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ABSTRACT 

Due to the intermittent nature of renewable energy sources, application of energy 

storage systems is an important part of the development in support of clean technologies. 

Compressed Air Energy Storage (CAES) plants can provide utility scale storage by 

compressing air into a reservoir during off-peak period and generating electricity by 

expanding the air when energy demand is high. CAES is a proven technology that offers 

various services to the power network and provides flexible load management; however, site 

selection is a critical step during the design process of a plant.  

Salt deposits are recognized as potentially suitable geological layers for a 

compressed air energy storage system. In south-western Ontario, salt beds of the Salina 

Group of the Michigan basin provide suitable salt deposits for the excavation of storage 

caverns. Only two salt beds of the Salina Group are thick enough for excavation of a cavern, 

these are known as the unit A2 and unit B salt beds. 

In the case of an underground storage system, stability and serviceability of the 

storage cavern must be investigated using geomechanical models. Geomechanical issues 

may cause serious damage to the cavern, which could stop the system from functioning. The 

stability of the cavern roof layer has been investigated using voussoir beam theory. This 

method has been widely used to model rock mass behavior around underground openings. 

The results of the analytical solution have been validated against an existing case and 

verified by using a Universal Distinct Element Code (UDEC). The stress distribution within 

roof beams is investigated and upper and lower limits of roof size have been determined. 

Based on the findings from numerical analyses, assumptions of the voussoir method 
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oversimplify the problem and cause inaccurate results. Hence, the selected iterative solution 

has been modified using a nonlinear approach.  

The updated procedure significantly enhanced the consistency of the results obtained 

from analytical solution with numerical models. To demonstrate validity of the 

modifications, a systematic parametric study has been included by using a wide range of 

beam parameters. The impact of creep behavior of the roof beam was examined by adding 

the deformation due to steady state creep to the elastic response of the beam. Also, the effect 

of the pressure difference around the cavern roof has been examined to determine maximum 

and minimum pressure inside the cavern with respect to size of the roof layer. 
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CHAPTER 1 – Compressed Air Energy Storage; Overview and Concepts 

1.1 Introduction 

Energy storage technologies allow a system to generate energy at one time and use at 

another. They can provide different types of services to increase the efficiency of a network. 

For these technologies to be effective cheap off-peak electric energy (when available) can be 

used to run the storage system and during the on-peak period, when the price is high, the 

stored energy is sold to the network. Storage capability allows better utilization of renewable 

energies such as wind and solar power based on their availability. Due to the intermittent 

nature of the renewable energy sources, energy storage services can become an important 

key element for the stability and reliability of the power network.  Other than price arbitrage 

and peak shaving, storage systems can provide the grid operators with ancillary services 

including, regulation, spinning reserve and voltage support. 

Energy storage technologies can be divided into seven categories: fossil fuel storage, 

mechanical, thermal, chemical, biological, electrical and electrochemical storage systems. 

Among these methods, electrochemical storage (such as flow and rechargeable batteries), 

thermal storage (such as solar pond and molten salt storage) and mechanical storage (such as 

pumped-hydro power plant, flywheel and compressed air energy storage) are the most 

popular type of storage. In order to find the best option for utility scale storage, several 

factors must be taken into account including efficiency, environmental impact, lifetime, 

economics, space and required material such as turbomachinery.  

Among all the developed technologies, compressed air energy storage (CAES) and 

pumped-hydro power plants are well established and they can provide significant energy 



2 

 

storage (in the thousands of MWhs) at relatively low costs. CAES has high flexibility and 

efficiency for load management at utility and regional levels; however, it has certain 

limitations of geographic location and is not a simple system like batteries. It stores large 

quantities of low-cost off-peak energy in the form of compressed air and generates on-peak 

electricity by expansion of preheated air. Design of a CAES plant needs a deep 

understanding of electrical, thermodynamical and geomechanical aspects of the system. One 

of the key elements is design of a suitable underground reservoir for storing the compressed 

air, which depends on the site geological characteristics. This study focuses on the stability 

assessment of underground caverns for a CAES project in south-western Ontario, Canada.  

In this chapter, the concept of CAES, advantages, limitations and potential sites are 

described. Then, the characterizations of the desired site in south-western Ontario are 

discussed. 

1.2 Compressed Air Energy Storage (CAES)  

CAES is a proven technology that can provide utility scale storage for long duration 

with fast amp rates. CAES uses off-peak electricity to compress and store ambient air in a 

reservoir under or above ground. During the on-peak period, the compressed air is used to 

charge the turbines and generate electricity. The compressed air has high temperature, which 

can involve thermal limitations with potential for damage to storage reservoirs. Therefore, it 

must be cooled before storage. On the other hand, when air is withdrawn, it must be heated 

before going to turbines to provide enough heating value. If heat can be retained during 

compression to reheat the air during expansion, efficiency of the plant noticeably increases. 

This is called adiabatic storage, in which heat can be stored in a solid such as stone or fluid 

such as hot oil. Although, it is easier to burn fuel such as natural gas to heat the compressed 
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air, it decreases the thermal efficiency to lower than 60%. This method is called diabatic 

storage, in which heat goes into the atmosphere as waste. Figure ‎1.1 illustrates a typical 

CAES plant design concept. 

CAES was first investigated in the 1970s, to meet peak demand while maintaining 

constant capacity factor in the nuclear power industry. The first and longest CAES plant in 

the world has been operated in Huntorf, Germany. The other plant that has been successfully 

built is a 110 MWac plant near McIntosh, Alabama, USA. Several CAES projects in other 

countries have been started but not completed for technical and nontechnical reasons. 

 

Figure ‎1.1 Typical Compressed Air Energy Storage Plant (Technology Insights, 2003) 

The compressed air can be stored in an underground reservoir or aboveground gas 

pipes or pressure vessels. Aboveground CAES can be useful for short periods of time with 

low capacity, while underground reservoirs provide the network with long storage and 

higher volume capacity. In case of underground storage, location of the plant depends on a 

suitable geological formation. It must have enough depth to ensure safety and required air 
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pressure while excavating is feasible and economical. Also, risk of air leakage and reaction 

of minerals with air must be minimal. Salt, impervious and hard rocks and porous rocks such 

as porous rock aquifers and depleted gas or oilfields are suitable sites for air storage.   

Salt formations have been used for storage and waste disposal for many years. Rock 

salt has very low permeability. It shows visco-elasto-plastic behavior and has the ability of 

self-healing, which closes all the joints and cracks. These features make salt beds and domes 

suitable for CAES with minimal risk of air leakage. The compressed air in both Huntorf and 

McIntosh CAES plants is stored in salt domes. 

Compressed air energy storage systems have multiple advantages, which make them 

more suitable option for the grid than other technologies.  

 CAES can provide large scale energy storage (in the hundreds to thousands of 

MWhs) at low costs.  

 It is a commercial system that has been operated successfully in two different sites.  

 CAES provides a flexible system that can be optimized based on the grid conditions 

and economics at each site.  

 Fast startup time in a CAES system provides utility engineers with flexible load 

management as the maximum capacity can be reached within a few minutes. 

 For underground storage, a small area on the surface is required and has minimum 

impact on the environment.     

Moreover, in comparison with similar technologies such as pumped-hydro plant, 

CAES provides significant advantages during the operation but they are not in the scope of 

this research. In spite of the numerous CAES advantages, it is not widely used by energy 
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storage and green-tech companies. One reason is geography and locational limitation and 

also lack of awareness of its economic and technical feasibility. Key features and charging 

and discharging characteristics of CAES are summarized in Table ‎1.1and Table ‎1.2 (Based 

on the 110 MWac McIntosh Plant). 

Table ‎1.1 Key CAES Features (Technology Insights, 2003) 

Feature Parameter Range 

Space requirements 100-MWac plant needs about 1 acre 

Effective Efficiency 85% 

Life 30 years 

Maintenance requirements Same as simple cycle combustion turbine 

Environmental impact Minimal (NOx is below 5 ppm) 

Auxiliary equipment needs 
Water if wet cooling is used; no water if 

dry cooling fans are used 

Power conditioning needs None 

 

Table ‎1.2 Typical Charging and Discharging Characteristics (Technology Insights, 2003) 

Characteristic 
Charging 

(Compression Mode) 

Discharging 

(Generation Mode) 

Electrical energy input 
0.75 kWh input for every 1 kWh 

of output 
N/A 

Heat consumption with fuel N/A 
4,100 Btu/kWh of the 

net plant output 

Storage capacity 1,950 MWh 2,600 MWh 

Response time, standby to 

full power 
4 minutes 

Nominal: 10-12 

minutes 

Emergency: 5-7 

minutes 

Response time Approx. 20 minutes N/A 

Underground storage in geological layers might be considered as risky and 

precarious by utility engineers. In addition, site selection is limited and critical, which makes 

CAES feasible at specific locations with suitable geological formations. Another limitation 
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of CAES is that it cannot be mass-produced. CAES plants must be individually designed, 

operated and developed. 

Other than Huntorf in Germany and McIntosh in Alabama, several CAES plants 

have been initiated but not completed, such as a 1,050 MWac plant using salt formations in 

the Donbas area of Russia/Ukraine or a 100 MWac plant using a hard rock cavern in 

Luxembourg. There are several other ongoing CAES projects such as Norton plant in Ohio 

or Matagorda plant in Texas. In Canada, a pilot plant has been initiated in south-western 

Ontario (at Goderich area) using salt caverns. These caverns were already excavated for salt 

production and abandoned. The salt cavern will be able to store enough electricity to power 

around 1,000 homes and was commissioned by Ontario’s government-owned electrical 

system operator (Hydrostor Inc. and NRstor Inc., 2017).     

1.3 Geomechanics of CAES 

In order to develop an underground CAES project, a systematic geological and 

geomechanical analyses are required to ensure stability and serviceability of the storage 

reservoir. The strength and constitutive response of geological materials, in-situ stresses and 

permeability are crucial factors in design of storage caverns. Therefore, various field tests 

such as hydraulic/hydrofrac testing are required. For instance, many core samples were 

extracted and analyzed to determine the salt characteristics during development of the 

McIntosh plant. Geomechanical issues limit cavern size, shape, spacing, and operating 

pressures. Thus, geomechanical models based on geological data are inevitable.  

Both Huntorf and McIntosh plants use solution-mined cavities in salt domes as their 

storage reservoirs. Salt domes provide large volume with lower risk of instabilities during 
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operations. For most of salt formations, solution mining techniques can be applied to create 

the caverns. This is a reliable, low cost route for developing a storage volume of the required 

size; however, providing adequate supply of fresh water and brine disposal are serious 

issues. Salt deposits are the primary options for storage and waste disposal plants. Due to the 

specific characteristics of rock salt, salt deposits are the most suitable formations for CAES 

plants. The key characteristics of rock salt can be summarized as   

 Very low permeability; an impervious stratum such as salt can seal the reservoir and 

keep the compressed air with no leakage.   

 Ability of self-healing; healing (or annealing) mechanisms can reverse the damage 

process and interconnect fracture surfaces and close micro-fractures.  

 Simple mining operation; salt can be excavated using regular drilling techniques. 

 Relatively high thermal conductivity; rock salt has a high thermal conductivity that 

leads to rapid heat dissipation via conduction.   

 Wide geographic distribution; salt formations can be found at many locations 

1.3.1 Domes and bedded salt formations  

Storage caverns can be excavated in both salt beds and domes; however, creating a 

cavern in salt domes is more convenient. Salt domes are diapir-shaped structures created due 

to upward movement of evaporite minerals into surrounding rocks. It is caused by buoyancy 

due to lower density of salt and its plastic behavior at high pressure and temperature. During 

deformation, brine within the salt crystals is squeezed out. This process leads to relatively 

low water content. The center part of the diaper is more deformable; whereas, rock mass 

laminations around the edges of the diapir are carried along upward and broken during the 
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migration of salt (Hansen et al., 2016). Domes usually provide more storage volumes with 

less risk of instability. 

In contrast, salt beds are thin and laterally extensive deposits, which have not been 

affected by tectonic deformations. Therefore, bedded salt tends to contain higher water 

content, which leads to lower strength and faster creep rate than domal salt. Salt beds usually 

have high concentration of impurities. Design of a cavern in salt beds could be troublesome 

since large caverns need long aspect ratio which could cause roof stability issues. Moreover, 

salt beds often contain non-salt inter layers that could collapse into the caverns and lead to 

volume loss and instability (Succar and Williams, 2008).  

1.3.2 Natural gas and compressed air storage  

The process of air storage in salt caverns causes some geomechanical issues 

regarding to cavern stability, such as cavern shrinkage and roof layer instability. There are 

currently many gas storage in operation around the world. Thus, there is a good 

understanding of geomechanical design of natural gas storage cavities; however, there are 

several differences between gas and compressed air storage in salt caverns. These 

differences make the geomechanical design of a CAES plant more critical.  

The first reason is the cyclic loading due to compression and expansion of air in 

CAES is a multiple of turnover between gas injection and withdrawal in the gas storage 

system. During summer, gas would be injected into the caverns and during winter, when 

energy is required, it would be extracted from the caverns. In CAES systems, compression 

and decompression of air takes place based on the on and off peak hours in a day. In this 

condition, the inside pressure of the salt cavern goes up and down with higher frequency. 
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This process strongly affects creep behavior of salt, as deviatoric stresses change with 

pressure.  

The maximum cavern pressure must be kept less than in-situ stresses around the 

cavern to avoid fracturing; however, it is usually set in reference to the capacity of the 

turbines. For deep caverns, even high pressures inside the cavern do not make any stability 

issue but turbine input pressure is limited. In a natural gas system, high pressure gas can be 

stored in the cavern and only needs to be decompressed at the input side of the turbine to 

meet the conditions. Since natural gas has a high energy content, loss of energy due to 

expansion is negligible. In contrast, decompression of air before charging the turbine causes 

loss of energy and efficiency. Therefore, the inside pressure of the cavern for a CAES plant 

is usually lower than the cavern pressure for a natural gas storage system. Lower inside 

pressure leads to higher deviatoric stress and creep rate. This process causes cavern closure 

that might cause surface subsidence or significant cavern volume loss.  

The compression and decompression of air is accompanied with temperature 

fluctuations in the cavern. The change of fluid temperature is given approximately by      

per bar pressure (Düsterloh and Lux, 2010). Heating and cooling of rock salt induce thermal 

compressive and tensile stresses, respectively. Long periods of storage in natural gas 

systems allow heat transmission between gas and rock salt, which reduces thermal induced 

stresses. Whereas, frequent injection and withdrawal in a CAES plant causes significant 

thermal induced stresses in surrounding rocks.  
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1.3.3 Geomechanical parameters  

Geomechanical design parameters strongly affect stability, serviceability and 

tightness of the storage reservoir as well as surface subsidence due to excavation. The goal 

of the geomechanical modeling is to take different parameters into account to design a stable 

and operative storage cavern. The design parameters can be summarized as  

 Depth of the cavern (regarding pressure and temperature gradient)  

 Cavern geometry and volume (including height and diameter)  

 Minimum and maximum pressure inside the cavern 

 The distance between storage caverns (cavern spacing) 

 The distance between caverns and geological interfaces  

 Convergence of salt cavern (due to rock salt creep) 

 Operation pattern (frequency of cycles and rate of injection and withdrawal)  

 Rock salt damage (due to high stress concentration)  

 Span to thickness ratio of cap rock layer and non-salt interlayers  

Prediction of the impact of these factors on the response of salt caverns is necessary. 

For this purpose, empirical, analytical and numerical methods have been applied. Since rock 

mass behavior cannot be explicitly defined, correlation between parameters that affect rock 

mass response should be investigated. All assessment methods are based on these effective 

parameters, such as geological and mechanical properties. The analytical methods use theory 

to show which explicit parameters influence opening stability, while empirical methods 

through rock mass classification and experience use implicit parameters to define the 

explicit parameters in an attempt to represent the factors influencing the opening stability 

(Capes, 2009). 
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1.4 Site characteristics  

In order to investigate the mechanical response of a salt cavern, geology and in-situ 

stress field and constitutive laws of materials must be determined. Therefore, a combination 

of data from rock mass classification, numerical modeling, observations, and case histories 

are required. 

1.4.1 Site geology in south-western Ontario  

Several salt basins cover a large area of North America (Figure ‎1.2). Salt deposits in 

south-western Ontario are located on the east margin of the Michigan Basin. The Michigan 

Basin forms a bowl-shaped structure. The center part of basin is deep and thick, whereas, it 

is shallow and thin on the edges. Michigan Basin contains two groups of salt beds: the 

Salina Group and Detroit River Group. Salina Group salt beds are relatively continuous and 

extensive. They are thick (      thick) at the center part of the basin and thin on the edges. 

