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A right ideal (left ideal, two-sided ideal) is a non-empty language L over an alphabet Σ such that L = LΣ∗ (L = Σ∗L,
L = Σ∗LΣ∗). Let k = 3 for right ideals, 4 for left ideals and 5 for two-sided ideals. We show that there exist
sequences (Ln | n > k) of right, left, and two-sided regular ideals, where Ln has quotient complexity (state complexity)
n, such that Ln is most complex in its class under the following measures of complexity: the size of the syntactic
semigroup, the quotient complexities of the left quotients of Ln, the number of atoms (intersections of complemented
and uncomplemented left quotients), the quotient complexities of the atoms, and the quotient complexities of reversal,
star, product (concatenation), and all binary boolean operations. In that sense, these ideals are “most complex” languages
in their classes, or “universal witnesses” to the complexity of the various operations.

Keywords: atom, basic operations, ideal, most complex, quotient, regular language, state complexity, syntactic semi-
group, universal witness

1 Introduction
We begin informally, postponing def nitions until Section 2. In [4] Brzozowski introduced a list of conditions
that a regular language should satisfy in order to be called “most complex”, and found a sequence (Un | n >

3) of regular languages with quotient/state complexity n that have the smallest possible alphabet and meet
all of these conditions [4]. Namely, the languages Un meet the upper bounds for the size of the syntactic
semigroup, the quotient complexities of left quotients, the number of atoms (intersections of complemented
and uncomplemented left quotients), the quotient complexities of the atoms, and the quotient complexities
of the following operations: reversal, star, product (concatenation), and all binary boolean operations. In this
sense the languages in this sequence are most complex when compared to other regular languages of the same
quotient complexity. However, these “universal witnesses” cannot be used when studying the complexities
listed above in subclasses of regular languages, since they generally lack the properties of those classes.

This paper is part of an ongoing project to investigate whether the approach used for general regular
languages can be extended to subclasses. We present sequences of most complex languages for the classes
of right, left, and two-sided regular ideals. Right ideals were chosen as an initial “test case” for this project
due to their simple structure; we were able to obtain a sequence of most complex right ideals by making
small modif cations to the sequence (Un | n > 3). A preliminary version of our results about right ideals
appeared in [6]. The sequences of witnesses for left and two-sided ideals are more complicated, and f rst
appeared in [15] where they were conjectured to have syntactic semigroups of maximal size; this was later
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proved in [12]. Our main new result is a demonstration that these sequences are in fact most complex. It has
been shown in [11] that a most complex sequence does not exist for the class of suff x-free languages.

Having a single sequence of witnesses for all the complexity measures is useful when one needs to test
systems that perform operations on regular languages and f nite automata: to determine the sizes of the
largest automata that can be handled by the system, one can use the same sequence of witnesses for all the
operations.

For a further discussion of regular ideals see [6, 8, 10, 12, 15]. It was pointed out in [8] that ideals
deserve to be studied for several reasons. They are fundamental objects in semigroup theory. They appear
in the theoretical computer science literature as early as 1965, and continue to be of interest; an overview
of historical and recent work on ideal languages is given in [8]. Besides being of theoretical interest, ideals
also play a role in algorithms for pattern matching: For example, when searching for all words ending in a
word from some set L, one is looking for all the words of the left ideal Σ∗L. Additional examples of the use
of ideals in applications can be found in [1, 16, 17, 24].

2 Background
A deterministic f nite automaton (DFA)D = (Q,Σ, δ, q1, F ) consists of a f nite non-empty set Q of states, a
f nite non-empty alphabet Σ, a transition function δ : Q× Σ→ Q, an initial state q1 ∈ Q, and a set F ⊆ Q
of f nal states. The transition function is extended to functions δ′ : Q × Σ∗ → Q and δ′′ : 2Q × Σ∗ → 2Q

as usual, but these extensions are also denoted by δ. State q ∈ Q is reachable if there is a word w ∈ Σ∗

such that δ(q1, w) = q. The language accepted by D is L(D) = {w ∈ Σ∗ | δ(q1, w) ∈ F}. Two DFAs
are equivalent if their languages are equal. The language of a state q is the language accepted by the DFA
(Q,Σ, δ, q, F ). Two states are equivalent if their languages are equal; otherwise, they are distinguishable by
some word that is in the language of one of the states, but not the other. A DFA is minimal if all of its states
are reachable and no two states are equivalent. A state is empty if its language is empty.

A nondeterministic f nite automaton (NFA) is a tupleN = (Q,Σ, η, QI , F ), where Q, Σ, and F are as in
a DFA, η : Q × Σ → 2Q is the transition function and QI ⊆ Q is the set of initial states. An ε-NFA has all
the features of an NFA but its transition function η : Q× (Σ ∪ {ε})→ 2Q allows also transitions under the
empty word ε. The language accepted by an NFA or an ε-NFA is the set of words w for which there exists
a sequence of transitions such that the concatenation of the symbols causing the transitions is w, and this
sequence leads from a state in QI to a state in F . Two NFAs are equivalent if they accept the same language.

Without loss of generality we use the set Qn = {1, 2, . . . , n} as the set of states for our automata. A
transformation of Qn is a mapping of Qn into itself. We denote the image of a state q under a transformation
t by qt. An arbitrary transformation of Qn can be written as

t =

(

1 2 · · · n− 1 n
p1 p2 · · · pn−1 pn

)

,

where pq = qt, 1 6 q 6 n, and pq ∈ Qn. The image of a set P ⊆ Qn is Pt = {pt | p ∈ P}.
The identity transformation 1 maps each element to itself, that is, q1 = q for q = 1, . . . , n. For k > 2, a

transformation t of a set P = {p1, . . . , pk} is a k-cycle if there exist pairwise different elements p1, . . . , pk
such that p1t = p2, p2t = p3, . . . , pk−1t = pk, pkt = p1, and all other elements of Qn are mapped to
themselves. A k-cycle is denoted by (p1, p2, . . . , pk). A transposition is a 2-cycle (p, q). A transformation
that changes only one element p to an element q 6= p is denoted by (p → q). A transformation mapping a
subset P of Qn to a single element q and acting as the identity on Qn \ P is denoted by (P → q).

A permutation of Qn is a mapping of Qn onto itself. The set of all permutations of a set Qn of n elements
is a group, called the symmetric group of degree n. This group has size n!. It is well known that two
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generators are necessary and suff cient to generate the symmetric group of degree n; in particular, the pairs
{(1, 2, . . . , n), (1, 2)} and {(1, 2, . . . , n), (2, 3, . . . , n)} generate Sn.

The set TQn
of all transformations of Qn is a semigroup, in fact a monoid with 1 as the identity. It is

well known that three transformations are necessary and suff cient to generate TQn
; in particular, the triples

{(1, 2, . . . , n), (1, 2), (n→ 1)} and {(1, 2, . . . , n), (2, 3, . . . , n), (n→ 1)} generate TQn
.

Let D = (Q,Σ, δ, q0, F ) be a DFA. For each word w ∈ Σ∗, the transition function induces a transfor-
mation δw of Q by w: for all q ∈ Q, qδw = δ(q, w). The set TD of all such transformations by non-empty
words forms a semigroup of transformations called the transition semigroup of D [23]. Conversely, we can
use a set {δa | a ∈ Σ} of transformations to def ne δ, and so the DFA D. We write a : t, where t is a
transformation of Q, to mean that the transformation δa induced by a is t.

TheMyhill congruence [20] ↔L of a language L ⊆ Σ∗ is def ned on Σ+ as follows:

For x, y ∈ Σ+, x↔L y if and only if wxz ∈ L⇔ wyz ∈ L for all w, z ∈ Σ∗.

This congruence is also known as the syntactic congruence of L. The quotient set Σ+/↔L of equivalence
classes of the relation ↔L is a semigroup called the syntactic semigroup of L. If D is a minimal DFA
of L, then TD is isomorphic to the syntactic semigroup TL of L [23], and we represent elements of TL by
transformations in TD. The size of the syntactic semigroup has been used as a measure of complexity for
regular languages [4, 15, 18], and is denoted by σ(L).

The Nerode right congruence [21] of a language L ⊆ Σ∗ is def ned on Σ∗ as follows:

For x, y ∈ Σ∗, x→L y if and only if xz ∈ L⇔ yz ∈ L for all z ∈ Σ∗.

The (left) quotient of L ⊆ Σ∗ by a word w ∈ Σ∗ is the language w−1L = {x ∈ Σ∗ | wx ∈ L}. Thus two
words x and y are in the same class of the Nerode right congruence if they def ne the same quotient, that is,
if x−1L = y−1L, and the number of equivalence classes of→L is the number of quotients, which is called
the quotient complexity [3] of L. An equivalent concept is the state complexity of a regular language [25]
L, which is the number of states in a minimal DFA with alphabet Σ that recognizes L. This paper uses the
term complexity for both of these equivalent notions. We denote the (quotient/state) complexity of a regular
language L by κ(L).

Atoms of regular languages were studied in [14], and their complexities in [6, 13, 19]. Consider the left
congruence def ned as follows:

For x, y ∈ Σ+, x←L y if and only if wx ∈ L⇔ wy ∈ L for all w ∈ Σ∗.

