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Abstract 
When modelling pollutants in the atmosphere, it is nearly impossible to get perfect results as 

the chemical and mechanical processes that govern pollutant concentrations are complex.  

Results are dependent on the quality of the meteorological input as well as the emissions 

inventory used to run the model.  Also, models cannot currently take every process into 

consideration.  Therefore, the model may get results that are close to, or show the general trend 

of the observed values, but are not perfect.  However, due to the lack of observation stations, 

the resolution of the observational data is poor.  Furthermore, the chemistry over large bodies 

of water is different from land chemistry, and in North America, there are no stations located 

over the great lakes or the ocean.  Consequently, the observed values cannot accurately cover 

these regions.  Therefore, we have combined model output and observational data when 

studying ozone concentrations in north eastern North America.  We did this by correcting 

model output at observational sites with local data. We then interpolated those corrections 

across the model grid, using a Kriging procedure, to produce results that have the resolution of 

model results with the local accuracy of the observed values.  Results showed that the 

corrected model output is much improved over either model results or observed values alone.  

This improvement was observed both for sites that were used in the correction process as well 

as sites that were omitted from the correction process. 
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1  Introduction 

In the last century, ozone concentrations in the troposphere have increased by a factor of three 

in the northern hemisphere due to human activities [Nielsen et al., 1997].  Ozone, because of 

its ability to oxidize biological tissue, is a toxic air pollutant whose increasing concentrations 

in the troposphere are of great concern to atmospheric scientists.  In 2002, according to 

Ontario’s Ministry of the Environment, “Ontario’s Ambient Air Quality Criteria (AAQC) for 

ozone were exceeded at 39 of 40 ambient air monitoring stations on at least one occasion.” 

[Ontario Ministry of the Environment, 2002] This means that the ozone concentration 

throughout the summer of 2002 exceeded 80 parts per billion (ppb) at 39 monitoring stations 

— a sobering fact.  At this ozone level, human health is notably affected since increased levels 

of ozone — the major component of photochemical smog — can cause or exacerbate diseases 

in the respiratory tract. 

 

Yet, problems resulting from air pollutant emissions are not restricted to the atmosphere.  The 

pollutants emitted to — and formed in — the troposphere also produce acids that deposit onto 

the earth’s surface and eventually make their way into lakes, rivers and other waterways.  

These contaminants have a variety of effects, including the death of many water dependent 

organisms, as well as the tainting of water and animals ingested by the populace, which may 

cause further human health problems.  Thus, reduction of the current levels of toxic emissions 

and ground level ozone is important not only to the health of fragile ecosystems, but to the 

human population as well.  In order to protect the public from some of the harmful effects of 

ozone in the short term, accurate forecasts of high ozone levels will help those at risk to 

determine when they can safely be active outdoors in the summer. 

 

While air quality forecasting will not directly solve pollution problems, this capability can play 

an important role in issuing timely health alerts in addition to providing important information 

to legislators who make decisions regarding emission controls.  If models could predict 

accurately the effect on air quality of the various types and amounts of emissions and the 

influences of meteorology on these effects, then governments would gain the information they 

need to issue appropriate regulations, such as limiting the number of cars driven on days when 
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high vehicle emissions would result in especially poor air quality.  This would limit the number 

of ozone episodes (periods of exceptionally high ozone concentrations) experienced by the 

regional population.  Yet, in spite of the simplicity of the previous example, forecasting air 

quality and acid deposition is a complex problem. 

 

Concentrations of ozone and other pollutants are predicted using regional chemical transport 

models that use meteorology, emissions, and geophysical data as inputs.  These estimate the 

production, transport and destruction of primary and secondary air pollutants over the region.  

Primary pollutants are those that are emitted directly by anthropogenic or natural sources.  

Secondary pollutants are those that are chemically derived from the primary pollutants.  Due to 

the complexity of the system, and the prohibitive computer resources needed, no model is 

accurate and efficient enough to produce data that are reliable enough for government agencies 

to depend upon them to warn the public of impending episodes or make meteorologically 

dependent emission legislation.  As a result, scientists are currently studying a variety of ways 

to improve model output economically. 

 

One approach to correcting model output is to use Four Dimensional Data Assimilation 

(FDDA).  This method, which is used extensively in weather forecasting, corrects the model 

predictions using observed measurements.  The observed data are assimilated with model 

output in the following four dimensions: the horizontal directions x and y, the vertical direction 

z, and lastly, time.  The assimilation procedure “nudges” the model output to the correct values 

at the sites where measurements are taken, and the corrections are then interpolated over the 

regional domain, or grid.  This system preserves the high resolution of the model output while 

also maintaining the absolute accuracy of the local measurements.  

 

The assimilation can be used to correct final results or can be used to amend the initial –

conditions file to be used in subsequent modeling.  Accordingly, the model then uses the 

corrected output as the initial conditions for the next day’s run.  Moreover, because the initial 
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conditions have a significant impact on the quality of the model output, this correction, at least 

for weather forecasting, considerably improves the quality of the forecast. 

 

The method was defined originally for meteorological modeling.  It is not easily implemented 

for ozone modeling in the troposphere due to the lack of measured data for ozone 

concentrations.  A comprehensive interpolation procedure that accurately estimates 

measurements between monitoring stations is used to overcome this difficulty.  Another 

problem with the application of FDDA to ozone modelling is the absence of detailed 

measurements beyond the surface level (i.e. higher than about 15 m).  Despite our focus on 

surface level ozone, vertical turbulence in the troposphere is significant and corrections made 

only in the surface layer would be lost within a small number of model iterations.  In principle 

the model output for all vertical layers can be corrected by measuring vertical profiles or by 

vertical extrapolation of the surface measurements, but these are beyond the scope of this 

project, and therefore the interpolation of sparse surface data is the focus of this thesis. 

 

Finding a suitable interpolation procedure for surface level ozone concentrations thus became 

the first step of this study.  We chose a generally accepted procedure called Kriging, to 

approximate the ozone concentrations between monitoring stations.  Next, we carried out the 

remaining steps in the assimilation of the observed data to improve the model predictions.  The 

results were then statistically tested to determine their effectiveness in improving the surface 

level ozone profile for the Ontario region.  To show statistically significant results, studying 

several months of data was necessary. Therefore, the spring and summer months — June 

through September — of 1996 were chosen for this research. The year 1996 was chosen simply 

because data were readily available for this year. 

 

Our research entailed the computation of model output and compilation of observed 

measurements for the four months of the study.  The differences between the model and 

observed results were then found and these were Kriged over the model domain.  The Kriged 

difference file was then subtracted from the model results to produce corrected model output. 

This procedure not only maintained the local accuracy of the observed measurements, but also 
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retained the high resolution of the model output.  This method was then statistically tested to 

measure the overall improvement of the profile in comparison to either the model output or 

measurements alone. 

 

In addition to the important implications this project has with respect to efficient air quality 

forecasting, the interpolation procedure also has considerable value for Ontario Ministry of the 

Environment and Energy MOEE efforts to cut monitoring station costs.  The results of this 

project prove that some monitoring stations can be eliminated without significantly degrading 

the quality of the measurement profile.  Caution must be taken, however, when determining 

which stations will be removed, because some stations are important to the accuracy of the 

interpolation procedure.  A sensitivity analysis must be completed in order to determine the 

effect each station has on the procedure.  The method developed in this study has the potential 

to be easily modified to aid in the identification of key monitoring stations, thus identifying 

areas where money can be saved by station closures. 

 

While the results of this study did not directly improve air quality forecasting capabilities, 

future work on the vertical extrapolation of surface level measurements will lead to a powerful 

four dimensional data assimilation procedure that could have the capability of drastically 

improving chemical transport model output, without significantly increasing requirements for 

computer resources.  These advancements would then lead to a vast improvement in 

forecasting capabilities, thus improving the government’s capability to issue health alerts due 

to poor air quality.  Improved air quality forecasting also provides legislators the option of 

installing emission reduction regulations during times when the probability of ozone episodes 

is high, thereby maintaining high air quality. Both of these implications would lead to a 

decrease in health complications due to high ozone concentrations, thus improving Ontarians’ 

overall quality of life. 
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2  Background 

2.1  Previous Work 

Four dimensional data assimilation has rarely been applied to atmospheric chemical transport 

models due to the lack of observed data for pollutants such as ozone.  Surface level 

measurements are sparse, but in addition, measurements in the mid to upper troposphere are 

nonexistent.  As a result, some satellite observations have been used; however, these 

measurements must be taken through the stratosphere.  This affects the detail that can be 

attained for tropospheric ozone because of high concentrations of ozone in the stratosphere.  

The information obtained from satellite measurements is suitable for data assimilation with 

global model results [El Serafy et al. 2002; Lamarque et al., 2002], but it is not dense nor 

detailed enough to be assimilated with regional model outputs.  

 

Numerous sources of error in regional models can occur, with imperfect input files being the 

most common.  Consequently, scientists have started using data assimilation techniques to 

improve these inputs. In the following experiment the meteorology input was corrected using 

measurements.  The models used in this experiment were MM5, a meteorology model 

developed by the National Center for Atmospheric Research (NCAR), and CALMET, a 

meteorology model that runs in conjunction with CALGRID, a photochemical grid model 

developed by the California Air Resources Board.  MM5 data and observed meteorology were 

assimilated to produce accurate meteorological input for the chemical transport model 

CALMET/CALGRID [Barna and Lamb, 2000]. Twin experiments were done to show the 

benefit of data assimilation.  The first run of the CALMET/CALGRID models, used as a 

reference used only MM5 data as meteorology input  They then ran CALMET/CALGRID 

again, this time using as meteorology input the MM5 output assimilated with observed 

measurements.  The model results were significantly improved after the assimilated (or in other 

words nudged) meteorological input was used. Therefore, by reducing the error in even one of 

the model inputs, the model output can be considerably enhanced. 

 

Emission inventories are most widely believed to be the largest source of uncertainty in 

chemical transport model inputs.  Thus, techniques to improve emissions inputs are beneficial 

to regional atmospheric modeling.  To this end, a procedure by which existing emissions 
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inventories could be augmented with ambient measurements was designed by [Dominguez and 

Russell, 2001].  This study concluded that the model values were closer to measurements when 

ambient emissions measurements were used to correct emissions inventories. 

 

Aside from nudging meteorology or emissions input, correcting initial concentrations of 

pollutants can also improve model results.  In fact, modified initial concentrations of a 

secondary pollutant can be used to correct the concentrations of its precursors as well by 

completing some back calculation [Elbern and Schmidt, 2001]. Because initial concentrations 

of pollutants have influence on the model results for up to 40 hours of simulation, having good 

estimates for these values is important.  In other words, if the initial concentrations are more 

accurate or more detailed, the model is more likely to produce good results.  An experiment 

was conducted by Elbern and Schmidt whereby the full effect of initial conditions on model 

results were tested.  It was important to choose a pollutant for which a great deal of data were 

available, in order to verify model results.  The most convenient pollutant for such an 

experiment, therefore, was ozone.  This experiment is very relevant to the work done in this 

thesis, so a detailed explanation is necessary. 

 

An experiment was conducted whereby the first six hours of the simulation were each 

assimilated with corresponding observed ozone measurements.  These were then used to nudge 

the concentrations of ozone precursors.  Subsequently, the model was allowed to simulate 18 

hours past the assimilation period.  To test this technique, the model was first run with detailed 

initial values to produce “observed” or reference values for each model grid point.  The model 

was then run with general initial values to get a “first guess run”.  Consequently, the first guess 

run followed the trend of the reference run for each pollutant of interest, but the values differed 

significantly, as expected [Elbern et al., 1997].  After assimilating ozone alone for the six-hour 

assimilation period, the model produced values that were quite similar to the reference run for 

ozone, NO2 and NO.  In a later experiment, measured ozone was used for the assimilation 

period [Elbern and Schmidt, 2001]  The technique continued to produce superior results for 

ozone as well as improved results for NO2, HO, HO2, HONO, HNO4, PAN and HCHO.   
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Elbern’s experiment was run in Europe with 400 observation sites.  By using data from all 

sites, the six-hour assimilation period at the start of the model simulation was shown to 

improve results for up to 42 hours.  This experiment also showed that removing the data from 

half of the available monitoring stations was not significantly detrimental to the improvements.  

