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Abstract

I answer questions regarding the relationship between the intellectual diversity of an in-

dividual’s collaborations and their impact and productivity. I propose two new measures

of intellectual diversity: coauthor diversity score and group intellectual diversity. Coau-

thor diversity score measures how different an author is from their immediate collabora-

tors. Group intellectual diversity measures how diverse a group is as a composite of each

members difference to every other member. These measures allow me to test hypotheses

regarding the relationship between intellectual diversity and career outcomes. I conduct

two case studies, using data from the Web of Science database, to examine the measures

in biomechanical modelling and nanotechnology. I bootstrapped negative binomial regres-

sions with squared interaction terms for diversity measures to test for relationships between

individual and group diversities against career citations. Increasing diversity is associated

with more citations until an maximum after which citations exhibit negative returns as di-

versity increases. This behaviour is consistent in both case studies. I use a bootstrapped

linear regression to show that individual and group diversities have a significant effect on

publication rates in biomechanical modelling, but not in nanotechnology.
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1

Introduction

Researchers in the sociology of science, organizational management, and social psychology

have been examining predictors of innovation and productivity in the workplace for decades

(Hülsheger, Anderson, and Salgado 2009; Kern 2011). With the shift towards knowledge-

based economies, the ability to innovate is of paramount importance to companies and

governments who have devoted billions of dollars and other resources to trying to improve

the quality of decision-making processes by increasing diversity (Phillips 2014).

With all the time and money devoted to increasing diversity, it is important to under-

stand what forms of diversity matter and the conditions and outcomes for which that diver-

sity is helpful, unhelpful, or has no effect. Hülsheger, Anderson, and Salgado (2009) note

that different forms of diversity have different effects in different contexts. For example,

this means that the positive effect of gender diversity in firm performance may not be the

same if one is looking at the publishing speed of a lab group. Diversity is too general a

concept to expect it to act consistently in all contexts. The literature on diversity and col-

laboration has focused primarily on cohesive groups with clearly defined boundaries and

high-level measures of diversity for groups. This has been to the detriment of the study of
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diffused groups and the effects of individual diversity with respect to the rest of the group.

Given how general the concept of diversity is, and how many different outcomes for

group collaborations one might be interested in, it would be infeasible to address all forms

of diversity and outcomes. For the scope of this analysis, I will focus on only one form

of diversity and its association with two outcomes. I will be examining the relationships

between a diversity of intellectual capital, impact, and productivity. To address the afore-

mentioned gaps in the literature, I focus on intellectual diversity as a means of highlighting

graduated individual differences between direct collaborators and loose groups of coau-

thors in publishing in academic fields1 to represent informal groups consisting of direct

and indirect collaborations.

To perform my analysis, I introduce two measures of intellectual diversity: coauthor

diversity score and group intellectual diversity. An individual’s coauthor diversity score

(CDS) is a summary measure of how different someone is from the total of their formal

collaborators. For a collection of authors, group intellectual diversity is a summary measure

of how different each member is to every other member. I focus on these measures to

examine questions about diversity occurring within direct and indirect collaborations to

identify possible differences and similarities.

1In this thesis, I will be using several terms that have ambiguous meanings. I will endeavour to use them
as precisely and consistently as possible in the following ways: 1) I use “discipline” to refer large bodies
of research roughly akin, but not necessarily identical, to university departments: Sociology, Biomechanics,
Physics, etc. 2) I use “field”to refer to specific areas of research within a discipline: Biomechanical modelling,
nanotechnology, environmental GIS, etc. 3) I use “group” to refer to the clusters of authors identified by
modularity class in a field’s coauthorship network. 4) I use “researchers” and “authors” interchangeably.
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Motivation

In this section, I will motivate my research with an examination of two particularly salient

examples of informal collaborative groups. The first is the Linux kernel, a massive Free

and Open-Source Software (FOSS) project that underlies much of the technology that we

rely upon. Individuals working on the same files may be working for competing companies

in different countries at completely different points in time. They may never even commu-

nicate with one another. Meanwhile communication and organization is managed through

hundreds of mailing lists, some with hundreds of messages every day. The second example

is the European Organization for Nuclear Research (CERN). While membership at CERN

may be clear, formal collaboration happens at level of research teams: not all members of

CERN collaborate with each other, despite sharing the same space, equipment, and field

of study. Collaboration within both of these contexts involve both formal collaborations,

where individuals with different skill sets will work together to solve a problem, and infor-

mal collaboration, where individuals will observe the efforts of others and learn from them

or build on their work. In this thesis, I am focused on measuring the effects of diversity

within these two kinds of collaborations.
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Large, diffuse projects have several characteristics that distinguish them from the co-

hesive or monolithic groups commonly examined in the literature. Goals are broader and

less specific. Membership is less strictly regimented. Organization is more decentralized.

Collaboration comes in varying degrees and flavours. Formal collaboration is often specific

to a particular subset of the project. However, a less formal collaboration also takes place

where authors learn from and build on the work of others without directly interacting with

them.

These distinctions are important because nearly every paper looking at diversity has

examined clearly defined groups of people: research labs, project teams, and boards of

directors (Dayan, Elbanna, and Di Benedetto 2012; Kern 2011; Uzzi et al. 2013). No matter

the level of analysis, groups had clear boundaries and goals. Even groups that are far too

large and diffuse for everyone to work together, like companies with hundreds or thousands

of employees, are treated as monolithic entities where diversity and collaboration reach all

members equally. While the examination of diversity and collaboration in small formal

groups is important, they are not the only kinds of groups where diversity and collaboration

take place. I will focus on large and diffused groups that contain both formal and informal

collaboration because some of the leading edge of science and software development occurs

in such places. Two such groups are the developers of the Linux kernel and the scientists

at CERN.

The Linux kernel is the underlying code that manages the interaction between an oper-

ating system’s applications and the physical hardware that comprises the computer (Foun-

dation 2013). Specifically, it manages these interactions for every distribution of the Linux

operating system, of which there is no official count. However, Distrowatch.com indicates

that there are at least 863 distributions of Linux (Distrowatch 2017).
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The Linux kernel is an enormous Free/Open-Source Software (FOSS) project with reg-

ular 2-3 month releases, each with over 10,000 patches, containing the work of more than

1100 developers from over 225 corporations (Foundation 2013). Between 2005 and 2013,

almost 10,000 individual developers from over 1000 companies contributed to the kernel

(Foundation 2013). At over 13 million lines of code, the Linux kernel is among the largest

open source projects in existence.

Given the sheer scope of the project, communication is key to organizing the pro-

cess. The main mailing list, the Linux Kernel Mailing List, was seeing 440 emails per

day in 2010, and a number that has been consistently growing larger since 1995 (Menzies,

Williams, and Zimmermann 2016). However, there are 200 more mailing lists devoted to

sub-systems of Linux, some seeing as many as 30 messages per day.

Started as a personal project by Linux Torvalds in 1991, Linux distributions have be-

come fundamental to the current state of technology. It runs not only on computers, but

smart phones, routers, web servers, supercomputers, TVs, refrigerators, tablets, stock mar-

kets, nuclear submarines, and power stations, to name a few (The Linux Foundation 2017).

As of 2013, 81% of smartphones ran on Linux. In 2011, 64% of servers and 92% of super-

computers ran on Linux (The Linux Foundation 2017). Linux is so important to so many

different technologies that the kernel is being actively developed by companies that are

nominally in competition with each other: Red Hat and Oracle, Fujitsu and HP, AMD and

Intel, and so on (McLevey and Graham n.d.).

In a similarly massive scale in terms of numbers of collaborators, but far larger in budget

than the Linux kernel, the European Organization for Nuclear Research, commonly known

as CERN, consists 20 European Union Member States with 2531 internally funded staff,

13,794 fellows, associates, students, users, and apprentices. These members come from
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approximately 608 institutes and universities from around the world as of 2015 (European

Organization for Nuclear Research 2015).

Initially founded in 1952 to establish a world-class European research organization in

fundamental physics, it has grown to include many areas of particle physics as our under-

standing has deepened (CERN 2017a). By bringing together the resources of its member

states and organizations, CERN is able to construct equipment that would be far too expen-

sive for any one group alone, such as the Large Hadron Collider (LHC), a 27-kilometre ring

of superconducting magnets, buried under the French-Swiss border, that must be cooled to

-271.3◦C (CERN 2017b). Constructing the LHC cost approximately $4.74 billion dollars,

and operating costs run at about $1 billion dollars per year (Knapp 2012). Since these costs

would be inordinately high for a single nation, the members of CERN have pooled their re-

sources and collaborated to create the organization, facilities, and equipment that facilitates

high-energy particle physics that could not otherwise be done.

Just as the construction and funding of the LHC was a massive work of collaboration,

the projects conducted under CERN’s umbrella are likewise large. One paper coming out

of CERN set the record for the highest number of authors, 5,154; its 33 pages devote 9

pages to the research and 24 pages to listing the authors and their institutions (Castelvecchi

2015).

While the contexts, motivations, skills, and actors in these two examples are very dif-

ferent, they share several important similarities that highlight the motivation behind my

proposed measures for diversity. They are projects too massive for every contributor to

meaningfully collaborate with every other contributor. Organization of individual projects

is impossible for a centralized decision-making body, so projects are decided at a much
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lower level while organization serves to ensure cohesiveness, allocate resources, and re-

solve conflicts. Even after the dividing the project into smaller sub-units, such as papers

or patches, the number of contributors is still enormous (European Organization for Nu-

clear Research 2015; The Linux Foundation 2017). They require contributors with a wide

variety of backgrounds and expertise for success. Group membership boundaries are very

porous. Individual sub-projects share resources and an intellectual space, either physical

or digital. Sub-projects may or may not be directly related to each other, but they all con-

tribute in some way to the shared goals of the project. These aspects are important because

they indicate the presence of both direct collaboration to complete sub-projects and indirect

collaboration to further the overall goals of the project.

I argue that the current literature on group projects does not adequately describe the

conditions under which large, uncohesive projects like CERN or the Linux Kernel operate.

I further argue that CERN is not radically different than other academic fields in principle,

but rather, it is a more visible and scaled up example of academic research in scientific

fields. Its projects are larger, more expensive, and higher profile, but much of the same

mechanisms are in effect in other fields at a smaller scale. CERN, at its core, is a resource-

sharing space for the study of particle physics (CERN 2017a). While many of the experi-

ments being done at CERN are related to each other, and often multiple research teams will

use data from the same experiments, its major difference from the normal science of less

expensive fields of study is that researchers are working in the same geographical location

and using the same equipment. Even this is not so different from how a university operates,

where different researchers and their teams may use the same equipment and spaces for

different projects in the same general field of study. The distinction is not one of form, but

of scale.
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This similarity is important because it allows one to study academic fields more gener-

ally. This allows researchers to make use of the data, methods, and tools that have already

been developed for scientometrics and bibliometrics. While CERN is certainly one of the

most recognizable cases, the scale of the research and the number of authors on each paper

has consequences that make analysis more difficult. Instead, I will focus on two fields, also

in the natural sciences, but more manageable in scope. I will be studying biomechanical

modelling and nanotechnology.

In these cases, direct collaboration is quite easy to parse out as coauthorship levels are

much more reasonable. Indirect collaboration is a feature of being present and aware of

the field. While the contributors of the Linux kernel are working to improve the kernel,

everyone at CERN is loosely working to advance the knowledge of particle physics. In

both of these cases, members of the field are working together towards the poorly defined

goal of “improving the kernel” or “advancing knowledge”. One’s work is often contingent

on other people doing their own jobs well and learning from them, even if not working

with them. Owen-Smith and Powell (2004) refers to this as a kind of spillover effect from

“leaky” collaborations. Here, I draw a connection to the words of Sir Isaac Newton, “If

I have seen further, it is by standing on ye shoulders of giants” (Newton 1676). Such

massive projects as the ones I have described are advanced not by individuals, or even a

team of individuals, but many groups and individuals all working independently, and yet

building on each others’works.
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Literature Review

The literature on diversity in groups at the very broadest level tends to focus on two major

aspects. The first is the form of diversity. The second is the outcome that the authors expect

to be associated with the specific form of diversity.

I will examine the prior work that has been done to define and organize diversity. I will

then summarize the several major theories and hypothesized mechanisms that suggest how

diversity may have an effect on group outcomes, focusing on creativity as a mediator of

the outcomes that I am interested in. While the outcomes I am focusing on in this paper

are impact and productivity, I do not hypothesize a direct relationship between diversity of

intellectual capital and these outcomes. Rather, the most common mechanism described

in the literature is the effect of diversity on the creative and decision-making processes of

group work. Having summarized the literature on diversity and creativity, I will explain

how one would expect diversity to then interact with impact and productivity: mediated by

its effect on creativity.

Because I am proposing two new measures of diversity, I will summarize previous

attempts to measure diversity and explain why they do not meet the needs that my measures
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seek to fulfill.

3.1 Defining and Organizing Diversity

The literature on the benefits of diversity on innovation in groups spans decades and dis-

ciplines (Hülsheger, Anderson, and Salgado 2009; Phillips 2014). In this section, I will

summarize some of the major attempts to define and organize the concept of diversity.

When it comes to solving large and complex problems, diversity of expertise would ap-

pear to be superior over homogeneity. This can be seen in how nearly every team for such

problems is organized. Designing an airplane takes knowledge of aerodynamics, propul-

sion, materials, structural mechanics, and electronics. Leading an army takes knowledge

of strategy, supply, logistics, geography, and more. Building a house takes knowledge

of plumbing, wiring, insulation, structural loads, aesthetics, and more. While there is of

course homogeneity within these teams, the existence of these different roles highlights that

specific forms of diversity are desired. It is unreasonable and inefficient to expect a single

person to acquire the necessary expertise in every necessary area. The logical conclusion is

to create teams of individuals who are experts in their own disciplines and synthesize their

efforts to create the final product, solution, or plan.

Diversity as a concept is very general. When one talks about diversity, it can easily

be a diversity of opinions, ideas, cultures, genders, or socio-economic statuses. While this

generality is one of the reasons it is so interesting to study, it also means that one must be

especially careful about how one defines and measures diversity.

Researchers have consistently distinguished between two varieties of diversity: infor-

mational diversity — education, occupation, project background — and social category or

sociodemographic diversity — race, gender, age, socioeconomic status — (Dayan, Ozer,
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and Almazrouei 2017). When operationalizing these forms of diversity, especially social

category diversity, researchers often rely on single-choice categorical categorizations. For

example, someone is a single race, ethnicity, or nationality. While simple and easy to

comprehend — two things are either the same or they are different — it misses an op-

portunity for improving the granularity of our measures of diversity. While applicable to

both informational and sociodemographic diversity, this is easier to see when discussing

informational diversity. Suppose two people were to attend the same party. The first per-

son stays for the first two hours. The second arrives an hour late, but stays for four hours.