In contrast, the younger salt beds in the Detroit River Group are relatively thinner (      

thick) and are less geographically widespread.  

 

Figure ‎1.2 Major salt basins of North America (Ege, 1984) 

Michigan Basin  
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The Windsor, Chatham, and Sarnia-Goderich areas are three main areas of south-

western Ontario underlain by salt. Salt beds of this region belong to Salina Formation of 

Silurian age. Depth and thickness of salt beds varies from site to site. The uppermost salt 

beds are found approximately            below the surface. The shallowest salt beds are 

found at Kincardine at       depth (Hewitt, 1962). Figure ‎1.3 illustrates a typical geological 

section of the Salina Formation in south-western Ontario.  

 

Figure ‎1.3 Generalized columnar geological section of the Salina Formation (Grieve, 1955) 
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The Salina Formation is divided into seven lithological units (A to G), in which unit 

A is the oldest and unit G is the youngest deposit (Landes, 1945a). It must be noted that unit 

A is also subdivided into A1 and A2 parts with similar properties. Each unit has different 

thicknesses (from     to    ) and various minerals (such as salt, shale and dolomite). 

Table ‎1.3 summarizes the characteristics of each unit.   

Table ‎1.3 Subdivisions of the Salina formation (Hewitt, 1962) 

Formation Unit Description 

Upper 

Salina 

G 
Fine crystalline brown dolomite, shaly dolomite, some anhydrite, red 

shale (no salt) 

F Thick beds of salt separated by shaly and fine crystalline dolomite 

E Thin layer of dolomite (no salt) 

D Mainly pure salt 

C Dolomatic grey shale (no salt) 

B Thickest unit, mainly salt with thin dolomite layers 

Lower 

Salina 

A2 
Fine to medium grey dolomite; dark bituminous shale; lower part 

contains a thick layer of salt 

A1 
Fine to dense, grey to dark dolomite with dark-grey bituminous shale; 

Anhydrite at base 

 

Salt beds in the Sarnia-Goderich area are the most widespread salt deposits in 

Ontario. As Table ‎1.3 indicates, salt can be found in units A2, B, D and F. Due to shallow 

depth of unit D and F, they are not desired for a CAES plant, as the required maximum 

inside pressure cannot be provided. Also, since unit D is very thin and salt deposits in unit F 

are separated, only unit A2 and B provide a suitable location for excavation. Therefore, unit 
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A2 and unit B in both Sarnia and Goderich sites have been selected for implementation of 

CAES system. The Goderich site is spread closer to the edge of the basin and salt beds are 

relatively thinner. According to Hewitt (1962) unit B salt beds in Sarnia have the greatest 

thickness (   ) while A2 unit in Goderich is the thinnest salt bed (   ). Thickness and 

depth of each unit is summarized in Table ‎1.4.  

Table ‎1.4 Depth and thickness of the potential deposits for CAES in south-western Ontario (Hewitt, 

1962) 

Formation Site 
Salt 

unit 
Top depth     

Bottom depth 

    
Thickness 

    

Salina 

Sarnia 
B            

A2            

Goderich 
B            

A2            

1.4.2 Rock mass classification 

The behavior of a rock mass is governed by its properties and the condition that rock 

mass is exposed to, such as in-situ stress. A rock mass is extensively dominated by various 

joint sets. Therefore, properties of rock material and joints are both critical in rock mass 

assessment. Overall, in the design process of an underground excavation, three types of 

parameters must be taken into account: 1) material parameters, such as elastic modulus and 

strength; 2) joint parameters, number of joint sets, spacing and orientation; and 3) boundary 

conditions, such as in-situ stress and groundwater pressure. 

Among all influencing factors, degree of jointing, joint friction and stress are the 

most important factors on rock mass stability. Degree of jointing represents the joint 
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patterns, while joint friction strongly depends on joint roughness, thickness and type of 

mineral filling. Stability also depends on the magnitude of vertical stress due to overburden 

and tectonic stresses due to topography with respect to rock strength (www.ngi.no).  

Rock mass classification systems are useful to estimate rock mass characteristics and 

provide a simple scheme to understand the rock mass quality using quantitative data. They 

have been widely used as engineering design aid in underground construction projects. They 

can provide input data for analytical and numerical methods during design process. There is 

not enough information on properties and conditions of rock mass at early stages of a 

project. Therefore, classification systems must be updated with site investigations. 

Classification systems can be qualitative (descriptive), such as GSI (Geological strength 

index) and Rock Load systems or quantitative, such as Rock Mass Quality (Q), Rock Mass 

Rating (RMR) and Rock Structure Rating (RSR) systems.  

1.4.2.1 The Q-system 

Barton et al. (1974) introduced Q-system as an index for evaluation of the tunneling 

quality of rock mass. It was initially developed based on extensive case history analyses of 

underground excavation stability. The Q-system has been widely used for classification of 

the rock mass around an underground opening, field mapping and as a guideline in rock 

support design process (www.ngi.no). It also provides a first-order assessment of the 

stability of an underground opening in jointed rock mass. High Q values indicate good 

stability of the excavation, whereas low values give poor stability. The numerical value of 

the index varies from       to      and can be calculated by  

http://www.ngi.no/
http://www.ngi.no/
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  (‎1.1) 

where     is the rock quality designation,    is the joint set number,    is the joint 

roughness number,   is the joint alteration number,    is the joint water reduction factor, and 

    is the stress reduction factor.  

The Q index depends on six parameters that are determined by geological mapping 

or core logging and using tables that assign numerical values to different situations. These 

parameters can be divided into three main factors: 1) degree of jointing (
   

  
), which 

represents structure of the rock mass and measures block size; 2) joint friction (
  

  
) 

representing inter-block shear strength which depends on roughness and frictional 

characteristics of the joint walls or filling materials; and 3) active stress (
  

   
) is an empirical 

factor describing active stress parameters using water pressures and flows and in situ stress 

state.  

The value of     is calculated as percentage of sum of the length of all core pieces 

more than       long with respect to the total core length (between 0 and 100). The value 

of    represents joint set number but it is not exactly same as the number of joint sets. It can 

take a value between 0.5 and 20. The value of    depends on joint wall surfaces, infill and 

orientation and it can have a value between 0.5 to 4. The value of    is strongly dependent 

on thickness and strength of joint infill (between 0.75 and 20). The inverse tangent of the 

value of  
  

  
 could estimate the actual friction angle for various combinations of wall 

roughness and joint infill materials.  
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In addition, the value of    can be calculated based on inflow and water pressure in 

underground openings. Water within joints can soften or wash out the mineral infill and 

reduce friction. It must be noted that water pressure causes reduction of normal stress and 

leads to higher risk of shear failure. It takes values between 0.05 and 1, while a low value 

leads to serious stability issues. Stress reduction factor (   ) describes the relation between 

stress and rock strength around an opening. It can be obtained using the ratio of rock 

uniaxial compressive strength (   ) to major principal stress (  ) or the ratio of maximum 

tangential stress (  ) to    . Tables that indicate numbers of each parameter can be found 

in any reference regarding rock mass classification and properties. 

Using the Q-system one could evaluate dimensions of underground opening and 

safety requirements for support design. Numerous empirical correlations have been 

proposed to determine other decisive factors of rock mass, such as correlations for 

deformation modulus (  ), Poisson's ratio ( ), friction angle (  ) and cohesion (  ) of the 

rock mass.   

1.4.2.2 Rock mass properties 

Salt beds of unit A2 and B in Sarnia and Goderich are the most suitable options for 

CAES in Ontario.  Each unit contains different minerals and has different mechanical 

properties. Therefore, data from field mapping and core logging tests are required. Table ‎1.5 

summarizes some of properties of the desired geological layers. These data are mainly 

obtained from core logging, field and laboratory testing and published by Intera Engineering 

Ltd. (2011). The purpose of their geoscientific characterization study was to investigate 

feasibility of implementation of a deep geologic repository for a Low and Intermediate 
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Level Waste (L&ILW) disposal plant in south-western Ontario; however, the collected 

geoscientific data can be used for design of a cavern for CAES system.  

Table ‎1.5 Summary of the rock mass properties (Intera Engineering Ltd., 2011) 

Parameter 

Value 

Unit 
Unit A2 

evaporite 

Unit A2 

carbonate 

Unit B 

evaporite 

Unit B 

carbonate 

Bulk density      
                         

  

  
 

Uniaxial compressive 

strength     
                    

Crack initiation                

Crack damage                

Young's modulus                       

Poisson's ratio                 

Rock quality 

designation     
              

Natural fracture 

frequency     
                    

 

These data are considered as the inputs in models and solutions developed in this 

study. The density of overburden is assumed to be       
  

   and vertical stress can be 

calculated depending on the depth of each layer as follows  

         (‎1.2) 

In order to assess stability of the roof layers, deformation modulus     and strength 

of the rock mass must be determined. Uniaxial compressive strength      of the carbonates 
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on top of the salt beds can be found in Table ‎1.5; however, to calculate deformation 

modulus, the value of Q-index must be determined for both unit A2 and unit B roof beds. It 

is reasonable to assume three joint sets cutting through laminations in the rock mass, which 

leads to     . Also, joint wall surfaces are assumed to be rough, undulating and unaltered 

(     and     ). When formation pressure is high around an underground excavation 

(      ), then joint water reduction factor,      is approximately    . Depending on the 

ratio of rock uniaxial compressive strength to major principal stress, the stress reduction 

factor      would be in range of   to    for unit A2 and     to     for unit B carbonate 

layers. The value of Q-index can be calculated using equation (‎1.1). It is        for unit A2 

and        for unit B carbonates, approximately.   

The value of deformation modulus can be determined using the correlation proposed 

by Barton (1995) 

         
 

 ⁄   (‎1.3) 

Replacing the values of Q in equation (‎1.3), gives the values of         

and          for unit A2 and unit B carbonates, respectively. It must be noted that for 

parameters without field data, conservative values have been assumed to ensure the 

reliability of stability analyses. Knowing the deformation modulus, the joint normal stiffness 

can be obtained by following equation (Barton, 1995). 

    
     

          
  (‎1.4) 

where    and    are the joint normal stiffness and spacing. Also    and     represent intact 

rock and rock mass modulus, respectively. 
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CHAPTER 2 – Analytical Design Methods 

Analytical design methods study the possibility of the stress driven and gravity 

driven failures around underground excavations. These methods are based on the 

relationship between stresses and rock mass properties. For gravity driven failure, joint 

properties such as tensile strength and joint spacing and orientations are the most critical 

parameters for design considerations. Intact rock behavior is controlled by applied stress 

state and rock strength. It must be noted that each method is based on some assumptions. 

Therefore, results need to be validated against field data (Shabanimashcool, 2012). 

Upon removal of rock during excavation, load is carried by rock in other zones 

which creates zones of high stress concentration. Gravity driven failures may occur due to 

gravitational load depending on the local stress field, rock mass classification, and 

orientation of bedding planes. Therefore analysis of the stability of the underground opening 

is required. It consists of kinematic wedge failure, beam and plate buckling analysis and 

voussoir beam analysis (Capes, 2009). Analysis of the stress driven failure includes failure 

criteria such as Mohr-Coulomb, and Hoek-Brown. Although Mohr-Coulomb criterion is best 

way to describe the physics of the problem, it could lead to conservative predictions as the 

intermediate stress is ignored. The input parameters of Hoek-Brown criterion are more 

consistent with rock mass properties. On the other hand, a 3D criterion such as Mogi–

Coulomb criterion seems to give a proper accounting of the strengthening effect of the 

intermediate stress (Al-Ajmi & Zimmerman, 2006).  

Empirical methods along with statistical analysis are very important in rock 

mechanics. These methods are based on the experience and consider the most critical 
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parameters on stability of domain, such as stress field, mechanical properties of rock and 

joints and geometry of the excavations. Since the results are strongly dependent on 

engineering skills including knowledge, observation, and interpretation, they must be 

validated against the field data to check the applicability of the methods. Also, these 

methods are based on the data obtained from specific sites. Therefore they might be 

unreliable for design analysis in other sites. In this chapter, analytical design methods for 

gravity driven failures are presented. 

2.1 Kinematic Analysis 

The rock medium around an excavation is always cross-cut by different joint sets. 

Intersection of joints may create wedge geometries which can be potential zones of failure. 

If the gravitational load is greater than the resisting force due to cohesion and frictional 

strength between joint walls, small zones wedges among joints would fall from the stope 

wall. Existence of faults could lead to similar process of failure; however, in this case, large 

scale failures are expected. Kinematic wedge analysis investigates the potential zones of 

failure due to joint intersections.  

2.2 Beam Failure and Plate Buckling Analysis 

Obert and Duval (1967) thoroughly studied beam failure and plate buckling analysis. 

Their studies have been widely used in civil engineering for design and stability assessment 

of tunnel roofs. The medium is considered as continuous, homogeneous, isotropic, and 

linear elastic. In this condition, deformation of the beam and plate can be determined by 

analyzing the effect of gravitational load, geometrical parameters and mechanical 

coefficients. Since many joints cut through bedding planes, the medium usually consists of 

different blocks which make it discontinuous. Also existence of joints would reduce or 
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completely eliminate the tensile strength of rock mass. This is against the assumption of 

beam and plate analysis that considered a continuous medium with tensile strength. 

Therefore, conventional methods are incapable of modeling the rock mass behavior (any 

jointed rock mass) around an underground opening.  

2.3 Rock Mass Failure Criterion 

Behavior of a rock mass can be modeled using the relationship between stress field 

and rock strength. Failure criteria have been introduced and used by many researchers for 

different stress states and rock properties. These failure criteria identify the maximum stress 

values that the rock mass can withstand. Once the applied stress state exceeds the limit, 

various types of failure could occur. Compressional failure happens when minimum 

principal stress     is relatively high while a low value of   leads to tensile failure.     

Among the presented criteria, Mohr-Coulomb and Hoek-Brown are the most 

common criteria in geotechnical engineering. They simply develop a relationship between 

minimum and maximum principal stresses         and rock strength. Mohr-Coulomb 

criterion can only model the behavior of intact rock or failure along one discontinuity. Hoek 

and Brown (1980) presented input data for design of underground excavations. Their 

criterion estimates the brittle failure of intact rock and models the jointed rock mass 

behavior. Hoek-Brown criterion modified the Mohr-Coulomb by considering a nonlinear 

increase in the peak strength of a rock mass.   

The Mohr-Coulomb is the best way to understand the physics of the problem. The 

failure envelope is the response of the rock to stress state and obtained from a plot of shear 

strength versus normal stress. Failure occurs when stress is greater than the cohesion and 
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frictional resistance. Tensile cutoff determines the upper limit for strength of the rock 

against tensile failure. The Mohr-Coulomb relation is also used to represent the residual 

strength which is the minimum strength reached beyond the peak (Goodman, 1989). Both 

criteria are based on the empirical insights and theoretical relation of lab testing on core 

samples.  

2.4 Voussoir Beam Analysis 

In a rock mass surrounding an underground excavation, different joint sets always 

crosscut the bedding planes and laminations. These joints allow tensile stresses to develop in 

the rock mass. In this condition, tensile stresses create new cracks or extend other joints. 

Conventional beam and plate theories cannot model the behavior of a discontinuous rock 

mass. Voussoir beam theory has been commonly used for stability assessment of 

excavations where the joints are almost perpendicular to the bedding planes. In classical 

beam theories such as Euler and Timoshenko, the beam is assumed to be fixed at the hinges. 

This leads to a closed-form solution for stress and deflection analysis. In contrast, the 

voussoir beam method takes the effect of joints into account and lets the beam displace at 

the abutments or mid-span. Therefore, it is statically indeterminate. In order to solve the set 

of equations, a trial and error procedure must be followed or some of the unknown 

parameters must be reduced. 

2.4.1 Concepts and background   

Bedding planes usually cut through the stratified rock mass and coincide with the 

immediate roof and floor of the excavation (Brady & Brown, 2004). The stability of the 

immediate roof layer is the most important factor in design of an underground excavation. 

These laminations can be the result of sedimentary layering, extensile jointing, fabric 
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created through metamorphic or igneous flow processes or through excavation-parallel 

stress fracturing of massive ground (Diederichs & Kaiser, 1999a). Bedding planes and other 

discontinuity with different orientations strongly affect the response of the rock mass to the 

stress field. 

