
Facilitators and barriers to safely managed water and 

sanitation: A spatio-temporal investigation of the 

association between socioeconomic factors and 

shigellosis incidence 

 

by 

Sabrina Li 

 

A thesis 

presented to the University of Waterloo 

       in fulfillment of the   

    thesis requirement for the degree of 

       Master of Science   

   in   

Geography 

 

 

 

Waterloo, Ontario, Canada, 2017 

© Sabrina Li 2017 

1  

 

 



 ii 

AUTHOR’S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

ABSTRACT 

The lack of access to safe drinking water and sanitation worldwide has contributed 

to the occurrence of shigellosis, a waterborne infectious disease.  Previous research has 

shown that shigellosis can be prevented by access to safe drinking water and adequate 

sanitation, however access is facilitated or hindered by socioeconomic conditions. The 

effects of socioeconomic conditions on shigellosis incidence are unclear in the context of 

rural China. This thesis explored the spatial patterns of shigellosis over time and the 

spatio-temporal association between shigellosis incidence and socioeconomic conditions 

of the rural population in Jiangsu province. 

 

Choropleth maps were created to understand the geographic distribution of 

shigellosis incidence at the county level. Spatial analysis methods such as spatial 

autocorrelation, Local Moran’s I, and the Getis Ord Gi were used to identify disease 

clusters, outliers, and hotspots. Based on the findings from the hot spot analysis and 

evidence from literature, a field visit to the northwestern county of Suining was 

conducted to further investigate the relationships between water and sanitation access and 

shigellosis incidence in the rural context. The temporal variability of the association 

between socioeconomic factors and shigellosis at the county level was investigated using 

negative binomial and quasi-Poisson regression models. The spatial relationship between 

socioeconomic factors and shigellosis at the county level was explored using a Bayesian 

spatial model. 

 

Results showed that shigellosis morbidity was characterized by significant declines 

in most regions from 2011 to 2015; however, high morbidity rates were still evident in 

the northwestern region of Jiangsu. At the county level, the factors such as the number of 

hospital beds per capita and the percentage of rural households has shown to be 

significantly associated with shigellosis incidence for years 2011, 2012, and 2014, 

respectively. The percentage of rural households was negatively correlated with 

shigellosis incidence; this relationship was further confirmed by results from the 

Bayesian spatial model. In addition, results showed that rural employment and the 

number of hospital beds per capita, respectively, were correlated with a decrease in 

shigellosis incidence. In contrast, the number of hospitals per capita was positively 

correlated with an increase in shigellosis incidence.  Underreporting of shigellosis in rural 

areas was suspected to be the cause of the low rate of shigellosis in rural areas. The 

quality of the rural healthcare system and living conditions may have influenced this 

underreporting. Thus, a more active surveillance method should be adopted to gauge the 

real occurrence of shigellosis amongst the rural population.  
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1 CHAPTER 1: INTRODUCTION 

In 2000, the United Nations established eight measurable goals known as the Millennium 

Development Goals (MDGs) to reduce poverty by improving health and social development 

(WHO, 2015). As a part of Goal 7, Target 7c aimed to “reduce the proportion of the population 

without sustainable access to safe drinking water and basic sanitation by half” by 2015  (WHO 

& UNICEF, 2000). In 2015, the United Nations established the successors to the MDGs, 

known as the Sustainable Development Goals (SDGs), which aim to be achieved by 2030. 

Goal 6 of the SDGs aims to “ensure availability and sustainable management of water and 

sanitation for all”.  

While the MDGs have made unprecedented progress worldwide, around 884 million 

people still lack access to a basic drinking water service while 2.3 billion people do not have 

access to a basic sanitation service (WHO/UNICEF, 2017). As defined by WHO/UNICEF JMP, 

a basic drinking water service ensures access to an improved drinking water source, which has 

the potential to deliver safe water based on its construction and design.  A basic drinking water 

service is protected from outside contamination, provided that collection time is no more than 

30 minutes. In addition, a basic sanitation service refers to having access to an improved 

sanitation facility, which is defined as a facility where human excreta is hygienically separated 

from human contact and is not shared with other households.  

Targets 6.1 and 6.2 of the SDGs aim to move beyond basic services and achieve 

universal access to safely managed water and sanitation services by 2030. Based on the 

definitions provided by WHO/UNICEF (2017), a safely managed drinking water service is 

defined as “drinking water from an improved water source that is accessible on premises, 

available when needed, and free from fecal and priority chemical contamination” while a 
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safely managed sanitation facility is defined as “improved facilities that are not shared with 

other households, and where excreta are safely disposed of in situ, or transported and treated 

offsite”. 

 Exposure to contaminated drinking water and lack of sanitation can lead to waterborne 

diseases that affect human health (WHO, 2017a). Open defecation or the lack of a toilet facility, 

along with improper handling of human excreta, can promote the spread of fecal matter 

through groundwater and surface water. This leads to fecal-oral transmission of waterborne 

diseases upon ingestion of water or food contaminated with fecal matter. Waterborne diseases, 

which are mainly caused by microorganisms such as bacteria, can cause intestinal infections 

that lead to diarrhea.  

 Globally, the number of young children dying from diarrhea is more than the combined 

number of deaths from AIDS and malaria (Boschi-Pinto et al., 2008; L. Liu et al., 2017). 

Diarrhea is the second leading cause of death for children under five years of age (WHO, 

2017b). The diseases caused by poor water and sanitation can trigger malnutrition amongst 

young children, which makes them more vulnerable to major childhood diseases such as 

measles and pneumonia (Bartram & Cairncross, 2010; Carlton et al., 2012). Due to the lack of 

water supply and a sanitation facility, children are compelled to spend more time collecting 

water and seeking a place to defecate. These conditions may delay children’s entry into school 

and deter girls from attending school once they reach menarche (Bartram & Cairncross, 2010; 

Pearson & McPhedran, 2008). 

The lack of access to a safely managed water and sanitation can significantly contribute 

to the existing water issues in China. China’s water resources, which are only less than one 
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quarter of the world average supply, are required to sustain 20% of the world’s population 

(Jiang et al., 2015; Junfeng Zhang et al., 2010; Xie et al., 2009). In addition to limited water 

availability, the majority of the water that comes from lakes and major rivers in China is 

severely polluted (Junfeng Zhang et al., 2010). In some places, water from reservoirs is 

unsuitable for drinking even after wastewater treatment (H. Yang et al., 2012; Junfeng Zhang 

et al., 2010) due to contamination and lack of adequate treatment prior to reaching the point of 

water delivery (Shaheed et al., 2014). For instance, piped water at the point-of-use may be of 

suboptimal quality as a result of piping minimally treated water at the source that does not 

meet drinking water standards for microbial safety (Carlton et al., 2012; Prüss-Üstün et al., 

2014; Shaheed et al., 2014). As a result of China’s water scarcity and contamination problems, 

4% of the population (54.8 million) still lacks access to a basic drinking water service while 30% 

of the population (411.3 million) still lacks access to safely managed sanitation facility 

(WHO/UNICEF, 2017).  

To improve access to safe drinking water, China has implemented a five-year plan worth 

410 billion RMB ($66 billion USD) on the expansion of its public water infrastructure to 54% 

of the population living in cities and towns by 2015 (Tao & Xin, 2014). Despite this expansion, 

regional disparities continue to affect water access for the rural population, which makes up 43%  

of the total population in China (World Bank, 2016). Currently, 38% of the rural population 

still lacks access to piped water (WHO/UNICEF, 2017). Moreover, it has been found that the 

lack of access to treated water has been underestimated by the WHO/UNICEF in the past 

(Zhang and Xu, 2016), so it is likely that the proportion with access to untreated drinking water 

is much greater in reality (Yang et al., 2012).  Results from a survey on 31 provinces 

conducted in 2006 indicated that half of the sampled 60 000 rural households across China 
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relied on untreated water from hand pumps, wells, or surface water from nearby rivers (Rong et 

al., 2009). This study is the most comprehensive study on rural water and sanitation in China 

published to date, and has shown that more than half of the water samples collected were 

unsafe for drinking, primarily due to contamination with untreated sewage. Thus, the lack of 

access to safely managed drinking water renders the rural population in China particularly 

vulnerable to waterborne diseases.  

1.1 Research Context  

It is estimated that 700, 000 deaths each year are caused by shigellosis, a water-borne 

diarrheal disease caused by a single type, gram-negative bacteria called Shigella (WHO, 2005). 

It is the third most commonly reported infectious disease in China (Z. Li et al., 2015; X. Liu et 

al., 2017; Jianmin Zhang et al., 2014; H. Zhang et al., 2016), after tuberculosis and hepatitis B 

(Z. Li et al., 2015; Xiao et al., 2014). Shigellosis continues to pose a considerable disease 

burden especially amongst the elderly and children (Ma et al., 2015; Li et a., 2016; X. Wang et 

al., 2006; L. Zhao et al., 2017). In China, Shigella resistance to several first-line antibiotics 

makes effective antimicrobial treatment a significant challenge (Seidlein et al., 2006; X. Wang 

et al., 2006; Jianmin Zhang et al., 2014). Qu et al. (2014) found that over 90% of Shigella 

isolates were resistant to at least three different kinds of antibiotics.   

 Shigellosis is monitored by the Chinese Centre for Disease Control and Prevention 

(CDC), which requires cases of shigellosis to be reported by all clinics and hospitals. 

Transmission occurs through oral contact and can be diagnosed through the stool of a person 

infected with Shigella. Transmission may occur due to inadequate hand hygiene, contact with 

food that has been processed or washed with contaminated water, drinking water that has 
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contaminated with fecal matter, or exposure to feces through sexual contact. These 

transmission processes are exacerbated in regions of China where people rely heavily on 

polluted water due to lack of access to safe managed water.  

 The morbidity rate of shigellosis varies by region. In particular, high morbidity caused 

by shigellosis has been reported in the eastern province of Jiangsu (X. Wang et al., 2006), one 

of the most densely populated provinces in China. From 2001 to 2011, Tang et al. (2014) 

analyzed the spatiotemporal trends of shigellosis incidence trends in Jiangsu, and found that 

shigellosis incidence rates followed a decreasing trend over time but peaked in 2004, 2006, and 

2011. Clusters of high shigellosis incidence were found in the southwestern and northwestern 

regions. Shigellosis incidence varies geographically as it is driven by high temperatures and 

relative humidity (Tang et al., 2014). Due to these meteorological drivers, shigellosis is more 

prevalent in high temperature environments as the majority of shigellosis incidents occur 

during the summer and autumn months (July - October) (Ma et al., 2015; Tang et al., 2014; Xu 

et al., 2014; Y. Zhang et al., 2007). 

 Despite the lack of effective antimicrobial treatment, the prevalence of shigellosis can 

be easily controlled and reduced by improved water and sanitation in rural communities (Nie et 

al. 2014). Bartram & Cairncross (2010) claims that improved water and sanitation could reduce 

diarrhea prevalence by one third. However, there exists a disparity in access to improved water 

and sanitation in rural communities, which is influenced by socioeconomic factors such as 

education attainment, the existence of a social support network, and culture (e.g. values of a 

place that contribute to perpetuation of marginalization and stigmatization). These factors are 

defined as a subset of the social determinants of health (Public Health Agency of Canada, 
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2011), which are the living conditions that facilitate or hinder one’s access to resources to good 

health, including safe managed water and sanitation (Q. Wang & Yang, 2016).  

 While present literature has investigated the spatial and temporal distribution of 

shigellosis over the years from 2001 to 2011 (Ma et al., 2015; Tang et al., 2014; Xu et al., 

2014), recent spatiotemporal patterns after 2011 have not been explored in Jiangsu, a province 

with regions that experience high shigellosis morbidity. Furthermore, very little research has 

focused on how the incidence of shigellosis clusters is influenced by access to safely managed 

water and sanitation, particularly in rural areas of China (H. Zhang et al., 2016). Tang et al. 

(2014) have identified inadequate water and sanitation and low family income as risk factors of 

shigellosis in Jiangsu province, however it is uncertain how some of these factors that are part 

of the social determinants of health (herein referred to as facilitators and barriers) that 

determine access to safely managed water and sanitation. Therefore, it is hypothesized in this 

thesis that the facilitators and barriers mediate the relationship between water and sanitation 

access and shigellosis incidence. It is important to examine this relationship in recent years to 

better understand the current water and sanitation conditions in rural China and how this is 

linked with shigellosis incidence during the period of the SDGs.  

1.2 Research Objectives 

 As China moves from the period of the MDGs to the SDGs, it is critical to gain an 

updated understanding of shigellosis prevalence in the highly populated province of Jiangsu, 

which has been previously identified as a region with high shigellosis morbidity. The disparity 

in access to safely managed water and  sanitation in rural areas is largely determined by a 

subset of social determinants acting as facilitators and barriers, but very little information is 
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available on how these factors are linked with recent incidence and distribution of shigellosis 

across time and space (Schmidt, 2014; H. Zhang et al., 2017).  Thus, the province of Jiangsu 

was selected as an area of interest in this thesis due to its high shigellosis morbidity and limited 

understanding of socioeconomic determinants that act as risk factors in that region. This study 

area was also chosen to serve as a case study so that findings can be transferred to other areas 

in eastern China. To address these knowledge gaps, this thesis will explore the following 

objectives: 

1) To examine spatiotemporal variation of shigellosis incidence across Jiangsu province 

2) To identify the facilitators and barriers to safely managed water and sanitation 

3) To investigate the association between socioeconomic determinants and shigellosis 

incidence in rural areas of Jiangsu province  

 The research design and methods of this thesis are based on a post-positivist approach. 

This approach is adopted to explore the research objectives outlined above from an objective 

perspective using quantitative methods, but recognizes that all observations can be challenged 

and that data are susceptible to error and bias. Objective one was met by conducting spatial 

analyses to investigate the spatiotemporal distribution of shigellosis incidence from 2011 to 

2015. Objective two was met by developing a conceptual framework based on existing 

literature. Objective three was met by conducting an exploratory analysis using survey data on 

rural water and sanitation and shigellosis incidence in a rural county located in Jiangsu 

province. A rural county was chosen because counties are the smallest administrative unit that 

has the most comprehensive data on a household access to water and sanitation access. Field 

observations of water and sanitation facilities were also used to complement and validate the 

findings.  Lastly, objective four was met via a multivariate regression analysis that investigated 
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the association between shigellosis incidence and several socioeconomic factors that are part of 

the social determinants of health framework.  

1.3 Research Contributions 

This thesis presents new findings on water and sanitation in rural China. While much of 

the research on water and sanitation has been conducted in Southeast Asia and Africa, very 

little is known about the conditions of water sources and sanitation facilities in rural areas in 

China. Despite rapid economic development, China’s large urban-rural disparities continue to 

affect access to clean water and improved sanitation facilities, and as a result, water and 

sanitation problems are still prevalent in rural areas.  

This thesis makes two substantive contributions. First, this thesis unveils insights into the 

socioeconomic indicators that act as facilitators and barriers to safely managed water and 

sanitation, which may be associated with shigellosis incidence in rural areas of Jiangsu 

province. This would not be possible using data reports aggregated at the provincial and 

national level. Secondly, this thesis contributes to the current literature on water and sanitation 

in rural areas of low-middle income countries. The findings of this thesis could be used to 

provide up-to-date information to local stakeholders to support rural water management and 

diarrhea surveillance in Jiangsu province. The findings of this thesis could be used to educate 

and help the government to prioritize the improvement of certain social and living conditions 

to bring effective change to water and sanitation services that will benefit, the health of 

vulnerable areas.  
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1.4 Chapter Outline  

 This thesis consists of five chapters and is organized as follows.  Chapter 2 provides a 

review of the current literature on the epidemiology of shigellosis (Chapter 2.2) and the 

conditions of water and sanitation in rural China (Chapter 2.3). In addition, this chapter also 

includes elaboration on the proposed theoretical (Chapter 2.4) and conceptual (Chapter 2.5) 

frameworks, as well as the methodological literature (Chapter 2.6) adopted and considered for 

this thesis.  

The methodology is outlined in Chapter 3 and is separated into Chapter 3.2, which 

covers all information on data, and Chapter 3.3, which introduces the study area. The 

methodology is broken down into two main sections; Chapter 3.4 discusses generalized linear 

regression model, Chapter 3.5 discusses spatial data visualization and analysis techniques, and 

Chapter 3.6 discusses the descriptive analysis of rural water and sanitation conditions.  

Results are presented in Chapter 4. This section includes results for spatial data 

visualization and analysis (Chapter 4.2), generalized linear regression analysis (Chapter 4.3), 

and a descriptive analysis of survey observations on water and sanitation conditions in a rural 

county (Chapter 4.4) supported by field images.  

 Lastly, discussion and conclusions presented in Chapter 5 will summarize this thesis’ 

findings, limitations, contributions, policy implications, and provide recommendations for 

future work.   
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2 CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter explores the theoretical, conceptual, and methodological frameworks used to 

construct this thesis and its objectives: 

1) To examine spatiotemporal variation of shigellosis incidence across Jiangsu province 

2) To identify the facilitators and barriers to safely managed water and sanitation 

3) To investigate the association between socioeconomic determinants and shigellosis 

incidence in rural areas of Jiangsu province  

This chapter discusses the disease characteristics of shigellosis, the role of water and 

sanitation for shigellosis prevention and control, and the changes in water and sanitation over 

time in rural China. The theoretical and conceptual frameworks used to address these 

objectives are also outlined and justified. Lastly, this chapter examines literature on applicable 

methodological approaches for addressing the objectives of this thesis.  

2.2 Shigellosis: Causes, transmission pathways, and prevention   

Many scientific studies based in microbiology, vaccines, and infectious diseases have 

shed light on shigellosis’ causes and effects. Shigellosis is known as bacillary dysentery 

(Public Health Agency of Canada, 2011b), an enteric infectious disease that causes diarrhea. 

Infectious diseases such as shigellosis are transmissible from person to person and occur when 

human body tissues are invaded by a disease-causing agent such as bacteria. There are four 

species of Shigella bacteria: S. dysenteriae (group A), S. flexneri (group B), S. boydii (group C) 

and S. sonnei (group D). S.flexneri and S.dysenteriae (bacillary dysentery) accounts for the 
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majority of deaths from shigellosis in developing countries (Bardhan et al., 2010; Kotloff et al., 

1999; Nyogi, 2005; Von Seidlein et al., 2006). 

 Symptoms of shigellosis include watery diarrhea (that may contain mucus and blood), 

painful bowel movements, abdominal pain, nausea and vomiting, rapid dehydration and weight 

loss. Symptoms may occur between 12 to 50 hours and last one to seven days (Public Health 

Agency of Canada, 2011b). Acute diarrhea may develop within one to two days. Patients can 

recover completely from shigellosis, however it will take several months for their bowel 

movements to become normal (CDC, 2017).  Once a person gets infected with a specific strain 

of Shigella, they will not get infected with that strain for at least several years. However, they 

can still get infected with other strains of Shigella (CDC, 2017).  

Globally, shigellosis results in 700,000 deaths a year, with most cases occurring in the 

developing world (WHO, 2005). It is estimated that shigellosis has caused the death of 34, 400 

children under the age of five (Mani et al., 2016). In addition, it is estimated that shigellosis has 

resulted in the deaths of 40,500 persons over the age of five in 2013 (Peterson et al., 2015). 

Travelers and military service members frequently contract shigellosis when visiting Shigella 

endemic areas (Mani et al., 2016).  

Shigellosis outbreaks are common in areas suffering from lack of access to safely 

managed drinking water, overcrowding, and poor sanitation (Nelson & Williams, 2007). 

Children under the age of five are highly susceptible to contracting diarrheal diseases such as 

shigellosis  (Prüss-Üstün, 2008; WHO, 2017b). This is particularly pertinent in the context of 

rural China, where many private wells that supply water to schools are built in close proximity 

to toilets, septic tanks, sewer ditches, lakes and ponds. This allows the exposure to high 
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concentrations of untreated sewage (T. Chen et al., 2014) cultivated with bacteria like Shigella 

to spread through fecal-oral pathways. According to Wagner and Lanoix (1958), there are 

numerous pathways for fecal-oral transmission (Figure 2.1) 

 

Figure 2.1 The classic F diagram adapted from Wagner & Lanoix (1958) illustrates the transmission of 
shigellosis from human feces to human host. *Fluids refer mainly to drinking water. Floods refer to 
surface water and ground water. Faces refer specifically to the mouth. 

As seen in Figure 2.1, some pathways are direct while some are indirect. For instance, 

the indirect transfer of shigellosis through fecal-oral pathways can lead to person-to-person 

transmission and contamination of food and water (Stauber & Casanova, 2015; T. Chen et al., 

2014). In addition, humans are not the only vectors of Shigella; houseflies and other 

anthropods also have the capability to transmit Shigella (WHO, 2005). T. Chen (2014) found 

that the two primary transmission routes for Shigella were person-to-person and person-to-

water-to-person. 

Treating shigellosis continues to be a challenge in the developing world. No vaccines 

exist and a successful preventative treatment is currently unavailable (Public Health Agency of 

Canada, 2011b; Tang et al., 2014). Moreover, several species of Shigella have acquired 

increasing resistance to antimicrobial drugs (Pazhani et al., 2005; Sack et al., 1997). It has been 
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found by several studies that persons identified as HIV positive experienced reoccurring 

Shigella infections despite the use of antimicrobial drugs (Baer et al., 1999; Kotloff et al., 1999; 

Mayer & Wanke, 1994; Sanchez et al., 2005). 

Compared to urban areas, rates of shigellosis may appear lower in rural areas of China. A 

recent study by Cheng et al. (2017) found that in Hefei province, the neighbouring province 

located west of Jiangsu, urban areas were more susceptible to shigellosis than rural areas due to 

higher population densities that may facilitate transmission. Wang et al. (2005) investigated 

shigellosis reporting amongst four rural townships in Zhengding County, Hebei province, and 

found that the incidence rate observed for shigellosis was almost 10 times higher than what 

was reported by the National Noticeable Infectious Disease Report System (which is 

equivalent to the current CDC).  Rural areas had more shigellosis infections, but cases were 

often underreported. 

Shigellosis can be prevented by interventions that provide safe water supply and 

sanitation. This includes ensuring people have access to a safely managed improved water 

source, safely managed improved sanitation facility, and hygiene education (Fuller et al., 2014; 

Jing Zhang et al., 2012; Prüss-Üstün et al., 2014; Qu et al., 2012; Waddington & Snilstveit, 

2009; Wolf et al., 2014).  A safely managed drinking water service, as previously defined, is  

“drinking water from an improved water source that is accessible on premises, available when 

needed, and free from fecal and priority chemical contamination”, while a safely managed 

sanitation facility is defined as, “improved facilities that are not shared with other households, 

and where excreta are safely disposed of in situ, or transported and treated offsite”. 
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Accessibility to the water source is based on the type of source on site. Examples of 

improved and unimproved water sources are summarized in Table 2.1.  Improved drinking 

water sources, such as piped water from a public tap, borehole, or a protected spring, are meant 

to provide safe water based on their construction and design (Wolf et al., 2014; WHO/UNICEF, 

2017). Despite water sources being classified as “improved”, some sources can provide water 

that is still unsafe for consumption (Bain et al., 2014, as cited in Prüss-Üstün et al., 2014).  

This is because the definition of “improved” water does not precisely predict microbial safety. 

The exposure of water to bacteria from improved water sources can result from open water 

storage, lack of water treatment before entry into the pipe system, and inconsistent usage of 

improved sources due to household water management (Shaheed et al., 2014).  Thus, it is 

important that these facilities are considered safely managed to prevent contamination and 

contact with human excreta.  

