reduced, the required flow rate 𝑞𝑖𝑛 to produce the highest grade (which 



41 

demands low residence time) would have been beyond the upper bound of 10 m3/s once disturbance and 

uncertainty were considered in the system.  

The results obtained from each of the approaches are displayed in Table 7. As shown in this table, 

the total cost provided by the integrated approach (Scenario C1) is 46 % lower than that returned by the 

sequential approach (Scenario C2), with the difference in variability cost providing most of the cost 

savings. The computational time required by the integrated approach is approximately six times higher 

than that of the sequential approach, due to the increased complexity of the integrated problem, which 

grows in size with every iteration due to an expanding critical set. In the final iteration of the proposed 

approach, the flexibility problem consisted of 81,228 equations and 76,451 variables, while the sequential 

problem included 29,218 equations and 27,641 variables. As shown in Table 7, the integrated approach 

has a 14 % higher capital cost, and a six-fold increase in transition cost. These differences in design and 

scheduling result in much better performance of the system, reducing variability cost by 69 %. Since 

variability cost has the largest impact, this results in a lower overall cost for the integrated method, 

suggesting that integration allows for better balancing between decisions, as they are made 

simultaneously. Note that the production sequence is completely different, aside from the first point 

(which is fixed). The transition times are also slightly different, with the integrated approach having a 

longer first transition. This suggests that scheduling is influenced by design and control decisions, 

indicating the need for integration of design, control, and scheduling. 
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Table 7: Summary of Results from Scenario C 

Method 
Integrated approach 

(Scenario C1) 

Sequential approach 

(Scenario C2) 

Optimal Process Cost ($) 1,612 2,963 

       Capital Cost ($) 227 200 

       Transition Cost ($) 302 50 

       Variability Cost ($) 1,083 2,713 

CPU Time (s) 5,836 (3 iterations) 1,079 (sum of all stages) 

Reactor Length 𝑳 (m) 22.7 20.0 (backed off from 30) 

Controller 𝑲𝒄, 𝝉𝒊 0.1, 100 0.1, 100 

Production sequence E-D-C-A-B E-C-A-B-D 

Transition times 𝚫𝒕 (s) 261, 10, 10, 11, 10 10, 10, 10, 10, 10 

 

 

Figure 11: (a) Profiles of outlet concentration and (b) inlet flow rate from Scenario C1 

The response in outlet concentration CA due to the most critical realization in the integrated 

approach (Scenario C1) is shown in Figure 11. As shown in Figure 11a, the concentration follows the set-

point, though the oscillatory effect of the disturbance is significant. Note that the first transition duration 

is longer to accommodate the large change in set-point. In Figure 11b, the manipulated variable (𝑞𝑖𝑛) 

continuously oscillates in Scenario C1 to partially counteract the disturbance and uncertainty effects, and 

remains within its bounds at all times. 
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3.8 Chapter Summary 

The critical set method offers a solution for design, control, and scheduling, subject to a discrete 

set of disturbance and uncertainty. The algorithm identifies infeasible realizations in the feasibility 

analysis, and assembles a critical set of realizations, which are optimized in the flexibility problem. This 

method is shown to provide high quality solutions for both a CSTR and PFR case study. These solutions 

require higher computational time than the sequential method, but offer reduced process cost. 

The performance of the critical set method is heavily influenced by the choice of the discrete 

realizations for the disturbance and uncertainty. As most real random variables have a continuous 

distribution, the discrete realizations are merely an approximation. A coarse discretization will lose too 

much information, as nothing between the points is considered, and the result may not be feasible once 

subjected to the real disturbance and uncertainty. On the other hand, a very fine discretization is not a 

good choice either. This will cause problems with termination of the algorithm, as the critical set will 

likely be very large before it converges. Recall that as the critical set grows, the problem size increases, 

leading to very large problems in this case that may take prohibitively long to solve. Therefore, the 

discretization must be chosen carefully to allow the critical set method to run properly. 

This provides motivation for a method that does not require discretization of disturbance and 

uncertainty, and instead uses a probabilistic distribution. Such a method would avoid the problem of 

choosing a suitable discretization, and would allow the use of statistical methods in determining the 

process variability. The back-off method accomplishes this, and it is described in the next section. 
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Chapter 4: Back-Off Methodology 

This section describes the second method that is utilized in this thesis, the back-off method. This 

method considers probabilistic distributions for the disturbance and uncertainty. The variability is 

propagated through the process model using simulations, providing statistical information on all process 

variables. Back-off terms are generated from this information, and are incorporated into the optimization 

to back off from the solution at nominal conditions. To reduce conservatism in the solution, this method 

can be tuned to accommodate different levels of variability. This work presented in this section has been 

submitted to the AIChE Journal. 

The back-off method described in this section is adapted from Shi et al. (2016). The problem 

definition is the same as in Section 3.1. The formal optimization formulation (29) is presented for a 

problem without disturbance or uncertainty (referred to as the nominal optimization problem). The 

required modifications for a stochastic optimization (subject to stochastic realizations in the disturbance 

and uncertainty) are explained next, including description of back-off terms, followed by the presentation 

of the back-off algorithm.  

Problem (29) presents the deterministic formulation for integration of design, scheduling, and 

control. Decisions are made on design, control, and scheduling to minimize the total cost of the 

process, 𝑧. The design decisions 𝓓 represent process design variables (e.g. equipment sizing, number of 

distillation trays) and steady-state operating conditions. The control decisions 𝓒 represent the process 

controller tuning, e.g. 𝐾𝑐 and 𝜏𝑖 in the case of a PI controller, or control actions in the case of optimal 

open-loop control. The scheduling decisions represent the production sequence 𝓢 (a binary matrix that 

determines the sequence of production), and the duration 𝚫𝒕 of each transition between operating points. 

Note that the transition durations 𝚫𝒕 are explicitly obtained from optimization, and do not depend on 

process dynamics, as described in our previous work (Koller and Ricardez-Sandoval, 2017a). For 
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simplicity, all these variables are referred to as the decision variables 𝓔 = {𝓓,𝓒, 𝓢, 𝚫𝒕}, and they are 

limited by upper and lower bounds. 

min
𝓔={𝓓,𝓒,𝓢,𝚫𝒕}

𝑧(𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒚𝑠𝑝(𝑡), 𝒅̅(𝑡), 𝒑̅, 𝓓, 𝓒, 𝓢, 𝚫𝒕)                                                                               (29) 

𝑠. 𝑡. 

