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Highlights 

 Phenomenological yield functions may lead to non-physical artefacts in shear region 

 These artefacts manifest as non-zero hydrostatic stress or through-thickness strain 

 These artefacts can be removed with a calibration constraint proposed in the paper 

  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2 
 

Evaluation and Calibration of Anisotropic Yield Criteria in Shear Loading:  

Constraints to Eliminate Numerical Artefacts 

A. Abedini*, C. Butcher, T. Rahmaan, M.J. Worswick 

Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, CANADA 

*Corresponding author. Email: aabedini@uwaterloo.ca 

Abstract: Many anisotropic phenomenological yield functions have been proposed in the 

literature in which their predictive capabilities strongly depend on the experimental calibration 

data as well as the calibration procedure to identify the anisotropy parameters. In this paper, 

emphasis is placed upon the experimental and numerical calibration procedure of anisotropic 

yield functions in the region of shear loading (zero hydrostatic stress with equal and opposite in-

plane principal strains and stresses). Conventional anisotropic calibration procedures are shown 

to introduce non-physical artefacts into constitutive models which manifest as a non-zero 

hydrostatic stress or through-thickness strains generated under in-plane shear stress that violate 

the definition of the shear loading condition. To overcome this issue, a new physically necessary 

constraint is applied on the plastic potential to enforce equal and opposite principal strains in the 

shear state and correct the shear region of anisotropic yield functions. Using this necessary 

constraint, the widely used Yld2000-2d anisotropic yield function was calibrated using an 

associated flow rule for aluminum alloy sheet using published data for AA2090-T3 to 

demonstrate how enforcing this constraint can be readily implemented to correct the shear region 

of the anisotropic yield surface. Furthermore, to investigate the influence of the shear constraint, 

an AA7075-T6 alloy was experimentally characterized in uniaxial tension, equal-biaxial tension 

and shear. It was revealed that with the additional shear constraints, non-physical artefacts of 

plane-stress anisotropic yield functions such as Yld2000-2d can be removed during the 

calibration procedure. However, due to the additional shear constraints, available anisotropic 

models may become over-constrained and alternate yield functions with more flexibility or non-

associated flow rules may be required. 

Keywords: Shear deformation; anisotropic material; constitutive characterization; calibration 

constraint 
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1. Introduction 

Many commercial sheet metal alloys used in forming operations exhibit anisotropic plastic 

behaviour. Plastic anisotropy can be a result of different features but the non-random distribution 

of crystal orientations due to manufacturing processes (such as rolling and extrusion) is the major 

reason for orientation-dependent plastic behaviour. Therefore, isotropy is no longer an 

appropriate assumption to represent the mechanical behaviour of these materials. Furthermore, 

sheet metal forming and crashworthiness simulations rely on an accurate description of yielding 

behaviour of materials, thus using an appropriate anisotropic constitutive model is an essential 

step for modelling the plastic deformation of sheet metals (Abedrabbo et al., 2007; Banabic et 

al., 2010). 

Many phenomenological yield functions have been proposed to predict the isotropic and 

anisotropic plastic behaviour of sheet metals. The quadratic von Mises yield function is one of 

the oldest isotropic models and still popular in industry and academia. Hershey (1954), and 

Hosford (1972) proposed non-quadratic isotropic yield functions to obtain better accuracy than 

the von Mises yield criterion for materials with bcc and fcc crystal microstructures. One of the 

first anisotropic yield functions was proposed by Hill (1948), also known as the Hill48 model. 

This model resulted in acceptable predictions for traditional steels; however, with the advent of 

more advanced steel alloys and the adoption of non-ferrous metals, it was experimentally 

observed that the Hill48 model was not able to describe the yield surfaces of these metals 

appropriately (Aretz and Barlat, 2013). Later, Hill proposed various anisotropic yield functions 

(e.g. Hill, 1979; Hill, 1993) to correct the shortcomings and anomalous responses of the Hill48 

model but, the popularity of the Hill48 model persists due to its simplicity and availability in 

most commercial FE software packages. 

Major contributions towards the development of anisotropic phenomenological yield functions 

are manifest in the Barlat family of yield criteria (Barlat and Lian, 1989; Barlat et al., 1991; 

Barlat et al., 1997; Barlat et al., 2003; Barlat et al., 2005). In 1989, Barlat and Lian proposed the 

Yld89 yield function (Barlat and Lian, 1989) by modifying the isotropic Hosford (1972) model 

with a linear transformation of the stress tensor. This methodology became the cornerstone for 

subsequent Barlat anisotropic functions as isotropic yield functions are used as generators for the 

development of anisotropic models. The use of linear transformations enables the isotropic 
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models to account for anisotropy while preserving convexity and ensuring incompressibility of 

plastic flow (independent of hydrostatic stress). Following this procedure, Yld91 (Barlat et al., 

1991), Yld94, and Yld96 (Barlat et al., 1997) were proposed to improve the accuracy of the yield 

functions. In 2003, Yld2000-2d was proposed (Barlat et al., 2003) which is a commonly used 

yield function for 2-D plane-stress anisotropic modelling of sheet metals. To account for 3-D 

stress states, Barlat et al. (2005) generalized the Yld2000-2d to consider all six components of 

the stress tensor which resulted in the Yld2004-18p yield criterion. Although the Yld2004-18p 

model is more expensive computationally, it has been successfully used in simulation of plastic 

deformations for different grades of aluminum alloys (Yoon et al., 2006; Fourmeau et al., 2011; 

Tardif and Kyriakides, 2012). 

The transformation approach is carried out using single or multiple linear transformations of the 

stress tensor (or stress deviator). The components of the transformation tensors are calibration 

coefficients whose values are obtained by minimizing the difference between the predictions of 

yield functions with the experimental tests in different loading conditions and test orientations. In 

most of the papers cited above, uniaxial and equal-biaxial yield stresses and r-values were used 

to calibrate the anisotropic yield functions. Implicit in the Barlat-type and most anisotropic 

constitutive models is the assumption of an associated flow rule although the models can be 

extended to non-associated flow (Safaei et al., 2013) so that both the stress ratios and r-values 

are calibrated together (associated flow rule) or separately in non-associated flow with the stress 

ratios used to calibrate the yield function and the r-values the flow rule. For a plane-stress 

anisotropic model, typical calibration experiments involve tensile tests in three orientations 

relative to the rolling direction of the sheet and an equal-biaxial test with each test providing both 

a stress ratio and r-value for a total of eight measurements that can be used to calibrate a yield 

function such as the Yld2000-2d with eight parameters (Barlat et al., 2003). For a non-associated 

version of the Yld2000-2d, additional tensile tests are performed in seven orientations along with 

the equal-biaxial test to obtain eight stress ratios and eight r-values to calibrate the yield criterion 

and flow rule independently. Similar approaches are required for 3-D anisotropic models with 

seven tensile tests and an equal-biaxial test, then usually assumptions are made for the stress 

ratios and r-values within the thickness direction since these experiments cannot be performed 

for sheet materials. These calibrated anisotropic models are then commonly employed in sheet 

metal forming and crashworthiness simulations. 
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Unfortunately, this type of calibration does not guarantee that the predictions of yield functions 

are accurate in the shear state. Although shear tests for plastic constitutive characterization of 

sheet metals are gaining more attention in the literature (e.g. Zang et al., 2011; Steglich et al., 

2016; Abedini et al., 2017a,b), there is a lack of comprehensive studies of calibration of yield 

functions in the shear region. The purpose of the present study is to demonstrate the constraints 

that should be imposed for calibration of anisotropic yield functions in the shear region and to 

critically evaluate the consequences of the lack of these constraints in terms of hydrostatic stress 

and strain path predictions. These constraints follow directly from the mechanics of shear 

deformation and are imposed on the plastic potential function (or yield function in associated 

flow) to enforce equal and opposite principal strains in the shear regions with zero hydrostatic 

stress. The results of this study shed light into the need for accurate calibration of anisotropic 

yield functions in the shear stress state region which has received limited attention in the 

literature. 