Moreover, that the model results were improved for up to 42 hours of simulation is 

noteworthy, since the current goal for air quality forecasting models is to produce accurate 

forecasts for up to three days.  This technique, then, could significantly improve the 

performance of these models. It was also noted, however, that with fewer stations, 

improvements would deteriorate quickly.  For our project, there were 117 monitoring stations.  

In addition, the regional grid that was used for this project was significantly larger than the grid 

used in Elbern et. al.’s experiment.  Therefore, more work needs to be done to improve this 

technique in order to obtain the results of Elbern et al.  for the circumstances of our study. 

 

While some related work has been done on improving model output, using observed data to 

improve model results is a relatively new area of study.  Accurately nudging chemical 

transport model results is difficult, due to the need for extensive and detailed observational 

data.  With the use of a good interpolation procedure, however, we hope to reap the benefits of 

data assimilation with only sparse observed measurements. 

 
2.2  Modeling Process 

Many different types of atmospheric models have been written to address a variety of scientific 

questions regarding physical and chemical processes in the troposphere.  For example, one 

may study the fate of an air parcel, such as a plume from a smokestack, or instead focus on the 

general air quality over a specific region.  Scale is also a question:  studying global, regional, 

or local trends in pollutant concentration are all possible, but a different type of atmospheric 

model must be applied for each type of study. 

 

A Lagrangian model is used to study the fate of air parcels because of its ability to follow the 

trajectory of the plume as well as its dispersal rate.  Accordingly, weather patterns, wind speed, 

stack height, and emission rates are important inputs to these models.  One can thus learn how 

far elevated concentrations of pollutants are transported before they are dispersed.  
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Furthermore, one can use the trajectory information to find the geographic locations where 

pollutants are transported.  As a result, municipal and provincial governments can then study 

the plumes of major emission sources in areas within and surrounding their borders to 

determine the major sources of local pollution.  These types of observations allow elected 

officials to make the most effective policies to control local pollution. 

 

Concentration distribution represents another concern in air quality. Thus, instead of studying 

the fate of individual air parcels, one can study the concentration distribution of pollutants over 

a selected area.  Eulerian models are used for this purpose.  For these, the modeler first defines 

a grid over a region of interest, and next calculates the concentration for each grid square over 

a defined time period.  Eulerian models must consider both mechanical transport and chemical 

processes. Thus, meteorological, emissions and geophysical data, as well as boundary and 

initial conditions, are important inputs to Eulerian models. 

 

Within the category of Eulerian models, there are again several types, each defined by scale.  

Global models are one such example—these types study global trends in pollutant 

concentration distribution.  Since the study region encompasses the entire planet, the resolution 

of such models is quite poor, with grid squares often as large as ten degrees latitude by ten 

degrees longitude.  The poorer resolution necessitates longer time periods in order to record 

significant concentration changes in each grid cell. Consequently, these models are useful only 

in defining global transport of long-lived pollutants.  

 

In order to refine the resolution, a smaller study region must be chosen.  Regional Eulerian 

models have a grid square size ranging from 10 km x 10 km to 150 km x 150 km.  The 

resolution of regional models is thus significantly better than that of global models. As a result, 

the time steps, (i.e. the time over which the model assumes conditions remain constant), can 

also be shortened, thus allowing for the study of shorter-lived pollutant species.  Regional 

models are therefore most widely used to study pollution episodes.  These are short time 

periods - three to seven days - during which elevated concentrations of pollutants are 

experienced.  The emissions input file of the model can be modified to examine the result of 

deleting one or more emission sources, such as coal fired power plants.  National or provincial 
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governments can also use regional models to monitor the pollution concentration distributions 

over their political domains.   

 

The smaller grid size of regional models, however, introduces the need for horizontal boundary 

conditions.  This problem is often overcome, by extracting approximate boundary values from 

the output of a global model.  Models with nested grids have also been written to address this 

issue.  The smallest grid of a model with nested grids would have the finest resolution, and its 

boundary conditions would be determined from the next larger grid.   

 

Despite their improved resolution over global models, regional models are still limited in 

detail.  They cannot, for example, be used to study the effects of rush hour traffic on the air 

quality at major intersections.  As a result, microscale models have been developed for this 

type of study.  For example, microscale models are used to study the pollution levels in areas 

next to roadways or intersections. 

 

For the purposes of this project, a regional model named ADOM was applied.  The model 

domain was centered over Windsor.  It encompassed much of Canada and the USA. The grid 

squares were 36 km x 36 km, while the grid was 75 grid squares east/west, and 72 grid squares 

north/south.  The grid also included 11 vertical levels where each level height was determined 

by air pressure values.  This system is called the sigma coordinate system.  There are two 

versions of this system, the sigma p system and the sigma z system.  The sigma p system is 

defined directly by pressure and the levels are defined in the following way: 

tops

top

pp
pp
−

−
=

0

σ      (1) 

with topp a specified constant “top of the atmosphere” pressure and 
0sp a reference state 

pressure that is constant in time but varies with terrain height.  Because the heights are 

determined by pressure, the height of each layer varies with pressure.  The sigma z system, on 

the other hand, is based on this system, but the physical heights are predefined.  ADOM uses a 

sigma z coordinate system, which will be discussed in more detail in Chapter 4.     
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A Lambert Conformal Conic projection was used to fit the curved surface of the earth under a 

flat grid.  Having an accurate map corresponding to the grid is important to analyze the model 

results.  

 

The input data necessary to run the model for this project were provided from the Ontario 

Ministry of the Environment.  Modelers at the MOEE modified MM5 output to provide 

meteorology input for ADOM [Chtcherbakov, 2002], while emission input was provided from 

a 1995 emissions inventory [USEPA, 2002a].  Detailed emissions data were, until recently, 

only compiled every five years.  Therefore, given the lack of available emissions data, these 

values were deemed accurate enough for our purposes. 

 

In summary, several types of atmospheric models exist: Lagrangian models study the fate of 

air parcels, such as smokestack plumes, while Eulerian models simulate pollution 

concentrations over a given domain for a series of grid cells. Moreover, several types of 

Eulerian models—global, regional, and microscale, to name a few—exist as well.  For the 

purposes of this project, we used a regional model named ADOM, with input provided by the 

MOEE. 

 
2.3  Ozone in the Troposphere 

Ozone is highly toxic because of its ability to oxidize biological tissue.  It is thus one of the 

most important gases to consider in the study of tropospheric air pollutants [Jacob, 1999].  

Ozone is not directly emitted through anthropogenic sources but is a major component of smog 

– a phenomenon found mostly in urban areas.  In fact, ozone is known as a secondary pollutant 

since it is the product of several photochemical reactions.  Thus, ozone has been a favored 

topic of study among atmospheric scientists for many years.  Accordingly, the chemistry of 

ozone in the troposphere is well known.  This gas was chosen as the pollutant to study for this 

project because of its well-understood chemistry and its importance in air quality. 

 
2.3.1  Sources of Ozone 

Originally, the major source of ozone in the troposphere was thought to be transport from the 

stratosphere.  Though this is indeed a source, the transport rate is only in the range of 1.5 x 1013 
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moles per year — an amount that accounts for approximately 10 – 12% of ozone measured per 

year [Jacob, 1999].  Subsequently, it was discovered that NOx was linked with O3 production.  

Now it is known that ozone production is formed in several chain reactions that included the 

production of NO2 from NO and HO2·.  For example, the following chain results in the 

production of ozone. 

 CO + OH· 
2O

→  CO2 + HO2·   (C1) 

   

 HO2· + NO →  OH· + NO2   (C2) 

 

 NO2 + hν 
2O

→  NO + O3   (C3) 

 

 

Therefore, the net reaction from this mechanism is then, 

 

 CO + 2O2 →  CO2 + O3.   (C4) 

 

Critical to this chain is the concentration of NO.  With low concentrations of NO, ozone is 

destroyed in the following way: 

 

 NO + O3 →  NO2 + O2   (C5) 

 

 Furthermore, lower concentrations of NO means that there is not enough NO to compete with 

the HO2· radical which then also reacts with ozone leading to its destruction.  At higher 

concentrations of NO, however, NO reacts with HO2· leading to the production of ozone 

[Brasseur et al., 1999]. Therefore, the efficiency of this chain depends on the abundance of 

NOx.  This mechanism accounts for approximately 70% of the chemically produced ozone in 

the troposphere [Jacob, 1999].  Also, the diurnal variation seen in the concentration of 

tropospheric ozone is partially due to the sunlight required for the photolysis of NOx in the 

third step of this chain. 
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Since ozone is a secondary pollutant, it is relevant to identify the sources of the primary ozone 

precursors.  NOx, the most important, is emitted mostly by anthropogenic sources.  

Approximately 46% of NOx emitted to the atmosphere comes from fossil fuel combustion, 

with the burning of biomass accounting for a further 26%.   Additional sources include soil 

emissions, lightning, NH3 oxidation, and, to a lesser extent, aircraft emissions and transport 

from the stratosphere [Jacob, 1999].   

 

While NOx is critical to the production of ozone, so too are the volatile organic compounds 

(VOCs) that react with NO to produce NO2.  One of these is methane.  Methane emissions lead 

to the production of ozone by the following chain of reactions, starting with its oxidation by 

OH·. 

 

 CH4 + OH· →  CH3· + H2O    (C6) 

 

The methyl radical then reacts instantaneously with O2 to yield the methyl peroxy radical 

CH3O2·, as follows: 

 

 CH3· + O2 + M →  CH3O2· + M (C7) 

 

where M is a third body .  The methyl peroxy radical can then react with NO to produce NO2 

and a methoxy radical. 

 

 CH3· + NO →  CH3O·  + NO2  (C8) 

 

The production of the methoxy radical leads to the production of HO2· through a reaction with 

O2 in the following way. 

 

 CH3O· + O2 →  HCHO  + HO2·  (C9) 
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The resulting HO2· then reacts with NO to produce further NO2.  NO2 then photolyses in the 

presence of a third compound to produce ozone as in the first chain.  Therefore, the net 

reaction from this chain is: 

 

CH4 + 4O2 + 2 hν   →  HCHO + 2O3 + H2O (C10) 

 

Since methane is the primary precursor to the formation of methyl peroxy radicals, it is 

important to discover the sources of methane.  Though both natural and anthropogenic sources 

of methane exist, the major natural sources, including wetland and termite emissions, make up 

only 30% of methane emissions.  In contrast, major anthropogenic sources, which include the 

burning of natural gas as well as emissions from livestock and rice paddies, far outweigh the 

natural sources, making up 70% of methane emissions. 

 

Methane is one of the most important VOCs that are critical to the production of ozone, but 

other VOCs also produce peroxy radicals that react with NOx in the presence of sunlight to 

produce ozone.  These volatile organic compounds are emitted through solvent use, and by 

vehicles, residential buildings, and surface coatings.  Moreover, Isoprene — a compound 

released by plants — is also a VOC.  In some regions; its emissions can constitute a large 

percentage of the VOCs present. 

 

Ozone, therefore, is produced in industrial and heavily populated regions as well as over busy 

roadways.  From its sources, it is transported to more remote regions.  Presumably one would 

find the highest tropospheric concentrations of ozone in urban or industrial regions since it is 

largely produced there, yet remote locations, such as Long Point, also experience high ozone 

concentrations.  Furthermore, rural regions experience longer-lived ozone episodes than their 

urban counterparts.  The reason for this can be found in how ozone is destroyed. 

 
2.3.2  Sinks of Ozone 

Ozone’s removal from the troposphere is another area that needs explanation. Ozone is 

eliminated from the troposphere either chemically, or through dry deposition.  Dry deposition 

is the settling of chemical compounds onto the earth’s surface, be that surface dry or wet.  This 
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is in contrast to wet deposition, which is the deposition of compounds during precipitation.  

Chemical reactions account for 88% of ozone loss [Jacob, 1999].  Therefore it is important to 

study the chemical mechanism for ozone loss.   

 

Several reactions cause the chemical loss of ozone from the troposphere.  The principle ozone 

sink is photolysis as in the following series of steps.  It accounts for approximately 75% of 

tropospheric ozone loss by gas-phase routes [Seinfeld and Pandis, 1998].  

   

 O3 + hν →  O(1D)  + O2 (C11) 

 

 O(1D) + M →  O + M (C12) 

 

 O(1D) + H2O →  2OH·   (C13) 

 

Chemical loss of ozone also occurs through the following reaction: 

 

  

OH + O3 →  HO2 + O2.  (C14) 

 

Removal of ozone in urban areas, however, is also greatly affected by high concentrations of 

NOx.  NO contributes significantly to the destruction of ozone in urban areas in a process 

called NO scavenging, which occurs by the following reaction. 