Thus x←L y if x ∈ w−1L if and only if y ∈ w−1L. An equivalence class of this relation is called an atom.
It follows that atoms are intersections of complemented and uncomplemented quotients. In particular, if the
quotients of L are K1, . . . ,Kn, then for each atom A there is a unique set S ⊆ {K1, . . . ,Kn} such that
A =

⋂

K∈S K ∩
⋂

K 6∈S(Σ
∗ \K). In [4] it was argued that for a regular language to be considered “most

complex” when compared with other languages of the same (quotient/state) complexity, it should have the
maximal possible number of atoms and each atom should have maximal complexity. The complexity of
atoms of ideals was studied in [6, 7], and we shall state the results obtained there without proofs.

Most of the results in the literature concentrate on the (quotient/state) complexity of operations on regular
languages. The complexity of an operation is the maximal complexity of the language resulting from the
operation as a function of the complexities of the arguments.

It is generally assumed when studying complexity of binary operations that both arguments are languages
over the same alphabet, since if they have different alphabets, we can just view them as languages over
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the union of the alphabets. However, in 2016, Brzozowski demonstrated that this viewpoint leads to in-
correct complexity results for operations on languages over different alphabets [5]. He introduced a notion
of unrestricted (quotient/state) complexity of operations, which gives correct results when languages have
different alphabets. The traditional notion of complexity, in which languages are assumed to have the same
alphabet, is referred to as restricted (quotient/state) complexity of operations. As this paper was written well
before [5], all our results are in terms of restricted complexity. A study of unrestricted complexity of binary
operations on ideals can be found in [9].

There are two parts to the process of establishing the complexity of an operation. First, one must f nd an
upper bound on the complexity of the result of the operation by using quotient computations or automaton
constructions. Second, one must f nd witnesses that meet this upper bound. One usually def nes a sequence
(Ln | n > k) of languages, where k is some small positive integer (the bound may not apply for small values
of n). This sequence is called a stream. The languages in a stream usually differ only in the parameter n.
For example, one might study unary languages ({an}∗ | n > 1) that have zero a’s modulo n. A unary
operation then takes its argument from a stream (Ln | n > k). For a binary operation, one adds as the
second argument a stream (L′

m | m > k).
Sometimes one considers the case where the inputs to the operations are restricted to some subclass of

the class of regular languages. In this setting, typically the upper bounds on complexity are different and
different witnesses must be found. The complexity of operations on regular ideal languages was studied
in [8].

While witness streams are normally different for different operations, the main result of this paper shows
that for the subclasses of right, left and two-sided ideals, the complexity bounds for all “basic operations”
(those mentioned in the introduction) can be met by a single stream of languages along with a stream of
“dialects”, which are slightly modif ed versions of the languages. Several types of dialects were introduced
in [4]; in this paper we consider only dialects def ned as follows:

Let Σ = {a1, . . . , ak} be an alphabet; we assume that its elements are ordered as shown. Let π be a
partial permutation of Σ, that is, a partial function π : Σ → Γ where Γ ⊆ Σ, for which there exists ∆ ⊆ Σ
such that π is bijective when restricted to ∆ and undef ned on Σ \∆. We denote undef ned values of π by
the symbol “−”.

If L is a language over Σ, we denote it by L(a1, . . . , ak) to stress its dependence on Σ. If π is a partial
permutation, let sπ be the language substitution def ned as follows: for a ∈ Σ, a 7→ {π(a)} when π(a) is
def ned, and a 7→ ∅when π(a) is not def ned. For example, if Σ = {a, b, c}, L(a, b, c) = {a, b, c}∗{ab, acc},
and π(a) = c, π(b) = −, and π(c) = b, then sπ(L) = {b, c}∗{cbb}. In other words, the letter c plays the
role of a, and b plays the role of c. A permutational dialect of L(a1, . . . , ak) is a language of the form
sπ(L(a1, . . . , ak)), where π is a partial permutation of Σ; this dialect is denoted by L(π(a1), . . . , π(ak)). If
the order on Σ is understood, we use L(Σ) for L(a1, . . . , ak) and L(π(Σ)) for L(π(a1), . . . , π(ak)).

Let Σ = {a1, . . . , ak}, and let D = (Q,Σ, δ, q1, F ) be a DFA; we denote it by D(a1, . . . , ak) to stress its
dependence on Σ. If π is a partial permutation, then the permutational dialect

D(π(a1), . . . , π(ak))

of D(a1, . . . , ak) is obtained by changing the alphabet of D from Σ to π(Σ), and modifying δ so that in
the modif ed DFA π(ai) induces the transformation induced by ai in the original DFA; thus π(ai) plays
the role of ai. One verif es that if the language L(a1, . . . , ak) is accepted by DFA D(a1, . . . , ak), then
L(π(a1), . . . , π(ak)) is accepted by D(π(a1), . . . , π(ak)).

In the sequel we refer to permutational dialects simply as dialects.
Example 1. SupposeD = D(a, b, c) = ({1, 2, 3}, {a, b, c}, δ, q1, F ), where δ is def ned by the transforma-
tions a : (1, 2, 3), b : (3 → 1), and c : (1, 2). Let L = L(a, b, c) be the language of this DFA. Consider the
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partial permutation π(a) = b, π(b) = −, and π(c) = a. In the dialect associated with π, the letter b plays
the role of a, and a plays the role of c. Thus D(b,−, a) is the DFA ({1, 2, 3}, {a, b}, δπ, q1, F ), where δπ is
def ned by a : (1, 2) and b : (1, 2, 3). The language of D(b,−, a) is the dialect L(b,−, a) of L.

The notion of a most complex stream of regular languages was introduced informally in [4]. A most
complex stream is one whose languages together with their dialects meet all the upper bounds for the com-
plexity measures described in the introduction. We now make this notion precise. First, however, we re-
call a property of boolean functions. Let the truth values of propositions be 1 (true) and 0 (false). Let
◦ : {0, 1} × {0, 1} → {0, 1} be a binary boolean function. Extend ◦ to a function ◦ : 2Σ

∗

× 2Σ
∗

→ 2Σ
∗

: If
w ∈ Σ∗ and L,L′ ⊆ Σ∗, then w ∈ (L ◦ L′)⇔ (w ∈ L) ◦ (w ∈ L′). A binary boolean function is proper if
it is not a constant and not a function of one variable only.
Def nition 1. Let C be a class of languages and let Cn be the subclass of C that consists of all the languages
of C that have (quotient/state) complexity n. Let Σ = {a1, . . . , ak}, and let (Ln(Σ) | n > k) be a stream of
languages, where Ln ∈ Cn for all n > k. Then (Ln(Σ) | n > k) is most complex in class C if it satisf es
all of the following conditions:

1. The syntactic semigroup of Ln(Σ) has maximal cardinality for each n > k.

2. Each quotient of Ln(Σ) has maximal complexity for each n > k.

3. Ln(Σ) has the maximal possible number of atoms for each n > k.

4. Each atom of Ln(Σ) has maximal complexity for each n > k.

5. The reverse of Ln(Σ) has maximal complexity for each n > k.

6. The star of Ln(Σ) has maximal complexity for each n > k.

7. The product Lm(Σ)Ln(Σ) has maximal complexity for all m,n > k.

8. There exists a dialect Ln(π(Σ)) such that each proper binary boolean function Lm(Σ) ◦ Ln(π(Σ))
has maximal complexity for all m,n > k.

A most complex stream (Ln | n > 3) for the class of regular languages was introduced in [4]. We give
the def nition of Ln below.
Def nition 2. For n > 3, letDn = Dn(a, b, c) = (Qn,Σ, δn, 1, {n}), where Σ = {a, b, c}, and δn is def ned
by the transformations a : (1, . . . , n), b : (1, 2), c : (n→ 1). Let Ln = Ln(a, b, c) be the language accepted
by Dn. The structure of Dn(a, b, c) is shown in Figure 1.

1 2 3 . . . n− 2 n− 1 n
a, b a a a a a

b

a, c

c c b, c b, cb, c b

Fig. 1: Minimal DFA Dn(a, b, c) of Def nition 2.

Our main contributions in this paper are most complex streams for the classes of right, left, and two-sided
regular ideals.
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3 Right Ideals
A stream of right ideals that is most complex was def ned and studied in [6]. For completeness we include
the results from that paper; the proof of Theorem 5 did not appear in [6].
Def nition 3. For n > 3, let Dn = Dn(a, b, c, d) = (Qn,Σ, δn, 1, {n}), where Σ = {a, b, c, d}, and δn is
def ned by the transformations a : (1, . . . , n − 1), b : (2, . . . , n − 1), c : (n− 1→ 1) and d : (n− 1→ n).
Note that b is the identity when n = 3. Let Ln = Ln(a, b, c, d) be the language accepted by Dn. The
structure of Dn(a, b, c, d) is shown in Figure 2.

1 2 3 . . . n− 2 n− 1 n
a a, b a, b a, b a, b d

b

a, c

b, c, d c, d c, d c, d a, b, c, d

Fig. 2: Minimal DFA Dn(a, b, c, d) of Def nition 3.

The DFA of Figure 2 has a similar structure to the DFA of Figure 1. More precisely, DFA Dn of Figure 2
is constructed by taking DFA Dn−1 of Figure 1, adding a new state n and a new input d : (n − 1 → n),
making n the only f nal state, and having b induce the cyclic permutation (2, . . . , n − 1), rather than the
transposition (1, 2). The new state and input d ensure that Ln is a right ideal. The new transformation by b
is necessary since, if b induces (1, 2) in Dn, then Ln does not meet the bound for product.
Theorem 1 (Right Ideals [6]). For each n > 3, the DFA Dn(a, b, c, d) of Def nition 3 is minimal and its
language Ln(a, b, c, d) is a right ideal of complexity n. The stream (Ln(a, b, c, d) | n > 3) with dialect
stream (Ln(b, a, c, d) | n > 3) is most complex in the class of regular right ideals. In particular, this stream
meets all the complexity bounds listed below, which are maximal for right ideals. In several cases the bounds
can be met with restricted alphabets, as shown below.

