
Efficient Structure-aware OLAP
Query Processing over Large

Property Graphs

by

Yan Zhang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2017

c© Yan Zhang 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Property graph model is a semantically rich model for real-world applications that
represent their data as graphs, e.g., communication networks, social networks, financial
transaction networks. On-Line Analytical Processing (OLAP) provides an important tool
for data analysis by allowing users to perform data aggregation through different combina-
tions of dimensions. For example, given a Q&A forum dataset, in order to study if there
is a correlation between a poster’s age and his or her post quality, one may ask what is
the average age of users grouped by the post score. Another example is that, in the field
of music industry, it may be interesting to ask what total sales of records are with respect
to different music companies and years so as to conduct a market activity analysis.

Surprisingly, current graph databases do not efficiently support OLAP aggregation
queries. In most cases, such queries are transformed to a sequence of join operations, and
the system computes everything from scratch. For example, Neo4j, a state-of-art graph
database system, processes each OLAP query in two steps. First, it expands the nodes and
edges that satisfy the given query constraint. Then it performs the aggregation over all the
valid substructures returned from the first step. However, in data warehousing workloads,
it is common to have repeated queries from time to time. Computing everything from
scratch would be highly inefficient.

Materialization and view maintenance techniques developed in traditional RDBMS have
proved to be efficient for processing OLAP workloads. Following the generic materializa-
tion methodology, in this thesis we develop a structure-aware cuboid caching solution to
efficiently support OLAP aggregation queries over property graphs. Structure-aware means
that our solution takes both heterogeneous attributes and graph topological information
into consideration. The essential idea is to precompute and materialize some views based
on statistics of history workload, such that future query processing can be accelerated.

We implement a prototype system on top of Neo4j. Empirical studies over real-world
property graphs show that, with a reasonable space cost constraint, our solution on average
achieves 15-30x speedup over native Neo4j in time efficiency.

iii

Acknowledgements

I would like to thank Professor M. Tamer Özsu, Dr. Xiaofei Zhang, Professor Semih
Salihoglu and Professor Khuzaima Daudjee who made this thesis possible.

iv

Dedication

This is dedicated to my mother Limei Leng whom I love.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Property Graph Model . 1

1.2 OLAP over Property Graph . 4

1.3 Challenges of Graph OLAP . 4

1.4 Our Solution and Contributions . 5

2 Background and Related Work 8

2.1 OLAP over Property Graph Model . 8

2.1.1 Graph OLAP Examples . 9

2.1.2 Structure, Dimension, and Measure 11

2.2 Graph Databases and Neo4j . 13

2.3 Related Work . 13

3 Problem Definition 17

3.1 Terminology . 17

3.1.1 Definition of Property Graph . 17

3.1.2 OLAP Query . 18

3.1.3 Materialization: Cuboid & Substructure 18

3.2 Problem Definition . 20

vi

4 Solution 22

4.1 Solution Framework Overview . 23

4.2 Materialized View Selection . 23

4.2.1 Overview of Materialized View Selection 24

4.2.2 Greedy Selection Framework . 25

4.2.3 CubePlanner . 27

4.2.4 Structure Planner . 32

4.2.5 ID and Property Selection . 34

4.2.6 Update on Materialized Views . 35

4.3 Query Processing . 36

4.3.1 Substructure Selection . 37

4.3.2 Decomposition and Join . 38

5 Evaluation 43

5.1 Experiment Setup . 43

5.1.1 Datasets . 43

5.1.2 Query Workloads . 44

5.1.3 System Setting . 45

5.2 Aspects of Interest . 46

5.3 Results and Discussion . 47

5.3.1 Our System vs. Neo4j . 47

5.3.2 Frequency Threshold . 49

5.3.3 Space Cost Limit . 50

5.3.4 Storage Level for Materialized Views 51

5.3.5 CubePlanner vs PMA . 52

5.3.6 StructurePlanner vs FPM . 54

5.3.7 Substructure Selection . 56

5.3.8 Decompose Join . 56

5.3.9 Reflections on Neo4j . 59

vii

6 Conclusion 61

References 63

APPENDICES 66

.1 Previous Workload . 66

.2 Future Workload . 67

viii

List of Tables

2.1 A summary of Graph OLAP literature . 16

3.1 Comparisons between Cuboid and Substructure. 20

ix

List of Figures

1.1 A simple property graph modeling “users post posts”(data graph). 2

1.2 Meta graph containing User, Post and Tag. 3

1.3 A snapshot of data graph containing User, Post and Tag. 3

1.4 Neo4j’s execution plans for executing “getting the average post score grouped
by users upvotes” for the first time and fifth time. 6

2.1 Structure of Q1 . 11

2.2 Cube of properties {A,B,C,D}. 12

2.3 Structure of Q3 . 12

2.4 An example cube in Cube-based [12]. 14

4.1 Solution framework. 22

4.2 Neo4j’s execution plan for query User-Badge, User-Post, Post-Tag: Tag.TagName. 31

4.3 A substructure lattice with Badge-User, User-Post, Post-Tag as its root node. 32

4.4 “Border nodes” of structure User-Post, Post-Tag. 35

5.1 The meta graph of StackOverFlow used in experiments. 44

5.2 Time efficiency on the new workload: our solution vs Neo4j. 47

5.3 Substructure selected by StructurePlanner. 48

5.4 Total processing time under different settings of ω. 50

5.5 Total execution time under different space limits. 51

5.6 Main memory storage vs hard disk storage. 52

x

5.7 Time: CubePlanner vs PMA. 53

5.8 Total cuboid space cost: CubePlanner vs PMA. 53

5.9 Total processing time for new workload: StructurePlanner vs FPM. 54

5.10 Space cost: StructurePlanner vs FPM. 55

5.11 Processing time for each query: StructurePlanner vs FPM. 56

5.12 Processing time for Q10 - Q12 by three approaches. 57

5.13 Joining time in processing Q10 - Q12 by three approaches. 58

5.14 Total processing time for Q10 - Q12 by three approaches. 58

5.15 Total processing time vs trial query processing time. 59

5.16 Execution plans for User-Post: User.Age and User-Post: ID(User), ID(Post). 60

xi

Chapter 1

Introduction

Being a flexible and semantic rich model for graph structured data, the property graph
model has been widely adopted and graph database systems have emerged supporting this
model, such as Neo4j [25], and PGX [11]. Supporting OLAP (On-Line Analytic Processing)
is one critical feature of modern database systems, because efficient OLAP processing is
fundamental to many decision-making applications, e.g., business intelligence [21], risk
management [28], and trend monitoring [7]. However, our empirical study shows that
existing graph database systems do not efficiently support OLAP workloads, especially
structure-oriented aggregation queries. Moreover, current graph database systems do not
support view-based queries or materialization of some “hot” intermediate results to serve
new queries. In this thesis, we study the efficient processing of OLAP queries over property
graphs using view materialization.

1.1 Property Graph Model

We are living in an age with exponential growth of data, and a world that is more and
more connected. With the fast development of Web2.0 and Internet of Things (IoT) [26],
numerous connections of various kinds are being created, producing massive amount of
graph structured data. For example, the moment a user creates a new post on an online
forum, not only a post is created, a “creates” connection between the user and the post
is established as well; when a user tags a post, a “has tag” connection is created between
certain tag strings and the post; or in a banking scenario, when a transfer happens, a
“transfers” connection between two accounts is created.

1

Figure 1.1: A simple property graph modeling “users post posts”(data graph).

To capture the rich semantics of connected real-world entities, property graph model
[23] is becoming increasingly popular due to its flexibility for graph structured data. In a
property graph nodes and edges can have any number of properties, or attributes, of any
type. For example, Figure 1.1 shows a simple property graph of an online Q&A forum. It
shows the connections among users (represented by red nodes) and posts (represented by
blue nodes). Each edge from a user node to a post node represents a “creates” relation.
From the graph, we can clearly see that there is one user who has created one post while
the other user has created 3 posts. In addition, a User node can have properties like the
user’s Age, Views, UpVotes etc. For presentation purposes, we shall use a property graph
which contains information of an online Q&A forum www.stackoverflow.com through this
thesis. We name this graph “StackOverFlow graph”.

Note that although the property graph model does not enforce any restrictions on
what properties a node or edge can have, a high-level abstraction describing the property
relations, named the “meta graph”, is often defined in practice. Meta graph demonstrates
the information of entities and entity correlations at a schema level, while data graph refers
to the actual graph populated from the meta graph. Figures 1.2 and 1.3 are the meta graph
and a partial snapshot of the data graph of the StackOverFlow graph, respectively. As
shown in Figure 1.2, there are three types of entities: User, Post, and Tag, which are
colored in red, blue and green in the data graph. Each user has a property named “Age”,
each post has a property named “Score”, and a property “TagName” associated with each
tag. There are two types of edges: “creates” and “has tag”. Note that figure 1.3 is a partial
snapshot of the StackOverFlow data graph. The actual data graph contains millions of
nodes and edges.

2

www.stackoverflow.com

Figure 1.2: Meta graph containing User, Post and Tag.

Figure 1.3: A snapshot of data graph containing User, Post and Tag.

3

1.2 OLAP over Property Graph

In traditional databases and data warehousing, OLAP queries enable users to interactively
perform aggregations on underlying data from different perspectives (combinations of di-
mensions). There are three typical operations in OLAP. Drill-down operation allows users
to view data in more detail, while roll-up operation does the opposite. Slicing enables
filtering on data.

Supporting efficient OLAP processing on property graphs grants users the power to
perform insightful analysis over graph structured data. For example, on the StackOverFlow
graph, users can study the correlation between the number of UpVotes and a post’s score
by using the following query:

Get the average post score grouped by users upvotes.

If the result shows a tight correlation, it suggests that an author’s upvotes can be used
to estimate the quality of his or her post when a post is freshly posted and score of the
post has not been settled.

Consider another example, using a property graph dataset on music industry, one can
issue the following query to evaluate a company’s strategy to increase the share of young
people’s market.

Get the total sum of music purchases by buyers at age 18-25 grouped by music
company and month.

For simplicity, we call such OLAP query workloads over property graphs as “Graph
OLAP”. Graph OLAP has already been applied in various scenarios like business analyt-
ics and decision making and it is attracting increasing research interests in the database
community. In this thesis, we focus on supporting Graph OLAP by view materialization.

1.3 Challenges of Graph OLAP

Supporting efficient OLAP in traditional relational database management systems (RDBMS
for short) [17] or warehousing applications is a well-studied topic. There is abundant lit-
erature attacking this problem from various different perspectives, e.g. data partition [5],
view selection [14], partial materialization [6]. However, there are very few research efforts
on Graph OLAP. Existing literature concerning OLAP workload over graph data either
targets accelerating Graph OLAP over a special subset of property graphs [29], or addresses

4

generic high-level topics, such as an expressive graph aggregation operator for RDF graphs
[18].

Our empirical study (reported later) shows that existing graph databases do not provide
efficient support for Graph OLAP, especially when the graph size scales to real-word graph
sizes, which usually contains over millions of nodes and edges. To elaborate, Neo4j, a
state-of-art graph database, processes OLAP queries in a rather straightforward manner:
computing each query from scratch without being aware of the previous workloads. Figure
1.4 reveals that even if we repeatedly execute the same query using Neo4j, the execution
plan always stays the same and yields no execution time improvement.

Valuable information extracted from workload history can be helpful to accelerate in-
coming queries. For example, the above example OLAP query on StackOverFlow graph
dataset (of roughly 45GB in size) takes Neo4j more than 2 hours to process. It is frustrating
for users to wait that long for the result of one single OLAP query, as it undermines
interactivity which is one of the most distinctive features of real-time analytics.

Previous workload provides useful information for new workloads. This is because users
do not generally generate OLAP queries randomly. Instead they often tend to be inter-
ested in some specific “hot” structures on a meta graph level and some “hot” properties.
Such interest is contained in workload history and can serve as a hint on new workloads.
Our claim is that by sacrificing some memory space to materialize “hot” structures and
properties, new queries can be processed faster.

The real challenge is how to design a score function to evaluate the trade-off between
such benefits and the cost of materializing views so that we can select the best views for
materialization. Here “best materialization” means that we achieve the maximum speedup
in processing new queries within a given memory constraint for materialization.

1.4 Our Solution and Contributions

To address the challenges discussed above, we propose an end-to-end solution to support
efficient Graph OLAP.

The essence of our solution is to precompute and materialize popular intermediate
results that can be reused by new queries. We assume that most OLAP queries from the
same client tend to reside in particular structures and properties (usually closely related
with the topics that the client is interested in). Within a particular period of time, there are
“hot” structures that the client tends to repeatedly investigate from different dimensions.

5

Figure 1.4: Neo4j’s execution plans for executing “getting the average post score grouped
by users upvotes” for the first time and fifth time.

6

Therefore, previous queries can be used as a good reference to discover the structures and
properties in which the client is particularly interested.

A good analogy of this is the establishment of materialized views in relational databases
for query processing. In relational databases, we are allowed to build materialized views
on structures and attributes that we are interested in. Hopefully when new queries come,
we can process them much faster using materialized views. Unfortunately, current graph
databases do not support similar operations.

There are two important problems that we need to solve. One key issue is to select the
proper set of views to materialize. We need to select and pre-compute those that are most
beneficial for new queries. Another key issue is how to come up with a better execution
plan for answering a new query efficiently using the materialized views. To address the first
issue, we develop a score function to evaluate cost/performance ratio of a materialization.
We propose a greedy algorithm to select candidates based on their scores. For the second
challenge, if a new query result can be directly answered using a materialization we simply
do it. For other cases, we propose a scheduling policy to decompose an incoming query
into substructures and join these substructures to produce the final result.

To highlight, we summarize our contributions in this thesis as follows:

• We design an end-to-end solution that realizes structure-aware OLAP query process-
ing on graph databases using precomputation based on previous workloads.