If one were to ask them what happened at the party, they would both have some pieces

of information that were different, and some that were the same. If one were to ask both

of them together what happened, one would expect a fuller image of what happened than

if one talked to them individually. This spectrum of diversity is an often-overlooked and

under-developed area of research. Some research has gone into dyadic diversity measures,

of the kind I have just described, however these are much rarer and their use in empirical

studies is still very young (Soós and Kampis 2010).

Sociodemographic diversity, as the name suggests, is diversity measured along demo-

graphic axes such as gender, age, race, or socioeconomic status. This particular form of

diversity has the most debate about its actual meaning and the mechanisms by which it

interacts with group outcomes. Dayan, Ozer, and Almazrouei (2017) suggests that de-

mographic diversity is a kind of essentialist line of reasoning, relying on stereotypes and

preconceived notions. Harvey (2013) suggests that racial diversity is a valid proxy for cul-

tural diversity, or a diversity of perspectives and ways of viewing the world, since racial

experiences colour and influence our experiences. Both Dayan and Harvey would argue

that the important kind of diversity is that which arises from differences in information or
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approaches to problem solving. Phillips (2014) argues takes a different approach, argu-

ing that sociodemographic diversity is itself an important feature of diversity because its

salience encourages people to make fewer assumptions of shared information, resulting in

greater information sharing.

Some researchers identify differences in perspectives, attitudes, and values as impor-

tant sources of deep level, or psychological, diversity (Harvey 2013; Ziller, Behringer, and

Goodchilds 1962). However, these are distinguished from informational diversity, or di-

versity resulting from such things as differences in education, occupation, or experience,

which instead serve as proxies for deep diversity (Mannix and Neale 2005; Milliken and

Martins 1996). The distinctions between informational and deep diversity are much finer

than the distinction between informational and sociodemographic diversity.

Based on this very rudimentary taxonomy, one might suggest different mechanisms and

effects for such forms of diversity as race (sociodemographic), education (informational),

and political leanings (deep). Unfortunately, this section of the literature is particularly

fractured and inconsistent. No clear consensus seems to have arisen regarding a proper

taxonomy of forms of diversity. Furthermore, it remains to be seen whether a rigorous

taxonomy of diversity would provide meaningful and useful framing for research.

3.2 Defining Creativity and the Creative Process

Although I intend to analyze the relationships between intellectual diversity and an author’s

impact and productivity, the proposed mechanism by which diversity would have an effect

on these two outcomes is mediated by its effect on the creative process. I will first sum-

marize some of the major theories about what creativity is. I will then explain the creative

process and the proposed means by which diversity may help or hinder it.
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Creativity is generally thought of as being difficult to define, yet it remains a valued

quality in academic thought and work. Mishra et al. (2013) conducted a review of 90

peer-reviewed articles specifically relating to creativity and found that only 38% of them

provided a definition of creativity. Medina (2012) argues that not only can creativity not

be defined, but one should not even try because it is “a spirit, a gift, a pleasure, and a pain.

It is different for you than it is for me, and it catches us all in the most unexpected of

places.”Howard, Culley, and Dekoninck (2008) identify a group of psychologists that they

call romantics: researchers who view creativity as a mysterious, spiritual, or subconscious

process, whom they contrast with the more productive and useful non-romantics who view

the process of creativity as something concrete that can be studied and learned. There is

a thriving field of study which attempts to do exactly what Medina says is impossible:

define and even measure creativity. Heinze (2012) argues that creativity is characterized

by a particular work being both relevant and novel. Scientific creativity takes the form of

work that is scientifically relevant and original (Heinze, 2012). Heinze alludes to the earlier

work of Polanyi and Grene (1969) that argues that science is relevant if it is both plausible

and of scientific value. By this, he means that a scientific work should be grounded within

the established knowledge of the field and provide something to other members of the

community. To summarize, a scientific work that is creative should bring new knowledge to

the table, that knowledge should make sense given the theories or evidence within the field,

and it should provide something of value to the other members of the scientific community.

With a definition of creativity as work that is both relevant and novel, one can begin

to examine the forces that drive the expression of creativity. One of the recurring themes

in the research on creativity indicates that there is a constant tension between novelty and

conformity (Kuhn 1970; Polanyi and Grene 1969; Uzzi et al. 2013). Polanyi and Grene
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(1969) argues that the need for science to be both plausible and of scientific value acts to

impose conformity, whereas the need for works to be novel encourages breaking from that

same conformity. Uzzi et al. (2013) attempt to address this exact pressure towards both

conformity and novelty in their bibliometric study. They argue that creativity is produced

primarily with original combinations of pre-existing knowledge to produce new ideas (Uzzi

et al. 2013). As a result, creativity poses the challenge of encouraging scientists to cross

disciplinary boundaries to make connections that no one has thought of before (Uzzi et al.

2013). The requirement that the resulting knowledge be both plausible and scientifically

relevant further complicates the inter-disciplinary challenges; Uzzi et al. (2013) present

the historical example of Sir Isaac Newton presenting his theory of gravity using classic

geometry, rather than his newly invented calculus, so that his audience would be able to

understand the reasoning and importance of his ideas: the plausibility and scientific value

of the theory of gravity. If scientists are becoming more specialized as fields of study

grow ever larger, then individual scientists will have greater challenges bridging knowledge

silos (Uzzi et al. 2013). The natural extension of this specific challenge is the growth of

interdisciplinary teams of scientists. If individual scientists are too specialized to effectively

bridge disciplines in a productive manner, then teams of scientists that are experts within

their own fields may be brought together to solve a complex problem that would benefit

from a diversity of ideas and methods. In fact, there is evidence that this is one of the

factors driving the recent increase in co-authorships (Groboljsek et al. 2014).

If one accepts the tension between conformity and novelty as a driving force behind the

expression of creativity, one can then attempt to find measures of that expression. Uzzi et

al. (2013) provide a strong argument for a specific measure of creativity in a study of meta-

data on 17.9 million papers. They determined the probability that two citations from two
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journals would appear in the same bibliography (Uzzi et al. 2013). Based on this, they cre-

ated a distribution of co-citations for every pair of citations in a paper’s bibliography (Uzzi

et al. 2013). From this distribution, they derived two summary statistics: the 50th percentile

z-score, which they argued provides an indication of the conventionality of the bulk of co-

citations, and the 10th percentile z-score, which provides an indication of the novelty of a

paper’s co-citations (Uzzi et al. 2013). The authors then split papers into four categories:

high novelty and high conventionality, high novelty and low conventionality, low novelty

and high conventionality, and low novelty and low conventionality (Uzzi et al. 2013). They

then tested whether these categories predicted whether a paper would be a “hit” paper —

be in the top 5% of received citations over an 8-year period — and found that papers were

hit-status 9.11%, 5.33%, 5.82%, and 2.05% for each of the categories respectively (Uzzi et

al. 2013). To summarize, having the bulk of one’s citations being highly conventional and

introducing a few highly unconventional papers almost doubles the probability of a paper

being in the top 5% of received citations over the next best citation pattern. It is important

to note that while the improvement is dramatic, relatively speaking, it is still not a sure-fire

way to improve citation count. Authors must still synthesize new information from con-

ventional and non-conventional sources in a meaningful and productive form. Thus, one

sees evidence that a diversity of ideas, couched in the established wisdom of a scientific

field, will on average produce more creative papers.

This understanding of citations being indicative of creativity is not isolated to Uzzi

et al. (2013). Collins (1998) argues that intellectual creativity results from combining

previous knowledge and that references in a paper are a rough indication of the cultural

capital that the paper draws upon. In this case, Collins (1998) is using cultural capital to

mean the collection of intellectual and contextual resources that allow scientists working in
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a specific field of study to build knowledge and is a necessary requisite for creative work.

Like Uzzi et al., Collins (1998) identifies the tension between novelty and relevance, using

the example of Einstein’s theory of general relativity in Hellenistic Greece; no matter how

novel something is and how well it explains evidence, if its audience can not appreciate

it, it won’t be taken up by the community. While the theory of relativity would have been

novel, it would have had no value to the people of the time because it would answer no

questions that they were asking and provide no input into discussions they were having.

Kuhn (1970) uses a similar definition creativity for his conception of a paradigm. A

paradigm is an achievement that is “sufficiently unprecedented to attract an enduring group

of adherents away from competing modes of scientific activity. Simultaneously, it was

sufficiently open ended to leave all sorts of problems for the redefined group of practition-

ers to resolve” (Kuhn 1970). In short, a paradigm is both novel and relevant to the rest

of the community by providing a framework for the rest of the community to base their

future work on. Paradigms provide a common language for future work while also indi-

cating fruitful avenues of research (Kuhn 1970). In this way, Kuhn’s paradigms drive both

the conformity and novelty of future works, which would explain their central position in

intellectual networks.

Leahey and Moody (2014) further reinforce this definition of creativity, arguing that

creativity in academic science is driven when material from one domain “inspires or forces

fresh thinking in another”, where domains of interest are academic disciplines or sub-

disciplines. The recombination of previous work in new ideas produce “good ideas, higher

quality output, and serve as a foundation for innovation” (Leahey and Moody 2014).

While many of the theories I have just described do a good job of covering the ideas

behind creativity, they do less well at describing the nuts and bolts of how creativity works
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as a process. It is important to understand how creativity works if one wants to study it.

While I have laid out an outline for what constitutes creativity, how one produces creativity

is just as important. Just as many authors have attempted to tackle the problem of defining

creativity, others have attempted a similar task of defining and categorizing the creative

process and its stages. Howard, Culley, and Dekoninck (2008) summarizes a small subset

of two different literatures — engineering and cognitive psychology — and in doing so,

identifies 23 different formulations of the creative design process ranging from 1967 to

2006. Howard, Culley, and Dekoninck (2008) were attempting to identify an overarching

theme to summarize and highlight the often synonymous definitions of the many models

that came before, and perhaps ironically, in doing so they added a 24(ˆ{th}). Howard,

Culley, and Dekoninck (2008) identifies the following phases:

1. Analysis Phase: a problem is identified, its scope is defined, and information is gath-

ered.

2. Generation Phase: ideas for possibilities are generated.

3. Evaluation Phase: the ideas generated earlier are compared and evaluated to find the

one most suitable based on the salient criteria of the circumstances.

4. Communication / Implementation Phase: the chosen idea is put into action.

The general idea behind this process is that for a given problem, a group must first

identify it, define it, and gather all the relevant information. They then explore the possi-

ble solution space for this problem, generating as many ideas as possible, ideally without

winnowing any of them out at this stage (Howard, Culley, and Dekoninck 2008). Once a

critical mass has been reached, the group must make a decision. Using their judgement,
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they must identify which of the ideas generated is best. This will require both evaluation

and negotiation of different values and perceptions. Finally, once an idea has been decided,

it must be enacted.

This holistic approach to the creative process argues that creativity is more than just the

generation of ideas, but also the ability to choose the best ideas from the pool of possibility

and carry it out. This is how one arrives at a creative final product. A failure at any point

in this process is a failure to produce a creative output.

3.3 Explaining How Diversity Interacts with the Creative

Process

It is through the creative process that researchers have primarily focused their efforts on

identifying causal mechanisms between diversity and the outcomes of group collabora-

tions. In this section, I will first identify some of the experiments from social psychology

that attempt to identify these mechanisms. I will then explore the body of literature from

organizational theory, engineering, and economics.

Phillips (2014) summarizes some of the recent work in social-psychological experi-

ments on diversity and creativity to highlight the underlying mechanisms.

In a 2006 experiment, two different kinds of three-person groups were given a murder-

mystery task. Some groups were made of all white students, while others were two white

students and a nonwhite student. All group members shared a common for of information,

while individual members were given important clues that only he or she knew. All of

their combined information was needed to solve the mystery. Thus sharing information

during the discussion was key to solving the murder. Groups with racial diversity performed

18



MA Thesis - Alexander Graham University of Waterloo - Sociology

significantly better than homogenous groups. Phillips (2014) argues that this is because

being with people similar to ourselves leads us to believe we all hold the same information

and share the same perspective, slowing down the creative process.

In a 2013 experiment, participants were asked to identify themselves as either Republi-

can or Democrat and then read a murder mystery and decide who they believed had commit-

ted the crime. Afterwards, participants were asked to write an essay communicating their

perspective to another group member who disagreed with their opinion, but with whom

they would need to come to an agreement. While everyone was told to convince their part-

ner of their position, half were told that their partner was of the opposing political party and

the other half were told that their partner was of the same party. Participants who were told

that they had to convince a member of the same party prepared less well than participants

who were told to convince a member of the opposite party. According to Phillips (2014),

this is because disagreement from someone different than us prompts us to work harder.

When someone thinks that another person does not share the same perspective, they per-

ceive additional hurdles to consensus and work harder to build a stronger case for their own

position.

Phillips (2014) argues that these mechanisms and benefits extend into scientific re-

search, citing a study of 1.5 million papers from Thomson Reuter’s Web of Science which

found that papers written by ethnically diverse groups were associated with more citations

and higher impact factors. Furthermore, citations and impact factor were positively asso-

ciated with a greater number of author addresses, or geographical diversity, and a larger

number of references, or intellectual diversity (Phillips 2014).

While Phillips paints a rosy picture of the clarity and consistency of the benefits of di-

versity, a wider review of the literature reveals a messier picture. The effects of diversity on
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creativity have been mixed in the past. Many studies have indicated positive relationships

between the two, while many others have indicated the opposite.

Dayan, Ozer, and Almazrouei (2017) identify a body of literature on the effects of team

diversity on effective functioning of New Product Development teams as being entirely

inconsistent and rife with contradictions. In their meta-analysis of 40 years of research,

Hülsheger, Anderson, and Salgado (2009) identify a small positive relationship between

job-diversity and innovation that was significant and a negative, but statistically insignifi-

cant relationship between background diversity and innovation. Conservatively, they con-

cluded that they could not say that their hypotheses relating diversity and innovation were

supported (Hülsheger, Anderson, and Salgado 2009). While this seems somewhat damning,

it is not the whole picture. Dayan, Ozer, and Almazrouei (2017) actually argue that the in-

consistency is due to several underlying mechanisms that often go unexamined. They argue

that there are two main categories of diversity, functional and demographic, with opposite,

non-linear relationships with diversity (Dayan, Ozer, and Almazrouei 2017). Thus, one

should expect conflicting results if comparing studies using different forms of diversity, or

incorrect model formulations. Harvey (2013) also described an inconsistent literature and

makes a similar argument by identifying deep-level diversity that represents differences of

perspectives, and although not explicitly, by extension she suggests a shallow-level diver-

sity that does not lead to differences in perspectives. Harvey (2013) identifies divergent

creativity and convergent creativity: in short, the processes underlying the generation and

evaluation phases identified by Howard, Culley, and Dekoninck (2008) respectively. A con-

sensus seems to be forming in the literature, indicating that diversity has both positive and

negative effects on creativity depending on the stage of the creative process. In particular,

diversity may help produce a wider range of ideas, thus potentially generating a better or
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more suitable idea, but it may hinder the ability of groups to select an idea from the wider

range, slowing down the process.