1. The syntactic semigroup of Ln(a, b, c, d) has cardinality nn−1. Moreover, fewer than four inputs do
not suff ce to meet this bound.

2. The quotients of Ln(a,−,−, d) have complexity n, except for the quotient {a, d}∗, which has com-
plexity 1.

3. Ln(a,−,−, d) has 2n−1 atoms.

4. For each atom AS of Ln(a, b, c, d), the complexity κ(AS) satisf es:

κ(AS) =

{

2n−1, if S = Qn;
1 +

∑|S|
x=1

∑n−|S|
y=1

(

n−1
x−1

)(

n−x

y−1

)

, if ∅ ( S ( Qn.

5. The reverse of Ln(a,−,−, d) has complexity 2n−1.

6. The star of Ln(a,−,−, d) has complexity n+ 1.
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7. The product Lm(a, b,−, d)Ln(a, b,−, d) has complexitym+ 2n−2.

8. For any proper binary boolean function ◦, the complexity ofLm(a, b,−, d)◦Ln(b, a,−, d) is maximal.
In particular,

(a) Lm(a, b,−, d) ∩ Ln(b, a,−, d) and Lm(a, b,−, d)⊕ Ln(b, a,−, d) have complexitymn.

(b) Lm(a, b,−, d) \ Ln(b, a,−, d) has complexitymn− (m− 1).

(c) Lm(a, b,−, d) ∪ Ln(b, a,−, d) has complexitymn− (m+ n− 2).

(d) Ifm 6= n, the bounds are met by Lm(a, b,−, d) and Ln(a, b,−, d).

Proof: For 1 6 q 6 n − 1, a non-f nal state q accepts an−1−qd and no other non-f nal state accepts this
word. All non-f nal states are distinguishable from the f nal state n. Hence Dn(a,−,−, d) is minimal and
Ln(a,−,−, d) has n quotients. Since D(a, b, c, d) has only one f nal state and that state accepts Σ∗, it is a
right ideal.

1. The case n = 3 is easily checked. For n > 4, let D′
n = (Qn,Σ, δ

′
n, 1, {n}), where Σ = {a, b, c, d},

and a : (1, . . . , n − 1), b : (1, 2), c : (n− 1→ 1) and d : (n− 1→ n). It was proved in [15] that the
transition semigroup of a minimal DFA accepting a right ideal has at most nn−1 transformations, and
that the transition semigroup of D′

n has cardinality nn−1. Since for n > 3, (1, 2) is induced by an−2b
in Dn, all the transformations of D′

n can be induced in Dn, and the claim follows. Moreover, it was
proved in [12] that an alphabet of at least four letters is required to meet this bound.

2. Each quotient of Ln(a,−,−, d), except {a, d}∗, has complexity n, since states 1, . . . , n − 1 are
strongly connected. Each right ideal must have a f nal state that accepts Σ∗ (for Ln(a,−,−, d) this
is state n), and so the complexity of the quotient corresponding to this f nal state is 1. Hence the
complexities of the quotients are maximal for right ideals.

3. It was proved in [13] that the number of atoms of any regular language L is equal to the complexity
of the reverse of L. If L is a right ideal of complexity n, the maximal complexity of the reverse LR is
2n−1 [8]. For n = 3, it is easily checked that our witness meets this bound. For n > 3, it was proved
in [15] that the reverse of Ln(a,−,−, d) reaches this bound.

4. This was proved in [7].

5. See Item 3 above.

6. See Theorem 2.

7. See Theorem 3.

8. See Theorems 4 and 5.
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3.1 Star
Theorem 2 (Right Ideals: Star [6]). For n > 3 the complexity of the star of Ln(a,−,−, d) is n+ 1.

Proof: If L is a right ideal, then L∗ = L ∪ {ε}. Consider the DFA for star constructed as follows. To add ε
to L, the initial state 1 of our witness cannot be made f nal since this would add other words to the language,
for example, an−1. Thus an additional state, say 0, is required; this state is both initial and f nal in the DFA
for L∗, its outgoing transitions are the same as those of the initial state 1 of the DFA for L, and it has no
incoming transitions. Since this DFA accepts L∪ {ε}, n+ 1 states are suff cient. All the states are pairwise
distinguishable, since 0 rejects d, while n accepts it, and all the non-f nal states are distinguishable by words
in a∗d.

3.2 Product
We use the DFAs D′

m(a, b,−, d) = (Q′
m,Σ, δ′m, 1′, {m′}) and Dn(a, b,−, d) = (Qn,Σ, δn, 1, {n}) shown

in Figure 3 for m = 4 and n = 5, where Σ = {a, b, d} and the states of the f rst DFA are primed to
distinguish them from those of the second DFA.

We show that the complexity of the product ofLm(a, b,−, d)Ln(a, b,−, d) reaches the maximum possible
bound m + 2n−2 derived in [8]. Def ne the ε-NFA P = (Q′

m ∪ Qn,Σ, δP , {1′}, {n}), where δP(p
′, a) =

{δ′(p′, a)} if p′ ∈ Q′
m, a ∈ Σ, δP(q, a) = {δ(q, a)} if q ∈ Qn, a ∈ Σ, and δP(m

′, ε) = {1}. This ε-NFA
accepts LmLn, and is illustrated in Figure 3.

1′ 2′ 3′ 4′
a a, b d

b

a

b, d d a, b, d

1 2 3 4 5
a a, b a, b d

b

a

ε

b, d d d a, b, d

Fig. 3: ε-NFA for product with m = 4, n = 5.

Theorem 3 (Right Ideals: Product [6]). For m,n > 3 the complexity of the product of Lm(a, b,−, d) and
Ln(a, b,−, d) ism+ 2n−2.

Proof: It was shown in [8] that m + 2n−2 is an upper bound on the complexity of the product of two right
ideals. To prove this bound is met, we apply the subset construction to P to obtain a DFA D for LmLn.
The states of D are subsets of Q′

m ∪ Qn. We prove that all states of the form {p′}, p = 1, . . . ,m − 1 and
all states of the form {m′, 1} ∪ S, where S ⊆ Qn \ {1, n}, and state {m′, 1, n} are reachable, for a total of
m+ 2n−2 states.

State {1′} is the initial state, and {p′} is reached by ap−1 for p = 2, . . . ,m− 1. Also, {m′, 1} is reached
by am−2d, and states m′ and 1 are present in every subset reachable from {m′, 1}. By applying abq−2 to
{m′, 1} we reach {m′, 1, q}; hence all subsets {m′, 1} ∪ S with |S| = 1 are reachable.

Assume now that we can reach all sets {m′, 1} ∪ S with |S| = k, and suppose that we want to reach
{m′, 1} ∪ T with T = {q0, q1, . . . , qk} with 2 6 q0 < q1 < · · · < qk 6 n− 1. This can be done by starting
with S = {q1 − q0 + 1, . . . , qk − q0 + 1} and applying abq0−2. Finally, to reach {m′, 1, n}, apply d to
{m′, 1, n− 1}.
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If 1 6 p < q 6 m − 1, then state {p′} is distinguishable from {q′} by am−1−qdan−1d. Also, state
p ∈ Qn with 2 6 p 6 n − 1 accepts an−1−pd and no other state q ∈ Qn with 2 6 q 6 n − 1 accepts this
word. Hence, if S, T ⊆ Qn \ {1, n} and S 6= T , then {m′, 1}∪S and {m′, 1}∪T are distinguishable. State
{p′} with 2 6 p 6 m− 1 is distinguishable from state {m′, 1} ∪ S because there is a word with a single d
that is accepted from {m′, 1} ∪ S but no such word is accepted by {q′}. Hence all the non-f nal states are
distinguishable, and {m′, 1, n} is the only f nal state.

3.3 Boolean Operations
We restrict our attention to the four boolean operations ∪,∩, \,⊕, since the complexity of any other proper
binary boolean operation can be obtained from these four. For example, we have κ(L′ ∪ L) = κ(L′ ∪ L) =
κ(L′ ∩ L) = κ(L \ L′).

Tight upper bounds for boolean operations on right ideals [8] are mn for intersection and symmetric
difference, mn− (m−1) for difference, and mn− (m+n−2) for union. Since Ln∪Ln = Ln∩Ln = Ln,
and Ln \ Ln = Ln ⊕ Ln = ∅, two different languages must be used to reach the bounds if m = n.

We use the DFAs D′
m(a, b,−, d) = (Q′

m,Σ, δ′m, 1′, {m′}) and Dn(b, a,−, d) = (Qn,Σ, δn, 1, {n})
shown in Figure 4 for m = 4 and n = 5.

1′ 2′ 3′ 4′
a a, b d

b

a

b, d d a, b, d

1 2 3 4 5
b a, b a, b d

a

b

a, d d d a, b, d

Fig. 4: Right-ideal witnesses for boolean operations with m = 4, n = 5.

