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Abstract 
 
The mechanical bonding strength of electrically conductive adhesives (ECAs), as well as 

the impact of residual solvent on the bonding strength was investigated between a copper 

clad FR-4 surface and conductive adhesives using Lap-shear testing. Both solvent-free 

and solvent-assisted formulations with various filler concentrations of silver (Ag) and 

sodium dodecyl sulfate (SDS)-decorated graphene (Gr(s)) in epoxy matrices were 

prepared and compared. It was found that the introduction of 0.75 wt% Gr(s) in solvent-

free formulations increased the Lap-shear strength (LSS), while the combination of 

ethanol solvent and SDS in solvent-assisted formulations significantly decreased the LSS. 

In addition, it was found that increasing the Ag content generally lowers the LSS for both 

the solvent-free and solvent-assisted formulations. By examining the structure and 

interface of both formulations using optical microscopy, surface profilometry and SEM, 

we found that the solvent-assisted formulations exhibit more voids at the surface of the 

paste and more bubble formation throughout the material compared to the solvent-free 

formulations. Therefore, the significant drops of LSS in solvent-assisted Gr(s)-filled 

formulations may be attributed to the formation of bubbles at the micron range during the 

curing process.  
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1. Introduction 
 

In recent years, adhesives have been finding more applications owing to numerous 

advantages including the ability to bond two irregularly shaped surfaces, the ability to 

resist corrosion, efficient mechanical load transfer, and the capability to resist stress and 

mechanical vibrations [1–3]. Currently, the industry has been increasing the demand for 

high performance adhesive joint technology, as we continue to devise new applications 

(e.g. rotating engines for wind turbines, electronic assembly and packaging, coatings, 

thin-films, aerospace and automotive technology, medical device manufacturing, optics 

& photonics, composite materials, paints etc.) [1–5]. These adhesives can be used either 

as a film, coating, or as an adhesive joint [2]. For most of these applications, it is of great 

importance that researchers develop reliable methods to predict the performance of 

adhesives. However, the quantifiable prediction of the performance and the bond strength 

of adhesives is challenging and complex to obtain without using simulations and 

modeling software, because multiple factors (e.g. geometric complexity, inherent 

discontinuity signature between the adhesive and the surface, the failure mechanisms 

happening in the microscopic level) need to be accounted for [3,6]. Generally, it is 

beneficial to simplify the evaluation method in order to provide information that is useful 

and applicable to both industry and research. One strategy is to utilize well-accepted 

standard tests such as ASTM standards [7]. In both research labs and industrial technical 

datasheets, a tensile-based Lap-shear testing technique is the most common and widely 

used technique for determining the bonding strength and benchmarking the performance 

of their materials (using ASTM D1002 or equivalent). In specific, this method is 

extensively used for the evaluation of bonding strength between adhesives and metallic 

substrates [1,3,5,6,8–17].  

Electrically conductive adhesives (ECAs) are adhesive composites that are primarily 

comprised of two materials: (a) a polymeric binder resin (typically in the form of a 
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thermoset (e.g. epoxy)); (b) conductive filler material (typically Ag flakes). This 

composite material is known as an alternative electronic packaging material to the lead-

based solder, possessing desirable properties such as high shear strength, low temperature 

requirements, fewer processing steps, finer pitch capabilities and environmental 

friendliness [18]. Researchers have dedicated time and effort towards examining the 

properties of ECAs such as electrical/thermal conductivity, mechanical strength, 

thermal/mechanical/environmental reliability, and processing temperature [18,19]. 

However, among these properties, the electrical conductivity and mechanical strength of 

the conductive adhesive are of primary concern [9,18,20–22]. While most research 

focuses on improving the electrical conductivity of ECAs [23–27], there are limited 

studies on the evaluation of their mechanical properties [22]. This work aims to study the 

mechanical bonding properties of isotropic conductive adhesives for microelectronic 

packaging applications that seek to bind electrical components onto a printed circuit 

board (PCB). 