 

2. Continuum-based Plasticity 

Phenomenological yield functions and flow rules establish the framework of continuum-based 

plasticity. A generic yield function,  , can be introduced as: 

eq

p

eqi ),,,(  as                                                         (1) 

where eq  is the equivalent stress which is a function of the stress deviator, s, anisotropy 

parameters, αi, the yield exponent, a, and the equivalent plastic strain p

eq . Note that in the present 

paper, boldface italicized letters refer to 2nd order tensors and boldface capital letters refer to 4th 

order tensor quantities. Similarly, a flow potential function, ),,,( p

eqi  bs , is defined with 

anisotropy parameters, βi, and the yield exponent, b, that are independent from yield function. 

The plastic strain increments are normal to the flow potential for a given stress state and 

expressed as: 

pd d


                                                            (2) 
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where dλ is the scalar plastic multiplier and   is the stress tensor. Using the principal of plastic 

work equivalence and assuming that the plastic potential is a first-order homogeneous function, 

the following relation can be used to calculate the work-conjugate equivalent plastic strain 

(Cvitanic et al., 2008): 




 dd p

eq                                                            (3) 

For an associated flow rule, the yield and plastic potential functions are identical (   ), and 

Eq. (3) reduces to: 

 dd p
eq                                                               (4) 

The well-known anisotropic yield function of Yld2000-2d of Barlat et al. (2003) is employed in 

the present study which is briefly given in what follows, while detailed description can be found 

in Barlat et al. (2003). It is assumed that the material has three mutually orthotropic anisotropic 

axes denoted as x1, x2, and x3 which, are taken to correspond to the sheet rolling direction (RD), 

transverse direction (TD), and normal (thickness) direction (ND), respectively. The equivalent 

stress associated with the Yld2000-2d yield function is written as: 

a/1

Yld2000

eq 2







 



                                                            (5) 

where ϕʹ and ϕʹʹ are written as: 

aXX 21
  ,  

aa XXXX 2112 22                                  (6,7) 

in which Xiʹ and Xiʹʹ are the principal values of the linearly transformed stress tensors, Xʹ and Xʹʹ, 

that are written as: 

: LX    ,   : L X                                                  (8,9) 

where “:” denotes the doubled contracted product between two tensors. The fourth-order linear 

stress transformation tensors are Lʹ and Lʹʹ and can be reduced for plane-stress loading to: 
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and are defined as: 
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where αi are the anisotropy coefficients that should be calibrated with experimental data. In the 

case of isotropy, all of the αi coefficients are set to unity. Note that the derivatives of the 

anisotropic yield function of Yld2000-2d and closed-form equations as functions of anisotropy 

coefficients to calculate the equivalent stress under different stress states are given in Barlat et al. 

(2003) and Yoon et al. (2004), and are not provided here for brevity. The value of the exponent 

of the yield function “a” in Eq. (5) is commonly set to 6 for bcc and 8 for fcc materials as 

suggested by Barlat et al. (2003). It can be seen from Eqs. (12,13) that the Yld2000-2d yield 

function contains eight anisotropy coefficients, α1-8, that can be calibrated with experimental data 

as explained in the next section. 

 

3. Conventional Calibration Method for Anisotropic Yield Functions 

     The values of the anisotropy coefficients in the transformation tensors (Eqs. 12,13) are 

generally determined from experimental data using a series of tests in proportional stress states in  

uniaxial tension tests in multiple sheet orientations and an equal-biaxial tension test. This method 

of calibration has been extensively used in the literature to calibrate various anisotropic yield 

functions (e.g. Barlat et al., 2003; Yoon et al., 2004; Barlat et al., 2005; Yoon et al., 2006; 

Hassannejadasl et al., 2014) and will be referred to as the “conventional calibration method”. 

Uniaxial tension tests are classical experiments performed for constitutive characterizations and 

are usually reported as yield stresses in three orientations of 0° (rolling direction or RD), 45° 
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(diagonal direction or DD), and 90° (transverse direction or TD). The stress measurements are 

usually expressed as a ratio relative to a reference direction (usually the rolling direction). Other 

important values obtained from uniaxial tests are the r-values with the definition of: 

p
3

p
2





d
dr                                                                  (14) 

where p
2d  and p

3d  are the respective plastic increments in the width and thickness directions of 

the tensile specimen. The r-values are also reported in the three directions of the RD (r0), DD 

(r45), and TD (r90). In addition to the uniaxial tensile tests, the equal-biaxial tensile yield stress, 

σb, and r-value, rb, can be calculated using cruciform (e.g. Kuwabara et al., 1998), bulge (e.g. 

Kaya et al., 2008), or through-thickness compression tests (e.g. Steglich et al., 2014) to calibrate 

the equal-biaxial tensile region of anisotropic yield functions. The equal-biaxial r-value is 

defined as: 

p
RD

p
TD

b




d
dr                                                                 (15) 

For many of engineering alloys, both stress ratios and r-values can be assumed to remain 

constant with plastic deformation, therefore, the r-values in Eqs. (14) and (15) are commonly 

written in terms of the total strain components as: 

p
3

p
2




r     ,    p

RD

p
TD




br                                               (16,17) 

If the experimental stress ratios and r-values are not constant with deformation, as observed in 

magnesium alloys (Ghaffari Tari et al., 2014; Abedini et al., 2017b), then the anisotropy 

coefficients can be calibrated as a function of plastic deformation (e.g. Cai et al., 2016). Note 

that for hcp materials such as magnesium alloys that have tension-compression asymmetry, in 

addition to the tests described above, compression tests would be included in the conventional 

calibration (Abedini et al., 2017b). 

It is worth mentioning that an alternative option to the conventional calibration method is to use 

the virtual fields method (VFM) such as in Fu et al. (2016) and Rossi et al. (2016), or to use 
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complex test geometries with heterogeneous strains fields along with inverse tools to calibrate 

the coefficients of anisotropic models (e.g. Souto et al., 2015; 2016a,b). Although these methods 

will not be considered in the present study, the shear constraints developed in subsequent 

sections will also be applicable to these alternate calibration strategies. 

In order to determine the values of the anisotropy coefficients, an optimization approach can be 

used to minimize the errors between the experimental data and the values predicted by the 

anisotropic yield functions. The procedures for this optimization are well-established and 

documented in the literature (Barlat et al., 2003; 2005) and often involve a least-squares 

minimization performed with different optimization methodologies and weighting parameters are 

introduced for the different experimental data points to obtain a preferred calibration. In the 

present study, the genetic algorithm (GA) (Sivanandam and Deepa, 2008) was selected to 

perform the minimization which is a global optimization subroutine available in Matlab®. The 

“Error” function is: 



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i i
r

rwwError
1

2

exp
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r

1

2

exp

model 11





                             (18) 

in which the superscripts “exp” and “model” in Eq. (18) indicate either measured values or 

predicted quantities from anisotropic yield function. Moreover, wσ and wr are weighting values 

for stresses and r-values, respectively, and “m” is the number of available experimental data 

points. Note that since yield criteria are adopted for plastic behaviour of materials, variables such 

as stress and strain tensors are non-zero at the onset of yielding and the denominators in Eq. (18) 

are non-zero. 