 

 NO + O3 →  NO2 + O2 (C15) 

 

Note that sunlight is not required for ozone loss from the troposphere.  

Ozone has a longer lifetime in rural regions due to the lack of NO.  It is largely because of this 

that rural regions that are downwind from industrial centers can have longer-lived ozone 

episodes. 
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Slow ozone destruction in the spring and summer also occurs over large bodies of water.  

During these months, regions such as the Great Lakes experience high ozone concentrations 

with respect to the surrounding regions.  The reasons for this are threefold.  First, because 

ozone is not very soluble in water, ozone does not readily dry deposit into the Great Lakes or 

into the Atlantic Ocean.  Meteorology also plays a major role in the higher ozone 

concentrations.  Because the surface of the Lakes and the Ocean is cool in the spring and 

summer, the temperature profile over these bodies of water is stable with respect to thermal 

inversion.  This leads to slow vertical mixing, which means that any ozone that is transported 

over the lakes does not readily react and so does not get destroyed [Bloxam et al., 1993].  Also 

because of the slow vertical mixing NOx tends to stay close to the surface.  Because NOx is not 

dispersed vertically, it exists at the surface in higher concentrations than would be found over 

land, causing much more ozone producing photolysis to occur [Bloxam et al., 1993].  This 

phenomenon is important for our project since the model domain contains the Great Lakes and 

some of the Atlantic Ocean. 

 

In summary, ozone is a secondary pollutant whose precursors have largely anthropogenic 

sources.  In the presence of sunlight, NOx photodissociate in the presence of VOCs to produce 

ozone.  Also, ozone is lost from the troposphere through dry deposition, photolysis and 

reactions with HO2 OH and NO.   
 
2.4  Project Components 

The necessary components of this project consist of the chemical transport model, including its 

input data, hourly observed measurements, and an interpolation procedure.  Some introduction 

to these components is required, but much of the detail will be discussed in the following 

chapters. 

 

From this project’s inception, a great number of regional chemical transport models were 

available for use; however, many considerations must be taken when choosing an appropriate 

model.  For instance the input data must be readily available.  Additionally, the size of the 

input and output data files can limit model choices.  Furthermore, installing and learning how 

to run each model takes time, since user-friendly packages are rare.  There are therefore 
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distinct advantages to choosing a model that is accessible and well explained.  For our project, 

there was a further constraint due to the many months of simulation required to produce 

relevant results, namely model speed and efficiency. As a result, for the purposes of this 

project, the model ADOM best fit all the requirements.   

 

The assimilation process requires both model data and observed measurements; thus the next 

important component of the project was the collection of hourly measurment data.  The 

required observed measurements could not be obtained from a single source, because our 

domain encompasses parts of both Canada and the U.S.A.  Fortunately national networks exist 

in both nations that store historical hourly ozone measurements.  For the Canadian data, the 

measurements from the NAPS (National Air Pollution Surveillance) database were used 

[Dann, 2002], while the CASTNET (Clean Air Status and Trends Network) database was used 

for the U.S. data [USEPA, 2002b].  Hourly measurements for the summer of 1996 were used to 

correct model output. 

 

An interpolation procedure was essential to accomplishing this task because of the sparseness 

of the monitoring stations.  For regional tropospheric ozone modeling, Kriging is a generally 

accepted interpolation procedure [Elbern and Schmidt, 1999].  It was chosen to interpolate 

observed data over the grid because it uses a sophisticated weighted average to find unknown 

concentrations.  The weights are determined in a fashion that minimizes the estimation 

variance.  First, semivariances of known concentrations are calculated and graphed with 

respect to the distance between the points.  A function called the semivariogram is then fitted 

to the set of points and the weights are calculated using that function.  The contour graphing 

software package Surfer contained a Kriging procedure, which facilitated this step of the 

project.  Kriging was also used effectively to interpolate the differences between model and 

measured data over the grid. 

 

To conclude, for this project, the model ADOM was chosen as the regional chemical transport 

model.  While there were more accurate models to choose from, the speed and efficiency of 

ADOM were particularly required for a project that requires many months of simulation.  In 

addition, hourly measurement data were obtained from the NAPS and CASTNET databases to 
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assimilate with the model output.  The sparseness of the monitoring stations in these networks 

made necessary an effective interpolation procedure.  Kriging was chosen for this purpose 

because of its advanced weighted average system of calculation.  These three main components 

of the project will be discussed in more detail in the following chapters.  
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3  ADOM (Acid Deposition and Oxidant Model) 
3.1  General Parameters of ADOM and the Model Domain 

ADOM is an Eulerian long-range transport model developed in the 1980s for the Ontario 

Ministry of the Environment, The Canadian Atmospheric Environment Service and the 

Umweltbundesamt of the Federal Republic of Germany [Scire J.S. et al., 1986].  It was 

designed to estimate concentrations and deposition of the major atmospheric pollutants, such 

as ozone and NOx, over a medium scale grid. In our case, each grid square was 36 km by 36 

km in size.  The corresponding model domain was centered approximately over Windsor (at 

40˚latitude and 100˚ longitude) and had 75 grid squares East/West, and 72 North/South.  

Additionally, there were twelve vertical layers to encompass the troposphere over the region, 

where the physical height of each layer was predefined using the sigma z coordinate system.   

The physical heights of the layers were 1.0m, 56.1938m, 135.8103m, 250.6563m, 416.3205m, 

655.2896m, 1000m, 1497.2413m, 2214.5072m, 3249.1559m, 4741.6265m, 6894.5006m, and 

10000m respectively. 

 

The regional model ADOM was chosen for this project mainly because of its speed.  Since we 

needed several months of model output, speed was of utmost importance, as long as accuracy 

was not significantly sacrificed.  ADOM processed twenty-four hours of data in twenty 

minutes while Models-3 CMAQ, the most popular North American chemical transport model, 

processed the same amount of data in two hours on the same computer.  While the newer 

models could have predicted ozone concentrations more accurately than ADOM, the project’s 

success was not hindered since only the interpolation and assimilation procedures were being 

tested.  Moreover, these could later be adapted to work with other models.   

 

Once the model had been chosen, the next step was to acquire the necessary input file.  These 

were provided by the MOEE.  A lot of time and effort was spent on processing the 

meteorology, emissions and geophysical files, and this work deserves some attention. 
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3.2  Input Files for ADOM 

The three largest input files of most chemical transport models are the meteorology, emissions 

and geophysical files.  For these, raw data must be acquired and processed to produce files that 

can be used by the model.  For our project, Dr. Andrei Chtcherbakov at the MOEE did much of 

this work with help from Dr. Robert Bloxam and Sunny Wong. 

 

The raw meteorology files were acquired first.  These are the most difficult files to obtain 

because of the meteorological detail that is required by ADOM.  Data that were produced using 

MM5 were attained from the U.S. Environmental Protection Agency (USEPA).  This grid for 

this data set was centered over 40˚latitude and 100˚ longitude.  It was this data set that 

determined the grid that would be used in this project.  Some processing was then required to 

produce files that were compatible with ADOM.  First, the MM5 output fields were slightly 

different than those required for ADOM.  To acquire all the necessary fields, the MM5 output 

was processed using a sub-procedure of CMAQ called MCIP (Meteorology-Chemistry 

Interface Processor), and the correct fields were then taken from this output.  There was a 

fundamental difference, however, between the grid type used by MM5 and CMAQ, and that of 

ADOM.  ADOM uses a sigma z coordinate system for the vertical layers, while the other two 

use sigma p levels.  Therefore some interpolation of the vertical data was required to produce a 

file that was compatible with ADOM.  This interpolation necessitated a mass conservation step 

to ensure that nothing was gained or lost during the conversion.  Once this step was completed 

the resulting data file could be used as meteorology input to ADOM. 

 

The emissions input files were the next to be produced.  The national averages for individual 

anthropogenic point source emissions (such as factories), area source emissions (such as 

residential neighborhoods) and mobile sources (such as roadways), were acquired from the 

USEPA [USEPA, 2002a].  The US national averages were produced by the USEPA, and 

Environment Canada produced the Canadian averages.  Next, twelve meteorologically 

representative days were chosen for the year, three from each season.  For each season, one 

weekday, one Saturday and one Sunday were selected as representative days.  It was important 

to choose meteorologically representative days because meteorology significantly affects the 
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concentrations of primary pollutants.  The emissions, with the corresponding meteorology 

from the selected days were then processed using MEPPS (Models-3 Emissions Processor and 

Projection System), to produce daily emissions files.  These were not yet compatible with 

ADOM.  The VOCs in the emissions files produced by MEPPS were not speciated compatibly 

with ADOM requirements.  MEPPS speciates VOCs in a way that is compatible with RADM 

(Regional Acid Deposition Model), as well as other models such as CMAQ.  RADM’s 

mechanism includes 15 VOC compounds (or groups of compounds) assembled by condensing 

the list of VOCs produced by the National Acid Precipitation Assessment Program (NAPAP).  

ADOM’s VOC mechanism is also derived from NAPAP’s list, but condenses the list further to 

only 11 compounds or compound groups.  A mapping from RADM requirements to ADOM 

requirements was written by Dr. R. Bloxam at the MOEE to convert the data file to be 

compatible with ADOM. This mapping required a mass conservation test to be done, again to 

ensure that nothing was gained or lost during this procedure.  This completed the 

anthropogenic emissions input.  The biogenic emissions, which depend on meteorology and 

land use, were compiled by Dr. Chtcherbakov.  A model called Biogenic Emissions Inventory 

System 2 (BEIS2) was run to produce hourly biogenic emissions data for the year.  These 

emissions were then added to the anthropogenic emissions file to complete these input files.  

This was the last step in producing daily emissions files that were compatible with ADOM 

requirements. 

 

The last major input file required by ADOM was the geophysical file.  This file contains 

information such as land use for the model domain.  For our project, the geophysical file was 

produced by modifying an existing file from a previous project.  The existing domain, 

however, was centered over 40˚ latitude and 90˚ longitude.  This map was converted using a 

procedure developed by the US Geological Survey.  The map coordinates were converted back 

to latitude and longitude, and then re-projected to be centered over 40˚ latitude and 100˚ 

longitude.  Lastly, because ADOM uses fewer land use categories than the model that was used 

for the prior project, the fields were modified to be compatible with ADOM requirements.  

This file was then visualized using a software package called PAVE (Package for Analysis and 

Visualization of Environmental Data), and checked visually to ensure that the land use and 

other geophysical features were correct.  This fulfilled the last major input requirement for 
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ADOM.  To understand how ozone is simulated in ADOM, the gas-phase chemistry module 

will have to be examined. 

   

3.3  Gas-Phase Chemistry Mechanism of ADOM 

In this module of ADOM, the complex photochemistry and related reactions were simulated to 

calculate the production of secondary pollutants such as ozone.  The chemical mechanism 

included in ADOM was based on a mechanism developed in 1986 by Lurmann and Lloyd, 

which was condensed from a detailed mechanism including nearly 300 reactions among 100 

species. In our study, however, ADOM’s gas-phase chemistry mechanism included roughly 

100 reactions among approximately 50 chemical species.  The mechanism is listed below in 

Table 1, but some explanation is necessary.  