When it comes to the generation of ideas and exploring possibilities, a diversity of per-

spectives is beneficial. When it comes to reaching a decision from a wide array of options,

diversity is detrimental. Richard (2017) claims that diversity improves the quality of group

decision-making, the consideration of non-obvious alternatives, and making better judge-

ments in novel situations. At the same time, he argues that diversity carries costs that make

reaching consensus more difficult and reduces efficiency (Richard 2017). Richard (2017)

found that companies that were trying to downsize found racial diversity detrimental, while

companies trying to grow found it beneficial.

Similarly, Harvey (2013) concludes that when the creativity of a group is evaluated

as a product of divergent thinking — the number, flexibility, and originality of ideas —

diversity has a well-established beneficial relationship. When the creativity of a group is

evaluated as a product of convergent thinking — a single creative output — the relationship

becomes much less clear with contradictory results in the literature (Harvey 2013). This

distinction is important. If one is evaluating creativity purely based on divergent thinking,

one is stopping half way through the creative process and ignoring the rest. Creativity is

not only producing a wide range of different ideas, but also being able to evaluate which

ideas is best suited to the circumstances and then implementing it.

Dayan, Ozer, and Almazrouei (2017) found that functional diversity, a diversity of in-

formation relevant to a task, had an inverted U-shaped relationship with the creativity of

products developed by groups. Conversely, demographic diversity, a diversity of social

categorical variables like race, gender, and age, had the reverse: a U-shaped relationship.

These relationships can be seen visually in Figure 3.1.
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Figure 3.1: Example of Stirling’s Interaction Matrices (Stirling 2006).
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Where the previous authors have examined diversity by looking at the characteristics of

individuals, Owen-Smith and Powell (2004) highlights another form of diversity that relates

to organizations. They measure organizational diversity in Boston biotechnology groups as

differences in the forms of organizations that collaborate, whether they be universities,

private or public firms, but also in their missions (Owen-Smith and Powell 2004). While

their definition of diversity has little bearing on this research, their ideas of the effects

of diversity are particularly interesting. Owen-Smith and Powell (2004) argue that diverse

networks of organizations serve as loci of innovation, where rapid innovation takes place as

a result of fast learning, ease of access to information, and what they refer to as “spillover”

effects of leaky collaborations. Owen-Smith and Powell (2004) examines different kinds

of relationships between different actors, finding that when public research organizations

anchor collaboration networks, there are spillover effects: organizations not involved in

the collaborations still benefit from them because the information is visible to the whole

network. This is exactly the kind of indirect collaboration that motivates part of this study.

3.4 Defining and Motivating Impact

With working definitions of diversity and creativity, and a literature that suggests several

reasons that the first should affect the latter, I will explain the first group collaboration

outcome that I am interested in and the means by which creativity is expected to have an

effect on it: impact. I will be using impact in a neutral manner, without judging whether it

is negative, positive, or a combination of the two. Any measure capable of differentiating

between the two would be beyond the scope of this paper.

Garfield (2006) first suggested the idea of an impact factor in 1955 and published the
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Science Citation Index in 1961. Since then, journal impact factors have been used to mea-

sure the importance, reach, or perhaps most simply, the impact of journals based on the

likelihood that articles published in them will be cited. The reasoning is quite simple. If

articles from a journal are cited more often, they are having a greater impact on the works

that are citing them.

More recently, the Hirsch Index or h-index, has become very well known as a measure

of a scientist’s impact (Hirsch 2005). The h-index is given by the following definition “A

scientist has index h if h of his or her Np papers have at least h citations each and the other

Np−h papers have ≤ h citations each” (Hirsch 2005). Unsurprisingly, an author’s h-index

tends to be highly correlated with the raw count of their citations (Bornmann and Daniel

2009).

While few authors are unhappy at the prospect of having more citations, and hiring

committees are unlikely to look unfavourably at higher citation counts and numbers of pub-

lications, some critics have rightly pointed out that citations are not necessarily an indicator

of quality or even positive attitudes. There are many reasons to cite a paper, and not all of

them are complimentary. However, every measure of scientific impact invokes a count of

an author’s citations. Some make use of the number of papers published, like the h-index,

some take into account the author’s contribution to a paper based on their ranking in the list

of authors, like the work of Tscharntke et al. (2007). In fact, there has been a ballooning

of h-index alternatives purporting to be more accurate tools for evaluating the productivity

or impact of scientists, many making explicity mention of their usefulness for evaluation

committees (Anderson, Hankin, and Killworth 2008; Franceschini et al. 2012; Katsaros,

Sidiropoulos, and Manolopoulos 2007; Sidiropoulos, Katsaros, and Manolopoulos 2007;

Valentinuzzi, Laciar, and Atrio 2007).
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For all of nuance provided by more sophisticated measures, the primary motivations are

well-captured by the h-index. There is a strong sentiment that the number of citations that

an author receives is a good enough measure of their impact, if not necessarily a perfect

one. Several studies have taken similar stances when examining predictors of author and

paper impacts. Some of these studies have also examined the role of diversity as one of

those predictors. I will highlight some of them.

I have previously mentioned the work by Uzzi et al. (2013), linking atypical combina-

tions of citations from different journals with a greatly increased likelihood of being one of

the most highly cited papers in a field of study. Campbell and Mínguez-Vera (2008) con-

ducted a study examining the relationship between mixed-gender coauthorship of papers

and their citation rates. The authors review several articles already published that examined

this issue and conclude that the literature is currently inconclusive, with different papers in-

dicating that women are cited more often, that single male authors are cited more often, that

gender has no effect, and that works with women are cited less frequently (Campbell and

Mínguez-Vera 2008). However, Campbell and Mínguez-Vera (2008) hypothesizes that the

mixed results in earlier studies resulted from the lack of parity in leadership roles and expe-

rience between men and women. They argued that since parity has recently been reached in

ecology studies, results from the field will be better representative of the effects of gender,

controlling for h-index (Campbell and Mínguez-Vera 2008).

It is important to note here that the authors argue that diversity leads to better quality

work, or at least, work that peers identify as being of higher quality (Campbell et al. 2013).

Impact is being measured as the number of citations received, which serves as a proxy

for the community’s perception of quality (Campbell et al. 2013). In this case, it is not

intellectual diversity that produces more creative work, which then receives higher citations
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as a result. Rather, the study design looks at work groups within a single discipline, and

if we assume that the distribution of intellectual capital is randomly distributed between

men and women in ecological studies, then we would expect it not to have an effect on the

results of the study. The salient feature is gender diversity.

Leahey and Moody (2014) offer a different interpretation of number of citations, sug-

gesting that they measure the usefulness of a paper because they have, in some way, had

an influence on the citing paper. While I am willing to accept their assessment that number

of citations is a proxy for the community’s assessment of quality, for the purposes of this

paper I will avoid the issue by focusing on the more defendable position that the number of

citations is a proxy for the impact of a particular work.

While Leahey and Moody (2014) argue for intellectual diversity as a driving force for

creativity and quality, they also test an alternative mechanism whereby intellectual diversity

expands one’s audience. In this way, intellectual diversity might increase the impact of

a paper, not by improving its quality, but by reaching people who might not otherwise

have looked at it (Leahey and Moody 2014). They conclude that integrative research does

gain more citations than non-equivalent research, and the effect is not only due to having

a broader appeal, indicating that both mechanisms are at play, at least in sociology, the

discipline that they studied (Leahey and Moody 2014).

3.5 Defining and Motivating Productivity

While number of citations is one side of the coin that makes up the h-index, the other is

the number of publications that an author has produced. There is much discussion of the

current state of academia, and many references are made to the idea of “publish or perish”
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(Linton, Tierney, and Walsh 2011; Qiu 2010). Researchers are incentivized to publish pa-

pers quickly and frequently, and as such, they have an active stake in understanding effects

that may improve or hinder their productivity in much the same way as impact. Recall-

ing the stages of the creative process mentioned earlier, and the hypothesized mechanism

by which diversity hinders the ability of groups to quickly evaluate a wide range of ideas,

productivity is thus the second outcome important to my analysis. Productivity is perhaps

less contentious than impact in concept, but its measurement suffers a similar issue. Quan-

tifying productivity has led to a wide range of different measures that have varying levels

of usage in different fields (Soyer 2016). Many of these are composite measures that take

into account citations received, such as the h-index, g-index, total impact factor of all pub-

lications, weighted total impact factor, number of citations, highest number of citations

for a single publication, and more (Soyer 2016). I will use a much simpler measure than

the ones described: productivity is the number of papers an author has published divided

by the number of years they have been publishing. Thus, productivity is a measure of an

author’s average rate of publication. In this section, I will highlight some of the previous

ideas relating diversity, creativity, and productivity.

Collins (1998) has much to say on the topic of productivity, creativity, and networks.

He argues that intellectual endeavours are primarily done alone for long periods of time, but

the “emotional energy” that drives those long periods of intense concentration derives from

“interaction rituals” — gatherings of two or more people with a shared mood or emotion

focused on a single object (Collins 1998). The shared focus and mood bring the participants

into a “shared reality” that creates the experience of boundary between the situation and the

outside world; this produces feelings of shared group membership and resulting obligations

to one another and the group (Collins 1998). Interaction rituals charge participants with
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emotional energy in proportion to the intensity of the interaction (Collins 1998).

Emotional energy is more specifically “the flow of enthusiasm that allows individuals

in the throes of ritual participation to carry out heroic acts of fervor or self-sacrifice” and

“charges up individuals like an electric battery, giving them the corresponding degree of

enthusiasm toward ritually created symbolic goals when they are out of the presence of the

group” (Collins 1998). What Collins is trying to say is that when people with a shared

identity and goals gather, they build enthusiasm off one another that stays with them after

the gathering ends. This enthusiasm then lets them perform more work than they would be

able to otherwise. Examples of interaction rituals might include talking with a colleague

over lunch — a low intensity interaction ritual — or a major conference — a high inten-

sity interaction ritual. Depending on the individual and the intensity, differing amounts of

emotional energy will be produced and consumed, thus requiring regular interaction rituals

to maintain one’s enthusiasm (Collins 1998). This is the mechanism that Collins argues

allows social factors to influence individual productivity.

For Collins (1998), speed of publication is of utmost importance for productivity, and

network position is vital to speed. He argues that cultural capital and emotional energy

flows through networks and collects in individuals and groups that are ideally situated to

make use of them (Collins 1998). By having access to new ideas before anyone else,

and having the emotional energy to convert them into publications before anyone else,

individuals can acquire an advantage over other members of the field (Collins 1998). From

this, one sees an argument that a diversity of ideas and a central network position should

result in faster publication rates.

Other researchers have looked into the effects of social capital on productivity and per-

formance (Groboljsek et al. 2014). Ziherl et al. (2006) found that researchers in Slovenia
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exhibited three kinds of social capital: weak social capital, where groups are small and

co-operation ties are weak, strong bonding social capital, where groups are small, located

in dense network structures, and co-operation ties are strong, and strong bridging social

capital, where groups are larger, spread across diverse institutions, and co-operation ties

are of moderate strength. They then assessed the effects of these different kinds of so-

cial capital on the performance of PhD students (Ziherl, Iglic, and Ferligoj 2006). They

operationalized performance as the sum of articles, proceedings, book chapters, books, in-

ternal research reports, and participations in major conferences and workshops, with each

weighted according to importance (Ziherl, Iglic, & Ferligoj, 2006). They found that the

average index of PhD student performance did not vary by discipline or gender, but varied

greatly by type of social capital; the average performance index was 6.63 for students with

weak social capital, 9.29 for bonding social capital, and 22.13 for bridging social capital

(Ziherl, Iglic, & Ferligoj, 2006). The differences between weak social capital and bonding

social capital were non-significant, but the differences between both and bridging social

capital were significant (Ziherl, Iglic, & Ferligoj, 2006). This indicated a non-linear rela-

tionship between the strength of co-operation ties. Group cohesion, and performance: the

greatest benefit is found at moderate levels of tie-strength and group cohesion (Ziherl, Iglic,

& Ferligoj, 2006). Ziherl et al. (2006) argue that the non-linear relationship between tie

strength, group cohesion, and performance is characteristic of the need to balance diversity

with common knowledge, a refrain that echoes the tension between novelty and conformity

seen earlier. Once again, one sees an argument for diversity and network position having a

positive effect on productivity.
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Previous Measures and Studies of

Diversity

In the previous section, I highlighted much of the theory, ideas, and hypotheses behind

defining the important themes in this paper and the causal mechanisms that may link them

together. I have described several ways that different authors have attempted to conceptu-

alize diversity because it is directly related to their efforts to measure it. In this section, I

will summarize the extensive work done by Stirling (2006) to identify three characteristics

of diversity that a measure can capture and four criteria for a good measure. I will highlight

some of his insights from the studies of diversity in ecology and supplement it by extending

a similar analysis to several sociological measures of diversity. I will follow this by sum-

marizing Stirling’s proposed solution, an “integrated multi-criteria diversity index M and

an elaboration M ′. In doing so, I will highlight how these measures do not meet the needs

of my study, thus justifying my introduction of two new measures for another purpose.

Stirling (2006) provides a very comprehensive overview of various measures of species

diversity in ecology and their various merits in his pursuit of a good measure for economic

30



MA Thesis - Alexander Graham University of Waterloo - Sociology

diversity. He highlights three characteristics of diversity that are necessary, but not indi-

vidually sufficient for an generalized concept of diversity: variety, balance, and disparity

(Stirling 2006).

Variety is a measure of the number of categories in which something can be partitioned

(Stirling 2006). For example, the number of ethnicities that exist in a sample population.

As such, variety is a positive integer. Thus, all other things held steady, a greater variety

can be said to indicate a greater diversity.

Balance is a measure of the distribution of quantities in each category (Stirling 2006).