In a recent work, we have demonstrated that sodium dodecyl sulfate (SDS)-modified 

graphene (Gr(s)) as a co-filler for conventional conductive adhesives (CCA) significantly 

improved the electrical conductivity. Graphene nanosheets are exfoliated in a non-

covalent manner by SDS molecules in solvent after undergoing ultrasonic bath, thereby 

taking full advantage of the remarkable intrinsic properties of graphene (see [23] for 

details). Despite the benefits of better dispersion that solvent assistance offers, there is 

always a concern that thermal and mechanical properties might be negatively affected 

when residual solvent is present in the mixture [12,23,28]. Hence, we have employed a 

solvent-free method of preparing hybrid ECA composites, where the exclusion of solvent 

is crucial to the investigation of rheological properties [29]. The Gr(s)-filled CCAs that 

were prepared using the newly developed solvent-free method resulted in an increase in 

bulk resistance when compared to that obtained by the solvent-assisted predecessor [29]. 

Although it is confirmed the utilization of solvent is integral for effectively dispersing 

Gr(s) within the composite [23,29], the possible negative impact of presence of solvent 

within the system on the mechanical properties of the cured adhesive was not clarified, 

especially if the solvent functional groups unfavorably interact with either the polymer 

matrix or the surfactant [12,30–32].  
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In this work, we concentrate on using Lap-shear testing based on the most common 

test standard: ASTM D1002 [1,7] to investigate the impact of residual solvent on the 

bonding strength between a copper clad FR-4 surface and our hybrid ECAs. We firstly 

studied the mechanical bonding property of both hybrid and conventional ECAs, and then 

compared the mechanical bonding properties of the solvent-free formulations with those 

of the solvent-assisted formations. Furthermore, potential factors directly impacting the 

mechanical strength were investigated to gain a better understanding on the post-cured 

process. Finally, we seek to identify an optimal composition that possesses both high 

shear strength and electrical conductivity, as this result can be useful for further 

investigation. 

2. Materials and Methods 

2.1. Materials 

The polymer matrix used in this study was the liquid epoxy resin (D.E.R 331™) 

Diglycidyl Ether Bisphenol-A (DGEBA) and amine-based curing agent 

triethylenetetraamine (TETA), both purchased and used as received from DOW Chemical 

Company (USA). Ag flakes (~10 μm) purchased from Sigma Aldrich were used as 

received, and acted as the conductive filler for the composite. Graphene nanosheets with 

a size ranging from 0.5 to 5 μm were purchased from ACS Materials (USA) and were 

used as received [23,29]. The surfactant SDS was purchased from Sigma Aldrich and 

used as received to exfoliate the graphene nanosheets. HPLC ethanol solvent at 99.8% 

purity was purchased and used as received from Fisher Scientific (USA).  

2.2. Preparation of ECA composites 

The process for preparing the composites included the following steps: (a) adding the 

appropriate amounts of epoxy resin and Ag flakes according to the desired composition 

as denoted in Table 1 (Note: all calculations are based on 120 mg of resin); (b) adding 

Gr(s) that was prepared by the following procedure: SDS and graphene were suspended 

in ultra pure water, and then, an ultra sonic bath was used to allow the surfactant to self-

assemble onto the graphene sheets, and finally, the extraction of the Gr(s) by 

centrifugation and evaporation of any remaining supernatant [29]; (c) we conducted steps 
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for preparing solvent-assisted formulations, which include adding 250 μL HPLC ethanol, 

running the mixture through a planetary shear mixer (PSM) at 2000 RPM (mixing mode) 

for five minutes, and then doing a combination of two-minute vortex mixing and five-

minute desiccation [23,29]; (d) adding the curing agent TETA and mixing the composite 

via PSM to form the ECA paste [23,29] and then applying the paste onto the appropriate 

test coupons (i.e. FR-4/electrical/microscopy). (e) Placing the test coupons containing the 

paste into an oven at 60°C for one hour. Afterwards, the oven is ramped to 150°C for two 

hours, allowing the ECAs to fully cure. A schematic in Fig. 1 illustrates the above 

method. 

Table 1 List of the combinations of compositions used for nanocomposites and curing 
conditions.  

Composition Ag flakes  
(wt %) 

Gr(s)  
(wt %) 

Curing Conditions 

Epoxy + Ag  20, 40, 60 0 60°C for 1 hr and then150°C for 2 hrs 

Epoxy + Ag + solvent 20, 40, 60 0 60°C for 1 hr and then150°C for 2 hrs 

Epoxy + Ag + Gr(s) 20, 40, 60 0.75, 1.5 60°C for 1 hr and then150°C for 2 hrs 

Epoxy + Ag + Gr(s) + solvent 20, 40, 60 0.75, 1.5 60°C for 1 hr and then150°C for 2 hrs 

2.3. Characterization of ECAs 

2.3.1. Lap-Shear Test 

The Universal Material Tester (UMT) Tribological Test Equipment (CETR 

Campbell), equipped with a pair of tensile wedge grips (G1061-2, Mark-10 Corp) was 

used to evaluate the Lap-shear strength (LSS) of varying ECA compositions (each 

composition was tested twice for a total of two repetitions). Test coupons (1/16” double-

sided FR-4 boards, 590-540) were purchased and used as received from MG Chemicals. 