For the GA, the population size and the fraction of parent-to-children populations were set to 100 

and 0.35, respectively. Furthermore, the Matlab® defaults for the crossover fraction and mutation 

function were employed. The maximum number of generations in each optimization was set to 

300, and each optimization loop ends if the value of Error is below a tolerance (set to 0.001) or 

when the maximum number of generations was reached. It is shown in the literature that the GA 

is a robust optimization method with enhanced performance compared to least square regression 

analysis (Jenab et al., 2016). However, it is important to note that although the GA optimization 

algorithm was used in the present study, alternative optimization approaches (e.g. Newton-
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Raphson method in Barlat et al., 2003) could also be used to perform the minimization of Eq. 

(18) to similar or even higher accuracy. The focus of the present work is not to identify the best 

optimization algorithm but on the identification and enforcement of constraints upon the 

calibration to ensure physically valid solutions are obtained for shear loading (Section 4). These 

constraints are independent of the calibration method and can therefore be implemented into the 

calibration methodology and optimization strategy of choice.  

In the present work, the conventional method of calibration was employed with the adopted 

weighting parameters of wσ = 1.0 and wr = 0.1. These weighting values can be selected based on 

a variety of criteria. For example, depending on the level of uncertainty in the characterization 

experiments, some of the data may be given more or less weight. Moreover, in finite element 

simulations using anisotropic yield functions, it is usually preferred to obtain stress values with 

high accuracy to better capture the load response such as the punch force required in a forming 

operation. Furthermore, it has been observed that calibration of the yield stresses is often more 

challenging compared to the calibration of the r-values which also motivates wσ having a higher 

value than wr. The results of the calibration with the conventional method are presented in 

Section 6.1. However, it will be shown that the conventional calibration method may lead to 

introduction of some non-physical artefacts into the constitutive response of materials in shear 

loading condition, highlighting the necessity to develop modified approaches for calibration of 

anisotropic yield functions. 

 

4. Mechanics of Shear Deformation  

In addition to the tests described above, the shear stress state will also be used in the present 

study to evaluate and calibrate anisotropic yield functions. In continuum mechanics, the shear 

state is often described using “simple shear” deformation rather than “pure shear” as simple 

shear state is a closer estimate to what is experimentally performed for constitutive 

characterization of materials in shear. In pure shear, the principal stress and strain directions are 

aligned (coaxial) and there is no induced rotation or spin. In simple shear, the principal stress and 

strain directions are initially aligned but rotate at different rates with deformation so they do not 

remain coaxial at finite strains. However, at low strain levels such as below 20%, pure and 
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simple shear can be considered equivalent (van den Boogaard, 2002). Perhaps most important in 

the context of this study is that both simple and pure shear deformations satisfy the conditions for 

both plane-stress and plane-strain loading and requires that there be no hydrostatic stress. The 

individual normal stress components may be non-zero, but they must sum to zero. The present 

section describes the fundamentals of mechanics of deformation in simple shear condition. 

4.1. Stress and Strain Tensors 

The deformation gradient, F, for simple shear loading applied in the x1-x2 plane (Figure 1) can be 

written as: 

   

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where θ is the shear angle. The deformation gradient can be decomposed via the polar 

decomposition: 

F=RU                                                                   (20) 

The rotation tensor, R, and the right stretch tensor, U, have been derived by Zhou et al. (2003) 

and Onaka (2010) for simple shear loading as: 
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Furthermore, the velocity gradient, L, and the rate of deformation tensor, D, that is the objective 

rate of the logarithmic strain are: 
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The logarithmic strain tensor can be written as (Onaka, 2010): 

 Uln
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The eigenvalues of the logarithmic strain rate (Eq. 24) and strain tensor (Eq. 25) correspond to 

the principal strain increments and principal strains:  
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                (26,27) 

In which 31  are the principal strains. Note that Eqs. (26,27) follow directly from the imposed 

deformation gradient for simple shear in Eq. (19) and are valid for both isotropic and anisotropic 

materials. Furthermore, it can be seen from Eqs. (26,27) that the principal strains are equal and 

opposite in simple shear, i.e.: 

 2 2

1 1

1d
d
 

 
                                                           (28) 

To provide experimental evidence that the principal strains are equal and opposite in simple 

shear loading as in Eq. (28), the evolution of principal strains in the gauge area of a shear 

experiment on AA7075-T6 alloy is shown in Figure 2 (a detailed description of the shear 

experiments are given in Section 5). It can be seen that the strain path of the shear test lies almost 

perfectly on the ε1 = -ε2 line, as expected for a shear condition with plastic volume conservation 

(without through-thickness strains). Similar strain paths were achieved in Abedini et al. (2015), 

Abedini et al. (2017a), and Rahmaan et al. (2017) for several grades of steel and aluminum alloy 

sheet with different degrees of anisotropy using two different types of shear specimens. 
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Figure 1 – An element in simple shear. 

 

 

Figure 2 – Strain path in the gauge area for shear tests of AA7075-T6. Similar strain paths were achieved in Abedini 

et al. (2015, 2017a) and Rahmaan et al. (2017) for different materials with different degrees of anisotropy using the 

shear specimen of Peirs et al. (2012) as well as a butterfly-type shear specimen developed by Dunand and Mohr 

(2011). 

 

Furthermore, the stress tensor   in simple shear loading may contain both shear and normal 

components but the normal components must be deviatoric as there can be no hydrostatic stress: 
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For low levels of deformation, the normal stresses are vanishingly small and the familiar 

infinitesimal result for the stress tensor in shear loading is obtained: 


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                                                           (30) 

The formation of the normal stress components is due to the induced rotation of the material and 

is dependent upon the type of objective stress rate used in the stress integration. Recently, 

Rahmaan et al. (2017) adopted a non-quadratic isotropic yield function with a power law 

hardening law and integrated the stress state using the logarithmic stress rate to a strain level of 

100%. It was observed that that the normal stresses remained negligible relative to the magnitude 

of the shear stress in plastic deformation so that Eq. (30) can be assumed to be reasonable for 

low to moderate strain levels used for anisotropic yield function calibration.  

The principal values, 31 , of the stress tensor in Eq. (30) are written as: 

)(eig
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                                      (31,32) 

Consequently, it can be seen that, in a similar manner to the principal strains, principal stresses 

are equal and opposite in simple shear condition. Moreover, it can be seen that the hydrostatic 

stress defined by Eq. (33) remains zero under simple shear deformation: 

0
33

321332211
hyd 








                                       (33) 

 

4.2. Principal Directions 

It was shown in Section 4.1 that the principal strains and principal stresses are equal and opposite 

in simple shear. However, the principal directions of the stress and strain tensors are not 

necessarily coaxial. The eigenvectors of the strain tensor of Eq. (25) correspond to the principal 

directions and can be determined for a given level of shear deformation by (Jonas et al., 2012): 
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)2(tan
2
1 1




d
                                                        (34) 

It can be calculated by Eq. (34) that the principal directions of the strain tensor are orientated 

±45˚ with respect to the loading direction (i.e. x1, see Figure 1) for zero strain while they 

continuously deviate from these directions for larger strains. Moreover, the principal directions 

of the stress tensor in Eqs. (29,30) are orientated ±45˚ with respect to the loading direction for 

small deformations. Analogously to the strain tensor, the principal directions of the stress tensor 

rotate with deformation while the rate of the rotation is related to the adopted objective stress 

rate. For the purposes of this paper, we assume that the strains remain small. It was shown by van 

den Boogaard (2002) that for small plastic strains of 20% or less, the principal directions of the 

stress and strain tensors are closely aligned in simple shear. The deviation between the principal 

strain and stress directions is certainly a complicating issue (see for example Jonas et al., 2012) 

but it will be shown in Section 6 that this is not the source of the spurious hydrostatic stress 

predictions by anisotropic yield criteria. However, for low strain levels commonly used for yield 

function calibration, the principal frames are approximately aligned. In the limit, if the yield 

criterion is calibrated at a strain corresponding to the onset of yielding at a strain level of 0.2% or 

other small plastic strains, the misalignment of the principal stress and strain directions can be 

neglected.  