𝒇(𝒙(𝑡), 𝒙̇(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒚𝑠𝑝(𝑡), 𝒅̅(𝑡), 𝒑̅, 𝓓, 𝓒, 𝓢, 𝚫𝒕) = 𝟎                                                             

𝒈(𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒚𝑠𝑝(𝑡), 𝒅̅(𝑡), 𝒑̅, 𝓓, 𝓒, 𝓢, 𝚫𝒕) ≤ 𝟎                                             

𝒉(𝒙(𝑡), 𝒖(𝑡), 𝒚(𝑡), 𝒚𝑠𝑝(𝑡), 𝒅̅(𝑡), 𝒑̅, 𝓓, 𝓒, 𝓢, 𝚫𝒕) = 𝟎    

𝓔𝑙𝑜 ≤ 𝓔 ≤ 𝓔𝑢𝑝    

𝓢 ∈ {0,1}   

𝑡 ∈ [0, 𝑡𝑒𝑛𝑑]       

 

The notation is the same as in Problem (1), but the difference is that the process disturbances 𝒅̅(𝑡) 

and uncertain parameters 𝒑̅ are assumed to be at their nominal values. A solution for (29) can be obtained, 

given that disturbance and/or uncertainty effects are set to their nominal values. If the process 

disturbances and uncertain parameters are considered as randomly distributed variables, the problem 

becomes much more difficult to solve, as an infinite search space must be explored to optimize every 

possible random realization in these variables. The problem then becomes an infinite-dimensional mixed 

integer non-linear dynamic optimization problem, which is very challenging to solve, due to the 

aforementioned infinite search space, the solution of time-dependent differential equations, and the 

combination of binary (sequencing) and continuous decisions. The proposed back-off method explained 

in the next section attempts to overcome these difficulties, by “backing off” from the solution of the 

nominal optimization problem (29). 
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4.1 Back-Off Parameters 

The back-off method described in this section has been adapted from that presented in Shi et al. 

(2016). This section describes the theory of back-off terms, while the calculation and implementation of 

the back-off terms are discussed in the following section. Consider the set of the inequality constraints 𝒈 

in Problem (29). Subject to stochastic parameter uncertainty 𝒑 and process disturbances 𝒅, the constraints 

cannot be guaranteed to be satisfied by every realization, especially when considering an unbounded 

distribution such as a normal distribution. Thus, back-off terms 𝒃 are introduced to each inequality 

constraint 𝒈 to approximate the effect of uncertainty, and force the solution to back off from the optimal 

nominal solution. If a single back-off value is used for all time points, the solution will be very 

conservative, as the maximum variability will be considered for the entire time domain. In the present 

analysis, the back-off terms 𝒃(𝑡) will be dependent on time, to allow for less conservatism in the solution. 

Thus, back-off terms will exist for each constraint at each point in time 𝑡. Using the described back-off 

method, the resulting solution can accommodate a specified multiple of standard deviation in the 

constraints, which is related to the magnitude of the back-off. 

The back-off terms are calculated from the results of Monte Carlo simulations, where the levels 

of the decision variables 𝓔 are fixed. However, the back-off terms may depend on the decision variables 

(i.e. different back-off terms are required for feasibility if design parameters are adjusted). To account for 

this, the back-off parameters can be identified as functions of the decision variables, via a sensitivity 

analysis, to generate PSE approximations. A similar approach can be used to generate a PSE for the 

objective function, to represent how the decision variables affect the process economics under 

uncertainty. This PSE-based method has shown to be useful for integration of design and control (Mehta 

and Ricardez-Sandoval, 2016; Rafiei-Shishavan et al., 2017a); alternatively, adjoint sensitivities can be 

employed (Diehl et al., 2006). However, both of these methods may be very expensive, especially for 

large-scale applications (Shi et al., 2016). To simplify the present analysis, the effect of uncertainty is 

assumed to be insensitive to the decision variables, as shown in (30) and (31). To circumvent this issue, 
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we propose an iterative approach that updates the back-off terms through Monte Carlo simulations for 

fixed values of the decision variables 𝓔, obtained from optimization (see next section). When the 

assumptions in conditions (30) and (31) do not hold, optimal back-off solutions cannot be guaranteed. 

Nevertheless, the proposed iterative approach gradually improves the back-off terms 𝒃(𝑡) and therefore 

the solution in the decision variables 𝓔. Moreover, the back-off approach is closely related to multi-

scenario optimization, which directly incorporates uncertainty. In the multi-scenario approach, the 

probability distribution of the uncertain parameters is represented by a finite (discrete) set of scenarios, 

each with a particular probability of occurrence (i.e. weight). Provided that first-order KKT optimality 

conditions for the multi-scenario optimization hold and critical realizations in the uncertain parameter set 

are active at the solution, Shi et al. (2016) showed that the present back-off calculation is equivalent to the 

multi-scenario problem, as long as assumptions (30) and (31) are satisfied. 

∇𝓔𝒃(𝑡, 𝒅, 𝒑, 𝓔) ≈ 0                                                                                                                                                     (30) 

∇𝓔𝑧(𝒅, 𝒑, 𝓔) − ∇𝓔𝑧(𝒅̅, 𝒑̅, 𝓔) ≈ 0                                                                                                                            (31) 

 

4.2 Algorithm Formulation 

This section discusses the steps that are necessary to generate a robust solution using the back-off 

method. In the present analysis, the time domain is discretized in the same manner as described in Section 

3.3, into regions 𝑖, finite elements 𝑗, and collocation points 𝑘. Similarly, the duration Δ𝑡𝑖 of each region 𝑖 

is a decision variable, determined from the optimization, and the duration of the contained finite elements 

and collocation points will stretch/compress to fit in each region.  

The back-off optimization formulation is shown in (32), including back-off terms and time discretization. 