Numerous techniques were employed in order to condense drastically the detailed chemical 

mechanism without losing important details [Lurmann and Lloyd, 1986].  First, organic species 

with similar chemistry were combined.  Subsequently, unimportant reaction pathways were 

removed from the mechanism.  Next, the concentrations of relatively inert species were given 

constant values, while irrelevant stable species were removed from the species list.  In 

addition, variable stoichiometric coefficients were employed which means that terminally 

bonded alkenes represented by propene, the internally bonded alkenes represented by trans-2-

butene, and biogenic alkenes such as isoprene could be treated as a single lumped ≥C3 alkene 

[Lurmann and Lloyd, 1986]. Lastly, a steady state approximation was used to estimate 

concentrations for species with rapid production and destruction rates.  These steps allowed the 

species list to be reduced by half, and the reaction set by two thirds.  Accordingly, listed in the 

following table are the reactions relevant to ozone, along with their corresponding rate 

constants.  The mechanism in its entirety can be found in Appendix A. 
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Table 3.1  Most important ozone related reactions in ADOM’s gas-phase chemistry 
mechanism 
    Rate Constant 
  Reactions (cm3 molecule s units) 

(R1) NO2 + hν  NO + O3 radiation dependent 
(R2) NO + O3  NO2 + O2 2.2 x 10-12e-1430/T 
(R3) NO2 + O3  NO3 + O2 1.2 x 10-13e-2450/T 
(R4) NO + NO3  2NO2 8.0 x 10-12e250/T 
(R5) NO2 + NO3  N2O5 PT dependent 
(R6) N2O5  NO2 + NO3 special function 
(R7) NO2 + NO3  NO + NO2 + O2 2.5 x 10-14e-1230/T 
(R8) NO3 + hν  0.15NO + 0.85NO2 + 0.85O3 + 

O2 
3.29k1 

(R9) NO3 + HO2  HNO3 + O2 2.5 x 10-12 
(R10) O3 + hν  2OH (H2O dependent) special function 
(R11) NO + OH  HONO PT dependent 
(R12) HONO + hν  NO + OH 0.205k1 
(R13) NO2 + OH  HNO3 PT dependent 
(R14) HNO3 + hν  NO2 + OH radiation dependent 
(R15) HNO3 + OH  NO3 + H2O 9.4 x 10-15e778/T 
(R16) N2O5 + H2O  2HNO3 1.3 x 10-21 
(R17) CO + OH  HO2 + CO2 special function 
(R18) O3 + OH  HO2 + O2 1.6 x 10-12e-940/T 
(R19) NO + HO2  NO2 + OH 3.7 x 10-12e240/T 
(R20) NO2 + HO2  HNO4 special function 
(R21) HNO4  NO2 + HO2 special function 
(R22) O3 + HO2  OH + 2O2 1.4 x 10-14e-580/T 
(R23) HO2 + HO2  H2O2 + O2 (H2O dependent) special function 
(R24) H2O2 + hν  2OH radiation dependent 
(R25) H2O2 + OH  HO2 + H2O 3.1 x 10-12e-187/T 
(R26) NO2 + H2O  HONO + HNO3 - NO2 4.0 x 10-24 
(R27) HNO4 + hν  NO2 + HO2 (1.0 x 10-4)k1 
(R28) HNO4 + OH  NO2 + H2O + O2 4.0 x 10-12 
(R29) SO2 + OH  SO4 + HO2 PT dependent 
(R30) HCHO + hν  2HO2 + CO radiation dependent 
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4  Observed Data 

Observed data recorded by the CASTNET (Clean Air Status and Trends Network) [USEPA, 

2002a] and NAPS (National Air Pollution Surveillance) networks [Dann, 2002] was of the 

utmost importance to this project.  Both networks report hourly measurements 24 hours per 

day, seven days per week. The regional grid for this project spanned Canadian territory as well 

as several central and eastern American states, therefore the measurement data could not be 

collected from one source.  U.S. ozone data was obtained from the CASTNET database, while 

the NAPS database was used for the Canadian sector. From these networks, appropriate 

monitoring stations were selected, with the sites placed properly on the model domain.  Next, 

appropriate averages were calculated to facilitate the comparison with model output. 

 

The first step in compiling the observed measurements was to place the monitoring stations 

onto our model domain.  Since station locations from both networks were given in latitudinal 

and longitudinal values, projecting these figures onto the flat model grid was necessary.  A 

Lambert Conformal Conic projection was used for this purpose because the same projection 

was used to plot the map onto the grid.  The mapping program Arc View was used to 

accomplish this. 

 

Some analysis of the monitoring stations was required because each measurement was to be 

representative of the grid square on the domain in which it was located.  This was necessary 

since the measurements were directly compared to the model results for its grid square.  

Stations that were not illustrative, then, of their respective grid squares were eliminated.  These 

included stations in urban and industrial areas that measured highly variable ozone 

concentrations.   For example a monitoring station a short distance away from a factory or busy 

highway would measure high values of ozone.  Yet, while this value would be correct locally, 

it would not be representative of the larger area because ozone is destroyed quickly under these 

conditions as well.  Thus, for this reason, measurements selected for this project were taken 

from stations located in rural, forested, unused, agricultural and residential areas.  Ideally 

residential sites would have been removed as well, but the resulting network was far too 

sparse.  This revision still left stations that recorded systematically unusual measurements with 
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respect to nearby measurements.  These anomalies were therefore also removed from 

consideration. 

 

Once the correct set of monitoring stations was chosen and plotted on the model grid, the 

measurements from each station were next compared to model data at the nearest grid point.  

(Since there is one model output value for each grid square, these values are assigned to the 

point at the center of each grid square.  Therefore, it is frequently stated that the measurements 

were compared to the model result at the nearest grid point.)  In some cases, however, the 

nearest grid point was located over a large body of water, such as one of the Great Lakes.  

Please note that over large water bodies, ozone concentrations are higher in spring and summer 

than nearby land based monitoring stations would measure for the reasons discussed in Chapter 

2.  Chemical transport models, however, take land use into consideration to account for these 

variations.  In these regions, therefore, the model, rather than the interpolated measurements, 

will produce concentrations closer to the true concentrations.  Accordingly, shoreline 

measurements were compared to a more distant model grid point located over land.  Through 

this compromise, the data could still be used as a good estimate of terrestrial ozone 

concentrations a short distance away.  The final set of monitoring stations could then be plotted 

on the model domain as seen in Figure 4.1.  
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Figure 4.1:  Valid ozone monitoring stations plotted on the 
   ADOM model domain
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As mentioned, the monitoring stations measured ozone hourly, 24 hours per day.  Due to the 

fast chemistry associated with ozone, however, the hourly ozone concentrations fluctuated 

significantly throughout the day.  Such fluctuations were impossible to model accurately and 

were also unimportant for the purposes of this project.  Therefore, in order to reduce this 

background noise, calculating the daily eight-hour maximum ozone concentration was needed.  

The eight-hour maximum is defined as the eight hour time period in the day that has the 

highest average ozone concentration.  The daily eight-hour maximums were then averaged 

over a study period, such as a week to further reduce noise.   

 

Amalgamating many observed measurements, however, presents some difficulty.  For 

example, measurements were not recorded for every hour of the day in some cases because of 

equipment malfunction.  A threshold was therefore required to determine when data from a 

monitoring station should no longer be considered.  For an average value to be valid, common 

practice requires 75% of the data points to be present.  Thus for an eight hour time period to be 

considered, a minimum of six measurements were needed.  Additionally, at least 18 of 24 eight 

hour time periods were required to calculate the daily eight-hour maximum.   Problems may 

also arise if a station fails to record enough measurements to calculate a valid eight-hour 

maximum for each day in the study period.  As a result, for a valid average to be calculated, an 

eight-hour maximum was required for 75% of the days in the study period.  These eight-hour 

maxima averaged over the study period were then subtracted from corresponding eight-hour 

maxima from the model output to produce a difference file.  If two stations were located in the 

same grid square, then their values were averaged before the comparison with model output. 

 

In summary, monitoring stations were selected by how representative they were to their 

respective grid squares.  Subsequently, they were plotted on the nearest grid point of the model 

domain, with those stations located over a large water body moved to the nearest terrestrial 

grid square.  Additionally, in order to reduce background noise created by the small 

fluctuations in ozone concentration, the average eight-hour maximum for the study period was 

calculated for each site.  Next, the amalgamated measurement data was ready to be compared 

with similarly compiled model outputs. 
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5  Modified Simple Kriging (MSK) 

The measured data must be interpolated over the grid because there do not exist measurements 

for each grid point in the domain.  For this project, Modified Simple Kriging was chosen, as it 

is an accepted interpolation scheme used in atmospheric sciences [Lefohn, A.S. et al., 1987;] 

[Armstrong, M., 1998].  The estimation procedure known as Kriging was developed by the 

South African engineer D. G. Krige and was originally used in the field of geostatistics.  It is a 

procedure by which unknown concentrations are estimated based on a weighted average of 

surrounding known values.  The weights are selected to minimize the estimation variance such 

that the weights add up to one.  This last criterion, called the unbiased constraint, essentially 

means that the weights are normalized.  The estimation variance is minimized by associating 

the weights to the semivariances of known values with respect to distance through the use of a 

semivariogram (vide infra).  Accordingly, before a proper description on the use of Kriging can 

begin, a more thorough explanation of the semivariogram is required. 

 

5.1  Semivariogram 

Semivariance is a measure of the difference between the values of samples and the physical 

distance between them.  It is assumed, for example, that air samples taken one kilometer apart 

are more closely related than samples taken ten kilometers apart.  Thus, semivariance increases 

with respect to distance between samples.  In most cases, a maximum range exists beyond 

which samples are no longer related at all.  At this range, a maximum variance is also reached 

and is represented by a plateau in the semivariances.  The semivariogram (or simply the 

variogram) is a plot of semivariance as a function of distance [Lefohn A.S. et al., 1987].  There 

are several types of variogram models that have been created to describe various distributions 

of related data.  A few of these examples are the spherical, exponential, and Gaussian models 

for which the general equations respectively are, 
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where n is the “nugget value” or the systematic error, c is the maximum variance less n, h is 

the distance from the known value and a is the maximum range of relevant data (i.e. the range 

where the plateau starts).  Because of the shape of the semivariance graphs, the spherical 

model was determined to fit best the regional atmospheric distributions of ozone. This 

variogram was fitted to the semivariances using a least squares procedure.  An example of this 

variogram can be seen in Figure 5.1.  Here the plateau begins at a distance of 79 grid squares, 

which can be seen by a flattening of the variogram.  This means that the range is 79 grid 

squares in this case. 
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Figure 5.1:  Sample spherical variogram
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Mathematically, the exact variogram, γ(h) is defined as follows [Lefohn A.S. et al., 1987]: 

 ( ) ( ) ( )[ ]xZhxZVarh −+=
2
1γ  (5)  

where Z(x) is a measurement at an arbitrary location x; Z(x+h) is the measurement at a grid 

point, and ‘h’ is the distance from location x to the grid point.  Also, Var represents the 

variance between the measured concentration value at Z(x) and Z(x+h).    Now, we know that 

( ) ( ) ( )( )[ ]2)( xZExZExZVar −= , where E(Z(x)) is the expected value (or mean value) at x.   For 

small values of h, E(Z(x+h) – Z(x)) = 0.  Then  

 ( ) ( )[ ] ( ) ( )[ ]2xZhxZExZhxZVar −+=−+  (6) 

and therefore,  

 ( ) ( )[ ]2
2
1)( xZhxZEh −+=γ  (7) 

Then, where there are N(h) pairs of sample locations for a given distance h, the variance can be 

estimated by  
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From this point forward, Z(x) will be shortened to Z, with the point we are trying to solve for 

generalized as Zk . Accordingly, k is an index where Mk ≤≤0 , where M is the number of 

unknown points, with all known observation points generalized by Zi, and i is an index 

between 0 and the number of known points, P. 

  

5.2  Modified Simple Kriging 

The variogram is the means by which the Kriging method determines the weight of each 

measurement and minimizes the estimation error [Lefohn A.S. et al., 1987].  Thus, to estimate 
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an unknown value using Kriging, a value is calculated based on a weighted average of its 

neighbors.  For example, to estimate the unknown value *
kZ , the following equation is solved, 

 ∑
=

=
n

i
iik ZZ

1

* λ  (9)  

where λi is the weight associated with the known value Zi (vide infra).  Moreover, when the 

distance between a known point and an unknown point is greater than or equal to the distance 

at which the plateau starts on the variogram, the weight is zero.  In addition, the closer the 

observed point is to the unknown point, the greater the weighting, to a maximum value of one.   

The next step in the procedure is to calculate the weights in an effort to minimize the 

estimation variance, subject to the unbiased constraint. This variance can be expressed in terms 

of the weights and γ by 

 [ ] ∑∑ ∑+−=−
i j i

ikiijjkk ZZVar γλγλ 2*  (10) 

where Zk is the exact unknown value, *
kZ  is the approximated unknown value, and  i, j and k 

are the indices.  ikγ  can be written as the difference between the value of the variogram for the 

distances separating the sample i and the sample being estimated, and the average value of the 

variogram within the area.  ikγ  is the value of the variogram for the distance separating sample 

i and sample j.  Minimizing this variance under the unbiased constraint (i.e. the weights add up 

to one) gives the following set of two equations to be solved simultaneously [Lefohn A.S. et 

al., 1987]. 
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where nji ≤≤ ,1 , k is the index of the unknown value, and µ is a Lagrange multiplier.  The 

Lagrange multiplier is simply a slack variable in the set of equations.  A slack variable is one 

that is added to each inequality in a system of inequalities to transform it to a system of 

equalities. The slack variable is given a value equal to the difference between the right and left 
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hand sides of each inequality in the system [Chvatal, 1983].  Also ),( jiγ  is the value for the 

variogram for the distance separating sample i and sample j, and ),( kjγ  is the average value of 

the variogram between point j and the sample being estimated. 