Based on the results published by Fayol (1885), deflection of the layers on top of 

underground strata does not depend upon other layer's deformation. He used stacks of 

wooden beams to examine the deformation process of bedding planes. It was noted that 

gravitational load tends to be transferred laterally to the abutments rather than vertically to 

the lower beam. This process leads to separation of the laminations upon deflection such that 

the immediate roof layer only deforms under its own weight. Therefore stability of the 

excavation highly depends on the behavior of the immediate roof beam. The process of 

lateral transmission of stress is described as arching effect, which could mobilize the friction 

between bedding planes and decouple the rock beds above and below the arch.  

Arching enables the beam to deform to some extent before failure. The moment 

generated by deformation compensates the moment due to gravitational load and makes the 

beam stable. In other words, in a confined situation the ultimate strength of the beam is 

larger than the strength that conventional elastic theories assume. This is the reason that 

classical beam theories underestimate the stability of roof layer.  

Arching theories must be separated for underground cavern design into two types of 

arching action: the arching action by which most of the ground load above the opening is 

transferred to the sides, and arching action which enables the rocks in the immediate roof to 

span the opening (Sterling & Nelson, 1978). In theoretical analysis of the roof stability, the 
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immediate roof behavior is more important than the behavior of a high ground arch. 

Although the behavior of a high ground arch is consequential in estimating the rock load that 

is exerted over the immediate roof, many indeterminate parameters make it too complicated 

for analysis. The immediate roof behavior is more important and amenable to stability 

analysis (Figure ‎2.1). 

 

Figure ‎2.1 Arching action in bedded and jointed cavern roof (Sterling & Nelson, 1978) 

In another attempt to understand the behavior of the roof layer, Bucky and Taborelli 

(1938) designed a new experiment for intact rocks. They observed that, at some stage, 

tensile stresses create a fracture in the middle of the beam. They increased the span of the 

beam and noticed that the previous fracture was closed and new fracture at mid-span was 

created. It was concluded that the vertical joints at mid-span control the deformation and 

stability of the beam. In this condition, rock mass can be considered as a discontinuous 

medium which consists of individual rock blocks. These blocks are called voussoirs (arch-

stone) and the beam composed of voussoirs is called voussoir beam (Figure ‎2.2). The origin 
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of this name comes from architecture of the ancient Rome. This term has been used to name 

the constituent stone blocks of an arch in masonry bridge construction. 

Evans (1941) proposed the notation of the voussoir beam for the first time and 

organized the concepts of the theory. He solved a set of equations and investigated the 

relation between deflection, gravitational load and lateral thrust. Evans also established an 

analytical solution for roof stability assessment. The voussoir beam, in this context, is 

assumed to have zero tensile strength. It deforms elastically under compressive stress. When 

vertical joints have rough surfaces, friction can transmit the vertical load and a compressive 

arch structure would be generated within the beam. The arch is assumed to be confined by 

surrounding rocks at the abutments. For simplification, the arch zone is considered to have a 

constant thickness within the beam and it is equal to half of the thickness of beam. Also, the 

stress distribution at the abutments and mid-span forms a triangle.   

 

 

 

 

 

Figure ‎2.2 The voussoir blocks and joints 

Evans pioneered a solution to investigate response of the roof layer and proposed a 

new method to examine rock mass behavior around underground excavations; however, he 

made some mistakes in the statics of the method which have been rectified by other 

Rock block 

Arch zone 

Mid-span joint 

Abutment joint Abutment joint 
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researchers. He also oversimplified the problem by bringing unnecessary and inaccurate 

assumptions into the calculations. For instance, he assumed a constant large thickness for the 

compressive arch within the beam equal to half of the thickness; however, Beer and Meek 

(1982) claimed that the assumption of an identical thickness for arch at both abutments and 

mid-span cannot characterize the buckling criterion. Also, the assumption of a linear stress 

distribution at the abutments and mid-span was numerically found to be inaccurate. 

Wright and Mirza (1963) examined the behavior of cracked voussoir beams using 

photoelastic models and claimed that the maximum compressive stress within the beam is 

multiple of that calculated by Evans and the thickness of the arch is less than half the 

thickness of the beam. Wright (1972) established physical models using limestone blocks 

and bricks. He also investigated the response of the beam numerically using finite element 

models.  

Barker and Hatt (1972) conducted a two dimensional finite element model for intact 

and cracked roof beams. They concluded that classical beam theories give reasonable results 

for intact beams; while the concept of voussoir arch must be considered for cracked beams. 

Moreover, since voussoir theory only considers a single roof layer and does not include the 

interaction between roof beds, it would lead to conservative prediction of stability. It was 

declared that finite element analysis leads to higher and more realistic factors of safety as the 

effect of cohesion and interaction between roof beds are taken into account.  

A constrained-beam testing apparatus was designed by Sterling and Nelson (1978) to 

examine the ultimate load bearing capacity of rock beams. The sample was under transverse 
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load and deflection, lateral thrust and eccentricity of the lateral thrust were detected. Their 

observations proved that the behavior of the roof beam can be modeled elastically.  

Figure ‎2.3 illustrates the vertical load-deflection curve of a limestone beam. When 

transverse load was applied, the intact beam deformed elastically until a tensile crack grew 

at mid-span, which decreased the strength of the beam. The experiment was set to increase 

the displacement at a constant rate. This led to drop of the load to point 2. Creation of the 

compressive arch enabled the beam to carry the vertical load. The cracked beam showed 

elastic behavior with less stiffness (point 3 to 7). Due to crushing at the abutments and mid-

span, response of the beam was nonlinear from point 7 to 10. This was immediately before 

reaching the ultimate load capacity at point 10, which was followed by a noticeable 

relaxation. After this point, deflection of the beam decreased the load capacity and caused 

severe cracking and crushing at edges and mid-span (point 11 to 17).  The ultimate failure of 

the beam occurred at point 17 by growing diagonal cracking.  

 

Figure ‎2.3 Vertical load vs. deflection (Sterling & Nelson, 1978) 
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Their study clarified the potential failure mechanisms in a rock bed. Sterling (1980) 

also investigated the impact of mechanical and geometrical parameters such as length, 

shape, stiffness, loading and support conditions on response of the roof beams. 

Beer and Meek (1982) conducted their study based on the voussoir beam method 

introduced by Evans (1941) and presented design curves for safe roof beams. Also, square 

and rectangular roof plates were considered and the initial assumption regarding the 

thickness of the arch was rectified.    

An iterative solution was presented by Brady and Brown (1985) based on the 

updated version of voussoir method published by Beer and Meek (1982). Sepehr and 

Stimpson (1988) also numerically verified the formation of parabolic compressive zone 

within the roof beams using a nonlinear finite element model. Stimpson (1989) introduced a 

new type of failure and called it "2-hinge" collapse mechanism. It was observed that the 

ultimate collapse of the immediate roof beam occurred by pivoting about two hinge zones 

that led to large vertical deflection of the central part of the beam (Figure ‎2.4). 

 

Figure ‎2.4 Ultimate collapse of a series of cross-jointed roof beams (Stimpson, 1989) 
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In this context, joint properties such as scale and distribution of roughness of the 

cross-joints were found to have the most impact on roof stability. The voussoir beam was 

assumed to be a particular case of 2-hinge mechanism; however, since this type of failure 

abruptly occurs when critical span is reached, it is not useful for creating stability design 

curves. 

Passaris et al. (1993) and Ran et al. (1994) analyzed shear sliding failure mechanism 

in jointed roof layers. They used numerical and physical models to verify the proposed 

equations and investigate effects of geometry and material properties on failure. A finite 

element model was implemented to simulate nonlinear joints and geometries and a large 

scale test rig was designed to study the voussoir mechanism. It was concluded that linear 

analysis cannot model large displacement of the voussoir beam when a relatively high value 

of transverse load is applied. In this condition, axial thrust must be obtained by a nonlinear 

function of the transverse load and material geometrical properties. 

Following the voussoir method revised by Brady and Brown (1985), Sofianos (1996, 

1999) and Diederichs and Kaiser (1999, 1999a, 1999b) extensively studied behavior of the 

arch zone and modified some of the assumptions regarding arch thickness and stress 

distribution. They used two different procedures to solve the indeterminate set of equations. 

Diederichs and Kaiser (1999a) used an iteration method, based on trial and error, to find the 

unknown parameters of the problem. They accepted linear stress distribution at the edges 

and mid-span but modified the average stress distribution within the beam and presented a 

new formula. A Universal Distinct Element Code (UDEC) was generated to verify the 

method and stability design curves were published for different modes of failure. 
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Furthermore, effects of internal tensile strength and abutment relaxation on stability of 

laminated rock masses were investigated.  

On the other hand, Sofianos (1996) used the finite element results published by 

Wright (1974) and derived new formulas to reduce the unknown parameters. He considered 

equal normal thickness for compressive zones at the abutment and mid-span, which was the 

arithmetic average of both values. Sofianos and Kapenis (1998) developed a distinct element 

computer code to explore relations between unknown parameters and validate the stability 

limits. Moreover, Nomikos and Sofianos (2011) studied the probability distribution of the 

factor of safety and its probability density and cumulative distribution functions. Their 

analytical solution enables engineers to analyze the reliability of the supporting structures in 

underground mining. 

It must be noted that since Diederichs and Kaiser (1999a) and Sofianos (1996) used 

different concepts to solve the indeterminacy issue of the voussoir method, there are 

noticeable differences between their results. They also applied different boundary conditions 

on their numerical models. Sofianos (1999) and Diederichs and Kaiser (1999b) discussed the 

differences of their approaches. 

Furthermore, Hatzor and Benary (1998) applied the concept of voussoir beam 

method to analyze the potential reasons for roof failure of an ancient underground water 

storage reservoir. They also performed a two dimensional Discontinuous Deformation 

Analysis (DDA) in which the overlying layers on the immediate roof beam are modeled as 

well. This leads to a better understanding of load transfer in laminated roof beds. They also 

investigated the influence of joint spacing and block shape on stability. The minimum 
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required friction angle for roof stability obtained by voussoir analysis and the DDA method 

is     and    , respectively. The field data indicated that the friction angle is expected to 

vary from       to      . By comparing the results of voussoir method and DDA with field 

data, it was concluded that DDA could predict failure of the roof bed by shear sliding while 

voussoir method was inaccurate and overestimated stability of the beam.  

Following the application of DDA in roof stability assessment, Bakun-Mazor et al. 

(2009) used an integration of a discrete fracture model (geoDFN) with DDA method to 

analyze stability of an ancient underground quarry. The voussoir analysis, in this study, 

showed that the roof of the underground quarry must have failed due to snap-through 

failure; however, the excavation has been completely stable. Therefore, it was concluded 

that the voussoir method is fairly conservative as it overestimates the deformation. 

In the most recent study, Hu (2016) conducted a series of tests to investigate 

response of the voussoir beam under transverse load. The experimental results were also 

used to calibrate numerical models, which were performed in        of Rocscience. 

Finally, analytical voussoir beam method was applied to analyze the behavior of the joints of 

segmental concrete liners used in mechanical tunneling.       

2.4.2 Modes of failure 

Sterling and Nelson (1978) observed different types of failure during his experiment 

on load capacity of laminated beams. They summarized the failure modes as follows: 1) 

Compression (or crushing) failure at the center and ends of the beam is commonest failure 

and likely happens at center of the beam, prior to the abutments; 2) Snap-through (or 

buckling) failure happens due to large deflection at the center of the beam. As deflection 
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increases, the arm of the resisting moment decreases, which leads to lower resistance against 

gravitational load; 3) Sliding failure at the abutments happens when the required friction 

angle is not available; however, Nelson's experiment was not designed to detect this type of 

failure; 4) Shear failure occurred once during one of the tests but no specific reason was 

noticed. It suddenly happened before the peak load. 5) Diagonal cracking was likely to 

happen after the peak load and followed by abrupt failure of the beam. The direction of 

propagation of the cracks was from top mid-span to bottom ends. 

 

 

 

 

 

 

 

 

 

Figure ‎2.5 Failure modes of the voussoir beam: (a) snap-through; (b) crushing and (c) sliding 

(Diederichs and Kaiser, 1999a) 

It has been observed that sliding failure is critical for beams with relatively low span 

to thickness ratio, while snap-through failure is likely for high ratios and crushing failure 

occurs in the mid-range of ratios. According to the previous findings, three major types of 

failure must be examined for design of excavations in jointed rock masses. These modes of 

failure are: snap-through failure, crushing at the mid-span and abutments, and sliding at the 

abutments (Figure ‎2.5). 

a) 

b) 

c) 
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In order to investigate the stability of voussoir beams against different modes of 

failure, factors of safety for each mode must be defined and limits of stability must be 

specified. Then, purpose of the solution would be to calculate values of factors of safety to 

find out in what condition voussoir beams are stable.   

2.4.3 Design procedure of the voussoir model 

A typical roof beam above an excavation with no joints is sketched as a simple 

elastic beam with a constant cross section and horizontal span and thickness punctuated 

by   and   (capital letters have been also used in some publications). Distribution of 

compression and tension are indicated in symmetrical around the centerline of the beam. 

 

Figure ‎2.6 Elastic beam with (a) fixed ends and (b) simple (pin) supports (Diederichs and Kaiser, 

1999a) 

The maximum value of compressive stress would be at the bottom of the abutments 

and top of the mid-span while maximum tension would occur at the bottom of the mid-span 

and top of the abutments. By using simple closed form solutions, the maximum stress values 

and deflection for a simple fixed ends beam (Figure ‎2.6a) can be calculated as follows 

b) 

a) 
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(‎2.1) 

   
   

     
 

 

 (‎2.2) 

where   is the Young's modulus of the rock and   is the specific weight of the beam. Since 

the maximum stress at the mid-span is half of the abutments, yield is likely to happen when 

the maximum tensile stresses exceed the tensile strength of the beam at the top of the 

abutments. Consequently, vertical fractures become initiated at the abutments and the beam 

becomes simply supported (Figure ‎2.6b). The maximum tensile stress can be obtained by  

      
    

  
 

 

(‎2.3) 

The value of tensile stress is now higher than the prior value of stress at the 

abutments and rock tensile strength, which leads to a central fracture at the mid-span. This 

progressive cracking at the abutments, mid-span and other parts of the beam converts any 

laminated roof structure to a discontinuous medium. Existence of tensile fractures and cross-

cut joints make the beam fail to carry tensile stresses but it does not mean that roof beam 

would collapse. In this condition, a compression arch would be generated from the 

abutments to the top of the mid-span. Although the thickness of the compression arch is 

variable, Evans (1941) assumed a normal compressive thickness of       for 

simplification. Diederichs and Kaiser (1999a) claimed that normal compressive thickness is 

close to      for stable beam and less than     for unstable situations. 
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2.4.3.1 Constitutive law and statics 

The voussoir beam geometry for a laminated roof bed before deformation is 

illustrated in Figure ‎2.7a. Also forces and notations are indicated in Figure ‎2.7b for half of 

span after deformation. Since the voussoir beam is symmetric, half of the beam is taken into 

account. The main assumption is that lateral thrust is transmitted to the abutments through a 

parabolic arch within the beam. Load distribution is also assumed to be triangular over the 

abutment surface of the beam and central section. The horizontal stress is not symmetric 

through the thickness of the beam. Therefore, closed form solutions cannot examine the 

response of the beam.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2.7 Initial geometry of a voussoir beam (a); and notation for analysis of a deformed half-span 

beam (b) 
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The roof beam of span  , thickness    and unit weight  , is under its own weight  , 

while the average thickness of the arch,     and the ultimate moment arm,     between the 

reaction forces    at the mid-span and at the abutments are initially unknown. The lateral 

thrust at the abutments and center of the beam is exerted over the arch thickness       of 

the beam. All the calculations are based on the unit width of the beam in the out-of-plane 

direction. As shown in Figure ‎2.7b, the moment arm due to the couple acting at the center 

and abutment is  0 while after displacement, it would be reduced to   . Hence, the vertical 

displacement of the beam is given by 

    0    (‎2.4) 

The initial moment arm  0  can be simply calculated as 

  0      
 

 
   

 

 (‎2.5) 

The model assumes reaction force locus forms a parabolic arch. Therefore the length 

of the arch can be obtained by simple geometric calculations (derivation of the following 

equation is presented in ‎0) 

     
 

  
 0

  
 

(‎2.6) 

For the sake of stability, the moment caused by weight of the beam at the 

abutment   , must be compensated by a resisting moment     which rises due to 

deflection of the beam and operates at the abutment and center of the beam. 
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(‎2.7) 

       
 

 
      

 

 (‎2.8) 

where    is the maximum compressive stress at the lower part of the abutment and top of 

the mid-span. Writing the moment balance at the abutment gives 

 ∑    
 

 (‎2.9) 

Thus the maximum stress is 

    
 

 

   

  
 

 

(‎2.10) 

In all the calculations, the specific weight    of the beam can be replaced with an 

effective specific weight   . This makes the solution applicable to inclined laminations, 

which   is the angle from the horizon.  

