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Abstract 

A hybrid experimental-numerical procedure was implemented to determine the failure surface of 

a dual-phase 780 steel sheet as a function of the effective plastic strain, triaxiality, and Lode 

parameter using butterfly specimens with in situ digital image correlation strain measurement 

and supporting finite element calculations.  A butterfly-type test specimen was employed to 

experimentally obtain stress states ranging from simple shear to plane strain tension including 

mixed tensile and shear loading.  The numerically-derived failure surface was implemented into 

the phenomenological GISSMO damage model in the commercial finite element code LS-

DYNA and the accuracy of the failure surface was determined using finite element predictions of 

the characterization experiments.  A series of independent validation experiments related to sheet 

metal forming were performed including a hole tension test, a conical and flat punch hole 

expansion test, and a hemispherical punch test.  The finite element models utilizing the damage 

model were able to accurately reproduce the load-displacement and surface strains of the sheet 

material for both the characterization and validation experiments.  Prediction of the failure 

orientation and location compared favourably to each of the validation tests. 

 

Keywords: damage; fracture; dual-phase 780 steel, butterfly specimen, sheet metal forming, 

GISSMO, failure prediction 
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1.0 Introduction 

Optimized mechanical design using lightweight construction methods has become a high priority 

in the automotive industry as pressure mounts to reduce green-house gas emissions and improve 

fuel economy while maintaining (or improving) performance and safety.  It has been shown that 

a 10% reduction in automotive mass yields a 6% improvement in fuel economy [1].  

Additionally, the U.S. Department of Energy [2] has estimated that current automotive mass 

could be reduced by up to 50%.  A key contribution to achieving this mass reduction will be the 

implementation of lower density and/or higher strength materials in place of commonly used 

lower strength steel alloys within automotive structural components and closure panels.  

However, the performance of these materials must be investigated to support simulations of their 

formability during manufacturing and in-service performance (crashworthiness); as such, the 

accurate prediction of damage and failure has become a key requirement within the automotive 

design process.  One such alloy is dual-phase (DP) 780 steel.  Several publications [3, 4, 5] have 

studied the performance of this material, including the work of Anderson et al. [6] who showed 

that, under uniaxial conditions, the material displays a weak dependence on strain rate until strain 

rates exceed approximately 0.1s-1.  They also observed strain rate dependent failure loci that 

shifted towards higher failure strains in notched tensile specimens as the strain rate was 

increased. 

 

The forming history of automotive body structures from flat sheet into final components affects 

the in-service and crashworthiness performance; therefore, accurate prediction of damage 

accumulation and failure of these components is of great interest.  Failure due to localized 

necking during forming is commonly predicted using strain- [7, 8] or stress-based [9, 10] 

forming limit diagrams (FLD).  Failure due to fracture during crashworthiness simulations was 

often predicted with simple criteria owing to the size and complexity of crash simulations; 

however, more complex criteria are being introduced as computing power increases, improved 

accuracy is desired, and damage/failure models are refined.  FLD strategies are useful to predict 

necking of sheet metal components; however, they are not capable of predicting the predominant 

shear failure at sheared edges of advanced high strength steels (AHSS) [11, 12], which is 

inconvenient as many automotive panels are fabricated using punching/shearing with subsequent 

edge stretching techniques.  Strain-to-failure criteria are simple to implement; however, they do 
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not account for the varied strain path and stress state history throughout a component.  Although 

these methods can be effective, they are not sufficiently accurate.  As such, new holistic models 

have been implemented that can be used to track damage accumulation and predict failure 

through forming with subsequent crashworthiness operations.  A key concept to these models is 

that they are stress-state dependent, in which failure strain is a function of stress triaxiality,  , 

and normalized Lode angle parameter,  ̅, which are defined as: 

  
  
 ̅
  (1) 

 

 ̅    
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where    is the mean stress,  ̅ is the equivalent stress, and              with         equal to the 

principal deviatoric stresses. 

 

A rigorous analysis of sheared edges of AHSS (specifically DP600, DP780, and DP980) 

performed by Wu et al. [13] demonstrated that the martensite and ferrite phases common to dual-

phase steels encourage many sub-cracks to form during the shearing process.  These sub-cracks, 

in conjunction with the reduced ductility of AHSS compared to conventional steels, results in a 

propensity for shear failure as opposed to ductile failure caused by thinning during automotive 

panel stamping.  Consequently, panels can fracture prior to reaching a forming limit and, as such, 

different failure prediction models incorporating shear failure are necessary for AHSS.  The 

damage observed by Wu et al. in the shear zone of DP steels seems to favour a micromechanical 

damage evolution model, such as that proposed by Gurson [14] and later expanded by Tvergaard 

and Needleman [15].  The Gurson-Tvergarrd-Needleman (GTN) model accounts for material 

degradation by accounting for the nucleation and growth of spherical micro-voids.  The GTN 

model has been shown to work well at high triaxial stress states as shown by Besson et al. [16]; 

however, the GTN model does not account for shear localization of inter-void ligaments leading 

to poor predictions for low and negative stress triaxialties.  Xue [17] and Nahshon and 

Hutchinson [18] have developed improvements to the GTN model to account for shear 

localization that were shown by Reis et al. [19] to dramatically improve the predictive behaviour 

under shear loading.  Similar work by Butcher et al. [20] has shown that the GTN model 
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modified to account for void shape and shear localization was able to predict the burst pressure, 

formability, and failure location during tube hydroforming, which encompasses a range of low 

and high triaxialities.  Despite the recent advancements of the GTN model it can be 

computationally expensive and difficult to implement as many different tests are required to 

determine the model parameters, with Khan and Liu [21] suggesting that at least 10 GTN 

material constants are required which are very difficult to calibrate due to strong coupling and 

the need for detailed microstructural measurements. 