LetDm,n = D′
m×Dn. Depending on the assignment of f nal states, this DFA recognizes different boolean

operations on Lm and Ln. The direct product of D4(a, b,−, d) and D5(b, a,−, d) is in Figure 5.
Let Sn denote the symmetric group of degree n. A basis [22] of Sn is an ordered pair (s, t) of distinct

transformations of Qn = {1, . . . , n} that generate Sn. A DFA has a basis (ta, tb) for Sn if it has letters
a, b ∈ Σ such that a induces ta and b induces tb. In the case of our right ideal D′

m (Dn), the transitions
δ′a and δ′b (δa and δb) restricted to {1′, . . . , (m− 1)′}({1, . . . , n− 1}), constitute a basis for Sm−1 (Sn−1).
Consider DFAs A′

m−1 = (Q′
m−1,Σ, δ

′
m−1, 1

′, {(m − 1)′}) and An−1 = (Qn−1,Σ, δn−1, 1, {n − 1}),
where Σ = {a, b} and the transitions of A′

m−1 (An−1) are the same as those of D′
m (Dn) restricted to

Q′
m−1 (Qn−1). By [2, Theorem 1] all the states in the direct product of A′

m−1 and An−1 are reachable and
distinguishable for m− 1, n− 1 > 2, (m− 1, n− 1) 6∈ {(2, 2), (3, 4), (4, 3), (4, 4)}. We shall use this result
to simplify our proof of the next theorem.
Theorem 4 (Right Ideals: Boolean Operations [6]). Ifm,n > 3, then

1. The complexity of Lm(a, b,−, d) ∩ Ln(b, a,−, d) ismn.

2. The complexity of Lm(a, b,−, d)⊕ Ln(b, a,−, d) ismn.

3. The complexity of Lm(a, b,−, d) \ Ln(b, a,−, d) ismn− (m− 1).
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1′, 1

2′, 1

3′, 1

4′, 1

1′, 2

2′, 2

3′, 2

4′, 2

1′, 3

2′, 3

3′, 3

4′, 3

1′, 4

2′, 4

3′, 4

4′, 4

1′, 5

2′, 5

3′, 5

4′, 5

a

a

d

a

d d d

a

a, b

d

a

b a, b a, b d

a
b

b b b d

b

b

d

Fig. 5: Direct product for boolean operations. Unlabeled transitions under a are solid, under b are dashed, and under
both a and b are thick. Self-loops are omitted.

4. The complexity of Lm(a, b,−, d) ∪ Ln(b, a,−, d) ismn− (m+ n− 2).

Proof: In the cases where (m,n) ∈ {(3, 3), (4, 5), (5, 4), (5, 5)}, we cannot apply the result from [2, The-
orem 1], but we have verif ed computationally that the bounds are met. Thus we assume that (m,n) 6∈
{(3, 3), (4, 5), (5, 4), (5, 5)}.

Our f rst task is to show that all mn states of Dm,n are reachable. By [2, Theorem 1], all states in the set
S = {(p′, q) | 1 6 p 6 m− 1, 1 6 q 6 n− 1} are reachable. The remaining states are the ones in the last
row or last column (that is, Row m or Column n) of the direct product.

For 1 6 q 6 n − 2, from state ((m − 1)′, q) we can reach (m′, q) by d. From state (m′, n − 2) we can
reach (m′, n− 1) by a. From state ((m− 1)′, n− 1) we can reach (m′, n) by d. Hence all states in Row m
are reachable.

For 1 6 p 6 m − 2, from state (p′, n − 1) we can reach (p′, n) by d. From state ((m − 2)′, n) we can
reach ((m− 1)′, n) by a. Hence all states in Column n are reachable, and thus all mn states are reachable.

We now count the number of distinguishable states for each operation. Let H = {(m′, q) | 1 6 q 6 n}
be the set of states in the last row and let V = {(p′, n) | 1 6 p 6 m} be the set of states in the last column.
If ◦ ∈ {∩,⊕, \,∪}, then Lm(a, b,−, d) ◦ Ln(b, a,−, d) is recognized by Dm,n, where the set of f nal states
is taken to be H ◦ V .

Let H ′ = {((m− 1)′, q) | 1 6 q 6 n− 1} and let V ′ = {(p′, n − 1) | 1 6 p 6 m − 1}. That is, H ′ is
the second last row of states, and V ′ is the second last column, restricted to S. By [2, Theorem 1], all states
in S are distinguishable with respect to H ′ ◦V ′, for each boolean operation ◦ ∈ {∩,⊕, \,∪}. We claim that
they are also distinguishable with respect to H ◦ V for ◦ ∈ {∩,⊕, \,∪}.

To see this, one verif es the following statement: for each ◦ ∈ {∩,⊕, \,∪} and each state (p′, q) ∈ S, we
have (p′, q) ∈ H ′ ◦ V ′ if and only if (p′, q)d ∈ H ◦ V . (This only applies to states (p′, q) ∈ S; for example,
in Figure 5 we see that (4′, 4)d ∈ H ∩ V but (4′, 4) 6∈ H ′ ◦ V ′.) Since states in S are distinguishable
with respect to H ′ ◦ V ′, it follows that for any pair of states (p′, q), (r′, s) ∈ S there is a word w with
(p′, q)w ∈ H ′ ◦ V ′ and (r′, s) 6∈ H ′ ◦ V ′. Then by the statement, the word wd sends (p′, q) into H ◦ V and
(r′, s) outside of H ◦ V , thus distinguishing the two states with respect to H ◦ V .
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Thus for each boolean operation ◦, all states in S are distinguishable from each other with respect to the
f nal state set H ◦ V . Next, we prove that the states in S are distinguishable from the rest of the states (those
in H ∪ V ) with respect to the f nal state set H ◦ V .

Since all states in S are non-f nal, it suff ces to distinguish states in S from states in X = H∪V \(H ◦V ),
the set of non-f nal states in H ∪ V . If ◦ = ∪, then X contains no states and there is nothing to be done. If
◦ = ⊕, the only state in X is (m′, n), which is empty, but all states in S are non-empty. If ◦ = \, then all
states in X are empty but no states in S are. Finally, if ◦ = ∩, observe that each state in X accepts a word
containing a single d, while states in S \{((m−1)′, n−1)} accept only words with at least two occurrences
of d. To distinguish ((m − 1)′, n− 1) from (p′, q) ∈ X , apply a (which maps ((m − 1)′, n− 1) to (1′, 2))
and then apply a word which distinguishes (1′, 2) from (p′, q)a.

We have shown that each state in S is distinguishable from every other state in the direct product Dm,n,
with respect to each of the four f nal state sets H ◦V with ◦ ∈ {∩,⊕, \,∪}. Since there are (m−1)(n−1) =
mn−m−n+1 states in S, there are at least that many distinguishable states for each operation ◦. To show
that the complexity bounds are reached by Lm(a, b,−, d) ◦ Ln(b, a,−, d), it suff ces to consider how many
of the remaining m + n − 1 states in H ∪ V are distinguishable with respect to H ◦ V . We consider each
operation in turn.
Intersection: Here the set of f nal states is H ∩ V = {(m′, n)}. State (m′, n) is the only f nal state and
hence is distinguishable from all the other states. Any two states in H (V ) are distinguished by words in b∗d
(a∗d). State (m′, 1) accepts bn−2d, while (1′, n) rejects it. For 2 6 q 6 n − 1, (m′, q) is sent to (m′, 1)
by bn−q, while state (1′, n) is not changed by that word. Hence (m′, q) is distinguishable from (1′, n). By
a symmetric argument, (p′, n) is distinguishable from (m′, 1) for 2 6 p 6 m − 1. For 2 6 q 6 n − 1 and
2 6 p 6 m− 1, (m′, q) is distinguished from (p′, n) because bn−q sends the former to (m′, 1) and the latter
to a state of the form (r′, n), where 2 6 r 6 m−1. Hence all pairs of states from H∪V are distinguishable.
Since there are m+ n− 1 states in H ∪ V , it follows there are (mn−m− n + 1) + (m+ n− 1) = mn
distinguishable states.
Symmetric Difference: Here the set of f nal states is H ⊕ V , that is, all states in the last row and column
except (m′, n), which is the only empty state. This situation is complementary to that for intersection. Thus
every two states from H ∪ V are distinguishable by the same word as for intersection. Hence there are mn
distinguishable states.
Difference: Here the set of f nal states is H \ V , that is, all states in the last row H except (m′, n), which
is empty. All other states in the last column V are also empty. The m empty states in V are all equivalent,
and the n − 1 f nal states in H \ V are distinguished in the same way as for intersection. Hence there are
(n−1)+1 = n distinguishable states in H \V . It follows there are (mn−m−n+1)+n = mn− (m−1)
distinguishable states.
Union: Here the set of f nal states is H ∪ V . From a state in H ∪ V it is possible to reach only other states
in H ∪ V , and all these states are f nal; so every state in H ∪ V accepts Σ∗. Thus all the states in H ∪ V are
equivalent, and so there are (mn−m− n+ 1) + 1 = mn− (m+ n− 2) distinguishable states.

Although it is impossible for the stream (Ln(a, b,−, d) | n > 3) to meet the bounds for boolean opera-
tions when m = n, this stream is as complex as it could possibly be in view of the following theorem:

Theorem 5 (Right Ideals: Boolean Operations, m 6= n). Supposem,n > 3 andm 6= n.

1. The complexity of Lm(a, b,−, d) ∩ Ln(a, b,−, d) ismn.

2. The complexity of Lm(a, b,−, d)⊕ Ln(a, b,−, d) ismn.

3. The complexity of Lm(a, b,−, d) \ Ln(a, b,−, d) ismn− (m− 1).
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4. The complexity of Lm(a, b,−, d) ∪ Ln(a, b,−, d) ismn− (m+ n− 2).