For example, the number of people who identify as being of a particular ethnicity in a

sample population. Balance is an array of positive fractions that sum to 1. For a given

sample, the more equally distributed observations are within the categories, or the smaller

the variance, the greater the diversity.

Disparity is a measure of the nature and degree to which the categories differ from

each other (Stirling 2006). For example, apples to cars is a greater nature or degree of

difference than apples to oranges. Disparity is an “intrinsically qualitative, subjective and

context-dependent aspect of diversity” (Stirling 2006). For two samples of equal balance

and variety, the one with greater disparity can be said to be more diverse.

4.1 Ecological Measures of Diversity

The majority of early measures of diversity in ecology summarized by Stirling (2006) rep-

resent measures of variety, balance, or some combination of the two. Stirling (2006) iden-

tifies 16 different measures of varying formulations which do not address disparity. In this

particular category, he identifies two measures that capture the dual variety-balance na-

ture of diversity that have received particular attention in the literature: the Simpson (or
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Herfindahl-Hirschman concentration) and Shannon indices.

4.1.1 Simpson and Shannon Indices

The Shannon and Simpson indices are given by the respective formulas:

∆Shannon = −
∑

i

pi ln pi

∆Simpson =
1

∑
i p

2
i

Where pi is the proportion of all individuals in species i.

For the above diversity indices, where the Shannon index is higher, the diversity of the

sample is higher. Where the Simpson index is lower, the diversity of the sample is higher.

Stirling (2006) compares the two competing indices, noting that, while some authors prefer

the Simpson index because they find the exponential nature of the measure “simpler”, this

particular reasoning is rather subjective. Simpson’s index does have two properties that

would reasonably be considered detrimental to its status as a measure in comparison to

Shannon’s. Firstly, if one chooses a different exponential power in Simpson’s index, it can

produce radically different rank orderings for different samples; this is not the case for

choosing different bases for the logarithm in Shannon’s index (Stirling 2006). The second

issue is more technical: in circumstances where diversity should take into account the

disparity of different options of formal taxonomies, Shannon’s index is a more robust basis

than Simpson’s because it satisfies the condition (Stirling 2006). Thus, Stirling (2006)

argues that there is good reason to prefer the Shannon index over the Simpson index as

a robust, generalized, and non-parametric measure of diversity encompassing variety and
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balance.

4.1.2 Junge Index

In a review of diversity measures that incorporate all three properties of diversity, Stirling

(2006) identifies Junge’s index as a seminal, if non-robust measure, given by the following

compartively daunting formula:

∆Junge =

(
σ

µ
√
n− 1

)(
1√
s

)(√
s− 1−

√
sΣip2i − 1

)

Here, Junge’s index is contingent on five different factors. Using Junge’s language,

these are: 1) the number of different classes recognized by the analyst, 2) the proportion

of different cases within the classes, 3) the number of types of characteristics recognized

by the analyst, 4) the standard deviation of the character values, and 5) the means of the

character values (Stirling 2006). Stirling (2006) identifies many potential pitfalls here. The

use of the standard deviation assumes a normal distribution, the sensitivity to minor changes

in the in the values of the five factors, and the complexity of the formula itself indicates the

relatively minor structural changes would result in wildly different values (Stirling 2006).

4.2 Sociological Measures of Diversity

4.2.1 Binary (Non-network)

Dezsö and Ross (2012) found that representation of women in the top management of firms

was associated with increased firm performance. Using 15 years of panel data on the gender

composition of the top management of the S&P 1,500 firms, they found that firms with at
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least one woman in a firm’s top management performed better, but only in those cases

where a firm was focused on innovation as part of its strategy (Dezsö and Ross 2012). In

this case, firm performance was operationalized as Tobin’s Q, defined by the ratio of the

market value of a firm’s assets to their replacement value, chosen because it captures the

firm’s value holistically in a “forward-looking” manner, rather than a “backwards-looking”

measure like accounting rates of return (Dezsö and Ross 2012). Since the percentage of

firms with at least one woman in top management never exceeded 33%, and firms with more

than one woman never exceeded 8.5%, Dezsö and Ross (2012) chose to classify gender

diversity as a binary variable: 1 indicated at least one woman and 0 indicated no women in

top management. Dezsö and Ross (2012) reported no significant effect of gender diversity

on firm performance for firms that were not focused on innovation in either direction.

Taylor (2012) reports on analysis from the Credit Suisse Research Institute that found,

out of 2,360 companies from different countries, the ones with one or more women on the

board “delivered higher average returns on equity, lower gearing, better average growth and

higher price/book value multiples over the last six years”. Once again, gender diversity is

represented as a binary variable: women are either present or they are not.

While useful for the purposes of Dezsö and Ross (2012) and Taylor (2012), binary

diversity is far too simple for my purposes. It captures none of variety, balance, or disparity.

Intellectual diversity is not easily characterized by binary relationships and to do so would

miss out on important distinctions between degrees of similarity between the intellectual

capital of authors.
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4.2.2 Averaged Multi-Item Scales (Non-network)

Dayan, Ozer, and Almazrouei (2017) uses the average of a set of multi-item scales de-

veloped in earlier studies (Brown and Eisenhardt 1995; Colquitt, Noe, and Jackson 2002;

Dayan and Di Benedetto 2010). Respondents were asked to rate the diversity of their team

based on demographic characteristics such as age, ethnicity, and gender on a scale from 1

to 7. These responses were then averaged to provide a measure of the diversity of the team.

A similar measure was used for functional, or informational, diversity using categories

such as marketing, research and development, and manufacturing. These were included in

a regression as both non-quadratic and quadratic interaction terms for predicting product

creativity.

Dayan, Ozer, and Almazrouei (2017) were interested in testing whether informational

and sociodemographic diversities operate in a similar manner on creativity. They found

that while both forms of diversity had significant effects, their relationships were almost

opposite. Increasing informational diversity improved creativity up to a certain point, after

which increasing informational diversity was associated with decreasing creativity. Con-

versely, increasing sociodemographic diversity was associated with decreasing creativity

until a minimum relationship was reached, after which further increases to sociodemo-

graphic diversity was associated with increasing creativity.

While Dayan, Ozer, and Almazrouei (2017)’s use of quadratic interaction terms was an

important distinction from other models commonly used, their measures require survey-

ing members of the groups. This imposes a much higher barrier for analysis and sample

sizes and introduces subjective elements that may result in different evaluations of what

constitutes diversity based on different interpretations of the term. Without knowing what

judgements respondents are making when they interpret diversity, this measure captures
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none of variety, balance, or disparity.

4.2.3 Blau’s Index of Heterogeneity

This measure is in fact the same as the Simpson Index and the Gibbs-Martin Index. They

differ only in whether they are measuring diversity or similarity. I include this again as a

sociological example. Richard (2017) found that racial diversity was also associated with

firm performance, but only to the extent that it interacted with the firm’s strategies. While

Richard (2017) uses racial diversity, his primary focus is using it as a proxy for cultural

diversity. He hypothesizes that cultural diversity will interact with a company’s strategies

based on its goals (Richard 2017). He argues that cultural diversity has benefits for the

quality of decision-making, consideration of non-obvious alternatives in work settings, and

making better judgements in novel situations (Cox 1994; Jackson 1992; McLeod and Lobel

1992; McLeod, Lobel, and Cox 1996; Nemeth 1992). However, diversity is also associated

with additional costs due to increased coordination and control (Jehn 1995; Milliken and

Martins 1996; Williams and O’Reilly 1998). Blau’s Index of heterogeneity bears a striking

resemblance to the Simpson Index, being given by:

1−
∑

P 2
i

Here, (P) is the proportion of group members in a category, and (i) is the number of

different categories represented within the unit of analysis, which in this case was a firm.

Thus, if a firm has ten people, five of whom are European and five of whom are East

Asian, the firm’s index would be .50 (Richard 2017). A feature of Blau’s index is that as

the number of different categories represented increases, the maximum Blau’s index in-

creases. In a firm with five different racial categories, it’s Blau’s index would be 0.8 if
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its members were perfectly evenly distributed between categories, or maximally heteroge-

neous (Richard 2017). Richard (2017) argued that cultural diversity would interact with a

company’s strategies due to the benefits and costs associated with it. For companies pursu-

ing a growth strategy, increased racial diversity was associated with a significant increase

in the estimated marginal mean productivity (Richard 2017). However, racial diversity was

also associated with a significant decrease in the estimated marginal mean productivity for

companies pursuing a downsizing strategy (Richard 2017). Richard (2017) argues that this

is because firms attempting to grow into new markets are able to spend the resources nec-

essary for diversity and in a position to make better use of the improved decision making

in new situations and idea generation, while those companies pursuing downsizing require

efficiency with limited resources. In short, when resources are plentiful and new opportu-

nities are to be found, diversity is helpful for a company. When resources are scarce and

the opportunities are lacking, diversity is costly.

Blau’s index of heterogeneity is still too simple of a measure for my purposes. It re-

lies on categorical variables that preclude any similarity between categories. If one were

looking at the ranks of soldiers in a dining hall, Blau’s index would treat each rank equally

different from each other. A more nuanced approach might suggest that there is some de-

gree of similarity between ranks that are one step removed in the hierarchy that is not seen,

or seen to a much smaller degree, four or five steps removed. If one were to conceptual-

ize intellectual diversity as the differences between the sets of books read by each author,

Blau’s index would be unable to account for authors reading multiple books and having

partial overlap. Like the alternative variation, the Simpson Index, Blau’s Index does not

capture the disparity characteristic of diversity.
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4.3 Stirling Index

To frame his own proposed measure of diversity that captures balance, disparity, and va-

riety, Stirling (2006) identifies five principle elements of consistency: (i) For a portfolio

of evenly balanced, equally disparate options, the diversity index should increase mono-

tonically with variety. (ii) Where variety is equal to one, the diversity index should take a

value of zero. (iii) For a portfolio of given variety and disparity, the diversity index should

increase monotonically with the degree of balance in the spread of option contributions (ie:

the diversity index should take a maximum value at any given level of variety and disparity

where all options are represented equally). (iv) For a portfolio of given variety and balance,

the diversity index should increase monotonically with the aggregate distance between op-

tions in ‘disparity-space.’ (v) Where this aggregate distance is zero (ie: where all options

are effectively identical), the diversity index should take a value of zero.

While these criteria do not provide a sufficient basis for developing a rigorous, uniquely

defined formula from first principles, they do suggest a simple algorithm that would satisfy

the conditions (Stirling 2006). Stirling presents a general form of his diversity index, M ,

as follows:

M =
∑

ij(i ̸=j)

dijpipj

Where dij is some Euclidean distance metric between options i and j. Stirling (2006)

summarizes this as “the integrated multicritera diversity of a portfolio of options might

formally be specified as the product of the disparity-distance of each pair of options and

the proportional contributions to the portfolio of each member of that pair, summed over

all pairs of options.” This particular formula and its properties will be important for my
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formulation of group intellectual diversity.

What this means in more general terms, since Stirling is concerned with the diversity

of investment portfolios, is that for given group of observations, the diversity of the group

can be defined as some distance measure between two members of the group, multiplied

by the proportion of the group composed of one member, multiplied by the proportion of

the group composed by the other member, summed over all unique combinations of pairs

in the group.

Stirling (2006) then makes an important leap from looking at cohesive groups, or

cliques, to incompletely networked groups, where members of a group may interact with

only some other members. Since the generalized Stirling index is already based on dyadic

comparisons between group members, the leap to relational forms of data is a very short

one. From this idea, he represents the interactions between the members using matrices

that he terms “interaction matrices”. In social network analysis, Stirling’s interaction ma-

trices would be a variant of weighted adjacency matrices where the upper right triangle

is not given any values. An example of this can be seen in Figure 4.2. Note that rather

than the familiar n× n form of an adjacency matrix, Stirling’s interaction matrices take on

n× n− 1 dimensions because the rows have been shifted up, deleting the diagonal formed

by self-adjacencies.

He thus extends his diversity measure, M , to a form that only accounts for such pairs

where an interaction exists:

M ′ =
∑

ij(i ̸=j)

dijiijpipj

Where iij is the corresponding value in the interaction matrix given by row i and column

j. This extension of the more general Stirling index and its properties will be important
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Figure 4.2: Relationship between functional and demographic diversities on new product
creativity (Dayan, Ozer, and Almazrouei 2017).
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for my formulation of CDS and should help understand some of the underlying ideas of

network measures of diversity.

4.4 Four Criteria of a Good Measure of Generalized Di-

versity

Stirling (2006) argues that his index of diversity, and its extension, not only capture the

three characteristics he finds important, it is superior to measures such as Junge’s Index

because it meets four criteria important for a good measure of diversity. He identifies these

criteria as completeness, transparency, parsimony, and robustness. Stirling (2006) argues

that his measure is

1) complete because it directly addresses the variety, balance, and disparity components

of diversity.

2) transparent because it is non-parametric and uses a Euclidean disparity-space rather

than an ultrametric geometry.

3) parsimonious because it only pertains to the properties that one is interested in ap-

praising.

4) robust because it is not dependent on a choice of arbitrary parameter values, such as

logarithm bases or exponential powers.

Stirling makes strong arguments for his measure of diversity. While the measures I

propose in the next section bear strong similarities to his work, I diverge in several ways

while retaining many of the strengths identified for Stirling’s Index.
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Proposed Measures

In this section, I will propose three measures. The first is a measure of intellectual capital.

The second and third are measures of diversity of intellectual capital. I will provide for-

mulas for the calculation of my diversity measures. I will then argue that they capture the

characteristics of variety, balance, and disparity, as discussed by Stirling (2006). However,

I account for balance differently, as an authors’ presence in a cluster is binary, rather than

weighted. I make a further diversion by proposing a non-Euclidean distance metric which

can be normalized over a set range. I will argue that this better captures the nature of pair-

wise disparity between two observations and has benefits for intuitive interpretations of a

group’s diversity. I will conclude by showing that my measures meet Stirling’s criteria for

a good measure of generalized diversity.

The previous work in the field has failed to account for an individual’s diversity within

a group and explicitly measuring diversity in informal groups. I define the form of diversity

used in this paper to be an author’s intellectual capital, as measured by their citation profile.

I propose a coauthor diversity score to measure how different an author is from all of their

direct collaborators and group intellectual diversity to measure how different a group is by
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summarizing the differences between each pairing of members, whether they have directly

collaborated or not.