Therefore, in the context of this study that deals with the calibration of anisotropic yield criteria, 

it will be assumed that the principal stresses and strains are equal and opposite in simple shear. 

Furthermore, the principal directions of the stress and strain tensors are orientated ±45˚ with 

respect to the loading direction for the onset of deformation while their principal directions 

remain closely aligned for small strains. 

Note that the Swift phenomenon (occurrence of axial plastic deformation during monotonic free-

end torsion of solid rods or tubes which was first observed by Swift, 1947) violates the condition 

of Eq. (28). Recently, Cazacu et al. (2013) related the Swift effect to tension-compression 

asymmetry of materials and Swift effects occur mostly due to twinning mechanisms in materials 

with hcp crystal structure (Guo et al., 2013) and will not be considered in the present work that 

will focus upon sheet materials with cubic crystal structures such as steel and aluminum alloys. 
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4.3. Shear Constraint 

In the light of the mechanics of shear deformation described in Sections 4.1 and 4.2, a new 

variable, ξ, is defined as the ratio of principal strains operative during shear tests from the 

deformation gradient (Eq. 19) and the definition of the logarithmic strain rate (Eq. 26). The value 

of the incremental strain ratio, ξ, as shown in Eq. (28), should be equal to -1 and becomes a 

constraint upon the plastic calibration that must be enforced upon the anisotropic material model.  

For example, if we assume that the material is rigid-plastic, for shear in the x1-x2 plane: 
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Furthermore, for an associated flow rule, Eq. (35) reduces to: 
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To visualize the role of the constraint, a yield surface can be considered in σ11-σ22-σ12 space on 

which the locations of the shear stress state are represented by the intersection of the σ11= -σ22 

plane with the yield surface, as shown by the red curve in Figure 3a. All shear loading conditions 

within the x1-x2 plane are located along this curve and their corresponding stress tensor has the 

form of: 
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                        (37) 

Note that all components of the stress tensor vary along the red curve in Figure 3a while the 

hydrostatic stress always remains zero due to the fact that the principal stresses are equal and 

opposite ( 21   ), and 03  . The relation in Eq. (35) shows that the value of the principal 

strain ratio, ξ, is equal to -1 all along this curve and is independent of the employed yield 
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criterion and flow rule since it comes directly from the deformation gradient. For an anisotropic 

material, the shear yield stress ratio obtained along the red curve may vary as the loading 

direction varies but the hydrostatic stress must remain zero and the incremental strain ratio must 

be -1. 

It is interesting to observe that for an isotropic yield criterion such as the non-quadratic Hosford 

model (Hosford, 1972), the constraint condition of Eq. (35) is automatically satisfied. The plane-

stress formulation of the Hosford model is: 

aaaa /1
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                                            (38) 

Assuming the associated flow rule and an even number for the exponent (as mentioned earlier, 

a=6 and a=8 are commonly used for bcc and fcc materials, respectively), strain ratios in the 

Hosford model can be calculated using Eq. (2): 
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Eq. (39) is also valid for the von Mises yield function that is a special case of the Hosford 

criterion with a=2. Note that considering a 3-D formulation for yield functions with all the six 

components of the stress tensor, Eq. (35) should also be satisfied in the spaces of σ11-σ33-σ13 and 

σ22-σ33-σ23 as well and their corresponding experimental shear data can be used to calibrate yield 

functions. However, for rolled sheet metals, shear data in the out-of-plane directions are not 

usually available, thus shear tests are commonly limited to the x1-x2 or RD-TD plane. Within the 

RD-TD plane, the stress tensor of shear tests is given by Eq. (37), and the orientation of an 

element subjected to maximum shear stress can be determined by: 

)(tan
2
1

12

111

Max.Shear



                                                   (40) 

Using Eq. (40), Point ① in Figure 3a (with σ12=0) corresponds to the shear state with the applied 

shear load in the 45° orientation with respect to the rolling direction and the principal directions 

are initially aligned in the rolling and transverse directions of the sheet. 
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Point ② in Figure 3a (with σ11=σ22=0) belongs to a shear test with the applied load in the RD or 

equivalently TD directions for orthotropic sheet metals (Lopes et al., 2003; Abedini et al., 

2017b). The principal stresses of this point are along the 45° and 135° directions.  

Finally, Point ③ in Figure 3a has a stress state similar to Point ①; however, the signs of the 

principal stresses are interchanged, indicating that the shear test is in the 135° orientation with 

respect to the RD. Note that as shown in Figure 3b, Points ① and ③ are located in the 4th and 

2nd quadrants of the yield locus, respectively.  

It is worth re-iterating that due to anisotropy, the shear yield stresses along the red curve in 

Figure 3a may vary while the hydrostatic stress must be enforced to be zero as the stress state 

remains one of shear loading. Consequently, multiple shear tests may be required to obtain the 

shear stress ratio along this curve. For anisotropic materials without tension-compression 

asymmetry, tests must be performed at orientations from Point ① to Point ②, and from Point 

① to Point ③ for asymmetric materials such as magnesium alloys.  

Although the constraint of Eq. (35) is trivial for the non-quadratic Hosford yield criterion, it is 

not trivial for anisotropic yield functions as demonstrated in Section 6.1 where the conventional 

method for yield function calibration can fail to satisfy this relation, resulting in the development 

of a non-physical hydrostatic stress in shear loading. 
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Figure 3 – von Mises yield function plotted (a) in σ11-σ22-σ12-space, and (b) on the σ11-σ22 plane when σ12=0. Note 

that only the top half of the yield surface is depicted in Figure 3a and the red curve corresponds to zero hydrostatic 

stress, and based on Section 4, principal strains should be equal and opposite along this curve. 

 

5. Experimental Data 

5.1. Materials 

Two different types of aluminum alloy sheet were considered in the present paper: (i) a highly-

textured AA2090-T3 (Al-2.2Li-2.7Cu-0.12Zr) with a nominal thickness of 1.6 mm with the 

experimental results taken from Barlat et al. (2003), and (ii) AA7075-T6 (Al-6Zn-2.9Mg-2Cu-

0.2Ti-0.3Mn-0.4Si-0.5Fe) with a nominal thickness of 2 mm with the characterization tests 

performed as part of the current research to obtain the constitutive plastic response of the 

material, as described in Section 5.2. 

5.2. Constitutive Response 

The experimental data for AA2090-T3 was published by Barlat et al. (2003) and the 

corresponding stress ratios and r-values are re-stated here, for reference, in Table 1. However, in-

plane shear test results were not provided in Barlat et al. (2003). For this reason, a second 

aluminum alloy sheet (AA7075-T6) was also considered for the calibration of anisotropic yield 
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functions. Constitutive characterization for AA7075-T6 was performed in the present study and 

the results are presented in this section. It should be noted that all the experimental tests reported 

below were conducted at room temperature under a quasi-static strain rate of 0.001 s-1. 