During the optimization, the back-off terms remain fixed, and are recalculated in each iteration of the 

algorithm, using MC simulations. Note that uncertainty and disturbances are at their nominal values in 

Problem (32); however, process variability is approximated by the time-dependent back-off terms. Due to 
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this approximation, an iterative approach must be taken, where the back-off terms are updated in every 

iteration. As such, Problem (32) must be solved over multiple iterations in the back-off algorithm until 

convergence is achieved. The flowchart for the proposed back-off algorithm for integration of design, 

scheduling and control is shown in Fig. 12. Each of the steps in the algorithm is explained in detail below. 

min
𝓔={𝓓,𝓒,𝓢,𝚫𝒕}

 𝑧(𝒙𝑖𝑗𝑘 , 𝒖𝑖𝑗𝑘 , 𝒚𝑖𝑗𝑘 , 𝒚𝑖𝑗𝑘
𝑠𝑝
, 𝒅̅𝑖𝑗𝑘 , 𝒑̅, 𝓓, 𝓒, 𝓢, 𝚫𝒕)                                                                                                 (32) 

𝑠. 𝑡. 

∑𝒜𝑘𝑘′𝑥𝑖𝑗𝑘′  

𝑘′

= δ𝑡𝑖 𝒇(𝒙𝑖𝑗𝑘 , 𝒖𝑖𝑗𝑘 , 𝒚𝑖𝑗𝑘 , 𝒚𝑖𝑗𝑘
𝑠𝑝
, 𝒅̅𝑖𝑗𝑘 , 𝒑̅, 𝓓, 𝓒, 𝓢, Δ𝑡𝑖),      ∀𝑖, 𝑗, 𝑘    

𝒈(𝒙𝑖𝑗𝑘 , 𝒖𝑖𝑗𝑘 , 𝒚𝑖𝑗𝑘 , 𝒚𝑖𝑗𝑘
𝑠𝑝
, 𝒅̅𝑖𝑗𝑘 , 𝒑̅, 𝓓, 𝓒, 𝓢, Δ𝑡𝑖) + 𝑏𝑖𝑗𝑘 ≤ 0 ,     ∀𝑖, 𝑗, 𝑘 

𝒉(𝒙𝑖𝑗𝑘 , 𝒖𝑖𝑗𝑘 , 𝒚𝑖𝑗𝑘 , 𝒚𝑖𝑗𝑘
𝑠𝑝
, 𝒅̅𝑖𝑗𝑘 , 𝒑̅, 𝓓, 𝓒, 𝓢, Δ𝑡𝑖) = 0 ,     ∀𝑖, 𝑗, 𝑘 

𝓔𝑙𝑜 ≤ 𝓔 ≤ 𝓔𝑢𝑝                                                                                                                                               

𝓢 ∈ {0,1}  
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Figure 12: Back-Off Algorithm Flowchart 

 
Step 0: Initialization. Set all the back-off terms 𝒃 to 0, set the algorithm iteration number 𝑛 to 1; also, 

specify the number of MC simulations 𝑀, the back-off multiplier 𝜆, the convergence tolerance criteria 

𝑇𝑜𝑙𝑧, and define the probability distributions for the uncertain parameters 𝒑 and process disturbances 𝒅. 

Step 1: Nominal Optimization. The optimization problem (29) using nominal conditions for the 

uncertain and disturbance variables is solved first, i.e. 𝒅̅(𝑡) and 𝒑̅. For this step, back-off terms are 

considered to be zero, as defined in the initialization. The optimal (nominal) solution provides a starting 

point for the algorithm. As shown in Fig. 12, the levels of the decision variables 𝓔0 from this solution are 

passed to Step 2. 
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Step 2: Calculate back-off terms via Monte Carlo sampling. Using the known probability distribution 

for the uncertain parameters 𝒑 and process disturbances 𝒅, MC realizations for the uncertain parameters 

and disturbance sets are generated using the MC sampling technique. For each sampled realization, the 

system is simulated, and the process response at each discrete point in time is recorded. Note that in the 

simulations, the decision variables 𝓔 are fixed from either the nominal optimization problem (29) (in the 

first iteration) or the back-off optimization problem (32) (in further iterations), as shown in Fig. 12. These 

simulations are relatively fast due to the fact that it is a constrained problem, not an optimization. 

As shown in (33), the back-off terms 𝑏𝑖,𝑗,𝑘 for each constraint 𝑔𝑖,𝑗,𝑘 are equal to a multiple 𝜆 of the 

standard deviation 𝜎𝑀,𝑖,𝑗,𝑘 for that constraint, at each point in time (𝑖, 𝑗, 𝑘), after 𝑀 MC simulations. The 

way to compute 𝑏𝑖,𝑗,𝑘 is as follows: after the results from each MC simulation (i.e. referred to as m) are 

obtained, the mean 𝜇𝑚,𝑖,𝑗,𝑘 and standard deviation 𝜎𝑚,𝑖,𝑗,𝑘 of each process constraint are calculated, as 

shown in (34) and (35). This calculation is used to update the mean and variance and is performed after 

each sample 𝑚, to avoid storing all the values from every realization, which would require large amounts 

of computer memory (i.e. every constraint in every MC sample m at every point in time (𝑖, 𝑗, 𝑘)). Thus, 

the subscript 𝑚 indicates that the statistical parameters have been calculated based on 𝑚 realizations. The 

total number of MC samples 𝑀 used to simulate the system is chosen to be sufficiently large, so that the 

population of samples is properly representative of the distribution function and adequately captures the 

system variability for a fixed design, control and scheduling scheme (𝓔). Alternatively, convergence in 

the statistical parameters (i.e. mean and variance of the process constraints) can also be achieved by 

embedding the MC simulations within a batch comparison loop. Batches of MC samples are generated 

and simulated, and then statistical parameters are calculated and compared to the previous batch. New 

batches are produced until the difference in parameters between successive batches falls below a user-

defined tolerance criterion. 