The fecal-oral transmission of Shigella can be effectively prevented by gaining access to a 

safely managed improved sanitation facility such as a toilet (can be supported by a piped sewer 

system or septic tank), which is a private facility separated from the kitchen or other living 

spaces. While a shared sanitation facility between two or more households can be accepted as 

an improved sanitation facility in certain situations (Rheinlände et al., 2015), a public toilet is 

not (WHO, 2012). According to the JMP, only access to a private sanitation facility would be 

considered having access to “improved” sanitation. Examples of improved and unimproved 

facilities are summarized in Table 2.1. The lack of a toilet facility is considered unimproved as 

it can lead to open defecation. Inappropriate disposal and lack of treatment of fecal matter can 

cause the contamination of water and create a breeding ground for waterborne diseases such as 

shigellosis.  
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  Table 2.1 Improved and Unimproved water sources and sanitation facilities (Adapted from JMP, 2015) 

 Improved Unimproved 

Water Source 

 Piped water into dwelling 

 Piped water to yard 

 Public tap or standpipe  

 Tubewell 

 Borehole  

 Protected dug well 

 Protected spring 

 Rainwater  

 Unprotected spring  

 Unprotected dug well  

 Cart with small tank/drum  

 Tanker-truck  

 Surface water  

 Bottled water  

Sanitation 

Facility 

 Flush toilet 

 Piped sewer system  

 Septic tank  

 Flush/pour flush to pit latrine  

 Ventilated improved pit latrine 

 Pit latrine with slab  

 Composting toilet   

 Flush/pour flush to elsewhere  

 Pit latrine without slab 

 Bucket 

 Hanging toilet or latrine 

 Shared sanitation  

 No facilities or bush or field 

  

The distribution of water can also influence the safety of drinking water, as some sources 

do not always provide water when needed.  Distribution can be categorized into networked 

systems and un-networked systems (Marks & Kellogg, 2015). Networked systems distribute 

water through pumped, gravity fed systems that deliver water to public kiosks, yard taps, and 

household taps. Un-networked sources provide water at the location of source. In a systematic 

review and meta-regression analysis by Wolf et al. (2014), it was found that providing 

continuous high quality water through robust water infrastructure such as pipes and sewer 

connections was associated with greater reductions of diarrhea compared to other sources, such 

as those based on non-continuous water supply that may require water storage. These types of 

water supply are prone to microbial risks through infiltration into non-pressurized tap 

distribution systems and recontamination during household storage.  

To reduce the contamination of water, regular usage of household water treatment (HWT) 

can be adopted to provide safe water for consumption (Luoto et al., 2014; Montgomery & 

Elimelech, 2007; Rosa & Clasen, 2010; Sobsey et al., 2008). Adopting HWT has considered as 
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one of the most cost effective interventions that advanced the MDGs (Clasen et al., 2007; 

C.Yang et al., 2009; Hutton & Haller, 2004). In rural China, the most common HWT is boiling 

water before consumption (H. Yang, 2012; Junfeng Zhang et al., 2010; Tao & Xin, 2014). 

However, WHO/UNICEF (2008) indicates that rural populations may not treat their water 

adequately. This claim requires further investigation as awareness of proper treatment methods 

vary by country as well as between the urban and rural population.  

2.3 Water and Sanitation in Rural China  

Before 1980, rural residents in China relied on untreated water from wells, rivers, and 

lakes. According to the China Health and Nutrition Survey (Jing Zhang & Xu, 2016), 70% of 

rural residents had access to only untreated water in 1989.  Open defecation amongst humans 

and livestock were common in villages, which led to poor sanitation conditions. 

Water and sanitation infrastructure in China has drastically improved in the last three 

decades as a result of increasing national level investment and regulatory action (Carlton et al., 

2012; Qiu 2011; Tao & Xin, 2014). Since 1980, China’s rural development projects have made 

access to improved water and sanitation a national priority (Carlton et al., 2012). The rural 

drinking water program from early 1980s have incurred a cost of $8.8 billion USD by 2002, 

and have covered 300 million people by 2008 (Jing Zhang & Xu, 2016). The program aimed to 

build water treatment plants to eliminate chemical and fecal contaminants and pipelines to 

provide rural residents with access to safe drinking water.  Every five years, the Ministry of 

Health, the Ministry of Construction, the Bureau of Environmental Protection and the Ministry 

of Agriculture would hold a steering meeting to set goals and strategies for improving water 
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and sanitation over the upcoming five year period. This created the Five Year Plan initiative, 

which has been effective since 1986.  

In 2012, China was one of the first developing countries to implement strict regulations 

on national drinking water quality for both urban and rural areas (Qu et al., 2012). In the more 

economically developed areas such as southern China, household purification units such as 

drinking water filters are increasingly being adopted in rural households (Ying, 2005, as cited 

in Yang & Wright, 2012).  However, access to safely managed water services in rural areas is 

still difficult due to the lack of technology, finances, and human resources (Waters & Kellogg, 

2015). Boiling water is still the most commonly used water treatment method used in rural 

households in China due to its convenience and affordability (H. Yang et al., 2012).  

According to the 2014 National Health and Family Planning Commission (as cited in 

Tong et al., 2016), a sanitation project called the “Toilet Revolution” was created to improve 

sanitation conditions in rural areas. Since 1995, access to toilets in rural regions increased from 

7.5% to 76.1% in 2014. Through a program called the “China Women’s Development 

program”, the Chinese government planned to ensure that 85% of the population in rural areas 

has access to toilets by 2020 (Tong et al., 2016). Currently, the most common toilet in rural 

China is the pit latrine. Pit latrines generally do not prevent stored feces from leaching into 

water sources and are not effective at reducing the spread of fecal contaminants in the 

environment (Tong et al., 2016). The reduction of fecal contaminants in the environment is 

important for reducing public health risks and future management strategies (Fuhrmeister et al., 

2015).  
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Despite ongoing plans set by the government, access to improved water and sanitation 

infrastructure still remains a barrier for the rural population in China. More than 95% of 

untreated wastewater in rural areas of China is still drained into rivers and lakes (Sun et al., 

2008, as cited in Yang & Wright, 2012). Small rural industries contribute significant water 

pollution, which includes agricultural runoff. Only 1% of villages and towns (approximately 

25,000) have wastewater treatment facilities despite significant water pollution from small 

rural industries (Jiang, 2015).  

H. Li (2016) conducted a meta-analysis of literature published since 1980 to determine 

effective water and sanitation interventions for controlling diarrheal diseases in rural China. 

Results showed that the four effective water and sanitation interventions for reducing diarrhea 

in rural China are:  (1) improving water supply, (2) building sanitary latrines, (3) implementing 

multiple interventions at once and (4) promoting health education and behaviour. Firstly, rural 

water supply has been established as a government goal in the 12th Five Year Plan (2010-2015), 

which continues to assist with the provision of tap water in rural areas. Secondly, the provision 

of toilets in rural areas has resulted in an increase in the proportion of rural population with 

access to hygienic and sanitary latrines; the rate rose from 7.5% in 1993 to 74.1% in 2012, 

which resulted in a decrease of fecal-oral transmitted diseases. Thirdly, in 2010, the Chinese 

government established an “Urban-Rural Environment Clean Action Plan” to implement 

multiple interventions at once, including providing piped water, constructing sanitary latrines, 

and constructing waste and water treatment facilities in rural areas. Lastly, the Chinese 

government has launched a series of educational activities to promote awareness of basic 

health and hygiene to rural residents. The study concludes that multiple water and sanitation 

interventions must take place concurrently to effectively reduce diarrhea.  
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M. Wang et al. (2008) claims that the control of rural water pollution is not entirely 

based on introducing new regulations, policy or acquiring more funding, but lies in revising the 

current development model used for rural areas. This includes establishing consistent 

monitoring through a centralized governing body and raising environmental awareness by 

engaging media and citizens in local government affairs. H. Li et al. (2016) has also suggested 

increasing population engagement to build a more comprehensive water and sanitation 

intervention system for preventing diarrhea.  

2.4 Theoretical Framework 

 The post-positivist paradigm is adopted in this thesis to explore several research 

objectives using observations and measurements. The ontology of this approach states that a 

truth exists, but will not exist independently of what individuals perceive. This truth can be 

altered by biases and mechanisms of the social and physical world, making all observations 

susceptible to fallacy. In health geography, post-positivism seeks to uncover causes, but 

typically the best that can be achieved is the finding of a strong association between factors.  

A post-positivist approach is suitable for this research for several reasons. Firstly, data 

used in a post-positivist approach is high in repeatability and covers both a wide and uniform 

representation of the population. This is especially beneficial to study the variation of 

infectious disease incidence across geographies that cover various regional populations. For 

instance, Y. Chen et al. (2015) utilized disease incidence data collected from the CDC to 

analyze shistosomiasis infections across counties in the province of Hubei, China from 2009 to 

2013.  This incidence data is representative of a population as it is monitored and collected on 

a constant basis (e.g. daily, weekly, monthly etc.) from each county. Its repeatability allows the 
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data to be aggregated and studied to assess spatial and temporal trends. Secondly, the post-

positivist approach aims to be objective and consistent in primary data collection by adopting a 

structured and controlled communication medium. Data can be easily sorted because they are 

often represented using simple categorized value sets such as a numerical value, a rating scale 

(e.g. 1-10) or a Likert scale (e.g. “Strongly Agree – Strongly Disagree”), and a Boolean 

response (“yes” or “no”). For instance, categorical data has been effectively used to determine 

the percentage of rural households that are using household water treatment in villages of 

China (Junfeng Zhang et al., 2010; H. Yang, 2012).  

In health geography, spatial analysis is often used as a post-positivist approach to study 

how location can affect the health of a population. Maantay (2007) used Geographic 

Information Systems (GIS) to study the association between air pollution and people who have 

been hospitalized for asthma in the Bronx area of New York City and how this association is 

influenced by location. They concluded that people living near sources of air pollution in the 

city were 66% more likely to be hospitalized for asthma, 33% more likely to be poor, and 13% 

more likely to be a minority, compared to people living outside the designated buffer zones.  

Spatial analysis can also be utilized to illustrate how a disease varies across time, space, 

and different spatial scales, which can reveal information on the extent of an outbreak, 

transmission pathways, and associated risk factors (Gondhalekar et al., 2013; Sarkar et al., 

2007). This helps to illustrate regional health disparities caused by environment related 

diseases, which has been poorly documented and mainly concealed at the national level in 

China (Carlton et al., 2012; Junfeng Zhang et al., 2010). Sarkar et al. (2007) employed spatial 

cluster analysis of household disease data to investigate a diarrheal outbreak in a small village 

in Southern India. They found that the disease was distributed uniformly over the village 
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without any clustering. By overlaying maps containing household information with the 

location of the water supply system, sewage channels, and areas with observed fecal 

contamination, it was found that water was distributed via pipes that were placed within soil 

contaminated with fecal matter. 

A concern of the post-positivist approach is that people only appear as “numbers on a 

map”. These numbers do not provide a personal account of how an individual’s lifestyle has 

changed as a result of exposure to waterborne diseases, or how rural areas cope with the lack of 

safely managed water and sanitation. Despite the fact that a post-positivist approach cannot be 

used to unveil answers to these questions, it can still be used to scope answers to important 

health issues that occur on a population level. For instance, information on the social 

determinants of health such as family income, level of education, social support networks, and 

cultural aspects of a population’s lifestyle can be collected through surveys and national 

surveys to gauge how socioeconomic conditions facilitate or hinder exposure to a disease on a 

population level (Arku et al., 2016; Ma et al., 2015; Nie et al., 2014; Odone et al., 2013; J. 

Zhao et al., 2016). This data can be used to identify knowledge gaps that may require 

application of other research approaches to understand health factors at the individual and 

community level. 

A significant drawback of a post-positivist approach is that studying social phenomena 

may not always draw valid conclusions. In general, it is difficult to measure behavior as it 

varies from person to person. Social behavior is part of a complex system that is often hard to 

predict and understand. For instance, based on previous observations in China, open defecation 

for children is common practice in both urban and rural areas, even when toilets and pit latrines 

are available and can be easily accessed. The limitations of this approach will be further 
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discussed in Chapter 5.  

2.5 Conceptual Framework  

A conceptual framework is a system of concepts that supports, verifies, and outlines the 

process of a research protocol. In this thesis, the conceptual framework is built on the 

relationships between socioeconomic determinants and environmental policy, which can act as 

facilitators and barriers to safely managed water and sanitation, as shown in Figure 2.2. This 

conceptual framework was developed to meet objective two of this thesis, which was to 

identify the facilitators and barriers to safely managed water and sanitation in the province of 

Jiangsu, China. This framework is further used to select the socioeconomic indicators required 

to explore objective four, which is the relationship between socioeconomic determinants and 

shigellosis incidence.  

 

          Figure 2.2 Proposed Conceptual Framework 

 

Facilitators are factors that assist with access to safely managed water and sanitation, 

while barriers refer to factors that hinder that access. This thesis hypothesizes that facilitators 

and barriers are may be linked to shigellosis incidence. This thesis proposes that facilitators 

and barriers within this framework can be further categorized into the following themes based 

on the social determinants of health framework: socioeconomic determinants and 
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environmental policy implementation (Table 2.2). These two categories define the underlying 

physical, social, and political structures that affect access to safely managed water and 

sanitation, which is linked to shigellosis incidence.  

Table 2.2 Facilitators and Barriers 

 
Socioeconomic Determinants  Environmental Policy  

Facilitators 

 High Income 

 Employment 

 Access to Health Services 

 High Education Attainment 

 High Rate of School Enrollment 

 Social Capital 

 

 Effective Rural Water Resource 
Management 

 High Political Integrity and 
Transparency 

 Regulated Waste Disposal 

Barriers 

 Low Income 

 Unemployment 

 Lack of Access to Health Services 

 Low Education Attainment 

 Low Rate of School Enrollment 

 Lack of Social Capital  
(i.e. left over children phenomenon) 

 Weak Rural Water Resource 
Management 

 Poor Political Integrity and 
Transparency 

 Poor/Lack of Waste Disposal 
Regulations 

  

It is recognized that exposure to diarrheal diseases such as shigellosis is influenced by 

social and economic factors (Adams et al., 2016; Bartram & Cairncross, 2010; Evans & 

Kantrowitz, 2002; Fotso & Kuate-Defo, 2005; Mock et al., 1993). For instance, it has been 

found that individuals of high socioeconomic status (SES) are better prevented from 

contracting diarrhea due to better access to water and sanitation, as opposed to those of low 

SES (Larson et al., 2007; Woldemicael et al., 2001). This is further emphasized in rural areas 

of China, where family and village income could dictate a family’s access to safely managed 

water and sanitation (C.Yang et al., 2009; Yi-Xin and Manderson et al., 2005). For instance, Q. 

Wang and Yang (2016) found that low-income households are particularly susceptible to water 

pollution due to poor living conditions and the inability to access or afford safe drinking water.  

Income may be inversely related to the time and distance taken to access the water source. 

For instance, wealthy households have private water connections in their homes while less 
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wealthy household may be required to collect water if they do not have access to piped water 

within their home. This may involve traveling long distances to the nearest water source. This 

is a barrier as it is a time consuming task that prevents the fetcher from doing other socially 

valuable tasks such as working and going to school (Dreibelbis et al., 2011; Graham et al., 

2016; Hemson, 2007; Sorenson et al., 2011).  

In developing counties, access to water and sanitation is closely linked with the level of 

education attainment, particularly amongst children (Ortiz-Correa et al., 2016).  Hunter et al. 

(2014) found a strong association between the provision of safely managed drinking water and 

reduced absenteeism in school. Therefore, it is important to consider how the lack of safely 

managed water and sanitation could lead to Shigella exposure, which could hinder children 

from attaining an education and maintaining school enrollment.   

Education attainment here is defined as the number of years of education a person 

chooses to complete, and has shown to result in huge influence on a child’s future income and 

welfare (Jing Zhang & Xu, 2016). The level of education is relative to water and sanitation 

access. For instance, the children of a family may be responsible for fetching water, which is a 

task that competes with schooling and may lead to an overall reduction in the amount of time 

the child spends in school.(Jing Zhang & Xu, 2016; Hemson, 2007; Nauges & Strand, 2014). 

In addition, children fending for themselves in the absence of adults may be responsible for 

non school-related responsibilities (e.g. such as caring for sick relatives) and thus may struggle 

with obtaining clean water and finding a place to defecate. These situations create a feedback 

loop that links lower education attainment with poor access to water and sanitation. When 

children are not educated on sanitation and hygiene, there is a higher likelihood for them to 

contract waterborne diseases since they are not aware of water consumption safety and 
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hygienic practices. 

Water access is not only related to children’s education attainment, but also that of teens. 

A study on water access and quality in rural China found that a significant decline in school 

enrollment is witnessed amongst girls from households lacking in access to sufficient water 

after they have reached menarche (Maimaiti & Siebert, 2009). Jing Zhang and Xu (2016) also 

found that an increase in access to treated water could greatly benefit girls in terms of school 

attainment and eliminate the gender disparity in school attainment in rural areas of China. 

Their study found that young people with access to treated water had better education than 

those without. Given access to treated water, they found that the completed grade of education 

amongst teens increased by 1.1 years on average.  

For certain individuals such as children and the elderly, gaining access to safely managed 

water and sanitation can be difficult. Many of them lack a social support network (Murphy et 

al., 2016; Lu et al., 2016; X. Zhao et al., 2014) that hinders them from accessing safely 

managed water and sanitation. This is often attributed to the migration of working members of 

the family to the city, leaving behind the elderly and children to fend for themselves (Biao, 

2007). This includes “left-behind children”, which is a cultural phenomenon where children are 

left behind in rural areas to live with their relatives. Often times, these children live with their 

grandparents that have little to no education, financial support, or the physical ability to look 

after themselves and the child (Lu et al., 2016).  

A study conducted by Wen & Lin (2012) found that the lack of social capital in the 

family of left-behind children have left the children with weak social ties to the people in their 

community and thus can negatively impact school engagement and performance. According to 
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the CPC town secretary in Wangji, approximately 1/3 of the households have left-behind 

children. While Murphy et al. (2016) have found that left-behind children is associated with 

barriers to health and wellbeing, it is unclear whether left-behind children are associated with a 

lower education attainment that contributes to lack of awareness of safely managed water or 

sanitation.  

Children can also be exposed to Shigella from oral contact with garbage and 

contaminated food scraps. Tang et al. (2014) claims that unregulated waste disposal is a factor 

that exacerbates Shigella transmissions in Jiangsu. Rego et al. (2005) also found that children 

exposed to garbage in their surrounding environment were four times more likely to contract 

and develop diarrhea. Children playing with garbage may contract diarrhea through oral 

contact due the lack of hygiene awareness and practices 

For sustainable and long-term prevention of diarrhea in rural China, water quality must 

be regulated and monitored. In China, environmental legislations are still undermined by the 

low bureaucratic status of environmental regulatory bodies. Rural water resource management 

in China is dependent on local water quality monitoring agencies which face difficulty 

enforcing the “polluter pays” principle and securing active participation and cooperation 

among other governmental agencies and industries (Jiang, 2015; Jahiel, 1998; M. Wang et al., 

2008). In addition to weak authoritative influence, environmental regulators also lack human 

and financial resources to implement effective water resource management strategies; this 

includes the lack of technical support, training resources, and funding to purchase new 

technologies (Xiaoman Yu et al., 2015).  

The socioeconomic determinants that act as facilitators and barriers presented in this 
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section lead the research direction of this thesis. It is important to understand how these factors 

affect access to safely managed water and sanitation. The next section will explore how these 

factors can be explored and utilized to meet the main research objectives of this thesis.  

2.6 Methodological Literature  

In order to study the spatial distribution of shigellosis and analyze the socioeconomic 

determinants that act as facilitators and barriers, quantitative methods are adopted. In health 

geography, quantitative methods involve numerical measurements and often consist of three 

stages: (1) mapping for visualization of data, (2) graphical and statistical analysis for 

exploratory spatial data analysis, and (3) modeling to explore relationships (Gatrell and Elliott, 

2015).  

2.6.1 Spatial Data Visualization  

Within a predefined geographic region, observations are often collected in the form of 

arbitrary geographic units also known as small areas (Lawson & Corberán-Vallet, 2016). These 

areal units can be in the form of postal zones, census tracts, or larger units such as 

municipalities, counties, province, or country. Health studies collect data on disease incidence 

often in the form of counts.  

Mapping the geographical distribution of an infectious disease is the first stage, and can 

allow visualization of the extent and magnitude of an infectious disease outbreak (Hay et al., 

2013). This can be done through choropleth maps that can be produced using standard desktop 

mapping and GIS software (Fotheringham, 2007; Fradelos et al., 2014). Choropleth maps are 

commonly used for illustrating the spatial distribution of aggregated disease data. They can 

effectively visualize aggregated disease counts across space (Pfeiffer, 2008). Despite the usage 
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of choropleth maps in this study, it should be noted that choropleth maps have three inherent 

limitations. First, large feature polygons of the study area tend to dominate and introduce bias 

in interpretation (Monmonier and De Blij, 1996). Second, the modifiable areal unit problem  

(MAUP) is evident as analysis may change with the shape and size of the aggregation unit 

(Openshaw, 1984). Last but not least, the highly skewed distribution of infectious disease 

count data is difficult to effectively visualize using a finite number of colour shade categories. 

However, 

2.6.2 Spatial Analysis of Infectious Disease 

Mapped data can be assessed using spatial and statistical analysis. According to Tobler 

(1970), “everything is related to everything else, but near things are more related than distant 

things”. In studies where data corresponds to areal units, the assumption of independence is not 

likely satisfied. According to O’Sullivan and Unwin (2010), a test for autocorrelation should 

always be carried out before any theories are developed for the patterns that are observed in 

map. Thus, Tests for spatial autocorrelation should be conducted to identify spatial dependence 

between disease incidences at different locations.  

The Global Moran’s I is a measure of overall spatial autocorrelation that has been 

commonly applied in infectious disease literature (Gu et al., 2017; Guo et al., 2017; Liao et al., 

2016; Y. Chen et al., 2015).  The Global Moran’s I is used to identify whether an infectious 

disease is clustered or dispersed. For example, both Gu et al. (2017) and Guo et al. (2017) 

adopted Global Moran’s I as a preliminary step of spatial analysis to investigate whether there 

is any spatial clustering of paratyphoid fevers and tuberculosis in the first place, such that they 

have been aggregated in a certain part of an area.  
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Since the Global Moran’s I can only provide a summary of spatial clustering and cannot 

identify local spatial dependence, the Anselin’s Local Indicator of Spatial Autocorrelation 

(LISA) and Getis Ord Gi* statistics can be employed to further investigate the local 

relationship between a feature and its neighbours (Cromely & McLafferty, 2011; Pffeifer et al., 

2008). Anselin (1995) stated the Local Moran’s I is proportional to the global statistic of 

spatial association and can make important inferences on the local instability as a measure of 

the global statistic. Getis and Ord (1992) recommended applying both Moran’s I and Getis Ord 

Gi* as they take different measure (global versus local) and may point to different drivers that 

contribute to the spatial distribution of disease.  

While both the Local Moran’s I and Getis Ord Gi* are local indicators of spatial 

association (LISA), these two statistics measure different concepts of spatial association 

(Anselin, 1995). These two measures are cluster detection methods; Anselin’s LISA is used to 

detect spatial clusters of similar and dissimilar values, while Getis Ord Gi is used to identify 

whether clusters are “hot spots” or “cold spots”. It is important to investigate spatial clustering 

in both time and space as clustering over time may be due to the infectiousness of the disease 

or environmental hazards (Marshall et al., 2001).   