Based on the earlier works in the study of diversity summarized above, I suggest that

one can expect certain relationships between diversity and the outcomes of group work. In

general, one would expect: 1) increased intellectual capital would be associated with better

outcomes, 2) an increase in intellectual diversity would be associated with greater impact,

3) as intellectual diversity increases, its relationship with impact should experience dimin-

ishing returns (Dayan, Ozer, and Almazrouei 2017; Howard, Culley, and Dekoninck 2008;

Richard 2017). The literature on diversity and productivity is somewhat more sparse but,

Ziherl, Iglic, and Ferligoj (2006) suggest a non-linear relationship between social capital

and productivity, while others have suggested both positive and negative effects of diversity.

From all of these expectations, I developed the following hypotheses that specifically ap-

ply to measuring diversity of citation profiles in groups of coauthors publishing in scientific

fields.

5.1 Citation Profile

5.1.1 Coauthor Diversity Score

An author’s coauthor diversity score (CDS) is a summary measure of how different they are

from all of their coauthors. This measure provides an individual level metric of diversity

that is often missing from other measures of diversity. Rather than capturing the diversity

of an entire group, the idea behind this measure is to capture the degree of diversity that an

author brings to their collaborations. Central to CDS is the idea of the difference between

a pair of authors. If two authors have cited the exact same works as each other over their
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careers, one would expect that they are bringing less intellectual diversity to their work

than if they had cited entirely different works. In this section, I will explain how CDS is

developed from pairwise diversity measures between coauthors’s citation profiles using the

Jaccard index.

It is helpful to think of citation profiles as sets from set theory, in that no elements are

repeated. No matter how many times an author cites the same paper, it will only show

up once in their citation profile. This similarity means that we can borrow the Jaccard

Similarity Index from set theory to calculate the similarity of the two citation profiles. The

Jaccard Similarity Index of two sets, A and B, J(A,B) is given by:

J(A,B) =
| Intersection(A,B) |

| Union(A,B) | =
| A ∩B |
| A ∪B |

The Jaccard Similarity Index has some rather nice properties. It is normalized to range

from 0 to 1, where 0 indicates the two sets share no elements and 1 indicates the two

sets are exactly the same. Since I am interested in diversity, I actually need the difference

between the two sets, rather than the similarity. For this, we calculate the Jaccard Distance,

dJ(A,B):

dJ(A,B) = 1− J(A,B)

The resulting Jaccard Distance shares the same properties as the Jaccard Index, except

reversed. A distance of 0 indicates that the two sets are exactly the same, while a distance

of 1 indicates that the two share no common elements.

If one wants to determine how different someone is from all of their coauthors, one

could simply take the average of their Jaccard Distances to each of their coauthors. Thus,
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for an author, (i), who has worked with coauthors 1 to (n), their Coauthor Diversity Score

is given by:

CDSi =
1

n

n∑

j=1

dJ(i, j)

Note that in this formulation i ̸= j, which is to say that author i is never compared to

themselves. This is because it makes no sense to argue that an author coauthors a paper

with themselves. Even if one did, their citation profile would always be the same. Thus,

a Jaccard Distance of 0 would be added and the size of n would be inflated by 1. For

these reasons, I do not include an author’s Jaccard Distance to themself in the calculation

of CDS.

By getting an average of Jaccard Distances, which range from 0 to 1, CDS will also

range from 0 to 1, providing a normalized score that allows for comparisons between au-

thors in different groups.

5.2 Group Intellectual Diversity

While CDS is an individual-level measure that captures direct collaboration, group intel-

lectual diversity (GID) is a summary measure of how different each member of a group is

from every other member, irrespective of whether they have directly collaborated or not.

The basic idea behind GID is very similar to that of CDS, but applied at the group level.

One finds the mean intellectual difference between all possible pairings of authors in a

group. It would be foolish to suggest that authors are blind to the work of their colleagues

and contemporaries, even if they are not working together, thus GID does not require coau-

thorship ties for its calculation. This distinction will be important when examining the use
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of both measures together.

For a group, A of n authors, with dJ(i, j) representing the Jaccard Distance between

two authors, i and j, where i ̸= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n, the Group Intellectual Diversity

can be given by the following:

GIDA =

n∑
i,j=1

dJ(i, j)

n(n−1)
2

Like CDS, GID is normalized for the number of pairwise comparisons, resulting in a

range of 0 to 1 and allowing for comparisons between groups of different sizes.

5.3 Applying Stirling’s Characteristics and Criteria of Di-

versity

Recall the three characteristics of diversity that one may attempt to capture: variety, bal-

ance, and disparity. For Stirling, who was interested in diversity of investment portfolios,

it made sense for stock options to be weighted by the proportion that they contribute to

their portfolio, since one may invest different proportions of one’s portfolio in different

options. For example, one may invest 22% of their money in oil, 55% in wind, and the rest

in nuclear.

Coauthor clusters, on the other hand, are made up of binary states. An author is either in

the group, or they are not. Thus, each author will always make up the exact same proportion

of the cluster as any other. Since each author has equal weighting, I do not need to weight

my distance metric by the proportional contributions of each author It is effectively already

built into the equation.
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This can be seen by comparing the generalized Stirling Index from Equation 5 and GID

from Equation 10. If one weights author distances by their proportion of all distances in a

group and specify a Jaccard Distance, GID is equivalent to the generalized Stirling Index.

However, the use of the non-Euclidean Jaccard Distance, rather than a Euclidean dis-

tance metric as suggested by Stirling, has an additional benefit not available in the Stirling

Index. Euclidean distances have no upper bound and a lower bound of 0. The Jaccard

Distance has an upper bound of 1 and a lower bound of 0. The reason for this disparity is

that, for a Euclidean distance: given two sets, A and B, that share nothing in common, their

distance is greater than the distance between two sets, A and C, if C is smaller than B. That

is to say that two sets are more distant as the number of non-shared items increases. While

this makes some sense, I argue it is less intuitive than the alternative: there is a maximum

distance between two sets when they share no elements in common. In plainer English, if

a person shares nothing in common with another person, they cannot be more different.

It would be a fair critique to say that one measure being more intuitive than another is

not reason enough to say it is better, since intuition is subjective and it may be that for some

readers, Euclidean distance is more intuitive. However, having a lower and upper bound on

the difference between two sets has an additional benefit. Comparisons between distances

are easier, since they are now all measured on the same scale.

Although I have focused on GID in this section, if one looks at CDS in Equation 9, one

can see that the formulation is almost identical. It differs only in that for CDS, the diversity

of an individual, rather than a group is being measured. As a consequence, the normalizing

denominator is n rather than n(n−1)
2 .
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Having shown that my measures capture the three characteristics of diversity that Stir-

ling identifies, I argue that my measures also meet his criteria for good measures of gener-

alized diversity.

1) My measures are complete because they directly address the variety, balance, and

disparity components of diversity.

2) My measures are transparent because they are non-parametric and uses more intu-

itive non-Euclidean distance, rather than a Euclidean distance or ultrametric geome-

try.

3) My measures are parsimonious because they only pertain to the properties that I am

interested in appraising.

4) My measures are robust because they are not dependent on a choice of arbitrary

parameter values, such as logarithm bases or exponential powers.
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Hypotheses

Based on the earlier studies of diversity and incorporating the measures for intellectual

capital and diversity proposed above, I suggest that one can expect certain relationships

between diversity and the outcomes of group work. In general, one would expect: 1) an

increased access to resources would be associated with better outcomes, 2) an increase in

functional diversity would be associated with better outcomes, 3) as functional diversity

increases, its relationship with outcomes should experience diminishing returns (Dayan,

Ozer, and Almazrouei 2017; Howard, Culley, and Dekoninck 2008; Richard 2017). The

literature on functional diversity and productivity is somewhat more scarse and does not

lend itself to direct hypotheses. However, Ziherl, Iglic, and Ferligoj (2006) suggest a

non-linear relationship between social capital and productivity, while other others have

suggested both positive and negative effects of diversity. From these expectations, I devel-

oped the following hypotheses that specifically apply to measuring diversity of citations in

groups of coauthors publishing in scientific fields.
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1. The size of an author’s citation profile will be positively associated with career cita-

tions.

2. Group Intellectual Diversity will be positively associated with career citations.

3. The positive association between Group Intellectual Diversity and career citations

will have diminishing returns as Group Intellectual Diversity increases.

4. Coauthor Diversity Scores will be positively associated with career citations.

5. The positive association between Group Intellectual Diversity and career citations

will have diminishing returns as Group Intellectual Diversity increases.

6. Group Intellectual Diversity will be positively associated with productivity.

7. The positive association between Group Intellectual Diversity and productivity. will

have diminishing returns as Group Intellectual Diversity increases.

8. Coauthor Diversity Scores will be positively associated with productivity..

9. The positive association between Group Intellectual Diversity and productivity. will

have diminishing returns as Group Intellectual Diversity increases.

10. The associations posited in hypotheses 1-9 will be consistent across biomechanical

modelling and nanotechnology.
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Data and Methods

To test my hypotheses, I collected data for two different data sets — biomechanical mod-

elling and nanotechnology — to test the generalizability of my results. I chose to collect

my data sets based on keyword and topic queries to identify broad areas of active research.

This allowed me to work with a thematically and disciplinarily related body of work. It is

important for the authors to be working in the same field to reduce the effect of different

publishing and coauthoring standards in different disciplines.

I chose biomechanical modelling because I have easy access to experts in the field to

help with understanding any patterns in the data. I chose nanotechnology because previous

work in interdisciplinarity and diversity has been done on nanotechnology data sets. I

chose fields in the natural sciences because coauthoring papers is more prevalent compared

to the humanities and social sciences. Thomson Reuter’s Web of Science, the database

from which I collect my data, also has a bias towards the natural sciences (Mongeon and

Paul-Hus 2016). Thus, restricting my data sets to the natural sciences helps maintain the

reliability of my analysis.

I collected data for two different data sets to test the generalizability of my results. I
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chose to collect my data sets based on keyword and topic queries to identify broad areas of

active research. This allowed me to work with a thematically and disciplinarily related body

of work. It is important for the authors to be working in the same field to reduce the effect

of different publishing and coauthoring standards in different disciplines. For example,

unlike high-energy particle physics, which can have huge numbers of authors on a paper,

as witnessed at CERN, coauthorship is extremely rare in philosophy and its associated

sub-fields (Healy 2015). This distinction is important because if we define the boundaries

of our data to include publications from both fields, one would be examining papers with

radically different coauthorship behaviours, and thus coauthorship network structures. The

modularity class algorithm used in this paper and described later uses network averages to

determine the whether a node is within a group or not: this assumes that similar processes

underlying the formation and structure of ties across the whole network (Blondel et al.

2008).

The raw data was collected from the Web of Science database. Individual datum points

consist of records: metadata on articles curated by the staff of Web of Science. These

records contain a great wealth of information about the articles, but only a fraction is rel-

evant to this work. Specifically, each record contains the following important information

for an article: 1) the full title, 2) the full list of authors, 3) the full abstract, 3) the date of

publication, 4) the full list of cited references, 5) the number of citations to the article.

The resulting collection of records allowed me to generate the necessary data to perform

my analysis. For each individual author, I generated their citation profile by collecting every

unique citation from each of the author’s papers.

From each collection of records, I used the Python package metalnowledge (McLevey

and McIlroy-Young 2017) to generate a coauthorship network representing who coauthored
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a paper — from the data set — with whom. Authors may have coauthored on papers

outside my data, but those works are outside the scope of this analysis. The generated

network is made up of nodes, representing authors, and edges, representing a coauthorship

relationship. Thus, a hypothetical paper with four authors would create four nodes, one for

each author, and six edges, one edge from each author to each other author on the paper.

From this network, I can then identify groups of coauthors who are more connected to

each other than they are to the rest of the network using the modularity class algorithm

developed by Blondel et al. (2008) to identify community structures within the network

and assign each node to one of the groups. These communities of authors are the means by

which I will set boundaries for what constitutes a working group of authors. When I refer

to the group intellectual diversity, I am referring to the intellectual diversity of the authors

within one such group. I limited my analysis to the largest 25 groups in biomechanics and

100 in nanotechnology. I decided on these thresholds to ensure a larger sample size for

diversities within a group. For an example of the extreme, an author who does not coauthor

necessarily cannot have a GID or CDS, and small groups run the risk of outliers skewing

the measures. I chose these particular thresholds based on a visual inspection of the CDS

values within groups, looking for the point at which the distribution appeared to settle on

something consistent. Figure 7.3 shows the CDS histograms for each modularity class,

showing a relatively consistent right-skew distribution.

Unfortunately, Web of Science does not have a means of uniquely identifying individual

authors. This means that authors with the same name will be indifferentiable when creating

the coauthorship network, as author names are the only key reliable enough to identify

observations in the data. Authors may change affiliation, field of interest, and coauthors, so

trying to identify unique authors by some combination of these variables is not feasible. In

53



MA Thesis - Alexander Graham University of Waterloo - Sociology

Figure 7.3: Histograms of Coauthor Diversity Scores for each Modularity Class in Biome-
chanical Modelling

fact, authors may also change the name under which they publish, most often by including

or excluding initials for middle names or using shortened given names. To generate the

network, I used the most naive method and did not parse the author names. This means

that authors who spell their names differently in different publications will appear multiple

times, while authors who publish under the exact same name as another author in the same

field at the same time will appear to be the same person.

To reduce the amount of noise generated by author ambiguity, I have purposefully cho-

sen smaller fields that are quite new, or else reduced the timeframe for publications that

I will include in my analysis. A smaller field means a reduced likelihood of multiple au-

thors publishing at the same time with the same name, while a smaller timeframe reduces

the likelihood of past authors being confused for later authors and reduces the number of

publications that an author might publish under a different name.
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7.1 Biomechanical Modelling

The data set for the first case study was created from a query to Web of Science returning

all journal articles containing the words “Biomechanical” and “Modelling” from the year

2006 to present in their titles, abstracts, and keywords. Since the number of publications has

dramatically increased in Biomechanics, as it has in many other fields, I wanted to capture

the densest period of activity while also restricting the size of the data to a manageable

amount for computational purposes. I specifically chose Biomechanical Modelling because

I have easy access to members of the field who have been able to provide insights into the

publishing standards of the field and possible underlying mechanisms and explanations for

features of the data. I restricted the date range to 2006-2017 because prior to 2006, the

record availability becomes particularly sparse.

The resulting data set contained 6,543 records. From this record collection, I identified

at least 21,138 authors. Each paper had, on average 4.552 authors.