• We proposed our algorithm for smart selection of structures and cuboids to be pre-
computed.

• We investigate different query execution plans.

• We implemented our solution on top of Neo4j to test its effectiveness and efficiency.

The following contents are organized as follows. We discuss the preliminaries and
related work in Chapter 2, which is followed by the background knowledge about OLAP,
graph databases, and Neo4j. We also give a summarization of existing literature concerning
OLAP queries over graph data. In Chapter 3 we explain our solution framework and system
design in details. We present the experiment design and result discussion in Chapter 4.
Chapter 5 concludes this thesis highlighting opening questions and future work.

7

Chapter 2

Background and Related Work

In this chapter, we first explain Graph OLAP with real examples. Then we briefly introduce
Neo4j, a state-of-art graph database system, which is employed as the back end of our
proposed solution. In addition, we review and summarize the most recent relevant works
on Graph OLAP processing.

2.1 OLAP over Property Graph Model

As noted in the previous chapter, in the property graph model, each node and edge could
have arbitrary number and type of properties. A type of property is represented as follows:

[NodeType].[PropertyType]

For example, User.Age denotes an “Age” attribute associated with a node of type
“User”. In order to identify a node or edge, a unique ID is assigned to each node and
edge. For simplicity, in this thesis we represent IDs of nodes or edges of a certain type as
ID([NodeType]) or ID([EdgeType]). For example, ID(User) refers to unique IDs of “User”
nodes.

OLAP [2, 15, 1] performs aggregation over multiple table columns (or attributes). This
is known as the cube [1, 15, 12], and it provides users a multi-dimensional and multi-level
view for effective data analysis from different perspectives and with multiple granularities.
The key operations in an OLAP framework are slice/dice and roll-up/drill-down, with
slice/dice focusing on a particular aspect of the data, roll-up performing generalization if

8

users only want to see a concise overview, and drill-down performing specialization if more
details are needed. For example, we can perform OLAP to analyze the profit performance
of an international company by different branches. We can perform a drill-down operation
by adding season as an extra dimension to branch to take a closer look at the profit
performance of different branches in different seasons. Then we can perform a roll-up
operation by discarding the branch dimension and only look into profit performance by
seasons. Finally, we can perform a slicing operation by adding a condition, say summer,
on season dimension, such that we only forcus on profits in the summer season. In this
case, OLAP serves as a tool for managers to better understand company performance.

2.1.1 Graph OLAP Examples

Graph OLAP was first proposed by Graph Cube [29] to refer to OLAP over graphs, al-
though no formal definition of the notion Graph OLAP was given. In order to better
elaborate how Graph OLAP is interpreted in this thesis, consider the following three ex-
ample scenarios, where we perform OLAP queries over the StackOverFlow graph.

Example 1. Does the number of high upvotes of a user indicate a high-quality post?

Q1: Get average post score grouped by user’s upvotes.

Sample query result:

User.UpVotes AVG(Post.Score)
0 1.33
1 2.23
2 2.34
3 2.77
4 3.43

From the query result we can see that upvotes can be used as a good indicator of a
user’s post quality. Suppose we would like to propose suggested posts based on scores.
When a post is freshly posted and the score of the post has not been voted, we may use
the author’s upvotes as a factor to estimate the quality of his or her post.

Example 2. Following the context of Q1, suppose we want to take a closer look at how
upvotes are correlated with post scores for different types of posts. It is reasonable to guess
that upvotes make more difference in answers’ (posts with PostTypeId 2) scores than the
questions’ (posts with PostTypeId 1), because a user’s level of expertise is usually better
reflected by his or her answers.

9

Q2: Get average post score grouped by user’s upvotes and post’s post types.

Sample query result:

User.Upvotes Post.PostTypeId AVG(Post.Score)
0 1 2.14
1 1 2.26
2 1 2.83
3 1 3.04
4 1 3.46
0 2 1.54
1 2 2.21
2 2 2.18
3 2 2.72
4 2 3.58

The query results reveal that users with higher upvotes not only provide good answers
but ask valuable questions as well. However, there is a subtle difference on how upvotes
are correlated with scores of questions and answers. For example, a really low upvote level
indicates a low-quality answer more than a low-quality question. This is probably because
people tend to be tolerant of a naive question but not a wrong answer.

Q1 and Q2 simply focus on relationship between User and Post. We may switch our
attention to a slightly more complicated structure by adding the Tag.

Example 3. In year 2017, what is the weighted average age of users? Is Python more
trendy than C among young users?

Q3: For each tag, get the weighted average age of users who have posted posts
in 2017 on the tag. In other words, group all the posts that were posted in 2017
by their tag names and calculate the weighted average of users’ age under each
tag.

Sample query result:

TagName AVG(Age)
Router 19.6
Python 24.1
Internet 26.8
C 30.2
programmer 31.4
software 29.8

10

From the results, one can tell the average users’ age for each tag and compare them
easily. It reveals some interesting insights. We know that Python may have a relatively
young user group, compared to C. Similarly, “Router” is a topic that is more frequently
discussed among younger users than the general topic of “Internet”. Note that we are led
to the above findings based on the recent posts (posted in year 2017).

From the above OLAP query examples we can see that OLAP over property graphs
provides an interactive and informative way to analyze property graphs from multiple
dimensions, and thus helps people find the hidden correlations, aggregated effects, regu-
larities, tendencies and so on.

2.1.2 Structure, Dimension, and Measure

We now explain the three key elements of a Graph OLAP: structure, dimension, and
measure using Q1 as an example.

Q1 concerns the structure (colored in purple) shown in Figure 2.1.

Figure 2.1: Structure of Q1

We say that (User)-[creates]->(Post) is the structure of Q1. The query is first aggre-
gated on users’ upvotes. We say that User.Upvotes is the dimension of Q1, and the output
of the query is an aggregation function on post’s score. We say that AVG(Post.Score) is
the measure of Q1.

Similarly, consider Example 2, which shares the same structure as shown in Fig-
ure 2.1. The dimensions of Q2 is User.Upvotes, Post.PostTypeId, and the measure is
AVG(Post.Score). Note that Q2 adds Post.PostTypeId to Q1’s dimensions. In other
words, Q2 asks for more detailed partitions over dimensions. We call Q2 a drill-down from
Q1, and Q1 is a roll-up from Q2. Note that possible property combinations can be modeled
as a lattice-structured cube. Figure 2.2 shows what a cube is like for properties {A,B,C}.
We can see that roll-up and drill-down operations allow us to navigate up and down on a
cube.

11

 197

Computation of OLAP Cubes

Top-Down Computation

In a seminal paper, Gray, Bosworth, Layman, and Pirahesh
(1996) proposed the data cube operator as a means of
simplifying the process of data cube construction. The
algorithm presented forms the basis of the top-down
approach. In the approach, the aggregation functions are
categorized into three classes:

• Distributive: An aggregate function F is called
distributive if there exists a function g such that the
value of F for an n-dimensional cell can be computed
by applying g to the value of F in an (n + 1)–
dimensional cell. Examples of such functions in-
clude SUM and COUNT. For example, the COUNT()
of an n-dimensional cell can be computed by apply-
ing SUM to the value of COUNT() in an (n+1)–
dimensional cell.

• Algebraic: An aggregate function F is algebraic if
F of an n-dimensional cell can be computed by using
a constant number of aggregates of the (n + 1)–
dimensional cell. An example is the AVERAGE()
function. The AVERAGE() of an n-dimensional cell
can be computed by taking the sum and count of the
(n+1)–dimensional cell and then dividing the SUM
by the COUNT to produce the global average.

• Holistic: An aggregate function F is called holistic
if the value of F for an n-dimensional cell cannot be
computed from a constant number of aggregates of
the (n+1)–dimensional cell. Median and mode are
examples of holistic functions.

The top-down cube computation works with distribu-
tive or algebraic functions. These functions have the
property that more detailed aggregates (i.e., more dimen-
sions) can be used to compute less detailed aggregates.
This property induces a partial-ordering (i.e., a lattice) on
all the group-bys of the cube. A group-by is called a child
of some parent group-by if the parent can be used to

compute the child (and no intermediate group-bys exist
between the parent and child). Figure 3 depicts a sample
lattice where A, B, C, and D are dimensions, nodes repre-
sent group-bys, and the edges show the parent-child
relationship.

The basic idea for top-down cube construction is to
start by computing the base cuboid (group-by for which
no cube dimensions are aggregated). A single pass is
made over the data, a record is examined, and the appro-
priate base cell is incremented. The remaining group-bys
are computed by aggregating over already computed finer
grade group-by. If a group-by can be computed from one
or more possible parent group-bys, then the algorithm
uses the parent smallest in size. For example, for comput-
ing the cube ABCD, the algorithm starts out by computing
the cuboids for ABCD. Then, using ABCD, it computes
the cuboids for ABC, ABD, and BCD. The algorithm then
repeats itself by computing the 2-D cuboids, AB, BC, AD,
and BD. Note that the 2-D–cuboids can be computed from
multiple parents. For example, AB can be computed from
ABC or ABD. The algorithm selects the smaller group-by
(the group-by with the fewest number of cells). An ex-
ample top-down cube computation is shown in Figure 4.

 Variants of this approach optimize on additional costs.
The best-known methods are the PipeSort and PipeHash
(Agarwal, Agrawal, Deshpande, Gupta, Naughton,
Ramakrishnan, et al., 1996). The basic idea of both algo-
rithms is that a minimum spanning tree should be gener-
ated from the original lattice such that the cost of travers-
ing edges will be minimized. The optimizations for the
costs that these algorithms include are as follows:

• Cache-results: This optimization aims at ensuring
that the result of a group-by is cached (in memory)
so other group-bys can use it in the future.

• Amortize-scans: This optimization amortizes the
cost of a disk read by computing the maximum
possible number of group-bys together in memory.

• Share-sorts: For a sort-based algorithm, this aims
at sharing sorting cost across multiple group-bys.

AB

ABCD

ABC ABD ACD BCD

AC AD BC BD CD

A B C D

all

Figure 3. Cube lattice

 ABCD

ABD ABC ACD BCD

AB AC AD BC BD CD

A B C D

all

Figure 4. Top-down cube computation

Figure 2.2: Cube of properties {A,B,C,D}.

We summarize Q3 as follows.

Structure: (User)-[creates]-(Post)-[has tag]-(Tag)

Figure 2.3: Structure of Q3

Dimensions: Tag.Tagname

Measure: AVG(User.Age)

Note that Q3 has a different structure than Q1 and Q2, as shown in Figure 2.3. Q3
enforces a requirement that posts must be created in year 2017, which picks out a particular
subset of the posts. In OLAP this is called the “slicing” operation. Slicing operation allows
users to view the data with constraints on selected properties. In this thesis we call these
constraints (e.g., {Post.Year=2017} in Q3) “slicing conditions”.

To summarize, Graph OLAP allows clients to aggregate different structures, over dif-
ferent dimensions, on different measures, and optionally slice the aggregation result by
different slicing conditions. Clients can change their views by performing roll-up, drill-
down, and slicing freely and interactively.

12

2.2 Graph Databases and Neo4j

Emerging online applications concerning graph processing has motivated the relational
database community to support efficient graph management [27] [13]. However, there has
been active debate about the efficiency of using traditional RDBMS for graph computing
considering the unique query workloads against graph data [9] [10]. Relational and graph
database systems both have their own strengths in terms of query processing. In this
thesis, we work with graph database systems.

In graph databases, the storage structure that is most commonly used in an adjacency
list. An adjacency list is a list that stores all the edges and neighbor nodes for a given
node. A popular graph database system is Neo4j. Like most traditional RDBMS, Neo4j
enforces atomicity, consistency, isolation and durability (ACID) properties. Neo4j’s native
graph processing engine enables SQL like queries over property graphs which are managed
by its own graph storage. Common features in RDBMS such as indexes are also supported.
REST API plus official drivers for programming languages such as Java are provided for
the sake of easy interactions with other programs. One most special feature about Neo4j
is that it allows multiple-labeled nodes and edges; for example, a node referring to a male
student could have various labels such as “student” and “male” and etc.

Cypher, Neo4j’s query language, is a powerful SQL like query language, which is highly
expressive and simple. For example, consider the following query: what are the number of
upvotes and associated average score of answers (posts with PostTypeID of 2)? A Cypher
query would be written as follows:

match (u:User)-[r:creates]->(p:Post)

where p.PostTypeId=‘2’

return u.Upvotes, AVG(p.Score)

In the above Cypher query, “User” and “Post” are node labels, PostTypeId and Score
are properties of “Post”, “UpVotes” is a property of “User”.

2.3 Related Work

There have been a few works discussing efficient Graph OLAP processing on property
graphs or RDF graphs.

13

Cube-based [12] proposes a conceptual graph model to support OLAP on bibliographic
networks. It proposes the concept of graphs enriched by cubes where each node and edge
of the considered network are described by a cube. Figure 2.4 is an example cube in Cube-
based [12]. It summarizes counts of co-authorships between two authors over dimensions
of year, venue and keywords. Cube allows the user to quickly analyze the information
summarized into cubes.

OLAP Cube-based Graph Approach ... 95

!"#$ %&'()*+,*"'-+!%!-*+!&./"0(+1-2&-$

!" #$"%&'()*+,-.)/'/.+00)/123,4&)566"

7" #$%&'()*+,-.)/'/.+08)/123,4&)9:5;"

<" =$">1?)*+,-.)/'/.+00)/123,4&)566"

0" =$">1?)*+,-.)/'/.+!@)/123,4&)566"

A" =$">1?)*+,-.)/'/.+08)/123,4&)9:5;"

B" C$"D'?)*+,-.)/'/.+<<)/123,4&)566"

8" C$"D'?)*+,-.)/'/.+08)/123,4&)9:5;"

E" C$"D'?)*+,-.)/'/.+00)/123,4&)566"

F" C$"D'?)*+,-.)/'/.+<<)/123,4&)566"

G" G"

#$"%&'(" H!I7IGJ"

=$">1?" H<I0IAIGJ"

C$"D'?" HBI8IEIGJ"

G" G"

K'L">.-"(M"/'-&4"

K2L">.-"(M"?(N.4"*,-&"3,4-"(M"/'-&",N"

#$"%&'(I"

=$">1?"