 

Thus, to summarize the Kriging process, unknown values are estimated by first calculating the 

semivariogram using equation (8), then the weights are estimated using the set of equations 

(11) and (12), and then the value itself is calculated using equation (9).  This method was used 

to interpolate differences between model and observed data across the grid.   

 

5.3  How Kriging was Implemented 

Because Kriging is commonly used for many types of modeling, writing a program to 

complete this step of the project was not necessary.  Instead, a visualization software package 

called Surfer was used to do the Kriging to create contour graphs of ozone.  Surfer was 

originally designed to visualize groundwater modeling results, and is therefore a sophisticated 

contouring package that includes a Kriging procedure. 

 

The first step to applying Kriging is to calculate the variogram.  To do this, Surfer has a 

variogram calculation procedure that employs user-supplied input data (in our case the 

measured data), to first calculate the associated semivariances.  Next, the user chooses an 

appropriate variogram model and Surfer fits the model to the data using a Least Squares 

method to minimize error.  This first step is imperative because the contours are later 

calculated using the fitted variogram model as described above.  This method was then used to 

interpolate and contour the observed data collected from the monitoring stations, as well as the 

local differences between measured and modeled data.  In contrast, no Kriging was necessary 

for the model output since the model already produced values for all grid points.  

 

It must be stressed that Kriging is strictly an interpolation procedure.  Within the model 

domain, however, there exist three regions around the borders of the grid in which there are no 
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monitoring stations.  These regions are represented by the polygons outlined in red in Figure 

4.1 in Chapter 4.  The measured data would need to be extrapolated to estimate observed 

values in those regions.  These regions were “blocked”, i.e. taken out of the domain, to prevent 

Surfer from extrapolating measured data because the model results are a better estimate than 

extrapolated measured data.  The model data should only be corrected within the regions where 

observational data are available.  

 

In summary, Surfer first calculates semi-variances using equation (8), with a spherical 

variogram next fitted to the data.  Accordingly, this variogram is used to interpolate the 

observed data across the central region of the model domain only.  This interpolated data can 

now be compared with model output.  
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6  Procedure 
Only recently has improving Chemical Transport Model output through data assimilation with 

observed measurements been explored.  This process was complex and required several steps 

to accomplish.  To produce an adequate test for this procedure, many weeks of model results 

were produced.  In addition, corresponding observed measurements were collected, and 

compiled.  These were then subtracted from the model output and the differences were 

interpolated over the model domain.  The differences were then used to nudge the model 

output in an assimilation process.  Moreover, some statistical analysis was done in order to test 

the effectiveness of the method.  Lastly the method was also used for a sensitivity analysis, to 

determine key monitoring stations within the domain. 

 

As previously stated, the first step of this project was to run the model ADOM in order to 

produce model output for four months — June 4th through September 30th, 1996, respectively 

— with the input required for the model collected from the MOEE.  Once all the model results 

were produced, compiling them into a format that was compatible with the observed 

measurements was necessary. 

 

For this project, model and observed data were compiled into 8-hour daily maxima that were 

averaged over a week, or episode.  Initially, comparing the model and observed data directly 

was a possibility because the model outputted hourly concentrations of ozone and the 

monitoring stations also recorded hourly concentrations.  While the model followed general 

trends of observed measurements, however, it failed to produce results that were temporally in 

sync with measurements.  It also missed some of the minor fluctuations.  For the purposes of 

this project, these inconsistencies were unnecessary noise.  Thus, in order to fine-tune the data, 

eight-hour maximums were calculated for each day and averaged over a week.  Consequently, 

seventeen week-long periods were studied between June 4 and September 30 and assimilated 

with observed measurements.  In addition to the one-week periods, an ozone episode between 

June 27th and June 30th was also studied, as well as a period of particularly low ozone 

concentrations between September 13th and September 17th.  Once the surface ozone data had 

been extracted from the model output and compiled into this format, they were ready to be 
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compared to similarly assembled measured data.  Figures were also created in Surfer to 

visualize the model output in this format as in Figure 6.1.  

 

 Collecting the measured data from the CASTNET and NAPS databases was the next step.  

These data were also compiled into 8-hour maximum averages over the seventeen weeks 

between June 4th and September 30th.  There were some missing measurements from the 

observed data, however, due to equipment failure.  As a result, a threshold was needed to 

determine how many measurements were necessary to calculate an eight-hour average. 

Additional thresholds also had to be created to determine how many eight-hour averages were 

needed in order to determine an eight-hour maximum and how many eight-hour maximums 

were needed to calculate an eight-hour maximum average for a given week.  Setting the 

threshold at 75% is common practice when working with these types of measurements; 

therefore at least 6 measurements were required to calculate an average for a given eight-hour 

period.  Additionally, 18 eight- hour periods in a given day were needed to find a valid eight-

hour maximum.  Lastly, eight-hour maximums from at least five days out of seven were used 

to calculate a valid weekly average, while three eight-hour maximums were required to 

calculate the average for the four-day periods.  The observed data could then be visualized as 

in Figure 6.2, and the observed data could also subtracted from corresponding model results. 
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Figure 6.1: Model Output September 13 - 16



 34

The next step in the procedure was to calculate the differences between model output and 

observed measurements.  Not every grid square contained a monitoring station.  Consequently, 

model results for the grid squares that contained monitoring stations were extracted from the 

model output file.  The observed data were then subtracted from those model results to produce 

a difference file.  These differences were then interpolated over the central region of the grid.   

 

The interpolation was not straightforward, because the interpolation did not occur over the 

entire grid.  There are two ways to ensure that Surfer interpolates only over the central region 

of the grid.  The most obvious method is to employ the blocking feature, which basically 

eliminates part of the domain.  This could not be used, however, because once a grid contained 

a blocked region, subsequent calculations with that grid necessarily resulted in a final grid that 

also contained the blocked region.  A blocked region could not be introduced at this point in 

the procedure because the differences were to be subtracted from the model results in the next 

step to produce a corrected picture that incorporated the entire grid.  The second way to 

prevent extrapolation is to include zeros in the difference file for the grid points in the border 

regions.  This is the method that was used.  Figure 6.3 gives a visualization of a difference file 

with the zeros in the border region.  This difference file was later blocked for display purposes 

only, as illustrated in Figure 6.4.  
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Figure 6.2:  Observed Data September 13 - 16
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Once the interpolated difference file was obtained, the next step was to use it to correct the 

model output.  To achieve this goal, the differences were subtracted from the model results.  

This preserved the resolution of the model output, while simultaneously improving the 

accuracy of the results.  These enhancements can be seen in Figure 6.5.  In the following steps, 

this corrected picture was statistically tested to quantify the improvement. 

 

Measuring improvements was difficult because no perfect picture could be obtained to use as a 
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Figure 6.4:  Difference = Kriged (Model - Observed)
                   September 13 - 16
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gauge.  Consequently, the corrected picture was compared with the existing measurements in 

the central region, and with the model results in the border region in order to estimate error.  

To accomplish these calculations, the interpolated measurements were subtracted from the 

corrected picture.  Next, the model values were subtracted from the borders to capture error at 

the junction between the central portion and the border region of the grid.  Please note that both 

of these calculations were expected to produce values close to zero and, when all monitoring 

stations were used in our method, any variation from this supposition was due to the difference 

in resolution between the model output and observed data as shown in Figure 6.6.  

Nevertheless, the Normalized Chi Square, Normalized Bias, and Normalized Gross Error were 

calculated to provide a base case for further analysis.  The equations for these are: 
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where N is the number of points, xi is the point being tested and Ei is the observed value. 

 

In order to truly test the interpolation and assimilation method, we needed to find how much 

the error would increase if the monitoring network became more sparse.  Therefore, some sites 

needed to be removed from the correction procedure and used only for error assessment.  As a 

result, the set of monitoring stations was randomly divided into two groups, as illustrated in 

Figure 6.7. The method described above to attain a corrected model output file was then 

followed for each group separately.  Each corrected picture was then compared against the 

entire collection of measurements to determine how well missing values could be estimated.  

Subsequently, the Normalized Chi Square, Normalized Bias, and Normalized Gross Error were 

again calculated in order to compare these values against the base case statistical calculations. 

This stage was necessary to discover the amount by which the error increased when fewer 

measurements were used in the procedure. 

 

With this test completed, certain monitoring stations were found to be much more important to 

the interpolation process than others, due to their location.  To identify all key sites would 
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require an intensive sensitivity analysis.  Our procedure would be able to complete much of 

this investigation.  By removing a suspected key site from the correction procedure, we can 

then test how well the method predicts this known value.  Moreover, the procedure’s 

sensitivity to the site can be quantified by comparing the Chi Square, Bias and Gross Error 

values to the base case statistical calculations.  Accordingly, this test was attempted for four 

sites as an example, but a lack of time prevented a full analysis from being done. 

 

To summarize, several steps must be taken in order to enhance ADOM ozone output with 

observed measurements.  Beginning with the model runs after the input data is collected, the 

ozone output for the surface layer must next be extracted and compiled into a format that can 

easily be corrected with observed measurements.  Additionally, the observed data must also be 

collected and reformatted in order for comparison to the model output.   

 

In our procedure, the difference between observed measurements and model output was found 

for each chosen time period with the differences then Kriged across the central region of the 

grid.  Statistically testing the improvement made by the assimilation was then necessary.   
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Because of the sparseness of ozone measurements, a perfect picture of ozone concentration 

could not be obtained to gauge directly the improvements made by the procedure.  Therefore, 

the sites were split into two groups, which were then tested individually against the entire 

collection of measurements.  As a result, the statistical analysis was able to determine the 

amount of error that increased as the number of monitoring stations decreased.  Additionally, a 

similar process was devised to perform a sensitivity analysis on the monitoring stations, with 

four stations analyzed to test this method.  The analysis was not completed, however, and 

further study is required in order to find all key stations. 
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7  Results 
 
Despite the sparse network of monitoring stations, the results produced by the procedure were 

encouraging since they showed that the assimilation procedure increased the local accuracy of 

the model results while preserving its resolution.  This result could easily be seen in the 

contour graphs produced in Surfer, with the improvements then quantified in the statistical 

analysis.  While visual representations of all results could not be displayed, the results for the 

four day episode in June will be explained in detail here, while the statistical results from the 

rest of the time periods will be summarized in Table 7.1 at the end of the chapter. 

 

Figures 7.1 through 7.4 on the following page show the model, observed, difference and 

corrected model visualizations for all valid monitoring stations used in the assimilation 

procedure for the ozone episode from June 27 through 30, 1996.  Figure 7.5 shows the 

difference between the corrected model output and the observed data in the central region of 

the domain, with the difference between the corrected data and the model output in the border 

regions of the grid.  Improvements made by assimilating the model output with all the 

observed data is difficult to quantify.  This is more easily accomplished when some monitoring 

stations are removed from the procedure and used only for testing purposes.  This was done in 

the next step.  Yet there remain several important points to note in this set of figures.  

 

In Figures 7.1 and 7.2 — the model and observed results — we can see that while the overall 

pattern between the two is somewhat similar, the model under- predicts ozone quite 

significantly in the central region.  This difference is further demonstrated in the difference 

slide in Figure 7.3.  Under prediction of ozone concentrations during an ozone episode is a 

common problem in chemical transport models since they tend to flatten extreme peaks found 

in measured data (i.e. the model also over predicted ozone when there was an extreme low
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Figure 7.1: Model Output, June 27 - 30
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Figure 7.2:  Observed Data, June 27 - 30
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Figure 7.4:  Model - Difference, June 27 - 30, all stations
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 measured as well).  This flattening is, however, a known drawback of chemical transport 

models and was anticipated.  In fact, it was this error that the assimilation procedure attempted 

to correct.  