          (‎2.11) 

In order to find the factors of safety, values of maximum stress   , normal thickness 

of the arch  , and arm of the arch  , must be determined. Since the axial stress is not 

uniformly distributed, an assumption regarding the distribution of the internal stress within 

the beam must be considered. Brady and Brown (1985) proposed a bilinear variation along a 

constant arch section as shown in  

Figure ‎2.8. The value of axial stress is maximum at the abutment and mid-span, 

while it is lowest in the middle of the half beam. It is assumed that the entire thickness is 



39 

 

under compression where the axial stress is lowest and uniformly distributed over beam’s 

thickness. The axial compressive stress applied at the centroid of the abutment and mid-

span     is 

 
   

 

 
   

(‎2.12) 

Due to force balance, the lateral thrust applied at the abutment    is equal to 

horizontal force in the middle of the half span. 

 
  
 

         
 

(‎2.13) 

Thus  

      
 

 
   

 

(‎2.14) 

Therefore the average stress      along the reaction line can be calculated by  

 
    

  
 

 
 

 
 

 

 
  

 

 (‎2.15) 

 

 

 

 

 

 

Figure ‎2.8 Axial stress distribution along the compressive arch; bilinear (dashed line) and quadratic 

(solid line) variation 
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Diederichs and Kaiser (1999a) suggested that the entire beam section is under a 

constant stress where the centerline of the beam crosses the reaction arch line. They assumed 

a quadratic variation of the stress along the reaction line and proposed the following 

equation 

     
  
 

 
 

 
    

 

 (‎2.16) 

Although they claimed that the stress distribution within the compressive arch is 

parabolic, the solid line in Figure ‎2.9 clearly shows that it is not a parabola. The graph of a 

quadratic function is a curve where any point is at an equal distance from a fixed point and a 

fixed straight line, which does not match the curve in this figure. It was also expressed that 

the location of the minimum stress within the arch is not the middle of the half span, as it 

happens at 
 

   
 away from mid-span. This is the intersection of the reaction line and 

centerline.  

 

 

 

 

 

Figure ‎2.9 Centerline and arch line within the half beam 

Following the procedure as presented in ‎0, the equation of the reaction arch line after 

deformation would be obtained as 

 𝑦 
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 (‎2.17) 

Also equation of the centerline is  

   
  

 
 

 

 (‎2.18) 

Thus the intersection is  

    
 

   
 

 

 (‎2.19) 

Having the average stress within the beam, elastic shortening of the arch can be obtained by 

Hook's law 

     
   

 
 

 

 (‎2.20) 

where   is the Young's modulus of the rock mass in the direction parallel to the beam axis. 

Using the same procedure presented in ‎0, the length of the arch after deformation     can be 

obtained  

      
 

  
        

 

 (‎2.21) 

 Rewriting this equation gives   

    
  

 
         

 

 (‎2.22) 

Combining this with equation (‎2.6) gives 
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 0

      
 

(‎2.23) 

Rewriting this equation leads to the arm of arch after deflection 

   √
  

 
 
 

  
 0

      

 
 

(‎2.24) 

In order to obtain a reasonable value for the moment arm    a positive value for the 

term under the square root is necessary. A negative value shows an unstable situation. It 

means that deflection has exceeded the critical value and subsequently snap-through failure 

would occur. If it is not possible to find a value for the normal compressive zone    between 

0 and 1, ultimate collapse of the beam occurs. 

The goal of the analysis is to find a pair of values of   and   which meets all the 

presented equations. Evans (1941) supposed a constant value of       and oversimplified 

the calculations. Diederichs and Kaiser (1999a) proposed an iterative solution to calculate a 

pair of values of   and   which corresponds to the minimum value of the maximum stress at 

the abutments and mid-span   . 

In this method,   varies in increments from 0 to 1 and   is calculated in each 

increment based on the value of  . When the beam is completely stable, the proposed 

solution finds the value of   in each increment; however, the percentage of   values that 

could lead to a rational value of   would drop as the span of the beam increases. Eventually, 

there would be no pair of   and   values for the given beam. Determining the minimum 

value of     the vertical displacement    can be specified by calculating the difference 

between moment arm prior and after deflection. 
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2.4.3.2 Factors of safety 

Based on the response of the beam to the transverse load and rock mass properties, 

the factors of safety against potential modes of failure can be determined. Crushing failure is 

most likely to happen at the lower edge and top mid-span of the beam where the maximum 

compressive stresses are concentrated. When the maximum stress exceeds the strength of the 

material, crushing failure happens. Thus it is defined as the ratio of unconfined compressive 

strength of the rock mass with respect to the maximum compressive stress: 

              
   

  
 

 

 (‎2.25) 

A value of              less than one represents ultimate crushing failure; however, 

depending on the material and safety considerations, higher values might be considered as 

the crushing limit. 

The factor of safety against shear sliding can be calculated by analyzing the beam 

loads along the abutments. Sliding at the abutments happens due to mobilization of a 

frictional resistance. Since beam is under its own weight, the abutment shear force is 

   
 

 
    

 

(‎2.26) 

This vertical force needs to exceed the shear resistance due to lateral thrust  

          
 

 
          

 

 (‎2.27) 

Equating these two equations leads to the factor of safety against shear sliding failure 
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 (‎2.28) 

When the value of           is less than one, ultimate shear failure happens. This 

mode of failure strongly depends on the span of the beam and joint properties. Therefore, 

different values other than one can be assumed as shear limit.  

Buckling failure happens when vertical displacement of the beam exceeds a certain 

limit. This limit is specified with respect to the thickness of the beam. The ultimate failure 

occurs for displacements greater than one quarter of the thickness (      ). A yield point 

is also reported which is the onset of the nonlinear behavior of the beam and corresponds to 

10 percent of the thickness (     ). 

Diederichs and Kaiser (1999a) also introduced a numerical approach for the factor of 

safety for buckling. It is defined as the ratio of the values of   with no reasonable solution. 

As normalized equilibrium arch thickness    decreases, the buckling limit       increases. 

The ultimate failure happens at value of      for     , while yield corresponds to      

of    . It has been observed that stability cannot be achieved if a compressive arch is not 

generated within the beam to transfer the vertical loads to the abutments. Figure ‎2.10 shows 

flowchart of the iterative method proposed by Diederichs and Kaiser (1999a).   
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Figure ‎2.10 Flowchart for the determination of stability and deflection of a voussoir beam 

(Diederichs and Kaiser, 1999a) 
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2.4.4 Numerical analysis 

Numerical models have been used to investigate accuracy of the voussoir method's 

assumptions and the proposed formulas. Sepehr and Stimpson (1988), Wright (1972), 

Barker and Hatt (1972), Passaris et al. (1993) and Ran et al. (1994) performed finite element 

analyses; whereas, Sofianos and Kapenis (1998) and Diederichs and Kaiser (1999a) used 

distinct element codes.  

Finite element models assume the beam is a continuous medium and model the 

cracks with thin elements and very low modulus. Finite element method cannot simulate the 

behavior of discontinuities as separation or opening is not permitted. It is incapable of 

examining the ultimate collapse of the beam by sliding failure. Thus, it is not suitable to 

model a jointed rock mass such as voussoir beams. On the other hand, Universal Distinct 

Element Code (UDEC) provides a 2D implementation of the distinct element method. This 

numerical computer code, which employs a dynamic relaxation algorithm to solve the 

systems of equations, allows for the development of large displacements before the collapse 

of the beam. Therefore, maximum displacement of the beam, stress distribution and opening 

of the joints can be examined.  

The same geometry as physical models is considered for UDEC models. The beam 

has two blocks of rock attached to the abutment rocks with vertical joints at the abutments 

and mid-span. Sofianos & Kapenis (1998) considered a model with a deformable beam rock 

and rigid abutments. Joints have very high stiffness values. Also high shear strength is 

considered to prevent the beam from sliding. In addition, they assumed zero friction and 

zero cohesion for the mid-span joint to have both vertical slip and lateral separation. Their 
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model could simulate the stress distribution but considerably underestimated the 

compressive thickness within the beam and maximum deflection.   

Diederichs & Kaiser (1999a) declared that fixed supports or rigid abutments cause 

stress concentration at bottom edges of the beam which leads to higher moment arm and 

lower deflection. These boundary conditions make the predictions inaccurate. Hence, they 

considered elastic deformable blocks for beam and abutments. Joints are elastic (no tension) 

with purely frictional surfaces. Considering flexible abutments with very high stiffness 

values led to better predictions that are more consistent with the numerical analysis by Ran 

et al. (1994).      

The numerical models may predict higher thickness values than the analytical 

solution. It might be due to non-linear distribution of the stress at the abutments and mid-

span in UDEC models, while it has been considered triangular in analytical method. 

However the major reason for difference in results is block overlapping which is allowed in 

the numerical simulations with UDEC (Itasca consulting group, 2010). This causes the 

deviation of the numerical results, which is obtained by UDEC, and analytical results. 

UDEC allows blocks to penetrate into each other with an infinitesimal size (overlapping) to 

capture the interaction. The block penetration and the following large connection area 

between the beam and abutments generate the interaction of stress between the blocks in the 

model. The penetration size depends on the size of the blocks in the model. Therefore larger 

thickness of the arch within the beam is expected to be generated in the simulations than 

analytical solution. Overall, it can be concluded that the analytical solution proposed by 

other researchers can model the behavior of voussoir beams well enough and can be applied 

to the stability assessment of roof stratum. 
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2.5 Concluding remarks 

Due to the high risk of gravity driven failures during and after excavation, stability 

assessment is crucial for the design of an underground cavern. The voussoir beam method 

provides an analytical solution for roof beam stability analysis. Sterling (1980) examined the 

assumptions of the method and published main conclusions of all previous investigations. 

The main conclusions of the theory are summarized here 

 Cross joints and fractures form a blocky rock mass around an excavation, therefore 

elastic beams or plates cannot model the behavior of the roof beams 

 Load capacity of the roof beam under gravity loading depends on the generation of 

an arch structure by compressive stresses within the beam and confined by abutting 

rock 

 For a voussoir beam with low span/thickness ratio, the most likely failure mode is 

shear failure at the abutments 

 Roof beds have zero tensile strength and show elastic behavior  

 Main potential failure modes are snap-through, crushing at the abutments and sliding 

failures 

 The use of numerical models (such as UDEC) is necessary for verification of the 

results of the voussoir beam method  

The iterative approach presented in the next chapter is based on the work published by 

Diederichs and Kaiser (1999a), which is a modified version of the model proposed by Brady 

and Brown (1985).  
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CHAPTER 3 – Analysis and Results 

3.1 Introduction 

This chapter describes all the analysis, new assumptions and equations and generated 

results. It would show that the modified version of voussoir beam significantly improves 

accuracy of the results. For this purpose, mechanism and assumptions of voussoir beam 

method have been examined using a Universal Distinct Element Code (UDEC). Parametric 

study has been done for a wide range of beam parameters and types of rock mass to 

demonstrate validity of the modifications. 

First, an existing case has been used to regenerate the results and verify the iterative 

solution, which is described in section ‎3.2. Then, characteristics of the developed model in 

UDEC have been presented in section ‎3.3. This section is followed by analyzing the stress 

distribution process, investigation of arch structure within beams and determining the 

minimum and maximum axial stresses, using both UDEC and existing voussoir beam 

method.  

Section ‎3.4 introduces the new assumptions and equations that have been used to 

improve the method. Then, response of the roof beam is investigated for various rock mass 

properties and results of numerical simulations, existing and modified voussoir beam 

method have been compared. Section ‎3.5 incorporates effect of creep deformation on roof 

beams using both UDEC and modified voussoir beam method. Also, application of the 

modified method and UDEC simulations to underground caverns is presented in section ‎3.6, 

which includes response of the roof beams to cavern inside pressure.  
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3.2 Verification of the iterative solution  

The procedure indicated in Figure ‎2.10 has been implemented in MATLAB code 

(MathWorks, 2016). Due to potential errors in numerical calculations and computer 

programming, the final results must be verified against data published by previous 

researchers. Hatzor and Benary (1998) examined the response of a voussoir roof beam by 

analyzing the stress distribution, deflection and factors of safety. They published the results 

using simple and clear graphs. Therefore, results of the developed program have been 

verified against their data. 

They have examined the stability of the Tel Beer-Sheva water reservoir (2700 B.P to 

3200 B.P). It is located approximately 3 km South – East of the modern city of Beer Sheva. 

The required geometrical parameters were identified using field mapping and site 

investigations. Mechanical properties of the intact rock and joints were determined using 

core samples. The excavation was created in horizontally bedded chalk with three vertical 

joint sets. Underground rock mass was considered as separate single layers and classical 

voussoir beam theory was applied. Input parameters are summarized in Table ‎3.1. 

Table ‎3.1 Voussoir beam parameters considered by Hatzor and Benary (1998)  

Parameter Value Unit 

Young's modulus   2000     

Specific weight   18.7      

Unconfined compressive 

strength     
7     

Friction angle   40 ° 
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Different spans ranging from 3 to 9 m were studied and the maximum axial 

stress     for various beam thickness was calculated. As Figure ‎3.1 shows,    increases with 

span and significantly decreases with thickness. For a given span and thickness, the stability 

against local crushing at hinge zones can be assessed by comparing the maximum axial 

stress and unconfined compressive strength values. Figure ‎3.1 clearly shows that data points, 

generated by computer programming, fairly conform to published results by Hatzor and 

Benary that are displayed by solid lines. The average error is as low as      .  

 

Figure ‎3.1 Relationship between maximum horizontal compressive stress and beam thickness for 

span=3, 7 and 9 m; results are published by Hatzor and Benary (solid lines) and generated by 

programming (data points) 

The factor of safety against sliding at the abutments is also studied for various 

thickness and friction angles. Equation  (‎2.28 shows that shear sliding is directly dependent 

on friction angle, while thickness of the beam affects the factor of safety by reducing 

maximum axial stress. For this purpose, a constant span of     with friction angles of 

        and     has been assumed, while other properties are similar to Table ‎3.1. As 
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Figure ‎3.2 shows, sliding is likely to happen when span/thickness ratio increases and friction 

angle decreases. Results are fairly consistent as the error is     . 

 

Figure ‎3.2 Factor of safety against shear along abutments for friction angles of 20°, 40° and 70° and 

a constant roof span of 7 m ; results are published by Hatzor and Benary (solid lines) and generated 

by programming (data points) 

The stability of same roof beam against failure in compression is also investigated by 

Tsesarsky and Hatzor (2003). The results of parametric analysis are depicted in Figure ‎3.3 in 

which different span and beam thickness values are considered. Figure ‎3.3 shows that 

crushing failure is likely when beam span increases and thickness decreases. The average 

error is      . Since the results are noticeably greater than the threshold and the selected 

beams are all stable, error of       is an acceptable value. It can be concluded that the 

numerical calculations are trustable as the results are verified against published data. The 

next step is to verify the voussoir beam method using numerical simulations. 
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Figure ‎3.3 Factor of safety against compression for span of     and     ; results are published by 

Hatzor and Benary (solid lines) and generated by programming (data points) 

 

3.3 Numerical analysis using UDEC 

The structural response of the voussoir beam is simulated using a Universal Distinct 

Element Code (UDEC). One could use this software to investigate the mechanical behavior 

of a discontinuous medium, such as an underground excavation. Consequently, a blocky 

roof rock, like a voussoir beam, can be examined by this code. The goal of the simulations is 

to investigate the displacement, stress distribution and factors of safety within the roof layer 

for various roof beam parameters and ultimately verify the voussoir beam concepts and 

accuracy of the modifications.  

3.3.1 Model overview 

A similar model to the model that Diederichs & Kaiser (1999a) developed has been 

used. It consists of three deformable elastic blocks. They are discretized and jointed to 

represent the voussoir beam. The contact of the middle block with abutment rocks makes the 
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joints at the abutments. The third joint is located at the mid-span. If any other joints are 

added to the model, it affects the rock mass modulus of the beam in classical voussoir 

analysis. This is critical for comparing the numerical results with voussoir beam analysis. 