H/'/.+00I"GJ"

#$"%&'(I"

C$"D'?"

H/'/.+08I"GJ"

=$">1?I"

C$"D'?"

H/'/.+00I"/'/.+08I"GJ"

G" G"

KOL">.-"(M".NP.4"*,-&"3,4-"(M"Q.'41+."" KNL"R+'/&4".?+,O&.N"2S"O12.4"

T.?1."

=.'+"

5.S*(+N4"

7@!7"

7@!!"

7@!@"

7@@F"

5
6
6
"

9
:5
;
"

U
6
V
W
"

>
:R
:X
"

P+'/&"
;,?,?P"

7"

<"

7"

!"

>,Q,3'+,-S"

3&.-$)4$567%2$%2#$86$9&2$

Fig. 3. Computation of a co-authorship network

!"##$%&$

'()'$

'())$

'()($

'((*$

+
,
,
$

-
.+
/
$

0
,
1
2
$

3
.4
.!
$

567&8$
!79:;95$

'$

<$

'$

)$

=>?>6"5>9>"%@$

'$

A>9%>$

+>BC"6D@$

E>76$

'()<$

'()'$

'((*$

+
,
,
$

0
,
1
2
$

F>?C"6:$
/;9;95$ '$

)$

'$

A>9%>$

+>BC"6D@$

G7H$-"I7%?8"6@8;&$9>?C"6:$G9%JK>6$"L$&7&>6@$M$'H$ GKH$.9@N?%N"9$9>?C"6:$G9%JK>6$"L$&7&>6@$M$'H$

Fig. 4. Roll up from the co-authorship network to the institution network

grouped into institutions. For example, university of Illinois contains path6 and
path7 because J. Han and P.S. Yu belong to this university.

Slice. Traditional slice operation selects one particular dimension from
a given cube and provides a new sub-cube. In our context, slice operation can not
be like the classical one, it should be adapted to graphs. The slice operation se-
lects a part of the graph and provides a new sub-graph. For example, if a whole
co-authorship network is too big to be comprehensive, the user can focus on
a smaller subgraph more interesting to analyze information clearly.

Figure 2.4: An example cube in Cube-based [12].

Gagg [18] introduces an RDF graph aggregation operator that is both expressive and
flexible. It defines its operational semantics on top of SPARQL algebra, and proposes an
algorithm to answer graph aggregation queries. Gagg achieves significant improvements in
performance compared to plain-SPARQL graph aggregation.

Pagrol [24] provides an efficient MapReduce-based parallel graph cubing algorithm,
MRGraph-Cubing, to compute cubes for an attributed graph.

Graph Cube [29] introduces a data warehousing model that supports OLAP queries

14

effectively on large multidimensional networks. It takes account of both attribute aggrega-
tion and structure summarization of the networks. In order to deal with “dimensionality
curse”, a greedy algorithm is introduced for partial materialization of cuboids. Moreover,
it addresses and defines the two most important notions in Graph OLAP scenarios as di-
mension and measure. Note that in our work, structure is addressed as a third important
notion (as discussed in 2.1.2). Graph Cube [29] studies graphs with homogenous types of
nodes and edges. Graph Cube [29] focuses on OLAP scenarios over a fixed structure, with
dimension and measure varied, whereas our work deals with OLAP workloads over various
structures.

Graph OLAP Framework [4] studies dimensions and measures in the Graph OLAP
scenario and furthermore develops a conceptual framework for data cubes on graphs. It
differentiates different types of measures (e.g., distributive measures and holistic measures)
by their properties during aggregation. It looks into different semantics of OLAP oper-
ations, and classifies the framework into two major subcases: informational OLAP and
topological OLAP. It points out a graph cube can be fully or partially materialized by
calculating a special kind of measure called aggregated graph.

In Graph Cube [29], concepts of graph cube is introduced. Given a particular structure
S, a property set P, and measure set M, we can aggregate over S on 2|P | different com-
binations of dimensions. These 2|P | queries can be mapped as a lattice structure, where
each combination of dimensions corresponds to a cuboid in the lattice. We call the lattice
structure of these 2|P | queries a graph cube.

It has been pointed out in Graph OLAP Framework [4] that as long as the domain
of measure is a subset of {COUNT, SUM, AVERAGE} and M contains COUNT(*), the
following feature holds: given any two cuboids C1 and C2 from the same graph cube, as
long as dimension(C2) is a subset of dimension(C1), result of C1 can be used to generate
result of C2. This means that once a cuboid is materialized, all roll-up operations from
this cuboid could be processed simply by scanning the materialized cuboid result. This
will dramatically decrease roll-up operation time compared to aggregation from data graph
(often of larger size, disk I/O), scanning materialized cuboid result (often of smaller size)
is often much faster.

Ideally we can materialize all cuboids. But when the number of dimension is large,
number of cuboids grows exponentially, making total materialization hard due to over-
whelming space cost. To solve this, Graph Cube [29] proposes a partial materialization
algorithm on graph cube. It is a greedy algorithm and the score function is based on
benefits of deduction of total computation cost.

We categorize the existing work into two lines. The first focuses on a simple subset

15

G. Type Q. Pattern Feature
Cube-based [12] Property Simple relation Cubes on edges and nodes

Gagg [18] Property SPARQL Aggregation operator
Pagrol [24] Property edge & node attributes Map-Reduce computing

Graph Cube [29] Homogenous node attributes Partial materialization
Graph OLAP Framework [4] Property edge & node attributes Distributive and holistic measures

Graph Cube [29] Homogenous node attributes Partial materialization
Our Work Property edge & node attributes Materialized views

Table 2.1: A summary of Graph OLAP literature

of property graphs (e.g., graphs with only homogenous nodes and edges), and proposes
optimizations in order to accelerate OLAP query processing (e.g., Graph Cube [29]). Al-
though attribute-aware optimizations are proposed in some literature, structure-aware op-
timizations are not studied. The second focuses on a relatively high-level framework that
processes generic queries over generic property graphs (e.g., Gagg [18]). However, query
processing efficiency is not the main focus of these works.

To conclude, there is no work on structure-aware optimizations for efficient Graph
OLAP. As mentioned in Section 1.3, efficiency issue is one of the most challenging issues
on Graph OLAP. Therefore, we investigate faster structure-aware OLAP processing over
general property graphs.

16

Chapter 3

Problem Definition

In this chapter, we first introduce the terminology and notations used in this thesis. Then
we formally define the efficient Graph OLAP problem.

3.1 Terminology

3.1.1 Definition of Property Graph

A property graph G is defined as (V, V id, E,Eid, A, L, f). V is the set of nodes. V id is
the set of unique IDs of each node in V . E is the set of edges, where E ⊆ V × V . Eid
is the set of unique IDs of each edge in E. A is a set of predefined properties. L is a set
of predefined labels. f={fV A, fV L, fV id, fEA, fEL, fEid} is a set of mapping functions, such
that:

• fV A : vi → Ai, vi ∈ V,Ai ⊆ A , maps each node to its properties;

• fV L : vi → Li, vi ∈ V, Li ⊆ L , maps each node to its labels;

• fV id : vi → vidi, vi ∈ V, vidi ⊆ V id , maps each node to its unique ID;

• fEA : ei → Ai, ei ∈ E,Li ⊆ A , maps each edge to its properties;

• fEL : ei → Li, ei ∈ E,Li ⊆ L , maps each edge to its labels;

• fEid : ei → eidi, ei ∈ V, eidi ⊆ Eid , maps each edge to its unique ID.

17

3.1.2 OLAP Query

As discussed in Section 2.1.2, four elements of a Graph OLAP query are Structure, Dimen-
sion, Measure, and Slicing Condition (optional). We now define how we represent these
four elements in an OLAP query. We will use Q3 in Section 2.1.1 as an example.

Structure : A structure consists of edges. We write a structure by listing all its edges
separated by comma, where an edge is represented by “Starting Node Label - Edge Label
- Ending Node Label”. For instance, Q3’s structure as shown in Figure 2.3 is written as
“User-creates-Post, Post-has tag-Tag”.

Dimension: A Dimension is written by listing all properties that act as dimensions in
an OLAP query. For example, Q3’s dimension is written as “Tag.Tagname”.

Measure: We focus on three most common types of measure: COUNT, SUM and AVG.
Q3’s measure is written as “AVG(User.Age)”.

Slicing Condition: A Slicing Condition is written as “property = value”. Q3’s slicing
condition is written as “Post.Year=2017”. In our work we only consider equality but it
can easily extended to other conditions such as the less than inequality.

With the four elements defined above, we write an OLAP query in the following format:

Structure : Dimension, Measure, Slicing Condition

Recall that Q3 is written as

User-creates-Post, Post-has tag-Tag: Tag.Tagname, AVG(User.Age), Post.Year=2017

where User-creates-Post, Post-has tag-Tag refers to structure; Tag.Tagname refers to di-
mension, AVG(User.Age) refers to measure; and Post.Year=2017 refers to slicing condi-
tion.

We define some notations adopted in this thesis. Given an OLAP query q, we use
“q.properties” to refer to the set of all properties that appear in Dimension, Measure,
and Slicing Condition of q. We use “q.structure” to refer to the structure of q. For
example, Q3.properties={Tag.Tagname, User.Age, Post.Year}, and Q3.structure={ User-
creates-Post, Post-has tag-Tag}.

3.1.3 Materialization: Cuboid & Substructure

As previously discussed, a key issue of our work is to find the most useful common sub-
structures and properties from the previous queries, which are assumed to appear in the

18

workload frequently. For fast access to results of these useful queries, we store their results
(preferably in main memory), and this is known as the materialization of the query.

As defined above, in a property graph, each node or edge has a unique ID, which can
be treated as a special property. Whether a materialization keeps the unique ID is an
important issue. This is because keeping unique ID often increases the space cost. We
consider two types of materializations, namely the cuboid and the substructure, based on
whether or not unique IDs of nodes (or edges) are kept. To better elaborate the differences
between cuboid and substructure, we consider the following example. Suppose we have the
following query workload containing two history queries (P1 and P2) and two incoming
queries (Q1 and Q2):

P1 User-creates-Post: User.Age
P2 User-creates-Post: User.Age, (AVG)Post.Score
Q1 User-creates-Post: Post.Score, (AVG)User.Age
Q2 User-creates-Post, Post-has tag-Tag: User.Age, Tag.TagName

We can tell that users are most interested in the User-creates-Post structure. {User.Age,
Post.Score} is the set of properties being involved in queries over User-creates-Post. Thus,
we can build a cuboid lattice of all combinations of {User.Age, Post.Score}. Materializa-
tion of the base cuboid of the lattice is

M1: $User-creates-Post: User.Age, Post.Score, COUNT(*)

Note that for the rest of this thesis, we use the $ symbol followed by structures and
dimensions to denote a materialization, represented by M . The above materialized view
is useful for Q1 since we can process Q1 by aggregation (with dimension of Post.Score
and measure of (AVG)User.Age) over M1. We call such a materialization without ID(s) in
dimension a cuboid.

However, M1 is not useful for Q2 since they have different structures. On the contrary,
if we add ID(Post) to dimension and materialize

M2: $User-creates-Post: User.Age, Post.Score, ID(Post), COUNT(*)

so that Post is “activated” to be able to join with other materializations containing Post
and produce results for OLAP over more complicated structures. For example, Q2 can be
processed through the following steps:

Step 1 : joining $User-creates-Post: User.Age, Post.Score, ID(Post) COUNT(*) and $Post-
has tag-Tag: ID(Post), Tag.TagName, COUNT(*) on ID(Post);

Step 2 : perform aggregation on {User.Age, Tag.TagName}.

19

Cuboid Substructure
Dimension Only properties Properties and ID(s)
Space Cost “Low” “High”
Potential benefit Aggregation Aggregation & Joining

Table 3.1: Comparisons between Cuboid and Substructure.

In this case, we only need to fetch $Post-has tag-Tag: ID(Post), Tag.TagName,
COUNT(*) from database to produce result for Q2. We call such materialization with
ID(s) in dimension as substructure.

Table 3.1 shows a comparison between cuboid and substructure. Note that cuboids
can only be used in queries with exactly the same structure. They are good for roll-up
and slicing operations but not useful for queries with different structures. Substructures
can be used to join with other materializations to help with new queries of various types
of structures. The drawback is that substructures are generally more space-costly than
cuboids, as IDs are unique keys. The trade-off between cuboids and substructures is the
trade-off between space cost and the potential saving of join processing.

3.2 Problem Definition

Intuitively, our goal is to answer OLAP queries efficiently by taking advantage of material-
ized views, which are constructed based on the knowledge of previous queries. Therefore,
our solution needs to follow two steps:

• Materialization step: materialized view selection.

• Query processing step: answer new queries as quickly as possible (using materializa-
tions).

The materialization step is in fact a “Materialization Selection” (MS for short) problem,
as using materialization is good for query efficiency, but comes with a storage cost. So we
want to study the problem of how to best utilize materialization within a space budget
σ. The query processing step involves “Execution Planning” (EP for short). We formally
define these two problems as follows.

20

Materialization Selection Problem: Given a property graph G, a set of previous
queries P on G, space limit σ, find cuboids C and substructures S, such that:∑

ci∈C

ci.space+
∑
si∈S

si.space ≤ σ; and

∑
pi∈P

T (G, pi, C, S) is minimized.

Here T (G, pi, C, S) is a function to estimate the query processing time of pi on G using
C and S. “.space” refers to the estimated space cost of a cuboid or substructure. Note that
the real run time of a particular query is hard to estimate. Therefore, we use T (G, pi, C, S)
as a cost function to measure the time cost of query processing.