Proof: Let D′
m = Dm(a, b,−, d), Dn = Dn(a, b,−, d), and Dm,n = D′

m × Dn be the direct product
automaton. If (m,n) ∈ {(4, 5), (5, 4)}, we have verif ed computationally that the bounds are met. If
(m,n) 6∈ {(4, 5), (5, 4)}, we can apply [2, Theorem 1]. Thus by the arguments used in the proof of Theorem
4, all states of Dm,n are reachable.

Most of the distinguishability arguments carry over as well. If H and V are the last row and column of
states in Dm.n respectively, and S is the set of states lying outside of H ∪ V , we can use nearly identical
arguments as in the proof of Theorem 4 to show that for ◦ ∈ {∩,⊕, \,∪}, every state in S is distinguishable
from every other state in Dm,n with respect to H ◦V . It remains to count the number of states in H ∪V that
are distinguishable with respect to H ◦ V .
Intersection: Here the set of f nal states is H ∩ V = {(m′, n)}. Since (m′, n) is the only f nal state, it is
distinguishable from all other states. Any two states both in H (or both in V ) are distinguished by words
in a∗d. Suppose m < n. Then am−1 sends (m′, 1) to (m′,m) and f xes (1′, n). Words in b∗ can send
(m′,m) to (m′, q) for 2 6 q 6 n − 1, and they f x (1′, n). For 2 6 q 6 n − 1, (m′, q) accepts bn−1−qd,
while (1′, n) remains f xed. Hence (m′, q) is distinguishable from (1′, n) for all q. For 2 6 p 6 m− 1 and
2 6 q 6 n − 1, (m′, q) is distinguished from (p′, n) because am−p sends (p′, n) to (1′, n) and (m′, q) to
some state that is distinguishable from (1′, n). Hence all pairs of states from H ∪ V are distinguishable if
m < n. A symmetric argument works for m > n. Thus all mn states are distinguishable.
Symmetric Difference, Difference, and Union: The arguments are similar to those used in the proof of
Theorem 4.

Remark 1. For each class of languages we studied in this paper, our goal was to f nd a single DFA stream
that meets the upper bounds (for that class) on all of our complexity measures. For regular right ideals, a
four-letter alphabet was necessary to achieve this, because fewer than four letters are not suff cient for the
size of the syntactic semigroup to be maximal. Having found such a DFA, we then observed that the alphabet
of this DFA can be reduced for several operations. On the other hand, if one wishes to minimize the alphabet
for one particular operation only, it is possible to f nd witnesses over even smaller alphabets.

We list here each operation with the size of the smallest known alphabet (f rst entry) along with our al-
phabet size (second entry): reversal (2/2), star (2/2), product (2/3), union (2/3), intersection (2/3), symmetric
difference (2/3), and difference (2/3).

As an example, consider the two binary witnesses for the product operation that are used in [8]: D′
m =

(Q′
m, {a, b}, δ′m, 1′, {m′}), where a, b : ((m − 1)′ → m′)((m − 2)′ → (m − 1)′) · · · (1′ → 2′), and

Dn = (Qn, {a, b}, δn, 1, {n}), where a : (1, 2, . . . , n − 1), b : (n − 1 → n)(n − 2 → n − 1) · · · (2 → 3).
Note that, although only two inputs are used, they induce three different transformations. Thus one can argue
that these witnesses are not simpler than ours.

4 Left Ideals
The following stream of left ideals was def ned in [15]:
Def nition 4. For n > 4, let Dn = Dn(a, b, c, d, e) = (Qn,Σ, δn, 1, {n}), where Σ = {a, b, c, d, e}, and
δn is def ned by transformations a : (2, . . . , n), b : (2, 3), c : (n→ 2), d : (n→ 1), e : (Qn → 2). Let Ln =
Ln(a, b, c, d, e) be the language accepted by Dn. The structure of Dn(a, b, c, d, e) is shown in Figure 6.

This stream of languages is closely related to the stream of Figure 1. The DFA Dn(a, b, c, d, e) of Def ni-
tion 4 is constructed by taking Dn−1(a, b, c) of Figure 1 with states relabeled 2, . . . , n, adding a new state 1
and new inputs d : (n→ 1) and e : (Qn → 2).
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1 2 3 4 . . . n− 1 n
e a, b a a a a

a, b, c, d c, d, e c, d b, c, d b, c, d b
b, e

e

e

a, c, e

d

Fig. 6: Minimal DFA Dn(a, b, c, d, e) of Def nition 4.

Theorem 6 (Left Ideals). For each n > 4, the DFA Dn(a, b, c, d, e) of Def nition 4 is minimal and its
language Ln(a, b, c, d, e) is a left ideal of complexity n. The stream (Ln(a, b, c, d, e) | n > 4) with dialect
stream (Ln(a, b, e, d, c) | n > 4) is most complex in the class of regular left ideals. In particular, this stream
meets all the complexity bounds listed below, which are maximal for left ideals. In several cases the bounds
can be met with restricted alphabets, as shown below.

1. The syntactic semigroup of Ln(a, b, c, d, e) has cardinality nn−1 + n − 1. Moreover, fewer than f ve
inputs do not suff ce to meet this bound.

2. All quotients of Ln(a,−,−, d, e) have complexity n.

3. Ln(a,−, c, d, e) has 2n−1 + 1 atoms.

4. For each atom AS of Ln(a, b, c, d, e), the complexity κ(AS) satisf es:

κ(AS) =











n, if S = Qn;
2n−1, if S = ∅;
1 +

∑|S|
x=1

∑n−|S|
y=1

(

n−1
x

)(

n−x−1
y−1

)

, otherwise.

5. The reverse of Ln(a,−, c, d, e) has complexity 2n−1 + 1.

6. The star of Ln(a,−,−,−, e) has complexity n+ 1.

7. The product Lm(a,−,−,−, e)Ln(a,−,−,−, e) has complexitym+ n− 1.

8. For any proper binary boolean function ◦, the complexity of Lm(a,−, c,−, e)
◦ Ln(a,−, e,−, c) ismn.

Proof: DFA Dn(a,−,−, d, e) is minimal since only state 1 does not accept any word in a∗, whereas every
other state p > 1 accepts an−p and no state q with 1 < q 6= p accepts this word. It was proved in [15] that
Dn(a, b, c, d, e) accepts a left ideal.

1. It was shown in [10] that the syntactic semigroup of a left ideal of complexity n has cardinality at most
nn−1+n−1, and in [15] that the syntactic semigroup of Ln(a, b, c, d, e) has cardinality nn−1+n−1.
Moreover, it was proved in [12] that an alphabet of at least f ve letters is required to meet this bound.
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2. Each quotient of Ln(a,−,−, d, e) has complexity n, since its minimal DFA is strongly connected.

3. The number of atoms of any regular language L is equal to the complexity of the reverse of L [13]. It
was proved in [15] that the complexity of the reverse of Ln(a,−, c, d, e) is 2n−1 + 1.

4. This was proved in [7].

5. See Item 3 above.

6. The argument is the same as for the star of right ideals.

7. See Theorem 7.

8. See Theorem 8.

4.1 Product
We now show that the complexity of the product of D′

m(a,−,−,−, e) with Dn(a,−,−,−, e) reaches the
maximum possible bound m + n− 1 derived in [8]. As in [8] we use the following construction: Def ne a
DFA D from DFAs D′

m and Dn by omitting the f nal state of D′
m and all the transitions from the f nal state,

and redirecting all the transitions that go from a non-f nal state of D′
m to the f nal state of D′

m to the initial
state ofDn. It was proved in [8] thatD accepts LmLn. The construction is illustrated in Figure 7 for m = 4
and n = 5.

1′ 2′ 3′
e a

e

a e

1 2 3 4 5
e a a a

e

e

a, e

a

a e

Fig. 7: Product of left-ideal witnesses with m = 4, n = 5.

Theorem 7 (Left Ideals: Product). For m,n > 4, the complexity of the product of Lm(a,−,−,−, e) and
Ln(a,−,−,−, e) ism+ n− 1.

Proof: By constructionD has m+ n− 1 states. It is also clear that the shortest word accepted by state 1′ is
eam−2ean−2, whereas for a state p′ with 2 6 p 6 m − 1 it is am−pean−2, for state 1 it is ean−2, and for
any state q with 2 6 q 6 n it is an−q . Hence all the states are distinguishable by their shortest words.
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1′ 2′ 3′ 4′
e a a

e

a, c, e

a, c c, e c

1 2 3 4′ 5
c a a a

c

c

a, c, e

a, e c, e e e

Fig. 8: Left-ideal witnesses for boolean operations with m = 4, n = 5.

4.2 Boolean Operations
As pointed out earlier, two different languages have to be used to reach the maximal complexity for boolean
operations. Let D′

m = D′
m(a,−, c,−, e), Dn = Dn(a,−, e,−, c), and Dm,n = D′

m × Dn. Figure 8 shows
DFAs D′

4(a,−, c,−, e) and D5(a,−, e,−, c).

Theorem 8 (Left Ideals: Boolean Operations). If m,n > 4 and ◦ is any proper binary boolean function,
then the complexity of Lm(a,−, c,−, e) ◦ Ln(a,−, e,−, c) ismn.

Proof: Our f rst task is to show that all mn states of Dm,n are reachable. State (1′, 1) is the initial state. For
q = 2, . . . , n, (1′, q) is reachable by caq−2, and for p = 2, . . . ,m, (p′, 1) is reachable by eap−2. Next, (p′, 2)
is reached from (p′, 1) by c for p = 2, . . . ,m−1, and (2′, q) is reached from (1′, q) by e for q = 2, . . . , n−1.