Spatial autocorrelation methods such as the Global Moran’s I, Anselin’s local indicator 

of spatial autocorrelation (LISA), and Local Getis Ord Gi statistics have been commonly 

applied in conjunction to identify infectious disease clusters and hot spots. Y. Chen et al. (2015) 

used Global Moran’s I and Local Getis-Ord statistics to determine whether shistosomiasis 

cases were clustered, dispersed, or randomly distributed, in Hubei, China. Phung et al. (2015) 

used Anselin’s local indicators of spatial autocorrelation (LISA) in addition to Global Moran’s 

I to determine spatial clusters of diarrhea in the Mekong Delta area of Vietnam. Bayles and 
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Allan (2014) also used both Anselin’s LISA and Global Moran’s I to identify high incidence 

clusters of tick borne disease ehrlichiosis in Missouri, United States. Thus, both methods of 

spatial autocorrelation and cluster detection should be applied after initial data visualization to 

explore spatial patterns.  

The spatial distribution of shigellosis in China during years before 2011 has been widely 

studied using spatial analysis methods. The Global Moran’s I and LISA (Anselin and Getis 

Ord Gi) have been the most common indicators used to identify spatial clustering of shigellosis 

in Jiangsu (Ma et al., 2015; Nie et al., 2014; Tang et al., 2014). These indicators were used to 

detect spatial clustering of shigellosis cases at the county level. However, no studies have 

explored the spatial patterns of shigellosis incidence in Jiangsu after 2011.  

To a lesser extent, few studies have conducted spatial analysis to understand the 

association between shigellosis and socioeconomic determinants in China at a small area level. 

Both Nie et al. (2014) and Ma et al. (2015) studied the correlation of shigellosis incidence rates 

and socioeconomic factors using the spatial autocorrelation indicator Moran’s I. Nie et al. 

(2014) used Global Moran’s I for multivariate spatial autocorrelation while Ma et al. (2015) 

used Bivariate Moran’s I.  Both studies analyzed similar socioeconomic indicators such as the 

proportion of working industries (primary, secondary, tertiary), GDP, percentage of illiterate 

population in total population under aged 15, popularization rate of tap water in rural area, 

access to sanitation toilets in rural area at the county level. The Bivariate Moran’s I between 

shigellosis incidence and each variable was done by (1) establishing a corresponding weight 

matrix, followed by (2) a visual analysis to obtain information on the distribution, and (3) a 

measurement of the spatial correlation between shigellosis incidence rate and socioeconomic 

variables using the GeoDa software (Version 1.3.28).  However these studies did not explore 
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other rural indicators like the percentage of rural households and rural employment.  

2.6.3 Multivariate Regression Models for Small area Incidence  

Modeling small area incidence 

In health geography, relationships between various factors can be explored quantitatively 

through a model. To explore the relationship between shigellosis incidence and socioeconomic 

determinants, multivariate regression models can be adopted to identify significant factors 

associated with the infectious disease. To study the associations between exposure to infectious 

diseases and socioeconomic determinants on a population across space, studies have adopted 

spatial models, such as the Bayesian spatial  (Chitunhu & Musenge, 2016; Wilking et al., 2012) 

and spatiotemporal models (Arku et al., 2016; Ma et al., 2015; Waller et al., 2012) and 

geographically weighted regression models (GWR) (Delmelle et al., 2016); and non-spatial 

models, such as logistic regression models (Fuller et al., 2014; Roka et al., 2012; J. Zhao et al., 

2016) and generalized linear regression models such as Poisson (Weinberger et al., 2013; 

Thompson et al., 2015).  

At small area levels, disease incidence reported as positive discrete values per unit area 

makes disease incidence a count data variable based on the Poisson distribution (Cameron & 

Trivedi, 2013; Myers et al., 2010). The Poisson distribution has been used to describe the 

distribution of infectious disease counts (Qian et al., 2010; Kleinmen et al., 2004 as cited in 

Unkel et al., 2012) and is represented mathematically as 

 𝐹(𝑦𝑖|𝐱𝒊) = Pr =
𝑢𝑖

𝑦𝑖𝑒−𝑢𝑖

𝑦𝑖!
 , 𝑦𝑖 = 0,1,2, … (2.1) 

 E(yi|𝐱𝐢) = 𝑢𝑖  (2.2) 



 32 

 V(yi|𝐱𝐢) = 𝑢𝑖  (2.3) 

 

where a discrete random variable 𝑦𝑖  follows a probabilistic distribution with a mean and 

variance of 𝑢𝑖 . The essential criteria of the regression model is based on the following 

assumptions of the Poisson distribution: 

1. Homogeneity: the mean rate at which events occur is the same.  

2. Independence: one case does not affect the probability of a second case. 

3. Fixed time period.  

The Poisson distribution is notable for the first criterion, which is a restrictive property 

that requires the mean and variance to be the same. This criterion is rarely met when modeling 

infectious diseases. Criterion two is not met in non-spatial models because of the spatial 

clustering characteristic of infectious disease; the incidence of infectious disease will be similar 

for small areas close to each other. Lastly, criterion three is satisfied when the time is fixed in 

the model.  

Poisson Model 

 The Poisson distribution has been used to model the distribution of infectious diseases at 

small area level. Shekar et al. (2016) assumed malaria incidence in the small area of 

Kalaburagi, India (consisted of 139 spatial units - 138 villages and one city) followed a Poisson 

process. Azage et al (2015) applied the Poisson distribution to study childhood diarrhea 

incidence across the 33 districts of the Awi, East Gojjam, and West Gojjam areas of Amhara 

state Ethiopia. Jones et al. (2012) assumed a Poisson distribution for studying the distribution 

of tick-borne and mosquito-borne diseases across 95 counties within Tennessee, United States. 

All three studies performed their analysis using the SaTScan software, which “uses a Poisson-
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based model where the number of events in a geographical area is Poisson distributed” 

(SaTScan, 2005). 

In addition, Poisson regression models have been frequently applied to study small area 

infectious disease incidence across time and space. Yeshiwondim et al. (2009) used Poisson 

regression to model the spatiotemporal transmission of daily individual malaria incidence from 

2002 to 2006 using demographic indicators across 543 villages in East Shoa, central Ethiopia. 

Weinberger et al. (2013) applied a multivariate Poisson regression model to investigate the 

effects demographic characteristics including the degree of urbanization on annual incidence of 

non-typhoid Salmonella (NTS) reported per sub-district from 1996 to 2007 across 15 

administrative sub-districts in Israel. Thompson et al. (2015) developed a multivariate Poisson 

regression model to study the effects of climate conditions on monthly diarrhea incidence rate 

reported per district from 2005 to 2010 across the 24 districts of Ho Chi Minh City in Vietnam. 

In addition, Xu et al. (2016) applied Poisson regression to explore the relationship between 

temperature variability and daily incidence count per district of infectious child hand, foot, and 

mouth disease from 2012 to 2014 across six districts in Huainan city China.  Overall, Poisson 

regressions have been effectively applied to study small area incidence reported at various 

administrative levels.  

Two studies have used Poisson regression to investigate the relations between 

socioeconomic indicators and diarrhea. Simonsen et al., (2008) used longitudinal data in a 

Poisson regression model to predict incidence rate ratios of various diarrheal diseases 

(including Salmonella and Shigella) for different socioeconomic groups in Denmark, while 

Colombara et al. (2013) used hospital diarrhea surveillance records in a multivariate Poisson 

regression model to study the association between various socio-demographic determinants 
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and cholera burden among children under the age of five in rural Bangladesh. Wilking et al. 

(2012) used a spatial Bayesian Poisson regression model to study the association between 

rotavirus incidence and socio-demographic and economic variables in 447 neighbourhoods of 

Berlin, Germany. However, the association between socioeconomic determinants and 

infectious diseases in rural settings and how they vary across geography at small area levels are 

still less understood (Odone et al., 2013).  

Quasi-Poisson Model 

The application of the Poisson regression model to study spatial infectious disease 

patterns is limited due to the spatial clustering characteristic of infectious diseases, which leads 

to variability in the number of cases across geography. The Poisson model neglects 

overdispersion, which would underestimate the standard error and increases the probability of 

obtaining a false positive result (Hinde and Demétrio, 1998 as cited in Liao et al., 2016). Thus 

the assumption of the Poisson model, which states that the mean is equal to the variance, is 

rarely satisfied. This results in an extra-Poisson behaviour known as overdispersion, which is 

common amongst infectious disease counts as they have a variance above the expected value. 

This can be adjusted through a dispersion parameter that adjusts the regression variance or 

standard errors. Farrington et al. (1996) established the log-linear model regression model 

known as the quasi-Poisson model, which consists of a dispersion parameter that accounts for 

overdispersion, which is discussed in more detail in Chapter 4. The quasi-Poisson model by 

Farrington et al. is now used routinely by the Health Protection Agency to detect infectious 

disease outbreaks using laboratory based surveillance data in the United Kingdom (Unkel et al., 

2012). 

Studies have referenced Farrington’s quasi-Poisson regression model when dealing with 
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infectious disease counts. Green et al. (2006) accounted for overdispersion by adjusting the 

variance via a dispersion parameter when modeling the association between socio-

demographic, landscape characteristics and campylobacteriosis (an infectious foodborne 

disease that is characterized by bloody diarrhea) across 498 neighbourhoods in the Canadian 

province of Manitoba from 1996 to 2004. Yupiana et al. (2010) also applied a dispersion 

parameter to the variance when studying the risk factors of poultry outbreaks and H5N1 avian 

influenza at the small area level 25 districts of West Java Province in Indonesia. Y. Li et al. 

(2013) applied a dispersion parameter to the standard errors of the regression coefficients when 

modeling the association between risk factors and overdispersed human brucellosis incidence 

at the province level for four provinces with high incidence. In summary, the application of the 

dispersion parameter to the variance or standard deviation has been very commonly adopted 

when applying the quasi-Poisson model.  

Negative binomial model 

Overdispersion can also be adjusted via a negative binomial model, which according to 

Held et al (2005), is a more flexible model that allows for “overdispersion caused by the 

influence of unobserved covariates that affect the disease incidence”.  The negative binomial 

model is also known as the “gamma-Poisson” model, as it assumes that the number if events 

occur follows a Poisson distribution, but the mean number of events is not the same. Instead, 

the mean number of events that occur follows a gamma distribution in the population (Land et 

al., 1996).  The negative binomial is advantageous due to its ability to model count data with 

varying degrees of overdispersion (Lloyd-Smth, 2007).   

The application of negative binomial regression to adjust for overdispersion at small area 

incidence has been explored in the following three studies. A study by Coelho et al. (2016) 
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adopted a negative binomial regression model after observing overdispersion using a Poisson 

regression to model Zika and dengue incidence (aggregated by age classes) in Rio De Janeiro, 

Brazil. In addition, Fornace et al. (2016) adopted the negative binomial model at the village 

level (n=405) to study the association between landscape factors and spatial patterns of 

Plasmodium knowlesi, the main cause of human malaria in Malaysian Borneo. Both studies 

started with the fitting of the Poisson model and detection for overdispersion prior to fitting 

using the negative binomial model. 

Last but not least, Hughes and Gorton (2015) experimented with three GLM (Poisson, 

Zero-Inflated Poisson, and Negative Binomial) and was the only study to experiment with all 

three models for small area incidence. Their study explored the association between the 

Multiple Index of Deprivation and incidence of 21 infectious diseases in small areas of North 

East England from 2007 to 2011. The best fitting model was selected from a hierarchical 

approach that started with 1) fit of a Poisson model, 2) fit of zero-inflated Poisson (ZIP) model, 

3) fit of negative binomial model, and 4) zero-inflated negative binomial model. From their 

experiments, the best fitting model was selected for each disease by assessing the Akaike’s 

Information Criteria (AIC) where an AIC > 2.5 was considered a significant improvement in 

model fit. Negative Binomial model was found to be the suitable model for modeling 13 out of 

the 21 infectious diseases. Of the remaining eight diseases, three were modeled using the 

Poisson model while five were modeled using the zero-inflated Poisson model.  

Bayesian spatial models 

When working with spatial data, it is critical to incorporate the spatial structure of the 

data into the regression model. Recent literature has shown that a geographic weighted 

regression (GWR) model can also be applied to Poisson and negative binomial so that spatial 
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relationships between variables over space are considered. A GWR is a local regression 

method that identifies the non-stationary relationships of variables for each feature via a 

moving window or kernel (Nakaya et al. 2005). For each feature in a dataset, a different 

regression model with different coefficients is fitted into the dataset.   

  Weisent et al. (2012) used a Poisson and negative binomial GWR to study how 

socioeconomic factors can be used to determine the risk of campylobacteriosis, a 

gastroenteritis disease. Delmelle et al. (2016) also used a GWR model to study the associations 

between socioeconomic and environmental determinants and dengue fever. However, in order 

to apply geographic weighted regression, there must be sufficient geocoded data so that spatial 

weights can be computed and applied appropriately. In both studies conducted by Weisent et al. 

(2012) and Delmelle et al. (2016), the number of cases were 3,756 and 9,287, respectively, and 

were analyzed at the neighbourhood level. Due to the small sample size used in this thesis, the 

GWR method was not considered a viable option. 

Another method to incorporate spatial relationships between neighbouring areal units is 

through Bayesian methods, which can be combined with generalized linear models. Bayesian 

methods, unlike frequentist methods, are based on the idea that only one form of uncertainty 

exists and that this uncertainty can be described by a probability distribution. The uncertainty 

prior to the introduction of new information is described by a prior distribution.  The process 

of making an inference using this model consists of combining the prior and current data model 

to derive the posterior distribution, which provides information on the hypothesis. According 

to Blangiardo et al. (2013), there are two advantages of this approach. Firstly, this method will 

be inclusive of previous information on the model (prior distribution).  Secondly, the 
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likelihood that a predictor variable will exceed its threshold under certain conditions can be 

easily derived from the posterior distribution and can be interpreted in a relative risk context, 

as opposed to a p-value used in the frequentist approach.  

The Bayesian generalized linear regression model is effective for small area disease 

modeling because it acknowledges the spatial effects between areas. The Bayesian model 

consists of a spatial unstructured residual that accounts for the clustering nature of infectious 

diseases, and a spatial structured random residual that accounts for spatial dependence between 

areas. This has been selected as a model of choice by several studies that focused on small 

areas and the association between socioeconomic variables and infectious disease incidence. 

For instance, Wilking et al. (2012) applied a spatial Bayesian Poisson regression model to 

study rotavirus incidence = across 447 neighbourhoods in Berlin, Germany from 2007 to 2009. 

Chitunhu and Musenge (2016) applied a similar Bayesian Poisson spatial model to study 

malaria incidence in 140 areal clusters across Malawi in 2012, while Wijayanti et al. (2016) 

applied a Bayesian Poisson model to study dengue incidence across 329 villages in Java, 

Indonesia. This model has also been adopted similarly by Kara-giannis-Voules et al. (2013) 

and Bessell et al. (2010) to study small area incidence. Overall, the Bayesian Poisson model 

has been the most common Bayesian model used to account for spatial effects.  

However, very few studies have adopted a Bayesian negative binomial model despite the 

common occurrence of overdispersion in infectious disease incidence. The only study found in 

this literature search that adopted a Bayesian spatial-temporal negative binomial model was 

Liao et al. (2016). They adopted both a Bayesian Poisson spatio-temporal model and a 

Bayesian negative binomial model, which consisted of an additional time parameter, to study 

hand, foot, and mouth disease incidence across the 135 counties in Sichuan province of China 
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from 2009 to 2013. They found that the Poisson model estimated a wider 95% coverage 

interval for posterior means estimation of the parameters and was extremely sensitive to 

changes in the hyper criteria of the priors used to model the random structured and 

unstructured effects. In general, the authors claim that the Bayes spatio-temporal model is more 

flexible than maximum likelihood estimation methods, which is sensitive to population size 

and spatial effects. In addition, using Bayesian methods allows the consideration of spatial 

trends between geographically close areas and prior disease rates, which is beneficial for small 

samples of spatially correlated data. The adoption of a Bayesian negative binomial model to 

study overdispersed incidence has been proven to be better than the Poisson model, but should 

be further explored to understand the extent of its application.  

Model Limitations 

Using negative binomial regression on small sample sizes may underestimate the degree 

of overdispersion in the data, as reported in previous studies (Lloyd-Smith, 2007; Saha & Paul, 

2005). According to Lolyd-Smith (2007), the sample sizes of datasets should be N=100 or 

more to allow accurate maximum likelihood estimates of the dispersion parameter, while a 

sample size of N=30 will result in minimal bias with a sampling distribution that tends to skew 

towards to high values. A sample size N=10 would be the least feasible as it would yield 

unreliable estimates. In this thesis, the number of counties of interest is greater than N=30, 

which makes this model viable.  

According to Marshall et al. (1991), there are several issues with the statistical analysis 

of spatial disease patterns. In particular, this occurs during the stage of modeling and 

interpreting the association between the predictor and response variables. Firstly, there is the 



 40 

issue of ecological fallacy. Coefficient parameters in the regression model can change 

drastically based on the geographic scale of aggregation, thus coefficients are subject to spatial 

bias. Secondly, the assumption of spatial independence is often challenged due to the proximity 

of small areas next to each other. During the fitting of a regression model, this may result in a 

spatial correlation between residuals. Thus, spatial autocorrelation should be tested and 

considered when interpreting the results of the regression model.  

Despite these limitations, the value of assessing the association between factors for 

spatial based studies lies in understanding the impact of processes and structures of social 

organizations in determining health outcomes. The availability of surveillance data means they 

can be quickly used and are easily accessible, in particular for research on small areas as 

surveillance data is often available at various administrative divisions (e.g. census tracts). In 

addition, applying spatial or non-spatial regression is effective at identifying the effects 

underlying social and economic factors of a particular space. From a health service planning 

perspective, spatial analysis is useful for identifying areas of poor health.  

In summary, due to the clustering nature of infectious disease incidence across 

geography, an overdispersed Poisson regression model such as the quasi-Poisson or the 

negative binomial model should be adopted.  It is important to acknowledge the limitations of 

non-spatial regression models due to the spatial autocorrelation of infectious disease data. Thus, 

a spatial Bayesian model should be adopted to incorporate the spatial relationships between 

areas. There have only been a few studies that have adopted a non-spatial or spatial negative 

binomial regression model to study the association between socioeconomic factors and 

infectious disease incidence at a small area level. This thesis will contribute to existing 
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literature on the application of negative binomial regression models for modeling small area 

incidence across time and space. This contribution will be further discussed in Chapter 5. 

2.7 Chapter Summary  

This chapter examined the theoretical, conceptual, and methodological frameworks that 

were used to construct this thesis. The disease characteristics of shigellosis and  prevention of 

shigellosis through  water supply and sanitation were described. In addition, a review of water 

and sanitation in rural China was provided. Next, the post-positivist theory and the facilitators 

and barriers to safely managed water and sanitation, which falls within the social determinants 

of health framework, were described and examined in the context of this thesis. Lastly, 

quantitative methodological literature on spatial analysis and regression analyses for infectious 

diseases were examined and reviewed. This literature review identified (1) the socioeconomic 

determinants that act as facilitators and barriers to safely managed water and sanitation (2) 

spatial approaches that can be used to identify spatiotemporal disease patterns and (3) 

quantitative approaches that can be applied to study the association between socioeconomic 

determinants and shigellosis incidence. Facilitators and barriers identified through the 

conceptual framework set the basis for the data used in quantitative analysis to satisfy objective 

four. The next chapter will discuss how quantitative approaches are employed to meet the 

objectives of this thesis. 
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3 CHAPTER 3: METHODOLOGY  

3.1 Introduction 

This chapter describes the methodology used to address the objectives introduced in chapter 1: 

1) To examine spatiotemporal variation of shigellosis incidence across Jiangsu province 

2) To identify the facilitators and barriers to safely managed water and sanitation 

3) To investigate the association between socioeconomic determinants and shigellosis 

incidence in rural areas of Jiangsu province  

As summarized in Chapter 2, quantitative methods based on the post-positivist approach have 

been adopted to address all three objectives in this thesis. The facilitators and barriers 

identified in Chapter 2 were also use to set the basis for quantitative analysis of socioeconomic 

determinants and shigellosis incidence.  These methods are described in the following sections 

of this chapter.  

3.2 Study Area 

Jiangsu is a province in eastern China located between 116°18’ -121°57’ E and 30°45’ – 

35°20’ N with an estimated 2014 population of 79.8 million people and an area of 107 200 km2 

(Jiangsu Statistical Yearbook, 2015). Jiangsu is one of the densest provinces in China with a 

population density of 742 people per km2. It was chosen the study area of interest as it has been 

previously identified as a province with regions of high shigellosis morbidity (Tang et al., 

2014). The regions in Jiangsu province are organized into thirteen prefecture level cities as 

shown in Figure 3.1. At the county level1, these cities are further divided into 96 administrative 

divisions that correspond to 21 county cities (i.e. the merge of a “city” and a “county” into one 

                                                      
1 The county level refers to the third administrative division after prefecture (second) and province (first).  
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unified administrative division under a prefecture), 20 counties, and 55 districts (i.e. 

subdivisions of a municipality or prefecture level city).  Counties and districts are the finest 

scale at which the province reports its socioeconomic and demographic information.  

 

Figure 3.1 Thirteen prefecture level cities in Jiangsu province with their county and district 
boundaries 

 

Jiangsu has distinct seasons characterized by warm climate and moderate rainfall. The 

climate is influenced by subtropical monsoons. The topography of Jiangsu consists of low and 

flat terrains surrounded by lakes and rivers. As part of the Yangtze River Delta, the Yangtze 

River flows through the province from west to east for more than 400 kilometers.  

To observe and understand water and sanitation conditions in the field of a rural county 

IN Jiangsu, a field visit to two townships in Suining County, Wangji and Qingan, was 
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conducted on August 16. 2017.  Suining (33.9 N, 117.9 E) is a rural county within Xuzhou city 

located in northwestern Jiangsu. It has a total 2014 population of 1.44 million people and a 

land area of 1 767 km2. Suining was previously identified as a county with relatively low 

access to improved water sources and sanitation facilities (Tang et al, 2014). According to the 

township CPC secretary (magistrate), the township of Wangji mainly depended on hand pump 

wells for drinking water in the past (Figure 3.2). Today, many households have a jet pump well, 

which draws water from 20 m under the ground (Figure 3.3 a). A jet pump is powered by 

electricity and consists of a centrifugal pump and an injector. The injector creates a vacuum, 

which draws water from a nearby well and discharges the water via a faucet (Figure 3.3 b).  

               

                                 Figure 3.2 One of the few hand pumps left in Wangji Township 
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(a)    (b) 

        Figure 3.3 (a) Jet pump draws water from underground (b) Discharge faucet   

 

 Wangji was in the process of installing a centralized tap water system that will transport water 

from the county of Suining. Since 2014, 56% of residents have access to tap water (Suining 

Statistics Bureau, 2016).  

In Wangji, each household had a home toilet facility outside of their home (Figure 3.4 a). 

The typical toilet was a pour flush pit latrine (Figure 3.4 b). Outside the toilet facility, human 

wastes from the pit latrine would be compressed into manure and later used as a fertilizer 

(Figure 3.4 c). Human feces were not treated prior to being converted into manure. When 

asked why a flush toilet was not employed, the township secretary said flush toilets were too 

costly to be installed.  Aside from an outdoor toilet, wealthier households also had a shower 

facility indoors that was powered by solar energy.  
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Figure 3.4 (a) Typical location of sanitation facility (b) Pour flush using buck pit latrine (c) Manure from 
human feces   

Approximately 20 km East of Wangji is the township of Qingan. The township of Qingan has 

already adopted a centralized tap water system. Since 2014, 99% of residents in Qingan have 

access to tap water (Suining Statistics Bureau, 2016).  