Execution Planning: Given a property graph dataset G, a new query q, materialized
cuboids C and substructures S, find a processing plan process(G, q, C, S), such that the
processing time of q, denoted by process(G, q, C, S).time, is minimized.

As a matter of fact, execution planning can be further divided into two sub-problems.
First, which materialized views in C and S should be used to answer q? Second, how to
answer q as fast as possible using the view selected from the first question. Thus, we define
the first question as the Decomposition Problem, which decomposes q into two parts, one
part covered by the views from C and S, while the other part not covered, which is named
as the remaining views. Note that the “remaining views” refers to the data that needs
to be fetched from the database server on the fly. We define the second question as the
Composition Problem, which performs basic relational operations such as join, projection
and selection over views in order to get the result of q.

Composition Problem: Given a property graph G, a new query q, materialized cuboids
C ′ and substructures S ′, and remaining views R, find a composition plan compose(G, q, C ′,
S ′, R), so that estimated composition time compose(G, q, C ′, S ′, R).time is minimized. Here
compose(G, q, C ′, S ′, R) returns result of query q by performing operations (join, selection,
projection etc.) over C ′, S ′, R.

Decomposition Problem: Given a property graph G, a new query q, materialized
cuboids C and substructures S, a composition plan compose(G, q, C, S,R), find C ′ ⊆
C,S’⊆ S, and remaining views R, so that compose(G, q, C ′, S ′, R).time is minimized. Here
compose(G, q, C, S,R) is the solution of Composition Problem.

Note that we define Composition Problem before Decomposition Problem. The reason
is that we need to consider a composition plan compose(G, q, C ′, S ′, R) when making our
selection policy of C ′, S ′ and R. In other words, these two problems are closely related.

21

Chapter 4

Solution

In this chapter, we present our complete solution towards efficient OLAP query process-
ing over property graphs. For comprehensive presentation, we first illustrate the overall
solution framework in Section 4.1. Then we present our strategy for materialized view
selection, as well as the execution planning for query processing in Section 4.2 and 4.3,
respectively.

Figure 4.1: Solution framework.

22

4.1 Solution Framework Overview

Figure 4.1 describes the overall solution framework. Two dashed line rectangles represents
the major components of our solution: materialization and query processing. Materializa-
tion takes previous workload as input and materializes cuboids and substructures which are
beneficial for new workload processing. We adopt a straightforward best effort approach
for materialization. Intuitively, we first partition previous queries into “hot” queries and
“less hot” queries based on the frequency count of their structures. Modules CubePlanner
and StructurePlanner take “hot” queries and “less hot” queries respectively, as input and
produce cuboids and substructures (in the form of tables) for materialization. More details
are left to Section 4.2.1, where we explain the intuition of categorization of “hot” and “less
hot” queries, as well as the reason for passing them to different planners. Query processing
component takes incoming queries as input and returns results. Briefly, the workflow of
query processing is the following. If a new query happens to contain a “hot” structure, we
consult cuboid materializations to see if it can be directly answered by aggregation over
a cuboid materialization. In this case, cuboid materialization will be used. Otherwise, if
the query cannot be directly answered by any materialized cuboid, we consider available
materialized substructures by decomposing the query into substructures for join. Note
that if required substructure is not materialized, on the fly data fetching from the graph
database server is mandatory.

4.2 Materialized View Selection

Materialized view selection is a research problem that has attracted significant attention in
traditional RDBMS community. However, RDBMSs materialize query results, while in this
work we wish to take into account the structure of the graph queries an materialize parts of
that structure rather than the entire query results. This is mainly because structure plays
an important role in a query over a property graph. One materialized view may affect
the benefits of other ones (e.g., when their structures overlap). Therefore combinational
benefit for a set of materialized views is not a simple sum of benefits for each one of
them. As briefly illustrated before, we consider two types of materializations for efficient
OLAP query processing: cuboids and substructures. In this section, we first elaborate the
essential heuristic of selecting cuboids and substructures. Then we detail the approaches
taken for different types of materializations.

23

4.2.1 Overview of Materialized View Selection

In Section 3.1.3, we discussed the trade-off between cuboids and substructures. As noted,
utilization of a cuboid materialization requires new queries to have exactly the same struc-
ture as the materialized cuboid. Therefore, it is only reasonable to materialize a cuboid
when we are confident that the same structure is likely to be “hit” by new queries. Oth-
erwise, it is simply a waste of space to materialize cuboids that would be rarely “hit”.
On the contrary, substructures do not have such strict structural match requirement. A
substructure can be used as long as it appears in a new query.

Considering the different features of cuboids and substructures, we follow the following
strategy for materialized view selection. We first perform a frequency count of previous
queries. If more than ω queries shares the same structure, where ω is a predefined frequency
threshold, this structure is considered to be a hot structure and would be passed on to
the CubePlanner module for cuboid selection. Queries that do not have hot structures
are passed to StructurePlanner for the substructure selection. Algorithm 1 describes the
overall framework of the materialized view selection process.

Algorithm 1: Materialization Overview

System setting: ω: frequency threshold for hot structures
Input: Q: a set of previous queries
Output: C: a set of materialized cuboids
S: a set of materialized substructures

1 CInput← ∅;
2 SInput← ∅;
3 foreach p ∈ P do
4 if structureFreq(P, p) > ω then
5 CInput← CInput ∪ {p};
6 end
7 SInput← SInput ∪ {p};
8 end
9 C←CubePlanner(CInput);

10 S←StructurePlanner(SInput);

As shown in Algorithm 1, function structureFreq(P, p) returns the frequency count of
all query structures in P . After hot structures are selected, two functions CubeP lanner
and StructureP lanner are called to select cuboids and substructures for materialization.
Consider the following example. Assume we are aware of the six previous queries as shown
below. We can group queries by structure and count the structure frequency.

24

Previous Workload:
P1 Badge-User, User-Post:Badge.Name,Post.Score,Post.PostTypeId=2
P2 User-Comment, Comment-Post: User.UpVotes, Comment.Score, AVG(Post.Score),
Post.PostTypeId=1
P3 User-Post, Post-Vote: User.UpVotes, Vote.VoteTypeId
P4 User-Post, Post-Tag: AVG(User.CreationDate Year), Tag.TagName
P5 User-Comment, Comment-Post: User.ActiveMonth, Post.CreationDate Year=2016
P6 User-Comment, Comment-Post: User.Age, AVG(Comment.Score), Post.PostTypeId=2
new workload:
Q1 User-Comment, Comment-Post: User.UpVotes, AVG(Post.Score), Post.PostTypeId
Q2 User-Comment, Comment-Post: User.Age, Post.PostTypeId
Q3 User-Post, Post-PostHistory: User.UpVotes, PostHistory.PostHistoryTypeId
Q4 Badge-User, User-Post: AVG(Post.Score),Post.PostTypeId=2

Structure Frequency
User-Comment, Comment-Post 3

User-Post, Post-Tag 1
User-Post, Post-Vote 1

Obviously, User-Comment, Comment-Post is a hot structure. We materialize cuboids
over structure User-Comment, Comment-Post by passing previous query P2, P5 and P6 to
CubePlanner. CubePlanner will materialize cuboids that benefit processing of new queries
Q1 and Q2 (which have User-Comment, Comment-Post structure). Then, we pass the
three remaining queries of less hot structures, P1, P3, and P4 to StructurePlanner, which
will discover and materialize most useful substructures. In this case StructurePlanner is
likely to find User-Post as a useful substructure it can be used in joining the result of new
queries Q3 and Q4.

4.2.2 Greedy Selection Framework

Before diving into the details of the CubePlanner and StructurePlanner modules, we first
illustrate the essential greedy heuristic employed for view selection.

In our solution framework, CubePlanner and StructurePlanner are responsible for ma-
terialized view selection (over cuboids and substructures, respectively). They both adopt
the same greedy selection framework. In Section 3.2, we introduced the “Materialization
Selection” problem, which aims at finding best materializations under a space limit σ.
Materialization selection is a known NP-complete problem [16]. The difficulty lies in that

25

the overall benefit of materialized views is not a simple sum of the individual benefits of
each view. A materialized view’s marginal benefit may be deducted when another view
is selected. For example, suppose we have previous queries over “User-Post, Post-Tag”,
then the marginal benefit of a substructure over “User-Post” will be affected by selecting
substructures over “User-Post, Post-Tag”. This is because we do not need substructure
“User-Post” in joining the results of previous queries over “User-Post, Post-Tag” when we
already have a materialized substructure over “User-Post, Post-Tag”. A straightforward
approach to solve the materialization selection problem is to enumerate over all possible
combinations of cuboids C and substructures S within the space limit σ and find the best
combination. But such a brute-force solution is infeasible in practice. In addition, assume
that we obtain the optimal C ′ and S ′ in some way, it is not guaranteed that the actual
total space cost of C ′ and S ′ is strictly lower than σ as we only made estimations in our
calculation. Therefore, we turn to a greedy algorithm which is better than straightforward
approach in terms of efficiency. Besides, it allows materializations to be done one by one
while the space limit is better respected.

We discuss this greedy selection framework first to give a high-level idea of our selection
policy. We use a greedy algorithm for both cuboid and substructure selection, as shown
in Algorithm 2. The idea is to always pick the next candidate with the highest ratio of
marginal benefit against the space cost. After a candidate is picked, we re-evaluate the
benefit of remaining candidates. Re-evaluation is mandatory as the marginal benefit of a
candidate may be reduced as a result of materialization of a selected candidate.

Algorithm 2: Greedy Selection

System setting: σ: space limit
Input: C: a set of candidates of cuboids or substructures in lattice structure
P : A set of previous queries
Output: R: a list of materialized candidates

1 foreach c ∈ C do
2 c.space← space(c);
3 c.benefit← estimateMarginBenefit(c, P,R);
4 c.score← c.benefit/c.space;

5 end
6 while R.totalsize < σ do
7 selected← candidate in C with the highest score;
8 R.add(materialize(selected));
9 repeat Lines 1-5;

10 end

26

Lines 1-5 estimate the space cost, the marginal benefit for new workload, as well as
the score for each candidate. Functions space(c) and estimateMarginBenefit(c, P,R)
estimate the space cost and the marginal benefit of materializing candidate c, respectively.
We call this phase score calculation. Lines 6-10 keeps picking up candidates with highest
score one by one until space limit is hit. Notice that each time a candidate is selected,
Line 9 refreshes scores for all candidates by repeating 1-5. We call this phase pick-and-
update. Note that we use materialize() as a function to denote the materialization of
selected cuboids and substructures.

CubePlanner and StructurePlanner apply this greedy selection framework with different
implementations of score calculation and pick-and-update. Users can adjust the behavior
of CubePlanner and StructurePlanner by plugging in their own implementation of the
score calculation function that may consider different database features. Furthermore in
Algorithm 2 we describe a scenario where space is the limit (Line 6). Line 6 can be modified
to deal with situations of other limits. For example, in our implementation of CubePlanner,
we select at most n cuboids, where a maximum number of materialized candidates is the
limit (which will be discussed in 4.2.3). For the rest of this chapter, we will focus on our
implementation of CubePlanner and StructurePlanner in Neo4j.

4.2.3 CubePlanner

CubePlanner takes previous queries with hot structures as input and returns the selected
cuboids for materialization. As mentioned in Section 3.1.3, a cuboid is only useful for
queries sharing the exact identical structure. To put it another way, cuboids of different
structures do not affect each other at all in terms of benefits for new queries. Since the input
queries for CubePlanner may have different structures, we can group queries by structure
and treat each group seperately. For each group of input queries, we propose an algorithm
named SingleCubePlanner to select top-k cuboids. After all groups are finished, we mate-
rialize the final top-n cuboids by searching across top-k cuboids from all groups. A good
analogy for such a process is to first hold regional competitions and then select national
winners from regional winners. Next we will explain CubePlanner and SingleCubePlanner
in detail.

CubePlanner

As we mentioned above, CubePlanner performs cuboid selection in a holistic manner by
selecting cuboids one-by-one from results of SingleCubePlanner. We first explain the work-
flow of CubePlanner, as shown in Algorithm 3. Intuitively, CubePlanner first groups P

27

by structure using the function group(P). Lines 2-4 perform cuboid selection in each par-
tition using SingleCubePlanner. A queue of ordered candidates is generated within each
group of queries. Lines 5-8 repeatedly check the current top candidate of each partition to
select the best candidate among them. n is a user defined parameter, denoting the most
number of cuboids for materialization. Note that users may choose other ways, such as
a space limit, as the bound for cuboid materialization. In our solution, we use the most
number of cuboids n in CubePlanner, and we use a space limit in StructurePlanner. It
is worth pointing out that a unified marginal benefit evaluation scheme for cuboids and
substructures as a whole needs to be developed to divide memory budget between these
two materialized views, which is considered as a future work.

Algorithm 3: CubePlanner

System setting: n: maximum number of cuboids to be precomputed
Input: P : a set of previous queries not necessarily with the same structure
Output: C: a list of materialized cuboids

1 G← group(P);
2 foreach group ∈ G do
3 group.results← SingleCubeP lanner(group);
4 end
5 for i=1 to n do
6 g ←the group in G with the highest results.top().score;
7 C.add(materialize(g.results.Dequeue()));

8 end

SingleCubePlanner

Now we elaborate the SingleCubePlanner function. As shown in Algorithm 4, SingleCube-
Planner follows a greedy selection strategy to generate the top-k cuboids.