Let g = gcd(m − 1, n − 1) and ℓ = lcm(m − 1, n − 1); then g · ℓ = (m − 1)(n − 1). Note that a is
a permutation on the set S = {(p′, q) | 2 6 p 6 m, 2 6 q 6 n}. Since a is a cyclic permutation of order
m − 1 on Q′

m \ {1
′}, and a is also a cyclic permutation of order n − 1 on Qn \ {1}, a is a permutation of

order ℓ = lcm(m− 1, n− 1) on S.
Let (p′1, q1) and (p′2, q2) be elements of S, such that p1 − q1 ≡ p2 − q2 mod g. Then p2 − p1 ≡ q2 − q1

mod g. Since m−1 and n−1
g

are coprime, by the Chinese Remainder Theorem the equivalences k ≡ p2−p1

mod (m− 1) and k ≡ q2 − q1 mod n−1
g

have a unique solution modulo (m− 1) · n−1
g

= ℓ for k. Since
k ≡ p2−p1 mod (m−1), we have k ≡ p2−p1 ≡ q2−q1 mod g. Combined with k ≡ q2−q1 mod n−1

g
,

this gives k ≡ q2− q1 mod (n− 1). Applying ak to (p′1, q1), gives the state (p′1+ k mod (m− 1), q1+ k
mod (n − 1)) = (p′2, q2). So for every pair (p′1, q1) and (p′2, q2) such that p1 − q1 ≡ p2 − q2 mod g,
(p′2, q2) is reachable from (p′1, q1) by some number of a’s.

If (p′1, q1) ∈ S is reachable, all (p′, q) ∈ S such that p1 − q1 ≡ p− q mod g are also reachable. Since
(p′1, 2) is reachable for p1 = 2, . . . ,m− 1, all (p′, q) ∈ S such that p− q ∈ {0, 1, 2, . . . , (m− 3) mod g}
are reachable. Since (2′, 3) is reachable, all (p′, q) ∈ S such that p − q ≡ −1 ≡ (m − 2) mod g are
reachable. Since all remainders modulo g have at least one representative, all of S is reachable.

We prove distinguishability using a number of claims:

1. (2′, 2) is distinguishable from every other state in Column 2.

(a) If the operation is intersection (symmetric difference), then (m′, n) is distinguishable from all
other states in Column n, since (m′, n) is the only f nal (non-f nal) state in this column. Note that
am−1 (an−1) acts as the identity on the set Q′

m \ {1
′} (Qn \ {1}). Hence alcm(m−1,n−1) is the

identity on Q′
m\{1}×Qn\{1}, and x = alcm(m−1,n−1)−1 maps (2′, 2) to (m′, n). If two states

are in the same column, then so are their successors after aℓ is applied, for any ℓ > 0. Therefore
applying x to (p′, 2) leads to a state in Column n; so (2′, 2) and (p′, 2) are distinguishable by x.
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(b) If the operation is union (difference), then (m′, n − 1) is distinguishable from any other state
in Column n − 1. Consider (2′, 2) and (p′, 2); applying ac results in (3′, 2) and (r′, 2), where
r 6= 3. Following this by alcm(m−1,n−1)−2 yields (m′, n − 1) and (s′, n − 1), where s 6= m.
Hence acalcm(m−1,n−1)−2 distinguishes (2′, 2) from (p′, 2).

2. (2′, 2) is distinguishable from every other state in Row 2.
The argument is symmetric to that for Claim 1, when the operation is intersection, symmetric differ-
ence, or union. If the operation is difference, the states can be distinguished by alcm(m−1,n−1)−1 since
this maps (2′, 2) to (m′, n), which is distinguishable from all other states in Row m.

3. For any two states in the same column there is a word mapping exactly one of them to (2′, 2).
Let the two states be (p′, q) and (r′, q). If {p, r} = {2,m}, let s = 1; otherwise, let s = 0. Applying
as results in (p′1, q1) and (r′1, q1), where {p1, r1} 6= {2,m}, since m > 4. Thus we can assume that
the pair of states to be distinguished is (p′, q) and (r′, q), where {p, r} 6= {2,m}. Now c takes these
states to (p′1, 2) and (r′1, 2), and p1 6= r1, since c can map two states of Q′

m\{1
′} to the same state only

if these states are 2′ and m′. Observe that ac cyclically permutes states {(p′, 2) | 2 6 p 6 m− 1}. So
applying ac a suff cient number of times maps exactly one of the two states to (2′, 2).

4. For any two states in the same row there is a word mapping exactly one of them to (2′, 2).
The proof is symmetric to that for Claim 3, if we interchange rows and columns and replace c by e.

5. For any pair of states, there exists a word that maps one of the states to (2′, 2) and the other to
a state (p′, 2), p 6= 2, or (2′, q), q 6= 2. There are several cases:

(a) If the states are in the same column or row, then the result holds by Claims 3 and 4. Hence
assume they are not in the same column or row.

(b) If both states lie outside of Row m, then c takes both states to Column 2 but it takes each state
to a different row. The result now follows by Claim 3.

(c) If both states lie outside of Column n, then e takes both states to Row 2 but it takes each state to
a different column. The result now follows by Claim 4.

(d) If one of the states is (m′, n), then a takes it to (2′, 2). If Case (b) does not apply, the other state
must have been taken to Row m. If Case (c) also does not apply, it must also have been taken
to Column n. Thus the other state must have been taken to (m′, n). Applying a again results in
(2′, 2) and (3′, 3), and this reduces to Case (b).

(e) If the states are (m′, n− 1) and ((m− 1)′, n), then applying a2 results in (3′, 2) and (2′, 3), and
Case (b) applies.

(f) In the remaining case, one state is in Row m and the other state is in Column n; furthermore,
neither state is the state (m′, n) from Case (d), and the pair of states being considered is not the
pair (m′, n− 1) and ((m− 1)′, n) from Case (e).
If the state in Row m is not (m′, n−1), applying a sends it to a state that is not in Column n, and
the other state to Column 2; so Case (c) applies. Otherwise, the state in Row m is (m′, n − 1)
and the state in Column n is not ((m− 1)′, n). Applying a sends the f rst state to Row 2 and the
other state to a state not in Row m; so Case (b) applies.

We have shown that for any pair of states, there exists a word that takes one of the states to (2′, 2) and the
other state not to (2′, 2) but to either Row 2 or Column 2 by Claim 5. By Claims 1 and 2, those states are
distinguishable. Therefore the original states are also distinguishable.
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Remark 2. For regular left ideals, the minimal alphabet required to meet all the bounds has f ve letters. As
was the case with right ideals, it is possible to reduce the alphabet for some operations [8]. The sizes are as
follows: reversal (3/4), star (2/2), product (1/2), union (4/3), intersection (2/3), symmetric difference (2/3),
and difference (3/3). Note that the previously known witness for union used a four-letter alphabet, while
ours only uses three letters.

5 Two-Sided Ideals
The following stream of two-sided ideals was def ned in [15]:

Def nition 5. For n > 5, let Dn = Dn(a, b, c, d, e, f) = (Qn,Σ, δ, 1, {n}), where Σ = {a, b, c, d, e, f},
and δn is def ned by the transformations a : (2, 3, . . . , n − 1), b : (2, 3), c : (n − 1 → 2), d : (n − 1 → 1),
e : (Qn−1 → 2), and f : (2→ n). The structure of Dn(a, b, c, d, e, f) is shown in Figure 9.

n

a, b, c, d, e, f

1 2 3 4 . . . n− 2 n− 1

f

e

a, b, c, d, f

c, d, e

a, b

b, e

c, d, f

a

e

a a

b, c, d, f b, c, d, f

a

e

a, c, e

d

b, f

Fig. 9: Minimal DFA Dn(a, b, c, d, e, f) of Def nition 5.

This stream of languages is closely related to the stream of Figure 1. The DFA Dn(a, b, c, d, e, f) of
Def nition 5 is constructed by taking Dn−2(a, b, c) of Figure 1 with states relabeled 2, . . . , n − 1, adding
new states 1 and n, and new inputs d : (n− 1→ 1), e : (Qn−1 → 2), and f : (2→ n).

Theorem 9 (Two-Sided Ideals). For each n > 5, the DFA Dn(a, b, c, d, e, f) of Def nition 5 is minimal and
its languageLn(a, b, c, d, e, f) is a two-sided ideal of complexity n. The stream (Ln(a, b, c, d, e, f) | n > 5)
with dialect stream (Ln(b, a, c, d, e, f) | n > 5) is most complex in the class of regular two-sided ideals. In
particular, this stream meets all the complexity bounds listed below, which are maximal for two-sided ideals.
In several cases the bounds can be met with restricted alphabets, as shown below.

1. The syntactic semigroup of Ln(a, b, c, d, e, f) has cardinality nn−2 + (n − 2)2n−2 + 1. Moreover,
fewer than six inputs do not suff ce to meet this bound.

2. All quotients of Ln(a,−,−, d, e, f) have complexity n, except the quotient corresponding to state n,
which has complexity 1.

3. Ln(a,−,−, d, e, f) has 2n−2 + 1 atoms.
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4. For each atom AS of Ln(a, b, c, d, e, f), the complexity κ(AS) satisf es:

κ(AS) =











n, if S = Qn;
2n−2 + n− 1, if S = Qn \ {1};
1 +

∑|S|
x=1

∑n−|S|
y=1

(

n−2
x−1

)(

n−x−1
y−1

)

, otherwise.