 

                                   

                                  Figure 3.5 Qingan reservoir 

While drinking water was still sourced from groundwater, a portion of the drinking water 

has been sourced from the surface water stored in the Qingan Reservoir since 2015 (Figure 3.5). 

The local government has prohibited residents from drinking water from the reservoir or using 

it for recreational activities.  
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3.3 Data 

3.3.1 Data Sources 

The facilitators and barriers to safely managed water and sanitation identified through the 

conceptual framework in Chapter 2 will set the basis for the data used in quantitative analysis 

to satisfy objective four, which aims to investigate the association between socioeconomic 

determinants and shigellosis incidence in rural areas of Jiangsu province. Due to data 

availability, the socioeconomic determinants that will be investigated in this thesis are 

highlighted in Table 3.1. 

          Table 3.1 Socioeconomic determinants of health framework 

Socioeconomic 
Determinants  

Environmental Policy  

 Income 

 Employment 

 Access to Health 
Services 

 Education Attainment 

 School Enrollment 

 Social Capital 
 

 Effective Rural Water 
Resource 
Management 

 High Political Integrity 
and Transparency 

 Regulated Waste 
Disposal 

 

To collect data on the highlighted factors, this research employed four sources of data, namely 

(1) number of shigellosis cases at county and district level, (2) socioeconomic datasets from the 

2011-2014 provincial statistical yearbooks and county statistical yearbooks, and (3) data on 

water and sanitation conditions from the 2011-2014 county level statistical yearbooks and (4) 

field observations of rural water and sanitation facilities.  
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Spatial Data Sources 

Cartographic boundary files of cities, counties, and districts in Jiangsu were obtained 

from the School of Geographic and Oceanic Sciences at Nanjing University. Cartographic 

information on geographic features such as the spatial location and boundaries of primary 

rivers, secondary rivers, and water bodies were also obtained.   

Shigellosis and Socioeconomic Factors Data Sources 

Shigellosis data was collected from the Jiangsu Provincial Center for Disease Control 

and Prevention (CDC). The CDC mandates clinical and hospital doctors to report all 

shigellosis cases. All cases of shigellosis are diagnosed in the laboratory by the extraction of 

the Shigella strain from the stool specimen or rectal swab. The collected dataset covered the 

period from 2011 to 2015. The number of new shigellosis cases per year (incidence) and the 

number of new cases per 100, 000 persons (incidence rate) were available in aggregated count 

per year for every prefecture level city, city county, county, and district. Age and gender were 

not disclosed in the dataset. This poses two limitations: (1) these factors were not considered in 

the analysis and (2) available disease data was not standardized by age or gender.  

Socioeconomic data was collected from the provincial Jiangsu Statistical Yearbook and 

city statistical yearbooks. Data on demographic and socioeconomic indicators for each city, 

city county, and county were collected from the provincial statistical yearbook. Due to missing 

and overlapping data in the provincial statistical yearbook, additional data was collected from 

individual city statistical yearbooks to cover additional socioeconomic indicators and 

information not covered in the provincial statistical yearbook. Data on rural households and 

rural income was obtained from the city level statistical yearbooks.  
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Collected socioeconomic data was available as aggregated counts per city, city county, or 

county, as shown in Table 3.2. In this context, the spatial unit of cities only represents the 

socioeconomic data on city districts, since data on each individual district was not available. In 

addition, socioeconomic data for Nanjing was collected at the prefecture city level since data 

was not available for its city districts. Despite these discrepancies, the aggregated form of the 

collected data is still representative of socioeconomic conditions in those regions and can 

reasonably illustrate its spatial distribution. Each socioeconomic indicator is used as a predictor 

variable for the regression analysis that explores the association between socioeconomic 

determinants and shigellosis incidence. 

Selected demographic indicators included permanent population, registered population, 

population density, total households by year-end, and total rural households. These indicators 

were included because they provide information on the general population (used to calculate 

the proportion of rural households), rural population, and the number of households, which will 

be used to determine the proportion of the rural population.  

Socioeconomic indicators were selected based on the key socioeconomic determinants of 

health (Public Health Agency of Canada, 2011a) hypothesized to act as facilitators and barriers 

to safely managed water and sanitation. This included income (rural income per capita), rural 

employment (rural employed persons), and access to health care (number of health institutions 

and beds). While data on the level of education amongst the population was unavailable in the 

provincial statistical yearbooks, data on school enrollment was available. However this data 

was not available in a format that allowed meaningful comparisons between counties to be 

made. Thus, it was omitted from the analysis.  
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   Table 3.2. Socioeconomic, demographic, and water and sanitation data   

Data 
 Definition  Year Reported Unit for 

County 

Registered 

Population 

Number of people registered to live during a 

certain time within a given area.  
2011-2014 Count  

Permanent 

Population 

Number of people permanently living within 
a given area. Represents total population in 

a given area.  
2011-2014 Count  

Population Density 
Number of persons per city 
county/county/district. 

2011-2014 Persons/ Km2 

Total Households 
by Year End 

Total number of households in counties by 
the end of the year.  

2011-2014 Count  

Total Rural 
Households 

Total number of households in townships 
under the jurisdiction of counties. 
 

2011-2014 Count  

Rural Employed 
Persons 

Total rural labour force during a certain 
period of time within a county that receive 
remuneration.  

2011-2014 Count  

Rural Income per 
Capita  

Total income of permanent residents living 
in rural households after the deduction of all 
expenses including tax. 
 

2011-2014 Yuan/Capita  

No. of Health 
Institutions  

Number of hospitals (city and county), 
neighbourhood medical services stations, 
clinics (urban and rural), first aid centres, 
disease prevention and control centres, and 
health education centres.  

2011-2014 Count 

No. of Beds in 

Health Institutions 

Number of beds available in applicable 

health institutions listed above.  
2011-2014 Count 

Households with 
access to tap water  

Number of households in township with 
access to piped water 

2011-2014 Count 

Private vs Public 
Water Access  

Number of households with access to 1) 
private water source and 2) shared water 

source, respectively.  
2011-2013 

Count (out of 100 
samples) 

Type of sanitation 

facilities   

Toilet and shower and unimproved 
sanitation: no sanitation facility, publicly 

shared toilet) 
2011-2013 

Count (out of 100 

samples) 

 

According to the 2014 Jiangsu Statistical Yearbook, the Rural Population indicator refers 

to the population not residing in cities or towns, which is calculated as part of the urban 

population. Rural Households refer to households residing at a rural address under the 

township administration for more than one year. Families that are part of a rural household but 
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have moved away are not included in the calculation. This indicator was collected to gauge the 

number of people living in rural areas. Rural Employed Persons refer to persons that receive 

remuneration for their profession. This includes persons who work as employees, employers, 

self-employed workers, and teachers for religious services. This indicator provides information 

on the total rural labour force of China.  Rural Income is reported from two indicators: Net 

Rural Income and Rural Disposable Income. Net income refers to the total income of the rural 

household after subtracting all expenses including taxes and household operation costs. Rural 

Disposal Income refers to the income at the disposal of the rural person, whether for personal 

consumption, expenditure, or savings. Health institutions include hospitals (city and county), 

neighbourhood medical services stations, clinics (urban and rural), first aid centres, disease 

prevention and control centres, and health education centres.  

3.3.2 Data Preprocessing and Geocoding  

Spatial Visualization 

Initial geospatial data exploration and preprocessing were performed in Microsoft Excel 

(Vers. 14.5.5) and ArcMap (Vers. 10.4.1). Shigellosis incidence rates for each year (n=96) 

from 2011 to 2015 were geocoded to their respective counties (n=41) and districts (n=55) 

based on division codes. Rates that were not geocoded were either missing or duplicates. 

Missing cases and rates were not left blank; instead, any missing data was estimated using 

multiple missing data imputation. 

Multivariate Generalized Linear Regression Variables  

Data on socioeconomic indicators and water and sanitation indicators were preprocessed 

in Excel and RStudio (Vers.1.0.136). Each socioeconomic indicator was geocoded to its 

smallest available administrative division, such as city, city-county, county, or district by 
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administrative division codes (Table 3.3). This discrepancy in geographic scale was caused by 

the lack of available data on individual counties and districts within certain cities. Thus, certain 

districts were aggregated to the city level due the lack of data available for individual districts. 

In order to ensure the rate of shigellosis is accurately portrayed per geographic area, an offset 

value equal to the population of each geographic area was incorporated. 

Table 3.3 Sample size of socioeconomic indicators by administrative division type 

Year Total (N) City(n) City-
county(n) 

County(n) District(n) 

2011 60 13 20 21 6 
2012 59 13 20 21 5 
2013 58 13 20 21 4 
2014 57 13 20 21 3 

 

For every city, city-county, and county in the dataset, shigellosis incidence rate was matched 

with the data on each socioeconomic indicator. This resulted in N = 60 (2011), N=59 (2012), 

N=58 (2013), and N= 57 (2014) for the multivariate generalized linear regression analysis. For 

the Bayesian spatial model, values were taken by averaging the dataset of each variable from 

all four years.  

Variable Unit Conversions 

Unit conversions were performed on socioeconomic and water and sanitation data so that 

data trends can be more effectively understood and illustrated during analysis. To analyze the 

distribution of the rural population, the percentage of rural households was calculated by 

dividing total rural households from total households by year-end. In addition, the percentage 

of rural employed was calculated by dividing the total number of persons employed by the 

permanent population. For comparison purposes, data on healthcare was converted to per 

capita values. The number of health institutions was converted to number of health institutions 

per 10,000 people by dividing the variable by its corresponding permanent population then 
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multiplying the number by 10,000. The number of hospital beds was converted to number of 

hospital beds per 1,000 people by dividing the variable by its corresponding permanent 

population then multiplying the number by 1,000.  Missing data was computed using multiple 

missing data imputation. Tap water access, which was initially reported as a count, was 

converted to a rate by dividing the number of households with access to tap water from the 

total number of households in each respective town. Private and shared water access, which 

was presented as a rate (count per 100 households) respectively, was converted to a count 

based on the total number of households. This was calculated by multiplying the rate by total 

number of households. Similarly, this conversion was also done for improved and unimproved 

sanitation facilities, which were initially reported as rates. Due to missing data, water access 

and sanitation facilities in 2014 were omitted from the analysis.  

3.3.3 Missing Data Imputation  

Missing values for predictor variables was dealt based on the multiple imputation 

strategy. This strategy was selected because it has been recognized by Haan (2013) for 

producing more accurate and consistent results in social science studies. An advantage of the 

multiple imputation method over single imputation methods is that it retains a level of 

uncertainty, which helps to preserve the integrity and accuracy of the standard errors and 

model fit coefficient estimates.  

This method was applied to both predictor and response variable data sets with missing 

values. Given a data set with missing cases, five random draws were taken from the group of 

valid cases in the data set. This was used to create a data set of five random values. From this 

data set, an average was taken and adopted as the value for the missing data point (Table 3.4).  



 54 

Table 3.4 Missing Data 

Type of Data Number of 
missing cases 

% Total Notes 

Shigellosis incidence 17 3.5% Total number of missing cases 
out of 2011-2014 datasets 

Socioeconomic data 2 3.4% Rural Income for 2013 dataset  

 

The method of multiple imputation also has several disadvantages. It may be 

computational intensive and time consuming to apply multiple imputation for large data sets. 

Every time when multiple imputation is computed, different estimates are produced, which 

produces a different result when averaged every time. Since the data sets used in this study 

were relatively small, these limitations were avoided.  

3.4 Generalized Linear Model Regression 

3.4.1 Analysis Workflow 

The flow of the non-spatial generalized linear regression analysis is illustrated in Figure 

3.6. Data on shigellosis incidence and socioeconomic data will be preprocessed and geocoded 

based on their administrative division codes. After, an exploratory analysis on regression 

variables will be conducted. The Poisson regression model will be used to study the association 

between the predictors being the socioeconomic indicators and the response, being shigellosis 

incidence. Overdispersion within the data will be tested via a Goodness-Of-Fit test. If 

overdispersion is evident, quasi-Poisson and negative binomial models will be considered and 

tested to determine which model is the most suitable by conducting two tests, namely (1) 

goodness-of-fit test and (2) mean-variance plots. If the negative binomial model is chosen as 

the most suitable model, then a negative binomial Bayesian spatial model will be adopted. 

Alternatively, if the quasi-Poisson model was found to avail a better fit, then a quasi-Poisson 
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Bayesian spatial model would be adopted. Model outputs between the non-spatial and spatial 

models are compared. Moreover, if overdispersion was not evident, then a Poisson regression 

model would be adopted and a Poisson Bayesian spatial model would be chosen.  
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Figure 3.6 Workflow of generalized linear regression analysis 
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3.4.2 Generalized Linear Regression: Poisson Model 

To study the association between socioeconomic determinants and shigellosis incidence, 

a generalized linear regression model was adopted. Generalized linear models (GLMs) refer to 

a group of linear regression models that are used to study a response variable reported in the 

form of a count, binary value, or proportion (Hilbe, 1994). Such response variables follow a 

distribution part of the exponential family, which includes many distributions such as the 

normal, binomial, gamma, Poisson, negative binomial, Weibull, and more.  

An exploratory analysis was conducted prior to the regression to assess whether each 

dataset satisfied the conditions of a generalized linear regression. Histograms were created to 

understand the distribution of the response variable.  Scatterplots were created to gauge 

linearity and patterns between each independent predictor and the response variable. 

Collinearity between independent variables was assessed using a Spearman ranked 

correlogram to identify whether there was any linear relationship between independent 

variables as this may affect the independent impact of each predictor variable on the response. 

The response variable in a Poisson regression model follows a Poisson distribution. At 

small area levels, the distribution of infectious disease counts can be assumed to follow a 

Poisson distribution (Herrador et al., 2015; Shekhar et al, 2017). In this thesis, shigellosis 

incidence is presented as a count per county. Histograms of shigellosis incidence created for 

each year (Figure 3.7) shows that the incidence is highly skewed. Very few counties have high 

shigellosis incidence (greater than 400) while the majority of counties have a shigellosis 

incidence count less than 200. Given this condition, the GLM method based on the Poisson 

distribution was adopted.  
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Figure 3.7 Histograms for shigellosis counts in Jiangsu province 

The count variable is often assumed to follow a Poisson distribution (Qian, 2010), where a 

discrete random variable 𝑦𝑖 follows a probabilistic distribution with a mean and variance of 𝑢𝑖: 

 𝐹(𝑦𝑖|𝐱𝒊) = Pr =
𝑢𝑖

𝑦𝑖𝑒−𝑢𝑖

𝑦𝑖!
 , 𝑦𝑖 = 0,1,2, … (3.1) 

The mean and variance of the function are the same as shown below:  

 E(yi|𝐱𝐢) = 𝑢𝑖  (3.2) 

 V(yi|𝐱𝐢) = 𝑢𝑖  (3.3) 
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The Poisson distribution is part of an exponential family with a log link function f(u) = log (u). 

This link function connects the mean parameter ui  to a function of predictors 𝐱𝒊 , which is 

expressed as   

 log (E[yi|xi]) = log (ui) = 𝐱𝒊
′𝛽 (3.4) 

 

The above function indicates that the logarithmic expected number of shigellosis incidents 𝑦𝑖 

can be modeled by a GLM of predictors 𝐱𝒊 with coefficients 𝛽. Therefore, the log-likelihood 

function of a Poisson regression for a rate is defined by 

 log [E(yi)] = log(𝑛𝑖) + 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ 𝛽𝑘𝑥𝑘   𝑖 = 1, … , 𝑛 (3.5) 

 

where shigellosis incidence is the expected count [E(yi)] for county i modeled as a function of 

a series of 𝛽 explanatory variable and an offset variable log(ni),  which adjusts count based on 

an exposure designated by the population size of county i, and an error term 𝜀𝑖 that represents 

the lognormal measure. Here, the offset variable was determined by the “Permanent Population” 

of each county. Permanent Population was chosen as the offset variable to ensure consistency 

with the calculations performed by the Chinese CDC.  

3.4.3 Overdispersion: Quasi-Poisson and Negative Binomial Model 

Unlike non-infectious diseases, infectious disease counts display a behavior of 

overdispersion (Imai et al., 2015), which occurs when the variance of observed counts is 

greater than the mean (Cameron & Trivedi, 2013). This is evident in the histograms shown in 

Figure  3.2. When the data is overdispersed, the Poisson regression model will underestimate 

the uncertainty of regression coefficients. The most common GLM models that allow for 
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overdispersion are the quasi-Poisson and negative binomial regression models, which are both 

based on the Poisson regression model. Both methods may yield similar regression coefficients, 

however this may not be the case when overdispersion is high. Thus, both models were 

adopted in this study to adjust for overdispersion and assessed for best fit. 

The most common method for adjusting for overdispersion for both the quasi-Poisson 

and negative binomial model is the quasilikelihood approach, which bases inference on robust 

standard errors (Lee et al. 2012; Myers et al., 2010; Unkel et al., 2012; Ver Hoef & Boveng, 

2007). This employs an overdispersion parameter (𝜎2) that can be estimated with a Goodness-

of-Fit test. For the test, both the Pearson and deviance statistics were used as the test statistic, 

respectively, and compared to the 5% critical value of 𝜒0.95
2  to determine the p-value. The 

Pearson statistic can be derived from the Pearson residual (𝑧𝑖), which was calculated by 

 
𝑧𝑖 =

𝑦𝑖 − exp(𝐱𝒊
′𝛽̂)

√exp(𝐱𝒊
′𝛽̂)

=  
𝑦𝑖 − 𝑦𝑖̂

√𝑦𝑖̂

 
(3.6) 

 

Where 𝑦𝑖̂ is the model predicted values of the response variable. From this, the Pearson statistic 

was calculated as 

  𝑃𝑃 =  ∑ 𝑧𝑖
2

𝑛

𝑖=1

 (3.7) 

 

𝑃𝑃 follows a 𝜒2 distribution with a degree of freedom(d.f.) of 𝑛 − 𝑘, where n is the number of 

observations and k is the number of regression coefficients, respectively. This distribution also 

has a mean of 𝑛 − 𝑘. Therefore, if there were no overdispersion, the value of 𝑃𝑃  would be 

close to 𝑛 − 𝑘 . If there were overdispersion, 𝑃𝑃  would be larger than the expected value. 
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Therefore, a ratio of 𝑃𝑃 and 𝑛 − 𝑘 was used to determine the overdispersion parameter, which 

was estimated by 

 𝜎2 =  
1

𝑛 − 𝑘
∑ 𝑧𝑖

2

𝑛

𝑖=1

=
𝜒2

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑑. 𝑓.
 (3.8) 

 

where 𝜎2  is the overdisperion parameter, 𝜒2
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

is the Pearson goodness-of-fit statistic, 

and d.f. is the degree of freedom (McCullagh & Nelder, 1989). This equation was also applied 

for the deviance goodness-of-fit statistic, which is exclusive to a GLM. The deviance statistic 

(𝐷𝑃), also known as the G-squared statistic, was calculated by  

 

𝐷𝑃 = 2 ∑ [𝑦𝑖log (
𝑦𝑖

exp (𝐱𝒊
′𝛽̂)

)𝑛
𝑖=1 −(𝑦𝑖 − exp {𝐱𝒊

′𝛽̂})] 

 

= 2 ∑[𝑦𝑖log (
𝑦𝑖

𝑦𝑖̂

)

𝑛

𝑖=1

− (𝑦𝑖 − 𝑦𝑖̂)] 

(3.9) 

 

Likewise, the deviance statistic also follows an approximate 𝜒2 distribution with 𝑛 − 𝑘 degrees 

of freedom. When the Goodness-of-fit test is rejected due to the overdispersion parameter and 

p-value, there is an indication of a lack of fit (Qian, 2010).   

Once the overdispersion parameter was calculated, the quasilikelihood method was 

applied. The quasilikelihood requires the standard errors generated from the Poisson model be 

multiplied by the factor 𝜔, which is the square root of the overdispersion parameter: 

 𝜔 = √𝜎2 (3.10) 
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This generated the “quasi-Poisson” regression model, which has the same mean function as the 

Poisson regression model but with a variance that is 𝜔 times the mean (Land et al., 1996; Lee 

et al., 2012; Ver Hoef & Boveng, 2007) as represented by 

 V(yi|xi) =  𝜔𝑢 (3.11) 

 

The resulting regression coefficients would be the same as the estimated regression coefficients 

from the Poisson model, but only the standard errors of the coefficients would be larger. To 

adjust for overdispersion, 𝜔 was multiplied to the estimated coefficient standard errors of the 

Poisson model. In RStudio, this was done using the quasi-Poisson GLM.  

In the presence of an overdispersed quasi-Poisson model, the negative binomial 

distribution can be adopted to avail a better model (Lee et al., 2012; Lloyd-Smith, 2007; Neyen 

et al., 2012). The negative binomial distribution model holds the same structure as the Poisson 

regression model and is often used for overdispersed count data. The distribution is based on 𝑋 

number of failures before the 𝑟𝑡ℎ success in independent trials, with a probability of success 

equal to 𝑝 in each trial (𝑟 ≥ 0 and 0 ≤ 𝑝 ≤ 1).    The probability mass function is expressed as  

 𝑃(𝑋 = 𝑥|𝑟, 𝑝) =
Γ(𝑥 + 𝑟)

𝑥! Γ(r)
 𝑝𝑟(1 − 𝑝)𝑥 (3.12) 

 

The regression model was expressed as 

 𝑌~𝑁𝐵(𝑟, 𝑝) (3.13) 

 

where the mean and variance are represented as 

E(yi|𝐱𝐢) = 𝑢𝑖 =
𝑝𝑟

(1 − 𝑝)
 (3.14) 
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V(yi|𝐱𝐢) =
𝑝𝑟

(1−𝑝)2
= 𝑢𝑖 +

1

𝑟
𝑢𝑖

2 = 𝑢𝑖 + 𝑘𝑢𝑖
2 

(3.15) 

 

If 𝑟 → ∞ , the negative binomial statistics simplifies to the Poisson distribution. The parameter 

k represents the negative binomial dispersion parameter, which can be estimated by maximum 

likelihood. The Goodness-of-Fit test was conducted using both the Pearson and deviance 

statistics to assess the goodness of fit and whether overdispersion exists. The negative binomial 

regression model is equivalent to Eqn. 3.3 and is expressed as 

 log [𝐸(𝑦𝑖)] = log(𝑛𝑖) + 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ 𝛽𝑘𝑥𝑘  𝑖 = 1, … , 𝑛 (3.16) 

 

In RStudio, the negative binomial regression model was computed using GLM.NB.  

Following the regression, additional diagnostic test and plots were made to assess the 

model fit of each GLM. Firstly, a goodness-of-fit test was conducted to compare which model 

was more effective at adjusting for overdispersion (Potts and Elith, 2006; Ver Hoef and 

Boveng, 2007). Next, mean-variance plots were created to validate the fit of the data using 

quasi-Poisson and negative binomial (Ver Hoef & Boveng, 2007). Afterwards, diagnostic plots 

such as the deviance residual plot and the deviance QQ plot were produced. Based on the 

recommendation of McCullagh and Nelder (1989), Myers et al. (2010) recommended plotting 

the deviance residuals against fitted values because they are nearly the same as those generated 

by the best possible normalizing transformation. Lastly, a normal probability QQ plot of 

deviance residuals was also created upon recommendations in literature.  
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3.4.4 Bayesian Spatial Regression Model 

The Bayesian spatial Regression model is applied to account for spatial dependence 

between areas in the dataset. The Bayesian spatial model adopts a distribution that fits the data.  