The algorithm starts with building a lattice over all combinations of dimensions of
all attributes that appeared in previous query set P , using a classic lattice construction
algorithm described in [19]. Lines 2-4 initialize the best-so-far processing time for each
previous query with its estimated naive database processing time. Lines 5-12 perform
score calculation following the greedy selection framework presented in Algorithm 1. For
each cuboid, we estimate its space (line 6). Lines 8-10 calculate the marginal benefit by
iterating over previous queries that can be answered by scanning current cuboid. If the
estimated scanning time is less than a previous query’s current best-so-far processing time,

28

Algorithm 4: SingleCubePlanner

System setting: k: as in “top-k”
Input: P : a set of previous queries with a same structure
Output: C: a queue of selected cuboids to precompute

1 Lattice← buildLattice(P);
2 foreach query p ∈ P do
3 p.time← time(p);
4 end
5 foreach cuboid ∈ Lattice do
6 cuboid.space← space(cuboid);
7 cuboid.benefit← 0;
8 foreach query p ∈ P and p.properties ⊆ cuboid.properties do
9 cuboid.benefit← cuboid.benefit+max(0, p.time− aggreT ime(cuboid));

10 end
11 cuboid.score← cuboid.benefit/cuboid.space;

12 end
13 for i=1 to n do
14 nextBestCube← the cuboid in Lattice with the highest score;
15 if nextBestCube.score < 0 then
16 break;
17 end
18 C.Enqueue(nextBestCube);
19 foreach query p ∈ P and p.dimension ⊆ nextBestCube.dimension do
20 p.time← min(p.time, aggreT ime(nextBestCube));
21 end
22 Repeat Lines 5-12;

23 end

29

we add the difference of two times to the cuboid’s total marginal benefit (Line 9). Lines
13-23 perform the pick-and-update, where lines 15-17 terminate the selection process when
there is no more extra marginal benefit, and lines 19-22 update the best-so-far processing
time for previous queries as a result of the current round of selection.

Now we explain the implementation details of the time estimation function employed in
Algorithm 4. Function time(query) estimates the time of näıve processing of a query in a
graph database. Implementation of time(query) is database specific as physical storage and
execution plans vary among different databases (i.e., not using materialized views). Since
Neo4j provides APIs to show the execution plan as well as the estimated intermediate result
size, we directly use the total size of intermediate results as an estimation of the time cost.
For example, Figure 4.2 is an execution plan provided by Neo4j for query User-Badge,
User-Post, Post-Tag: Tag.TagName. We can see that the number of estimated rows of
intermediate results are provided (e.g., the number of estimated rows after “NodeHashJoin”
is 1,721,324). We use the sum of estimated rows of all the intermediate results in the
execution plan to estimate the total processing time cost.

For graph databases that do not provide an API to access execution plans and estimated
intermediate result sizes, users can construct different estimation functions following the
same intuition, which usually depends on specific database implementations. There are
many studies on cost estimation for database operations (e.g., join operation). Users may
consider joining (expanding) order [3] and estimation of intermediate result sizes [22] as
two important factors.

Function aggreT ime(cuboid) estimates the time cost for scanning and aggregation over
a materialized cuboid. As the actual processing time is difficult to estimate, we alternatively
use the space cost of cuboids as the estimation metric. Given a cuboid c, we estimate the
space cost of c as follows:

spacePerRow =
∑

p∈c.properties

typeSize(p)

Thus,
SpaceCost(c) = spacePerRow × numberOfRows(c)

Note that typeSize(property type) refers to the standard size of data types. For example,
the integer type in “C++” is 2 byte. numberOfRows(c) refers to the number of rows in c.
A rough estimation is the size of the Cartesian product of all queried properties:

numberOfRows(c) =
∏

p∈c.properties

|p|

30

Figure 4.2: Neo4j’s execution plan for query User-Badge, User-Post, Post-Tag:
Tag.TagName.

31

4.2.4 Structure Planner

As mentioned above, StructurePlanner also adopts the same greedy selection strategy
described in Algorithm 1. We detail the process of StructurePlanner in Algorithm 5. First,
we build a lattice over all substructures contained in previous queries P , using the classic
lattice construction algorithm (similar to the lattice construction algorithms adopted in
CubePlanner). Figure 4.3 shows a substructure lattice originating from the root node
Badge-User, User-Post, Post-Tag. Starting from a union of structures of previous queries
as the root node, a lattice can be constructed recursively by populating descendants from
parent nodes through edge removals.

Figure 4.3: A substructure lattice with Badge-User, User-Post, Post-Tag as its root node.

Then, we initialize the covered substructures for each previous query as an empty set
(lines 2-4). For a previous query, coveredSubstructure keeps the information on what sub-
structures have been selected so far. It is updated every time a new substructure is selected.
Lines 5-12 perform score calculation. For each substructure, Line 6 estimates its space.
Lines 8-10 iterate over all “favored” previous queries (favored by current substructure) and
add on the marginal benefit (if any). Here marginal benefit refers to the time saved after
adding current substructure to selected substructures (Line 9). Lines 13-23 perform the
pick-and-update, and lines 19-22 update the covered substructures for previous queries as
a result of current round of selection. Such iteration will be terminated when space limit
is exceeded (line 13) or when there is no more marginal benefit (line 15).

We now explain the detailed implementation of the estimation functions employed in
Algorithm 5. Note that these are specific to our implementation in Neo4j and may differ in

32

Algorithm 5: StructurePlanner

System setting: σ: space limit for materialized views
Input: P : a set of previous queries
Output: S: an list of materialized substructures

1 Lattice← buildSubstuctureLattice(P);
2 foreach p ∈ P do
3 p.coveredSubstructres← ∅;
4 end
5 foreach substructure ∈ Lattice do
6 substructure.space← space(substructure);
7 substructure.benefit← 0;
8 foreach p ∈ P and p.structure ⊆ substructure.structure do
9 cuboid.benefit←

cuboid.benefit+max(0, benefit(p, substructure, p.coveredSubstructres));

10 end
11 substructure.score← substructure.benefit/substructure.space;

12 end
13 while System.memoryUsage < σ do
14 nextBestSubstructre← the substructure in Lattice with the highest score;
15 if nextBestSubstructre.score < 0 then
16 break;
17 end
18 S.add(materialize(nextBestSubstructre));
19 foreach p ∈ P and p.structure ⊆ nextBestSubstructre.structure do
20 p.coveredSubstructres← p.coveredSubstructres ∪ {nextBestSubstructre};
21 end
22 repeat Lines 5-12;

23 end

33

the case of other systems. Function space(substructure) returns the estimated space cost
of a substructure materialization. We use Neo4j’s execution plan API to get an estimated
result size of a substructure. Function benefit(p, substructure, p.coveredSubstructres) eval-
uates the marginal benefit of materializing a substructure for P . We know that execution
plan and estimated intermediate result size are provided by Neo4j’s API. But when sub-
structure materialization is used, the actual execution plan (intermediate result) may be
different than the näıve processing plan. As a result, estimating the marginal benefit of a
substructure is tricky. We estimate the marginal benefit of a substructure using

time(p.coveredSubstructres ∪ substructure)− time(p.coveredSubstructres),

which captures the overall improvement of adding substructure to coveredSubstructres
as materializations.

4.2.5 ID and Property Selection

Given a substructure picked by the StructurePlanner, we need to decide which IDs and
properties need to be stored. Keeping all IDs and attributes makes a substructure mate-
rialization more informative but increases the space cost. Thus, the selection of IDs and
properties is an important issue. We use substructure User-Post, Post-Tag as an example
and discuss different ID and property selection policies.

For IDs, we consider the following two policies.

• “All nodes preservation” keeps IDs of all nodes and edges. For User-Post, Post-Tag,
if we keep IDs of all nodes and edges, then we can perform join operation with Badge-
User, User-Post. We call such join an “overlap join” as the two substructures have
an overlap part which is User-Post. Note that we can join the two substructures
only when IDs of nodes (User and Post), and edge (edge between User and Post) are
stored in both substructures.

• “Border nodes preservation” only keeps IDs of “border nodes” which are on the border
of the substructure’s structure. Figure 4.4 highlights “border nodes” of structure
User-Post, Post-Tag. In this example we only save IDs of User and Tag. We do not
keep IDs of Post as node Post is not located on the border of the structure. This saves
space compared with “all nodes preservation”, however “border nodes preservation”
only enables joins on border nodes. For example we may join User-Post, Post-Tag
with User-Badge on their common border node User. But “overlap join” with other

34

substructures is not enabled because IDs of “inner nodes” are not stored. We cannot
join User-Post, Post-Tag with Badge-User, User-Post as Post is an “inner node” and
IDs of Post is not stored.

Figure 4.4: “Border nodes” of structure User-Post, Post-Tag.

In our experiments we choose “all nodes preservation”. But in some applications, the
space cost of “all nodes preservation” can be overwhelming, so we can choose “border
nodes preservation”.

For properties, we can choose to keep all properties, or only keep properties that were
queried in previous workloads. Our suggestion is to consider the proportion of properties
that were queried in previous workload over all properties in the data schema. For example,
in our experiments only a small proportion of properties were queried. We choose the latter
option as it is a waste of space to keep all properties. However, this decision problem can
be studied further.

4.2.6 Update on Materialized Views

The solution we have discussed so far is applicable for static scenarios (with fixed previous
workload). We now expand our solution to dynamic scenarios: as queries are executed,
there could be change of “hot structures” and “properties of interest”. Thus updates
on materialized views are necessary. It is worth pointing out that our current solution
considers only static data graphs. View maintenance over dynamic data graph is left as a
future work. Remember that we have a memory budget, therefore in some cases obsolete
materialized views need to be swapped out for new ones. To achieve this, we maintain
a sliding window over previous queries. After executing a certain number of queries, we
perform materialized view selection over only “recent queries” which are in the sliding
window. Old views that need to be swapped out are eliminated by simply releasing their
memory. For newly selected views we materialize them. For old views that do not need to
be swapped out, we do nothing as they are already materialized in memory. In this way
periodical update on materialized views can be realized.

35

4.3 Query Processing

Query processing aims at processing incoming queries efficiently using materialized sub-
structures and cuboids. When a query q arrives, we first consult materialized cuboids. If
q can be answered with an aggregation over any materialized cuboid, we select the cuboid
with the minimum space and directly scan over it to produce result of q. If q cannot be
answered by any cuboid, we decompose q and use substructures as much as possible to
compute the result of q.

Algorithm 6: Query Processing

System: C: a set of materialized cuboids
S: a set of materialized substructures
Input: q: a query
Output: r: result of q

1 minspace←∞;
2 mincuboid← NULL;
3 foreach cuboid ∈ C do
4 if cuboid.structure = q.structure and q.dimension ⊆ cuboid.dimension then
5 if cuboid.space < minspace then
6 minspace← cuboid.space;
7 mincuboid← cuboid;

8 end

9 end
10 if mincuboid 6= NULL then
11 r ← aggregate(mincuboid, q);
12 else
13 r ← Decompose Join(q, S);
14 end

15 end

Algorithm 6 describes query processing. Given an incoming query q, we first look up
materialized cuboids and find if any cuboid can be used to answer q (lines 4-9). Note that
cuboid.space in line 5 was computed in line 9 in Algorithm 4. Then, we check if q can
be answered by cuboid materialization. If so, we perform aggregation operation over the
cuboid (line 11). Otherwise, we need to decompose q into substructures and compose the
result (line 13). Function aggregate(mincuboid, q) is the classic aggregation operation. We
will discuss how function Decompose Join(q, S) is implemented at the end of this section.

36

4.3.1 Substructure Selection

Before discussion on Decompose Join(q, S), we need to first solve a “Substructure Selec-
tion” problem. In order to decompose a query q, we need to consider which materialized
substructures we need to use. We need to make decision when candidate substructures in
S overlap. For example suppose q has structure Badge-User, User-Post, Post-Tag, and S
consists of substructures:

(1) Badge-User

(2) Badge-User, User-Post

(3) User-Post, Post-Tag

(4) Post-Tag

(5) User-Post.

We can get structure of q by joining structures (1) and (3). Thus (1) and (3) seem to
be a possible combination for substructure selection in this case. Actually we may have
at least three possible substructure selections: (1) and (3); (2) and (4); (1), (4) and (5).
The key question is which selection will result in fastest processing time on q? Here are
some intuitions to solve this question. First, when we select substructures one by one, we
do not select a substructure when it is covered by selected substructures. For example we
will not consider (1) if (2) has been selected as (1) is covered by (2). Second, we prefer
to minimize total size of selected substructures as we need to at least access each selected
view once. Third, we prefer smaller number of selected substructures as intuitively this
causes less times of joins.

We propose a greedy algorithm for substructure selection based on user defined heuris-
tics. Users may define heuristic functions based on other intuitions (like the three intuitions
mentioned above). The idea of the greedy algorithm is to always pick up next substructure
with highest score of user defined heuristic function h(s), which returns heuristic score for
a substructure s. Some example heuristics are #edges of substructure, score calculated in
StructurePlanner (Line 11 in Algorithm 5), table size, many others.

Lines 1-2 initialize uncoveredStruc and uncoveredProp, which keeps track of structures
and properties which have not been covered by selected substructures. Such uncovered
structures and properties will need to be fetched from the database. Line 3 initializes
coveredStruc, which keeps union of selected substructures. Line 5 starts iteration over
substructures ordered by user-defined heuristics h(s). Line 6 assures that a candidate
substructure that is totally covered by selected substructures will be disqualified. In the

37

above example, suppose we have already selected (2), there is no need to select (1) since
(1) is totally covered by (2).

Algorithm 7: SelectSubstructure

System: S: a collection of materialized substructures
h(s): user defined function. It returns the heuristic score of a substructure s.
Input: q: a new query
Output: V : selected views for future joining
uncoveredStruc: structure not covered by selected views
uncoveredProp: properties not covered by selected views

1 uncoveredStruc← q.structure;
2 uncoveredProp← q.properties;
3 coveredStruc← ∅;
4 V ← ∅;
5 foreach s ∈ S ordered by h(s) do
6 if s ⊆ uncoveredStruc and s 6⊆ coveredStruc then
7 V ← V ∪ {s};
8 coverdStruc← coveredStruc ∪ s.structure;
9 uncoveredStruc← uncoveredStruc− s.structure;

10 uncoveredProp← uncoveredProp− s.properties;
11 end

12 end

4.3.2 Decomposition and Join

In this section, we discuss how to implement function Decompose Join(q, S) (as in Al-
gorithm “Query Processing” in subsection 4.3). Besides Decompose Join(q, S), we shall
discuss two other variations of implementation: Decompose Join∗ and Decompose Join+.