5. The reverse of Ln(a,−,−, d, e, f) has complexity 2n−2 + 1.

6. The star of Ln(a,−,−,−, e, f) has complexity n+ 1.

7. The product Lm(a,−,−,−, e, f)Ln(a,−,−,−, e, f) has complexitym+ n− 1.

8. For any proper binary boolean function ◦, the complexity of Lm(a, b,−, d, e, f)
◦ Ln(b, a,−, d, e, f) is maximal. In particular,

(a) Lm(a, b,−, d, e, f) ∩ Ln(b, a,−, d, e, f) has complexitymn, as does
Lm(a, b,−, d, e, f)⊕ Ln(b, a,−, d, e, f).

(b) Lm(a, b,−, d, e, f) \ Ln(b, a,−, d, e, f) has complexitymn− (m− 1).

(c) Lm(a, b,−, d, e, f) ∪ Ln(b, a,−, d, e, f) has complexitymn− (m+ n− 2).

(d) Ifm 6= n, the bounds are met by Lm(a, b,−, d, e, f) and Ln(a, b,−, d, e, f).

Proof: Notice that inputs a, e and f are needed to make all the states reachable. It was proved in [15] that
Dn(a, b, c, d, e, f) is minimal and accepts a two-sided ideal.

1. It was shown in [10] that the syntactic semigroup of a two-sided ideal of complexity n has cardinality
at most nn−2 + (n − 2)2n−2 + 1, and in [15] that the syntactic semigroup of Ln(a, b, c, d, e, f) has
that cardinality. Moreover, it was proved in [12] that an alphabet of at least six letters is required to
meet this bound.

2. This follows from Def nition 5.

3. The number of atoms of any regular language L is equal to the complexity of the reverse of L [13]. It
was proved in [15] that the complexity of the reverse of Ln(a,−,−, d, e, f) is 2n−2 + 1.

4. This was proved in [7].

5. See Item 3 above.

6. The argument is the same as for the star of right ideals.

7. See Theorem 10.

8. See Theorems 11 and 12.



Most Complex Regular Ideal Languages 19

5.1 Product
We show that the complexity of the product of the DFA D′

m(a,−,−,−, e, f) with Dn(a,−,−,−, e, f)
meets the upper bound m + n − 1 derived in [8]. We use the same construction as for left ideals for the
product DFA D. The construction is illustrated in Figure 10 for m = n = 5.
Theorem 10 (Two-Sided Ideals: Product). Form,n > 5, the product of the language Lm(a,−,−,−, e, f)
with Ln(a,−,−,−, e, f) has complexitym+ n− 1.

Proof: By constructionD has m+ n− 1 states. We know that all the states in D′
m are pairwise distinguish-

able. Hence in D, for each pair there exists a word that takes one state to state 1 and the other to a state in
Q′

m \ {m
′}. Also, all pairs of distinct states in Dn are distinguishable. To distinguish a state p′ from a state

q in D, note that every word accepted from p′ contains two f ’s, whereas there are words accepted from q
that contain only one f .

1′ 2′ 3′ 4′
e a a

e

a, e

a, f e f f

1 2 3 4

5

e a a

f

f

e

a, ea, f e

a, e, f

Fig. 10: Product of two-sided-ideal witnesses with m = 5, n = 5.

5.2 Boolean Operations
Theorem 11 (Two-Sided Ideals: Boolean Operations). Ifm,n > 5, then

1. The complexity of Lm(a, b,−, d, e, f) ∩ Ln(b, a,−, d, e, f) ismn.

2. The complexity of Lm(a, b,−, d, e, f)⊕ Ln(b, a,−, d, e, f) ismn.

3. The complexity of Lm(a, b,−, d, e, f) \ Ln(b, a,−, d, e, f) ismn− (m− 1).

4. The complexity of Lm(a, b,−, d, e, f) ∪ Ln(b, a,−, d, e, f) ismn− (m+ n− 2).

Proof: As before, we take the direct product DFA Dm,n = D′
m(a, b,−, d, e, f) × Dn(b, a,−, d, e, f) and

count reachable and distinguishable states. First we prove all states are reachable, as illustrated in Figure 11.
State (1′, 1) is the initial state, and (2′, 2) is reached from (1′, 1) by e. Since {a, b} generates all permutations
ofQ′

m\{1
′,m′} andQn\{1, n}, by [2, Theorem 1] all states in (Q′

m\{1
′,m′})×(Qn\{1, n}) are reachable,

unless (m− 2, n− 2) ∈ {(2, 2), (3, 4), (4, 3), (4, 4)}; the case (2, 2) does not occur since m,n > 5, and we
have verif ed the other special cases computationally. Thus it remains to show that all states in Rows 1 and
m and Columns 1 and n are reachable.

For Row 1, f rst note that (1′, 2) is reachable since ((m−1)′, 2)d = (1′, 2). Then (1′, q)b = (1′, q+1) for
2 6 q 6 n−2, so we can reach (1′, 3), . . . , (1′, n−1). Finally, we can reach (1′, n) since (1′, 2)f = (1′, n).
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A symmetric argument applies to Column 1. For Row m, note (m′, 1) is reachable since it is in Column
1. Then we have (m′, 1)e = (m′, 2), and (m′, q)b = (m′, q + 1), for 2 6 q 6 n − 2, and f nally
(m′, 2)f = (m′, n). A symmetric argument applies to Column n.

1′, 1

2′, 1

3′, 1

4′, 1

5′, 1

1′, 2

2′, 2

3′, 2

4′, 2

5′, 2

1′, 3

2′, 3

3′, 3

4′, 3

5′, 3

1′, 4

2′, 4

3′, 4

4′, 4

5′, 4

1′, 5

2′, 5

3′, 5

4′, 5

5′, 5

1′, 6

2′, 6

3′, 6

4′, 6

5′, 6

e

b b b

a

a

e

e

d

d

f

f

f

b b b

a

a

Fig. 11: Partial direct product for boolean operations on two-sided ideals.

Before we begin the distinguishability proofs, we make a few observations. Let (p′, q) and (r′, s) be states
with 1 6 p < r 6 m; note that r > 1.

1. If r < m, the word am−r sends (r′, s) to a state in Row 2. It sends (p′, q) to either Row 1 (if p = 1)
or Row p+m− r (if p > 2); in either case (p′, q) is not sent to Row 2 or Row m.

2. If r < m, the word am−rf sends (r′, s) to Row m, and it sends (p′, q) to the same row as am−r.

3. If r < m, then am−rfm−r = am−rf sends (r′, s) to Row m, and (p′, q) to a row other than Row m.
If r = m, then am−rfm−r = ε, the state (r′, s) = (m′, s) is in Row m, and the state (p′, q) is not in
Row m.

Thus the word am−rfm−r will send any state in Row r to Row m, and any state not in Row r to a row other
than Row m. By a symmetric argument, the word bn−sfn−s sends states in Column s to Column n, and
states not in Column s to a different column, for 1 6 q < s 6 n. We use this fact frequently to distinguish
states.

For each boolean operation we now prove that the number of distinguishable states meets the relevant
upper bound.

1. Intersection/Symmetric Difference. For intersection, the only f nal state is (m′, n). For symmetric
difference, every state in Row m or Column n except (m′, n) is f nal, and (m′, n) is the only empty
state. We can use the same distinguishing words in both cases.
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(a) States in distinct rows, p < r 6 m: States (p′, q) and (r′, s), q, s ∈ Qn, are distinguishable
by f rst applying am−rfm−r. This sends one of the states to Row m, and the other to a different
row. We then apply ea2f : applying e sends the state in Row m to (m′, 2) or (m′, n), and the
state not in Row m to (2′, 2) or (2′, n). Then a2 f xes (m′, 2) or (m′, n) and sends the other state
to (4′, 2) or (4′, n). Finally, applying f sends one state to (m′, n), and the other state to (4′, n).

(b) States in distinct columns, q < s 6 n: The argument is symmetric if we interchange a and b.

Since all states are distinguishable, the complexity is mn.

2. Difference. Here the f nal states are those which are in Row m, but not Column n. States in Column
n are indistinguishable and empty, since no word can take any of these states out of Column n, and
that column contains only non-f nal states. Hence there are at most mn − (m − 1) distinguishable
states.

(a) States in Rowm, 1 6 q < s 6 n: States (m′, q) and (m′, s) are distinguishable by bn−sfn−s,
since (m′, n) is the only non-f nal state in Row m.

(b) States in distinct rows, and one state is in Column n: Any state outside of Column n accepts
eb2f , and thus all of these states are non-empty. It follows that all states outside of Column n
are distinguishable from the empty states in Column n.

(c) States in distinct rows, and neither state is in Column n: States (p′, q) and (r′, s), with
p < r 6 m and q, s 6 n − 1, are distinguishable by am−rfm−r unless this word sends (r′, s)
to (m′, n). This occurs only if r < m and am−r sends (r′, s) to (2′, 2). In this case, applying
b2 after am−r sends (2′, 2) to (2′, 4), and does not affect the row numbers; thus one of them will
be in Row 2 and the other in neither Row 2 nor Row m. Then f distinguishes the states.

(d) States in distinct columns: The arrangement of f nal and non-f nal states in Row m matches that
of symmetric difference. Thus the argument used for intersection/symmetric difference applies
here also.

Since all states in Q′
m×(Qn \{n}) are distinguishable, the complexity of difference is mn−(m−1).

3. Union. The f nal states are those in Row m and Column n. All f nal states are indistinguishable, since
they all accept Σ∗. Therefore there are at most 1+(m−1)(n−1) = mn−(m+n−2) distinguishable
states.