 

Another feature to note in Figure 7.3 is the variance between the model output and the 

observed measurements over Southeast U.S., near the Atlantic coast and the Great Lakes.  As 

mentioned in Chapter 4, the cause of this variance is largely the fault of interpolated 

measurements not being representative of the regions over large bodies of water.   This 

differentiation was anticipated, however, and should in fact be preserved where possible.  We 

see in Figures 7.4 and 7.5, the variation over the Atlantic coast and over the Great Lakes is 

maintained to a large extent.  As a result, the corrected model output successfully incorporated 

the local accuracy of the measurements, without sacrificing areas of the grid where the model 

performed better than the interpolated measurements. 

 

This initial view of the results of our assimilation procedure was positive, but the task 

remained to quantify the improvement of the corrected model output over the initial model 

output and the observed measurements.  In order to accomplish this, the sites were split in half 
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with each resulting corrected model output data set tested against the whole set of 

measurements.  Figure 6.7, in Chapter 6, shows how the monitoring stations were split between 

Group 1 and Group 2.  The sites were randomly divided, with the only criteria being that it was 

necessary to have small areas in each set with no monitoring stations that were covered by the 

other set, since these holes were required to test the interpolation procedure.  Accordingly, 

when the corrected picture was compared with the entire set of measurements, these areas were 

of the most interest when observing how well the interpolation procedure was able to estimate 

the values in those gaps.  From these results, estimating how well the procedure would work on 

other existing gaps in both networks could then be accomplished.  Once the analysis had been 

done with each group of sites, there were many points of interest to consider.  

 

To illustrate in detail these features, the contour graphs of the data produced from the analysis 

of the ozone episode in June have been included.  Figures 7.6 through 7.9 on the following 

page show the results for the first half of the stations, Group 1, while Figures 7.10 through 7.13 

portray the results for the second half, Group 2.  These contour graphs are illustrative of the 

results from the rest of the time periods which are summarized in Table 7.1. 

 

In Figures 7.6 and 7.10 — the observed data from the respective groups — one should first 

observe how the data in these illustrations differs significantly from one another and from the 

contour graph produced when all monitoring stations were used.  This variation is illustrated 

further in Figures 7.7 and 7.11 – the difference slides.  Yet, despite these significant 

differences, Figures 7.8 and 7.12 show that the resulting corrected data from either group does 

not vary from Figure 7.4 as much as one would expect given the initial differences. This 

observation is further supported by the statistical analysis.  Moreover, while the Normalized 

Chi Square values are worse when only half the sites are used, they are still much better than 

the observed or model values alone.  The same observations may be stated for the Normalized 

Bias and Gross Error, thus indicating that the interpolation procedure estimated unknown 

values quite well. 
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Figure 7.6:  Observed Data, June 27 - 30, Group 1
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Figure 7.7:  Difference = Kriged (Model - Observed)
                   June 27 - 30, Group 1
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Figure 7.8:  Model - Difference, June 27 - 30, Group 1
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                  Normalized Error:  0.057
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Figure 7.10:  Observed Data, June 27 - 30, Group 2
10 20 30 40 50 60 70

10

20

30

40

50

60

70

-35 ppb

-30 ppb

-25 ppb

-20 ppb

-15 ppb

-10 ppb

-5 ppb

0 ppb

5 ppb

10 ppb

15 ppb

20 ppb

25 ppb

30 ppb

35 ppb

40 ppb

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Figure 7.11:  Difference = Kriged (Model - Observed)
                     June 27 - 30, Group 2
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Figure 7.12:  Model - Difference, June 27 - 30, Group 2
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Figure 7.13: Check Corrected Values, June 27 - 30, Group 2  
                    Normalized Chi Square:  0.678, Normalized Bias:  -0.011, 
                    Normalized Error:  0.060
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Yet, while the interpolation procedure seems to work quite well when approximating unknown 

figures, caution must be taken in eliminating monitoring stations from the network.  Many key 

sites exist that, if removed, would degrade the quality of the data quite significantly.  For 

example, in the Great Lakes region of both Group 1 and Group 2, the error in the corrected 

picture is appreciably greater than that of the corrected picture using all stations.  The error 

also increased along the Northwest edge of the central region and the central East Coast along 

the Atlantic Ocean.  Thus, to combat this problem, completing a sensitivity analysis on 

potential stations to be eliminated is necessary to determine whether or not they represent key 

stations to the interpolation procedure. 

 

An example of such an analysis was completed for four stations, with the results summarized 

in Table 7.2.  Two of the stations, 060807 and CVL151, were labeled as possibly important 

while the other two, 063901 and ABT147, could be deleted with little consequence to the 

corrected model output, as can be seen from the statistical analysis.  The results of the 

sensitivity analysis for the Ontario station 060807 from the NAPS network for the week from 

September 24 – 30, will be discussed in detail here while the statistical results from the rest of 

the weeks studied (i.e. June 25 – July 1, July 23 – 29, and August 20 – 26, 1996), is 

summarized in Table 7.2. 

 

The following figures — Figures 7.14 – 7.22 — illustrate the results when 060807 was 

removed from the procedure as compared to the results when all the stations were used.  The 

figures created using all of the monitoring stations in the assimilation procedure are on the left 

side, while the figures created without 060807 are on the right.  A pink circle on the top left 

corner of each figure signifies the location of this station — one that deserves careful 

examination. 
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Without this station, the interpolation procedure overestimates ozone in the region to the North 

of Lake Superior from September 24 through September 30.  This feature is emphasized 

further in the difference slide in Figures 7.17 and 7.18.  Accordingly, the overestimation in the 

observed data results in an overestimation of ozone in the corrected model output as can be 

seen in Figures 7.19 and 7.20.  Taking into consideration that only one station was removed 

from the procedure, most important to notice is the statistical analysis which shows a 

significant degradation in the quality of the corrected model output when 060807 is omitted. 

Moreover, for each week studied in the sensitivity analysis, the quality of the data decreased 

notably when this station was removed from the process.  Therefore, regardless of 

meteorological conditions, the interpolation procedure was unable to correctly approximate the 

ozone concentration there.  This implies that this station may be a key site, but further analysis 

must be done before a conclusion of this nature can be made.  For the same reasons, CVL151 

is a possible key station as well. Conversely, in the case of 063901 and ABT147, little or no 

change occurred in the Chi Square values, the Bias, or the Gross Error when these sites were 

removed from the process.  The interpolation and assimilation procedure correctly estimated 

the ozone concentrations in these regions thus allowing them to be removed from the process 

with little consequence. 
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Figure 7.14: Model Output,  September 24 - 30
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Figure 7.15:  Observed Data,
                     September 24 - 30, all stations
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Figure 7.16:  Observed Data,
                     September 24 - 30, all stations except 060807
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Figure 7.17:  Difference = Kriged (Model - Observed),
                     September 24 - 30, all stations
                     Normalized Chi Square:  3.604 Normalized Bias:  0.285, 
                     Normalized Error:  0.285 
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Figure 7.18:  Difference = Kriged (Model - Observed),
                     September 24 - 30, all stations except 060807
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Figure 7.19:  Model - Difference,
                     September 24 - 30, all stations
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Figure 7.20:  Model - Difference,
                     September 24 - 30, all stations except 060807
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Figure 7.21: Check Corrected Values, 
                    September 24 - 30, all stations  
                    Normalized Chi Square:  0.553, Normalized Bias:  0.053, 
                    Normalized Error:  0.066
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Figure 7.22: Check Corrected Values,
                    September 24 - 30, all stations except 060807  
                    Normalized Chi Square:  0.748, Normalized Bias:  0.061, 
                   Normalized Error:  0.075
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The assimilation procedure developed in this project is therefore a versatile tool when 

modeling regional concentrations of ozone.  The procedure itself produces a high-quality 

combination of model and measured data that maintains the high resolution of model output 

but includes the correct local accuracy of observed measurements.  This procedure was tested 

by excluding half the monitoring stations from the assimilation procedure, and was found to 

satisfactorily approximate most of the concentrations from removed stations.  Because there 

was significant variation in some areas of the grid, a sensitivity analysis was needed in order to 

find monitoring stations which were crucial to the success of the assimilation procedure.  This 

analysis was started and two possible key stations were found.  The sensitivity analysis was 

also done using the assimilation procedure in a way that isolated the site and monitored the 

decrease in quality of the corrected model output when the station in question was removed.  

Further sensitivity analysis, however, must be done to locate all key sites within the two  

networks to assess how much the quality of the data will be degraded by the shutting down of 

monitoring stations. 
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Table 7.1:  Results Summary

Before Before Before
Assimilation All Sites Group 1 Group 2 Assimilation All Sites Group 1 Group 2 Assimilation All Sites Group 1 Group 2

Jun 04 - 10 0.9555115 0.2606435 0.3589583 0.0000003 0.0370339 -0.0181582 -0.0253716 0.0000012 0.0999769 0.0389062 0.0489413 0.0000012
Jun 11 - 17 0.5472079 0.3381160 0.4333304 0.3900643 -0.0307149 -0.0098196 -0.0185573 -0.0111365 0.0800369 0.0415622 0.0495522 0.0465519
Jun 18 - 24 0.7178381 0.3556158 0.5370666 0.4885466 0.0556809 -0.0080698 -0.0028189 -0.0097447 0.0888620 0.0470773 0.0598008 0.0603789
Jun 25 - Jul 01 0.6891619 0.3099188 0.4008231 0.4019864 -0.0523260 -0.0069415 -0.0173779 -0.0090365 0.0791165 0.0386110 0.0469639 0.0476529
Jul 02 - 08 0.7864081 0.2751474 0.3644793 0.4360625 -0.0770088 -0.0000010 -0.0110959 -0.0129731 0.1019527 0.0383397 0.0474012 0.0519338
Jul 09 - 15 0.3139657 0.2940696 0.3581530 0.3888980 0.0274293 -0.0051141 -0.0046644 -0.0136897 0.0610386 0.0405400 0.0461336 0.0502308
Jul 16 - 22 1.0728276 0.3727612 0.4047290 0.4706127 0.1131110 0.0201687 0.0206493 0.0205746 0.1166097 0.0455063 0.0491492 0.0543026
Jul 23 - 29 1.2193557 0.4025722 0.5950471 0.5584009 0.1484293 0.0378681 0.0513600 0.0506984 0.1491729 0.0540489 0.0695738 0.0679365
Jul 30 - Aug 05 0.6082223 0.4051629 0.6006539 0.5287970 0.0709519 0.0339297 0.0437723 0.0377597 0.0883888 0.0507112 0.0643497 0.0600135
Aug 06 - 12 1.0362188 0.3088016 0.3903907 0.7242486 0.0833307 0.0194376 0.0217925 0.0408169 0.1074799 0.0437170 0.0515251 0.0667665
Aug 13 - 19 0.5681850 0.2479251 0.3182037 0.4814928 0.0801023 0.0184684 0.0141717 0.0319809 0.0861935 0.0389618 0.0466397 0.0566712
Aug 20 - 26 1.4138656 0.5013657 0.5651230 0.8835734 0.1169393 0.0225844 0.0240685 0.0441626 0.1384568 0.0551521 0.0620476 0.0766026
Aug 27 - Sept 02 0.8121622 0.4289716 0.5349007 0.7019884 0.0389624 0.0334667 0.0353262 0.0498208 0.1067471 0.0524143 0.0615463 0.0705368
Sept 03 - 09 0.8260844 0.4500142 0.5087273 0.6565655 0.0856432 0.0351514 0.0334005 0.0518789 0.1151214 0.0563500 0.0643607 0.0715641
Sept 10 - 16 3.5499566 0.6351998 0.7234184 1.1107352 0.2842663 0.0529030 0.0567947 0.0799497 0.2845543 0.0698304 0.0797092 0.1014517
Sept 17 - 23 0.3821358 0.1697510 0.2399760 0.3943475 0.0315077 0.0095572 0.0085002 0.0265570 0.0706174 0.0350242 0.0450224 0.0529824
Sept 24 - 30 3.6042704 0.5525733 0.6730096 1.2261837 0.2851483 0.0525334 0.0673036 0.0861709 0.2851483 0.0661902 0.0788647 0.1034033
Episode:  Jun 27 - 30 2.1717918 0.5157619 0.6297165 0.6783299 -0.1237422 -0.0092283 -0.0223519 -0.0112693 0.1386423 0.0485064 0.0568540 0.0598425
Low Period:  Sept 13 - 16 3.5296403 0.4827736 0.6448229 0.8268253 0.2805292 0.0467259 0.0543545 0.0699712 0.2821059 0.0659998 0.0796863 0.0920601

Normalized Chi Square Normalized Bias Normalized Gross Error
After Assimilation Using After Assimilation Using After Assimilation Using

Table 7.2:  Sensitivity Analysis Summary

060807 063901 ABT147 CVL151 060807 063901 ABT147 CVL151 060807 063901 ABT147 CVL151
Jun 25 - Jul 01 0.309919 0.313265 0.310548 0.307807 0.310475 -0.006941 -0.005634 -0.007490 -0.007375 -0.006489 0.038611 0.038887 0.038644 0.038579 0.038668
Jul 23 - 29 0.402572 0.444564 0.402572 0.416224 0.453056 0.037868 0.043023 0.037868 0.038795 0.043884 0.054049 0.057629 0.054049 0.054579 0.057652
Aug 20 - 26 0.501366 0.605611 0.501366 0.496966 0.612222 0.022584 0.028762 0.022584 0.021850 0.032222 0.055152 0.060252 0.055152 0.055187 0.060378
Sept 24 - 30 0.552573 0.748193 0.552573 0.554978 0.612153 0.052533 0.061182 0.052533 0.053343 0.058731 0.066190 0.074786 0.066190 0.066267 0.071037

Normalized Gross Error
After Assimilation Using All Sites

Except

Normalized Chi Square
After Assimilation Using All Sites

Except

Normalized Bias
After Assimilation Using All Sites

Except
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8  Discussion 
The success of the interpolation of observed measurements and the assimilation of model 

and observed data has many applications.  The data set developed in this project can itself 

be used to start an archive of ozone concentrations.  Also, the technique has many uses, 

including the development of background ozone concentrations for microscale modeling 

projects as well as model evaluation.  Similarly, the interpolation and assimilation 

method can be used to perform sensitivity analysis on monitoring stations to evaluate 

their importance within the network.   