Due to the overdispersed nature of shigellosis incidence in this thesis, the Bayesian negative 

binomial model was adopted and will be further discussed in this section. For the ith area, the 

number of shigellosis cases (yi) is modeled as  

 𝑌~𝑁𝐵(𝑟, 𝑝) (3.17) 

 

 log [𝐸(𝑦𝑖)] = log(𝑛𝑖) + 𝛼 + 𝛽1𝑥1𝑖 + 𝐵2𝑥2𝑖 … 𝐵𝑛𝑥𝑛𝑖 + 𝜈𝑖 + 𝜐𝑖 (3.18) 

 

Where log (𝑛𝑖) refers to the offset, 𝛼 refers to the intercept quantifying the average shigellosis 

count, and 𝐵𝑛 is the regression coefficient of the predictor variable. Variables 𝜈𝑖 refer to the 

unstructured non-spatial residual while variables 𝜐𝑖 refer to the unstructured spatial residual. 

This model assumes a Besag – York – Mollie (BYM) specification for identifying the residuals 

as described in Besag et al. (1991). The BYM model formulation is commonly applied for 

disease mapping (Riebler et al., 2016). The spatial structured residual is modeled using an 

intrinsic conditional autoregressive structure (iCAR)  

 𝜐𝑖| 𝜐𝑗≠𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑖 , 𝑠𝑖
2), 𝑚𝑖 =

∑ 𝜐𝑗𝑗𝜖𝑁(𝑖)

#𝑁(𝑖)
 𝑎𝑛𝑑 𝑠2

𝑖 =  
𝜎𝜐

2

#𝑁(𝑖)
  (3.19) 

 

Where the #N(i) is the number of areas that share boundaries with its neighbours. The non-

spatial unstructured residual is modeled as 𝜈𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑣
2).  
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The models were fitted using the Integrated Nested Laplace Approximation (INLA) 

method and is implemented in RStudio (Vers 3.4.1). The coded program determines the 

relationship between neighbours using the spatial structured and unstructured residuals 

calculated using the BYM specification. Afterwards, incidence and socioeconomic data are 

matched with each respective area prior to running the Bayesian regression model.  

3.5 Spatial Data Visualization and Analysis 

3.5.1 Analysis Workflow 

The flow of the analysis for exploring the spatiotemporal patterns of shigellosis 

incidence is shown in Figure 3.8.  Firstly, shigellosis incidence data is preprocessed and 

entered into ArcGIS for data classification to create choropleth maps. Secondly, the classified 

data undergoes incremental spatial autocorrelation to determine a threshold distance for Global 

Moran’s I analysis. Next, if the Moran’s I analysis determines the data to be clustered, Local 

Indicators of Spatial Autocorrelation (LISA) are adopted for further exploration. This is done 

through two LISA methods, namely the Local Moran’s I and the Getis Ord Gi.  The Local 

Moran’s I determine whether there is clustering of similar data or dissimilar data, while the 

Getis Ord Gi determines whether these clusters are hotspots or cold-spots. If there is no spatial 

clustering, then the process is terminated.  
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Figure 3.8 Spatial analysis process for shigellosis incidence 

 

The flow of the analysis for exploring the spatial patterns of socioeconomic indicators is shown 

in Figure 3.9.  Data on each socioeconomic indicator was imported into ArcMap and classified 

for data visualization. 
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Figure 3.9 Spatial analysis process for socioeconomic indicators 

 

3.5.2 Choropleth Maps 

Choropleth maps were created to illustrate the spatial distribution of shigellosis incidence 

from for 2011 to 2015 in ArcMap. In this thesis, the Equal interval classification method was 

adopted to illustrate the spatial distribution of shigellosis incidence. The Equal Interval method 

was chosen for shigellosis incidence so data can be compared by year. This allows the 

identification of temporal patterns.   

The Jenks natural breaks classification method was adopted to illustrate the spatial 

distribution of socioeconomic indicators. The Jenks natural breaks approach is most suitable 

for data with high variance and was mainly chosen due to the spatial clustering of some 
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socioeconomic indicators. It uses an iterative approach to determine the best classification 

arrangement so that trends in the data can be accurately depicted. By reducing the variance 

within classes and maximizing the variance between classes, it arranges groups of values so 

there is less variation in each class. According to Jenks (1967), the natural breaks method is 

based on repeated calculations using different breaks in the dataset to see which break yields 

the smallest in-class variance. The first step involves ordering the data and breaking them into 

arbitrary groups. Then, the following steps are conducted:  

1. Calculate the sum of squared deviations between classes (SDBC). This represents 

the variance between classes.  

2. Calculate the sum of squared deviations from the array mean (SDAM).   

3. Subtract the sum of squared deviations between classes from the sum of squared 

deviations from the group mean. This is equal to the sum of the squared 

deviations from the class means (SDCM), which represents the variance within 

classes.  

4.  Inspect each squared deviation between classes. The class with the highest 

squared deviation between classes moves one unit towards the class with the 

lowest squared deviation between classes.  

Given the new class deviations, repeat steps 1 to 4 until the sum of the squared deviations from 

the class mean reaches a minimum. Lastly, the goodness-of-variance-fit statistic is calculated 

to determine the fit. This process stops when the goodness of variance fit statistic (SDAM – 

SDCM/ SDAM) can no longer be increased. This process has been streamlined in ArcMap 

under “Layer Properties -> Symbology”, where the “Nautral Breaks (Jenk)” option for was 

selected for classification method.  ArcMap was used to indicate the classification method.  
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3.5.3 Spatial Autocorrelation: Global Moran’s I  

The Global Moran’s Index (I), a global measure of spatial autocorrelation based on 

feature locations and attributes that evaluates whether a spatial pattern is clustered, dispersed, 

or random was adopted to study overall spatial autocorrelation. The Global Moran’s I is given 

as 

 𝐼 =
𝑛

𝑆𝑜

∑ ∑ 𝑤𝑖𝑗𝑧𝑖𝑧𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ 𝑧𝑖
2𝑛

𝑖=1

 (3.20) 

 

Where 𝑧𝑖 is the deviation of an attribute for feature i from the mean, 𝑤𝑖𝑗 is the spatial weight 

between feature i and j, 𝑆𝑜 is the aggregate of spatial weights, and n is the total number of 

features. If the values in a data set cluster spatially (i.e. areal units with high values are near 

other areal units with high values), the Global Moran’s Index would be positive. Contrariwise, 

if high values were near low values, the index would be negative. If the values balance, the 

index would be near zero. Most index values will fall between -1 and +1.  

The Global Moran’s I is an inferential statistic where the result of the analysis will be 

interpreted relative to the null hypothesis. The null hypothesis of the Global Moran’s I statistic 

states that the feature of interest is randomly distributed among other features in a given study 

area. If the p-value is determined be statistically significant, the null hypothesis is rejected.   

In ArcMap (Vers. 10.4.1), the Global Moran’s I was computed using the Spatial 

Autocorrelation tool. Inputs required for the tool included 1) Conceptualization of Spatial 

Relationships and 2) Distance Method and 3) Distance Band or Threshold Distance. The 

conceptualization parameter input corresponds to the spatial weight in Equation 2.16 and was 

used to define the spatial relationship between features. The conceptualization parameters 
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listed in the tool include Inverse Distance (Normal and Squared), Fixed Distance, Zone of 

Indifference, and Contiguity (Edges and Corners).  

The Inverse distance method defines that nearby neighbouring features will have a 

greater spatial influence than features that are farther away. Inverse distance squared is similar, 

except influence drops more quickly as distance increases from the target feature. The fixed 

distance band method analyzes features based on its neighbouring features that are within a 

critical distance; features within the critical distance receive a weight of 1 while features 

outside of the critical distance receive a weight of 0. Similar to fixed distance, zone of 

indifference also determines the spatial influence of features within a critical distance. 

However, features outside of the critical distance can still influence the target feature albeit at a 

very reduced capacity. Contiguity edges only calculates spatial influence from neighbouring 

polygon features that share a boundary or overlap with the target polygon, while contiguity 

corners calculated influence from neighbouring polygon features that share a boundary, or a 

node, or overlap with the target feature.  

Inverse Distance is best for continuous data and the Contiguity methods are best when 

feature polygons are similar in size and distribution. None of these conditions satisfy the 

aggregated count data that have been applied to county polygons of various sizes in this study. 

The Fixed Distance method works well for polygon features that vary in size. The Zone of 

Indifference also works well for polygons, but it considers every feature to be a neighbour of 

every other feature since features outside of the critical distance are still analyzed. This is not 

suitable for administrative areal units near the province boundaries. Due to these reasons, the 

Fixed Distance Band method was chosen for the conceptualization parameter.  
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To determine how the distance between two neighbouring features is calculated, the 

input for the Distance Method must be specified. The two options listed for the Distance 

Method are “Euclidean” and “Manhattan”. The Euclidean distance refers to a straight line 

distance between two points, while the Manhattan distance refers to the distance measured 

along x and y axes at right angles, then calculated using the difference between the x and y 

coordinates. The Euclidean method was selected since Fixed Distance method is only 

interested in the Euclidean distance between feature i and j.   

 Using the Fixed Distance Band method requires specifying a cut-off distance so that 

only features within the specified distance are analyzed. To find an appropriate distance band, 

the incremental spatial autocorrelation tool was utilized in ArcMap. This tool measures the 

spatial autocorrelation of a series of distances and creates a line graph with z-values that 

correspond to each distance. The z-value reflects the intensity of spatial clustering. Therefore, 

peak z-scores corresponds to peak distances that yield a high level of spatial clustering. These 

peak distances were applied to the Distance Band parameter.  

To employ this tool, the Beginning Distance, the Distance Method, and the Number of 

Distance Bands were specified. During the first run, no value was specified for the Beginning 

Distance. In this case, the minimum distance between each feature and one neighbour was 

applied. After the initial run has been completed, the beginning distance was reported in the 

output. In the second run, the Beginning Distance was set to the beginning distance from the 

previous output.  The Number of Distance Bands was also specified.  This input is used to 

indicate the number of times the neighbourhood size should be incremented, with the 

beginning distance being the starting point. 
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To select an appropriate number of distance bands, a sensitivity analysis was conducted. 

This was done to identify the peak distance that corresponded to the highest level of spatial 

clustering. The minimum number of distance bands that can be chosen was 2, while the 

maximum number of distance bands was 30. To start, the initial number of distance bands was 

6, then was increased to 8,10, 12, and 14. These numbers were chosen to optimize the number 

of neighbours without exceeding the maximum distance where all features are neighbours with 

each other.  After the peak distance was selected, it was applied to the distance band parameter 

to compute the Global Moran’s I for each year.  

3.5.4 Hot Spot Analysis: Local Moran’s I and Getis Ord Gi*  

Since the Global Moran’s I can only provide a summary of spatial clustering, the Anselin 

Local Moran’s I and Getis Ord Gi* statistics were employed to study the local relationship 

between a feature and its neighbours. A positive value of the Local Moran’s I indicates a 

cluster of similar values (high or low), while a negative value indicates a cluster of dissimilar 

values (e.g. high values surrounded by neighbours of low values). For the Gi* statistic, a 

positive value refers to the clustering of high values, while a negative value refers to the 

clustering of low values. 

The Local Moran’s I statistic of spatial association is presented as: 

 𝐼𝑖 =
𝑥𝑖 − 𝑋̅

𝑆𝑖
2 ∑ 𝑤𝑖𝑗(𝑥𝑗 − 𝑋̅)

𝑛

𝑗=1,𝑗≠𝑖

 (3.21) 

 

Where x is the attribute for feature I, 𝑋̅ is the mean of the corresponding attribute, 𝑤𝑖𝑗 is the 

spatial weight between feature i and j, and 𝑆𝑖
2
 is the aggregate of spatial weights given as 
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 𝑆𝑖
2 =

∑ (𝑥𝑗 − 𝑋̅)2𝑛
𝑗=1,𝑗≠𝑖

𝑛 − 1
 (3.22) 

 

where n is the total number of features.  

The Gi* statistics compares local averages to the global average (e.g. Moran’s I) and is 

calculated by 

 

𝐺𝑖
∗ =

∑ 𝑤𝑖𝑗𝑥𝑗 − 𝑋̅ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑗=1

𝑆√[𝑛 ∑ 𝑤𝑖𝑗
2𝑛

𝑗=1 − (∑ 𝑤𝑖𝑗)𝑛
𝑗=1

2
]

𝑛 − 1

  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗, 𝑥𝑗 ≠ 0 
(3.23) 

 

Where 𝑥𝑗 is the attribute value of feature j, 𝑋̅ is the mean, and S is the standard deviation. The 

resulting Gi* statistic is a z-score which not only includes the values of the nearest neighbours 

but also the value of the feature of interest.  

In ArcMap, the Local Moran’s I was calculated and mapped for each year using the 

Cluster and Outlier Analysis tool, while the Getis Ord Gi* was calculated using the Hot Spot 

Analysis tool.  To apply both tools, the Conceptualization of Spatial Relationships parameter 

must be specified. Similar to the Global Moran’s I analysis, the “Fixed_Distance_Band” was 

selected. Distance method was set to “Euclidean_Distance” and Threshold Distance was set to 

the beginning distance calculated using the incremental spatial autocorrelation tool.  

The Local Moran’s I output in ArcMap consists of a local Moran's I index, z-score, p-

value, and COType. The cluster/outlier type (COType) identified whether the cluster is 

statistically significant cluster of high values (High-High), a cluster of low values (Low-Low), 

an outlier in which a high value is surrounded primarily by low values (High-Low), or an 

outlier in which a low value is surrounded by high values (Low-High). 
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Gi* statistic results for each feature are reported with a z-score, p-value, and confidence 

level bin (Gi_Bin). The confidence level bins are sorted into 4 groups: bin 0, +/- 3 bins,  +/- 2 

bins, and +/- 1 bins. +/- 3 bins correspond to feature clustering at a statistical significance with 

99% confidence level, +/- 2 bins correspond to feature clustering at a statistical significance of 

95% confidence, while +/- 1 bins correspond feature clustering at a statistical significance of 

90% confidence. Features in bin 0 indicate that clustering of features is not significant.  

3.6 Chapter summary 

This chapter described the methodology adopted for this thesis. It introduced the study 

area, summarized the data sources, and described the data preprocessing procedure taken. An 

overview of the Poisson and negative binomial regression models used to investigate the 

association between socioeconomic determinants and shigellosis incidence was provided. 

Finally, spatial analyses used to test for spatial autocorrelation and hotspots amongst county-

level shigellosis incidence in Jiangsu province were described. The results of these analyses are 

presented in the following chapter.  
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4 CHAPTER 4: RESULTS 

4.1 Introduction 

This chapter presents the results from 1) spatial analysis, 2) generalized linear model 

regression (GLM) analysis, and 3) exploratory survey data analysis of water and sanitation in 

Suining county.  Field observations collected in the rural areas of two towns in Suining are 

used to support and contextualize the results presented in this thesis. These three analyses are 

used to address the following research objectives: 

1) To examine spatiotemporal variation of shigellosis incidence across Jiangsu province 

2) To identify the facilitators and barriers to safely managed water and sanitation 

3) To investigate the association between socioeconomic determinants and shigellosis 

incidence in rural areas of Jiangsu province  

Maps, tables, graphs, and field photos are used to support the results presented.  

4.2 Data Visualization and Analysis 

4.2.1 Spatiotemporal distribution of shigellosis incidence 

The shigellosis incidence rate is the number of new shigellosis cases per 100,000 persons. 

Summary statistics were produced to describe the distribution of shigellosis incidence rates at 

the county level, which consists of counties and districts2 (N=96) in Jiangsu province from 

2011 to 2015 (Table 4.1). In 2011, the average number of shigellosis cases per 100,000 persons 

was 11.2. From 2011 to 2015, the average incidence rate declined to 5.69.  

                                                      
2 As defined in Chapter 3.2.  
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Table 4.1 Distribution of shigellosis incidence rates per 100, 000 persons by county in 
Jiangsu province from 2011-2015 

Year N Min Median Mean Max 

2011 96 0.240 7.13 11.2 68.4 
2012 96 0.101 4.67 8.54 38.0 
2013 96 0.102 3.32 6.82 37.8 
2014 96 0.116 3.01 5.93 45.1 
2015 96 0.116 2.81 5.69 40.6 

 

Shigellosis incidence data was then geocoded in ArcMap to create choropleth maps that 

llustrateed the geographic variability in shigellosis incidence at the county level (N=97) of 

Jiangsu province from 2011 to 2015 (Figure 4.1) 3. It can be seen in Figure 4.1 that relatively 

high incidence rates were reported near the northwestern and southwestern regions in 2011. 

From 2011 to 2015, the number of cases in the southwesstern region diminished gradually 

from 10 to 30 cases per 100,000 persons a year to less than 10 cases per 100,000 persons in a 

year in some counties. From 2012 to 2015, counties in the northwestern region experienced the 

highest number of shigellosis cases per year compared to the rest of the province. Incidence 

rates for the two counties, one near the southwest coast, and the other near the northeast coast, 

were not determined due to missing data from the Chinese CDC. Despite missing data, it could 

be assumed that rates in those areas are similar to neighbouring counties under normal 

circumstances (i.e. they are not outliers). In summary, while shigellosis is mainly concentrated 

in the northwestern and southern regions, it has shown to persist predominantly in the 

northwestern region from 2011 to 2015.  

In order to investigate the spatial autocorrelation of shigellosis distribution and to 

identify shigellosis hot spots in ArcMap using the Global Moran’s I, Local Moran’s I, and 

Getis Ord Gi*, a threshold distance setting must be determined. This was done by selecting an 

                                                      
3 These maps adopted a Transverse Mercator projection and were projected using the WGS 1986 UTM Zone 50N 

coordinated system.  
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appropriate peak distance using the “Incremental Spatial Autocorrelation tool” in ArcMap, 

which is based on the Global Moran’s I, the distance corresponding to the highest level of 

spatial clustering of shigellosis cases. To determine the peak distance, a sensitivity analysis 

with the “Beginning Distance” set to 44, 767 m was conducted. The following peak distances 

in Table 4.2 were determined.  

Table 4.2 Incremental Spatial Autocorrelation Peak Distances 

Distance Band # of Peaks 2011 (m) 
(z-score) 

2012 (m)  
(z-score) 

2013 (m) 
 (z-score) 

2014 (m) 
(z-score) 

2015 (m) 
(z-score) 

6 1 
67171.60 
(5.441) 

67171.60 
(5.999) 

89576.19 
(5.327) 

89576.19 
(4.694) 

89576.19 
(3.993) 

8 1 
67171.60 
(5.441) 

67171.60 
(5.999) 

89576.19 
(5.327) 

89576.19 
(4.694) 

89576.19 
(3.993) 

10 1 
67171.60 
(5.441) 

67171.60 
(5.999) 

89576.19 
(5.327) 

89576.19 
(4.694) 

89576.19 
(3.993) 

12 1 
67171.60 
(5.441) 

67171.60 
(5.999) 

89576.19 
(5.327) 

89576.19 
(4.694) 

89576.19 
(3.993) 

14 1 
67171.60 
(5.441) 

67171.60 
(5.999) 

89576.19 
(5.327) 

89576.19 
(4.694) 

89576.19 
(3.993) 

 

The most commonly identified peak distances are 67,171.60 m and 89,576.19 m, respectively. 

Both distances were tested using the Local Moran’s I and Getis Ord Gi* tools in ArcMap. It 

was found that the peak distance of 89,576.19 m was more effective at capturing spatial 

clustering, thus, this distance was adopted as the threshold distance for Global Moran’s I, Local 

Moran’s I, and Getis Ord Gi*.    

Spatial autocorrelation, or the clustering of shigellosis cases throughout the province of 

Jiangsu, was investigated using the Global Moran’s I tool from the Spatial Statistics toolbox in 

ArcMap. Table 4.3 shows the value, variance, and significance of Global Moran’s I calculated 

for each year. The null hypothesis of Moran’s I state that there is no spatial autocorrelation in 

incidence rates of shigellosis (Moran’s I = 0). Positive Moran’s I values indicated that there 
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was significant positive clustering of similar incidence rates throughout counties in Jiangsu 

(p<<0.01). Since spatial autocorrelation was evident, the null hypothesis was rejected.  
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Figure 4.1 Choropleth maps illustrating the incidence rate of shigellosis by county in Jiangsu province 

from 2011 to 2015 
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          Table 4.3 Spatial autocorrelation in shigellosis incidence rates of counties  

Year Moran’s I Variance p-Value 

2011 0.106 0.000676 0.000008 
2012 0.118 0.000704 0.000001 
2013 0.109 0.000686 0.000005 
2014 0.0866 0.000660 0.000166 
2015 0.0664 0.000663 0.002925 

 

The Local Moran’s I was employed to identify shigellosis clusters and outliers (Figure 

4.2). As explained in Chapter 3, the distance method and conceptualization parameter, which 

were used to determine the method for identifying clusters and outliers, were set as “Euclidean 

Distance” and  “Inverse_Distance” respectively. The Distance Band or Threshold Distance was 

set to 89, 576.9 m to reflect the intensity of spatial clustering. The significance level was set to 

a 95% confidence level. From 2011 to 2015, High-High clusters were predominantly found in 

the northwestern and southern regions, while Low-Low clusters were found predominantly in 

central and eastern coastal regions. From 2011 to 2015, a few Low-High outlier clusters were 

found near the High-High clusters, while High-Low clusters were found near the Low-Low 

outlier clusters. Thus, clusters of high shigellosis incidence were mainly found in the 

northwestern and southern regions of Jiangsu province.  

In order to investigate the location, size, and intensity of incidence clusters, the local 

Getis Ord Gi* statistic was performed. This statistic was conducted using the Hot Spot 

Analysis tool in ArcMap’s Spatial Statistics toolbox. Similarly, a distance band of 89 579.9 m 

was also set to define the intensity of spatial clustering. Figure 4.3 illustrates the spatial 

variation of hot spot and cold spot clusters of shigellosis incidence by year.  During the 2011-

2015 time frame, the majority of hot spots concentrated in the northwestern and southern 

counties of Jiangsu were considered statistically significant. This is because features in these 

regions have high values surrounded by other high values. While hot spots were identified 



 81 

mainly in the southern region for all five years, the number of hot spot counties in the region 

decreased from 2011 to 2015. In 2014, only five counties in the southwestern region were 

identified as hotspots, but only with 90% to 95% of confidence. In contrast, counties within the 

central region and coastal areas were predominantly identified as cold spots. From 2013 to 

2015, the number of cold spot counties decreased. By 2015, cold spots were identified to be the 

central and western regions with only 90% to 95% confidence. In summary, from 2011 to 2015, 

significant shigellosis hot spots were mainly found in the northwestern and southern regions, 

while significant shigellosis cold spots were identified in the central regions and coastal areas. 

This clustering of shigellosis incidence shows that more attention paid to areas with clusters of 

high shigellosis incidence.  
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Figure 4.2 Clusters and outliers determined by the Local Moran's I 
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Figure 4.3 Shigellosis hot spots and cold spots determined using local Getis Ord Gi* 
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4.2.2 Spatial distribution and correlation of socioeconomic determinants 

Data on socioeconomic indicators were organized by year from 2011-2014. The 

socioeconomic indicators selected for analysis included the following: 1) Percentage of Rural 

Households, 2) Number of Health Institutions per 10,000 people, 3) Number of Hospital Beds 

per 1,000 people, 4) Percentage of Rural Employees, and 5) Rural Net Income (Yuan Per 

Capita). Demographic indicators such as population and density were also included for visual 

exploratory analysis.  