Figure ‎3.4 shows a typical voussoir beam with boundary conditions. The shaded blocks 

represent the abutments.   

 

Figure ‎3.4 Geometry and boundary conditions of the voussoir beam in UDEC 

The model is applied to a set of rock and joint properties with a wide range of beam 

spans and thicknesses. The values of joint stiffness and spacing are assumed regarding the 

characteristics of the selected rock types. Joint shear and normal stiffness (     ) vary based 

on the quality of the rock mass and how weathered the joints are. Low values of the joint 

stiffness are for the joints filled with weathered rock with low deformability modulus, while 

high values of stiffness are for unweathered closed joints.  

All the blocks are discretized using triangular zones with a height (x-direction) to 

width (y-direction) ratio of 2:1. UDEC rounds the block corners to prevent unnatural stress 

concentrations. This does not simplify the results because the corners are also naturally 

crushed in a rock mass. The rounding length of the model must be high enough to allow the 

displacement; otherwise the contact overlap would be greater than the rounding length. 

When UDEC crashes during the cycling with a "contact overlap too great" error message, it 

means one block penetrates too far into another. The contact overlap should be less than one 
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half of the rounding length to prevent any error, while more rounding length causes higher 

unbalanced force and more running time. On the other hand, block edge length is at least 

twenty times greater than the rounding length, while rounding length must be less than zone 

edge length. The value of zone edge specifies the maximum length of any edge on a zone. 

This controls the density of the discretization in each model.  

As the result, the length of the elements needs to be optimized to prevent any error 

and generate accurate results. Since the thickness of the beam is only one meter. It is 

subdivided into six elements in the y-direction. Number of elements in x-direction is 

different in each model depending on the beam span. They are discretized in a way to 

maintain the zone aspect ratio of 2:1.  

All the joints are elastic with a frictional surface, no tension and no cohesion. The 

displacement is controlled by the normal and shear stiffness (     ). Since the natural 

fracture frequency of the rock mass is 0.5 m, the same value has been assumed for joint 

spacing (  ) within the beam. Figure ‎3.5 illustrates two different joint patterns in a typical 

voussoir beam. 

 

Figure ‎3.5 Joint patterns in a voussoir beam with 6 m span; three joints with 3 m spacing (a) thirteen 

joints with 0.5 m spacing (b) 
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Fracture is a surface of breakage within the rock mass on which there has been no 

movement. If planes of a fracture move only normal to each other, it would be considered as 

a joint. Although fractures are not necessarily the same as joints, it is reasonable to assume 

fractures in a roof layer behave like joints. This makes the model more conservative, as 

greater displacement is expected with more joints.  

The voussoir beams deform under their own weight. Thus, the model is under 

gravitational load with gravitational acceleration    equal to       . If the effect of 

surcharge or support pressure is interested, a boundary stress or pressure must be applied on 

the upper or lower edge of the middle block. Figure ‎3.6 shows a voussoir beam in UDEC 

before displacement. The green colour blocks are the abutments. They are not completely 

fixed but they have a high stiffness value (       ), because fixed blocks do not match 

with reality and incorrectly cause stress concentration at zone edges. Deformable and stiff 

abutments prevent stress concentration and provide a better displacement and stress 

compatibility.   

 

Figure ‎3.6 A typical discretized voussoir beam model with 10 m span and 0.5 m joint spacing in 

UDEC 

Size of elements in x and y directions are     and      , respectively. This is based 

on a convergence study (Table ‎3.2 and Figure ‎3.7). Length of elements, in each step, is 

reduced to half of its length in the last step, to examine convergence of the results. Table ‎3.2 

shows maximum displacement of the beam for each size of elements and percent of change 
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in the results with respect to previous step. Step two shows a high percent change (      ), 

while element size of step three shows lower change in the results. When size of elements is 

set to 0.2 and 0.1 in x and y directions (step four), the change drops to below   ; which 

shows convergence of the results. Therefore, element size in step three is selected as the 

optimum value for discretization.  

Table ‎3.2 Convergence of beam displacement 

Step 
Zone length 

(x direction × y-direction) 

Maximum displacement at 

mid-span (m) 

Percent change 

(%) 

1          0.01123 - 

2          0.0139 23.78 

3          0.01354 2.62 

4          0.01364 0.77 

5           0.0137 0.44 

   

 

Figure ‎3.7 Maximum displacement with different zone length  

First, the beam is set to deform elastically until the equilibrium is reached. At this 

stage, all the joints have a non-zero value for tensile strength. Their tensile strength is set 
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to         . Any reasonable and non-zero value works properly at this step. This allows 

the stress and frictional strength accumulate in the joints. If this stage is removed from the 

simulation, blocks of rock would drop before the arch stresses are generated.  Then, joint 

tensile strength is set to zero and the beam continues to deform until equilibrium or failure. 

The value of tension at the initial stage should be a small value, less than one megapascal, 

because a high tensile strength makes the beam to slip over the abutments and displacement 

would be the same in all cross sections of the beam.  

3.3.2 Stress distribution  

It is assumed that the roof beam is deformed under its own weight. It is also noted 

that upper layers above an excavation tend to transfer gravitational load laterally to the 

abutments rather than vertically to the lower layer. This is due to generation of an arch-

shaped stress distribution within the beam. This arch specifies a compressive zone that 

transfers the vertical loads to the abutments and makes the beam stable (Figure ‎2.2). 

In order to examine the process of stress distribution and assumptions of the method, 

different types of voussoir beams are simulated in UDEC. The developed models have rock 

and joint properties of six different media. The selected rock types are chalk, cap rock layer 

of unit B in the Salina Group salt beds (shaly carbonate), potash, cap rock layer of unit A2 

(shaly carbonate), limestone and dolostone. Input parameters are selected in a way to 

represent media that are likely to exist around excavations, which voussoir beam method can 

be applied. It includes the two types of rock that represent the cap rock layers of unit B and 

unit A2 of the Salina Group of salt beds. This selection covers a range of weak to strong 

rock masses (from low to high values for density, stiffness, strength, etc.). The beam 

parameters are summarized in Table ‎3.3. 
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The model is allowed to deform elastically under its own weight. Figure ‎3.8 and 

Figure ‎3.9 show the displacement vectors and axial stress contours after deformation for a 

voussoir beam. Since the maximum displacement is less than 10 percent of thickness 

(        ), the beam is stable. Therefore, the following figures show the response of the 

beam after equilibrium is reached. The maximum displacement occurs at the middle of the 

beam within the intermediate joint. Figure ‎3.9 presents principal stress tensors within beam. 

As it shows, the major part of the beam is under compression, while small zones at top edge 

and bottom mid-span are under tension. The bottom edge and top mid-span of the beam are 

three zones of high compressive stress concentration. The maximum axial stress (   ) is 

greater than       at the abutments for this beam properties. The negative sign for stresses 

in Figure ‎3.9 indicates that stresses are compressive and positive values show tensile 

stresses.  

Table ‎3.3 Summary of the beam parameters 

Parameter Chalk 
Unit 

B 
Potash 

Unit 

A2 
Limestone Dolostone Unit 

Density ( ) 2100 2560 2250 2680 2700 2800       

Young's modulus ( ) 2 3 6 23 40 60     

Joint normal and shear 

stiffness (     ) 
3.5 8.4 9 8.24 7 10       

Joint friction angle ( ) 30 25 30 25 20 35 ° 

Joint spacing (  ) 1 0.5 0.5 0.5 1.5 2   

Unconfined 

compressive strength 

(   ) 

7 8 26 60 60 140     

Rock mass modulus 

(   ) 
1.27 1.75 2.57 3.49 8.3 15     
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Figure ‎3.8 Displacement vectors for a voussoir beam (Unit B rock mass, span=10m, thickness=1m) 

 

 

Figure ‎3.9 Stress contours within a voussoir beam (Unit B rock mass, span=10m, thickness=1m) 
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Figure ‎3.10 Principal stress distribution within a voussoir beam (Unit B rock mass, span=10m, 

thickness=1m) 

The principal stress distribution is illustrated in Figure ‎3.10. It shows the arch 

structure generated within the beam, which leads to load transfer to the abutments. One 

could extract the values of axial stress within different cross-sections to plot the profile of 

stress through the beam.  

To show process of stress distribution and examine accuracy of the assumptions, a 

wide range of span to thickness ratios are considered. Generally, a roof beam is expected to 

be stable from span to thickness ratio of 6 m to 18 m. Thus ratios of 6, 7.5, 10, 12.5, 15 and 

18 are taken for each type of rock mass. They are taken in a way to cover different span and 

thickness values. Also three different sets of values are considered for ratios of 7.5 and 18, 

to clearly show that the results are not dependent on specific beam parameters. Table ‎3.4 

summarizes selected span and thickness values for developed models.  
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Table ‎3.4 Geometry of beam models 

Span/thickness ratio Span (m) Thickness (m) 

6 12 2 

7.5 15 2 

7.5 (second case) 11.25 1.5 

7.5 (third case) 7.5 1 

10 10 1 

12.5 18.75 1.5 

15 15 1 

18 9 0.5 

18 (second case) 13.5 0.75 

18 (third case) 18 1 

 

Only compressive stresses are taken into account and half of the beam is examined 

(due to symmetry). Figure ‎3.11 to Figure ‎3.20 show the axial compressive stresses within 

each cross-section from left abutment to middle of the beam for all models. 

The compressive stresses are concentrated at the lower part of the abutment in each 

model, whereas the top of the abutment is under tension. At the next cross-section, the 

bigger part of the thickness is under compression with less concentration. This is followed 

with the bigger part in the third section. At the next cross-section, the entire thickness is 

under compression and distribution gradually tends to be a rectangle. Towards the mid-span, 

the stresses tend to accumulate at the higher part of the thickness. Eventually, the stress 

distribution at the mid-span is exactly opposite of that at the abutment. The voussoir beam 

method assumed a linear triangular stress distribution at the abutments and mid-span. This 

assumption is not compatible with the results from numerical simulation, as the distribution 

is nonlinear. 
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Figure ‎3.11 Profiles of compressive stresses within a beam with s=12m, t=2m; chalk (a) unit B (b) 

potash (c) unit A2 (d) limestone (e) dolostone (f)  

a) 

b) 

c) 

d) 

e) 

f) 
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Figure ‎3.12 Profiles of compressive stresses within a beam with s=15m, t=2m; chalk (a) unit B (b) 

potash (c) unit A2 (d) limestone (e) dolostone (f)  

a) 

b) 

c) 

d) 

e) 

f) 
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Figure ‎3.13 Profiles of compressive stresses within a beam with s=11.25m, t=1.5m; chalk (a) unit B 

(b) potash (c) unit A2 (d) limestone (e) dolostone (f) 

a) 

b) 

c) 

d) 

e) 

f) 
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Figure ‎3.14 Profiles of compressive stresses within a beam with s=7.5m, t=1m; chalk (a) unit B (b) 

potash (c) unit A2 (d) limestone (e) dolostone (f) 

a) 

b) 

c) 

d) 

e) 

f) 
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Figure ‎3.15 Profiles of compressive stresses within a beam with s=10m, t=1m; chalk (a) unit B (b) 

potash (c) unit A2 (d) limestone (e) dolostone (f) 

 

a) 

b) 

c) 

d) 

e) 

f) 
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Figure ‎3.16 Profiles of compressive stresses within a beam with s=18.75m, t=1.5m; chalk (a) unit B 

(b) potash (c) unit A2 (d) limestone (e) dolostone (f) 

 

a) 

b) 

c) 

d) 

e) 

f) 
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Figure ‎3.17 Profiles of compressive stresses within a beam with s=15m, t=1m; chalk (a) unit B (b) 

potash (c) unit A2 (d) limestone (e) dolostone (f) 

  

a) 

b) 

c) 

d) 

e) 

f) 
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Figure ‎3.18 Profiles of compressive stresses within a beam with s=9m, t=0.5m; chalk (a) unit B (b) 

potash (c) unit A2 (d) limestone (e) dolostone (f) 

 

a) 

b) 

c) 

d) 

e) 

f) 
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Figure ‎3.19 Profiles of compressive stresses within a beam with s=13.5m, t=0.75m; chalk (a) unit B 

(b) potash (c) unit A2 (d) limestone (e) dolostone (f) 

a) 

b) 

c) 

d) 

e) 

f) 
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Figure ‎3.20 Profiles of compressive stresses within a beam with s=18m, t=1m; chalk (a) unit B (b) 

potash (c) unit A2 (d) limestone (e) dolostone (f) 

 

a) 

b) 

c) 

d) 

e) 

f) 
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If the stress distributions at each cross-section are taken as triangles and trapezoids, 

one could track locus of the centroids of each profile from abutment to middle of the beam. 

This would show the arch-shaped reaction line through the half beam. The locus of the 

centroids of triangles and trapezoids are depicted through Figure ‎3.21 to Figure ‎3.30. In the 

following figures data points are the calculated centroids and solid lines represent 

polynomial trendline. To keep the figures simple and clear, they are each divided into two 

plots. The first plot of each figure represents behavior of chalk, unit B and potash, while the 

second plot shows unit A2, limestone and dolostone rock masses. 

 

Figure ‎3.21 Stress reaction line within the half beam with s=12m, t=2m; chalk, unit B and potash (a) 

unit A2, limestone and dolostone (b) 

 

a) 

b) 
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Figure ‎3.22 Stress reaction line within the half beam with s=15m, t=2m; chalk, unit B and potash (a) 

unit A2, limestone and dolostone (b)  

 

Figure ‎3.23 Stress reaction line within the half beam with s=11.25m, t=1.5m; chalk, unit B and 

potash (a) unit A2, limestone and dolostone (b)  

a) 

b) 

a) 

b) 
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Figure ‎3.24 Stress reaction line within the half beam with s=7.5m, t=1m; chalk, unit B and potash 

(a) unit A2, limestone and dolostone (b) 

 

Figure ‎3.25 Stress reaction line within the half beam with s=10m, t=1m; chalk, unit B and potash (a) 

unit A2, limestone and dolostone (b) 

a) 

b) 

a) 

b) 
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Figure ‎3.26 Stress reaction line within the half beam with s=18.75m, t=1.5m; chalk, unit B and 

potash (a) unit A2, limestone and dolostone (b) 

 

Figure ‎3.27 Stress reaction line within the half beam with s=15m, t=1m; chalk, unit B and potash (a) 

unit A2, limestone and dolostone (b) 

a) 

b) 

a) 

b) 
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Figure ‎3.28 Stress reaction line within the half beam with s=9m, t=0.5m; chalk, unit B and potash 

(a) unit A2, limestone and dolostone (b) 

 

Figure ‎3.29 Stress reaction line within the half beam with s=13.5m, t=0.75m; chalk, unit B and 

potash (a) unit A2, limestone and dolostone (b) 

a) 

b) 

a) 

b) 
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Figure ‎3.30 Stress reaction line within the half beam with s=18m, t=1m; chalk, unit B and potash (a) 

unit A2, limestone and dolostone (b) 

Length of the arch within each beam can be found using figures of reaction line and 

compared with values that are obtained from voussoir calculations. Table ‎3.5 shows arch 

length values based on UDEC analysis and voussoir beam method. As this table shows, 

length of the arch within each voussoir beam is almost equal for a constant size of the beam 

and different types of rock masses. The difference among the values is less than 0.5%, so it 

only depends on size of the beam. Therefore a constant value is considered for each size, 

which is the average value of all rock types (Table ‎3.6). The formula that is used in voussoir 

beam method to calculate arch length is fairly accurate and gives consistent results with 

simulations. The error is less than 1% for all cases. 

a) 

b) 
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Table ‎3.5 Length of arch within the beams with different rock types and sizes 

Beam model r=6 r=7.5 
r=7.5 

(II) 
r=7.5 

(III) 
r=10 r=12.5 r=15 r=18 

r=18 

(II) 
r=18 

(III) 

U
D

E
C

 

Chalk 12.3 15.24 11.44 7.6 10.08 18.86 15.04 9 13.5 18.04 
Unit B 12.32 15.28 11.48 7.54 10.2 18.96 15.12 9.02 13.6 18.04 
Potash 12.32 15.24 11.48 7.6 10.14 18.88 15.2 9.02 13.54 18.06 
Unit 

A2 
12.32 15.24 11.6 7.56 10.3 19 15.06 9.16 13.6 18.02 

Lime-

stone 
12.3 15.2 11.44 7.62 10.08 18.82 15.12 9.02 13.54 18.06 

Dolo-

stone 
12.3 15.24 11.5 7.56 10.2 18.86 15.2 9.02 13.56 18.04 

V
o
u
ss

o
ir

 b
ea

m
 

Chalk 12.23 15.19 11.39 7.59 10.07 18.86 15.07 9.03 13.55 18.08 
Unit B 12.23 15.19 11.39 7.59 10.07 18.86 15.06 9.03 13.55 18.07 
Potash 12.22 15.18 11.39 7.59 10.07 18.85 15.06 9.02 13.54 18.06 
Unit 

A2 
12.22 15.18 11.39 7.59 10.07 18.84 15.05 9.02 13.54 18.05 

Lime-

stone 
12.22 15.18 11.38 7.59 10.07 18.84 15.05 9.02 13.53 18.04 

Dolo-

stone 
12.22 15.18 11.38 7.59 10.07 18.83 15.05 9.02 13.53 18.04 

 

Table ‎3.6 Average of arch length within the beams 

Beam model Arch length (UDEC) Arch length (voussoir beam) Error (%) 

r=6 12.310 12.224 0.699 

r=7.5 15.240 15.183 0.374 

r=7.5 (II) 11.490 11.386 0.905 

r=7.5 (III) 7.580 7.59 0.132 

r=10 10.167 10.07 0.951 

r=12.5 18.897 18.845 0.273 

r=15 15.123 15.055 0.452 

r=18 9.040 9.023 0.188 

r=18 (II) 13.557 13.539 0.130 

r=18 (III) 18.043 18.058 0.081 

 

Also, compressive stress values can be obtained at the centroids of each section. This 

leads to the internal stress distribution within the beam (Figure ‎3.31 to Figure ‎3.40). As 

these figures show, the maximum value of stress is at the abutment, while the minimum 

axial stress is at the left quarter of the beam close to the abutment. It also shows that the 
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stress at the mid-span is not equal to the stress value at the abutment. This distribution of 

compressive stresses challenges the assumption of equal axial stresses at both abutments and 

mid-span in the voussoir method. 