 

The interpolation and assimilation techniques developed in this study were the focus of 

the work, but the assimilated model and observed data files can be used in future 

historical studies requiring 1996 ozone data.  An archive of the data produced in a study 

as long as this one is important, because the time frame studied in modeling experiments 

will often be determined by the availability of data.  Moreover, the archive can easily be 

expanded to produce accurate historical ozone concentration archives, which would be 

superior in most ways to the historical measurement data that are currently documented.  

The only drawback to the data files from this study is the loss of the hourly detail.  For 

studies that require hourly data then, the interpolation and assimilation techniques could 

be used to improve the ozone profile. 

 

For example, microscale modeling projects that require surface level regional background 

concentrations of pollutants would benefit from the use of the assimilation procedure.  

Currently, in order to calculate background concentrations, a modeler must use either the 

hourly measurements from often just one monitoring station, or the output from a 

regional chemical transport model.  Neither of these options is ideal because microscale 

modeling projects require high-quality background concentrations in order to accurately 

calculate the pollution contribution of the emission source being tested.  Assimilated 

model output and observed measurements, however, will provide detailed, accurate 

background concentrations.  Also, for microscale modeling projects, the assimilation 

procedure needs no modification to extrapolate calculations vertically since only surface 

level concentrations are needed. 
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In addition to improving pollution data, the interpolation and assimilation procedures can 

aid in model evaluation and verification.  Measurement data alone currently are used to 

evaluate a model’s performance.  This strategy can show large areas of discrepancy 

between model results and measurements, but isolating smaller regions that have great 

disagreement is often more useful.  This allows a scientist to better determine the cause of 

disparity.  Moreover, modeling over large regions often presents many discrepancies in 

results.  In our case, for example, the model consistently under-predicted ozone 

concentrations — a common problem in regional CTMs.   Under-prediction is caused by 

several contributing factors. First, uncertainty exists in the model inputs, and, in 

particular, the emissions inventory.  If emissions are under predicted, the model will 

accordingly output lower concentrations of these pollutants.  Furthermore, models 

assume even distributions of pollutants over each grid square while, in reality, pockets of 

high concentrations will exist within the grid square, thus leading to more chemical 

reactions than the model could predict.  Therefore the model tends to flatten any extreme 

concentration peaks, an error that is fixed by the assimilation procedure.   

 

Once this large error has been corrected using data assimilation, scientists can 

concentrate on problems in the model output that can be improved upon.  When 

measurement data are subtracted from corrected model output, small regions with large 

discrepancies are highlighted.  Scientists can also find regions within the domain that are 

consistently modeled incorrectly by analyzing several weeks of model output in this way.  

In this study, once the overall under prediction had been corrected by the assimilation 

procedure, we could see that ozone concentrations were high in comparison to 

measurements over the Great Lakes and along their shores. Over the lakes these values 

were most likely correct, but the shore values required improvement.  Therefore, the 

integration between marine and terrestrial environments may be of particular interest to 

scientists looking to improve ADOM.  Better models, however, do exist, making further 

work on this CTM unlikely, but the technique could be applied to other modeling 

projects. 
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Another benefit of this study is its ability to evaluate the importance of individual 

monitoring stations within the network.  As discussed in Chapter 6, the station being 

tested is removed from the assimilation procedure, and the resulting corrected picture is 

tested against the full set of monitoring stations.  In our study, four stations were tested, 

two from the CASTNET database, and two from the NAPS database.  The two American 

stations were CVL151, located at the bottom left of the grid in Mississippi, and ABT147, 

located in Connecticut on the East Coast.  The Canadian stations were both located in 

Ontario, just Northwest of Lake Superior and were called 060807 and 063901.  From the 

statistics, we can see a significant difference between the corrected picture of the 

reference run and when either 060807 or CVL151 were removed.  This indicates that the 

concentrations measured at these stations could not be predicted accurately thus making 

these stations indispensable to the procedure.  Conversely, the concentrations at the other 

two stations were estimated accurately by the procedure, which is demonstrated by the 

statistics of the procedure run missing these stations being nearly identical to the 

reference run. 

 

A detailed analysis, however, will need to be completed to determine precisely why the 

interpolation procedure could not accurately predict the ozone concentrations at each key 

site.  One possible explanation for this result includes the distance between sites.  In the 

case of CVL151, its closest neighbor is at least ten grid squares, or 360 km, away.  

Therefore, it is probable that the monitoring stations that surround it are too distant to 

predict accurately the ozone concentration there.  The reasons behind 060807 being a key 

site are more difficult to comprehend. 

 

The site 060807 is located just Northwest of Lake Superior, and Northeast of 063901.  In 

fact, these two stations are at most three grid 

squares apart as shown in Figure 32.  

Moreover, 063901 is not a key station, 

meaning the concentrations at 063901 can be 

predicted accurately with the use of 060807 

and other surrounding stations.  Conversely, 
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the concentrations at 060807 cannot be predicted using the concentrations at 063901 and 

neighboring stations.  As shown in the figure, 063901 is more effectively surrounded by 

its neighbors than 060807, which could contribute to this phenomenon.  Additionally, the 

closeness of 060807 to Lake Superior may also contribute to the uncertainty of the ozone 

concentrations measured there.  As a result, an enhanced understanding of the 

geophysical nature of the area surrounding 060807 will need to be established to better 

determine the reasons for this station’s relative importance.  Furthermore, the possibility 

of this station being located downwind of an emission source, thus causing it to measure 

unusual concentrations, also remains. The likelihood of this placement will need to be 

explored in order to determine its validity as a key station. 

 

While the two stations CVL151 and 060807 were determined to be essential to the 

interpolation and assimilation procedures, the 8-hour maximums at the other two stations, 

ABT147 and 063901, were predicted accurately by the procedure.  Therefore, the 

network of monitoring stations would not be significantly affected were these stations to 

be shut down.  As a result, using this procedure to test the importance of other stations 

may reveal a number of stations whose value to the network is minimal.  Further analysis 

is needed to determine combinations of stations that can safely be removed. For example, 

removing one of two stations that are near to each other may be not greatly affect the 

interpolation procedure, but removing both might cause problems.  Consequently, the 

MOE could save money by the removal of some monitoring stations, but much more 

analysis is needed to determine the optimal sites to shut down. 

 

While the project overall was a success, there were limitations.  For example, the border 

regions of the model domain could not be tested or corrected because of the lack of 

monitoring stations.  Furthermore, measurements over the Great Lakes were missing, 

thus causing some uncertainty in the corrected values.  As a result, these regions would 

benefit greatly from the addition of monitoring stations. 

 

The project was also limited by the lack of measurements in the upper troposphere.  

Because of this, only the surface level of the model output could be corrected.  
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Consequently, the corrected model output could not be used as corrected initial 

conditions for subsequent model runs.  This limitation, however, could perhaps be 

overcome by the vertical extrapolation of surface level measurements.  Once a method 

for measurement extrapolation has been formulated, true four dimensional data 

assimilation for ozone modeling can be done. 

 

While we were unable to accomplish four dimensional data assimilation for ozone in this 

project, the results of this work show that there could be significant improvement to 

model results using such a procedure.  Moreover, this procedure can be used without 

modification to improve background concentrations for microscale modeling projects and 

to archive accurate ozone concentrations.  Lastly, statistical tests of the corrected model 

output can be used to evaluate the importance of individual monitoring stations, as well 

as to locate geographical regions where a model consistently simulates concentrations 

incorrectly.  Both of these tests are valuable because they can lead to the improvement of 

both the monitoring network and the model itself.  Therefore, a major advancement 

towards accurate air quality forecasting has been successfully completed by this study. 
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9  Future Work 
This project had two separate goals from its inception. The first was to progress towards 

providing accurate air quality forecasts, while the second was to develop a method by 

which the network of monitoring stations could be evaluated — one that would find 

which stations could be removed from the network without loss of quality to the 

measurement set.  While major steps were taken towards achieving both goals, more 

work is required before they will be completely usable.  In addition, there are other tests 

that can be done to further analyze the procedure developed here. 

 

Chemical transport modeling results need vast improvement before they can be used for 

air quality forecasting.  Model predictions can be improved upon by increasing the 

accuracy of the initial conditions for ozone.  Yet, before the initial conditions of ozone 

can be corrected, surface level measurements need to be extrapolated vertically.  In the 

troposphere, vertical mixing is a significant force, and therefore corrections made only in 

the surface layer would be lost within few model iterations.  This problem would be 

solved, however, if the ozone concentrations could be corrected in the three spatial 

dimensions by extrapolating surface level measurements vertically.  At that juncture, 

corrections could be made before each model run, as is done with meteorology, to 

complete a true four-dimensional data assimilation procedure.  Given the improvements 

made to model output in this project, however, FDDA promises to make vast 

improvements to model predictions of ozone. 

 

Using a four dimensional data assimilation procedure for ozone would correct the model 

indirectly.  Another way to improve model results is to improve the quality of the model 

inputs.  The quality of the emissions inventory is the most uncertain of model inputs.  

Since ozone is considered a secondary pollutant and not directly emitted to the 

atmosphere, the model will continue to produce inaccurate amounts of ozone if the 

concentrations of ozone precursors are inaccurate.  Therefore, using an assimilation 

approach similar to Dominguez and Russell [Dominguez and Russell, 2001] to improve 

emissions input to the model would be beneficial.  This does not negate the need for 

correcting ozone concentrations, as ozone is highly reactive and, thus, reactions that 
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destroy it would contribute significantly to NO2 concentrations, for example.  These 

products are important for both further ozone production and destruction.  Furthermore, 

using corrected meteorology input has also been shown to improve chemical transport 

model results [El Serafy et al. 2002; Lamarque et al., 2002].  Therefore incorporating 

several of these techniques would provide a powerful ozone prediction capability. 

 

In addition to aiding in more accurate air quality forecasts, this procedure could be used 

to provide government scientists with capabilities to determine which monitoring stations 

could be shut down without degrading the quality of the measurement network.  Such an 

analysis was started in this project, but could not be completed.  Thus, a full study to find 

each key site needs to be undertaken.  This will not, however, complete the test to find 

dispensable sites since a group of sites may exist such that, if one site from the group is 

removed, the others can accurately predict the missing measurement.  Conversely, if 

more than one is omitted, the remaining stations may not be able to predict the missing 

values accurately.  Therefore a detailed analysis of the network will need to be completed 

in order to find groups of stations that can safely be removed from the network. 