An exploratory analysis using choropleth maps was conducted to understand the recent 

spatial distribution of demographic and socioeconomic conditions in the Jiangsu province 

averaged between 2011- 2014 (Figure 4.4). The geographic divisions used in these maps 

include cities, city-counties, and counties. In these maps, “cities” only represent the 

socioeconomic data on city districts, since data on each individual district was not available. In 

addition, Nanjing was the only city presented as a prefecture city in these maps due to the lack 

of data available for its city districts. The choropleth maps were created by merging these 

geographic units together. Despite the discrepancy in geographic scale of these maps, the data 

used is still representative of each respective region and efforts have been taken via data 

preprocessing to ensure that values are representative of all districts in the city.   

Choropleth maps were used to identify the spatial distribution in the population. It was 

also of interest to identify how the distribution in population corresponded to the distribution in 

access to healthcare. It can be seen that the majority of the population resided in the southern 

region of the province, but a relatively significant population also resided in some areas in the 

north. Most counties in the north had a relatively high number of health institutions per 10,000 
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people. Despite this, the majority of the central and northwestern regions had the least number 

of hospital beds per 1,000 people relative to other areas of the province.  

In addition, choropleth maps were also used to explore the spatial distribution of the rural 

population. A high percentage of rural households and rural employees are predominantly 

concentrated in the central and southeast regions, and some areas in the north. Rural income for 

those regions were in general, relatively low, with the exception of a few areas in the 

southeastern region.  

Summary statistics of socioeconomic indicators were produced in order to describe the 

variation in socioeconomic determinants that were investigated in the regression (Table 4.4). 

The spatial unit for analysis was mostly city-counties and counties, with the exception of 

Nanjing and a few “cities” that were the representation of city districts within the city. It should 

be noted again that socioeconomic data for individual city districts were not published by the 

provincial and city statistical yearbooks. Despite these discrepancies, the data adopted for this 

analysis is still representative of the conditions at the county level in Jiangsu.   

As shown, the province was predominantly rural from 2011 to 2014. In one county, 84% 

of the total households were rural. The average number of health institutions (hospitals, clinics, 

and medical stations, etc.), number of hospital beds, and rural net income per capita increased 

from 2011 to 2014. The percentage of rural employment fluctuated over the years. In 2012, the 

maximum percentage of rural persons employed was 60%, but dropped to 49% in 2014.  
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Figure 4.4 Choropleth maps of socioeconomic indicators 
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Table 4.4. Summary statistics of socioeconomic factors investigated for association with shigellosis 
incidence in counties of Jiangsu province  

Year  
% Rural 

Households 

# Health 
Institutions per 
10,000 people 

# Hospital 
Beds per 

1,000 people 

Rural Net Income 
per capita 

% Rural 
Employees 

2011 
(N=60) 

Min 26.3 2.13 1.78 7451 9.90 

Median 68.1 4.22 3.05 10 810 42.4 

Mean 65.5 4.3 3.33 11 490 39.9 

Max 85.7 7.87 6.27 17 460 59.0 
 SD   14.1 1.28 1.03 2899.63 12.5 

 
 

2012 
(N=59) 

Min 27.0 2.17 2.45 8472 3.95 

Median 68.1 4.25 3.53 12 230 42.2 
Mean 64.9 4.22 3.8 12 970 39.7 
Max 85.2 7.39 6.98 19 660 60.2 

 SD 13.9 1.07 1.03 3196.30 12.9 

2013 
(N=58) 

Min 25.8 2.08 2.72 9488 11.2 

Median 68.1 4.29 3.91 13 470 42.0 

Mean 64.2 4.18 4.2 14 550 39.6 

Max 85.0 7.3 7.78 23 640 59.3 
 SD 14.5 1.08 1.06 3647.94 12.8 

2014 
(N=57) 

Min 24.7 2.25 2.84 10 440 8.60 

Median 68.5 4.45 4.46 14 850 41.7 
Mean 64.3 4.36 4.56 15 800 39.5 
Max 85.3 8.7 9.7 26 370 58.7 

 SD 14.3 1.21 1.25 4050.47 12.7 

 

Correlation matrices were created to identify the dependence between socioeconomic 

variables. Figure 4.5 shows a Spearman ranked correlogram for each year, with the coloured 

dot representing a statistically significant correlation (p<0.01). The percentage of rural 

households experienced a strong positive correlation with rural employment, showing the 

parallel connection between rural household and employment. Furthermore, there also exists a 

significant negative correlation between rural employment and income, showing that counties 

with higher rural employment tended to have lower income.  In contrast, there is a statistically 

significant negative correlation between the number of health institutions and rural income, 

showing that counties with more health institutions tended to have lower income.  
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    Figure 4.5 Spearman Ranked Coefficient Correlograms  
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4.3 Generalized Linear Model Analysis 

4.3.1 Resulting Analysis Workflow 

The resulting workflow of this analysis is illustrated and highlighted in Figure 4.6.   

 

 

Figure 4.6 Workflow of resulting analysis 
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After data preprocessing, exploratory analysis of the regression variables was conducted. The 

Poisson regression was employed and overdispersion was found. As a result, both the negative 

binomial and quasi-Poisson regression models were adopted and tested for best model fit. It 

was found that the negative binomial model availed a better fit and thus, a negative binomial 

Bayesian spatial model was adopted to incorporate spatial dependencies. The results of this 

analysis are discussed below.   

4.3.2 Exploratory Analysis of Regression Variables 

Prior to the regression analysis, an exploratory analysis was conducted for the data. Table 

4.5 and Table 4.6 summarize the distribution in incidence count and rate of shigellosis used in 

the regression.  In 2011, the average number of cases per 100,000 persons in one county was 

166 and decreased to 95 in 2015. These values decreased from 10.7 cases per 100,000 persons 

and 5.23 cases per 100,000 persons in 2015, almost half of the rate in 2011.  

      Table 4.5 Shigellosis incidence counts used in regression  

Year n Min Median Mean Max Variance 

2011 60 2 54 166 1348 80938 
2012 59 2 41 133 1349 56743 
2013 58 1 22 106 1056 36927 
2014 57 1 19 95 1080 34440 

 

     Table 4.6 Shigellosis incidence rates (per 100,000 persons) used in regression  

Year n Min Median Mean Max Variance 

2011 60 0.560 5.43 10.7 51.4 168.9 
2012 59 0.246 4.34 7.79 43.0 87.9 
2013 58 0.237 2.78 5.98 38.3 65.0 
2014 57 0.0880 2.07 5.23 32.6 57.7 

  

As shown in Table 4.6, the variance and mean of each dataset does not equal each other, 

violating an assumption of the Poisson distribution. This is a common occurrence of 

overdispersed data sets (Cameron & Trivedi, 2013).  
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Next, each predictor was plotted against the response for each year to explore the 

relationship between each predictor variable and response (Appendix B). Figure 4.7 shows the 

scatterplots for the average shigellosis incidence from 2011 to 2014. There appears to be a 

negative linear relationship between the percentage of rural households and shigellosis counts. 

Additionally, the scatterplot of the percentage of rural employment versus shigellosis counts 

also depicted a negative linear relationship. This showed that as the percentage of rural 

employment and rural households increased, shigellosis counts decreased. On the other hand, 

there exists a positive linear relationship between the number of hospital beds per 1,000 

persons and shigellosis counts.  The relationships between other predictors and the response 

illustrated non-linear behaviour.   

 

Figure 4.7 Scatterplots between predictors and response variable 
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4.3.3 Poisson Regression  

Using RStudio (Vers. 1.0.136), regression outputs for each year were generated using a 

multivariate Poisson regression model (Appendix A – Table 1). To assess the model fit, a 

Goodness-of-Fit test was performed using the Pearson statistic (𝜒2) and Deviance statistic (D) 

(Table 4.7).  Both tests are chi-square distributed with n-p (number of observations – number 

of predictors) degrees of freedom.  For example, using the dataset from 2011 and assuming 

𝛼=0.05, the critical value for a Pearson 𝜒2 at 52 degrees of freedom was 70. In comparison, the 

Deviance and Pearson chi-squared statistic were 4370 and 4910 respectively, almost 70 times 

greater than the critical value. The probability that any randomly draw number from this 

distribution was as large or larger than 4370 or 4910 was 0.  

                          Table 4.7 Goodness-of-Fit Test 

Year 
Test DF 

(n-
p) 

𝜒2 
predicted 𝜒2

critical 

p-
value 

Overdispersion 

parameter (𝜎2) 

2011 Deviance 52 4370 
70 

0 94 

 Pearson 52 4910 
 

  

2012 Deviance 51 5064 
69 

0 128 

 Pearson 51 6519 
 

  

2013 Deviance 50 3875 
68 

0 120 

 Pearson 50 5980 
 

  

2014 Deviance 49 4657 
66 

0 186 

 Pearson 49 9132 
 

  

 

The lack of fit in a Poisson model required a test for overdispersion. As shown in Table 11 

above, the overdispersion scale parameter (𝜎2) was calculated for each dataset. Due to the 

presence of significant overdispersion observed in all four datasets, quasi-Poisson and negative 

binomial regression models were adopted to adjust for dispersion.  
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4.3.4 Adjustment for Overdispersion 

To adjust for overdispersion, the association between shigellosis incidence and several 

socioeconomic determinants was modeled using multivariate quasi-Poisson regression model 

and negative binomial regression model. Table 4.8 summarizes coefficient estimates and 

standard errors for Poisson, quasi-Poisson, and negative binomial.  

Overdispersion was evident by analyzing the reported standard errors. Therefore, while 

the Poisson and quasi-Poisson model have the same estimated regression coefficients, quasi-

Poisson’s coefficient standard errors were larger. This is evidence of overdispersion and is 

indicated as an underestimation of standard errors by the Poisson model. In contrast, estimated 

coefficients from negative binomial model were different than that of Poisson. However, 

coefficient standard errors from negative binomial were similar in value to that of quasi-

Poisson. This showed the standard errors of the negative binomial model were also adjusted for 

overdispersion. 
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Table 4.8 Comparison of Poisson, quassi-Poisson, and Negative Binomial model outputs 

Year Variable 
Poisson 

Coeff 

quasi-
Poisson 

Coeff 

N. 
Binomial 

Coeff 

SE 
Poisson 

Coeff 

SE quasi-
Poisson 

Coeff 

SE N. 
Binomial 

Coeff 

2011 (Intercept) 2.608 2.608 3.878 0.152 1.462 1.660 

 
Rural 0.000 0.000 -0.009 0.001 0.014 0.019 

 
HealthH -0.212 -0.212 -0.176 0.017 0.161 0.143 

 
HospBeds 0.533 0.533 0.372 0.015 0.147 0.150 

 
Income 0.000 0.000 0.000 0.000 0.000 0.000 

  Emply -0.009 -0.009 -0.007 0.003 0.028 0.028 

2012 (Intercept) 0.418 0.418 1.290 0.179 1.816 2.072 

 
Rural -0.004 -0.004 -0.022 0.001 0.012 0.016 

 
HealthH -0.042 -0.042 0.112 0.023 0.233 0.200 

 
HospBeds 0.535 0.535 0.280 0.012 0.124 0.162 

 
Income 0.000 0.000 0.000 0.000 0.000 0.000 

  Emply 0.004 0.004 0.012 0.002 0.018 0.017 

2013 (Intercept) -0.020 -0.020 3.237 0.192 1.829 1.908 

 
Rural -0.033 -0.033 -0.035 0.003 0.031 0.026 

 
HealthH 0.102 0.102 0.144 0.015 0.145 0.130 

 
HospBeds 0.371 0.371 0.033 0.012 0.113 0.131 

 
Income 0.000 0.000 0.000 0.000 0.000 0.000 

  Emply 0.034 0.034 0.004 0.005 0.045 0.036 

2014 (Intercept) 2.236 2.236 4.581 0.192 1.829 1.908 

 
Rural -0.091 -0.091 -0.069 0.003 0.031 0.026 

 
HealthH 0.116 0.116 0.004 0.015 0.145 0.130 

 
HospBeds -0.009 -0.009 -0.228 0.012 0.113 0.131 

 
Income 0.000 0.000 0.000 0.000 0.000 0.000 

  Emply 0.095 0.095 0.055 0.005 0.045 0.036 

 

The goodness of fit using the chi-squared statistic was reassessed for both the quasi-

Poisson model and negative binomial model (Table 4.9) to determine which model provided a 

better fit.  Results from the quasi-Poisson model showed that the chi-squared statistics 

remained the same. However, the chi-squared values for negative binomial were different and 

often below the critical value. The p-values for the negative binomial model were also above 

zero, proving the hypothesis that the data followed a negative binomial distribution should not 

be rejected. 
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                   Table 4.9 Goodness of Fit Test for quasi-Poisson and Negative Binomial 

Year 

Test DF 
(n-p) 

𝜒2 
q-

Poisson 

𝜒2 
neg.bin 𝜒2

critical 

p-value 
q-

Poisson 

p-value 
neg.bin 

2011 Deviance 52 4370 67 
70 0 0.081 

 Pearson 52 4910 69 

2012 Deviance 51 5064 66 
69 0 0.071 

 Pearson 51 6519 70 

2013 Deviance 50 3875 65 
68 0 0.074 

 Pearson 50 5980 71 

2014 Deviance 49 4657 65 
66 0 0.062 

 Pearson 49 9132 96 

 

Since the quasi-Poisson and negative binomial models have different variance functions, 

mean-variance plots were generated to assess which model was able to better capture the 

mean-variance relationship so overdispersion can be minimized. Figure 4.8 illustrates the 

mean-variance relationship for quasi-Poisson and negative binomial responses. Firstly, values 

based on the linear predictor were computed using the negative binomial model. Then, the 

linear predictor values were grouped based on the percentile groups they belonged to.  The 

percentile groups were organized into 20 groups from 0 to 100, with five percentile increments. 

The quasi-Poisson model was unable to fit the data, as the rate at which the variance increased 

was much higher than the mean. As shown in the plot, the negative binomial model was able to 

effectively capture the relationship of the data, particularly for data within the 25th and 50th 

percentile. Since the negative binomial model was able to better portray the data, it was 

selected as the model to analyze the significance of socioeconomic variables in predicting 

shigellosis incidence.  
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Figure 4.8 Mean-variance plots 
 
 
 

To assess for model fit, residual and Q-Q plots were also generated (Appendix C – 

Figure 1 and Figure 2). It can be seen that the negative binomial model was able to better 

account for the mean and variance relationship of the data. The residual plots illustrated 

unbiased and homoscedastic behaviour. Normal QQ plots showed that the data do not fully 

follow normal behaviour. This was expected from a GLM, as residuals from a negative 
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binomial model are not assumed to follow a nearly normal distribution. Thus, the negative 

binomial model was chosen as the preferred model for shigellosis incidence. 

4.3.5 Negative Binomial Regression Output 

The negative binomial regression was performed to determine significant socioeconomic 

predictors. Only two variables were deemed significant using the negative binomial model. 

Univariate negative binomial analysis was performed on these predictors to determine its 

significance. The association is represented as an incidence rate ratio (IRR) as shown in Table 

4.10.  

    Table 4.10 Association between shigellosis incidence and significant socioeconomic determinants 

 Variables Multivariate analysis Univariate analysis 

  IRR (95% CI) P-Value IRR (95% CI) P-Value 

2011 #Hospital Beds 
per 1000 
persons 

1.45 
(1.08,1.98) 

≤ 0.01 
1.56 

(1.29, 1.90) 

<0 
 

2012 #Hospital Beds 
per 1000 
persons 

1.32 
(0.99,1.80) 

≤ 0.05 
1.45 

(1.20, 1.79) 
<0.002 

2014 #Hospital Beds 
per 1000 
persons 

0.784 
(0.622,1.04) 

≤ 0.05  
Not Sig. 

 

2014 % Rural 
Households 

0.933 
(0.888,0.98) 

≤ 0.001  
Not Sig. 

 

 

For the 2011 dataset modeled with negative binomial regression, only the number of 

hospital beds per 1000 persons was determined to be significant (p neg.bin ≤ 0.01). The model 

was computed again with only the significant predictor as the sole predictor (Appendix A – 

Table 3). Results from this model showed that every increase in the number of hospital beds 

per 1000 persons was associated with an increase in incidence rate of shigellosis by a factor of 

1.56 (95% CI: 1.05,1.95) (p neg.bin ≪  0.01), given all other predictor variables were held 



 98 

constant. This can be further converted into a percentage change, which is interpreted as a 56% 

increase in rate. For 2012, a 45% increase in rate was found (p neg.bin ≪ 0.01).  

For the 2014 dataset modeled with negative binomial regression, both the number of 

hospital bed per 1000 persons and the percentage of rural households were determined to be 

significant (p neg.bin ≤ 0.05). The model was computed again with only the significant predictor 

as the sole predictor (Appendix A – Table 3). Results from this model showed that the 

variables were no longer significant.  

4.3.6 Bayesian Spatial Regression Output 

Since the negative binomial model availed a better fit, it was chosen for the Bayesian 

spatial regression model. Using the Bayesian negative binomial spatial model, the association 

between socioeconomic determinants and shigellosis incidence was also determined while 

taking in account the spatial relationships between counties (Table 4.11). All coefficient 

parameters were determined in the form of relative risk (RR), which is synonymous with IRR. 

The Bayesian negative binomial spatial model confirms the finding for percentage of rural 

households in 2011 using the negative binomial model, but was also able to determine 

additional associations between shigellosis incidence and other socioeconomic determinants.  

Table 4.11 Coefficient Estimates of socioeconomic determinants using Bayesian Spatial Model 

Variable B e(B) SD 
95% Credible Interval 

2.5% 97.5% 

Intercept 8.4021 4456.4154 2.1316 4.0026 12.4011 

% Rural Household -0.0357 0.9649 0.0319 -0.0982 0.0274 
# Health Institutions per 10,000 
people 0.3004 1.3504 0.2285 -0.1350 0.7649 

# Hospital Beds per 1000 people -0.0313 0.9692 0.1721 -0.3673 0.3098 

Rural Income per capita -0.0001 0.9999 0.0001 -0.0002 0.0001 

% Rural Employment  -0.0479 0.9532 0.0452 -0.1384 0.0397 
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For example, a one percent increase in the percentage of rural households is associated 

with a decrease in the incidence rate of shigellosis by a factor of 0.96 (3.51% decrease in 

incidence rate). In addition, a one unit increase in the number of health institutions per 10,000 

people is associated with a increase in incidence rate by a factor of 1.35 (35% increase in rate), 

while a one unit increase in number of beds per 1000 people is associated with a decrease in 

incidence rate by 0.969 (3.08% decrease in rate). A RR of 0.9999 or 1 for rural income implies 

that the factor has no effect.  A one percent increase in rural employment is associated with a 

decrease in incidence rate by a factor of 0.953 (4.68% decrease in rate). In summary, while an 

increase in the percentage of rural households, number of hospital beds, and percentage of rural 

employment were associated with a decrease in shigellosis incidence rate, an increase in the 

number of health institutions was found to be associated with an increase in shigellosis 

incidence.  

4.4 Chapter Summary 

This chapter presented the results from the quantitative analyses. The spatial analysis on 

shigellosis incidence showed that in recent years, high shigellosis incidence was concentrated 

mainly in the northwestern regions and a few counties in the southern regions of Jiangsu 

province. The Global Moran’s I indicator indicates significant positive spatial autocorrelation, 

indicating that high shigellosis incidence tend to cluster spatially. This is further confirmed by 

analyses using Local Moran’s I and Getis Ord Gi*, which illustrates that statistically 

significant hot spots tend to cluster in the southwestern and southern regions.  

Exploratory analyses using choropleth maps, scatterplots, and a Spearman rank 

correlation matrix were performed to understand the distribution and correlation of 
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socioeconomic indicators prior to the regression analysis that assessed the association between 

socioeconomic determinants and shigellosis incidence. Results from the Spearman rank 

correlation matrix showed that there was significant positive dependence between the 

percentage of rural population and the percentage of rural employees. In addition, counties 

with high percentage of rural households tended to have lower income and less number of 

hospital beds.   

 Two generalized linear regression models, negative binomial and quasi-Poisson, were 

employed to assess the association between socioeconomic indicators and shigellosis 

incidence. Results from the quasi-Poisson and negative binomial showed that the negative 

binomial was a more appropriate model, as it was able to better account for overdispersion in 

shigellosis incidence. Thus, the negative binomial model was chosen for the Bayesian Spatial 

Model, which was adopted to account for spatial dependencies between areas.  

Using the non-spatial negative binomial model, the number of hospital beds was 

identified as a statistically significant indicator for 2011 and 2012 respectively. The model 

showed that increasing the number of hospital beds was associated with higher shigellosis 

incidence. The number of hospital beds and the percentage of rural households were found to 

be significant parameters in the multivariate model. The spatial negative binomial Bayesian 

model confirmed the finding for the percentage of rural households, but also found that 

increasing the percentage of rural employment and the number of hospital beds, respectively, 

was associated with decreased shigellosis incidence. In contrast, increasing the number of 

hospitals was correlated with increased shigellosis incidence.   

 



 101 

5 CHAPTER 5: DISCUSSION AND CONCLUSIONS 

5.1 Introduction 

This concluding chapter summarizes key findings from this research, which aimed to 

address the following objectives:  

1) To examine spatiotemporal variation of shigellosis incidence across Jiangsu province; 

2) To explore the facilitators and barriers to safely managed water and sanitation; 

3) To investigate the association between socioeconomic determinants and shigellosis 

incidence in rural areas of Jiangsu province  

Findings on the spatial patterns of shigellosis and the association between socioeconomic 

conditions and shigellosis incidence are examined in the context of rural China. To add validity, 

findings are also compared with existing literature. Furthermore, contributions and policy 

implications are discussed.  Lastly, limitations and recommendations for future research are 

reviewed.  

5.2 Summary of Key Findings 

Although past studies have explored the spatio-temporal variation of shigellosis 

incidence in China, no studies to date have explored the distribution of shigellosis incidence in 

recent years after 2011. Examining the incidence rate of shigellosis in recent years is critical to 

gauge its prevalence in rural China. Thus, a part of this thesis intends to fulfill this knowledge 

gap. The spatial analysis approaches used in this thesis identified the spatial clustering of 

shigellosis in Jiangsu from 2011 to 2015. Both the Local Moran’s I and Getis-Ord Gi* were 

adopted to examine the size, intensity, and extent of shigellosis clustering across areas. Results 

show that clusters of high shigellosis incidence tend to concentrate in counties of the northwest 
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and south.  This result confirms the findings from Tang et al. (2014) that high shigellosis 

incidence clusters tend to persist in Jiangsu’s northwestern regions. While high incidence 

clusters were also evident in the south, particularly in the southwest, the intensity of those 

clusters has diminished greatly from 2011 to 2015.  Cold spot clusters continue to dominate in 

northeastern, eastern, and central regions.  The most notable difference between the results 

from the hot spot analysis and the incidence maps is that counties with the highest disease 

incidence do not always have the highest Gi* value. In Figure 4.3, this was evident amongst 

counties in the south, where some were not identified as a hot spot despite having a relatively 

high incidence in the incidence map. Instead, neighbouring counties with high incidence were 

highlighted as hot spots.  