The specifications of the FR-4 boards were machined to follow the dimensions presented 

in Fig. 2. The test procedure and calculations followed ASTM D1002 [33] with the 

exception of reducing the contact area of the joint to 12.7 mm x 12.7 mm in order to 

accommodate for the limitations of the load cell used in the experiment. 

2.3.2. Optical Microscopy and Surface Profilometry  

The bonding interfaces of two ECA formulations were observed under manual 

operation using an inverted optical microscope (Carl Zeiss Axio Observer Z1m; 
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Magnification 5x and 50x) equipped with a CCD camera (Axio Cam 1Cm1). The sample 

paste (as denoted in Fig. 2c) was casted onto a 12.7 mm x 12.7 mm mold similar to the 

Lap-shear coupons. However, instead of using FR-4 boards, standard soda-lime 

microscope glass slides purchased from Fisher Scientific (cat #: 12-544-1) were used 

instead (as received), taking advantage of glass transparency, as well as the opaqueness 

of the paste and its reflective properties as the light shines through the glass to 

characterize the hybrid ECA. 

An optical profilometer (MFP-D WLI 3D Surface Profilometer, RTEC Instruments 

USA) based on the light interference was used to observe the surface roughness of the 

solvent-assisted and solvent-free ECAs (after the LSS testing) and was used to generate a 

3D plot to further illustrate the difference in contact area, as well as any other paste 

defects that are not easily detectable by optical imaging. 

2.3.3. Scanning Electron Microscopy 

A Field Emission Scanning Electron Microscope (FE-SEM, LEO-Ultra, Gemini, 

Germany) was used in order to investigate the morphology, and if possible, find potential 

defects or bubbles associated with the solvent-assisted method. ECA pastes were casted 

onto a mold prepared by placing thermally resistant tape onto a 12.7 mm x 12.7 mm area 

on glass slides, and a thin sheet of copper was used as a cover for the ECA. The glass 

slide was then sliced and bent (at the middle of the copper sheet) in order to obtain a 

flattened cross-sectional sample of the ECA. The samples were placed on a 90-degree 

stub to view the cross-section of the ECA. 

2.4. Electrical Conductivity Test 

A four-point probe fixture (Cascade Microtech Inc.) that is connected to a micro-ohm 

meter (Keithley 2440 5A Source Meter, Keithley Instruments Inc.) was used to measure 

the electrical sheet-resistance of ECAs. These values were then converted to bulk 

resistance ρ using the following equations [25,34]: 

          (
 

   
)

 

 
        (1) 

 
The sheet resistance (  ) obtained from the reading was used together with the caliper-

measured ECA thickness ( ). The ( ) and ( ) represent the applied current and measured 
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voltage drop across the probe pins, respectively. The correction factor ( ) is the ratio 

between the thickness of the ECA sample ( ) and the probe gap ( ) which is the distance 

between each adjacent point (or prong) in the probe [25,34]. Under the condition where 

0.4 <  
 
 < 1, it is safe to approximate the correction factor ( ) to equal 1 [25,34]. As the 

probe gap is 1 mm wide, the ECAs prepared were designed to have an average thickness 

of 0.5 to 0.7 mm, resulting in the fulfillment of the above stated condition.  

3. Results and discussion 
 

In order to investigate the impact of concentrations of Ag flakes and Gr(s) on the 

behaviors of the final hybrid ECAs, we examined the variation of LSS (in MPa) with the 

weight concentrations of Gr(s) and Ag. In addition, we compared the solvent-free method 

with the solvent-assisted method as seen in Fig. 3.  