𝑏𝑖,𝑗,𝑘 = 𝜆𝜎𝑀,𝑖,𝑗,𝑘;    ∀𝑖, 𝑗, 𝑘                                                                                                                                       (33) 
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𝜇𝑚,𝑖,𝑗,𝑘 =
(𝑚 − 1) ∙ 𝜇𝑚−1,𝑖,𝑗,𝑘 + 𝑔𝑖,𝑗,𝑘

𝑚
;   ∀𝑚, 𝑖, 𝑗, 𝑘                                                                                           (34) 

𝜎𝑚,𝑖,𝑗,𝑘
2 =

𝑚 − 2

𝑚 − 1
∙ 𝜎𝑚−1,𝑖,𝑗,𝑘

2 +
(𝑔𝑖,𝑗,𝑘 − 𝜇𝑚−1,𝑖,𝑗,𝑘)

2

𝑚
 ;  ∀𝑚, 𝑖, 𝑗, 𝑘                                                                  (35) 

Step 3: Back-off optimization. The optimization problem (32) is solved with consideration of back-off 

terms obtained from Step 2. This results in a more conservative solution than that obtained from Step 1, 

though the updated solution takes into account process variability due to uncertainty and disturbance 

effects in the process. Note that within the optimization problem (32), only nominal values are considered 

for parameter uncertainty and process disturbance, while the back-off terms provide information about the 

stochastic nature of those variables, and their effect on the process. Once a solution is obtained, the levels 

of the decision variables are passed back to Step 4 to calculate new back-off terms, as shown in Fig. 12. 

Step 4: Calculate back-off terms via Monte Carlo sampling. The back-off terms from MC simulations 

are calculated in this step. This procedure is identical to that described in Step 2, but the fixed decision 

variables that are provided to this method are from the back-off optimization (Step 3), i.e. (𝓔𝑛) as 

opposed to the nominal optimization problem (29), as outlined in Step 1. 

Step 5: Algorithm convergence. In each iteration 𝑚 of the back-off algorithm, an expected objective 

function value 𝐸[𝑧]𝑛 is calculated, to evaluate the average quality of the solutions from the MC 

simulations in that iteration. If this expected objective value is within a specified tolerance 𝑇𝑜𝑙𝑧 of the 

previous iteration (i.e. if condition (36) is true), and if there are no expected constraint violations (i.e. 𝛤 ≤

0 in (37)), then terminate the algorithm, and return the current solution 𝓔𝑛 as the optimal design, control 

and scheduling scheme. If either of the convergence criteria do not hold, the algorithm returns to Step 3. 

As shown in (38), the inequality constraints 𝒈 are instead evaluated using statistical parameters (i.e. mean 

and back-off), which are generated after 𝑀 MC stochastic realizations in the disturbances and uncertain 

parameters, using the current design, control and schedule scheme (ℰ𝑛). Note that the mean values and 

the back-off terms are evaluated at each time point 𝑖, 𝑗, 𝑘, and the largest constraint violation is recorded 
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as 𝛤, as shown in (37). A positive value in 𝛤 indicates a constraint violation, i.e. the current design, 

control and scheduling solution (ℰ𝑛) is dynamically infeasible. Note that this is not the worst case among 

𝑀 realizations from the MC simulations, but the worst case in time, based on the mean value of each 

constraint 𝒈 plus 𝜆 standard deviations. 

|𝐸[𝑧]𝑛 − 𝐸[𝑧]𝑛−1|

𝐸[𝑧]𝑛
≤ 𝑇𝑜𝑙𝑧                                                                                                                                       (36) 

𝛤 = max
𝑖,𝑗,𝑘

(𝜇𝑀,𝑖,𝑗,𝑘 + 𝑏𝑖,𝑗,𝑘)                                                                                                                                      (37) 

𝒈(𝒙𝑖,𝑗,𝑘, 𝒖𝑖,𝑗,𝑘, 𝒚𝑖,𝑗,𝑘 , 𝒚𝑖,𝑗,𝑘
𝑠𝑝

, 𝒅𝑖,𝑗,𝑘 , 𝒑, 𝓔) ≤ 0 ↔ (𝜇𝑀,𝑖,𝑗,𝑘 + 𝑏𝑖,𝑗,𝑘) ≤ 0    ∀𝑖, 𝑗, 𝑘                                           (38) 

As stated previously, a limitation of this method is that large back-off terms will shrink the 

feasible region, so that finding a solution may be more difficult. This can lead to convergence failure, 

particularly if few degrees of freedom are able to adapt to uncertainty. In addition, highly non-linear and 

highly coupled problems may cause issues due to local optima in the optimization step, and invalid 

assumptions (30) and (31) of back-off terms. Furthermore, the algorithm may not always produce the 

same result every time, due to the random nature of the MC simulations considered in the proposed back-

off algorithm. Despite these limitations, the algorithm has been effective in previous case studies (Shi et 

al., 2016).  

 

4.3 Application of Back-off Methodology to Non-Isothermal CSTR 

The Back-Off Method is applied to the same CSTR case study as in Section 3.6. The case study 

will not be described in this section, aside from the modifications made. The uncertain parameters are 

changed to a normal distribution, as defined in (39) and (40). To provide a similar level of uncertainty, the 

mean value plus/minus two sigma is set to the bounds of the discrete realizations from Section 3.6. The 

same time discretization is used, except the duration of the production regions has been shortened to 360 

s, and the minimum transition time from Eq. (20) has been reduced to 5 s. 
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𝐸𝑅 ∼ 𝒩(20000, 500
2)                                                                                                                                             (39) 

Δ𝐻𝑅 ∼ 𝒩(5000, 500
2)                                                                                                                                            (40) 

The back-off algorithm presented in the previous section was implemented on this multi-product 

case study. The results presented in the next sections were obtained using a system running Windows 7, 

using an Intel® Core™ i7-2600 CPU 3.40 GHz and 8.00 GB RAM. The back-off method for this case 

study was implemented in GAMS (Brooke et al., 2007). For each NLP, CONOPT (Drud, 1985) is the 

selected solver, and locally optimal solutions are accepted due to the non-linear nature of the problem. For 

the MC simulations, an explicit time-stepping method is used to simulate the system at each realization of 

uncertainty and disturbance. The flexibility problems (29) and (32) described in the back-off algorithm 

presented in this work are MINLP due to the scheduling decisions. However, if only a few binary 

variables are present, it is straightforward to enumerate all the possible sequences and solve non-linear 

programs (NLPs) for each case. This was done in the present case study. To simplify the analysis, the first 

product in the sequence is set to grade A, reducing the search space to 24 sequences. 

 

4.3.1 Scenario D: PI Control with Different Back-off Levels 

This scenario is named Scenario D, following the naming scheme of the previous scenarios, and 

to avoid confusion with Scenario A. In the current scenario, solutions are generated for multiple values of 

the back-off multiplier 𝜆, which consist of 0 (no back-off) and then 1, 2, and 3 (increasing levels of back-

off). The process is controlled by a PI controller as in (41), defined by the proportional gain 𝐾𝑐 and the 

integral time 𝜏𝑖, to control the product concentration 𝐶𝐵 at the outlet by manipulating the heating rate 𝑄𝐻. 