#1 Decompose Join

Given a query q, we use the previously discussed algorithm “SelectSubstructure” to select
a set of substructure materializations V . However, substructures in V may not completely
cover the structure of V . If there is any remaining structure (uncoveredStruc) and proper-
ties (uncoveredProp) that V does not cover, we need to retrieve them from the database.
We call such remaining structures and properties fetched from the database “complemen-

38

tary components”. After all these components (both materializations and “complementary
components”) are finally ready, we join and aggregate them to produce final results.

Algorithm 8: Decompose Join

System: S: a collection of materialized substructures
Input: q: a new query
Output: r: result of q

1 Σ← ∅;
2 V, uncoveredStruc, uncoveredProp← SelectSubstructure(q);
3 Σ← Σ ∪ V ;
4 Splits← split(uncoveredStruc, uncoveredProp);
5 foreach s: Splits do
6 Σ← Σ ∪ {retrieve(s)};
7 end
8 r ← join aggregate(Σ, q);

Line 1 initializes Σ, which maintains a set of all components (materializations and
“complementary components”) that are needed. Line 2 selects substructures using Se-
lectSubstructure algorithm. uncoveredStruc and uncoveredProp refer to structures and
properties which are not covered by selected substructures. They are “complementary
components” and will be retrieved from database servers. Line 4 splits uncoveredStruc
and uncoveredProp into connected components. We retrieve each connected component
from the database server. Note that splitting is necessary since uncoveredStruc may not
be exactly one connected component. Line 8 joins and aggregates all materials together to
produce results.

Function split(uncoveredStruc, uncoveredProp) is implemented by a classic connected
components detection algorithm. It splits uncoveredStruc and uncoveredProp into con-
nected components (structures). We want to retrieve each connected structure separately
from the database because otherwise it may result in unnecessarily large results of Cartesian
products of several disconnected structures. Function materialize(s) retrieve “complemen-
tary components” s from the database server. Function join(Σ, q) join tables of Σ together
and aggregate over properties based on q. Joins over multiple tables is a well-studied topic.
Joining order and join technique (hash join etc.) are two important aspects of this topic.
In our implementation we use hash join and our joining order policy is to keep joining two
tables that have minimum sum of table sizes and have common column(s). That is, we
tend to select two smaller tables to join.

39

#2 Decompose Join∗

Decompose Join retrieve “complementary components” from the database in a naive man-
ner. We adopt the idea of Semi-Join [20] and propose another way of implementation:
Decompose Join∗. Semi-join takes advantage of “selection effect” of natural joins. In
Decompose Join∗, we first perform joins over substructures of V even before fetching “com-
plementary components” from the database. Line 3 performs join(V) before retrieve in
Line 7. We call this phase “first round of joins”. Note that substructures in V may reside
in multiple connected components. Thus V ∗ may consist of multiple intermediate tables.
The purpose for first round of joins is that it provides “candidate” node and edge IDs for
future joins (thanks to ‘selection effect” of natural joins). When fetching “complementary
components” from the database server, we inform database server such candidate node
and edge IDs so that search space for “complementary components” is narrowed down
(retrieve∗(s, V ∗) in Line 7). We name this approach Decompose Join∗.

Algorithm 9: Decompose Join∗

System: S: a collection of materialized substructures
Input: q: a new query
Output: r: result of q

1 Σ← ∅;
2 V, uncoveredStruc, uncoveredProp← SelectSubstructure(q);
3 V ∗ ← join(V);
4 Σ← Σ ∪ V ;
5 Splits← split(uncoveredStruc, uncoveredProp);
6 foreach s: Splits do
7 Σ← Σ ∪ {retrieve∗(s, V ∗)};
8 end
9 r ← join aggregate(Σ, q);

We explain implementation of function retrieve∗(s, V ∗). It fetches results from the
database by passing candidate IDs information (from join result V ∗). Syntax to achieve
this varies by database. In SQL and Cypher we may pass candidate IDs using a “WHERE”
statement.

We compare Decompose Join∗ vs. Decompose Join and summarize following pros
and cons of Decompose Join∗. Decompose Join∗ helps accelerate retrieval process from
backend databases in two aspects. First, since screened out candidate IDs are provided,
database back end only needs to iterate through a portion of nodes and edges. This
saves database processing time. Second, candidate IDs have a “selection” effect thus

40

size of retrieval results is deducted. Therefore result transmission times will be reduced.
The disadvantages are twofold. First, Decompose Join∗ has to transmit IDs. Second,
Decompose Join∗ performs two rounds of join; first on V before “complementary compo-
nents” are ready, followed by second round of joins. In terms of optimization on join orders,
Decompose Join is better because the join order can be derived based on full knowledge of
all the tables, whereas in Decompose Join∗, tables are considered separately in two rounds
of joins, which narrows down the scope of all possible join orders.

#3 Decompose Join+

Algorithm 10: Decompose Join+

System: S: a collection of materialized substructures
Input: q: a new query
Output: r: result of q

1 Σ← ∅;
2 V, uncoveredStruc, uncoveredProp← SelectSubstructure(q);
3 V ∗ ← join(V);
4 Σ← Σ ∪ V ;
5 Splits← split(uncoveredStruc, uncoveredProp);
6 foreach s: Splits do
7 if decide(s,V ∗) then
8 Σ← Σ ∪ {retrieve∗(s, V ∗)};
9 else

10 Σ← Σ ∪ {retrieve(s)};
11 end

12 end
13 r ← join aggregate(Σ, q);

We mentioned two advantages of retrieve∗(s, V ∗). However a disadvantage of retrieve∗(s, V ∗)
is an overhead of transmitting candidate IDs to Neo4j. We propose a decisive way to eval-
uate the trade-off between overhead and benefits of retrieve∗(s, V ∗) and choose between
retrieve∗(s, V ∗) and retrieve(s). Decompose Join+ is derived from Decompose Join∗.
The trick is to revise Line 7 by using decide(s, V ∗) to choose the better way between
retrieve∗(s, V ∗) and retrieve(s).

Implementation of function decide(s, V ∗) is as follows. We first estimate result sizes of
the two retrieval methods: retrieve∗(s, V ∗).estSize and retrieve(s).estSize. retrieve(s).estSize

41

can be returned by space(substructure) in Algorithm 5. The tricky one is
retrieve∗(s, V ∗).estSize, which we estimate as follows:

1. Randomly sample a small number of candidate IDs.

2. Execute retrieve∗ but pass only sampled candidate IDs in (1). We call this a
“trial query”. We want to use the “trial query” to estimate result length of ac-
tual retrieve∗(s, V ∗). Since we only pass a small number of IDs, time cost of “trial
query” is acceptably small.

3. Calculate retrieve∗(s, V ∗).estSize proportionally using the result of “trial query”.

We compare Decompose Join+ vs Decompose Join∗: We see that Decompose Join+

performs two rounds of joins like Decompose Join∗. The major difference is that
Decompose Join+ plays “trial query”. The principle behind “trial query” is to pay an
acceptable price to make a wise decision on “complementary components” retrieval. Our
experiments show that a good decision making on “complementary components” retrieval
saves much more time than the time cost of “trial queries”, results and discussion of which
will be presented in next chapter.

42

Chapter 5

Evaluation

In this chapter, we validate our proposed solution with a set of meaningful queries over a
real world dataset. To demonstrate the time efficiency of our approach, we select Neo4j
community version 3.1.3 as the baseline. In the experiments, we test query processing
time and space cost by running the queries using both our approach and native Neo4j
implementation. The results show that our approach is about 20 times faster than the
Neo4j implementation on average under the default settings (to be covered in Section 5.2).
Moreover, we assess and explain how each aspect of our system affects processing efficiency.
Finally, we discuss our reflections on the Neo4j system.

5.1 Experiment Setup

There are two purposes of our experiments. First is to demonstrate the query processing
efficiency of our proposed solution by comparing against the native Neo4j system. Second,
we would like to test how different settings (of parameters and choices of strategies) in our
solution affect query processing efficiency.

5.1.1 Datasets

We use the StackOverFlow dataset in our experiments that is generated by using raw
information from https://archive.org/details/stackexchange. The dataset contains user-
contributed content (such as user information, posts, etc.) on www.stackoverflow.com.
The dataset contains 10 different node labels and 12 different edge labels. Figure 5.1 shows

43

the meta graph of 8 node labels and 8 edge labels that are involved in our experiments.
The data graph contains over 300 million vertices and more than 400 million edges and
takes 44.5GB of storage.

Figure 5.1: The meta graph of StackOverFlow used in experiments.

5.1.2 Query Workloads

We design 24 queries against the StackOverFlow dataset given below. We randomly select
12 queries as the previous workload, leaving the rest 12 ones as the new workload. With
these previous and new workloads, three senerios of different cuboid hit and structure hit
(to be discussed in Section 5.3.1) happen when processing new queires.

Previous Workload:

P1 User-Post: User.UpVotes, Post.Score=10

P2 User-Post: User.UpVotes, AVG(Post.Score)

P3 User-Post: User.Age, SUM(Post.ActiveMonth)

P4 User-Post: User.CreationDate Year, Post.PostTypeId=1

P5 Badge-User, User-Post, Post-Tag: Tag.TagName, User.CreationDate Year=2017

P6 Badge-User, User-Post, Post-Tag: Tag.TagName, Badge.Name

P7 Badge-User, User-Post:Badge.Date Year, AVG(Post.Score)

P8 Badge-User, User-Post:Badge.Class, AVG(Post.ActiveMonth)

P9 User-Post, Post-Tag: AVG(User.Age), Tag.TagName

44

P10 User-Post, Post-Tag: AVG(User.UpVotes), Tag.TagName=Java

P11 User-Post, Post-Vote: AVG(User.UpVotes), Vote.VoteTypeId

P12 Post-Comment, Post-PostLink: PostLink-LinkTypeId, AVG(Comment-Score)

New Workload:

Q1 User-Post: User.CreationDate Year=2017, Post.PostTypeId

Q2 User-Post: AVG(User.UpVotes),Post.Score

Q3 User-Post: Post.ActiveMonth, AVG(User.Age)

Q4 User-Post: User.CreationDate Year

Q5 Badge-User, User-Post, Post-Tag: Tag.TagName, Badge.Class

Q6 Badge-User, User-Post, Post-Tag: Tag.TagName, Badge.Date Year

Q7 Badge-User, User-Post:Badge.Name, Post.PostTypeId

Q8 User-Post, Post-Tag: User.UpVotes, Tag.TagName, Post.PostTypeId=2

Q9 User-Post, Post-Tag:User.CreationDate Year, Tag.TagName

Q10 Badge-User, User-Comment: Badge-Class, AVG(Comment-Score)

Q11 Badge-User, User-Comment: Badge-Name, AVG(Comment-Score)

Q12 Post-PostHistory, Post-Tag: Tag-TagName, PostHistory-PostHistoryTypeId

5.1.3 System Setting

We run the experiments on a Linux server with 256GB main memory. Our system is
implemented in Java. We set the initial JVM memory to 100GB, and the maximum JVM
memory to 200GB.

Our solution is developed on top of Neo4j Community v3.1.3. In the experiments, we
set Neo4j’s initial memory to 60GB and 200GB for the maximum usage. We use Neo4j’s
official Java driver (https://neo4j.com/developer/java/#neo4j-java-driver) to interact with
Neo4j server.

45

5.2 Aspects of Interest

As we mentioned, there are two purposes of our experiments. In addition to the efficiency
test, we would like to study how different settings in our system could affect query pro-
cessing efficiency. We list the following aspects of interest to be tested. Default setting for
each is also presented.

Materialization

• Space cost limit (σ in Algorithm 5 in Section 4.2.4) is set to 6GB by default. Results
and discussion are presented in Section 5.3.3.

• Algorithms in materialized view selection described in Section 4.2. For cuboid selec-
tion, we compare CubePlanner (in Section 4.2.3) with the “Partial Materialization”
algorithm (PMA) proposed in Graph Cube [29]. We materialize the best 3 cuboids in
both approaches (n in Algorithm 3 is set to 3). For substructure selection we compare
StructurePlanner (in Section 4.2.4) with the well-known maximal frequent pattern
mining algorithm (FPM) [8]. In other tests, CubePlanner and StructurePlanner are
used by default. Results are discussed in Sections 5.3.5 and 5.3.6, respectively.

• Frequency threshold for identification of hot structures (ω in Algorithm 1). We set
the default value to be 4; the intuition of default value, together with results and
discussion are elaborated in Section 5.3.2.

• Storage level for materialized views. We compare main memory storage vs hard disk
storage. Note that memory based materialization is set as the default in all other
tests. Detailed discussion is provided in Section 5.3.4.

Processing of New Queries

• Choice of score function in ranking substructures during the “Substructure Selection”
(h(s) in Algorithm 7 discussed in Section 4.3.1). By default, h(s) returns the score
of s calculated in StructurePlanner (as result of line 11 in Algorithm 5). Results and
explanations can be found in Section 5.3.7.

• Choice among using Decompose Join, Decompose Join∗ and Decompose Join+ in
“Decomposition and Join” in Section 4.3.2. We use Decompose Join as the default
method. Detailed discussion is in Section 5.3.8.

46

5.3 Results and Discussion

5.3.1 Our System vs. Neo4j

We first show the time efficiency of our solution running new queries in default settings
against the native Neo4j implementation (Figure 5.2).

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12

T
im

e
(S

ec
)

Queries

Neo4j
Materialized

Figure 5.2: Time efficiency on the new workload: our solution vs Neo4j.