3.1. The LSS of hybrid ECAs prepared from solvent-free method 

The LSS values for the solvent-free formulations with various weight concentrations 

of Ag and Gr(s) were shown in Fig. 3a. With the increase of Gr(s) wt% at a constant Ag 

wt%, we can see that the LSS has a maximum value; the LSS is at its highest for a weight 

loading of 0.75 wt% Gr(s) and lower values for both 0 wt% and 1.5 wt% Gr(s) (this is for 

all three weight concentrations of Ag). This observation is in agreement with those of the 

CNT-containing ICAs that were applied onto an aluminum substrate as demonstrated by 

H.P. Wu et al [35]. Furthermore, it is observed that the LSS value for 0.75 wt% Gr(s) has 

the smallest deviation among all of the formulations. Based on our results, 0.75 wt% 

Gr(s) successfully increased the strength of the composite. However, 1.5 wt% Gr(s) 

experienced a decrease in LSS, which is likely due to the aggregation of Gr(s). 

Zandiatashbar et al reported on the agglomeration behavior within graphene platelet 

composites, stating that the graphene clustered at higher concentrations, resulting in the 

composites of weaker mechanical properties [36]. We hypothesize that 0.75 wt% loading 

of Gr(s) into the composite is the highest (and optimal) loading that the system can 

handle before the nanoparticles favor clustering to each other, resulting in poor dispersion 

and weaker mechanical strength especially at the interface.  
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As the Ag wt% increases at a constant Gr(s) wt%, the LSS of the composite 

decreases. Formulations that contain 0.75 wt% Gr(s) display the smallest decline while 

the sharpest decline is observed for formulations that do not contain Gr(s). It is also 

interesting to note that the LSS deviation is consistently large for the formulations that 

only contain Ag. The sharp decline and large deviation suggests that increasing Ag in 

ECAs without Gr(s) shows increasing unreliability with large error bars and decreasing 

mechanical strength, which conflicts with the idea that higher weight concentrations of 

Ag are desirable in attaining better electrical performance [35]. This is reasonable as the 

increase of the Ag filler content in the composite means the decrease of epoxy (the actual 

binding component) relative to the total volume of the composite, resulting in the 

decrease of the ECAs shear strength [35]. It has been known that excess Ag content in 

conventional ECAs leads to issues such as higher material costs, little to no electrical 

conductivity improvement (past the percolation threshold), and poor environmental 

reliability [9,24,35,37,38]. However, this work also shows there is a detrimental effect to 

the LSS of our composite when using an excess amount of Ag filler content, which 

further supports the need to reduce the amount of Ag in conventional ECAs.  

When comparing the two filler materials, it has been shown that Gr(s) has the 

potential to act as a reinforcing agent upon reaching a critical concentration. Moreover, 

there is little variance among the samples, resulting in a mechanically reliable and robust 

ECA. On the other hand, this work specifically shows that excess addition of the Ag 

flakes into our electrically conductive composite is detrimental to its mechanical strength 

and should be avoided to prevent introducing weakness, cost and any negative impact to 

the environmental reliability of the ECA. 

3.2. The LSS of hybrid ECAs prepared from solvent-assisted method 

The LSS values of the solvent-assisted formulations were investigated to follow up 

initial suspicions (from other references and our previous work) that the presence of 

residual solvent in the ECA composites negatively impacted the mechanical properties 

[12,23]. The LSS values for the solvent-assisted formulations with various weight 

concentrations of Ag and Gr(s) were determined. Fig. 3b illustrates significant drops in 

LSS values when Gr(s) was introduced as co-fillers, and this trend was identical for all 
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three Ag-containing solvent-assisted formulations. It is important to note that although it 

is true that solvent potentially has the ability to improve the dispersion of the 

nanocomposite fillers, the presence of even trace amounts of solvent (despite desiccation 

or evaporation) can negatively impact the thermal and mechanical properties of 

nanocomposites (in our specific case, the mechanical bonding properties [12,23]). These 

results verify this negative effect: the assistance of solvent was shown to exhibit lower 

shear strengths, especially when compared to the solvent-free formulations (Fig. 3a). 

As for formulations without Gr(s), both solvent-free formulations and solvent-assisted 

formulations at 20 wt% Ag concentrations share similar LSS values of ~5 MPa. 