Recall, that the process disturbance is the inlet flow rate 𝑞𝑖𝑛, which oscillates a frequency 𝜔. For this 

scenario, the disturbance frequency 𝜔 is assumed to be fixed at 0.08 𝑟𝑎𝑑/𝑠. Note that this describes a 

constant oscillation frequency 𝜔, not a constant value for 𝑞𝑖𝑛. 
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𝑄𝐻(𝑡) = 𝑄𝐻̅̅ ̅̅ + 𝐾𝐶(𝐶𝐵
𝑠𝑝
− 𝐶𝐵(𝑡)) +

𝐾𝑐
𝜏𝑖
∫ (𝐶𝐵

𝑠𝑝
− 𝐶𝐵(𝑡

′))
𝑡

0

𝑑𝑡′                                                                     (41) 

For Scenario D, only uncertainty in the activation energy 𝐸𝑅 and heat of reaction Δ𝐻𝑅 was 

considered. The number of MC simulations 𝑀 is set to 20,000, and the algorithm convergence tolerance 

𝑇𝑜𝑙𝑧 is set to 1%. These values were found to be sufficient in preliminary analysis. 

The results from each of the four scenarios are displayed in Table 8. The average process cost 

𝑧𝐶𝑆𝑇𝑅 is calculated from the MC simulations in each scenario, considering 𝜆 standard deviations of 

variability in the output concentration (which affects process cost) as well as reactor temperature and heat 

input (which affect dynamic feasibility). 

Table 8: Summary of Results from Scenario D and Scenario E 

Scenario Scenario D0 Scenario D1 Scenario D2 Scenario D3 Scenario E 

Back-off multiplier 𝜆 0 1 2 3 2 

Disturbance 𝑞𝑖𝑛 Nominal 𝜔 Nominal 𝜔 Nominal 𝜔 Nominal 𝜔 Stochastic 𝜔 

Average process cost 𝑧𝐶𝑆𝑇𝑅 445 503 576 675 588 

CPU time (s) 2.18×103 40.9×103 70.7×103 28.8×103 72.9×103 

Reactor Volume 𝑉(𝐿) 16.1 17.4 19.1 21.4 19.0 

Controller 𝐾𝐶, 𝜏𝑖 5.00, 244 5.00, 325 5.00, 1000 5.00, 1000 5.00, 652 

Production sequence A-B-D-E-C A-C-E-B-D A-E-B-C-D A-E-B-C-D A-C-E-B-D 

Transition times 𝚫𝒕 (s) 23.3, 8.4, 

20.0, 16.0, 

43.7 

30.1, 44.1, 

40.5, 17.2, 

18.3 

31.4, 41.4, 

28.8, 40.9, 

49.1 

32.1, 38.4, 

32.7, 41.0, 

47.2 

31.5, 35.2, 

47.1, 17.0, 

19.0 

 
As shown in Table 8, Scenario D0 represents the case where no uncertainty or back-off 

parameters are considered in the analysis, i.e. (𝜆 = 0). Accordingly, this scenario produces the most 

economically attractive solution; however, the design, control and scheduling scheme obtained from this 

scenario becomes infeasible when subjected to uncertainty. The subsequent solutions show increasing 

levels of robustness, where Scenarios D1, D2, and D3 can withstand one, two, and three standard 

deviations of process variability, respectively. This robustness comes at a cost, however, as the average 

total process cost increases. This is because the system must back-off from the nominally optimal solution 

to ensure feasibility under stochastic realizations in the uncertain parameters. Furthermore, the 
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computational complexity is greatly increased, as scenarios beyond Scenario D0 show at least an order of 

magnitude increase in computational costs. Due to the random and non-linear nature of the problem, there 

is not a direct correlation, as Scenario D3 exhibited a lower computational time than Scenario D2. The 

reactor volume can be seen to increase as the back-off multiplier increases, so that the increased volume 

acts as a buffer to reduce variability. Longer transition times can also be seen in cases with higher back-

off, as this allows the system more time to transition to the next operating point, reducing variability. 

Controller parameters do not change significantly, though the integral action becomes slightly slower as 

more back-off is considered. Three different production sequences can be seen among the five scenarios 

shown in Table 8, indicating that scheduling decisions can have a significant effect on process dynamics, 

and can be influenced by design and control decisions. 

Output concentration for Scenario D1 and Scenario D2 is shown in Fig. 13, where the difference 

in production sequence can be observed. Both scenarios show similar set-point tracking, oscillating 

around the set-point due to the process disturbance. Confidence regions for concentration are shown in 

Fig. 13, but they are almost negligible due to effective feedback controller actions. Reactor temperature 

for Scenario D2 is shown in Fig. 14, where the confidence region can be clearly observed. This indicates 

that the PI controller is effective at removing variability from the concentration and transferring it to the 

temperature. Note that the upper confidence bound on temperature just touches the operating limit, 

indicating that it is a binding constraint, and that the back-off algorithm terminated properly. 
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Figure 13: Plot of output concentration for Scenario D1 and Scenario D2 

 

 
Figure 14: Plot of reactor temperature for Scenario D2 

 

4.3.2 Scenario E: PI Control with Stochastic Process Disturbance 

This scenario investigates the effect of a stochastic process disturbance. In the previous scenario, 

uncertainty in the activation energy 𝐸𝑅 and heat of reaction Δ𝐻𝑅 were considered in the analysis. This 
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to the reactor. For this scenario, the oscillation frequency 𝜔 will be a stochastic variable, distributed as in 

(42). The original two uncertain parameters (i.e. 𝐸𝑅 and Δ𝐻𝑅) are also considered in this scenario. The 

back-off multiplier 𝜆 is set to 2 standard deviations for this scenario. The algorithm convergence tolerance 

is the same as in Scenario D. Due to the addition of a time-dependent stochastic variable (the process 

disturbance), the total number of MC simulations 𝑀 has been increased to 100,000 to ensure convergence 

of the statistical parameters (mean and back-off) for each constraint.  