 

Figure ‎3.31 Internal axial stress distribution within the half beam with s=12m, t=2m; chalk, unit B 

and potash (a) unit A2, limestone and dolostone (b) 

a) 

b) 
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Figure ‎3.32 Internal axial stress distribution within the half beam with s=15m, t=2m; chalk, unit B 

and potash (a) unit A2, limestone and dolostone (b) 

 

Figure ‎3.33 Internal axial stress distribution within the half beam with s=11.25m, t=1.5m; chalk, 

unit B and potash (a) unit A2, limestone and dolostone (b) 

a) 

b) 

a) 

b) 
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Figure ‎3.34 Internal axial stress distribution within the half beam with s=7.5m, t=1m; chalk, unit B 

and potash (a) unit A2, limestone and dolostone (b) 

 

Figure ‎3.35 Internal axial stress distribution within the half beam with s=10m, t=1m; chalk, unit B 

and potash (a) unit A2, limestone and dolostone (b) 

a) 

b) 

a) 

b) 
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Figure ‎3.36 Internal axial stress distribution within the half beam with s=18.75m, t=1.5m; chalk, 

unit B and potash (a) unit A2, limestone and dolostone (b) 

 

Figure ‎3.37 Internal axial stress distribution within the half beam with s=15m, t=1m; chalk, unit B 

and potash (a) unit A2, limestone and dolostone (b) 

a) 

b) 

a) 

b) 
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Figure ‎3.38 Internal axial stress distribution within the half beam with s=9m, t=0.5m; chalk, unit B 

and potash (a) unit A2, limestone and dolostone (b) 

 

Figure ‎3.39 Internal axial stress distribution within the half beam with s=13.5m, t=0.75m; chalk, 

unit B and potash (a) unit A2, limestone and dolostone (b) 

a) 

b) 

a) 

b) 
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Figure ‎3.40 Internal axial stress distribution within the half beam with s=18m, t=1m; chalk, unit B 

and potash (a) unit A2, limestone and dolostone (b) 

Table ‎3.7 and Table ‎3.8 show the percent difference between stress values at 

centroids of abutment and mid-span and percent difference between maximum and 

minimum stress values within half-beam, respectively. There is no discernible correlation 

among axial stress values for different types of material with a constant size. A beam with 

bigger size (higher span and thickness) generally gives higher difference between stress 

values at both sides, regardless of rock type. It means at constant thickness, beam with 

higher span leads to greater difference; also at constant span, beam with higher thickness 

gives greater difference. Same behavior can be found in Table ‎3.8. This behavior is 

generally valid but it cannot be applied for all the models as there are some exceptions. 

a) 

b) 
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Table ‎3.7 Percent difference between stress values at centroids of abutment and mid-span 

Beam model Chalk Unit B Potash Unit A2 Limestone Dolostone 

r=6 46.91 42.36 35.29 77.45 81.90 83.41 

r=7.5 66.67 70.27 72.73 70.27 82.01 76.06 

r=7.5 (II) 54.55 53.21 61.93 61.09 56.86 63.16 

r=7.5 (III) 31.58 32.48 33.01 46.40 42.86 45.38 

r=10 31.82 47.93 48.80 60.32 62.96 53.45 

r=12.5 54.81 61.84 56.21 72.46 70.18 68.32 

r=15 27.78 45.16 51.60 54.43 49.06 49.03 

r=18 28.96 33.67 30.82 48.10 53.00 51.24 

r=18 (II) 35.29 32.80 29.63 49.25 49.91 50.43 

r=18 (III) 28.42 34.25 21.69 34.48 40.12 39.24 

 

Table ‎3.8 Percent difference between max and min stress values within half-beam 

Beam model Chalk Unit B Potash Unit A2 Limestone Dolostone 

r=6 122.58 128.00 121.17 137.82 134.46 139.78 

r=7.5 134.88 142.47 140.08 136.70 125.35 125.34 

r=7.5 (II) 122.30 119.08 124.53 120.00 113.77 120.86 

r=7.5 (III) 93.33 98.90 100.00 90.57 83.33 89.11 

r=10 106.77 120.86 119.02 118.45 107.03 111.11 

r=12.5 123.80 130.99 127.35 129.25 120.94 125.70 

r=15 106.54 120.00 123.49 120.00 103.84 108.43 

r=18 96.94 104.32 103.17 107.21 104.23 102.99 

r=18 (II) 103.80 102.93 104.67 106.17 100.68 106.38 

r=18 (III) 103.20 114.07 111.86 106.31 99.82 99.66 

 

In voussoir beam method, distance of the cross-section with minimum stress value 

from mid-span is assumed to be  
   ⁄   this value is shown in the last row of Table ‎3.9 for 

each beam size. As Table ‎3.9 shows, this parameter does not depend on type of the rock 

mass. At a constant size, the maximum difference among values of different rock types is 

2.2%. Therefore one value can be considered for all rock masses as a constant size. 

Table ‎3.10 summarizes average distance of the minimum stress point from mid-span for 

each beam size based on UDEC and voussoir beam method. The results of voussoir beam 
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are not consistent with simulations as the average error of results is 15.5%. This value must 

be modified in the equations. The last column of Table ‎3.10 shows the ratio of the UDEC to 

voussoir beam results. The average ratio is        which is equal to      . The calculated 

values from voussoir beam must be multiplied by       to get accurate results. Thus, the 

distance would be changed to 
   0   

   
. 

Table ‎3.9 Distance of the minimum stress point from mid-span for all rock types and beam sizes 

Beam model r=6 r=7.5 
r=7.5 

II 

r=7.5 

III 
r=10 r=12.5 r=15 r=18 

r=18 

II 

r=18 

III 

U
D

E
C

 

Chalk 3.70 4.50 3.52 2.36 3.06 5.66 4.68 2.74 4.22 5.72 

Unit B 3.68 4.40 3.47 2.35 3.05 5.70 4.67 2.71 4.21 5.71 

Potash 3.66 4.50 3.45 2.30 3.04 5.68 4.64 2.72 4.24 5.73 

Unit 

A2 
3.64 4.48 3.46 2.27 3.03 5.66 4.65 2.69 4.17 5.70 

Lime-

stone 
3.62 4.44 3.50 2.28 3.00 5.63 4.60 2.71 4.14 5.68 

Dolo-

stone 
3.61 4.45 3.48 2.26 3.02 5.62 4.65 2.70 4.15 5.67 

V-beam 4.24 5.3 3.98 2.65 3.53 6.63 5.3 3.18 4.77 6.36 

 

Table ‎3.10 Average distance of the minimum stress point from mid-span 

Beam model 
Distance from mid-span 

 (UDEC) 

Distance from mid-span  

(voussoir beam) 
Ratio 

r=6 3.652 4.24 0.86 

r=7.5 4.462 5.3 0.84 

r=7.5 II 3.476 3.98 0.87 

r=7.5 III 2.303 2.65 0.87 

r=10 3.033 3.53 0.86 

r=12.5 5.656 6.63 0.85 

r=15 4.648 5.3 0.88 

r=18 2.712 3.18 0.85 

r=18 II 4.188 4.77 0.88 

r=18 III 5.702 6.36 0.90 

Average - - 0.866 
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Figure ‎3.31 to Figure ‎3.40 showed that the compressive stresses at centroid of the 

abutment are higher than stress values at centroid of mid-span for all cases; however, the 

obtained values in these figures are not maximum stresses within the beam. In order to 

determine maximum axial stresses, values of compressive stress at lowest part of the 

abutment and highest part of the mid-span must be obtained. 

Figure ‎3.41 to Figure ‎3.43 illustrate the maximum axial compressive stresses within 

beams with different rock types and span values. The thickness of the beams in these figures 

is to a unit value, as other thicknesses show similar results. They are depicted through three 

separate plots to avoid making complicated figures. Data points show the compressive 

stresses at mid-span and abutments that are obtained from UDEC simulations; while solid 

lines represent results of voussoir beam method.  

As these figures show, a larger span leads to higher stress concentration. Numerical 

models give different stress values at mid-span and abutments, while voussoir method 

assumes they are equal. One could compare the average of the maximum axial stress at 

abutment and mid-span with voussoir prediction; however, it still shows a noticeable 

difference. This reflects the effect of an invalid assumption of equal and linear stress 

distributions within the beam in the voussoir analogue. It can be seen that data points that 

represent stresses at mid-span are close to solid lines, but stresses at abutments are 

significantly greater than stresses obtained from voussoir method as well as stresses at mid-

span. 

The voussoir method does not accurately predict the maximum stresses within the 

beam. Maximum and minimum error of axial stresses at mid-span are        and     , 
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respectively; while the average error is       . Also, maximum and minimum error of 

stresses at abutments are calculated as        and      , respectively, and the average 

error is      . Clearly errors of stresses obtained from voussoir beam are high with respect 

to both mid-span and abutment, but since maximum stress concentration occurs at the 

abutments, equations of voussoir beam method must be modified in way to accurately 

predict compressive stresses at the abutments. In other words, error of       must be 

reduced to a reasonable value so that the results of factors of safety would be reliable.  

The assumption of a linear and equal stresses at both ends needs to be modified. 

Clearly, the maximum axial stress is concentrated at the abutments. It implies that failure 

due to crushing most likely happens at both ends for high span/thickness values rather than 

the middle of the beam.  

 

Figure ‎3.41 Maximum axial compressive stress for chalk and unit B rock masses 
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Figure ‎3.42 Maximum axial compressive stress for potash and unit A2 rock masses 

 

Figure ‎3.43 Maximum axial compressive stress for limestone and dolostone rock masses 

In order to compare the stress distributions at abutment and mid-span in more details. 

Two of the rock types (unit B and unit A2) are selected and examined with different span 

values. Numerical simulations show that the normal compressive thickness ( ) at mid-span 
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is greater than that at the abutments. Figure ‎3.44 and Figure ‎3.45 display axial compressive 

stress distribution within the thickness of the beams at the abutments and mid-span. 

Different spans have been examined for each model with unit B and unit A2 rock mass 

properties. The minimum span in the following figures is     because of the scale. The axial 

stress for a     span is very low and it cannot be seen on the graph. It can be observed that 

the compressive thickness at mid-span (  ) is approximately 
 

 
 of that at the abutments (  ). 

High stress concentration at relatively smaller compressive thickness leads to a non-linear 

distribution at the abutments, while it can be assumed that the stress distributions at mid-

span are linear and form a triangle. 

 

 

Figure ‎3.44 Stress distribution at abutment (a) and mid-span (b) for unit B rock mass 

a) 

b) 
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Figure ‎3.45 Stress distribution at abutment (a) and mid-span (b) for unit A2 rock mass 

Numerical models in UDEC suggest that voussoir assumptions regarding the equal 

value for axial stress and normal compressive thickness at the abutments and mid-span are 

not accurate. This is the reason for high errors of maximum stress values. Therefore, more 

consistent assumptions are required to predict stress distributions within the beam. The next 

section of this chapter would describe the modifications to cope with this issue.  

3.4 Modified voussoir beam theory 

In voussoir beam method, axial stresses are assumed to be linear and form a 

triangular distribution at the abutment and mid-span. Figure ‎3.44 and Figure ‎3.45 

a) 

b) 
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demonstrate that the assumption of the linear stress distribution might be valid at mid-span, 

but it is not accurate at the abutments. The values of axial stress obtained from numerical 

modeling at the abutment are noticeably higher than voussoir solution (Figure ‎3.41 to 

Figure ‎3.43). Therefore, a better approximation for stress distribution at the abutment is 

required.  

Let us assume the stress distribution at both abutments and mid-span can be replaced with a 

second order polynomial (Figure ‎3.46).  

 

 

 

 

 

Figure ‎3.46 Non-linear stress distribution at both abutment and mid-span 

Therefore, the parabolic stress can be expressed as 

            
 

 (‎3.1) 

when    , then      
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Combining equations (‎3.3) and  (‎3.4) 

   
    
  

 
 

(‎3.5) 

   
  

    
 

 

(‎3.6) 

Hence the equation of stress distribution is  

   
  

    
   

   
  

     
 

(‎3.7) 

The centroid of any function can be calculated by 

   
∫        

 

 

∫     
 

 
  

        

 

 (‎3.8) 

Thus, the centroid of the stress distribution is 

   
∫              

  

0

∫           
  

0
  

 

 

 (‎3.9) 

Replacing constant parameters by equations (‎3.2), (‎3.5) and (‎3.6)  

   
  

 
 

 

 (‎3.10) 

Putting this value into equation (‎3.7), the axial compressive stress at the centroid     would 

be calculated as 

    
 

  
   

 

 (‎3.11) 

The average of a function over a domain can be calculated using  
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∫     

 

 
  

   
 

 

 (‎3.12) 

Thus the average axial stress at the abutment and mid-span can be obtained by 

   
∫     

  

0
  

  
 

 

 (‎3.13) 

where      can be replaced by equation (‎3.7) 

   
  
 

 
 

 (‎3.14) 

These calculations are based on nonlinear stress distribution at both mid-span and 

abutments; however, my numerical simulations showed that the linear distribution at mid-

span is consistent with voussoir results. Thus, a triangular distribution at mid-span and a 

second order polynomial distribution at the abutment have been assumed (Figure ‎3.47). 

 

 

 

 

 

 

Figure ‎3.47 Linear and non-linear stress distribution in voussoir beam 

Moreover, Figure ‎3.44 and Figure ‎3.45 show that the normal compressive thickness 

at midspan (  ) is higher than that at the abutment (  ) and the ratio is approximately    . 
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So the initial arm of arch would be 

  0    
   

 
 

   

 
 

 

 (‎3.16) 

Replacing    with equation  (‎3.15) 

  0      
   

 
  

 

 (‎3.17) 

Writing force balance in horizontal direction for half of beam gives 

 ∑    
 

 (‎3.18) 

 
      

 
          

     

 
    

 

 (‎3.19) 

where       
 and      

 are maximum axial stress at abutment and mid-span, respectively, 

and      is axial stress at 
 

   
 away from mid-span where the entire thickness of the beam is 

under compression. 