Uniaxial tension tests were performed on the AA7075-T6 sheet using a sub-sized ASTM E8 

dogbone specimen shown in Figure 4 tested in an MTS model 45 hydraulic tensile frame. For the 

AA7075-T6 experiments, stereo digital image correlation (DIC) techniques were used to obtain 

full-field strain measurements using two Point Grey 4.1 MP cameras with 180 mm (1:3.5) 

Tamron® lenses. The DIC images were recorded at a rate of 5 frames per second and analyzed 

using a subset size of 29 pixels, step size of 5 pixels and strain filter of 9 by the commercial 

VIC3D software package from Correlated Solutions Inc. To ensure the repeatability of the tests, 

at least five repeats were performed for each loading condition and material orientation while 

only the average values are reported in this paper. 

Figure 5 shows the uniaxial tension true stress versus plastic work response of AA7075-T6 in the 

three orientations of RD, DD, and TD and the corresponding stress ratios are given in Table 1. 

Standard deviations of ±0.005, ±0.002, and ±0.007 were obtained for the uniaxial stress ratios in 

RD, DD, and TD, respectively. Furthermore, average r-values of 0.78, 0.95, and 1.34 were 

calculated for the orientations of RD, DD, and TD, with standard deviations of ±0.06, ±0.04, and 

±0.10, respectively. 

 

 

Figure 4 – Geometry of the uniaxial tensile specimen. All dimensions are in millimeters. 
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Figure 5 – Response of AA7075-T6 under different loading conditions. 

 

The equal-biaxial tensile condition can be captured using through-thickness compression tests as 

explained by Barlat et al. (2003). The experimental methodology of Kurukuri et al. (2014) and 

Steglich et al. (2014) was followed where cubic specimens with aspect ratio of unity were 

fabricated by adhesively bonding six layers of sheets, as depicted in Figure 6 and the specimens 

were tested using a compression device shown in Figure 6. For sample preparation, the sheet 

layers were carefully cleaned using Acetone and then J-B-Weld® adhesive was applied between 

the inner layers. After curing the adhesive for 24 hours, the top and bottom surfaces (where the 

specimen contacts the upper and lower compression plates of the testing device) were polished to 

a mirror-finish. Furthermore, Teflon® spray was applied as lubricant to reduce friction between 

the specimens and the compression platens. An Instron model 1331 servo-hydraulic testing 

machine was used to apply the compressive force to the specimens. The flow stress response of 

the material is shown in Figure 5 and an equal-biaxial stress ratio of 1.057 and r-value of 0.88 

with standard deviations of ±0.01 and ±0.06 were calculated, respectively. 
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Figure 6 – Stacked compression specimen (left), compression testing device used to ensure alignment (center) and 

photograph of specimen showing speckle pattern for DIC-based strain measurement (right). 

 

Shear tests were performed on the AA7075-T6 sheet using a shear specimen adopted from Peirs 

et al. (2012), shown in Figure 7. This specimen geometry was adopted since it is relatively 

simple to fabricate, does not require through-thickness machining, and provides a relatively 

uniform shear strain distribution. Recent work by Abedini et al. (2015, 2017a,b), and Rahmaan 

et al. (2017) has demonstrated the advantages of the Peirs et al. (2012) geometry for constitutive 

and fracture characterization of different sheet materials. The shear tests on AA7075-T6 were 

done with the applied load in the diagonal direction of the sheet which results in principal 

stresses in the rolling and transverse directions as explained in Section 4. The MTS hydraulic 

tensile frame was also used to apply loads to the shear specimen. The shear response of the 

material is shown in Figure 5 and a shear stress ratio (relative to the tensile flow stress in the RD) 

of 0.583 with a standard deviation of ±0.003 was calculated. A summary of the plastic 

constitutive response of AA7075-T6 is given in Table 1 in which the stress ratios belong to the 

plastic work level of 25 MPa (corresponding to 5% equivalent plastic strain in the uniaxial 

tension in RD). Note that as typically assumed in the literature (e.g. Barlat et al., 2003; 2005; 

Yoon et al., 2004) the shape of the calibrated yield criteria are assumed to be constant and 

independent of the level of plastic deformation. For this reason, the yield calibration performed 

at low strain levels where the simple shear test is valid and before the onset of necking in a 

tensile test can be applied to forming simulations where the strain levels are much larger.  
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Figure 7 – Shear specimen geometry of Peirs et al. (2012). All dimensions are in millimeters. 

 

Table 1 – Normalized yield stress and r-values for AA2090-T3 (Barlat et al., 2003) and AA7075-T6. Stress ratios 

are with respect to uniaxial tensile yielding in the rolling direction 

Material σ0 σ45 σ90 σb τ45 r0 r45 r90 rb 

2090-T3 1.000 0.811 0.910 1.035 - 0.21 1.58 0.69 0.67 

7075-T6 1.000 0.998 1.003 1.057 0.582 0.78 0.95 1.34 0.88 

 

6. Results and Comparison 

6.1. Calibrations with the Conventional Method 

As explained in Section 3, the conventional method of calibration is commonly used to 

determine the coefficients of anisotropic yield functions including the Yld2000-2d model. For 

the purposes of the subsequent discussions, for the AA2090-T3 alloy, the coefficients reported 

by Barlat et al. (2003) for Yld2000-2d were used (Table 2). Note that the conventional 

calibration was used in Barlat et al. (2003) with the weighting values of wσ =1.0 and wr =0.1 to 

determine the anisotropy coefficients. Moreover, the coefficients of the Yld2000-2d yield 

function were calibrated for the AA7075-T6 alloy in the present study using the GA optimization 

method described in Section 3 with the experimental data reported in Table 1 (uniaxial and 

equal-biaxial tensile yield stress and r-values and shear yield stress), and the corresponding 

coefficients are given in Table 2. For both alloys, an exponent of a=8 was used for the 

anisotropic model as recommended for fcc materials (Barlat et al., 2003). Figures 8 and 9 show 

Force Force
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the yield loci plotted using the coefficients of Table 2 for AA2090-T3 and AA7075-T6, 

respectively. Moreover, the r-values and stress ratios for uniaxial tension tests with different 

orientations are also plotted along with the experimental data used for calibrations. Also the 

values of Error in Eq. (18) are presented in Table 3 for the two materials. It can be seen that the 

Yld2000-2d model matches the experimental data with good accuracy. However, it will be 

shown that predictions of the models calibrated with the conventional method are inconsistent 

with the mechanics of shear deformation described in Section 4. 

 

Table 2 – Coefficients of the Yld2000-2d calibrated with the conventional method. 

Yld2000-2d 
Coefficient 2090-T3 (Barlat et al., 2003) 7075-T6 

α1 0.4865 1.5526 

α2 1.3783 -1.5341 

α3 0.7536 -0.1921 

α4 1.0246 0.7845 

α5 1.0363 0.8600 

α6 0.9036 0.1695 

α7 1.2321 0.2948 

α8 1.4858 1.6278 

a 8.00 8.00 

 

 

Figure 8 – Yield locus, tensile stress ratios and r-values of Yld2000-2d for AA2090-T3 calibrated with the 

conventional method with the coefficients taken from Barlat et al. (2003). Red circles show the experimental results. 
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Figure 9 – Yield locus, tensile stress ratios and r-values of Yld2000-2d for AA7075-T6 calibrated with the 

conventional method. Red circles show the experimental results. 

 

Table 3 – Values of Error in Eq. (18) along with its components,  
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2090-T3 3.7(10-6) 2.9(10-6) 6.6(10-6) 
7075-T6 4.5(10-4) 3.4(10-4) 7.9(10-4) 

 

The stress triaxiality is a measure of the severity of the hydrostatic stress and is widely used in 

fracture characterization of materials (e.g. Bai and Wierzbicki, 2008; Dunand and Mohr, 2011; 

Abedini et al., 2017a). The stress triaxiality, η, is defined as: 

eq

hyd




                                                             (41) 

In plane-stress loading, the stress state can be uniquely defined using only the stress triaxiality. 