A previous study by Tang et al. (2014) identified one of the key reasons for the 

persistence of shigellosis in counties of the northwestern region is the relative lack of safe 

water supply and sanitation. County level survey data from the northwestern county of Suining 

illustrates that overall tap water access has been increasing (Suining Statistical Yearbook 

(2014), but observations from the field visit show that access in Suining still appears to vary by 

geography. This has been confirmed by Hongxing Li et al. (2015), as they have found an 

imbalance in the spatial distribution of rural water supply infrastructure in China, but noted that 

the imbalance has improved in recent years. While local differences in water access is 

noticeable and may contribute unevenly to shigellosis incidence, it is difficult to draw 

conclusions given the lack of empirical data.  

Based on observations from a field visit in Suining and information shared during the 

field visit, none of the households had flushing toilets, as they are expensive to install and 

upkeep. Pour flush pit latrines are still the most common “improved” sanitation facility 
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adopted by most households in rural areas. Despite being considered an improved sanitation 

facility, pit latrines may encourage the process of cultivating untreated feces as night soil. This 

may have potential complications for drinking water quality as pathogens and contaminants 

from untreated night soil can leach and travel as runoff during storm events (Ling, 1993; Tong 

et al., 2017). The leaching of latrine contaminants into water has been confirmed by the 

findings of Ding et al. (2017). They found that dry latrines, septic tanks without covers, and 

fecal sewage drained into ponds and rivers were common in rural areas, especially near 

primary and secondary schools. Their study revealed that sanitation facilities close to water 

sources, as well as the lack of sterilization facilities contributed to Shigella infections. Thus, 

while the type of sanitation facility may contribute to shigellosis, it is difficult to draw strong 

conclusions given the lack of findings and field observations alone.  

Access to safely managed water and sanitation are dependent on facilitators and barriers, 

which includes the socioeconomic drivers that influence the health of populations. This has 

been previously discussed in the context of a conceptual framework. To name a few, this 

include income, employment, school, and the existence of a social support network, in 

particular amongst children. These socioeconomic determinants can facilitate or hinder access 

to safely managed water and sanitation. This conceptual framework contributed to objective 

two of this thesis and set the foundation for quantitative analysis used to meet objective four.  

The association between socioeconomic factors and shigellosis incidence has been 

explored both nationally across 31 provinces in China and at the county level in the southern 

province of Guangxi (Nie et al., 2014) and southwestern province of Sichuan (Ma et al., 2015), 

however no studies to date have investigated this relationship in the eastern province of Jiangsu, 

which has high shigellosis rates in some regions. This thesis aimed to fulfill this knowledge 
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gap by exploring the linkages between rural income per capita, percentage of rural employment, 

access to health institutions, access to hospital beds, and the percentage of rural households to 

shigellosis incidence across time and space. This thesis also aimed to understand how some of 

these factors could act as facilitators or barriers to safely managed water and sanitation. The 

modeling approaches adopted in this thesis are applicable, novel, and have not been applied in 

previous studies.  

The negative binomial regression is an applicable approach that has been applied in this 

thesis to study the association between socioeconomic factors and shigellosis per year from 

2011 to 2014. The non-spatial negative binomial regression results in this thesis showed that an 

increase in hospital beds per capita was associated with increased shigellosis incidence in 2011 

and 2012.  Along with the percentage of rural households, it was found that an increase in both 

variables were associated with reduced shigellosis incidence in 2014. Results from the negative 

binomial Bayesian spatial model confirmed with the previous finding using the negative 

binomial regression model that increasing percentage of rural households is associated with 

less reported cases of shigellosis. In addition, the Bayesian spatial model also found that higher 

number of health institutions was associated with higher shigellosis incidence. In contrast, 

increasing percentage of rural employment and more hospital beds per capita were associated 

with lower shigellosis incidence, which could point to areas with fewer, but larger hospitals.   

The association between rural areas and lower shigellosis incidence found in this thesis 

may be explained by the fact that urban areas have higher shigellosis incidence as a result of 

constant monitoring and reporting while rural areas are susceptible to underreporting (Cheng et 

al., 2017). This supports the findings by Xia et al. (2011) and Wang et al. (2005) as they have 

also found underreporting present in rural areas in China. In rural areas, there may also be a 
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significant number of unreported cases of diarrhea, illustrating that passive disease surveillance 

methods used by the CDC are not effective.  Data on shigellosis morbidity collected by the 

Jiangsu CDC may be susceptible to underreporting due to delayed or inconsistent diagnosis in 

rural settings (Lin Yin-Jun et al., 2013). In some cases, doctors might not order a laboratory 

stool test, and those that are tested may also return as false negative (Xia et al., 2011).  In rural 

areas, many rural residents may also attempt to treat shigellosis at home due to time, distance, 

and economic constraints associated with seeking assistance from a doctor. In addition, rural 

health care services may lack appropriate medications for treatment.  

Cases of shigellosis may be underreported due to several reasons. Correlogram results in 

this thesis showed that counties with a high percentage of rural households had generally lower 

income and lower number of hospital beds per capita, which affect access to health care. Rural 

areas in China have a lower rate on self-reported health status as “many rural areas are 

inhabited by children, the elderly, the chronically sick, and the less healthy” (Hesketh et al., 

2008).  

 Limited access to health care services in rural areas of Jiangsu may have contributed to 

underreporting (Chao et al., 2017). In rural areas, village clinics, townships health centres, and 

hospitals at the county level constitute the basic rural health care system. In the case example 

of Suining, patients with shigellosis can only receive diagnosis through their local clinics.  

Although there are plenty of primary health care institutions, they only offer the most basic 

health care equipment. Furthermore, doctors working in village clinics have the most basic 

training and certification, as they are not required to take qualifying exams for advanced work. 

Health needs that cannot be met by these institutions are further referred to hospitals and 
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specialized health institutions at the county level; this process is known as the village-town-

county three-tier referral system (Feng et al., 2017).  

 The persistence of underreporting in rural areas may also be influenced by behaviours 

and decisions of the individual. Despite the existence of the village-town-county referral 

system, Chinese patients do not have to follow this referral process and can choose their health 

institution based on their financial condition, location, convenience, and preference (Sun et al., 

2017). In areas where diarrhea cases are common, families may become less inclined to seek 

treatment for two reasons. Firstly, they may become accustomed to diarrhea as they think that 

they are able to treat it at home. Secondly, due to the unavailability of effective antibiotics to 

treat shigellosis, individuals may find it futile to seek help from a doctor at a clinic or hospital. 

Thus, both decisions can lead to underreporting.  

In rural areas, the decision to seek treatment amongst the rural population can also 

depend on health insurance coverage, which may influence underreporting.  To offset 

treatment and health care costs, there exists a rural health insurance known as the New Rural 

Cooperative Medical Scheme (NRCMS). About 98.9% of the rural population is enrolled in 

the NRCMS, but enrollment is voluntary (Liu et al., 2016). Up until 2009, most rural residents 

had no access to basic pension and health care insurance until the social insurance reform in 

recent years. Chinese patients do not have a regular family physician that they can seek for 

health check-ups, and as mentioned previously, they can choose where they seek health care 

based on their financial situation. While richer individuals in rural areas can afford to dominate 

inpatient care, some individuals in poorer rural areas cannot even afford health care expenses 

even after reimbursement from their insurance. Even those that can afford health care can fail 

to receive a follow up due to the lack of coordination amongst the various levels of health care 
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services (Sun et al., 2017). Thus, those that are wealthy and have access to insurance care have 

been found to be more likely to seek treatment compared to those that are uninsured.  

Similar to the relationship between rural households and shigellosis incidence, the 

negative binomial model in this thesis also found that an increase in percentage of rural 

employment was associated with lower shigellosis risk. While underreporting is a conjecture of 

this case, it can also be assumed the rural workers are less likely to consult a doctor due to time 

spent at work and the lack of accessibility to healthcare. It has been found that in rural areas of 

China, farmers are particularly susceptible to shigellosis (Xu et al., 2014; Nie et al., 2014), 

perhaps due to the lack of access to safely managed water and sanitation.   

 The model used to study the spatial relationships between socioeconomic factors and 

shigellosis is the Bayesian spatial model estimated using the integrated nested Laplace 

approximations (INLA). This novel approach was applied by Ma et al. (2015) in their study, 

but they used the Poisson distribution to model the data. In this thesis, the negative binomial 

Bayesian model was adopted since it was found to better account for overdispersed incidence 

counts and avail a better model fit.    

 Results from the Bayesian spatial model, which is based on the average shigellosis rate 

of all four years (2011-2014), found that increasing the number of hospital beds per 1,000 

people were associated with lower shigellosis risk. This result is valid as hospital bed 

distribution is geographically clustered in China (Pan & Shallcross, 2016). Moreover, this 

finding is similar to what Ma et al. (2015) found in Sichuan province and what H. Zhang et al. 

(2017) found in the Southwestern provinces (Sichuan, Tibet, and Yunnan). In general, there are 

more hospital beds in the urban areas of southern Jiangsu. Increasing the number of hospital 
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beds would allow more room for inpatient care. This would give patients the option to stay 

over for additional treatment and to avoid the lack of follow-ups that come with one-day visits. 

The association between health institutions and increasing shigellosis incidence found in 

this thesis using the Bayesian model confirms a similar finding by Nie et al. (2014). This may 

be due to the fact that areas with a higher number of health institutions per 10,000 people 

typically had smaller institutions such as clinics that are relatively less equipped. These areas 

may be rural as areas with more health institutions correspond to areas with a higher 

percentage of rural households, as shown in Figure 4.4.  

The relationship between rural income and shigellosis incidence was rarely explored in 

previous studies. In this thesis, it was found that the relationship between these factors are 

insignificant using both the negative binomial generalized linear model and the Bayesian 

negative binomial model in this thesis. This finding provides a contrast with the finding from 

Tang et al. (2014), which found that household income was negatively associated with 

shigellosis. Their study was conducted using a matched a case control (n=1200 cases of 

shigellosis and n=1270 control) representing all cities in Jiangsu province. The association 

between household income and shigellosis was calculated using an odds ratio analysis.  

The discrepancy in results between that of this thesis and the study by Tang et al. (2014) 

may be due to 1) choice of methodology, 2) sample size, and 3) choice of income indicator. 

Compared to a risk ratio, an odds ratio estimate is extremely sensitive when 1) the disease of 

interest is not rare (incidence rate is greater than 1%) and 2) its equivalent risk ratio is not close 

to 1. When the risk ratio is greater or less than 1, the odd ratio would be even greater or smaller, 

which may overestimate or underestimate the degree of risk. Secondly, the same size used in 
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this study is much smaller than what was used in the case control study. Lastly, Tang et al. 

(2014) assessed household income while this study assessed rural household income per capita, 

which may differ spatially. Therefore, more data and analysis are required to confirm the 

relationship between rural income and shigellosis using the negative binomial model and 

Bayesian negative binomial model.   

The non-spatial negative binomial regression model in this thesis has only identified the 

number of hospital beds per 1,000 people and the percentage of rural households to be the only 

statistically significant indicators in predicting shigellosis incidence. By taking into account the 

spatial relationships between areas, the Bayesian spatial model was able to provide additional 

information on how socioeconomic determinants were correlated with shigellosis incidence.  

However, more analysis is required to understand how these factors can facilitate or hinder 

access to safely managed water and sanitation. Future work should aim to confirm the findings 

of this thesis, and to determine whether the associated factors will significantly contribute to 

shigellosis incidence.   

5.3 Limitations 

This study was unable to cover all the factors listed under the themes within the 

conceptual framework. In the future, a follow-up study could be done to address these factors. 

Nevertheless, this thesis was still able to explore how major socioeconomic determinants were 

linked to shigellosis through empirical models, and provided information on the linkages 

between rural water and sanitation access and shigellosis.  

As previously discussed, the underreporting of shigellosis is a limitation of this study and 

a previous study by Ma et al. (2015). Future studies should 1) aim to understand and account 
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for the institutional and socioeconomic mechanisms behind diarrhea underreporting and 2) aim 

to utilize primary data that can precisely represent the number of shigellosis cases amongst the 

rural population. Nevertheless, data collected by the Chinese CDC still represents the most 

complete secondary source of incidence dataset to date, and thus was adopted in this thesis.  

This thesis is susceptible to several limitations in the data due to 1) lack of information 

on survey data collection procedure, 2) weak data quality assurance and control, and 3) 

availability and accessibility of shigellosis data. Firstly, there is a lack of information on the 

data collection procedure as none of the statistical books contained any information on how 

certain indicators were sampled. For instance, data collected on rural water sources and 

sanitation facilities were sampled from a small sample of 40 households in 2014, however no 

information was provided on the sampling technique adopted to collect this data. However, it 

can be assumed that the local bureau of statistics has adopted a systematic data collection 

process throughout the years.  

Secondly, city statistics bureaus were not consistent in selecting and reporting their 

indicators. For example, some cities included the number of first aid centers in the total count 

for the number of health institutions, while others did not. This could impact the regression 

results. In addition, when socioeconomic information was reported at the city and county level, 

data reported at the city level included information on the city and also on the nearby counties. 

Since this coinciding information was not clarified in the statistical yearbooks, more 

preprocessing steps were required. Despite this, none of the data was missing and the spatial 

distribution in socioeconomic conditions across counties can still be identified and assessed.  



 111 

Thirdly, shigellosis data obtained in aggregated form limits the application of statistical 

analyses that can be performed to explore the distribution of shigellosis cases within each 

county. The aggregated form of shigellosis data (cases per county) also limits the usefulness of 

other effective regression approaches (e.g. geographically weighted regression) that may be 

more effective at studying the spatial association between facilitators and barriers and 

shigellosis incidence. However, a Bayesian spatial regression model was adopted to account 

for the spatial effects between areas.  

It is important to note that survey data have inherent errors and are subject to reliability 

concerns when adopting them as a data source. A survey samples only a small portion of the 

population and is subject to sampling and non-sampling errors. Usually an estimated error 

threshold is determined; if an estimated sampling error is greater than the threshold, the data is 

considered too unreliable to be published. However, estimates that barely qualified can still be 

published.  On the other hand, it is difficult to identify and evaluate the scope of many non-

sampling errors. Non-sampling errors include coverage and response. Coverage errors arise 

when the sampled population is not representative of the target population, while response 

errors arise when there is a non-response from the individual and household level. These errors 

can greatly affect the accuracy of survey results however many of these errors are inherent in 

research reliant on survey data.  

The modifiable areal unit problem (MAUP) exists and creates a statistical bias when 

conducting any spatial research using choropleth maps and small area data. The spatial 

aggregation of point-based measures into administrative divisions such as districts, counties, 

and provinces can significantly affect the results of hot spot and regression analyses (King, 

1969). For instance, a hot spot analysis conducted on choropleth map created using 
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neighbourhood boundaries would yield significantly different results compared to a choropleth 

map created using county boundaries.  

Regression results of socioeconomic variables can be extremely sensitive to MAUP as it 

is highly dependent on scale and zoning system. Fotheringham and Wong (1991) found in their 

study when data was aggregated to 800 zones, every 0.1 increase in the proportion of elderly 

yielded a $308 decrease in the predicted mean family income. When the same data was 

aggregated to 25 zones, the same increase resulted in a decrease of $2654 in predicted mean 

family income.  In addition, MAUP can be unpredictable in multivariate regression analysis as 

it may interact with the covariances between the independent variables. However, the MAUP 

problem is common and present in all research adopting small area data.  

Another issue associated with analyzing data using choropleth maps is the edge effect. 

This occurs when there is interdependence between counties near the study area and outside of 

the bounded region (Diggle, 2003). It is difficult to account for this effect because regions 

outside of the bounded area are not analyzed. Thus it is important not to overinterpret counties 

with high z-scores located near the edges of the study area as they are only based on 

neighbours within the bounded region (O’Sullivan & Unwin, 2010).  

5.4 Challenges with Secondary Data in Data Deprived Areas  

Collecting secondary data in rural areas can be particularly challenging, especially in 

China. These challenges occur during the following stages: 1) finding what data is available for 

use, 2) requesting data from relevant authorities, and 3) identifying the limitations in the data, 

reliability of the data, and the extent of its representation. In this section, the challenges faced 
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while collecting secondary data in Jiangsu, China will be discussed. In addition, best practices 

taken to verify the reliability of the data used in this study will also be discussed.  

Determining what data is available to access for research can be particularly challenging. 

In China, secondary data on environmental and socioeconomic conditions in rural areas are not 

available online. Researching what data is available online through databases and past research 

articles can help to confirm what information is available. In this case, my research told me 

that infectious disease incidence data could be obtained from the Chinese CDC. Rural 

socioeconomic and water and sanitation data are available through county statistical yearbooks, 

but they are only available in hard copies. Thus, collecting this data may require a trip to the 

rural county and relevant agency. Having strong research connections and collaborators on the 

ground can significantly help to facilitate this process. 

Accessing the data used in this thesis required contacting relevant authorities and sending 

in a request through a local institution. The data collected for this thesis was requested through 

a local academic and research institution in Jiangsu, Nanjing University. This process can be 

long as it can take weeks to gain approval from both the university and data agency. When 

accessing health and disease data, it is important to note that the authorities will choose what 

data can be shared. Health and disease data, for the most part, is confidential in China. 

According to Sorenson et al. (1996), “it is well-known that general practitioners and hospitals 

do not always respond or do not accept the use of their records for research” in epidemiology 

and health. In the case that certain data cannot be obtained, an alternate plan should be devised.  

After obtaining access to the data, reliability of the data should be acknowledged. When 

evaluating the reliability of the data, it is important to understand how the information in the 
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dataset was generated, how it was coded, and how consistent coding was across sites and at 

different times (Kimberlein & Winterstein, 2008). Validity and rigour are also supported when 

the same data set have been used by other peer-reviewed studies. For example, shigellosis 

incidence data was collected from the Jiangsu CDC, which sources its data from all admission 

reports of shigellosis from clinics and hospitals in Jiangsu province. This data was presented as 

counts and rates and was consistent for all five years from 2011 to 2015. Furthermore, 

shigellosis data from the CDC in China have been used by several studies (Tang et al., 2014; 

Ma et al., 2015; Nie et al., 2014; Xu et al., 2014).  

In addition, socioeconomic data adopted in this thesis was collected in count form. This 

applies to factors used - the number of health institutions, number of hospital beds, number of 

rural households, and number of rural employees. In the statistical yearbook, these counts were 

reported in exact values to ensure they accurately represent the population. In addition, the 

counts for these indicators reported in the county statistical yearbooks also match those 

reported in the provincial and national level statistical yearbooks. Furthermore, these indicators 

have also been adopted in other peer-reviewed publications (Nie et al., 2014; Ma et al., 2015). 

In this thesis, some indicators were converted to a proportion using the total count for each 

indicator so that comparisons between different areas can be made. 

When socioeconomic and shigellosis incidence were geocoded into choropleth maps, 

they were also checked to ensure that they fulfilled the elements of spatial data quality (Guptill 

and Morrison et al., 2013). In the context of choropleth maps, this included lineage, positional 

accuracy, attribute accuracy, logical consistency, and completeness (Statistics Canada, 2015). 

The key limitation faced while working with the socioeconomic dataset was overcoming the 

challenge in completeness. During the regression analysis, socioeconomic data was not 
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available for each individual district located within a major city. In this case, socioeconomic 

values was aggregated and linked to all the districts within that city. This created a geographic 

discrepancy, as spatial analysis could no longer be fully conducted at the county and district 

level. However, this was fully accounted for in the regression through an offset term, which is 

the exposed population based on all districts within the city and was used to adjust the rate of 

shigellosis.  

The challenge associated with the water and sanitation data in this thesis was verifying 

how this secondary data was collected as the sampling method was not disclosed in the 

statistical yearbook.  There is no way of knowing if the sample is representative of the 

population. Additionally, previous studies have not adopted this data before for analysis. While 

these limitations can greatly affect the reliability of the data, it is also important to 

acknowledge that this is the current “best” available data from a secondary source that can be 

readily obtained by the public for research purposes. When adopting such data for research, it 

is important to interpret the results with caution and refrain from drawing strong conclusions. 

Thus, only an exploratory analysis was conducted using this data. Identifying this limitation 

also helps to aid researchers continuing this work to find ways to improve this data to establish 

rigour. 

5.5 Contributions 

This thesis makes several contributions to existing literature on shigellosis in China. 

Firstly, this thesis contributes information on the spatial and temporal distribution of 

shigellosis incidence at the county level across Jiangsu, China from 2011 to 2015. The findings 
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of this analysis are up to date and can be translated for key stakeholders in health and social 

policy to target areas of high shigellosis incidence.  

Secondly, this thesis identified the facilitators and barriers to safely managed water and 

sanitation, which is directly linked to shigellosis incidence, through a conceptual framework. 

The socioeconomic determinants of health and environmental policy can act as facilitators and 

barriers to achieving access to safely managed water and sanitation, which affects the 

incidence of shigellosis. This conceptual framework was used to set the direction of the 

quantitative analyses, which 1) explored the association between socioeconomic determinants 

of health and shigellosis risk and 2) the relationships between water and sanitation access and 

shigellosis incidence. However more analysis is required to understand how characteristics of 

these themes can act as facilitators and barriers as not all the factors identified in the 

conceptual framework were explored in this thesis. 

Furthermore, this thesis presents the only study that has investigated the spatio-temporal 

association between socioeconomic determinants and shigellosis incidence in the eastern 

province of Jiangsu. Results from the negative binomial model showed that in 2011, 2012, and 

2014, the number of hospital beds was a reoccurring significant indicator of shigellosis risk. 

The spatial Bayesian negative binomial model in this thesis found that areas with a higher 

percentage of rural households were associated with lower shigellosis risk. Furthermore, 

increasing the percentage of rural employment and the number of hospital beds, respectively, 

was linked with decreased shigellosis risk, while increasing the number of hospitals was 

associated with increased shigellosis risk. The findings of this thesis confirm that of previous 

studies conducted in China. It is recommended that these relationships be further explored 

using various methods to confirm the validity of the findings and its implications.  
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This study has also illustrated the application of a negative binomial regression model 

and a negative binomial Bayesian spatial model in studying the spatio-temporal association 

between socioeconomic factors and shigellosis risk. Few studies have adopted a negative 

binomial regression model or a Bayesian negative binomial regression spatial model to study 

infectious disease or diarrhea incidence. This study used both models, which allowed results to 

be compared and contrasted. While these models have proven to be suitable for fitting 

overdispersed infectious disease counts, a bigger sample size of disease incidence data should 

be used in the future to avail more robust results.  

5.6 Directions for Future Research  

Since this thesis was predominantly an exploratory study, a few recommendations are 

made to assist future investigations. Firstly, the varying strength of the association between 

various predictors and disease based on location should be studied further. For instance, certain 

socioeconomic determinants may be considered significant predictors of a disease in one 

county, but not in other counties. To address this limitation, it would be ideal to incorporate a 

geographically weighted regression model with the current model to ensure that predictors are 

properly weighted based on their importance and relevance in each county. 

Secondly, a more active surveillance method may be required to gauge the occurrence of 

shigellosis. Current passive disease surveillance methods have been identified to undermine the 

occurrence of shigellosis amongst rural populations. Future studies should aim to understand 

and account for the institutional and socioeconomic mechanisms behind diarrhea 

underreporting. 
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Thirdly, while the exploratory analysis in this thesis aimed to understand rural water and 

sanitation access, findings were inconclusive. Thus, future studies should aim to understand 

how water and sanitation access in rural townships contributes to shigellosis.  In addition, the 

effectiveness of the water source and sanitation facility adopted should also be explored over 

time. For instance, in Suining county, it was observed that the existence of “improved” 

sanitation facilities such as pour flush pit latrines has not shown to alleviate shigellosis 

incidence. Considering the ubiquitous of the pour flush pit latrine in rural China, this should be 

further explored.  