𝜔 ∼ 𝒩(0.08, 0.00082)                                                                                                                                             (42) 

Results from Scenario E are shown in Table 8. Scenario E shows a similar solution to Scenario 

D2, where the average process cost is increased by 2.2% and computational time is increased by 3.2%, 

due to the consideration of stochastic disturbance. The reactor volume shows no significant change. The 

controller in Scenario E has the same amount of proportional control, but faster integral control. An 

important result is that the production sequence is different; showing that even minor variability in the 

process disturbance can affect the optimal production sequence for this process. 

Output concentration for Scenario E is shown in Fig. 15, where distinct confidence bounds can be 

observed. This is different from the results obtained for all scenarios in Scenario D, where the variability 

in concentration was almost negligible. This indicates that the stochastic disturbance prevents the 

controller from transferring all the variability to the temperature; some variability remains with the 

concentration. Also, the confidence region grows with time, as the variable-frequency sine wave 

disturbances deviate from one another. Reactor temperature for Scenario E is presented in Fig. 16, where 

the variability is significant, and the operating constraint is binding, similar to the previous scenario.  
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Figure 15: Plot of output concentration for Scenario E 

 

 
Figure 16: Plot of reactor temperature for Scenario E 
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and rate-of-change limits, as shown in (44). Because the control profile in this scenario is optimized, the 

nominal case (Scenario F0) is expected to offer effective control actions. On the other hand, for operation 

subject to disturbance or parameter uncertainty, this control profile will remain fixed, likely leading to 

poor solutions due to the lack of feedback.  

The back-off multiplier 𝜆 is set to zero and unity for Scenarios F0 and F1, respectively. Nominal 

disturbance is considered in Scenarios F0 and F1, while stochastic disturbance with the frequency 

distribution presented in (42) is considered in Scenario F2. The algorithm convergence tolerance is the 

same as in Scenario D, and the total number of MC simulations (𝑀) is 20,000 in Scenarios F0 and F1, 

while it is increased to 100,000 in Scenario F2 based on the presence of stochastic disturbance. 

−700 𝑘𝑊 ≤ 𝑄𝐻(𝑡) ≤ 1200 𝑘𝑊                                                                                                                            (43) 

−10 kW/s ≤
𝑑𝑄𝐻(𝑡)

𝑑𝑡
≤ 10 kW/s                                                                                                                         (44) 

Table 9: Summary of Results from Scenario F 

Scenario Scenario F0 Scenario F1 Scenario F2 Scenario F3 

Back-off multiplier 𝜆 0 1 1 1 

Disturbance 𝑞𝑖𝑛 Nominal 𝜔 Nominal 𝜔 Stochastic 𝜔 Stochastic 𝜔 

Average process cost 𝑧𝐶𝑆𝑇𝑅 229 1,104 1,474 1,446 

CPU time (s) 2.74×103 72.1×103 16.0×103 54.3×103 

Reactor Volume 𝑉(𝐿) 15.0 17.9 17.3 17.2 

Production sequence A-B-C-D-E A-B-C-D-E A-D-E-C-B A-D-E-C-B 

Transition times 𝚫𝒕 (s) 
29.6, 5.3, 12.8, 

12.3, 8.3 

22.0, 3.4, 18.8, 

3.5, 21.9 

6.8, 16.8, 3.3, 

18.0, 13.4 

6.9, 17.1, 3.4, 

18.4, 13.1 

 

Results from Scenario F are shown in Table 9. As expected, Scenario F0 (𝜆 = 0) has the lowest 

cost among all scenarios, but becomes infeasible under uncertainty. Scenario F1 can accommodate one 

standard deviation, but pays a very large cost for this ability, as the process cost increases by almost an 

order of magnitude and the computational time is increased by a factor of 25. This is because the optimal 

control profile does not change under stochastic operation, as the profile is fixed after it is determined at 
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each optimization problem (Step 1 or Step 3 of the algorithm). Hence, the dynamic system cannot react as 

well to uncertainty, resulting in high variability in the output concentration, leading to an increased 

average process cost. Compared to Scenario F0, the reactor volume is 20% larger in Scenario F1, which 

allows the system to help buffer the effect of uncertainty. Transition times are also generally longer, 

allowing the system more time to reach the next operating point. Scenario F2 features stochastic 

disturbance with optimal open-loop control. The average process cost is further increased by 33% with 

respect to Scenario F1 as the system has no feedback to control the uncertainty and disturbance. Reactor 

volume is similar to Scenario F1, and transition times are also similar, though in a different order. 

Scenario F2 has a different production sequence from the other two scenarios in Table 9, indicating that 

both stochastic disturbances and parameter uncertainty can affect the optimal production sequence. 

Output concentrations for Scenario F1 and Scenario F2 are shown in Fig. 17, where the 

difference in production sequence and process variability can be observed. Due to lack of feedback to the 

control profile, both scenarios show large confidence bands around the concentration. The profile of the 

manipulated variable (heat input 𝑄𝐻) for Scenario F2 is shown in Fig. 18, where the behaviour of the 

open-loop controller can be seen oscillating to counteract the process disturbance (recall that the nominal 

case does include disturbance, though at a known oscillation frequency). The profile does not resemble a 

sinusoidal wave (to match the disturbance), but a triangle wave, because the rate of change of heat input is 

limited as per constraint (44). Note that the heat input remains within the operating limits (43) at all times, 

thus ensuring dynamically feasible operation for this process. 
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Figure 17: Plot of output concentration for Scenario F1 and Scenario F2 

 

 
Figure 18: Plot of manipulated variable (heat input) for Scenario F2 
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reactor volume and transition durations. As shown in Fig. 19, the product concentration 𝐶𝐵 from Scenario 

F3 has a very flat profile in the nominal problem, while confidence bands arise from the stochastic MC 

simulations, due to the lack of controller feedback. As shown in Fig. 20, the heat input has the flexibility 

to match the disturbance behaviour of a sinusoidal wave, with additional spikes during transition periods. 

 
Figure 19: Plot of output concentration for Scenario F3 

 

 
Figure 20: Plot of manipulated variable (heat input) for Scenario F3 
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4.4 Chapter Summary 

The back-off method offers a solution for design, control, and scheduling, subject to stochastic 

disturbance and uncertainty. The algorithm propagates the probabilistic distributions through the model, 

from the disturbance and uncertainty input to the process output. Back-off terms are generated from the 

statistical information, and are incorporated into the flexibility problem to “back off” from the nominal 

solution. This method is shown to provide high quality solutions for a CSTR case study, using either PI 

control or open-loop control. These solutions require higher computational time than the nominal 

optimization, but offer robustness to a specified level of variability. 