For the plane-stress condition and proportional loading defined by constant principal stress 

ratios, ρ, the stress triaxiality can be determined for the calibrated yield criterion using: 

eq

1)1(






      ,       

1

2




                                          (42,43) 

The ratio of principal strain increments can be calculated as a function of ρ by using Eq. (2). For 

a simple yield criterion such as the von Mises model, closed-form solutions can be obtained for 
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the relationship between the strain ratio and stress triaxiality (Abedini et al., 2017a); however, 

for general anisotropic yield criteria, as in the present work, these values should be calculated 

numerically which is relatively straightforward for a given stress ratio and calibrated constitutive 

model. 

Assuming associated flow for both aluminum alloys, the stress triaxialities were calculated with 

respect to the principal strain ratios (ε2/ε1) for the yield loci shown in Figures 8 and 9 for the 

range of stress states from shear to equal-biaxial tension. Two different regions (regions #1 and 

#2) are defined in Figure 10 for the locations where the stress triaxialities are investigated. The 

variations of the stress triaxiality with respect to the principal strain ratios are shown in Figures 

11 and 12 for AA2090-T3 and AA7075-T6, respectively. Similar curves are also shown by 

setting all the coefficients of the anisotropic yield function to unity, reducing it to the Hosford 

isotropic model with an exponent of a= 8.0 (Hosford, 1972). 

 

Figure 10 – Labels and locations of the regions where stress triaxialities are investigated in the x1-x2 or RD-TD 

plane. As explained in Section 4, Point ① corresponds to shear test with the applied load in the 45° orientation and 

Point ② corresponds to shear test with the applied load in the 135° orientation. Note that the regions illustrated in 

the figure belong to a yield function at a fixed plastic work level. 

Emphasis is placed on the shear points in Figures 11 and 12 as indicated with the labels ① and 

③ (corresponding to the naming convention of Figure 3), in which, as discussed in Section 4, 

the stress triaxialities are zero due to the hydrostatic stress of zero (i.e. η=0), and the principal 

strain ratios are supposed to be equal to -1 (i.e. ξ=-1). However, as opposed to the isotropic case, 

this condition is not satisfied for the anisotropic models calibrated with the conventional method. 

σ11

σ22

σ11 = - σ22σ11 = σ22

σ12 = 0
①

③

Eq.Biaxial



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

27 
 

It should also be noted that the shift in the equal-biaxial points between the isotropic Hosford and 

anisotropic yield criteria is due to a value of the equal-biaxial r-value that is non-unity. 

 Furthermore, in order to evaluate shear states in other in-plane directions, principal strain ratios 

were calculated for the shear points along the σ11=- σ22 curve (from Point ① to ② in Figure 3a), 

and the results are presented in Figure 13. Note that the principal strain ratios from Point ② to 

③ (see Figure 3a) are the inverse of the values from Point ① to ② and are not shown here for 

brevity. It can be seen from Figure 13 that the anisotropic models predict principal strain ratios 

other than the desired value of ξ=-1 along the σ11=- σ22 curve except for Point ② for which the 

strain ratio of -1 is achieved due to the fact that the normal vector, 


 , is parallel to the σ12 

direction and therefore, no normal strain components are predicted at this point. The deviations 

of the principal strain ratios from the desired value of ξ=-1 are the highest at the location of Point 

① and they continuously decrease towards Point ②. 

 

 

Figure 11 – Stress triaxiality vs. strain ratios of Yld2000-2d for AA2090-T3 in x1-x2 or RD-TD plane in the plane-

stress condition. The coefficients of Yld2000-2d were taken from Barlat et al. (2003). Only the isotropic Hosford 

criterion leads to stress triaxiality of zero at strain ratio of -1. 
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Figure 12 – Stress triaxiality vs. strain ratios of Yld2000-2d for AA7075-T6 in x1-x2 or RD-TD plane in the plan-

stress condition. Only the isotropic Hosford criterion leads to stress triaxiality of zero at strain ratio of -1. 

 

 

Figure 13 – Principal strain ratios along the σ11=- σ22 curve for the Yld2000-2d anisotropic yield function using the 

different calibrations approaches. Note that σ11, σ22, and σ12 change along the σ11=- σ22 curve. 
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It is important to mention that in shear simulations with displacement-based boundary 

conditions, a principal strain relation of dε1 =-dε2 is always achieved as explained in Section 4.1 

and shown in detail by Rahmaan et al. (2017) due to the imposed deformation gradient of Eq. 

(19). The results of Figures 11-13 show that for the calibrated anisotropic models, the principal 

strains are not equal and opposite (i.e. dε1 ≠-dε2 or ξ≠-1) along the σ11=-σ22 curve along which the 

hydrostatic stress is zero; therefore, the use of the yield loci depicted in Figures 8 and 9 for 

simulations involving shear, will result in an abnormal, non-zero hydrostatic stress (i.e. η≠0) that 

is undesired in a shear loading condition, as explained in Section 4.  

Furthermore, if a stress-based boundary condition is applied in shear simulations to ensure that a 

zero hydrostatic stress is achieved, the resulting principal strains would not satisfy ξ=-1, which is 

in contradiction with the definition of the shear loading (Section 4) as well as experimental 

observations (Figure 2). The results of Figures 11-13 show that additional calibration constraints 

are required to adjust or correct calibration of anisotropic yield functions in shear regions. 

 

6.2. Calibrations with a Proposed Shear Constraint on the Flow Rule 

The results of Section 6.1 showed that shear regions of the anisotropic yield criterion calibrated 

with the conventional method do not satisfy the necessary shear condition of zero hydrostatic 

stress at the principal strain ratio of -1. In other words, the hydrostatic stress is not zero where the 

principal strain ratio is equal to -1 and, conversely, the principal strain ratio is not equal to -1 

where the hydrostatic stress is equal to zero. To address this issue, a new calibration constraint 

was introduced into the optimization scheme to enforce the requirement that ξ = -1: 
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                  (44) 

where ξmodel is the predicted ratio of principal strains at Point ① and wξ is a weighting value of 

the new calibration constraint. Thus, the new term in Eq. (44) enforces the principal strain ratio 

to be equal to -1 at Point ① (where the highest deviation from ξ=-1 is observed for shear regions 

of anisotropic models calibrated with the conventional method, see Figure 13). Note that the new 

calibration constraint can alternatively be imposed on Point ③ since its principal strain ratio is 
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the inverse of Points ① (see Figures 11 and 12), and adjusting the principal strain ratio of either 

Point ① or ③ will automatically correct the principal strain ratio for the other point as well. 

The calibration of the anisotropic Yld2000-2d yield function was performed again with the same 

set of experimental data (Table 1) but this time Eq. (44) was used with the weighting values of 

wσ = 1.0, wr = 0.1, and wξ=1.0. Note that, in order to better demonstrate the influence of the 

proposed constraint, a large weighting value was selected for wξ. The coefficients of the 

anisotropic yield function are reported in Table 4 and their corresponding predictions are shown 

in Figures 14 and 15 for AA2090-T3 and AA7075-T6, respectively. Also the values of Error in 

Eq. (44) are presented in Table 5 for the two materials. Furthermore, Table 6 compares 

experimental data with the predictions of anisotropic yield functions calibrated with the two 

approaches for different stress states. It can be seen from Figures 14 and 15 and Tables 5 and 6 

that compared to the experimental results, the agreement between the yield functions calibrated 

with the proposed method and measured values is good although compared to the conventional 

calibrations some degree of accuracy has been lost in the uniaxial and biaxial regions. This lower 

agreement in the first quadrant is not unexpected due to the addition of the new shear constraint 

to calibrate the yield function. In other words, with the addition of the new constraint, the 

flexibility of the yield surface is reduced but it will be shown that its physical foundation is 

improved in shear loading. To restore the desired accuracy in the first quadrant, an alternate yield 

function with more calibration parameters can be adopted or a non-associated flow rule can be 

used as discussed in Section 7. 
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Table 4 – Coefficients of Yld2000-2d calibrated with the proposed shear constraint. 