Using equation  (‎3.19) 

       
 

 

 
     

 
 

(‎3.20) 

      
      

 
   

 

 (‎3.21) 

The moment generated by deflection     must compensate the moment due to 

gravitational load   . Writing the moment balance at the abutment gives  

 ∑    

 

 (‎3.22) 
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 (‎3.23) 

Thus  

       
 

    

    
 

 

 (‎3.24) 

Also, the average axial stress within the arch can be calculated using a weighted 

average method based on the distribution of stress within the beam. Hu (2016) measured the 

straight distance between points  ,   and   using the Pythagorean Theorem; however, the 

length of the arc created between these points can be considered for more accuracy. Thus, 

the average stress would be  

     (
AB


AC


)    (
BC


AC


)    

 

 

 (‎3.25) 

where AB


, AC


and BC


are the length of the reaction arch from point   to  ,   to   and   to 

 , respectively. The axial stresses acting on the arch from point   to   and point   to   are 

punctuated as     and    . These values can be calculated as following  

     
      

     

 
 

 

 (‎3.26) 

     
          

 
 

 

 (‎3.27) 

where       
 and      

 are the axial stresses at the centroid of the abutment and mid-span, 

respectively. Using the same procedure presented in ‎0, values of AB


, BC


and AC


can be 

determined using the following equations. 
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 AB


 
        0    0    

    
 

      0    

   
 

 

 (‎3.28) 

 BC


 
      0   

    
 

  0   

   
 

 

 (‎3.29) 

 AC


 
   

  
 

 

 
 

 

 (‎3.30) 

Replacing equations  (‎3.26) through  (‎3.30) into equation  (‎3.25) gives the value of 

average axial stress. By using these equations, the iterative voussoir solution would be 

updated with new assumptions. The maximum axial stress values at the abutment for various 

spans are depicted in Figure ‎3.48 to Figure ‎3.50. As these figures show, stress values 

obtained from numerical models are consistent with the results of the modified voussoir 

solution. The maximum and minimum errors are       and      , respectively, and the 

average error is     . The assumption of linear and identical stress distribution and equal 

normal compressive thickness at both abutments and mid-span caused an average error of 

      for axial stress at abutment by voussoir method; while new results give an average 

error of     . Therefore, other results of voussoir method must be obtained using the 

modified equations to be trustable.  
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Figure ‎3.48 Modified maximum axial compressive stress for chalk and unit B rock masses 

 

 

Figure ‎3.49 Modified maximum axial compressive stress for potash and unit A2 rock masses 
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Figure ‎3.50 Modified maximum axial compressive stress for limestone and dolostone rock masses 

 

3.4.1 Mechanical response of the roof rock 

In order to investigate mechanical response of the roof rocks, different types of rock   

with various span values and unit thicknesses have been considered. This assessment leads 

to the maximum allowable span for a cavern roof. Using the information presented in 

section ‎1.4.2.2, rock and joint properties of the beam models were determined and 

summarized in Table ‎3.3. 

Figure ‎3.51 and Figure ‎3.52 show the maximum vertical displacement for different 

span values. They are depicted in two separate plots to keep them clear and understandable. 

The solid lines are the results of voussoir analysis, data points are UDEC simulations and 

dashed lines are results of modified voussoir beam. A roof layer with greater span/thickness 

ratio undergoes higher displacement. A weak rock mass (such as chalk) shows highest 
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displacement at a constant size, while a strong rock mass (such as dolostone) shows least 

displacement.   

Stability of the beam is controlled by the maximum mid-span displacement. 

Diederichs and Kaiser (1998) considered a displacement equivalent to approximately 

       would lead to a buckling limit of      in which failure occurs; however, present 

analysis shows a displacement of        corresponds to      of buckling factor. This 

can be clearly seen in Figure ‎3.51 and Figure ‎3.52. For all types of rock masses, roof beams 

deform until magnitude of displacement reaches one third of the beam thickness and then no 

data can be found as beam fails (Table ‎3.12). This is valid for both UDEC and voussoir 

results. If displacement is less than this limit but greater than     of the thickness (     ), 

beam is in yield zone. This would lead to a buckling limit of    . Yield zone starts from 

the point that displacement would rapidly increases until beams would collapse. It must be 

noted that when the voussoir solution does not give any result, it means the beam has failed 

under snap-through failure. Also, roof beam models in UDEC immediately collapse beyond 

the failure limit (                   ) predicted by analytical solution. It means that no 

data point could be added over the failure line in Figure ‎3.51 and Figure ‎3.52. 
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Figure ‎3.51 Maximum vertical displacement for chalk, potash and limestone 

 

Figure ‎3.52 Maximum vertical displacement for unit B and unit A2 and dolostone 

Yield zone 

Failure 

Yield zone 

Failure 
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As Figure ‎3.52 depicts, maximum allowable span for unit B cap rock is         and 

for unit A2 cap rock is        . These values limit the maximum size of the roof layer for 

caverns in salt beds of western Ontario. As Figure ‎3.51 and Figure ‎3.52 show, both initial 

(solid lines) and modified (dashed lines) voussoir beam methods give fairly accurate results.  

In fact, voussoir beam predicts the displacement of the beam accurately for high spans, but it 

slightly overestimates the deformation for small spans. Table ‎3.11 summarizes the minimum, 

maximum and average error of the results obtained from initial and modified voussoir beam 

method with respect to UDEC simulations. Maximum error usually happens for relatively 

low span/thickness ratios for both versions of voussoir beam. In contrast, modified voussoir 

beam gives the minimum error for high span/thickness ratios. In fact, values of minimum 

error for modified voussoir beam in Table ‎3.11 represent models with highest span values for 

all types of material. Displacement is very limited (in order of millimeters) for smaller 

spans. Therefore, a high value of error does not concern engineers in the design process of 

the cavern. Since high roof span is usually desired, error of predicted results must be 

reasonable for high span models, which Figure ‎3.51 and Figure ‎3.52 and Table ‎3.11 

demonstrate accuracy of the method. 

Table ‎3.11 Errors of initial and modified voussoir beam for different types of rock mass 

Rock mass 
Error of voussoir beam (%) Error of modified voussoir beam (%) 

Minimum Maximum Average Minimum Maximum Average 

Chalk 2.8 14.3 10.8 4.4 26.3 15.3 

Unit B 5.6 19.4 11.1 2.5 24.2 15.6 

Potash 2.9 16.3 6.5 3.8 11 9.7 

Unit A2 4 32.8 14.7 2.8 32.1 17.3 

Limestone 3.8 38.1 16.2 1.5 45.1 19.4 

Dolostone 1.3 14.7 8.1 2.4 29.4 12.4 



104 

 

The factor of safety for crushing is depicted in Figure ‎3.53 and Figure ‎3.54. Crushing 

at the abutments is critical for beams with high span/thickness values as compressive stress 

concentration increases. As these figures show, results of modified voussoir beam are 

consistent with simulations. The minimum, maximum and average error of the initial 

voussoir beam are      ,        and      , respectively; whereas modified results lead 

to minimum, maximum and average error of      ,      and   , respectively.   

Failure occurs when axial stress exceeds the strength of the material. Hence, a value 

less than one for the factor of safety presents crushing failure; however, damage starts even 

when stress is less than uniaxial compressive strength (   ) depending on the rock mass 

properties. Crack initiation threshold for unit B and unit A2 layers are     and     

of    , where values of     are       and       , respectively (Table ‎1.5). Thus, the 

yield limit for factor of safety against crushing failure is      for unit B layer and      for 

unit A2 layer. Since the rock mass of unit A2 is very much stronger than unit B, there is no 

risk of crushing failure for this layer while unit B is strongly under compression when span 

is greater than     . 

For low span/thickness values sliding failure is most likely to happen (Figure ‎3.55 to 

Figure ‎3.57). Shear failure at the abutments occurs when the shear force is high enough to 

mobilize the frictional resistance. Therefore, a value less than one for factor of safety leads 

to slip at the abutments. It has been noted that shear sliding happens for models with 

      in UDEC for materials with low friction angle (unit B, unit A2 and limestone). 
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Figure ‎3.53 Factor of safety against compression failure for chalk, potash and limestone 

 

Figure ‎3.54 Factor of safety against compression failure for unit B, unit A2 and dolostone 

 

Failure 

Failure 
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Figure ‎3.55 Factor of safety against sliding failure for chalk and unit B 

The analyzed beams give a value of     for sliding factor based on results of 

modified method and      based on initial voussoir method. Shear failure causes serious 

stability issues and casing impairment, so the limit for this factor of safety must be chosen in 

a way to ensure stability of the cavern roof. Since results of modified method are consistent 

with UDEC simulations, a limit of     is considered for sliding factor stability limit. The 

minimum, maximum and average error of the results are      ,       and       for 

voussoir beam method and     ,      and      for modified version, respectively. 

Results of the modified voussoir beam analysis are summarized in Table ‎3.12. 

Failure 
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Figure ‎3.56 Factor of safety against sliding failure for potash and unit A2 

 

Figure ‎3.57 Factor of safety against sliding failure for limestone and dolostone 

Failure 

Failure 
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Table ‎3.12 Summary of the modified voussoir beam analysis (the first, second and third number for 

each beam show the displacement, factor of safety for crushing and sliding failure, respectively)   

Span Chalk Unit B Potash 
Unit 

A2 
Limestone Dolostone Note 

5 

0.0014 0.0012 0.0007 0.0006 0.0003 0.0001 Sliding failure at the 

abutments for unit B, unit A2 

and limestone rock masses 

12.05 11.30 41.82 81.04 147.58 181.22 

2.15 <1.9 2.18 <1.9 <1.9 2.64 

7.5 

0.0068 0.0059 0.0036 0.0031 0.0013 0.0008 

- 5.30 4.97 18.48 35.84 65.45 80.42 

3.26 2.63 3.24 2.61 2.03 3.96 

10 

0.0212 0.0189 0.0111 0.0097 0.0042 0.0024 

- 2.89 2.72 10.24 19.89 36.61 45.09 

4.28 3.49 4.32 3.48 2.73 5.22 

12 

0.0442 0.0392 0.0234 0.0207 0.0085 0.005 

- 1.91 1.81 6.93 13.50 25.2 31.15 

5.14 4.17 5.15 4.20 3.25 6.3 

15 

0.1148 0.1002 0.0576 0.0498 0.021 0.012 

- 1.03 1.01 4.11 8.10 15.71 19.65 

6.46 5.22 6.40 5.17 4.04 7.87 

18 

>0.33 0.2914 0.1265 0.1106 0.0439 0.0253 Crushing  and snap-through 

failure for chalk; crushing 

failure for unit B rock mass 

<1 <1 2.40 4.88 10.38 13.27 

- 6.72 7.70 6.30 4.85 9.41 

20 - 

>0.33 0.2307 0.1863 0.0684 0.0385 
Snap-through failure for unit 

B rock mass 
<1 1.45 3.21 7.95 10.45 

- 8.94 7.12 5.41 10.4 

22 - - 

>0.33 >0.33 0.1013 0.057 Crushing  and snap-through 

failure for potash; snap-

through failure for unit A2 

<1 - 6.05 8.29 

- - 5.9 11.54 

25 - - - - 

0.196 0.0973 

- 3.64 5.82 

6.98 12.99 

27 - - - - 

>0.33 0.1393 
Snap-through failure for 

limestone 
- 4.48 

- 14.16 

30 - - - - - 

0.2761 

- 2.41 

16.8 

32 - - - - - 

>0.33 
Snap-through failure for 

dolostone 
- 

- 
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3.5 Application of voussoir beam to creep 

Classical voussoir beam theory assumes an elastic behavior for beam in which the 

stress/strain relationship follows Hook's law. There are two ways to investigate inelastic 

behavior of the beam using the voussoir method. Generally, one could discretize the 

stress/strain curve into small intervals when it passes the yield point. Each interval in this 

condition is assumed to be linear. Thus, a specific Young's modulus can be assumed for each 

interval. In fact, the inelastic behavior affects Young's modulus and it would be updated 

during the solution for all steps using the same Hook's law.  

The second way is to use a non-elastic equation to take the effect of inelastic 

stress/strain relationship into account. For this purpose a typical creep model for rock salt 

has been considered. Since the only goal of this section is to examine the capability of 

voussoir method to incorporate the effect of creep, a simple model with typical values is 

sufficient. In an engineering time and stress, a steady-state creep law properly models the 

creep behavior of rock salt.    

  ̇         
  

  
   

     

 0
   

 

(‎3.31) 

where   is the stress component,   is the apparent activation energy of the rate-limiting 

flow mechanism,   is the universal gas constant and   is the absolute temperature. Constant 

parameters of   ,  0 and   depend on salt properties. Value of   and  0 represent the effect 

of stress and a constant scaling parameter, respectively, while   is the effect of fabric 

damage and depends on grain size, defect density, porosity (brine content), crystal 

anisotropy, etc. (Dusseault and Fordham, 1994) 
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Temperature is assumed to be constant and the effect of stress is only taken into 

account. Therefore, a simplified version of the steady-state creep law has been used here 

  ̇     
  

 
 

 (‎3.32) 

where   is deviatoric stress. The values of   and   are   and                      , 

respectively.  

The above equation determines the strain caused by creep of salt with respect to 

time. Summation of the displacement due to elastic and creep response is considered as the 

total displacement of the beam. The response of a      roof beam has been examined 

within a 10 year period. Creep response of three beams with properties of unit B, potash and 

unit A2 are investigated.   

Since there is no creep at time equal to zero, results of the new solution must be 

exactly same as the elastic voussoir method. Displacement obtained from  (‎2.20 can be 

added to displacement due to  (‎3.32 to take the effect of creep into account. As time 

increases, higher vertical displacement and axial stress are expected.  

The results demonstrate that the vertical displacement and axial stresses increase 

with time (Table ‎3.13 and Table ‎3.14). This is valid for both modified voussoir beam and 

numerical simulations. It must be noted that displacement difference after    years is in 

order of millimeters. After 10 years, the maximum difference in deformation and axial stress 

are          and          for unit B,         and          for potash and          

and          for unit A2, respectively. Hence, creep process does not affect stability of 

roof beams in a noticeable way and can be ignored. It also must be noted that error of the 
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obtained results in each time are almost equal for each type of material, as the slope of 

change in displacement and stress are constant (steady-state creep). 

Table ‎3.13 Displacement of roof beams under creep  

Time 

Unit B Potash Unit A2 

Modified 

voussoir beam 
UDEC 

Modified 

voussoir beam 
UDEC 

Modified 

voussoir beam 
UDEC 

0.0 0.01898 0.01354 0.011106 0.01 0.009715 0.005816 

1.3 0.01909 0.01364 0.011213 0.010107 0.009823 0.005924 

2.5 0.01919 0.01375 0.01132 0.010214 0.009931 0.006032 

3.8 0.01930 0.01385 0.011427 0.010320 0.010039 0.00614 

5.1 0.01940 0.01396 0.011533 0.010427 0.010147 0.006248 

6.3 0.01951 0.01406 0.01164 0.010534 0.010255 0.006356 

7.6 0.01962 0.01417 0.011747 0.010641 0.010363 0.006464 

8.9 0.01972 0.01427 0.011854 0.010748 0.010471 0.006572 

10.1 0.01983 0.01438 0.011961 0.010854 0.010579 0.00668 

 

Table ‎3.14 Maximum axial stress within roof beams under creep 

Time 

Unit B Potash Unit A2 

Modified 

voussoir beam 
UDEC 

Modified 

voussoir beam 
UDEC 

Modified 

voussoir beam 
UDEC 

0.0 2.93702 3.08 2.539748 2.4632 3.016752 3.26127 

1.3 2.93739 3.080364 2.540121 2.463573 3.017133 3.261652 

2.5 2.93775 3.080728 2.540494 2.463946 3.017515 3.262035 

3.8 2.93811 3.081092 2.540867 2.46432 3.017897 3.262417 

5.1 2.93848 3.081456 2.541241 2.464693 3.018279 3.2628 

6.3 2.93884 3.081821 2.541614 2.465066 3.018662 3.263182 

7.6 2.93921 3.082185 2.541987 2.465439 3.019044 3.263564 

8.9 2.93957 3.082549 2.54236 2.465813 3.019427 3.263947 

10.1 2.93994 3.082913 2.542734 2.466186 3.019811 3.264329 
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In addition, there seems to be a conflict between creep mechanism and factors of 

safety. By definition, creep is the tendency of the material to deform under a constant load. 

If stresses are constant, then creep deformation would not affect factors of safety. For 

example, the factor of safety against crushing depends on uniaxial compressive 

strength,    , and the maximum axial stress,   , which both remain constant. In other 

words, factors of crushing and sliding do not depend on vertical displacement and they must 

be constant with time; however, since displacement increases at each time step, axial stress 

would be updated in each iteration and change the factors of safety. This does not conform 

to the concept of creep behavior. Although factors of safety cannot be defined in this 

condition, the results of vertical displacement can still be used. 