However, formulations with 40 wt% Ag and 60 wt% Ag possessed LSS values of 4.2 

MPa and 2.8 MPa respectively, indicating that a gradual decrease in the LSS values 

occurs when the Ag concentrations for the solvent-free formulations was increased. As 

for solvent-assisted formulations, no dramatic decrease of LSS values was observed for 

formulations with 40 wt% Ag (4.6 MPa) and 60 wt % Ag (~4.9 MPa). Therefore, for 

Gr(s)-free formulations, the presence of residual ethanol alone in the system did not 

disrupt the curing mechanism of the ECA, but instead enhanced the mechanical property 

by assisting the dispersion of Ag flakes. By comparing Fig. 3a with Fig. 3b, we could 

conclude that the coexistence of SDS and residual ethanol was responsible for the drop in 

the LSS values. To explain this drop in LSS values, we first considered the findings of 

our previous thermal characterization of ECAs in terms of its curing behavior. Three 

findings were stated that would help elucidate the results seen in Fig. 3b: (a) Ag flakes 

have no significant effect on the curing of epoxy [28]; (b) the presence of trace ethanol in 

the composite reduced both the enthalpy of the curing reaction (∆HTot) and final glass 

transition value (Tg∞), indicating a possible drop in epoxy’s crosslinking density [23]. In 

addition, there is also the possibility of solvent evaporation happening in the sample that 

contains trace solvent, or perhaps dilution effects are taking place within the system as 

was suggested in Amoli et al’s work [23], which should be investigated in future work; 

(c) the addition of ethanol into epoxy led to a sudden increase to the enthalpy normalized 

to the mass of epoxy hardener (∆Hnorm) as measured by DSC compared with neat epoxy, 

and for the hybrid ECA-containing graphene compared with the hybrid ECA containing 

Gr(s) [23]. Furthermore, to address the impact of surfactant SDS, Amoli et al reported 
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that when they compared the hybrid ECAs containing Gr(s) to the one without SDS, no 

significant change in Tg∞ was observed; instead, a reduction in ∆Hnorm was seen, which 

points to an unknown mechanism that is caused by the presence of SDS [23]. One 

hypothesis points to the possibility that SDS and ethanol are competing with the main 

stoichiometric chemistry of the epoxy, which as a result, changes the thermal data and 

crosslinking density of the final product [23]. Although the mechanism itself was not 

confirmed, findings in this work appear to support the initial suspicions outlined in 

previous work, since the presence of both solvent and surfactant negatively impact the 

mechanical bonding properties of the cured adhesive. Further work using thermal 

characterization techniques and direct measurement of the bulk mechanical properties of 

ECAs are recommended to examine the interaction of solvent with surfactant negatively 

affects the crosslinking density. 

Overall, it is evident that the strongest solvent-free formulations are those that contain 

0.75 wt% Gr(s). Among these, 0.75 wt% Gr(s) with 60 wt% Ag and 0.75 wt% Gr(s) with 

40 wt% Ag will be further tested by microscopy techniques and for electrical 

conductivity. The reason why the highest LSS value in the solvent-free process (20 wt% 

Ag and 0.75 wt% Gr(s)) was not chosen for further testing comes from the fact that 

formulations with low Ag content (20 wt%) express little to no electrical conductivity, 

thereby eliminating its potential to be used as a functioning ECA.  

Another factor that was suspected to contribute to the decrease in mechanical bonding 

strength of the solvent-assisted mechanism would be the formation of bubbles during the 

curing process. The presence of bubbles leads to a decrease in the smoothness of the 

paste, as well as the contact area between the adhesive and substrate. If the paste is not 

smooth on the microscopic level, the actual contact area of the adhesive is reduced, 

thereby causing the adhesive to fail at lower applied forces.  

3.3. The morphology and structure difference between solvent-free and solvent-

assisted formulations 

In order to verify whether or not residual solvent affects the interface, we chose to use 

glass with high transparency as the alternate substrate so that optical microscopy and 

optical profilometry techniques could be used to inspect the surface of both the solvent-
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free and solvent-assisted formulations. Other factors besides substrate choice (for 

example, applied pressure and curing time/temperature) were kept constant. The goal of 

this investigation was to search for any evidence of bubbling at the interface or cross-

section of the paste. Optical microscopy was used to qualitatively check for voids or 

other forms of discontinuity when adhering to the surface of the glass, while the optical 

profiler was used to generate a 3D plot to show how much of the paste is making contact 

with the substrate using a quantitative measure of the sample’s “nominal roughness”. 

Furthermore, the cross-section of the paste was examined using SEM to determine 

whether or not bubble formation was happening throughout the bulk of the composite or 

if it was limited to the interface between the ECA paste and the substrate.  