Note that the execution time for Q1 and Q4 in our system is 0.001s, which is negligable
to show in the figure. Neo4j does not finish Q5 and Q6 in 18 hours so we terminate
execution and record the processing time as 18 hours. It is worth pointing out that with
an extra 4,045s time cost and 5.7GB space cost for materialized views, our solution achieves
remarkable efficiency improvement (29.8 times speedup and 236,514s of total time saving).
Given the size of our dataset, this extra space is acceptable.

We now detail how our system works over the 12 queries. First, User-Post is identified as
a hot structure as its frequency count is larger than or equal to the frequency count thresh-
old. As a result, P1 - P4 are passed to the CubePlanner and P5 - P12 are passed to the
StructurePlanner. Cuboids selected by CubePlanner are {User.Age, Post.ActiveMonth},

47

{User.CreationDate Year, Post.PostTypeId}, and {User.UpVotes, Post.Score}. Figure 5.3
highlights substructures S that StructurePlanner selects: User-Post (s1), Post-Tag (s2)
and Badge-User (s3). From the observation of the previous workload, we can tell that
the StructurePlanner makes a good decision as these three substructures are able to cover
most of previous queries.

Figure 5.3: Substructure selected by StructurePlanner.

We further explain the performance variance of the new workload. Overall improvement
rate for Q1 - Q4 is more than 20000. This is because Q1 - Q4 are answered with a “cuboid
hit”. As a result, the time savings for these 4 queries are much greater than for Q5 -
Q12 (which do not get a “cuboid hit”). It is worth pointing out that time complexities
of cuboid aggregation and substructure joins are much different. The time complexity of
a cuboid aggregation is bounded by the size of the Cartesian product of its dimensions.
When it comes to substructure joins, however, the time complexity is related to the actual
data size. Note that Q5 - Q9 are totally covered by S. In these cases, no complementary
components are fetched from the Neo4j database. Q10 - Q12 are partially covered by S.
Therefore, complementary components are fetched from the database, where a series of
I/O operations increases the total time. Overall, the overall improvement rate for Q5 -
Q9 is around 40 times, while improvement rate for Q10 - Q12 ranges around 15 times.
Clearly, our system could greatly improve query processing efficiency with an acceptable
incremental space cost. While the improvement ratio varies in different scenarios of cuboid
and structure “hits”.

48

5.3.2 Frequency Threshold

Frequency threshold ω can significantly affect the query processing efficiency. A change
of ω may result in different hot structures, followed by varied inputs for the CubePlanner
and the StructurePlanner. It would further lead to different materialized view selection
and overall query processing performance. As indicated in Section 4.2.1, ω serves as a
minimum threshold for building a cuboid over a hot structure (“cuboid hit” assured). We
consider 4 an appropriate choice for ω in our test case considering the frequency count of
structures in previous workload (as shown in the table below).

Structure Frequency
User-Post 4

Badge-User, User-Post, Post-Tag 2
Badge-User, User-Post 2
User-Post, Post-Tag 2
User-Post, Post-Vote 1

Post-Comment, Post-PostLink 1

Suppose we lower ω to 2. Badge-User, User-Post, Post-Tag will be hot structure. As a
result, cuboid selection over Badge-User, User-Post, Post-Tag will be considered based on
merely two queries (P5 and P6). Notice that Q5 and Q6, which have structure Badge-User,
User-Post, Post-Tag, will never get cuboid hit. This is because properties Badge-Class in
Q5 and Badge-Date Year in Q6 do not even appear in P5 and P6. That is to say, in this
case any cuboid selected over Badge-User, User-Post, Post-Tag will be useless. In addition,
when ω is set to 2, input for StructurePlanner will be only two queries (Q11 and Q12).
Note that structure frequency counts of these two queries are both 1. In other words, these
are the most “random” queries. Note that the idea of StructurePlanner is to discover of
useful substructures based on a sufficient number of “less hot” queries. In this case, two
random queries are not the ideal input for the StructurePlanner.

Suppose we increase ω to 5; then there will be no cuboid that is materialized in our
test case. As a result Q1 - Q4 will be processed using substructure materialization (s1).
Although it is still faster than the native Neo4j system, the outstanding improvement ratio
of cuboid hit cannot be achieved.

Figure 5.4 presents the total processing time under different settings of ω. Note that
no structure has frequency count of 3, therefore setting ω as 3 and 4 would categorize the
same set of hot structures and thus yield the same materialized views. We see that ω does

49

have a significant effect over the system performance. In order to determine the optimal
value of ω (which leads to best processing efficiency), we need to evaluate the tradeoff
between inputting a previous query to CubePlanner and StructurePlanner. We leave this
as future work.

 0

 5000

 10000

 15000

 20000

2 3 4 5

T
im

e
(S

ec
)

Freqency Count Threshold

Figure 5.4: Total processing time under different settings of ω.

5.3.3 Space Cost Limit

As pointed out in Section 5.3.1, the space cost of our materialized views is 5.7GB, while the
default space cost, σ, is set to 6GB. In this section, we study the effect of σ on the query
processing efficiency. Figure 5.5 shows how the total processing time varies with different
space costs (which were caused by setting σ to 6GB, 4GB, and 2.5GB, respectively). As
more views being materialized, the total processing time decreases.

50

 8000

 8500

 9000

 9500

 10000

 10500

 11000

 11500

 12000

 12500

 2 2.5 3 3.5 4 4.5 5 5.5 6

T
im

e
(S

ec
)

Memory (GB)

Efficiency v.s. Space Cost

Figure 5.5: Total execution time under different space limits.

5.3.4 Storage Level for Materialized Views

As discussed in Section 5.2, by default, materialized views are stored as objects in main
memory. This guarantees fast data access on the cost of extra memory consumption.
Alternatively, materialized views can be serialized and stored as files on hard disks. Figure
5.3.4 shows a comparison of the total query processing time using memory-based views
and disk-based views. As expected, hard disk storage does not perform as fast as main
memory storage. However, it is worth noting that the drop in efficiency is acceptable.

51

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

Memory−based Disk−based

T
im

e
(S

ec
)

Figure 5.6: Main memory storage vs hard disk storage.

5.3.5 CubePlanner vs PMA

We compare CubePlanner in our solution (Section 4.2.3) with PMA in Graph Cube [29].
Figures 5.7 and 5.8 show that CubePlanner outperforms PMA in both query processing effi-
ciency and space cost. Cuboids selected by CubePlanner are {User.Age, Post.ActiveMonth},
{User.CreationDate Year, Post.PostTypeId}, and {User.UpVotes, Post.Score}. While PMA
selected {User.Age, User.UpVotes, User.CreationDate Year, Post.PostTypeId,
Post.Score, Post.ActiveMonth}, {User.Age, User.UpVotes, User.CreationDate Year, Post.
PostTypeId, Post.ActiveMonth}, {User.Age, User.UpVotes, User.CreationDate Year, Post.
PostTypeId, Post.Score}.

52

 1

 10

 100

 1000

Q1 Q2 Q3 Q4

T
im

e
(m

s)

Queries

CubePlanner
PMA

Figure 5.7: Time: CubePlanner vs PMA.

 0.1

 1

 10

 100

 1000

 10000

CubePlanner PMA

S
pa

ce
 (

M
B

)

Figure 5.8: Total cuboid space cost: CubePlanner vs PMA.

Both approaches are considered as implementations of the Greedy Selection Frame-
work discussed in Section 4.2.2. The differences between the two implementations are the

53

following. CubePlanner uses the ratio of marginal benefit over space cost as a score for
candidate ranking (line 11 in Algorithm 4), while PMA only considers marginal benefit.
That is to say, space cost is not taken into account in PMA. Moreover, PMA treats each
combination of properties with an equal weight, regardless of how many times a combi-
nation has appeared in previous queries. For example, in our test case, the combination
of User.UpVotes, Post.Score appears twice in previous workload. But PMA would treat
User.UpVotes, Post.Score with the same weight as those combinations that are not even
queried in previous workload ({User.UpVotes, Post.PostTypeId} etc). As a result, Cube-
Planner uses more information from previous workload and thus makes a better selection.

5.3.6 StructurePlanner vs FPM

We compare our Algorithm 5 in StructurePlanner with FPM. In FPM we set the mini-
mum support to 2 considering the frequency count as listed in the table in Section 5.3.2.
These two ways provide different substructure selections which lead to different processing
efficiency. Figures 5.9 and 5.10 show that our StructurePlanner outperforms FPM in both
efficiency and space cost.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

GSF FPM

T
im

e
(S

ec
)

Figure 5.9: Total processing time for new workload: StructurePlanner vs FPM.

54

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

GSF FPM

M
em

or
y

C
os

t (
G

B
)

Figure 5.10: Space cost: StructurePlanner vs FPM.

Figure 5.3 highlights three selected substructures by StructurePlanner. As mentioned,
it is a good selection as these three substructures are able to cover most of the previous
queries. However, FPM selects Badge-User, User-Post, Post-Tag, which is a bad selection
because it is useful only for Q5 and Q6. In addition, materialization of Badge-User, User-
Post, Post-Tag results in even more space cost than materialization of the three edges
separately (as selected by StructurePlanner). Figure 5.11 details processing time for each
query. FPM only outperforms StructurePlanner on Q5 and Q6. This is because Q5 and
Q6 would be able to perform aggregation over the materialization of Badge-User, User-
Post, Post-Tag when FPM is applied. While table joins of s1, s2 and s3 are required if
StructurePlanner is applied, which clearly is more time consuming. However for Q7 - Q12,
StructurePlanner is the winner as it gets at least a partial “substructure cover”, while the
FPM-selected structure is not helpful at all.

55

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12

T
im

e
(S

ec
)

Queries

GSF
FPM

Figure 5.11: Processing time for each query: StructurePlanner vs FPM.

5.3.7 Substructure Selection

In our experiment, h(s) in Algorithm 7 does not make any difference during “Substruc-
ture Selection”. This is because the three selected substructures do not share any edges.
Note that scenarios in Section 4.3.1, where multiple valid combinations of materialized
substructures exist, only happen when materialized substructures have overlaps.

5.3.8 Decompose Join

We now present the experiments comparing Decompose Join, Decompose Join∗ and
Decompose Join+ in “Decomposition and Join” (presented in Section 4.3.2). Three dif-
ferent implementations of “Decomposition and Join” would lead to different processing
performance for Q10 - Q12, as they are partially covered by S and fetching complementary
components from Neo4j is necessary. Figure 5.12 provides the processing time for Q10 -
Q12 using the three approaches. Decompose Join∗ performs better than Decompose Join
in Q10. This is because Decompose Join∗ passes to Neo4j candidate IDs of users that have

56

badges, which provides a considerable filtering effect when fetching User-Comment. As a
result, Decompose Join∗’s processing time for fetching User-Comment is reduced. Be-
sides, its time for joining Badge-User and User-Comment also decreases because the table
size of User-Comment is smaller than that of Decompose Join, thanks to the filtering ef-
fect. This is reflected in Figure 5.13, where the time for join is saved in Decompose Join∗.
However Decompose Join∗ performs badly for Q12. This is because the filtering effect
of Post-Tag in fetching Post-PostHistory is small as most posts have tags. In addition,
Decompose Join∗ has an overhead of scanning the Post-Tag table in order to get the set of
candidate IDs. It explains why Decompose Join∗ takes longer in processing Q12. Figure
5.14 gives the total processing time for Q10 - Q12 using the three approaches. We see
that Decompose Join+ has best overall performance. To explain, Decompose Join+ is
able to choose the faster approach when fetching complementary components from Neo4j
in scenarios like Q10 and Q12 with the cost of a cheap trial query (as discussed in Section
4.3.2). Note that the time cost for a trial query is bounded by a constant sample size, and
is not proportional to actual data size in the dataset. A too small sample size results in
bias in estimation, whereas an unnecessarily large sample size causes too much time. We
tried different sample sizes and find 100 to be an appropriate value, which serves estima-
tion properly and saves time. Figure 5.15 shows that the time cost of the trial query is
negligible compared to the overall processing time.

 0

 500

 1000

 1500

 2000

Q10 Q11 Q12

T
im

e
(S

ec
)

Queries

Decompose_Join
Decompose_Join*

Decompose_Join+

Figure 5.12: Processing time for Q10 - Q12 by three approaches.

57

 0

 200

 400

 600

 800

 1000

 1200

 1400

Q10 Q11 Q12

T
im

e
(S

ec
)

Queries

Decompose_Join
Decompose_Join*

Figure 5.13: Joining time in processing Q10 - Q12 by three approaches.

0

1000

2000

3000

4000

5000

Decompose_
Join

Decompose_
Join*

Decompose_
Join+

Ti
m

e
(S

ec
)

Figure 5.14: Total processing time for Q10 - Q12 by three approaches.

58

 0.01

 0.1

 1

 10

 100

 1000

 10000

Q10 Q11 Q12

T
im

e
(S

ec
)

Queries

Query
Trial Query

Figure 5.15: Total processing time vs trial query processing time.

To conclude, filtering effect is an important factor in the performance of these three
different implementations of “Decomposition and Join”. In general, Decompose Join+ is
the recommended approach as it is able to select the better solution with a small cost of
trial query.

5.3.9 Reflections on Neo4j

During the experiments, we found that Neo4j uses a näıve approach to result size estimation
for aggregation queries. It simply takes the square root of table size before aggregation
as the estimated size for the aggregated result, regardless of which properties are being
aggregated.

For example, Figure 5.16 presents Neo4j’s execution plans for queries User-Post:
User.Age and User-Post: ID(User), ID(Post), respectively. Obviously the latter query
should have much larger estimated result size than the former one. However Neo4j returns
exactly the same estimated result size by simply taking the square root of table length
(6,660,515 estimated rows in “Projection” step) in the previous step. Actual result sizes
for the two queries are 85 and 6,660,515. From this example we can tell that Neo4j’s näıve
estimation may lead to a huge bias.