3.6 Application of modified voussoir beam to caverns 

The immediate roof layer on top of an underground excavation tends to separate 

from the upper layers and deform under its own weight; however, the effect of the formation 

pressure (  ) exerted by a column of water must be taken into account. The cavern is not 

completely empty. Hence, there is always a back pressure (  ) applied on the roof layer 

depending on the cavern internal pressure. A typical voussoir roof layer on top of the cavern 

is depicted in Figure ‎3.58. It shows a beam deformed under gravitational load and surcharge 

and internal pressures. The scale of the roof and cavern are not necessarily consistent. It is 

only used to show the physics of the problem.  
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Figure ‎3.58 Surcharge and back pressure on a typical voussoir beam 

The effect of surcharge load depends on the nature of the air and formation fluid 

interaction (Figure ‎3.58). If the pressure applied on top of the cavern does not drop as 

quickly as cavern internal pressure, it can negatively affect the cavern's stability. In other 

words, the difference between formation pressure and back pressure (        ) strongly 

affects the displacement of the roof layer. Figure ‎3.59 presents a typical pressure drop over 

an ascribed time period due to air withdrawal. When rate of depletion is high enough and 

pressure difference exceeds the limit, the roof beam would go under compression or tension 

depending if    is positive or negative. Load bearing capacity in this condition is controlled 

by rock mass properties.  

The effect of pressure can be added to the solution by defining an effective unit weight.    

        
     

 
 

 

 (‎3.33) 
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Figure ‎3.59 Pressure difference during air withdrawal 

To understand the response of the beam to each type of pressure, they have been 

examined separately. A back pressure exerted upwards tends to generate a negative axial 

stress within the beam, unless it is less than the value of gravitational load multiplied by 

thickness. Behavior of the beam is similar to a lighter beam with the same properties. 

 
  

 
   

 

 (‎3.34) 

In this condition, the presence of support pressure would decrease the maximum 

axial stress (  ), decrease the displacement ( ) and factor of safety for buckling (   ). It 

increases the factor of safety for compression (   ) and decreases the factor of safety for 

sliding (   ), while the normal compressive thickness ( ) is constant and equal to     . It 

clearly reduces the risk of failure due to compression or buckling and allows us to have a 

higher span/thickness ratio. Although it decreases the factor of safety for sliding (   ), its 

value is always greater than one. Thus it would noticeably boost the stability of the roof 

layer. 

      𝑟 

𝑃𝑓  𝑃𝑖  

Time 

Pressure 

𝑃𝑓 𝑡  

𝑃𝑖 𝑡  
𝑃𝑓  𝑃𝑖  
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When the upward load is greater than the value of gravitational load multiplied by 

thickness, the compression zone at the abutments and mid-span decreases (to       ) such 

that the entire beam becomes a large tensile zone.   

 
  

 
   

 

 (‎3.35) 

The maximum axial stress is no longer compressive. A negative value for maximum 

axial stress (  ) and factor of safety for compression (   ) would be obtained, while there 

would be no displacement (   ). Higher internal pressure increases the tensile stress. The 

span of the beam does not affect its response. Only a higher thickness mitigates the impact 

of back pressure. The beam is safe against snap-through and sliding. Crushing failure is not 

defined in this condition as tensile stresses are dominant. The tensile strength of the rock 

mass is negligible due to different joint sets cutting through the rock laminations. Therefore, 

tensile joints and cracks are expected to be extended.  

When surcharge pressure (  ) is applied on top of the roof layer, it behaves similar to 

a same beam with higher unit weight. As the overload increases, higher axial stress (  ), 

lower compressive zone ( ) and more displacement ( ) are expected. Also, it would increase 

the factor of safety for buckling (   ) and sliding (   ) and decrease the factor of safety for 

compression (   ). 

Load bearing capacity of the voussoir beam, in this condition, is highly dependent on 

the span to thickness ratio (  ⁄ ) and Young’s modulus ( ). When    is very high, the 

average stress within the beam increases, which leads to a higher    in equation  (‎2.20). 

Consequently, value of      in equation 5 of Figure ‎2.10 becomes negative. Thus, no stable 
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value for   can be found in the iterative solution, which means failure due to snap-through 

has occurred. A stronger beam with higher Young’s modulus ( ) reduces the risk of failure 

by giving a lower   .  

If the value of overload would be fixed and span/thickness ratio increase, a similar 

response as mentioned above is expected. A beam with a higher span can withstand a higher 

overload. In most cases, failure due to compression is most likely to occur unless 

span/thickness ratio is relatively low, which in that case sliding failure can be an issue.   

3.6.1 Maximum and minimum internal pressure 

The suitable salt beds for CAES in south-western Ontario are located in Sarnia and 

Goderich. Only two units from the Salina Group of salt beds have enough thickness for 

creating a cavern. They are unit B and unit A2. These two units in Sarnia and Goderich 

provide four potential salt beds for CAES caverns. Depending on the depth of these units in 

each site, the maximum and minimum allowable pressure inside the cavern is different. As a 

rule of thumb, the maximum allowable pressure is     of the in-situ stress on top of the 

cavern. The vertical stress (  ) on the cavern roof is lower than the cavern floor. Hence, the 

upper limit of pressure is selected based on the vertical stress on top of the cavern to avoid 

fracturing. The minimum internal pressure must be greater than     of the in-situ stress 

around the cavern floor. Since pressure difference on cavern floor is greater than the roof, 

the creep of rock salt is stronger on the floor. Thus, the minimum internal pressure depends 

on the stress around the bottom of the cavern. 

Table ‎3.15 is the summary of the allowable internal pressure for caverns. The 

vertical stresses depend on the depth of the salt beds and bulk density of the upper layers. 
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Also, the gradient of the hydrostatic pressure is assumed to be    
   

  
. Therefore, the 

difference between formation and cavern pressures (        ) around the roof layer can 

be calculated.  

Table ‎3.15 Vertical stress and inside pressures of the caverns in Sarnia and Goderich  

Site 
Salt 

unit 

Depth 

(top-

bottom) 

    

Vertical 

stress 

(top-

bottom) 

       

Cavern 

pressure 

(Min.-

Max.) 

       

Hydrostatic 

pressure 

       

Pressure 

difference 

          

Sarnia 

B 
   

     

     

       

   

       
                

A2 
   

     

    

      

   

       
                

Goderich 

B 
   

     

    

       

    

      
                 

A2 
   

     

     

       

    

      
                 

 

This table shows the maximum and minimum pressure difference around the cavern 

roof. The possibility of fluid and air transmission, which depends on the rock properties 

such as relative permeability and capillary pressure, is not taken into consideration. In 

practice, the capacity of the available surface facilities, such as compressors and turbines, 

also limit the cavern pressure. 

In order to investigate the ability of the roof layer to tolerate overload, different 

voussoir beams with spans of        and      have been examined. Only a positive 

pressure difference (     ) is considered, as the risk of failure due to snap-through and 

compression is examined. Figure ‎3.60 illustrates the maximum vertical displacement for unit 
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B and A2 rock masses. A cavern in unit B salt bed can have a roof span of    , 

approximately. Any wider roof cannot tolerate high pressure difference. Since unit A2 cap 

rock is relatively strong, a wider span, approximately    , is stable under high pressure 

difference.  

  

 

Figure ‎3.60 Vertical displacement under pressure for unit B (a) and unit A2 (b); modified voussoir 

beam (solid lines) and UDEC simulations (data points) 

Yield zone 

Failure 

Yield zone 

Failure 

a) 

b) 
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Factors of safety against crushing failure are depicted in Figure ‎3.61. It suggests that 

the applied pressure can readily create zones of high stress concentration and force crushing 

at the abutments and mid-span of the beam. As it can be seen, the maximum allowable span 

for roof beam is noticeably lower than the results of Figure ‎3.53 and Figure ‎3.54. 

 

Figure ‎3.61 Factor of safety against compression under pressure for unit B (a) and unit A2 (b); 

modified voussoir beam (solid lines) and UDEC simulations (data points) 

 

Failure 

a) 

Failure 

b) 
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CHAPTER 4 – Summary and Conclusions 

Using an underground cavern for storage of compressed air requires geomechanical 

analysis to ensure stability and serviceability of the cavern. Gravity driven failures can cause 

serious stability issues such as roof raveling and casing impairment. Thus, among all 

geomechanical design parameters, design of the immediate roof beam is of importance. The 

goal of the research is to model the behavior of the roof layer regarding geometrical and 

mechanical properties and to predict stability/instability of the beam against different failure 

modes.  

Chapter 1 discussed the concept of CAES systems and focused on the geomechanical 

aspect of the technology. Site selection criteria and suitable geological formations in south-

western Ontario were introduced. Unit A2 and unit B salt beds of the Salina Formation in 

Sarnia and Goderich were selected as potential sites for CAES plant in south-western 

Ontario. The Q-index is used to calculate rock mass modulus of the selected beams. Chapter 

2 summarized the analytical methods for modeling of rock mass behavior. Voussoir beam 

theory was presented and the experimental, analytical and numerical analyses published by 

other researchers were highlighted. Concepts and assumptions of the voussoir method were 

discussed and the main conclusions of previous investigations were taken into account. 

Also, a detailed statics and formulation of the selected approach was presented in this 

chapter. 

Chapter 3 introduced the characteristics of the developed model. The developed 

computer program was verified against results of other researchers. A Universal Distinct 

Element Code (UDEC) was generated to investigate the accuracy of the inherent 
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assumptions in this method. The existing voussoir beam method is modified based on the 

numerical simulations. Mechanical response of the roof rock was assessed and the values of 

factors of safety were calculated for different span to thickness ratios and rock mass 

properties. Also, surcharge and cavern inside pressure on the response of the roof beam was 

analyzed. Since the presented method was simplified by assuming linear stress distribution, 

a nonlinear approach was implemented to improve the results. Finally, feasibility of adding 

inelastic deformation of the beam to the voussoir beam solution was examined. 

Despite the accuracy of the analytical results in predicting the deformation, values of 

compressive stress at the abutments are not consistent with numerical models. Voussoir 

method considers a linear and identical stress distribution at both abutments and mid-span. 

In addition, the values of normal thickness of compressive zone at the abutments are set to 

be equal. The oversimplification of the method led to average error of      . Numerical 

analysis illustrated that lateral stresses at abutments form a nonlinear distribution, while a 

linear assumption is accurate at the middle of beam. It was also found that the compressive 

zone at mid-span is     times thicker than that at the abutments. Therefore, stress 

distribution at the abutment has been modeled using a second order polynomial with less 

normal thickness value. These modifications drop the average error of axial stress to 

below   .  

The voussoir beam method has been widely used for design of underground 

openings; however, some guidelines must be noted when voussoir results are used for 

decision making. Numerical models showed that the deformation predicted by the voussoir 

method is fairly accurate and the error decreases as span/thickness values increase. 

Investigation of the mechanical response of the unit thickness roof beam under gravitational 
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load demonstrated that maximum allowable span for unit B and unit A2 cap rock layers is 

        and        , respectively. It must be noted that the values that have been selected 

for some of the input parameters with no field data are chosen in a way to ensure reliability 

of the stable zone. Moreover, inherent assumptions in the solution lead to conservative 

results. Therefore, a roof beam with span of less than         for unit B and          for 

unit A2 cap rock layers is certainly stable against snap-through failure; however, instability 

of beams with spans of greater than the upper limits is not certain. 

The lower limit for span/thickness ratio is determined by factor of safety against 

sliding failure because less axial thrust would be applied at the abutments of low span 

beams, which leads to slip at the abutments. The limit for factor of safety is theoretically set 

to one; however, numerical models in this study show that the voussoir method 

underestimates the lower limit for this factor of safety. Therefore, the value of     is 

considered as failure limit of factor of safety against sliding. This leads to a minimum 

allowable span of     for both unit B and A2 rock masses.  

Failure due to compression at zones of high stress concentration is not an issue for 

roof beams in unit A2 rock mass. Due to high strength of the material, this criterion does not 

affect the allowable range of span/thickness ratio determined by other failure mechanisms. 

Unit B rock mass is not as strong as unit A2. Thus crushing failure occurs at spans greater 

than      for roof beams in this medium. 

When formation pressure is greater than the cavern inside pressure, the behavior of 

the roof beam is strongly dependent on the rock mass modulus    and span/thickness ratio of 

roof beam. This condition occurs when air has been withdrawn and cavern is in the mode of 
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minimum internal pressure. Depending on the depth of cavern in each site, the maximum 

pressure difference can take a value from          for unit B in Goderich to         for 

unit A2 in Sarnia. Considering the extreme condition, the stable span cannot exceed     in 

unit B and     in unit A2 cap rock layers. It can be concluded that if air and formation water 

transmission is not possible through cap rock, then snap-through and crushing failures most 

likely will occur while no sliding is expected. 

On the other hand, when air has been injected into the cavern, it acts as a support 

pressure which boosts stability by decreasing the deformation; however, there is a limit for 

this effect. When pressure difference is greater than the product of the unit weight of 

material and beam thickness, then the compressive zone within the beam shrinks and 

gradually the entire beam goes under tensile stresses. This is likely to occur when the cavern 

is in the mode of maximum internal pressure. In this condition, the obtained axial stress is 

negative. Since rock mass has zero tensile strength, any applied stress leads to initiation of 

new joints and cracks or extension of previous joint sets. 

Since the immediate roof beam of salt caverns may contain evaporites, creep 

deformation of the roof rock has been added to elastic deformation analysis. Investigation of 

the creep response of the roof beam under gravitational load displayed vertical displacement 

of less than        over ten years. This is a small value in comparison with instantaneous 

deformation of the beam (which is about       for unit B and       for unit A2). Thus, it 

is concluded that the creep behavior does not affect stability of the roof beam. 

The major outcomes and contributions of the study are summarized in the following 
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 The unit B and unit A2 salt beds in Salina Formation are suitable for compressed air 

storage as long as the guidelines regarding stability analysis are considered in the 

design process. The maximum and minimum allowable span of cavern roof layer is 

limited by snap-though and sliding failures, respectively.  

 A roof with low rock material strength and relatively high span/thickness ratio is 

likely to fail by crushing and spalling at abutments and mid-span.  

  The lower limit of roof span obtained from voussoir method is not accurate. Based 

on the findings from numerical analyses, a threshold of     for factor of safety 

against sliding ensures the stability/instability of all roof beams. 

 The cavern inside pressure improves the roof stability as long as pressure difference 

around the roof is lower than the multiplication of the material unit weight and beam 

thickness; otherwise, it would impose tensile stresses and leads to fracturing of the 

rock mass. 

 Load bearing capacity of the roof beam depends on the generation of a compressive 

arch within the beam. It has been found that the thickness of the arch is not constant, 

as the compressive zone at mid-span is thicker than the abutment while the 

maximum axial stress at the abutment is higher than the mid-span. 

 Axial stress distributions at the abutments follow a nonlinear pattern. Since linear 

stress assumptions oversimplify the model, a nonlinear solution is developed to 

model the stress distribution, which significantly enhanced the accuracy of results.  

 The cavern cannot be completely empty, as the presence of formation pressure on 

top of the roof layer causes significant pressure difference which leads to roof 
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collapse. This response of the beam strongly depends on the rock mass modulus; 

however, no discernible correlation has been found. 

 Creep deformation of the roof rock is very small. Thus it can be ignored in design 

process of the cavern. 
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APPENDIX I – Length of Compressive Arch Line 

Figure ‎I.1 shows the arch line within voussoir beam in a Cartesian coordinate. The 

origin of the coordinate is located at intersection of the reaction line and mid-span joint. 

 

 

Figure ‎I.1 Parabolic arch line in Cartesian coordinate 

The arch line is assumed to form a parabolic curve 
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Combining equations  (‎I.3) and  (‎I.4) 
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Replacing equations  (‎I.2),  (‎I.5) and  (‎I.6) into equation  (‎I.1) gives 
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The length of function      from   to   can be determined by  
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Let's assume  
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Using trigonometric identities 
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and replacing equations  (‎I.11) and  (‎I.12) into  (‎I.9) and using equation  (‎I.13) 
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Using equation  (‎I.14) 
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By calculating the integral  
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Using equation  (‎I.15) gives 
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Replacing equations  (‎I.9) and (‎I.10) into equation  (‎I.20) 
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Using Taylor series  
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Replacing equation (‎I.22) into (‎I.21) and using equation (‎I.16) 
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By simplification  
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Using Taylor series 
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Replacing equation (‎I.25) into equation (‎I.24) 
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Then  
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Replacing equation (‎I.6) into equation (‎I.27), gives the final formula for length of the arch 

line within the beam  
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