Furthermore, it is important for future work to incorporate data on hygiene. In a review 

conducted by Bartram and Cairncross (2010), hand washing and better hygiene was found to 

have the greatest effect on reducing exposure to diarrhea. Perception of hygiene, as well as 

advocacy efforts of the government for better hygiene and hand washing should be further 

explored in the rural setting. It is also important to identify the interaction and relationships 

between hygiene and sanitation.  

In addition, because this study used data that was predominantly from the period of the 

MDGs, future research that aims to follow up on this study should look at changes in the SDG 

era. Progress made in socioeconomic determinants and water and sanitation access will 

continue to change and improve with time. Thus, future studies should continue to explore the 

changes in shigellosis over time and space and how its incidence is affected by socioeconomic 

and environmental factors.   

Lastly, it would be more feasible to combine other theoretical approaches (e.g. social 

interactionist) for a follow-up study. Integrating another approach can help to gain a better 
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understanding of how people cope with current sanitation practices and how increased 

awareness of adequate sanitation can help to reduce the prevalence of waterborne diseases such 

as shigellosis.  
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8 APPENDIX A: REGRESSION RESULTS 

Table 1 Poisson regression model results 

Year Variable 
Coefficient 
Estimate 

SE 
P – value 

(>|z|) 
Significance 

2011 (Intercept) 2.61E+00 1.52E-01 2.00E-16 *** 

 
Rural -1.33E-04 1.48E-03 2.00E-16 *** 

 
HealthH -2.12E-01 1.68E-02 2.00E-16 *** 

 
HospBeds 5.33E-01 1.54E-02 2.00E-16 *** 

 
Income -9.29E-05 6.74E-06 3.12E-03 ** 

  Emply 
-8.74E-03 2.96E-03 

<2.00E-
16 

*** 

2012 (Intercept) 4.18E-01 1.79E-01 1.94E-02 * 

 
Rural -4.14E-03 1.14E-03 2.63E-04 *** 

 
HealthH -4.20E-02 2.29E-02 6.68E-02 . 

 
HospBeds 

5.35E-01 1.22E-02 
<2.00E-

16 
*** 

 
Income -2.13E-05 7.01E-06 2.42E-03 ** 

  Emply 4.22E-03 1.77E-03 1.70E-02 * 

2013 (Intercept) -2.05E-02 1.95E-01 9.16E-01  

 
Rural 

-3.31E-02 2.71E-03 
<2.00E-

16 
*** 

 
HealthH 1.02E-01 2.12E-02 1.52E-06 *** 

 
HospBeds 

3.71E-01 1.59E-02 
<2.00E-

16 
*** 

 
Income 3.25E-05 6.15E-06 1.27E-07 *** 

  Emply 3.40E-02 4.27E-03 1.56E-15 *** 

2014 (Intercept) 2.24E+00 1.83E+00 2.27E-01  

 
Rural -9.08E-02 3.05E-02 4.46E-03 ** 

 
HealthH 1.16E-01 1.45E-01 4.26E-01  

 
HospBeds -8.60E-03 1.13E-01 9.40E-01  

 
Income 3.70E-05 5.83E-05 5.29E-01  

  Emply 9.51E-02 4.53E-02 4.07E-02 * 

Signif. codes: 0‘***’, 0.001‘**’, 0.01‘*’, 0.05‘.’, 0.1‘ ’ ,1 
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Table 2 Negative binomial regression model results 

 

Year Variable 
Coefficient 
Estimate 

SE 
P – value 

(>|z|) 
Significance 

2011 (Intercept) 3.88E+00 1.66E+00 0.0195 * 

 
Rural -9.31E-03 1.89E-02 0.6222  

 
HealthH -1.76E-01 1.43E-01 0.2183  

 
HospBeds 3.72E-01 1.50E-01 0.0127 * 

 
Income -1.18E-04 7.72E-05 0.127  

 
Emply -7.14E-03 2.78E-02 0.7971  

2012 (Intercept) 1.29E+00 2.07E+00 0.5334  

 
Rural -2.21E-02 1.61E-02 0.1691  

 
HealthH 1.12E-01 2.00E-01 0.5743  

 
HospBeds 2.80E-01 1.62E-01 0.0834 . 

 
Income 3.32E-06 7.98E-05 0.9668  

 
Emply 1.22E-02 1.73E-02 0.4806  

2013 (Intercept) 3.24E+00 2.25E+00 0.15  

 
Rural -3.46E-02 2.62E-02 0.186  

 
HealthH 1.44E-01 1.91E-01 0.45  

 
HospBeds 3.33E-02 1.75E-01 0.849  

 
Income -1.72E-05 7.00E-05 0.806  

 
Emply 3.70E-03 3.55E-02 0.917  

2014 (Intercept) 4.58E+00 1.91E+00 0.01632 * 

 
Rural -6.89E-02 2.55E-02 0.00693 ** 

 
HealthH 3.95E-03 1.30E-01 0.97576  

 
HospBeds -2.28E-01 1.31E-01 0.08319 . 

 
Income -3.95E-06 5.90E-05 0.94655  

 
Emply 5.52E-02 3.65E-02 0.1301  

Signif. codes: 0‘***’, 0.001‘**’, 0.01‘*’, 0.05‘.’, 0.1‘ ’ ,1 
 
 

 

Table 3 Negative binomial model with significant variable(s) only  

Year Variable Model  
Coefficient 
Estimate 

SE 
P – value 

(>|z|) 
Significance 

2011 (Intercept) 1 6.63E-01 3.92E-01 9.07E-02 . 

  HospBeds   4.43E-01 1.12E-01 7.97E-05 *** 

2012 (Intercept) 1 5.21E-01 4.85E-01 2.83E-01  
  HospBeds   3.73E-01 1.23E-01 2.46E-03 ** 

2014 (Intercept) 1 4.24211 1.19757 0.000397 *** 

 
HospBeds 

 -0.2685 0.13262 0.042907 * 

 
Rural 

 -0.02673 0.01159 0.021167 * 

Signif. codes: 0‘***’, 0.001‘**’, 0.01‘*’, 0.05‘.’, 0.1‘ ’  
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10 APPENDIX B: SCATTER PLOTS

 

Figure 1 2011 scatterplots  

 

Figure 2 2012 scatterplots 
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Figure 3  2013 scatterplots 
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12 APPENDIX C: EXPLORATORY PLOTS 

   

 

Figure 1 Deviance Residuals VS Fitted Values Plots  
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Figure 2 Normal Q-Q Plots 
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APPENDIX D: SOCIOECONOMIC DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  2011  

  Legend  Obs   
County 

Rural Households%    Health Institutions/capita    Hospital beds/capita     Rural Income/capita        Rural Emply 
% 

 

142 

 

1 Nanjing City 30.42 2.80 4.25 13108 15.05 AD Represents all districts within the city 

2 Wuxi City (AD) 28.14 3.00 5.36 16438 12.13  

3 Jiangyin City 57.91 2.88 3.86 17460 24.96  

4 Yixing City 58.18 3.22 2.73 14949 29.56  

5 Xuzhou City (AD) 71.55 4.83 6.27 10934 28.53  

6 Feng County 85.71 5.55 2.39 8642 56.92  

7 Pei County 65.60 4.35 2.90 10001 44.33  

8 Suining County 80.27 6.27 2.43 8384 59.01  

9 Xinyi City 71.30 4.82 2.17 8634 47.85  

10 Pizhou City 80.44 5.60 2.39 9931 46.98  

11 Changzhou City (AD) 54.51 2.13 3.81 15185 24.08  

12 Liyang City 74.93 2.84 3.12 13505 42.21  

13 Jintan City 67.59 3.17 3.32 13812 36.97  

14 Suzhou City (AD) 26.25 2.54 4.63 17138 9.90  

15 Changshu City 56.00 2.93 3.89 17289 27.04  

16 Zhangjiagang City 58.36 3.33 4.48 17252 25.99  

17 Kunshan City 42.89 2.53 2.78 17374 12.90  

18 Wujiang 65.38 2.72 3.69 17150 25.57  

19 Taicang City 48.20 2.65 4.43 17201 23.29  

20 Nantong City (AD) 56.91 4.67 5.50 12491 28.88  

21 Haian County 72.58 4.67 4.18 11216 44.94  

22 Rudong County 81.81 4.75 2.77 10786 48.93  

23 Qidong City 85.04 3.93 3.27 12535 54.65  

24 Rugao City 77.75 4.22 2.92 10312 48.18  

25 Haimen City 78.49 4.67 3.54 13453 55.30  

26 Liangyungang City (AD) 27.48 5.98 5.43 9281 16.04  

27 Ganyu County 69.17 7.43 2.08 9068 44.68  

28 Donghai City 81.73 5.68 1.78 8701 49.12  

29 Guanyun County 73.01 5.31 2.14 7839 45.61  

30 Guannan County 75.77 5.81 2.98 7451 51.40  

31 Huaian City (AD) 54.98 4.08 3.84 9307 36.92  

32 Lianshui County 78.17 5.34 2.87 8043 58.70  

33 Hongze County 66.05 4.07 1.99 9532 54.83  

34 Xuyi County 70.25 4.91 3.03 8807 51.63  

35 Jinhu County 62.96 3.94 2.35 9336 40.57  

36 Yancheng City (AD) 56.37 4.06 4.51 11606 33.38  

37 Xiangshui County 67.31 4.04 2.73 8673 43.17  

38 Binhai County 73.19 4.43 2.31 9197 46.45  

39 Funing County 59.42 4.47 2.11 9299 44.31  

40 Sheyang County 68.05 3.60 2.61 10377 39.79  

41 Jianhu County 63.33 5.07 3.06 10358 41.14  

42 Dongtai City 81.26 3.92 3.64 12056 48.99  

43 Dafeng City 74.56 4.52 2.98 11941 44.97  

44 Yangzhou City (AD) 66.43 4.62 4.73 11217 33.46  

45 Baoying County 70.74 4.97 2.38 10327 55.72  

46 Yizheng City 62.10 3.88 3.14 10826 40.75  

47 Gaoyou City 71.11 3.73 2.65 10449 48.16  

48 Zhenjiang City (AD) 38.15 3.07 5.17 12165 21.24  

49 Danyang City 69.59 2.44 2.71 13426 37.47  

50 Yangzhong City 71.65 2.49 2.07 14692 37.03  

51 Jurong City 67.78 2.84 2.21 11692 40.75  

52 Taizhou City (AD) 55.68 3.85 5.04 11046 35.83  

53 Xinghua City 71.40 5.29 2.68 10439 48.12  

54 Jingjiang City 66.23 4.83 4.17 12116 39.85  

55 Taixing City 77.87 3.33 2.69 11047 51.76  

56 Jiangyan City 79.16 4.21 3.49 10802 47.74  

57 Suqian City (AD) 68.08 5.84 3.30 8344 40.93  

58 Shuyang County 76.65 6.12 2.66 8383 56.01  

59 Siyang County 70.84 7.86 3.42 8379 47.62  

60 Sihong County 66.38 6.75 3.50 8189 42.51  
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1 Nanjing City 29.95 2.82 4.63 14786 14.88 AD Represents all districts within the city 

2 Wuxi City (AD) 27.03 2.98 5.45 18830 11.77  

3 Jiangyin City 56.41 2.97 4.23 19660 24.18  

4 Yixing City 56.79 3.18 3.21 16862 28.59  

5 Xuzhou City (AD) 51.77 4.64 6.98 12421 28.05  

6 Feng County 78.67 5.49 3.50 9783 54.76  

7 Pei County 63.18 4.55 3.40 11351 43.64  

8 Suining County 78.15 6.14 2.81 9541 57.09  

9 Xinyi City 70.11 4.83 2.74 9808 47.09  

10 Pizhou City 78.49 5.43 2.88 11282 46.67  

11 Changzhou City (AD) 51.53 2.17 4.71 17582 23.04  

12 Liyang City 75.88 2.89 3.41 15261 42.08  

13 Jintan City 67.67 3.17 3.67 15608 36.41  

14 Suzhou City (AD) 34.02 2.70 4.65 19276 12.98  

15 Changshu City 54.78 3.01 4.28 19467 26.37  

16 Zhangjiagang City 57.07 3.30 4.84 19460 25.45  

17 Kunshan City 41.73 2.65 3.08 19563 12.94  

18 Taicang City 47.98 3.16 4.50 19411 22.86  

19 Nantong City (AD) 55.52 4.61 5.82 13469 27.78  

20 Haian County 72.47 4.67 4.38 12663 44.06  

21 Rudong County 81.82 4.65 2.87 12156 48.15  

22 Qidong City 85.16 3.92 3.44 14127 54.03  

23 Rugao City 78.28 4.17 3.70 11663 48.17  

24 Haimen City 78.56 4.64 3.75 15162 55.05  

25 Liangyungang City (AD) 29.76 5.54 6.02 10525 52.41  

26 Ganyu County 69.26 7.39 2.81 10310 3.94  

27 Donghai City 79.81 5.57 2.68 9910 47.56  

28 Guanyun County 73.97 5.42 2.95 8929 47.50  

29 Guannan County 73.66 5.68 3.79 8472 51.54  

30 Huaian City (AD) 54.09 4.22 4.65 10585 36.64  

31 Lianshui County 77.73 5.56 3.85 9185 60.21  

32 Hongze County 64.77 4.03 3.77 10838 52.75  

33 Xuyi County 69.93 4.98 3.98 10031 49.60  

34 Jinhu County 63.14 4.01 2.64 10624 40.57  

35 Yancheng City (AD) 55.82 4.07 5.21 13081 33.07  

36 Xiangshui County 67.20 4.25 3.13 9861 42.18  

37 Binhai County 73.78 4.52 2.57 10429 47.59  

38 Funing County 57.82 4.65 3.11 10545 44.31  

39 Sheyang County 67.11 3.64 2.86 11726 39.13  

40 Jianhu County 62.08 4.84 3.12 11705 40.99  

41 Dongtai City 81.80 3.95 4.30 13647 49.51  

42 Dafeng City 74.73 4.71 3.55 13517 44.69  

43 Yangzhou City (AD) 65.46 4.49 4.90 13627 33.24  

44 Baoying County 72.44 4.69 2.56 11670 55.52  

45 Yizheng City 62.82 3.39 3.21 12244 40.55  

46 Gaoyou City 73.26 3.73 2.90 11828 48.51  

47 Zhenjiang City (AD) 37.66 3.28 6.01 15900 20.58  

48 Danyang City 69.63 2.48 2.95 15171 37.06  

49 Yangzhong City 70.66 2.26 2.48 16631 37.75  

50 Jurong City 68.06 3.01 2.45 13235 40.32  

51 Taizhou City (AD) 56.49 4.05 5.67 13444 35.80  

52 Xinghua City 70.86 5.37 3.15 11827 48.60  

53 Jingjiang City 66.77 4.51 4.61 13715 39.05  

54 Taixing City 78.61 3.50 3.24 12505 52.41  

55 Jiangyan City 77.43 4.11 3.78 12228 47.26  

56 Suqian City (AD) 69.97 5.34 3.56 9514 42.70  

57 Shuyang County 78.30 4.37 3.15 9557 53.94  

58 Siyang County 74.50 4.86 3.48 9541 46.62  

59 Sihong County 67.89 5.54 3.53 9327 41.92  
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1 Nanjing City 29.43 2.83 5.10 16531 14.69 AD Represents all districts within the city 

2 Wuxi City (AD) 25.81 3.13 5.51 23637 11.23 Imputed for missing data 

3 Jiangyin City 55.73 3.02 4.54 21882 24.03  

4 Yixing City 56.26 3.26 3.66 18783 28.35  

5 Xuzhou City (AD) 31.16 4.84 7.78 13924 17.49  

6 Feng County 76.70 5.44 3.75 10957 57.14  

7 Pei County 63.64 5.37 3.67 12725 44.84  

8 Suining County 77.36 6.09 3.42 10686 57.96  

9 Xinyi City 69.40 4.93 3.11 10979 51.41  

10 Pizhou City 77.29 5.16 3.16 12635 47.60  

11 Changzhou City (AD) 50.47 2.16 4.87 19750 22.69  

12 Liyang City 75.85 2.89 3.65 16985 41.69  

13 Jintan City 68.06 3.12 3.73 17371 36.00  

14 Suzhou City (AD) 32.75 2.72 5.06 21389 12.75  

15 Changshu City 54.98 2.96 4.55 21691 25.96  

16 Zhangjiagang City 56.44 3.24 6.30 21689 24.90  

17 Kunshan City 41.03 2.71 3.63 21793 12.72  

18 Taicang City 47.14 3.15 4.66 21605 22.52  

19 Nantong City (AD) 53.34 4.48 6.21 15710 26.00  

20 Haian County 66.94 4.47 4.57 14119 43.63  

21 Rudong County 82.82 4.69 3.29 13529 48.50  

22 Qidong City 84.96 3.96 3.53 15766 52.63  

23 Rugao City 78.35 4.01 3.81 13004 48.17  

24 Haimen City 78.13 4.57 3.78 16920 54.54  

25 Liangyungang City (AD) 29.56 5.81 6.30 12366 16.68  

26 Ganyu County 71.33 7.30 2.94 11564 45.40  

27 Donghai City 77.74 5.52 2.89 11118 46.38  

28 Guanyun County 73.39 5.05 2.98 10016 47.20  

29 Guannan County 71.58 5.65 4.20 9488 50.70  

30 Huaian City (AD) 53.86 4.08 5.21   11875  36.98  

31 Lianshui County 75.56 5.49 4.42 10333 59.31  

32 Hongze County 64.52 3.95 4.34 12160 51.26  

33 Xuyi County 69.48 5.16 4.74 11255 50.80  

34 Jinhu County 63.42 4.08 3.92 11931 41.46  

35 Yancheng City (AD) 56.07 4.09 5.63   13416  33.06  

36 Xiangshui County 68.82 4.28 4.03 11084 42.27  

37 Binhai County 75.10 4.29 4.10 11702 48.18  

38 Funing County 60.55 4.59 3.27 11853 44.77  

39 Sheyang County 67.10 3.61 3.15 13121 39.17  

40 Jianhu County 63.18 4.75 3.52 13156 41.12  

41 Dongtai City 81.42 3.97 4.47 15312 48.80  

42 Dafeng City 75.27 4.79 4.13 15166 44.69  

43 Yangzhou City (AD) 65.59 4.33 5.25 15544 33.05  

44 Baoying County 72.83 4.51 2.72 13093 55.85  

45 Yizheng City 62.86 3.22 3.58 13701 40.51  

46 Gaoyou City 74.72 3.35 3.33 13248 48.86  

47 Zhenjiang City (AD) 38.81 3.33 6.71 16577 20.45  

48 Danyang City 68.19 2.42 3.40 16983 36.99  

49 Yangzhong City 70.29 2.08 2.84 18644 38.32  

50 Jurong City 68.56 2.92 2.89 14824 39.98  

51 Taizhou City (AD) 65.70 4.09 4.95 14976 41.27  

52 Xinghua City 71.05 5.35 3.65 13247 48.75  

53 Jingjiang City 67.12 4.34 5.03 15347 39.78  

54 Taixing City 78.81 3.38 3.63 13993 52.45  

55 Suqian City (AD) 73.29 4.53 3.99 10665 41.22  

56 Shuyang County 77.04 4.85 3.58 10799 54.12  

57 Siyang County 72.02 4.76 4.68 10765 46.49  

58 Sihong County 65.79 5.56 3.89 10540 42.49  
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1 Nanjing City 29.18 2.90 5.32 17661 14.51 AD Represents all districts within the city 

2 Wuxi City (AD) 24.68 2.54 4.86 26367 8.60  

3 Jiangyin City 55.20 8.70 4.70 23965 23.57  

4 Yixing City 56.00 3.48 3.88 20178 27.73  

5 Xuzhou City (AD) 28.93 4.95 8.17 15100 16.10  

6 Feng County 73.10 5.91 4.20 11757 56.22  

7 Pei County 67.94 5.51 4.02 13249 43.98  

8 Suining County 75.74 6.07 3.49 11600 58.71  

9 Xinyi City 68.41 5.16 3.44 12140 50.10  

10 Pizhou City 75.16 5.39 3.40 12846 46.76  

11 Changzhou City (AD) 49.21 2.25 5.42 21332 23.34  

12 Liyang City 75.81 3.05 5.01 18222 41.66  

13 Jintan City 68.54 3.41 4.92 18733 35.82  

14 Suzhou City (AD) 31.85 2.72 5.42 23296 12.53  

15 Changshu City 54.60 3.01 4.67 23767 25.69  

16 Zhangjiagang City 55.87 3.34 6.86 23722 24.51  

17 Kunshan City 40.29 2.87 3.82 23921 12.63  

18 Taicang City 46.11 3.20 5.05 23590 22.20  

19 Nantong City (AD) 50.21 4.53 9.70 17051 24.73  

20 Haian County 72.65 4.63 4.89 15155 43.23  

21 Rudong County 82.62 4.69 3.35 14494 48.74  

22 Qidong City 85.25 4.46 3.99 16762 52.46  

23 Rugao City 78.11 4.07 4.13 14210 47.85  

24 Haimen City 77.60 4.49 3.86 17419 54.29  

25 Lianyungang City (AD) 51.64 6.63 4.85 12650 29.82  

26 Donghai City 76.99 5.74 2.94 12171 45.97  

27 Guanyun County 73.83 5.19 3.06 10864 47.64  

28 Guannan County 70.92 5.85 4.41 10442 48.97  

29 Huaian City (AD) 53.47 4.22 5.50 11922 36.57  

30 Lianshui County 75.23 5.68 4.44 11206 58.45  

31 Hongze County 63.92 4.22 4.46 13161 51.35  

32 Xuyi County 70.65 5.44 4.78 12175 50.47  

33 Jinhu County 63.54 4.45 4.47 13131 41.19  

34 Yancheng City (AD) 55.96 4.24 6.09 17232 33.01  

35 Xiangshui County 69.26 4.68 4.53 11964 42.53  

36 Binhai County 74.18 4.42 4.66 12524 47.71  

37 Funing County 60.13 4.67 4.39 12959 44.36  

38 Sheyang County 66.76 3.78 3.65 13848 39.13  

39 Jianhu County 64.10 4.93 4.53 14345 41.42  

40 Dongtai City 81.39 4.45 5.32 16565 49.01  

41 Dafeng City 75.86 4.93 4.58 16414 44.25  

42 Yangzhou City (AD) 64.77 4.27 5.35 18141 33.70  

43 Baoying County 73.04 4.49 2.92 14246 55.51  

44 Yizheng City 62.94 2.89 3.69 14846 40.39  

45 Gaoyou City 74.92 3.33 3.43 14335 49.05  

46 Zhenjiang City (AD) 37.72 3.39 6.82 16725 20.58  

47 Danyang City 69.99 2.52 3.39 18250 36.98  

48 Yangzhong City 72.09 2.34 2.84 20078 38.29  

49 Jurong City 68.48 3.11 2.94 15893 40.73  

50 Taizhou City (AD) 66.58 3.98 5.55 15354 41.10  

51 Xinghua City 71.43 5.32 3.41 14258 48.66  

52 Jingjiang City 66.93 4.02 5.37 16570 39.68  

53 Taixing City 78.73 3.62 3.68 15066 52.54  

54 Suqian City (AD) 71.96 4.73 4.13 11678 41.62  

55 Shuyang County 76.59 5.07 3.61 11828 53.04  

56 Siyang County 74.04 5.01 5.13 11690 46.95  

57 Sihong County 65.47 5.79 4.34 11405 42.68  

 