3.3.1. Optical microscopy  

The first method used to characterize the surface between the substrate and paste was 

the optical microscope. Both solvent-free and solvent-assisted 60 wt% Ag/0.75 wt% 

Gr(s) formulations were observed at 5x and 50x magnifications. Fig. 4 shows the images 

for solvent-free (4a) and solvent-assisted (4b) formulations under low magnification, and 

solvent-free (4c) and solvent-assisted (4d) formulations under high magnification. 

 Fig. 4a shows a speckled pattern that contains large light speckles and overall 

higher particle density; Fig. 4b shows smaller light speckles but in more clumps 

indicating that some form of aggregation may be occurring or that certain spots have 

more adhesion to the substrate than others. However, this still hints that the contact area 

between the substrate and paste for solvent-assisted formulations is smaller compared to 

the solvent-free formulations. This is evident in the higher magnification images in Fig. 

4c and 4d, as there are more clumps visible for the solvent-assisted formulations. In order 

to perceive the clumps, it is best to examine how large the area is for each white speckle 

in Fig. 4c and 4d. These white speckles represent spots that are in direct contact with the 

glass slide, whereas the dark spots (or voids) represent areas that are not in contact with 

the surface of the glass slide. The biggest observation to take from these images is that 

there are much larger areas that are primarily dark (these areas are voids), indicating that 

the real bonded area at the interface is low. This is because only some spots on the 

sample (the ones that are primarily light) are well adhered to the glass slide interface. 
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This observation is contrary to Fig. 4a and 4c where the distribution is more even and 

free of large dark spots. Similar results were also found for the 40 wt% Ag/0.75 wt% 

Gr(s) formulations, where more clumps were observed for the solvent-assisted 

formulation (Fig. S1).  

 These qualitative findings support the idea that the solvent-assisted formulations 

are indeed forming more bubbles post-cure as opposed to the solvent-free formulations. 

The solvent-free formulations tend to exhibit better smoothness and uniformity, which 

results in a joint that possesses a higher contact area between the paste and substrate, and 

thus higher LSS. However, a more quantitative approach is required in order to verify 

these observations.  

3.3.2. Optical profilometry 

An optical profilometer was used in order to quantitatively determine the “nominal 

roughness” of the paste. This technique intended to find any voids caused by the 

formation of bubbles during the curing by quantitatively examining how much of the 

paste is in contact with the glass. All samples were observed at a magnification of 10x 

(i.e. a scanning area of 4.435 mm x 3.548 mm), and the surface roughness values were 

determined and summarized in Table 2.  

The paste surface from the FR-4 boards after completing the LSS tests were first 

analyzed. The data for 40 wt% Ag/0.75 wt% Gr(s) (Fig. S2), as well as 60 wt% Ag/0.75 

wt% Gr(s) (Fig. S3) show elevation differences and what appears to be a valley-like 

surface, likely caused by either the applied shear force during the mechanical test, or 

from partial cohesive failure. Therefore, these results do not represent the real interface 

we are interested in investigating. Instead, we used the optical profilometer as a tool to 

investigate the interface’s profile between a glass substrate and the paste using the test 

coupon in Fig. 2c. The advantage of this method is that we can aim the light probe to go 

further than the thickness of the glass sheet to investigate the degree of contact our paste 

has on a substrate, verifying whether or not there are voids at the interface. It is important 

to note that our surface roughness measurements can no longer be considered a true 

measure of surface roughness. As such, we call it a “nominal roughness” as these 
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numerical values no longer describe surface roughness, but instead the degree of contact 

our paste has on the glass substrate.  

As a control experiment, the surface of a bare glass substrate was analyzed first (Fig. 

S4), and the images were observed to have a smooth surface with an average roughness 

(Ra) of 0.03 µm and a root-mean square roughness (Rms) of 0.08 µm. Similar to the 

optical microscope, both solvent-free and solvent-assisted formulations were compared. 

Both formulations with 60 wt% Ag/0.75 wt% Gr(s) (Fig. 5) and 40 wt% Ag/0.75 wt% 

Gr(s) (Fig. S5) were studied. Fig. 5a and 5b show the optical profile of the solvent-free 

paste to glass interface and the 3D render of the interface, while Fig. 5c and 5d show the 

optical profile of the solvent-assisted paste to glass interface and the 3D render of the 

interface. It was found that the solvent-free formulations exhibited a lower Ra of 3.68 µm 

and Rms of 4.52 µm when compared to the solvent-assisted formulations with a Ra of 

3.77 µm and a Rms of 4.65 µm. The difference can be seen visually through the interface 

diagrams of 60 wt% Ag/0.75 wt% Gr(s) composites in Fig. 5a and 5c; Fig. 5a contains 

fewer dark blue areas compared to Fig. 5c. Furthermore, by looking at the 3D render of 

the interfaces, we notice that the solvent-assisted formulation in Fig. 5b has fewer voids 

when compared to the solvent-free formulation in Fig. 5d, suggesting that solvent-

assisted paste had less contact with the substrate, making this surface more prone to 

failing at lower applied forces [39].  