(a) Non-f nal states in distinct rows: Two non-f nal states (p′, q) and (r′, s), with p < r < m and
q, s < n, are distinguishable by am−rf , unless this word sends (p′, q) to Column n (since it also
sends (r′, s) to Row m). This occurs only if am−r sends (p′, q) to Column 2. In this case we
can use am−rb2f to distinguish the states; this is similar to Case (c) of the difference operation.

(b) Non-f nal states in distinct columns: These states are distinguishable by a symmetric argument.

Thus the complexity of union is mn− (m+ n− 2).

If m 6= n, the complexity bounds for boolean operations can be met by using languages from the stream
(Ln(a, b,−, d, e, f) | n > 5) for both arguments. That is, we can meet the bounds for boolean operations
without the dialect stream (Ln(b, a,−, d, e, f) | n > 5).
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Theorem 12 (Two-Sided Ideals: Boolean Operations, m 6= n). Supposem,n > 5 andm 6= n.

1. The complexity of Lm(a, b,−, d, e, f) ∩ Ln(a, b,−, d, e, f) ismn.

2. The complexity of Lm(a, b,−, d, e, f)⊕ Ln(a, b,−, d, e, f) ismn.

3. The complexity of Lm(a, b,−, d, e, f) \ Ln(a, b,−, d, e, f) ismn− (m− 1).

4. The complexity of Lm(a, b,−, d, e, f) ∪ Ln(a, b,−, d, e, f) ismn− (m+ n− 2).

Proof: Here we consider the DFA Dm,n = D′
m(a, b,−, d, e, f) × Dn(a, b,−, d, e, f). The proof that all

states are reachable is identical to the proof above, except state (1, n− 1) is reachable from (1, n− 2) by a
instead of b, and when applying [2, Theorem 1] the special cases we must verify are only (m− 2, n− 2) ∈
{(3, 4), (4, 3)}, since we are assuming m 6= n. Also, for states (p′, q) and (r′, s) with p < r, the same
remark about the word am−rfm−r applies, i.e., this word sends (r′, s) to Row m and (p′, q) to a different
row. For (p′, q) and (r′, s) with q < s, the word an−sfn−s sends (r′, s) to Column n and (p′, q) to a
different column (previously we used bn−sfn−s for this purpose).

For each boolean operation we now prove that the number of distinguishable states meets the relevant
upper bound.

1. Intersection/Symmetric Difference. As before, the same distinguishing words can be used for inter-
section and symmetric difference.

(a) States in Column n: States (p′, n) and (r′, n), with p < r 6 m, are distinguishable by
am−rfm−r.

(b) States (2′, 2) and (m′, 2) are distinguishable as follows. Since all states in (Q′
m \ {1

′,m′}) ×
(Qn \ {1, n}) are reachable from (2′, 2) using words in {a, b}∗, there is a word w ∈ {a, b}∗

which sends (2′, 2) to (3′, 2). If we view w as a permutation on Qn \ {1, n} alone, it must f x 2.
Thus w sends (m′, 2) to (m′, 2). Then (3′, 2) and (m′, 2) are distinguished by f .

(c) States in Column q < n: States (p′, q) and (r′, q), with p < r 6 m, are distinguishable since
the word am−rfm−re reduces this case to Case (a) or (b).

(d) By symmetry, states in the same row are distinguishable.
(e) States in distinct columns: (p′, q) and (r′, s), q < s 6 n, are distinguishable by f rst applying

an−sfn−se. This sends (p′, q) to some state in Column 2 and (r′, s) to some state in Column n.
If these successor states are in the same row, then this case reduces to Case (d). Otherwise, since
e was applied, the only possible states are (2′, 2) and (m′, n), or (2′, n) and (m′, 2). In either
case, these states are distinguished by amin(m,n)−2f .

(f) By symmetry, states in distinct rows are distinguishable.

Since all states are distinguishable, the complexity of intersection is mn.

2. Difference. States in Column n are empty and thus indistinguishable.

(a) States in distinct columns, and one state is in Column n: All states (p′, q), q < n are non-
empty, and thus distinguishable from those in Column n. To see this, observe that if p = m, then
(p′, q) is a f nal state and thus is non-empty. If p < m then e sends (p′, q) to (2′, 2). Since every
state in (Q′

m \ {1
′,m′}) × (Qn \ {1, n}) is reachable from (2′, 2), there is a word w ∈ {a, b}∗

that sends (2′, 2) to (2′, 3). Then f sends (2′, 3) to the f nal state (m′, 3).
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(b) States in distinct columns, and neither state is in Column n: States (p′, q) and (r′, s), with
q < s < n are distinguishable since applying an−sf reduces this case to Case (a).

(c) States in distinct rows, and neither state is in Column n: States (p′, q) and (r′, s), with
p < r 6 m and q, s not both equal to n, are distinguishable by am−rfm−r, unless this word
sends (r′, s) to (m′, n). This occurs only if r < m and am−r sends (r′, s) to (2′, 2). Recall that
am−r sends (r′, s) to Row 2, and sends (p′, q) to a row other than Row 2 or Row m; so suppose
that after applying am−r the states are (2′, 2) and (i′, k) for some i 6∈ {2,m}. There is a word
w ∈ {a, b}∗ which sends (2′, 2) to (2′, 3). If we view w as a permutation on Q′

m \ {1
′,m′}, it

sends 2′ to 2′, so it sends i′ to some j′ 6∈ {2′,m′}. So w sends (2′, 2) and (i′, k) to (2′, 3) and
(j′, ℓ) respectively; since j′ 6∈ {2′,m′} these states are distinguished by f .

Since (Q′
m×(Qn\{n}))∪{(m′, n)} is a maximal distinguishable set, the complexity of set difference

is m(n− 1) + 1 = mn− (m− 1).

3. Union. All f nal states are indistinguishable, since they all accept Σ∗.

(a) Non-f nal states in the same row: Consider states (p′, q) and (p′, s) with p < m and q < s < n.
The word an−s takes these to (r′, q + n− s) or (r′, 1), and (r′, 2) respectively for some r; note
that in either case (p′, q) does not get mapped to Column 2. Hence the two states are sent to
(r′, i) where i 6= 2 and (r′, 2), respectively. If r 6= 2, then these states are distinguished by f .
If r = 2, there exists a word w ∈ {a, b}∗ which maps (r′, 2) = (2′, 2) to (3′, 2). We can view w
as a permutation on Qn which f xes 1 and n; it sends 2 to 2 and sends i to some j 6= 2, since it
is bijective. Hence the other state (r′, i) is sent to (3′, j) for some j 6= 2. Then (3′, 2) and (3′, j)
are distinguished by f .

(b) Non-f nal states in the same column: These are distinguishable by a symmetric argument.
(c) Non-f nal states in distinct columns: Non-f nal states (p′, q) and (r′, s), with p, r < m and

q < s < n, are distinguishable by an−sf , unless this word sends (p′, q) to Row m (since it also
sends (r′, s) to Column n). This occurs only if an−s sends (p′, q) to Row 2. Note that an−s

sends (r′, s) to Column 2; so after applying an−s the states are (i′, 2) and (2′, j) for some i and
j. By (a) and (b), we can assume i, j 6= 2. Then amin(m,n)−2f distinguishes the states.

(d) Non-f nal states in distinct rows: A symmetric argument works.

Since all non-f nal states are distinguishable and all f nal states are indistinguishable, the complexity
of union is (m− 1)(n− 1) + 1 = mn− (m+ n− 1).

Remark 3. For regular two-sided ideals, the minimal alphabet required to meet all the bounds has six letters.
As before, it is possible to reduce the alphabet for some operations [8]. The sizes are as follows: reversal
(3/4), star (2/3), product (1/3), union (2/5), intersection (2/5), symmetric difference (2/5), and difference
(2/5).

6 Conclusions
In the case of regular right, left, and two-sided ideals, we have demonstrated that there exist single witness
streams that meet the bounds for all of our complexity measures, and that the only dialects required are those
in which two letters are interchanged; this is needed in the case where the bounds for boolean operations are
to be met with witnesses of the same complexity.
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[8] Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages. Theoret. Comput. Sci.
470, 36–52 (2013)

[9] Brzozowski, J., Sinnamon, C.: Unrestricted state complexity of binary operations on regular and ideal
languages (2016), http://arxiv.org/abs/1609.04439

[10] Brzozowski, J., Szykuła, M.: Upper bounds on syntactic complexity of left and two-sided ideals. In:
Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 13–24. Springer (2014)

[11] Brzozowski, J., Szykuła, M.: Complexity of suff x-free regular languages. In: Kosowski, A.,
Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 146–159. Springer (2015)

[12] Brzozowski, J., Szykuła, M., Ye, Y.: Syntactic complexity of regular ideals (September 2015),
http://arxiv.org/abs/1509.06032

[13] Brzozowski, J., Tamm, H.: Quotient complexities of atoms of regular languages. Int. J. Found. Comput.
Sci. 24(7), 1009–1027 (2013)
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15–30 (1939)

[23] Pin, J.E.: Syntactic semigroups. In: Handbook of Formal Languages, vol. 1: Word, Language, Gram-
mar, pp. 679–746. Springer, New York, NY, USA (1997)

[24] Yu, F., Chen, Z., Diao, Y., Lakshman, T.V., Katz, R.H.: Fast and memory-eff cient regular expression
matching for deep packet inspection. In: Proceedings of the 2006 ACM/IEEE Symposium on Archi-
tecture for Networking and Communications Systems (ANCS). pp. 93–102. ACM, New York (2006)

[25] Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234 (2001)