From the record collection, I produced a coauthorship network with 21,138 nodes, each

representing an author, and 61,374 edges, representing coauthorship relationships. For a

network of size n, the network density is given by the number of edges divided by the

maximum number of possible edges, which for an undirected graph is n(n−1)
2 . This gives a

network density of 0.0002747307. The average degree, or the average number of different

coauthors that a person has in the network, is 5.807.

7.2 Nanotechnology

The data set for the second case study was created from a query to Web of Science return-

ing all journal articles containing “nanotechnology” in their titles, abstracts, and keywords,
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restricted to the Web of Science “Nanoscience Nanotechnology” category. Since nanotech-

nology is a relatively new field, the majority of its papers are very recent and I wanted to

capture as much of the field as possible. I chose the field of nanotechnology because pre-

vious work has been done on the interdisciplinarity of nanotechnology (Porter and Youtie

2009). I restricted the date range to 2006 because prior to then, the record availability

becomes particularly sparse.

The resulting data set contained 7,325 records. From this record collection, I identified

at least 19,250 authors. Each paper had, on average, 5.322 authors.

From the record collection, I produced a coauthorship network with 19,250 nodes, each

representing an author, and 70,160 edges, representing coauthorship relationships. Using

the same calculation as above, this gives a network density of 0.0003786872. The average

number of different coauthors that a person has in the network is 7.289.

7.3 Comparative Summaries of the Data Sets

When comparing two networks of different sizes, one must be very careful. For example,

the combinatorial explosion of the number of possible edges in a network as the number

of nodes increases makes comparing densities unwise. In general, smaller social networks

tend to be more dense than larger networks formed under the same principles, for reasons

that should be relatively easy to grasp.

The average degree of an undirected network is given by:

AverageDegree =
2E

n

where, E is the number of edges and n is the number of nodes.
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If one is looking at a friendship network within a class of 20 students, and students tend

to have 5 friends on average (the average degree of the network is 5), then one would expect

a rather dense network of 50 edges. With 20 students, the maximum number of edges is

190. Thus, we get a network density of 50
190 , or 0.263. If we then looked at a friendship

network produced by the exact same processes, but surveyed every student in the school

of 200, we would then expect a network of 500 edges. This gives us a network density of

0.025.

While this means that comparing the densities of the biomechanical modelling and

nanotechnology networks is not particularly meaningful given their different sizes, it is

interesting in this particular case to compare the number of edges. The nanotechnology

literature has a higher rate of coauthorship, but also a higher rate of coauthoring with au-

thors they have not coauthored with before. This distinction can be seen in the much higher

average degree in nanotechnology.

Table 7.1 presents basic summary statistics for my proposed measures in the data sets

for the two case studies. Authors in nanotechnology have a tendency to coauthor with au-

thors who are more intellectually different from them, relative to biomechanical modelling.

CDS values in both data sets follow a right-skew distribution. The average group intellec-

tual diversity between the two fields is very similar, with very small standard deviations

and medians close to the mean. Despite being calculated in similar manners, CDS and

GID exhibit a small negative correlation in biomechanical modelling that is statistically

significant. Their correlation is even smaller in nanotechnology and not significant.
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Biomechanical Modelling Nanotechnology

CDS Mean 0.0409 0.1884
CDS Median 0.0321 0.1428
CDS Std 0.0404 0.1810
GID Mean 0.6677 0.6557
GID Median 0.6691 0.6630
GID Std 0.0141 0.0265
CDS-GID Correlation** -0.1300*** -0.0030

Table 7.1: Comparing Summary Statistics of Measures in Biomechanical Modelling and
Nanotechnology
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Models

In this section, I provide a brief overview of the models I will be using to provide evidence

for or against my hypotheses. I explain the importance and significance of including CDS

and GID in the same model. Due to the dependence of observations that results from how

I have collected my data and defined my variables, I violate several assumptions of my

regression models. I will explain how these violations occur, why they are necessary, and

what methods I will use to ensure the validity of my results despite these violations. I will

then describe each model in greater detail with a summary of the variables and regression

equations for ease of reference.

Recall that my hypotheses pertain to the relationships between intellectual capital, in-

tellectual diversity, and two outcomes: impact and productivity. Thus, I need two models

to assess each of these outcomes. Impact is measured using a raw count of the number of

citations that an author has received from all of the papers they have been on. I will call this

an author’s career citations for simplicity. Productivity, the second outcome, is measured

as the number of papers an author has published divided by the number of years between

their first and last publication. I use a negative binomial regression to model career citations
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and a linear regression to model productivity.

In both of my models, I make use of both CDS and GID. This is important because

CDS in a regression will estimate the variance explained by diversity in an author’s direct

collaborations. GID will estimate the variance explained by the diversity of all authors to

every other author in a group. Note that the definition of CDS is contained within GID. By

including both terms, the variance explained by CDS is already accounted for, so GID will

be explaining the diversity within groups that is not explained by CDS.

One can think of this as GID now estimating the relationship between an author’s career

citations and the pairwise diversity between every other author. Thus, GID in these models

should be understood to represent how the diversity of a group is related to an individual’s

outcomes, having already accounted for the diversity the individual has brought to their

collaborations.

8.1 Considerations for Statistical Analysis

Both of the models I use have an assumption that the observations are independent of

one another. I violate this assumption in several ways. Because multiple authors are on

the same papers, and citations are linked to papers, career citations are not independent.

Furthermore, CDS and GID are both measured by making pairwise comparisons between

authors in coauthoring clusters. Thus, both of those measures are reliant on the relational

(non-independent) nature of networked data.

Special care must be taken to handle this violation of the independence of observations

assumption. One means of doing this for linear and generalized linear models involving

network data is bootstrapping the standard errors (Hanneman and Riddle 2005). Bootstrap-

ping is an approach for evaluating the distribution of a statistic based on random sampling
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with replacement (Guan 2003). Importantly, it is a non-parametric approach that makes

no assumptions about the distribution of the sampled statistic (Guan 2003). The basic idea

behind bootstrapping is similar to that of Monte Carlo simulations, however it resamples

the original data rather than the population(Guan 2003). Provided that the sample is repre-

sentative of the population, the desired statistic can be calculated as an empirical estimate

of the overall population’s true parameter (Guan 2003). To measure the precision of the

estimates, one can calculate the bootstrapped standard errors with the following process

(Guan 2003):

1. Draw multiple random samples with replacement from the sample data set.

2. Estimate the desired statistic for the bootstrap samples.

3. Calculate the sample standard deviation of the sampling distribution.

When the sample size is large, the bootstrapped estimates will converge on the pop-

ulation’s true parameters as the number of repetitions increases (Guan 2003). Because

bootstrapping makes use of a sampling of the sample, bootstrapped standard errors will

be larger than those of the regular regression (Hanneman and Riddle 2005). Standard in-

ferential formulas for computing standard errors often give unrealistically small values for

network data, potentially resulting in false positives (Hanneman and Riddle 2005). Boot-

strapping standard errors reduces the likelihood of rejecting the null hypothesis when one

should not (Hanneman and Riddle 2005).

There is a further issue that I must resolve in my analysis. While interaction effects in

linear models are generally reliable and well-understood, they are much less so for non-

linear models (Drichoutis 2011; Kolasinski and Siegel 2010; Osgood, Finken, and Mc-

Morris 2002; Svensson and Oberwittler 2010). Osgood, Finken, and McMorris (2002)
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warns that modelling interaction effects in ordinary-least-squares regressions is potentially

dangerous: a mismatch between the model assumptions and skewed data can result in a

greater risk of Type I and Type II errors. Svensson and Oberwittler (2010) indicates that

the concerns raised by Osgood, Finken, and McMorris (2002) similarly apply to negative

binomial regressions. In fact, “none of 72 economics papers on interaction effects in non-

linear regression models published between 1980 and 2000 interpreted the coefficient on

the interaction term correctly” (Svensson and Oberwittler 2010). Svensson and Oberwittler

(2010) proposes several safeguards to ensure their results are robust and reliable:

1. Use robust standard errors.

2. Include both multiplicative and quadratic terms of the involved interaction predictors.

3. Compare the results of the regression analysis to those of Tobit regression models.

Robust standard errors help handle the heteroskedasticity of the standard errors for

highly skewed data. Using the quadratic terms of interaction predictors helps account for

the non-linearity of relationships. Finally, Tobit regressions have been suggested as suitable

models because they can be formulated to account for left-censored data, such as would

be expected in negative binomial regressions (Osgood, Finken, and McMorris 2002). If

interaction effects are spurious due to non-linearity of relationships resulting from the floor

effect — career citations cannot be negative — then Tobit regressions would guard against

Type I errors (Svensson and Oberwittler 2010).

Thus, in order to adequately protect my analysis from the pitfalls identified above, I use

a bootstrapped negative binomial regression with robust standard errors for my primary

model and compare the results against a bootstrapped Tobit regression to check for Type
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I errors. Since my interaction terms are already in quadratic form, I am already following

safeguard 2 as proposed by Svensson and Oberwittler (2010).

8.2 Impact Model

Career citations follow a Poisson-like distribution, so I tested whether a Poisson or negative

binomial regression would be more appropriate for both data sets. For the biomechanical

modelling data set, career citations had a mean of 21.86 and a standard deviation of 46.06.

For the nanotechnology data set, career citations had a mean of 42.65, and a variance of

92.10. In both cases, the overdispersion of the dependent variable strongly suggested that

a negative binomial regression would be more suitable than a poisson regression. Further-

more, tests of the alpha parameter in the negative binomial regressions to follow showed

a statistically significant non-zero value, further reinforcing the suitability of a negative

binomial regression for modelling this data.

To account for the dependence of observations and issues with interaction terms in

non-linear regression models, I bootstrapped the standard errors with 10,000 resamplings

and included robust standard errors. As suggested by Svensson and Oberwittler (2010),

I validated the model using a bootstrapped left-censord Tobit model to test whether the

flooring effect of the negative binomial equation was resulting in false positives.

I included the following variables in my model:

Number of Papers - This variable is a count of the number of papers within the data

set that an author has been on. It is not surprising that authors who have published more

papers will tend to have more citations than authors who have published fewer papers, so

this is important to control for.

Career Start - This variable is the number of years since the author’s first publication
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in the data set. Older papers tend to have more citations than new papers as they have had

more time to accumulate citations. Simply put, a paper is more likely to have more papers

five years after it was published than one year after it was published. Thus, this variable

provides a means of controlling for the age of an author’s papers.

Number of Coauthors - This variable is a count of the unique coauthors that have been

on all papers with each author. Previous work by Uzzi et al. (2013) showed that papers

coauthored by multiple authors are more likely to have higher numbers of citations. It also

seems reasonable to expect that an author’s citation profile size might be influenced by the

coauthors on their papers, so I wanted to isolate the effects of having multiple authors and

having a larger citation profile.

Citation Profile Size - This variable is a count of the unique references from all bib-

liographies in all papers by an author in the data set. I am using this as a proxy for the

intellectual capital that an author can draw upon.

GID - This variable is the mean of the citation profile diversity scores between each

combination of authors in a coauthorship group. I am using this to test the association

between the intellectual diversity of a group with the outcomes of its individual members.

GID-squared - This variable is a squared interaction term for GID. I am using this to

test whether differing levels of GID are associated with different outcomes for individual

group members.

CDS - This variable is the mean of the citation profile diversity scores for an author

with all of the other authors they have directly worked with. I am using this variable to test

the associations between diversity with one’s direct coauthors and career citations.

CDS-squared - This variable is a squared interaction term for CDS. I am using this to

test whether differing levels of CDS are associated with different outcomes for individual
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Variable Name

X1 Career Start
X2 Number of Coauthors
X3 Citation Profile Size
X4 GID
X5 GID-squared
X6 CDS
X7 CDS-squared

Table 8.2: Impact Regression Variables

group members.

Thus, the regression equation could be written as:

Impact = eα+β1X1+β2X2+β3X3+β4X4+β5X2
5+β6X6+β7X2

7

Alternatively, this can be written as:

ln Impact = α + β1X1 + β2X2 + β3X3 + β4X4 + β5X
2
5 + β6X6 + β7X

2
7

where Table 8.2 gives the appropriate variable name:

8.3 Productivity Model

Recall that I measure productivity as the number of papers an author published divided by

the difference in years between their first and last publication. While intuitive, this poses

an issue if an author’s first publication is also their last since this would require dividing 1

by 0. As such, I used a subset of the data, removing all authors who only published a single
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paper. While this dramatically reduced the size of both data sets, because my initial sample

sizes were so large, I am confident that my sample sizes remain large enough for statistical

power. However, my data violated the assumption of normality of residuals.

To account for the dependence of observations and issues non-normality of residuals,

I bootstrapped the standard errors with 10,000 resamplings and included robust standard

errors.

Career Start - This variable controls whether publication practices have changed over

time.

Number of Coauthors - This variable is a count of the unique coauthors that an author

has worked with. I am using this to test whether coauthoring with a wider number of

authors is associated with greater or lesser productivity.

Citation Profile Size - This variable is a count of the unique references from all bib-

liographies in all papers by an author in the data set. I am using this as a proxy for the

intellectual capital that an author can draw upon.

Career Length - This variable is a count of the length that an author has been publishing

in the data set, given by the absolute difference in years since first and last publications.

I am using this as a proxy for an author’s career path to test whether authors at different

stages in their careers have different levels of productivity.

Career Length-squared - This variable is a squared interaction term for career length.

There was a very consistent u-shaped relationship between career length and productivity

that needed to be accounted for in the model.

GID - This variable is the mean of the citation profile diversity scores between each

combination of authors in a coauthorship group. This variable is a summary statistics

for the diversity of authors in the same coauthorship group, whether they have worked
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together directly or indirectly inclusive. I am using this to test the association between the

intellectual diversity of a group with the productivity of its individual members.

GID-squared - This variable is a squared interaction term for GID. I am using this to

test whether differing levels of GID are associated with the productivity of individual group

members.

CDS - This variable is the mean of the citation profile diversity scores for an author

with all of the other authors they have directly worked with. I am using this variable to test

the associations between diversity with one’s direct coauthors and productivity.

CDS-squared - This variable is a squared interaction term for CDS. I am using this

to test whether differing levels of CDS are associated with the productivity of individual

group members.

The equation for this model could thus be written as:

Productivity = α+β1X1+β2X2+β3X3+β4X4+β5X
2
5 +β6X6+β7X

2
7 +β8X8+β9X

2
9

where Table 8.3 gives the appropriate variable name:
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Variable Name

X1 Career Start
X2 Number of Coauthors
X3 Citation Profile Size
X4 Career Length
X5 Career Length-squared
X6 GID
X7 GID-squared
X8 CDS
X9 CDS-squared

Table 8.3: Productivity Regression Variables
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Findings

9.1 Impact Findings

In this section, I present the results of my negative binomial regression of career citations.