 

Further testing can also be done to better analyze the effectiveness of our procedure.  For 

example the last step of the procedure, where the full complement of measured data is 

subtracted from the corrected model output, can be changed for the situation when half 

the monitoring stations were used.  In this case, instead of subtracting the full 

complement, we could subtract just those values from the half of stations that were not 

used in the procedure.  This tests only those known values which were estimated by the 

procedure.  We can also test how sensitive the procedure is to errors in measurement by 

intentionally adding noise, or incorrect values, to the measurements.  In this way, a 

sensitivity analysis would be performed on the procedure itself.  Both these tests would 

provide further tests to the effectiveness and limitations of the interpolation and 

assimilation procedures. 

 

By developing a data assimilation procedure for ozone to work with a chemical transport 

model, significant progress has been made towards accurate air quality forecasts and 
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monitoring network evaluation.  Furthermore, while the progress made in this project was 

finite in both of its aims, much potential exists for its goals to be realized.  For air quality 

forecasting, a four dimensional data assimilation procedure will need to be developed by 

first extrapolating the surface level measurements vertically, and using these three 

dimensional measurements to correct model output over time.  Using techniques 

developed by other groups, in addition to ozone FDDA, will further enhance the quality 

of the model output and will likely lead to a high-quality air quality forecasting system. 

 

Suggestions for further testing of the procedure were also given.  These will aid in the 

finding of limitations of the procedure, as well as testing its effectiveness. 

 

Lastly, evaluating which monitoring stations can be removed from the network without 

degrading the quality of the set of measurements it provides will require a full sensitivity 

analysis of the network using the procedures developed in this study. This method will 

include finding key sites as well as groups of sites that can be removed from the network, 

with saving government money by shutting down surplus monitoring stations being the 

end result of this work. 
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Appendix A:  ADOM’s Gas Phase Chemistry Mechanism 

 Reactions Rate Constant 
(cm3 molecule s units) 

(R1) NO2 + hν → NO + O3 radiation dependent 

(R2) NO + O3 → NO2 + O2 2.2 x 10-12e-1430/T 

(R3) NO2 + O3 → NO3 + O2 1.2 x 10-13e-2450/T 
(R4) NO + NO3 → 2NO2 8.0 x 10-12e250/T 

(R5) NO2 + NO3 → N2O5 PT dependent 
(R6) N2O5 → NO2 + NO3 special function 

(R7) NO2 + NO3 → NO + NO2 + O2 2.5 x 10-14e-1230/T 

(R8) NO3 + hν → 0.15NO + 0.85NO2 + 0.85O3 + O2 3.29k1 
(R9) NO3 + HO2 → HNO3 + O2 2.5 x 10-12 

(R10) O3 + hν → 2OH (H2O dependent) special function 

(R11) NO + OH → HONO PT dependent 
(R12) HONO + hν → NO + OH 0.205k1 

(R13) NO2 + OH → HNO3 PT dependent 

(R14) HNO3 + hν → NO2 + OH radiation dependent 
(R15) HNO3 + OH → NO3 + H2O 9.4 x 10-15e778/T 

(R16) N2O5 + H2O → 2HNO3 1.3 x 10-21 
(R17) CO + OH → HO2 + CO2 special function 

(R18) O3 + OH → HO2 + O2 1.6 x 10-12e-940/T 

(R19) NO + HO2 → NO2 + OH 3.7 x 10-12e240/T 
(R20) NO2 + HO2 → HNO4 special function 

(R21) HNO4 → NO2 + HO2 special function 

(R22) O3 + HO2 → OH + 2O2 1.4 x 10-14e-580/T 
(R23) HO2 + HO2 → H2O2 + O2 (H2O dependent) special function 

(R24) H2O2 + hν → 2OH radiation dependent 

(R25) H2O2 + OH → HO2 + H2O 3.1 x 10-12e-187/T 
(R26) NO2 + H2O → HONO + HNO3 - NO2 4.0 x 10-24 

(R27) HNO4 + hν → NO2 + HO2 (1.0 x 10-4)k1 

(R28) HNO4 + OH → NO2 + H2O + O2 4.0 x 10-12 

(R29) SO2 + OH → SO4 + HO2 PT dependent 

(R30) HCHO + hν → 2HO2 + CO radiation dependent 
(R31) HCHO + hν → CO + H2 radiation dependent 
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 Reactions Rate Constant 
(cm3 molecule s units) 

(R32) HCHO + OH → HO2 + CO + H2O 1.0 x 10-11 

(R33) HCHO + HO2 → AHO2 1.0 x 10-14 

(R34) AHO2 + NO → ACO2 + HO2 + NO2 4.2 x 10-12e180/T 
(R35) AHO2 + HO2 → ACO2 + H2O + O2 2.0 x 10-12 

(R36) AHO2 + AHO2 → 2ACO2 + 2HO2 + 2O2 1.0 x 10-13 
(R37) ACO2 + OH → HO2 + H2O + CO2 3.2 x 10-13 

(R38) NO3 + HCHO → HNO3 + HO2 + CO 3.2 x 10-16 

(R39) ALD2 + OH → MCO3 + H2O 6.9 x 10-12e250/T 
(R40) ALD2 + NO3 → HNO3 + MCO3 1.4 x 10-15 

(R41) ALD2 + hν → MO2 + HO2 + CO radiation dependent 

(R42) ALD2 + hν → CH4 + CO radiation dependent 
(R43) MCO3 + NO2 → PAN 4.7 x 10-12 

(R44) PAN → MCO3 + NO2 1.9 x 1016e-13543/T 

(R45) MCO3 + NO  → MO2 + NO2 + CO2 4.2 x 10-12e180/T 
(R46) MO2 + NO → HCHO + NO2 + HO2 4.2 x 10-12e180/T 

(R47) CH4 + OH → MO2 + H2O 2.4 x 10-12e-1710/T 
(R48) C2H6 + OH → ETO2 + H2O 1.7 x 10-11e-1232/T 

(R49) ETO2 + NO → ALD2 + HO2 + NO2 4.2 x 10-12e180/T 

(R50) C3H8 + OH → R3O2 1.18 x 10-11e-679/T 

(R51) R3O2 + NO → 
0.03R3N2 + 0.46ALD2 +0.97NO2 + 
0.97HO2 + 0.49KET 4.2 x 10-12e180/T 

(R52) ALKA + OH → RAO2 2.0 x 10-11e-500/T 

(R53) RAO2 + NO → 

β1NO2 + β2NO + β3RAN2 + 
β4ALD2 + β5KET + β6ETO2 + 
β7MO2 + β8HO2 + β9R3O2 + 
0.06RAO2 

4.2 x 10-12e180/T 

(R54) ALKA + NO3 → HNO3 + RAO2 4.0 x 10-17 
(R55) RAN2 + OH → RAN1 + H2O 2.0 x 10-12 

(R56) RAN1 + NO → 
2.5NO2 - 0.5NO + 0.8HCHO + 
2.1ALD2 

4.2 x 10-12e180/T 

(R57) MO2 + MO2 → 1.4HCHO + 0.8HO2 + O2 1.5 x 10-13e220/T 

(R58) ETO2 + ETO2 → 1.6ALD2 + 1.2HO2 5.0 x 10-14 

(R59) R3O2 + R3O2 → 1.9ALD2 +0.28KET + 0.37HO2 5.0 x 10-14 
(R60) HO2 + MO2 → ROOH + O2 5.0 x 10-12 

(R61) HO2 + ETO2 → ROOH + O2 5.0 x 10-12 
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 Reactions Rate Constant 
(cm3 molecule s units) 

(R62) HO2 + R3O2 → ROOH + O2 5.0 x 10-12 

(R63) HO2 + RAO2 → ROOH + O2 5.0 x 10-12 

(R64) HO2 + MCO3 → ROOH + O2 5.0 x 10-12 
(R65) KET + OH → KO2 1.2 x 10-11e-890/T 

(R66) KO2 + NO → 
0.05RAN2 + 0.95NO2 + 0.94ALD2 
+ 0.94MCO3 

4.2 x 10-12e180/T 

(R67) KET + hv → MCO3 + ETO2 + H2O 2.6 x 10-4k1 

(R68) KET + NO3 → HNO3 + KO2 7.0 x 10-16 

(R69) KO2 + HO2 → MGLY + MO2 + H2O 3.0 x 10-12 

(R70) ETHE + OH → EO2 1.66 x 10-12e474/T 
(R71) EO2 + NO → NO2 + 2.0HCHO + HO2 4.2 x 10-12e180/T 

(R72) ALKE + OH → PO2 4.1 x 10-12e537/T 

(R73) PO2 + NO → NO2 + ALD2 + HCHO + HO2 4.2 x 10-12e180/T 

(R74) ETHE + O3 → 
HCHO + 0.4CHO2 + 0.12HO2 + 
0.42CO + 0.06CH4 

1.2 x 10-14e-2633/T 

(R75) ALKE + O3 → 
0.525HCHO + 0.5ALD2 + 
0.2CHO2 + 0.2CRO2 + 0.23HO2 + 
0.215MO2 + 0.095OH + 0.33CO 

7.8 x 10-14e-2105/T 

(R76) CHO2 + NO → HCHO + NO2 7.0 x 10-12 

(R77) CHO2 + NO2 → HCHO + NO3 7.0 x 10-13 
(R78) CHO2 + H2O → ACO2 4.0 x 10-18 

(R79) CRO2 + NO → ALD2 + NO2 7.0 x 10-12 

(R80) CRO2 + NO2 → ALD2 + NO3 7.0 x 10-13 
(R81) CRO2 + H2O → ACTA 4.0 x 10-18 

(R82) EO2 + EO2 → 2.4HCHO + 1.2HO2 + 0.4ALD2 5.0 x 10-14 

(R83) PO2 + PO2 → 2.2ALD2 + 1.2HO2 5.0 x 10-14 
(R84) HO2 + EO2 → ROOH + O2 3.0 x 10-12 

(R85) HO2 + PO2 → ROOH + O2 3.0 x 10-12 

(R86) SO2 + CHO2 → SO4 + HCHO 7.0 x 10-14 
(R87) SO2 + CRO2 → SO4 + ALD2 7.0 x 10-14 

(R88) ALKE + NO3 → PRN1 1.26 x 10-13 
(R89) PRN1 + NO2 → PRN2 6.8 x 10-12 

(R90) PRN1 + HO2 → PRPN + O2 3.0 x 10-12 

(R91) PRN1 + NO → 2NO2 + HCHO + ALD2 4.2 x 10-12e180/T 
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 Reactions Rate Constant 
(cm3 molecule s units) 

(R92) CHO2 + HCHO → OZID 1.36 x 10-14 

(R93) CHO2 + ALD2 → OZID 1.36 x 10-14 

(R94) CRO2 + HCHO → OZID 1.36 x 10-14 
(R95) CRO2 + ALD2 → OZID 1.36 x 10-14 

(R96) AROM + OH → 0.84TO2 + 0.16CRES + 0.16HO2 1.52 x 10-11 

(R97) TO2 + NO → 
NO2 + HO2 + 0.72MGLY + 
0.18GLYX + DIAL 4.20 x 10-12e180/T 

(R98) GLYX + hv → PROD 8.00 x 10-3k1 

(R99) GLYX + OH → HO2 + 2.0CO + H2O 1.15 x 10-11 

(R100) MGLY + hv → MCO3 + HO2 + CO 1.90 x 10-2k1 

(R101) MGLY + OH → MCO3 + CO + H2O 1.73 x 10-11 

(R102) CRES + OH → 
β12HO2 + 0.9ZO2 + 0.9TCO3 - 
0.9OH + β13NO2 

4.25 x 10-11 

(R103) NO3 + CRES → HNO3 + β10NO2 + β11OH 1.00 x 10-11 
(R104) OH + DIAL → TCO3 + H2O 2.80 x 10-11 

(R105) TCO3 + NO2 → TPAN 4.70 x 10-12 

(R106) TPAN → TCO3 + NO2 1.95 x 1016e-13543/T 

(R107) TCO3 + NO → 
NO2 + 0.92HO2 + 0.89GLYX + 
0.11MGLY + 0.05MCO3 + 0.95CO 
+ 0.79CO2 + 2.0ZO2 

4.2 x 10-12e180/T 

(R108) ZO2 + NO → NO2 4.2 x 10-12e180/T 

(R109) DIAL + hv → 0.98HO2 + 0.02MCO3 + TCO3 1.00 x 10-2k1 

(R110) HO2 + TO2 → ROOH + O2 4.00 x 10-12 

(R111) HO2 + TCO3 → ROOH + O2 4.00 x 10-12 

(R112) HO2 + ZO2 → ROOH + O2 4.00 x 10-12 
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