59

Figure 5.16: Execution plans for User-Post: User.Age and User-Post: ID(User), ID(Post).

This is why we use the Cartesian product of dimensions to estimate cuboid sizes in
“Single CubePlanner”(covered in Section 4.2.3).

60

Chapter 6

Conclusion

Our work addresses the urgent need for efficient OLAP processing over large property
graphs. We present an end-to-end system to tackle the problem we integrate our proposed
solution into Neo4j. The main idea of our solution is to accelerate processing of new queries
using materialized views that were selected based on their benefits in previous workload.
We emphasize structure as a key feature of graph OLAP queries, which is a complement of
previous work [29]. We introduce and distinguish the concepts of cuboid and substructure,
which are two important types of materialized views and should be handled differently.
Our solution aims at property-aware and structure-aware materialization by taking both
cuboids and substructures into account. To achieve this, a greedy selection framework is
proposed for materialized view selection. We provide three approaches for substructure
join and data retrieval from Neo4j, and analyze their advantages and disadvantages. Our
solution works for any SPARQL-like query over the schema graph of any property graph,
and it is compatible for other graph databases. We conduct experiments by running a set
of queries using our system and native Neo4j. Results show that with acceptable space cost
in materialization (12.8% of the total size of the dataset), our system achieves 30x speedup
over native Neo4j. The experiments demonstrate our system to be a feasible solution
that achieves efficient OLAP queries processing on large graph datasets. In addition, we
make reflections on Neo4j and find out a defect in its result size estimation for aggregation
queries.

There are a number of directions for future work. First, as reflected in experiments in
Section 5.3, performance of our system is affected by system settings, hence investigation on
appropriate system settings would be a valuable follow-up to our work. Second, the system
we implemented so far supports SPARQL-like queries over schema graph, instead of data
graph. It is possible to execute SPARQL-like queries over data graph within our proposed

61

solution framework. The key issue is to take isomorphism into consideration during query
decomposition and composition. Third, future researchers may conduct experiments in
which all the views are materialized, which can be used as the optimal situation in efficency
comparison. We did not do such experiments because the space cost would be overwhelming
and we did not have a proper memory management system. Besides time for materializing
all the views would be too long. In our experiment, simply materializing one substructure of
three edges takes more than 5 days, not to mention materializing views of all conbinations
of structures and attributes. Third, estimation plays an important part in our solution.
Better methods for estimation of time cost and space cost can be studied. Finally, greedy
selection framework is not a perfect solution for “Materialization Selection” problem. It
may cause a local maximal issue. More advanced solutions like simulated annealing could
be borrowed to solve this problem.

62

References

[1] Deepak Agarwal and Bee-Chung Chen. Latent OLAP: data cubes over latent variables.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 877–888, 2011.

[2] S. Antony, Ping Wu, D. Agrawal, and A. El Abbadi. Moolap: Towards multi-objective
olap. In Proc. 24th Int. Conf. on Data Engineering, pages 1394 –1396, 2008.

[3] Surajit Chaudhuri. An overview of query optimization in relational systems. In Proc.
17th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems,
pages 34–43, 1998.

[4] Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, and Philip S. Yu. Graph OLAP:
Towards online analytical processing on graphs. In Proc. 8th IEEE Int. Conf. on
Data Mining, pages 103–112, 2008.

[5] Alfredo Cuzzocrea and Carson Kai-Sang Leung. Efficiently compressing OLAP data
cubes via r-tree based recursive partitions. In Proc. Foundations of Intelligent Systems
20th Int. Symposium, pages 455–465, 2012.

[6] Grzegorz Drzadzewski and Frank Wm. Tompa. Partial materialization for online
analytical processing over multi-tagged document collections. Knowl. Inf. Syst.,
47(3):697–732, 2016.

[7] Shifeng Fang, Li Da Xu, Yunqiang Zhu, Jiaerheng Ahati, Huan Pei, Jianwu Yan, and
Zhihui Liu. An integrated system for regional environmental monitoring and manage-
ment based on internet of things. IEEE Trans. Industrial Informatics, 10(2):1596–
1605, 2014.

[8] Karam Gouda and Mohammed Javeed Zaki. Efficiently mining maximal frequent
itemsets. In Proc. 1st IEEE Int. Conf. on Data Mining, pages 163–170, 2001.

63

[9] Daniel Hernández, Aidan Hogan, Cristian Riveros, Carlos Rojas, and Enzo Zerega.
Querying wikidata: Comparing sparql, relational and graph databases. In Proc. 15th
Int. Semantic Web Conf., pages 88–103, 2016.

[10] Jürgen Hölsch, Tobias Schmidt, and Michael Grossniklaus. On the performance of
analytical and pattern matching graph queries in neo4j and a relational database. In
Proc. 2017 Workshops of the EDBT/ICDT Joint Conf., 2017.

[11] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van Der Lugt, Merijn
Verstraaten, and Hassan Chafi. PGX.D: a fast distributed graph processing engine. In
Proc. 2015 ACM/IEEE Conf. on High Performance Computing, Networking, Storage
and Analysis, pages 58:1–58:12, 2015.

[12] Wararat Jakawat, Cécile Favre, and Sabine Loudcher. OLAP cube-based graph ap-
proach for bibliographic data. In Proc. of Student Research Forum Papers and Posters
at 2016 co-located with 42nd Int. Conf. on Current Trends in Theory and Practice of
Computer Science, pages 87–99, 2016.

[13] Alekh Jindal, Samuel Madden, Malú Castellanos, and Meichun Hsu. Graph analytics
using vertica relational database. In Proc. 2015 IEEE International Conference on
Big Data, pages 1191–1200, 2015.

[14] Michael Lawrence and Andrew Rau-Chaplin. Dynamic view selection for OLAP. In
Proc. 8th Int. Conf. Data Warehousing and Knowledge Discovery, pages 33–44, 2006.

[15] Chuan Li, Philip S. Yu, Lei Zhao, Yan Xie, and Wangqun Lin. InfoNetOLAPer:
Integrating InfoNetWarehouse and InfoNetCube with InfoNetOLAP. Proc. VLDB
Endowment, 4(12):1422–1425, 2011.

[16] Wen-Yang Lin and I-Chung Kuo. A genetic selection algorithm for OLAP data cubes.
Knowl. Inf. Syst., 6(1):83–102, 2004.

[17] Ling Liu and M. Tamer Özsu, editors. Encyclopedia of Database Systems. Springer,
2009.

[18] Fadi Maali, Stéphane Campinas, and Stefan Decker. Gagg: A graph aggregation
operator. In Proc. 14th Int. Semantic Web Conf., pages 491–504, 2015.

[19] Lhouari Nourine and Olivier Raynaud. A fast algorithm for building lattices. Inf.
Process. Lett., 71(5-6):199–204, 1999.

64

[20] Z. Meral Özsoyoglu. Review - using semi-joins to solve relational queries. ACM
SIGMOD Digital Review, 1, 1999.

[21] André Petermann, Martin Junghanns, Robert Müller, and Erhard Rahm. Graph-
based data integration and business intelligence with biiig. PVLDB, 7(13):1577–1580,
August 2014.

[22] Arun N. Swami and K. Bernhard Schiefer. On the estimation of join result sizes.
In Advances in Database Technology, Proc. 4th Int. Conf. on Extending Database
Technology, pages 287–300, 1994.

[23] Dominik Tomaszuk. RDF data in property graph model. In Proc. Metadata and
Semantics Research - 10th Int. Conf., pages 104–115, 2016.

[24] Zhengkui Wang, Qi Fan, Huiju Wang, Kian-Lee Tan, Divyakant Agrawal, and Amr
El-Abbadi. Pagrol: PArallel GRaph OLap over lege-scale attributed graphs. In Proc.
30th Int. Conf. on Data Engineering, pages 496–507, 2014.

[25] Jim Webber. A programmatic introduction to neo4j. In Proc. 2012 Conf. on Systems,
Programming, and Applications: Software for Humanity, pages 217–218, 2012.

[26] Feng Xia, Laurence T. Yang, Lizhe Wang, and Alexey V. Vinel. Internet of things.
Int. J. Communication Systems, 25(9):1101–1102, 2012.

[27] Konstantinos Xirogiannopoulos, Virinchi Srinivas, and Amol Deshpande. Graphgen:
Adaptive graph processing using relational databases. In Proc. 5th Int. Workshop on
Graph Data Management Experiences and Systems, pages 9:1–9:7, 2017.

[28] Claudio Zaza, Sandro Bimonte, Crescenzio Gallo, Nicola Faccilongo, Piermichele La
Sala, and Francesco Contò. OLAP analysis of integrated pest management’s defense
rules: Application to olive crop in apulia region. In Proc. Int. Conf. on Computational
Science and Its Applications, pages 31–44, 2017.

[29] Peixiang Zhao, Xiaolei Li, Dong Xin, and Jiawei Han. Graph cube: on warehous-
ing and OLAP multidimensional networks. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 853–864, 2011.

65

APPENDICES

.1 Previous Workload

Meaning for each previous query is listed below.

P1 User-Post: User.UpVotes, Post.Score=9

To see the distribution of users’ upvotes for high score (score=9) posts.

P2 User-Post: User.UpVotes, AVG(Post.Score)

To see average post scores by different upvotes.

P3 User-Post: User.Age, SUM(Post.ActiveMonth)

To see each age group’s contribution to total posts’ active time. What is the main
stream users‘ age range in stackoverflow.com?

P4 User-Post: User.CreationDate Year, Post.PostTypeId=1

To see numbers of questions (Post.PostTypeId=1) posted by different years when join-
ing the forum.

P5 Badge-User, User-Post, Post-Tag: Tag.TagName, User.CreationDate Year=2017

In 2017, how many badges are “involved” in each tag?

P6 Badge-User, User-Post, Post-Tag: Tag.TagName, Badge.Name

For each tag, what is the distribution of different types of “involved” badges?

P7 Badge-User, User-Post:Badge.Date Year, AVG(Post.Score)

How average post score varies by years that badges are honored? Has the “value” of
badges changed by time?

P8 Badge-User, User-Post:Badge.Class, AVG(Post.ActiveMonth)

66

Does high class badge indicate long post active month?

P9 User-Post, Post-Tag: AVG(User.Age), Tag.TagName

Which topics are trendy among youngster users and which ones are popular among
middle-aged users?

P10 User-Post, Post-Tag: AVG(User.UpVotes), Tag.TagName=Java

What’s the average upvotes (weighted) for users who involve in tag “Java”.

P11 User-Post, Post-Vote: AVG(User.UpVotes), Vote.VoteTypeId

For different type of votes, is there a difference in the voters average upvotes?

P12 Post-Comment, Post-PostLink: PostLink-LinkTypeId, AVG(Comment-Score)

Is there a connection between post’s link type and post’s average comment score?

.2 Future Workload

Intuition for asking each future query is listed as follows.

Q1 User-Post: User.CreationDate Year=2017, Post.PostTypeId

For users who join recently in year 2017, how many posts are posted for each type of
posts? How many are questions and answers?

Q2 User-Post: AVG(User.UpVotes), Post.Score

What is the average users’ upvotes for each post score?

Q3 User-Post: Post.ActiveMonth, AVG(User.Age)

For posts of different active timespan, is there a difference in average users’ age?

Q4 User-Post: User.CreationDate Year

How many posts are posted for users who joined in different years?

Q5 Badge-User, User-Post, Post-Tag: Tag.TagName, Badge.Class

Do users of different classes of badges have different topics of interest?

Q6 Badge-User, User-Post, Post-Tag: Tag.TagName, Badge.Date Year

Is there a major shift in topics of interest for users who receive badges in different years?

Q7 Badge-User, User-Post:Badge.Name, Post.PostTypeId

67

How many posts are posted for different types of posts and badges?

Q8 User-Post, Post-Tag: User.UpVotes, Tag.TagName, Post.PostTypeId=2

What is the distribution of users’ upvotes for each topic of answers (Post.PostTypeId=2)?

Q9 User-Post, Post-Tag:User.CreationDate Year, Tag.TagName

Do users who join in different years have different topics of interests?

Q10 Badge-User, User-Comment: Badge-Class, AVG(Comment-Score)

Do users of higher classes of badges tend to be more “picky with comments?

Q11 Badge-User, User-Comment: Badge-Name, AVG(Comment-Score)

Do users of different types of badges give different comment scores? For example, do
“masters” tend to give lower comment scores than “students”?

Q12 Post-PostHistory, Post-Tag: Tag-TagName, PostHistory-PostHistoryTypeId

For different tags, is there a difference in post histories related to the tags? For example,
posts of which tags are more often re-edited?

68

	List of Tables
	List of Figures
	Introduction
	Property Graph Model
	OLAP over Property Graph
	Challenges of Graph OLAP
	Our Solution and Contributions

	Background and Related Work
	OLAP over Property Graph Model
	Graph OLAP Examples
	Structure, Dimension, and Measure

	Graph Databases and Neo4j
	Related Work

	Problem Definition
	Terminology
	Definition of Property Graph
	OLAP Query
	Materialization: Cuboid & Substructure

	Problem Definition

	Solution
	Solution Framework Overview
	Materialized View Selection
	Overview of Materialized View Selection
	Greedy Selection Framework
	CubePlanner
	Structure Planner
	ID and Property Selection
	Update on Materialized Views

	Query Processing
	Substructure Selection
	Decomposition and Join

	Evaluation
	Experiment Setup
	Datasets
	Query Workloads
	System Setting

	Aspects of Interest
	Results and Discussion
	Our System vs. Neo4j
	Frequency Threshold
	Space Cost Limit
	Storage Level for Materialized Views
	CubePlanner vs PMA
	StructurePlanner vs FPM
	Substructure Selection
	Decompose_Join
	Reflections on Neo4j

	Conclusion
	References
	APPENDICES
	Previous Workload
	Future Workload