I summarize the findings and validate the interaction effects using a Tobit regression to test

for potential false positive results. I then provide a short summary of the maximum values

for the interaction effects.

Bootstrapping and robust standard errors do not change the interpretation of the model,

which can be understood in the same way as other negative binomial regressions. There

are several issues with interpreting interaction effects in non-linear ordinary least squares

regressions, so I will avoid directly interpreting the coefficients here, instead using a Tobit

regression to cross-validate the direction of effect, statistical significance, and general be-

haviour. I used the margins command from STATA to generate plots of the mean predicted

value of career citations as CDS and GID change. I support this by plotting the derivative

of the mean predicted value with respect to the covariate, a suggested means for examin-

ing the marginal effect of interaction terms in non-linear OLS regressions (Social Science
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Biomechanical Modelling Nanotechnology

Intercept -41.804* -50.426***
Number of Papers .073*** -.002
Career Start .372*** .364***
Number of Coauthors .030*** .010***
Citation Profile Size .002*** .003***
CDS 1.298 3.047***
CDS-squared -15.718** -3.032***
GID 122.117* 155.787***
GID-squared -89.899* -118.384***
McFadden R-Squared 0.123 0.077
p 0.000 0.000
N 5157 7089

Table 9.4: Bootstrapped Negative Binomial Regression of Career Citations

Computing Cooperative 2014).

Table 9.4 presents the results of the bootstrapped negative binomial regressions for both

the biomechanical modelling and nanotechnology data sets. I used STATA’s bootstrap com-

mand with 10,000 repetitions and a seed of 42 to account for independence of observations.

STATA’s robust command was used based on the suggestion of Svensson and Oberwittler

(2010) when including interaction effects in non-linear ordinary least squares models.

There were only two significant differences between the data sets. Surprisingly, the

number of papers published by an author was associated with higher career citations in

biomechanics, but it was not in nanotechnology. In biomechanical modelling, the non-

quadratic CDS term did not reach the threshold for statistical significance.

The number of years since they started publishing, the number of unique coauthors,

the size of their citation profile and the intellectual diversity of the cluster of coauthors they

work with are all positively associated with career citations. Both of the squared interaction

terms were negative.
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Biomechanical Modelling Nanotechnology

Intercept -1489.036*** -2261.294**
Number of Papers 10.011*** 19.049***
Career Start 6.637*** 12.032***
Number of Coauthors .420** .872***
Citation Profile Size .034*** .105***
CDS 30.897 90.379***
CDS-squared -367.830* -86.055*
GID 4345.353** 6720.816***
GID-squared -3273.565** -5158.064***
Pseudo R-Squared 0.070 0.077
p 0.000 0.000
N 5157 7089

Table 9.5: Bootstrapped Tobit Regression of Career Citations

It is important to note that CDS and GID are include both on very different scales

compared to the other variables, and regular and quadratic terms. Thus, interpreting them

on their own is extremely ill-advised. The magnitudes of the CDS and GID terms are both

a factor of the very small scale over which the two variables range as well as the change of

slope as the two terms vary along that range.

Recalling the issues that arise from including interaction terms in non-linear models,

one of the checks suggested by Svensson and Oberwittler (2010) is to compare the results

of the non-linear model to those of a Tobit regression that has been properly left-censord.

In keeping with the negative binomial, I left-censor the Tobit model at 0 and do not right-

censor.

Table 9.5 presents the results of the bootstrapped left-censord Tobit regression models.

Standard errors were bootstrapped 10,000 times with a random seed of 42. As before, the

command for robust standard errors was included.
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The direction and statistical significance of the model’s terms are almost entirely iden-

tical to the negative binomial model. The only exception is that the relationship between

number of papers and career citations in nanotechnology becomes significant. Recall that

the primary purpose of comparing the results of the negative binomial and Tobit models is

to protect against Type I errors in the interaction terms (Svensson and Oberwittler 2010).

Their continued significance indicates that the floor-effect of the negative binomial regres-

sion is not producing false significant effects (Svensson and Oberwittler 2010).

While there is reason to be cautious when interpreting the coefficients for interaction

terms in non-linear OLS regressions, as pointed out by Svensson and Oberwittler (2010),

I have made sure to take care of the major sources of concern by using robust standard

errors and cross-validating with a Tobit regression, which together provide evidence that

the relationship highlighted in the negative binomial regression is not due to a false positive

error. With that in mind, one can then plot the predicted mean of career citations against

values of CDS and GID, holding other variables constant, using STATA’s margins func-

tion. Note that the marginal effects of GID scores cover only a portion of the range. This

is because GID scores were only observed with values between 0.55 and 0.74. Figures

9.4, 9.5, 9.6, and 9.7 give the marginal effect plots for CDS and GID in biomechanical

modelling respectively and nanotechnology respectively. Their basic interpretations can be

read as:

• In biomechanical modelling, increasing CDS is associated with no change in the

likelihood of receiving citations until a value of about 0.15, after which it decreases.

• In biomechanical modelling, increasing GID is associated with an increased likeli-

hood of receiving citations until a value of about 0.675, after which it decreases.
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Figure 9.4: Biomechanical Modelling Negative Binomial Regression Marginal Effects:
CDS

• In nanotechnology, increasing CDS is associated with an increased likelihood of re-

ceiving citations until a value of about 0.45, after which that effect decreases.

• In nanotechnology, increasing GID is associated with an increased likelihood of re-

ceiving citations until a value of about 0.65, after which that effect decreases.

Note that since the standard errors for the values around the maximum often overlap,

the actual maximum may in fact be slightly different. As such, the above values should

be taken as approximates. There is some concern with the biomechanical modelling CDS

results, since less than 5% of observations had a CDS greater than 0.2. Thus, it may be the
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Figure 9.5: Biomechanical Modelling Negative Binomial Regression Marginal Effects:
GID
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Figure 9.6: Negative Binomial Regression Marginal Effects: CDS
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Figure 9.7: Negative Binomial Regression Marginal Effects: GID
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Biomechanical Modelling Nanotechnology

Intercept -24.111** -.062
Career Start .012** .006
Number of Coauthors .022*** .016***
Citation Profile Size .00047*** .00026***
Career Length -.541*** -.565***
Career Length-Squared .037*** .038***
CDS 2.792*** .365
CDS-squared -6.605** -.128
GID 71.879** 6.344
GID-squared -53.230** -5.044
R-Squared 0.663 0.734
p 0.0000 0.0000
N 1597 1454

Table 9.6: Bootstrapped Linear Regression of Papers Per Year

case that outliers are having a particularly strong effect in determining the exact slope of

the relationship.

9.2 Productivity Findings

In this section, I present the results of my linear regression of papers per year. I summarize

the findings and provide a short summary of how to interpret the interaction effects and the

minimum and maximum values for the interaction effects.

Table 9.6 provides the results for the bootstrapped linear regression model for papers

per year. Standard errors were bootstrapped 10,000 times with a random seed of 42. Robust

standard errors were included.

Unlike the career citation models, the productivity models show significant differences.

The year that an author first published in their respective field, their coauthor diversity
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scores, and the intellectual diversity of their group of coauthors were statistically signifi-

cant in biomechanical modelling, but not in nanotechnology. However, the two fields did

have similar effect directions and significance levels for the number of an author’s unique

collaborators, the number of years that they have been publishing in the field, and its inter-

action term.

Interpretation of the linear model coefficients and the interaction terms poses much

fewer issues than the negative binomial regressions seen earlier.

By taking the partial derivative of the regression equation with respect to one of the

interacted terms, one can find the expected rate of change of productivity, holding all other

variables constant. By setting this partial derivative equal to 0, one can then find the ex-

pected maximum or minimum value, after which increasing the variable’s value is associ-

ated with decreasing productivity.

• In biomechanics, career length has a U-shaped association with productivity, with a

minimum at approximately 0.7.

• In biomechanics, CDS has an inverted U-shaped association with productivity, with

a maximum at approximately 0.2.

• In biomechanics, GID has an inverted U-shaped association with productivity, with

a maximum at approximately 0.675.

• In nanotechnology, career length has a U-shaped association with productivity, with

a minimum at approximately 0.75.

• In nanotechnology, CDS and GID are not significantly associated with productivity.

Note that since the standard errors for the values around the maximum often overlap,
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the actual maximum may in fact be slightly different. As such, the above values should be

taken as approximates.
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Discussion

In this section, I briefly summarize the evidence for and against my hypotheses, discuss

the possible meanings and interpretations of the measures used in my analysis, and provide

several suggestions for what my results contribute to the research of diversity, creativity,

and scientometrics.

10.1 Hypotheses Revisited

Recall that I started this analysis with the following ten hypotheses.

1. The size of an author’s citation profile will be positively associated with career cita-

tions.

2. Group Intellectual Diversity will be positively associated with career citations.

3. The positive association between Group Intellectual Diversity and career citations

will have diminishing returns as Group Intellectual Diversity increases.

4. Coauthor Diversity Scores will be positively associated with career citations.
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5. The positive association between Group Intellectual Diversity and career citations

will have diminishing returns as Group Intellectual Diversity increases.

6. Group Intellectual Diversity will be positively associated with productivity.

7. The positive association between Group Intellectual Diversity and productivity. will

have diminishing returns as Group Intellectual Diversity increases.

8. Coauthor Diversity Scores will be positively associated with productivity..

9. The positive association between Group Intellectual Diversity and productivity. will

have diminishing returns as Group Intellectual Diversity increases.

10. The associations posited in hypotheses 1-9 will be consistent across biomechanical

modelling and nanotechnology.

The analysis I have performed has provided consistent evidence in support of my hy-

potheses, with some small exceptions. My results are mostly consistent with my hypothe-

ses. GID and CDS both exhibited curvilinear relationships with both measures of impact.

Only hypothesis (4) had mixed results, being statistically significant in nanotechnology,

but not in biomechanical modelling. I provide additional evidence that these associations

exhibit a maximum value after which increasing diversity becomes associated with de-

creasing impact. Productivity exhibits a similar relationship with my measures of intellec-

tual diversity in the biomechanical modelling data, but exhibits no statistically significant

relationship in the nanotechnology data.
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10.2 Number of Papers: a measure of activity and senior-

ity within the field

It is not at all surprising that the more papers an author publishes, the more citations they

are expected to receive. By simple probability, the more papers one publishes, the more

likely that one will have a paper that someone is interested in citing, all other things being

equal. However, one can also view the number of papers published as a measure of activity

and seniority. Many authors in the data sets had only a single paper. Whether these authors

were grad students who authored a single paper with their advisor and went no further in

academia, or perhaps were more established authors in other fields who dipped into the

fields I looked at from a proximate field, or as a coauthor, I cannot tell. In either case, the

number of papers should serve as an indication of an author’s activity and seniority within

a field.

10.3 Number of Coauthors as a Proxy for Network Posi-

tion

Collins (1998) argues that authors are embedded in horizontal and vertical networks. Hor-

izontal networks represent an author’s contemporaries: rivals, acquaintances, and col-

leagues (Collins 1998). Vertical networks represent a genealogy of mentor-student re-

lationships (Collins 1998). While I do not account for vertical networks, a researcher’s

coauthors are a major component of the horizontal networks described by (Collins 1998).

Having a greater number of coauthors would be associated with a more central network

position, according to Collins, conveying a wide variety of benefits (Collins 1998). For

82



MA Thesis - Alexander Graham University of Waterloo - Sociology

Collins, the benefits relate to having a better view of the overall network of authors and

interests, again allowing one to better capitalize on one’s resources to publish new work in

areas of active interest before other people do. Thus, a greater number of unique coauthors

would be indicative of an author’s degree centrality within a network, one of many ways

that one might try to operationalize Collins’ ideas. However, these are not the only benefits

posited in the literature.

Uzzi et al. (2013) argues that greater numbers of authors on a paper are likely to im-

prove the quality and reach of the paper, bringing in insights and expertise that one person

alone might not have. In particular, his work focuses on the degree of novelty exhibited in

papers by solo, pair, and team-authored papers (Uzzi et al. 2013).

In nearly every model, increasing the number of different people that one has coau-

thored was associated with positive impact or productivity. Only in the Tobit model for

biomechanical modelling with it not associated with impact, but the purpose of that model

was to validate the findings of the interaction terms, and should not be used to for final

interpretations.

10.4 Citation Profile as a Proxy for Intellectual Capital

Collins (1998) argues that citations are an indication of the cultural capital that an author

draws upon to expand the body of knowledge in which they are working. For Collins

(1998), citations are both an indication of the previous knowledge being combined to cre-

ate new knowledge, but also an indication of the author’s knowledge of the field. One of

the major arguments that Collins makes is that an author uses their cultural capital to de-

termine where new ideas are emerging, where areas of active interest are forming, and then

synthesize old knowledge into new ideas that are relevant to these areas of active interest
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(Collins 1998). He stresses that everyone is trying to do this, but greater cultural capital

and network positioning allows one to act faster and more effectively than others, allowing

them to help define the growth of the conversation. New publications must now acknowl-

edge their ideas since they are an early and formative part of the literature. Given that a

citation profile is simply a collection of every unique cited reference from every paper by

an author, it serves an acceptable role in defining one part of the cultural capital described

by Collins (1998). One could thus summarize having a larger citation profile as a case of

“the early bird gets the worm”, where a greater knowledge of the field is like setting one’s

alarm clock earlier and also bringing a bigger shovel.

My analysis seems to offer some evidence to support this conceptualization of citations

as indicative of cultural or intellectual capital. At the very least, authors who have more

citations to different papers are more likely to have more citations over their career. While

one might be concerned that this effect would be confounded by authors who write more

papers, I ensured that there was no strong correlation between the size of an author’s cita-

tion profile and the number of papers they had published. This allowed me to include both

in my regression to try to isolate the associations between citation profile size and career

citations distinct from the association to number of papers published.

Citation profiles might be seen as a proxy for “papers that an author has read”. This may

potentially be the case, but it is not necessarily so. If collaborating authors delegate sections

of a paper based on expertise, one would expect that only those authors whose section of

the paper makes use of the citation would have read it. Rather, I would argue that citation

profiles are closer to “papers whose knowledge and ideas an author is aware of”. I do not

feel that it is particularly radical to suggest that authors understand the arguments within

their own papers, so even if they have not read a particular paper, they likely understand
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how the information in that paper is being used to support their own work.

This is key to understanding my conceptualization of citation profiles and intellectual

diversity. Citations are indications of an author’s awareness of how knowledge from a

particular work can be leveraged to support their own ideas. While this conceptualization

has the benefit of being very simple and easy to understand, it could be improved.