Yld2000-2d 
Coefficient 2090-T3 7075-T6 

α1 0.8603 0.9506 

α2 0.9292 0.9922 

α3 0.9573 0.9026 

α4 0.9768 0.9361 

α5 1.0634 0.9752 

α6 1.0389 0.8157 

α7 -1.2505 0.9821 

α8 1.4496 1.1010 

a 8.00 8.00 

 

 

Figure 14 – Yield locus, tensile stress ratios and r-values of Yld2000-2d for AA2090-T3 calibrated with the 

proposed shear constraint. Red circles show the experimental results. 
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Figure 15 – Yield locus, tensile stress ratios and r-values of Yld2000-2d for AA7075-T6 calibrated with the 

proposed shear constraint. Red circles show the experimental results. The yield function was calibrated at the plastic 

work level of 25 MPa corresponding to an equivalent plastic strain of 5% for uniaxial tension in RD. 

 

Table 5 – Values of Error in Eq. (44) along with its components,  

Materials 
 



























m

i
i

w
1

2

exp

model 1





 

 



























m

i
i

r
rw

1

2

exp

model
r 1

 2

model 1
1 




























w  Error 

2090-T3 2.7(10-2) 1.5(10-2) 5.2(10-5) 4.2(10-2) 
7075-T6 1.9(10-3) 2.0(10-4) 1.5(10-7) 2.1(10-3) 

 

 

 

 

 

 

 

 

 

 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

RD Normalized Stress

TD
 N

or
m

al
iz

ed
 S

tre
ss

0 10 20 30 40 50 60 70 80 900.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Tensile Orientation (degree)

N
or

m
al

iz
ed

 S
tre

ss

0 10 20 30 40 50 60 70 80 900

0.5

1

1.5

2

2.5

3

Tensile Orientation (degree)

r-
va

lu
e

AA7075-T6
Yld2000-2d

AA7075-T6 AA7075-T6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

33 
 

Table 6 – Comparison between experimental data and predictions of yield functions for different stress states for 

AA2090-T3 and AA7075-T6. 

Stress State 
AA2090-T3 AA7075-T6 

Experiment Conventional 
Calibration 

Proposed 
Calibration Experiment Conventional 

Calibration 
Proposed 

Calibration 
 

Uniaxial Tension RD: 
Stress Ratio (r-value) 

 

1.000 (0.21) 1.000 (0.21) 1.000 (0.23) 1.000 (0.78) 1.000 (0.78) 1.000 (0.80) 

 
Uniaxial Tension DD 
Stress Ratio (r-value) 

 

0.811 (1.58) 0.811 (1.58) 0.806 (1.59) 0.998 (0.95) 1.001 (0.97) 1.002 (0.96) 

 
Uniaxial Tension TD 
Stress Ratio (r-value) 

 

0.910 (0.69) 0.910 (0.69) 1.053 (0.52) 1.003 (1.34) 0.984 (1.41) 1.038 (1.31) 

 
Equal-Biaxial Tension 
Stress Ratio (r-value) 

 

1.035 (0.67) 1.035 (0.67) 0.982 (0.59) 1.057 (0.88) 1.055 (0.88) 1.060 (0.86) 

 
Shear in DD 
Stress Ratio 

 

- 0.580 0.607 0.582 0.596 0.570 

 
Shear in RD 
Stress Ratio 

 

- 0.441 0.435 - 0.614 0.555 

 
Plane-strain Tension RD 

Stress Ratio 
 

- 1.072 1.026 - 1.219 1.139 

 
Plane-strain Tension TD 

Stress Ratio 
 

- 1.102 1.115 - 1.292 1.167 

 

 

Figure 16 compares yield loci of AA7075-T6 calibrated with the conventional and proposed 

approaches. This figure demonstrates that for AA7075-T6, calibration with the proposed method 

reduces the overshoot in stress in the plane-strain region of the locus. Further evaluation of this   

behaviour would require plane-strain experiments and will be addressed in future work. 
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Figure 16 – Yield loci for AA7075-T6 calibrated with the conventional and proposed methods. Note that the 

addition of the proposed shear constraints may result in some accuracy loss in non-shear stress states. 

 

Stress triaxialities with respect to the principal strain ratios were also calculated using the same 

approach described in Section 6.1 and the results are plotted in Figures 17 and 18 for AA2090-

T3 and AA7075-T6, respectively. It can be seen that after the addition of the new shear 

constraint, the anomalous predictions in the shear regions are resolved, as demonstrated by the 

stress triaxialities becoming zero at the principal strain ratio of -1. Furthermore, the principal 

strain ratios were also plotted along the σ11=- σ22 or zero hydrostatic stress curve and the results 

are shown in Figure 13. As expected, the new calibration approach enforces the principal strain 

ratios to be equal to -1 at Point ① and this automatically corrects the principal strain ratios of the 

other shear points along the σ11=- σ22 curve. This guarantees that by introducing the shear 

calibration constraint in the calibration procedure, as proposed in this paper, no hydrostatic stress 

will be predicted in the shear loading condition. This response will be further examined in 

Section 6.3. 
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Figure 17 – Stress triaxiality vs. strain ratios of Yld2000-2d for AA2090-T3 in x1-x2 or RD-TD plane in the plane-

stress condition. The proposed shear constraint was used for calibrations. 

 

Figure 18 – Stress triaxiality vs. strain ratios of Yld2000-2d for AA7075-T6 in x1-x2 or RD-TD plane in the plane-

stress condition. The proposed shear constraint was used for calibrations. 
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6.3. Single Element Simulations 

In order to better show the issues that may arise using the anisotropy coefficients calibrated with 

the conventional method, single element simulations were performed using the commercial FE 

code, LS-DYNA. A single shell element was modelled under a simple shear loading condition 

(see Figure 1) and the Yld2000-2d model available in LS-DYNA (*MAT_BARLAT_YLD2000) 

was employed using the anisotropy coefficients of Table 2. Furthermore, the anisotropy 

coefficients in Table 4 based on the calibrations using the proposed shear constraint were also 

considered for comparison. Figure 19 shows the evolution of the stress triaxiality with respect to 

the plastic strain for AA2090-T3 and AA7075-T6. The shear states targeted are Points ① and ③ 

(Note that as explained in Section 6.1, the stress state deviates from the locations of these points 

if ξ≠-1). It can be observed that, using the anisotropy coefficients calibrated with the 

conventional method result in anomalous stress triaxialities with absolute values of 

approximately ±0.13 and ±0.05 for AA2090-T3 and AA7075-T6, respectively, while the stress 

triaxialities are negligibly small using the coefficients calibrated with the proposed constraint. 

Note that it is possible to increase the value of wξ in Eq. (44) to completely eliminate the 

hydrostatic stress at a cost of less accuracy in other states due to the limited flexibility of the 

yield function with the associated flow rule. It is important to mention that the stress triaxiality of 

Point ① becomes positive (tensile loading) while Point ③ results in a negative hydrostatic stress 

(compressive loading). Also the stress triaxiality of Point ③ has the opposite sign to the values 

of Point ①. 
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Figure 19 –Stress triaxiality vs. plastic strain obtained with single element simulations in shear using Yld2000-2d for 

(a) AA2090-T3 and (b) AA7075-T6. 