The performance of the back-off method is heavily influenced by the assumptions made on the 

probability distributions for the disturbance and uncertainty. In this study, normal distributions were 

assumed for the process disturbances and parameter uncertainty, because that is a typical distribution for 

real-world variables. Furthermore, the process output variability was also fitted to a normal distribution, 

although this may not be a correct assumption for non-linear problems. A more rigorous analysis of the 

output variability may improve the accuracy of the solution. Regardless, the accuracy of the back-off 

method is believed to be better than the critical set method due to the lack of discretization for the 

disturbance and uncertainty. Conclusions and potential improvements on both of these methods are 

described in the next section. 
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Chapter 5: Conclusions and Recommendations 

5.1 Conclusions 

The research developed for this thesis features two algorithms for integration of design, control, 

and scheduling for multiproduct processes under disturbance and uncertainty. The critical set method is 

presented, featuring a critical set of realizations, which are incorporated into the flexibility problem. The 

feasibility analysis determines if there are any infeasible realizations, and then adds those realizations to 

the critical set. The algorithm provides a solution that is robust to a discrete set of process disturbance and 

parameter uncertainty. The novelty of this framework is that it performs a direct integration of design, 

control, and scheduling, while explicitly accounting for scheduling decisions in the process model by the 

use of variable-sized finite elements in the model discretization. The critical set method was applied to a 

case study of a multiproduct CSTR. The results from the proposed method are compared to the common 

alternative, the sequential method. The critical set method is able to return a solution in a practical time 

frame, with improved feasibility and optimality compared to the sequential method. The critical set 

method was also applied to a PFR case study, and similar results were observed, offering improved 

solution quality over the sequential method. This demonstrates applicability of the critical set method to a 

variety of systems. The results of the critical set method are highly dependent on the discretization of 

disturbance and uncertainty, so choosing a reasonable discretization scheme can be difficult. 

The back-off method is also presented for integration of design, control, and scheduling under 

stochastic uncertainty and process disturbances. This algorithm combines previous works on integrated 

optimization and MC based back-off approaches. The key aspect of this algorithm is that it considers 

stochastic uncertainty and disturbances, using MC sampling and a statistical back-off approach. The 

algorithm makes decisions on design, control, and scheduling, all of which are incorporated directly into 

the discretized process model. The solutions produced by this algorithm can accommodate a specified 

level of variability, while remaining dynamically feasible during operation. The back-off method was 
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applied to a multiproduct CSTR case study. Considering a system with PI control, the proposed algorithm 

was able to provide high quality dynamically feasible solutions, with binding constraints indicating that 

the algorithm ran exactly as expected. For a system with optimal open-loop dynamic control, the 

algorithm was able to produce dynamically feasible solutions, despite the lack of controller feedback. The 

constraints were not binding in the solution for the open-loop problem, implying that the back-off 

parameters were not estimated accurately, and that sensitivity analyses are needed. 

Since the methods are applied to the same CSTR case study, the results can be compared between 

the critical set method (Scenario B1 in Table 5) and the back-off method (Scenario D2 in Table 8). The 

back-off method offers a 5% reduction in total process cost, though at the expense of 17 times the 

computational effort. The optimal design, control, and scheduling differ slightly between the solutions, 

likely due to the differences in disturbance and uncertainty. The critical set method may be more desirable 

in some cases, as it solves much faster, and only provides a slightly worse solution. However, the back-

off method may be more generally applicable than the critical set method, as it can accommodate 

stochastic representations of process disturbance and parameter uncertainty, and the conservatism of the 

solution can be precisely tuned to a desired level. Therefore, both methods have benefits and limitations; 

hence, the most suitable method should be chosen based on the computational budget, and the desired 

quality and robustness of the solution. 

Based on the results from the case studies, it is shown that design, control, scheduling, 

uncertainty, and disturbances can all interact with one another, demonstrating the need for simultaneous 

optimization. The improvement in solution quality, and the tractable computational time required by the 

proposed methods show that they could be practical approaches for integrated optimization of design, 

control, and scheduling. 
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5.2 Recommendations 

The work presented in this thesis can be extend in a number of ways, specifically by changing the 

assumptions that were made in the development of the proposed methods. These recommendations can 

provide avenues for further research in the area of integration of design, control, and scheduling. 

 Due to the scheduling formulation, these methods are specifically for multiproduct processes. 

However, they can be extended to consider other processes that require a similar scheduling 

formulation, e.g. flow-shop systems. 

 The methods can be extended to include integer variables in the design and control decision, e.g. 

number of plates in a distillation column, or selection of a control configuration. This proposed 

methods only considered integer decisions in the scheduling decisions. 

 The methods presented in this thesis can be extended to larger systems to analyze the 

applicability to large-scale problems, and the scalability of problem complexity. 

 The back-off method can be extended to include sensitivity analyses, instead of assuming that the 

back-off terms are insensitive as in (30) and (31). This can be accomplished using power series 

expansion (PSE) approximations, relating the back-off parameters to changes in the decision 

variables. With PSE equations incorporated into the optimization, the back-off parameters would 

change as the decision variables change, e.g. altering the reactor volume would change the back-

off parameters. This would be an improvement over the back-off method presented in this thesis, 

where the back-off parameters are fixed during the optimization. 

 In the back-off method, the process output variability was assumed to follow a normal 

distribution. Although the stochastic process inputs follow normal distributions, the non-linear 

nature of the problem may distort the output distribution. Instead of making assumptions about 

the output distribution, an explicit approach can be used, e.g. taking the 95th percentile of the 

process output instead of using the calculated mean and variance. This would improve the 

accuracy of the solution, regardless of the nature of the output distribution. 
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Appendices 

Appendix A: Orthogonal Collocation on Finite Elements 

In orthogonal collocation on finite elements, each finite element is divided into a number of 

collocation points. In this work, the number of collocation points is 5. One benefit of orthogonal 

collocation is that the derivative 𝒙̇ can be estimated from the values 𝒙 at each collocation point, as shown 

in (A.1). The matrix entries 𝒜𝑘,𝑘′ defines the weighting that each point 𝑘′ has towards the derivative at 

point 𝑘, and is defined in (A.2) using the Lagrange polynomial ℓ𝑘′(𝑟𝑘) in (A.3), where the roots 𝒓 are 

analogous to dimensionless time within each finite element, and are defined as the roots of the Legendre 

polynomial which lie within [0,1]. For finite elements of non-unit lengths, the derivative must be scaled 

using 𝛿𝑡𝑖, as in (A.1).  