10.5 Coauthor Diversity Score as a Measure of the Direct

Intellectual Diversity of Groups

If a citation profile is a measure of the breadth of knowledge that an author can make use

of the leverage support for their own work, then an author’s CDS is a measure of their

tendency to work with people in their field who can leverage different knowledge.

The results of my analysis suggest different mechanisms, or perhaps different weight-

ings of competing mechanisms are at play between biomechanical modelling and nan-

otechnology. I suggest that the benefits of negotiating different expertises may be stronger

in nanotechnology, although they are still outweighed when the disparity in intellectual

capital becomes too great. In biomechanical modelling, the initial flat, or slightly humped,

region suggests that initially the benefits roughly match the penalties, but are eventually

outweighed and increasing diversity does not improve impact.

As one becomes more different from one’s coauthors, the benefit slows down and even-

tually reverses as the costs of translating knowledge between widely different backgrounds

begin to outweigh the benefits of bringing novel information, ideas, and ways of thinking

to a collaboration.
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10.6 GID as a Measure of the “Leaky” Intellectual Diver-

sity of Groups

Similar to coauthor diversity, but distinct, group intellectual diversity suggests that mem-

bership to a more diverse group, irrespective of being oneself diverse, has a tangible benefit.

To put it succinctly, there is a “leaky” benefit to the presence of diversity within one’s coau-

thorship group in a manner akin to that proposed by Owen-Smith and Powell (2004). Even

if one is not the one introducing the diversity, nor necessarily directly collaborating with

the more diverse members of the group, one still experiences the benefits. I suggest that

there may be two important mechanisms that may explain the leaky benefit of intellectual

diversity: the first is intangible transmission. If a sociologist were to work with a computer

scientist on a sociology paper, their citation profile would likely not include many citations

to computer science papers. However, they may have gained new insights, tools, and per-

spectives from this collaboration that they can then bring to their collaborations with other

sociologists. This is a kind of second-degree effect of diversity. The second mechanism

that might be at play is a visibility-due-to-proximity effect. Through one’s interactions with

their direct collaborators, one may be made aware of new ideas and ways of thinking that

positively benefit one’s own impact. Since the regression controls for coauthor diversity,

GID provides an estimate of the effects of diversity between everyone else in the group. As

such, it speaks to the indirect effects of diversity.

10.7 Productivity

The findings for the relationship between productivity and intellectual diversity are rather

more mixed. In biomechanical modelling, an interesting pattern arises. While increasing
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coauthor diversity is associated with some small gains, they are very marginal. Increasing

gains further leads to rapidly decreasing publication rates. Conversely, productivity sees

much larger gains from increasing GID until its maximum, after which increasing GID

is associated with relatively minor decreases in productivity until reaching the maximum

GID.

This suggests that consistently coauthoring with authors of very different intellectual

backgrounds is more likely to slow down the rate of one’s publishing, a conclusion well in

line with the conventional argument that the more different collaborators, the harder it is

to reach conclusions and solutions. Conversely, coauthoring in groups that involve a lot of

diversity between the other members is primarily beneficial up to a point.

These relationships do not hold in nanotechnology, where none of these effects are sig-

nificant. While the CDS and GID terms were not significant, the non-squared CDS term

was almost significant. A subsequent test without the squared CDS term resulted in the lin-

ear CDS term becoming significant. This may be an indication that nanotechnology does

not experience negative returns for increasing coauthor diversity. However, I am unaware

of any specific differences between the activity of biomechanical modelling and nanotech-

nology that could explain such a difference. The insignificance in GID suggests that a

group’s intellectual diversity is not an important feature of nanotechnology research.

A side effect of the analysis of productivity was the discovery of the curvilinear rela-

tionship between productivity and the duration of an author’s career. My analysis revealed

a u-shaped distribution of productivity over an author’s career in a particular field. This

distribution was surprisingly consistent between biomechanical modelling and nanotech-

nology. It was so surprising that I compared the data to an entirely new data set collected
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and cleaned in the same manner for geographical information systems literature from envi-

ronmental studies and multidisciplinary geography. The exact same distribution showed up

again. Given the surplus of of people with PhDs, the resulting rise of contracted positions

in the academy, and one of the primary focuses of tenure being the quantity of publica-

tions, understanding what drives productivity is important not only for understanding how

to make work more efficient, but also understanding how people might be trying to navigate

an increasingly competitive academic job and publication market.

Such future work would do well to take into account such factors as different publi-

cation strategies, paper lengths, and publication venues such as graduate, predatory, and

prestigious journals.

10.8 Takeaway

Coauthor diversity and group intellectual diversity appear to be real and consistent things

that can be measured and have meaningful associations with outcomes that people care

about in manners that are predicted by the literature. This paper provides empirical evi-

dence through two cases studies for the validity of these two measures within the field of

scientometrics. I contribute meaningfully to the growing literature on diversity, creativity,

and group collaborations by replicating and integrating the works of theorists and previous

empirical studies, while also providing a method and measure for assessing the leaky bene-

fits of diversity, as well as empirical evidence to support their use. Across every model and

every data set, there were clear and consistent benefits to coauthoring with greater numbers

of different people and having access to a wider base of intellectual capital.

While it would be ill-advised to use the results of my analysis to evaluate individual

researchers, I believe it offers some very general suggestions for authors. These results
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should not be viewed by themselves, but rather, in conjunction with previous work that

has suggested causal mechanisms between coauthorship, intellectual diversity, impact, and

productivity, I suggest that my results add weight to the following recommendations:

1) Authors may find benefit from coauthoring with a wider number of researchers

2) Authors may find benefit from coauthoring with researchers who are not in their

immediate area of expertise, but not authors who are excessively removed from one’s

research.

3) Authors may find benefit from drawing on a variety of sources to support their work.

Authors should be aware of what others are publishing in their field of study, even if

it may not immediately impact one’s work.
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Limitations

Because CDS and GID are generated from groups within a network, they become less

meaningful when the groups are too small. The smaller the group, the more prone they

are to random variation in the sample producing bias that would be smoothed out by larger

sample sizes (Horváth and Kiss 2016). Similarly, authors who have only ever published

by themselves are problematic for this kind of analysis. Thus, I chose for my case study

disciplines that work under conditions akin to normal science, where labs are an important

part of typical work and coauthoring is frequent and expected. I used a visual exploratory

analysis to determine at what size the modularity classes began to assume a consistent dis-

tribution. I used the appearance of this distribution as an indication that the samples were

large enough to ameliorate biases due to small sample sizes. I performed a sensitivity anal-

ysis of model results to the number of largest modularity classes by repeating my results for

different thresholds. My results hold for higher thresholds and slightly lower thresholds.

However, this cut-off point is ultimately based on visual inspection, rather than a rigorous

analysis. I am unaware of any attempts to rigorously determine at which point sample sizes

of dyadic comparisons between members of a group are large enough. Thus, my analysis
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may not generalize to authors whose coauthorship clusters are smaller than my threshold.

Setting a high threshold for the number of people in coauthorship groups also ensures

that the authors I am analyzing are well within the core of the field I am studying. In

coauthorship-heavy fields, if a group of coauthors is too small, it may indicate a lack of

engagement: either the group is relatively young, isolated, or is primarily working in a

proximate field and only a few of their works show up in the data.

Since this analysis is cross-sectional in nature, I cannot make strong claims to causality

in any directions. Rather than larger citation profiles leading to more career citations be-

cause they improve the work or make it more visible, it may be that impactful authors try

to branch out after some initial success. It may be that authors who write impactful work

tend to publish in more open fields, this openness being characterized by a greater diversity

of intellectual resources being drawn upon. Impactful work might draw the attention of a

wider range of authors, resulting in a subsequent boost in diversity. I suspect that these

scenarios are not the case, since the bibliographies of papers definitively occur earlier in

time than the citations to the papers. However, since papers are not the unit of analysis for

this paper, but rather, the authors who write them, they are aggregated together irrespective

of when they were written and when they received citations. Thus, I am unable to perform

an appropriate time-series analysis or otherwise panelled data analysis to attempt a deeper

exploration of direction and causation.
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Future Research

The results of my analysis suggest several avenues for fruitful future exploration. While

my data is currently cross-sectional, extending it to panel data would require only one

additional piece of information. Determining when papers received each of their citations.

While this is beyond the scope of this particular paper, using Web of Science’s citation

analysis report would provide much of the data necessary for this.

While I have focused on authors as the focus of my analysis, I believe there may be

valuable insights to be gained by performing a similar kind of analysis of publications. I

suspect that papers situated within topic maps may have similar relationships between how

similar or dissimilar they are to other papers in their topical area.

While I have used GID and CDS together to evaluate the effects of “leaky” diversity,

or diversity resulting from differences other than what one brings to the group themselves,

alternative formulations of GID may be able to do this directly.
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12.1 Extensions of this Paper’s Ideas

I suggest that one can extend citation profiles from sets to weighted vectors. That is to say

that rather than making a particular citation’s presence within a citation profile a binary

state of present or not, one can count the number of times that an author cites a particu-

lar paper and include that in a more nuanced weighted citation profile. This bears some

resemblance to the work by Rafols and Meyer (2007), and indeed, extending the idea of

the citation profile would require a different distance function that could account for the

weighted nature. Cosine distance, while conceptually less parsimonious than Jaccard dis-

tance, handles this difference very well and has been used by several authors previously

(Rafols and Meyer 2007, 2010; Soós and Kampis 2010).

An exciting consequence of including weights in citation profiles is that it opens up

the differentiation between breadth and depth of knowledge. One can begin to differenti-

ate between authors who have “wider” citation profiles that cover many different citations

with relatively smaller weights against authors with fewer citations that they use in sev-

eral papers. This opens up new avenues of studying specialist and generalist strategies in

academia. Much of the research into this has been at a very high level, looking at the diffu-

sion of knowledge across boundaries, or making arguments about core and frontier research

(Kuhn 1970). By using weighted citation profiles to develop a spectrum of specialization-

generalization, future research can examine individual strategies in conjunction with field

and discipline-level analysis.
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12.2 Generalizing the Measures to Other Forms of Diver-

sity

While I have proposed GID and CDS as measures of intellectual diversity, as measured by

diversity of citation profiles, they can be used for any kind of single or multiple-response

variable. If I had gender data for the authors in my case studies, it would be trivially simple

to produce a group gender diversity score or coauthor gender diversity score. The Jaccard

similarity index works just as well with sets of size one. As a simple example, if one had a

group of 14 men, the group gender diversity score would be 0. The average of the jaccard

distance from each member to every other member is 0 because everyone is exactly alike.

If one had a group of 7 men and 7 women, the group gender diversity score would be 0.462.

Note that this is not 0.5, despite there being an even number of men and women, because

the GID does not compare each individual to itself. As a result, each person is compared

against six people of the same gender, and 7 people of another gender. GID is the average of

the difference between everyone and the other group members, not the balance of different

variables. With that said, it is relatively easy to show that as the size of the sample increases,

the GID of a perfectly balanced group would converge on 0.5.

Should one wish to use other distance metrics, I highly recommend using only those

which can be normalized. The underlying assumptions of CDS and GID are such that there

is a maximum similarity or difference.

12.3 Career Length and Productivity

As a result of an accident while formulating my model of productivity, I discovered a

non-linear relationship between career length and productivity completely unrelated to my
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Figure 12.8: Biomechanical Modelling : Productivity vs Career Length: CDS

hypotheses. This relationship can be seen in Figure 12.8 and Figure 12.9.

This relationship was particularly surprising for two reasons. Firstly, its inclusion re-

sulted in the greatest increase in R2 for the model. Secondly, and more interestingly, it

runs counter to the expected behaviour, as it suggests that authors are most productive right

after publishing their first paper and approximately 10 years after publishing their first pa-

per. Based on discussions with members of the field in biomechanics, this second wind,

so to speak seems to be happening after the average researcher achieves tenure. Based on

more traditional narratives of author productivity, one would expect productivity to increase

leading up to tenure, and then decrease.

Determining the reasons behind this relationship is well beyond the scope of this paper,
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Figure 12.9: Nanotechnology: Productivity vs Career Length
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but I propose two mechanisms that may be at play.

1) I suggest that the initial high productivity may be related to the practice of converting

one’s Masters and/or PhD theses into articles for publication. Since my measure of

career length starts when an author first publishes a paper, rather than when an author

starts their studies, it may be that authors are effectively front-loading a lot of the

time and effort in a period before it would show up in my data. Thus, an author’s

appearance in the data is heralded by a burst of activity as they convert their theses

into articles for publication. Once that is done, they will then fall into the normal

behaviour and rate of publishing. This does not explain the spike in publications that

occurs later in one’s career.

2) I suggest that both high points in productivity may be associated with periods in an

author’s career when they have access to well-developed lab groups and resources.

Since both fields are dominated by research in labs, I suggest that when an author

first publishes, it is with their advisor and their lab group. This results in an increased

productivity because the work is spread out between the lab, effectively boosting the

rate at which individuals publish. When an author graduates and enters the academic

job market, they are displaced from their original lab group and must juggle the

requirements of teaching, research, and acquiring tensure. Eventually, if successful,

an author will set up their own lab and be able to make efficient use of graduate

students to improve productivity once again.

If this is the case, one should be able to test this by examining coauthorship patterns.

One could test whether an author’s publication rates are associated with well-developed and

dense coauthorship clusters at the beginning of their career, which then fade for a period

before a new and different cluster forms.
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Conclusion

In this paper, I have introduced two measures of intellectual diversity. Coauthor diversity

score (CDS) is a measure of the intellectual diversity between an author and all of their

coauthors. Group intellectual diversity is a measure of the intellectual diversity of a group

of authors, with the aim of capturing both direct and indirect collaborations. I have ana-

lyzed two data sets, one for biomechanical modelling and another for nanotechnology, to

find associations between my measures of intellectual diversity, impact, and productivity. I

present evidence that my measures are associated with statistically significant effects that

one may expect based on the literature of group diversity and creativity. I show that, in

many cases, increasing diversity is associated with improved impact or productivity un-

til a maximum value is reached, after which further increases in diversity are associated

with decreasing impact and productivity. The main exception to this is in nanotechnology,

where productivity is not associated with my measures of intellectual diversity. Based on

these results, I argue that my measures of intellectual diversity contribute to the literatures

of diversity, creativity, and scientometrics by offering empirically validated, new, and gen-

eralizable measures that account for the effects of the diversity that an individual brings to
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a group and the diversity of the group itself.
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