 

7. Discussion 

7. 1. Influence of the Proposed Constraint on Forming Simulations 

The analyses in Section 6.3 were based on single element simulations to focus solely on the role 

of anisotropic models on the shear state; however, accurate prediction of yield functions with the 

proposed shear constraint can have significant influence on large-scale forming and 

crashworthiness simulations of models with shear-dominated stress states. For instance, in cup 

drawing (Harpell et al., 2000; Ghaffari Tari and Worswick, 2015), different regions of the blank 

are subjected to different stress states, but the majority of the plastic flow occurs in the flange 

region where the stress consists of tangential compressive and radial tensile components; such 

stress states lie in the second and fourth quadrants of the yield locus with in-plane shear loading. 

Therefore, accurate numerical predictions under shear or near-shear states in terms of strain path 

and stress components should lead to more accurate predictions of drawing behaviour. 

 

 

-0.1 -0.05 0 0.05 0.1 0.15
0

0.05

0.1

0.15

Stress Triaxiality

Pl
as

tic
 S

tra
in

-0.1 -0.05 0 0.05 0.1 0.15
0

0.05

0.1

0.15

Stress Triaxiality
Pl

as
tic

 S
tra

in

Shear at Point ③ Shear at Point ①

AA7075-T6

Solid Curves: Conventional Calibration
Dashed Curves: Calibration with the Proposed Constraint

Shear at Point ③ Shear at Point ①

AA2090-T3

Solid Curves: Conventional Calibration
Dashed Curves: Calibration with the Proposed Constraint

(a) (b)



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

38 
 

7. 2. Influence of the Proposed Constraint on Fracture Predictions 

The work presented herein has demonstrated that the conventional calibration method can result 

in inaccurate prediction of stress-state (triaxiality) under shear loading. Such errors in predicted 

triaxiality can have major ramifications on phenomenological fracture modelling of materials, for 

example, using the popular MMC-type equations (Bai and Wierzbicki, 2008; 2010). Such 

uncoupled fracture approaches are normally calibrated using the correct assumption that stress 

triaxiality is zero for a shear stress state whereas finite element models utilizing anisotropic yield 

functions calibrated with the conventional method will predict non-zero stress triaxialities that 

may have significant impact on fracture predictions. To illustrate this potential effect on fracture 

prediction, a phenomenological fracture locus for an aluminum alloy was taken from Bai and 

Wierzbicki (2008) and its corresponding fracture strains versus stress triaxiality are plotted in 

Figure 20. The current work has demonstrated that stress triaxiality under shear loading can be 

±0.13 using the conventional calibration method (Figure 19) instead of zero. For such an 

erroneous triaxiality level, the predicted failure strain (Figure 20) becomes 0.26 for a stress 

triaxiality of 0.13 and 0.24 for a stress triaxiality of -0.13 instead of 0.21 for a triaxiality of zero, 

an error of up to approximately 20%. The proposed calibration method enforces zero triaxiality 

under shear loading, thus avoiding this error. 
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Figure 20 – Fracture locus of AA2024-T351 taken from Bai and Wierzbicki (2008) showing the influence of stress 

triaxiality on fracture strain. 

 

7. 3. Applicability of the Proposed Constraint to General 3-D Conditions 

It should be mentioned that the improvement in predicted strain ratios, seen in Figure 13, when 

the proposed shear constraint was applied to the plane-stress Yld2000-2d model, will not 

necessarily hold for all anisotropic yield functions. For example, the principal strain ratios under 

shear states obtained using the three-dimensional Yld2004-18p anisotropic yield function for 

general stress states (Barlat et al., 2005) were also examined. Specifically, shear prediction using 

the anisotropy coefficients reported by Barlat et al. (2005) for AA2090-T3 were compared with 

those obtained after imposing the proposed calibration constraint, as shown in Figure 21. The 

strain ratios under shear loading obtained using the conventional calibration drift from the 

correct value of -1, whereas those using the new calibration constraint are much closer to this 

value. It can also be seen that compared to the results of the conventional calibration, the 

proposed calibration method improves the predictions of the principal strain ratios in shear to be 

in closer agreement with ξ=-1; however, the slight deviation of the curve from a value of -1 
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suggests that a more sophisticated treatment may be required to correct the yield function 

calibration in the shear region of yield functions with 3-D formulations. For example, it might be 

required to enforce the condition that dε1=- dε2 all along the σ11=- σ22 curve, as opposed to the 

case in the present paper with the Yld2000-2d in which enforcing the shear constraint at just 

Point ① sufficed to correct the strain ratios for all shear states. 

 

Figure 21 – Principal strain ratios along the σ11=- σ22 curve for the Yld2000-2d and Yld2004-18p anisotropic yield 

functions for AA2090-T3 with anisotropy coefficients calibrated with the conventional method, reported in Barlat et 

al. (2003) and Barlat et al. (2005), respectively. The results with the proposed calibration constraint on Yld2004-18p 

have also been plotted for comparison. 
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Although the new calibration approach is based on a physically necessary constraint, the trade-

off in its adoption is potentially losing accuracy in other stress state regions as explained in 
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shear constraints may favour use of a non-associated flow rule or adoption of additional linear 

transformations for increased flexibility. Using the non-associated flow rule, it is not required for 

yield functions to satisfy the new normality constraint imposed in the present paper since the 

normal vectors are calculated from a flow potential that can be calibrated independently from the 

yield function (Stoughton, 2002). To illustrate this, the Yld2000-2d model was re-calibrated 

utilizing a non-associated flow rule thereby allowing the yield function and plastic potential to be 

determined separately for AA2090-T3; the results are shown in Figure 22. The proposed shear 

calibration constraint was applied to the plastic potential; therefore, the yield function is able to 

capture the experimental yield points more accurately. 

 

Figure 22 – Yield function and plastic potential of AA2090-T3 model calibrated utilizing a non-associated flow rule 

assumption. The proposed shear calibration constraint needs to be imposed on the plastic potential only. 

 

An alternative option to account for the shear constraint could involve placing constraints upon 

the form of the linear transformations used to generalize an isotropic yield function to an 

anisotropic yield criterion as was done in Barlat family of yield criteria to ensure plastic 

incompressibility (Barlat and Lian, 1989; Barlat et al., 1991; 1997; 2003; 2005). This 
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methodology would ensure that the shear constraint is automatically satisfied without requiring 

an explicit treatment to enforce it during calibration and provides an opportunity to develop new 

forms for anisotropic yield criteria in future work. 

 

8. Conclusions 

It was shown theoretically and using single element FE simulations that using the conventional 

method of calibrating the Yld2000-2d anisotropic yield function with only uniaxial tension and 

equal-biaxial tension data may result in abnormal predictions with non-zero stress triaxiality in 

the shear region. This non-physical artefact may have important ramifications for 

phenomenological fracture modelling using a MMC-type approach. To overcome this issue, a 

physically necessary calibration constraint was proposed to enforce the principal strain to be 

equal and opposite at the location of shear regions of anisotropic yield functions. This necessary 

constraint is required to enforce physically-admissible shear stress states. Imposing the proposed 

shear constraint on the plastic potential resulted in correcting these artefacts with the expected 

reduction in the accuracy of the yield function in other regions of the yield surface. It was shown 

that the loss of accuracy can be eliminated by adopting yield functions with more flexibility or 

non-associated flow rules.  
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