As for formulations of 40 wt% Ag/0.75 wt% Gr(s), the difference between solvent-

free and solvent-assisted formulations was more obvious. While the optical profile results 

show no deep blue areas for the solvent-free formulation and a low Ra of 0.59 µm, the 

solvent-assisted formulation was seen with dark blue voids throughout the glass/paste 

interface with a Ra of 5.27 µm. After comparing the solvent-free and solvent-assisted 

interfaces, we found that the solvent-free formulations were smoother and contained less 

voids when compared to the solvent-assisted formula, supporting the idea that bubbles 

forming during curing decreases the contact area between the paste and substrate (which 

as a result, weakens the composite LSS). 

 
 
 
Table 2 Summary of surface roughness values from optical profiler 
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Formulation Ra (µm) Rms (µm) 

Standard Soda-lime Microscope Glass Slide 0.03 0.08 

40 wt% Ag/0.75 wt% Gr(s) solvent-free 0.59 1.27 

40 wt% Ag/0.75 wt% Gr(s) solvent-assisted 5.27 6.48 

60 wt% Ag/0.75 wt% Gr(s) solvent-free 3.68 4.52 

60 wt% Ag/0.75 wt% Gr(s) solvent-assisted 3.77 4.65 

3.3.3. Scanning electron microscopy 

In order to further verify these results, a scanning electron microscope was used to 

examine the cross-section of the paste at the micron range for the 60 wt% Ag/0.75 wt% 

Gr(s) formulations (Fig. 6). Fig. 6a and Fig. 6b denote the cross-section of solvent-free 

formulations under different magnifications. Fig. 6c and Fig. 6d show the cross-section of 

solvent-assisted formulations. Orange boxes in Fig. 6a and Fig. 6c correspond to the areas 

where images with higher magnifications were taken. The cross-sections of the solvent-

assisted and non-solvent methods were compared. The images obtained from the SEM 

agree with the observations obtained from the optical microscope and optical 

profilometer, as the solvent-free method exhibits a smoother morphology and fewer voids 

or pockets (Fig. 6a and Fig. 6c) when compared to the solvent-assisted method (Fig. 6b 

and Fig. 6d). However, since the SEM images are able to capture interior structure of the 

bulk material, it is clear that the phenomenon that was observed at the surface extends 

throughout the entire cross section, meaning that the bubbles are not limited to the 

surface alone, but extends throughout the entire paste. Similar structure differences in the 

cross-section were also observed for formulations with 40 wt% Ag/0.75 wt% Gr(s) (Fig. 

S6). As such, the detrimental effects of having residual solvent within the composite can 

be attributed to the formation of voids and hollow structures both within the composite, 

as well as between the substrate/paste interface. This bubble formation that originates 

from residual solvent therefore weakens the mechanical bonding properties of ECAs at 

the interface between the FR-4 board and the paste [39].  

3.4. Electrical conductivity of composites 

Considering the importance of conductivity for ECAs, we also investigated the 

impact of solvent on conductivity for the following formulations: 40 wt% Ag/0.75 wt% 
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Gr(s) and 60 wt% Ag/0.75 wt% Gr(s). The presence of solvent matters for the 40 wt% 

Ag/0.75 wt% Gr(s) formulation, as the solvent-assisted method is observed to have bulk 

resistivity that is 18x smaller than the solvent-free method. However, the higher Ag 

content formulations (60 wt% Ag/0.75 wt%) exhibit roughly the same bulk resistivity 

values of             without regard to being solvent-free or solvent-assisted. 