𝒙̇𝑖𝑗𝑘 =
∑ 𝒜𝑘𝑘′𝑘′ 𝒙𝑖𝑗𝑘′

𝛿𝑡𝑖
    ∀ 𝑖, 𝑗, 𝑘                                                                                                                           (𝐴. 1) 

𝒜𝑘𝑘′ =
𝜕ℓ𝑘′(𝑟𝑘)

𝜕𝑟
    ∀ 𝑘, 𝑘′                                                                                                                                     (𝐴. 2) 

ℓ𝑘′(𝑟𝑘) = ∏
𝑟𝑘 − 𝑟𝑘′′

𝑟𝑘′ − 𝑟𝑘′′

𝐾

𝑘′′=1,
𝑘′′≠𝑘′

   ∀ 𝑘, 𝑘′                                                                                                                     (𝐴. 3) 

The model in the CSTR case study is discretized into indices 𝑖, 𝑗, 𝑘. The number of regions 𝐼 is 

required to be 10, in order to be double the number of product grades, which is 5. The number of finite 

elements 𝐽 is selected to be 100 to allow for long production times of one hour, and to provide a 

reasonable balance between speed and accuracy. The number of collocation points 𝐾 is selected to be 5 to 

allow for a fourth-order polynomial approximation. To ensure zero- and first-order continuity of 𝒙𝐶𝑆𝑇𝑅, 

for 𝒙𝐶𝑆𝑇𝑅 = {𝑇, 𝐶𝐵}, (A.4) through (A.15) must be included in the problem formulation for the CSTR 

case study. These equations are analogous to the general form shown in Section 3.3 as Eq. (4)-(7), except 

here they are shown expanded and in discrete form, exactly as they are implemented. 

𝐶𝐵𝑖,𝑗,5 = 𝐶𝐵𝑖,𝑗+1,1       ∀𝑖, 𝑗                                                                                                                                      (𝐴. 5) 

𝐶𝐵𝑖,100,5 = 𝐶𝐵𝑖+1,1,1     ∀𝑖                                                                                                                                       (𝐴. 6) 

∑ 𝒜5,𝑘′𝐶𝐵𝑖,𝑗,𝑘′𝑘′

𝛿𝑡𝑖
=
∑ 𝒜1,𝑘′𝐶𝐵𝑖,𝑗+1,𝑘′𝑘′

𝛿𝑡𝑖
      ∀𝑖, 𝑗                                                                                               (𝐴. 7)  
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∑ 𝒜5,𝑘′𝐶𝐵𝑖,100,𝑘′𝑘′

𝛿𝑡𝑖
=
∑ 𝒜1,𝑘′𝐶𝐵𝑖+1,1,𝑘′𝑘′

𝛿𝑡𝑖+1
    ∀𝑖                                                                                                 (𝐴. 8) 

𝑇𝑖,𝑗,5 = 𝑇𝑖,𝑗+1,1       ∀𝑖, 𝑗                                                                                                                                            (𝐴. 9) 

𝑇𝑖,100,5 = 𝑇𝑖+1,1,1     ∀𝑖                                                                                                                                          (𝐴. 10) 

∑ 𝒜5,𝑘′𝑇𝑖,𝑗,𝑘′𝑘′

𝛿𝑡𝑖
=
∑ 𝒜1,𝑘′𝑇𝑖,𝑗+1,𝑘′𝑘′

𝛿𝑡𝑖
      ∀𝑖, 𝑗                                                                                                  (𝐴. 11) 

∑ 𝒜5,𝑘′𝑇𝑖,100,𝑘′𝑘′

𝛿𝑡𝑖
=
∑ 𝒜1,𝑘′𝑇𝑖+1,1,𝑘′𝑘′

𝛿𝑡𝑖+1
    ∀𝑖                                                                                                   (𝐴. 12) 

 

Appendix B. Set-point Determination from Binary Sequence Matrix 

In the problem formulations, the function 𝝍𝑖𝑗𝑘 maps the binary sequencing matrix 𝓢 to a profile 

of set-points 𝒚𝑖𝑗𝑘
𝑠𝑝
  ∀ 𝑖, 𝑗, 𝑘. Within the binary matrix 𝓢, element 𝒮𝑔,𝑔′ indicates if set-point Y

𝑔′
𝑠𝑝

 is being 

produced 𝑔𝑡ℎ in the sequence. Note that the index of grades 𝑔 is a subset of the index of time regions 𝑖, so 

some values of 𝑖 may be used as the index for 𝒮𝑔,𝑔′ or 𝛽𝑔, in place of 𝑔. The list of set-points 𝐘sp is 

known a priori. Linear transitions between set-points are applied during transition regions (odd-numbered 

regions). As mentioned in Appendix A, 𝒓 represent the roots of the Legendre polynomial which lie within 

[0,1]. 

𝝍𝑖𝑗𝑘(𝓢) =

{
 
 

 
 𝛽𝐺 +

(𝛽1 − 𝛽𝐺)(𝑗 − 1 + 𝑟𝑘)                   𝑓𝑜𝑟 𝑖 = 1                         
𝛽𝑖/2                                                               𝑓𝑜𝑟 𝑖 = 2,4,6, …  𝐼          

𝛽𝑖−1
2

+ (𝛽𝑖+1
2

− 𝛽𝑖−1
2

) (𝑗 − 1 + 𝑟𝑘)     𝑓𝑜𝑟 𝑖 = 3,5,7,… (𝐼 − 1)
}
 
 

 
 

 ∀ 𝑗, 𝑘                            (𝐵. 1) 

         𝑤ℎ𝑒𝑟𝑒 𝛽𝑔 =∑𝒮𝑔,𝑔′  Y𝑔′
𝑠𝑝

𝑔′

   ∀𝑔 

 