Moreover, the above electrical conductivity values are found to be congruent with 

Trinidad et al’s findings [29]. On the other hand, when it came to Amoli et al’s findings 

using their own solvent-assisted method, the electrical conductivities found in this work 

were lower by a factor of 10 [23]. This is likely because the procedure in this work 

dispersed the filler in the epoxy first, which in effect differs from Amoli et al’s procedure 

where filler content was added to solvent first and then dispersed with epoxy. This 

difference might result i better dispersion and better electrical conductivities n their 

formulation. Further work is required to verify this. Overall, the chosen solvent-free 

composites exhibited conductivity values that are considered acceptable for electrically 

conductive adhesives, while also showing high LSS values. These findings conclude that 

60 wt% Ag/0.75 wt% Gr(s) formulation is the optimal formulation for high LSS and high 

conductivity, while retaining a relatively simple preparation method when compared to 

the solvent-assisted approach.  

4. Conclusions 
 
In this work, the LSS of both solvent-free and solvent-assisted formulations filled 

with various concentrations of Ag flakes and Gr(s) were studied. For solvent-free 

formulations, the addition of 0.75 wt% Gr(s) increased the LSS, while any further 

increase of Gr(s) showed a negative impact on the LSS. For solvent-assisted 

formulations, the combination of solvent presence and Gr(s) within the composite 

showed a dramatic decrease in the LSS of the hybrid ECAs, while high LSS values were 

achieved for hybrid ECAs without Gr(s) under all Ag concentrations. In both cases, the 

increase of Ag concentrations in formulations resulted in a decrease in the LSS. By using 

the optical microscopy and optical profilometer, we found that the solvent-assisted 

formulations exhibited more voids and a smaller contact area at the bonding interface 

when compared to the solvent-free formulations (which as a result weakens the 
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mechanical bonding properties of the ECA). In addition, the SEM analyses of the cross-

section further confirmed that bubble formation occurred throughout the material rather 

than being confined to the interface. This resulting structural difference between the 

solvent-free and solvent-assisted formulations indicates that the large drop in LSS in the 

Gr(s)-filled solvent-assisted formulations was attributed to the formation of bubbles at the 

micron range during the curing process. As for conductivity, solvent-assisted ECAs with 

Ag 40 wt% Ag showed significantly lower bulk resistivity than its solvent-free 

counterpart, whereas solvent-assisted and solvent-free formulations with 60 wt% Ag 

exhibited roughly the same bulk resistivity. Therefore, ECA with 60 wt% Ag/0.75 wt% 

Gr(s) exhibited the best electrical and mechanical properties. 
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Figures 

 
 
Fig. 1. A schematic illustration showing how the ECAs were mixed and prepared for 
testing. The precursors are all added together into a vial, which is then mixed using a 
planetary shear mixer. The paste is then vortex mixed and curing agent is added. After 
adding curing agent, the composite is again mixed in the planetary shear mixer and casted 
into respective test molds for characterization. 
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Fig. 2. A schematic showing the test coupons used. (a) Cross-section illustration of 
ASTM D1002 test coupon and its modified paste measurements. (b) Top view for ASTM 
D1002 test coupon illustration detailing its modified paste measurements. (c) Example of 
test coupon used for viewing surface of paste using optical microscopy and optical 
profiling. (d) Example of test sample used for ASTM D1002 Lap-shear testing. 
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Fig. 3. The LSS bar graphs for hybrid ECAs. (a) Values of hybrid ECAs prepared with 
solvent-free method. (b) Values of hybrid ECAs prepared with solvent-assisted method. 
Fig. 4. Optical microscopy images of hybrid ECAs with 60 wt% Ag/0.75 wt% Gr(s). (a) 
Solvent-free formulation at low magnification. (b) Solvent-assisted formulation at low 
magnification. (c); Solvent-free formulation at high magnification. (d) Solvent-assisted 
formulation at high magnification. 
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Fig. 5. Optical Profiles of hybrid ECAs with 60 wt% Ag/0.75 wt% Gr(s). (a) 2D interface 
profile of solvent-free formulation. (b) 3D interface profile of solvent-free formulation. 
(c) 2D interface profile of solvent-assisted formulation. (d) 3D interface profile of 
solvent-assisted formulation. 
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Fig. 6. SEM images of hybrid ECAs with 60 wt% Ag/0.75 wt% Gr(s): solvent-free 
formulation at low magnification (a) and at high magnification referenced from orange 
box (b); solvent-assisted formulation at low magnification (c) and at high magnification 
referenced from orange box (d). 
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Fig. 7 Bulk resistivity comparison of solvent-assisted and solvent-free formulations with 
40 wt% Ag/0.75 wt% Gr(s) and 60 wt% Ag/0.75 wt% Gr(s). 
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