 

Recent industrial failure modeling developments have shifted away from coupled 

micromechanical damage models to uncoupled empirical and phenomenological damage models.  

These simplified, uncoupled, models tend to require fewer material constants and can be 

calibrated with experimental data points.  Johnson and Cook [22] developed an empirical model 

of ductile fracture accounting for strain, strain rate, temperature, and pressure effects and 

although this model has proven popular for problems involving ductile fracture it is ill-suited to 

situations where low triaxial conditions exist.  Bao and Wierzbicki [23] improved on previous 

empirical models by formulating three equations that could be fit to experimental failure data to 

cover the range of negative, low, and high triaxialities.  This effort was important as it was one 

of the first works to show that failure strain was not a monotonically increasing quantity as 

triaxiality decreased.  However, this model did not account for the Lode parameter which was 

shown by Xue [24] to be an important quantity for failure prediction.  Xue proposed a model that 

incorporated the Lode parameter and demonstrated good predictive success.  Lou et al. [25] and 

Lou and Huh [26] also developed a triaxiality- and Lode-dependent failure model based on 

damage accumulation induced by void nucleation, growth, and shear coalescence of voids and 

was shown to be effective at predicting failure.  Arguably the oldest failure criteria is the 

maximum shear stress model based on the work of Coulomb [27] and Tresca [28], which was 

shown by Wierzbicki et al. [29] to be remarkably effective at predicting failure.  Bai and 

Wierzbicki [30] developed a modified Mohr-Coulomb failure model accounting for triaxiality 

and Lode parameter that was shown to be effective and was later expanded by Mohr and 

Marcadet [31] by incorporating the Hosford [32] flow potential to eliminate the physical 

inconsistency between stress-based plasticity and strain-based fracture models. 
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Traditionally, many different specimen geometries have been used to characterize the failure loci 

of metals.  Bao and Wierzbicki [23] used cylindrical and notched cylindrical specimens in 

compression, smooth and notched round bars in tension, as well as in-plane shear and hole 

tension specimens to characterize a 2024-T351 aluminum alloy.  Bai and Wierzbicki [33] 

expanded on this data set with flat-grooved specimens to determine the performance of the 

aluminum in plane strain.  Kofiani et al. [34] used central hole flat tension and flat notched 

tension specimens, hemispherical punch tests, round notched specimens, and butterfly specimens 

loaded in shear and plane strain tension to characterize the failure of an X100 grade pipeline 

steel.  Gruben et al. [35] used tension, plane strain, in-plane shear, and modified Arcan 

specimens to characterize the failure of a DP600 steel sheet. 

 

As the literature has demonstrated, there are a wide variety of specimen geometries available to 

assess the failure performance of metallic materials.  Some of these geometries are not applicable 

to sheet materials used in automotive stamping processes due to thickness requirements to 

fabricate the specimens.  Recently, a butterfly-shaped geometry has been championed by 

Wierzbicki et al. [36] and Mohr and Henn [37] to determine the plane stress failure locus of 

sheet metals using a single geometry.  Additional work by Dunand and Mohr [38] has led to an 

optimized design of this butterfly-shaped geometry.  This geometry is appealing as it enables 

many stress states to be tested with only a single geometry; therefore, less time is required 

manufacturing and preparing several different geometries.  However, the geometry is more 

complex to machine and requires a sophisticated loading apparatus.  Moreover, quantities of 

interest (such as triaxiality and Lode parameter) cannot be directly measured necessitating a 

hybrid experimental-numerical procedure.  Nevertheless, the geometry has proven powerful in 

the determination of plane stress failure loci of sheet material. 

 

The purpose of the current work is to determine the failure surface of a DP780 steel sheet, pair it 

with a damage model, and independently validate failure parameters against common material 

tests.  The failure surface was fit to the model proposed by Lou et al. [25] and was paired with 

the GISSMO [39, 40] damage model.  Although previous work [12, 41] has calibrated damage 

models for DP780, a literature review has not revealed published work detailing the methods to 

calibrate DP780 solely using butterfly specimens.  An emphasis is placed upon evaluating the 
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calibrated damage model using several independent tests common to sheet metal to forming. 

This step is critical to avoid a “closed-loop validation” where the failure model is only applied to 

its calibration tests and naturally provides good failure predictions. The failure surface data was 

determined using a combination of experimental data and finite element models; the methods, 

procedures, and results will be presented along with verification and validation of the 

parameters. 

 

2.0 Damage and Failure Models 

 

2.1 GISSMO damage model 

The Generalized Incremental Stress State damage MOdel (GISSMO), developed by Neukamm et 

al. [39, 40] and later expanded by Basaran et al. [42], is a phenomenological formulation for 

ductile damage that accounts for material instability, softening, and failure.  As typical with 

MMC damage models, the term “damage” is used in a broad sense that accounts for all types of 

microstructural damage and does not have a strong physical foundation with damage that can be 

quantified from microstructural measurements.  It can be alternatively viewed as a fracture 

metric or “failure tracker” where D = 0 corresponds to an undeformed material while D = 1 

indicates failure.  Damage accumulation is based on an incremental formulation found from [43]: 

 

   
 

  ̅
 
(  

 
 
)
   ̅  (3) 

 

where   is the damage value,   is the damage exponent,   ̅ is the equivalent plastic failure strain, 

and    ̅ is the equivalent plastic strain increment.    accumulates in each element during 

deformation and the element is deleted when    .  An initial value of         is assigned 

to all elements.    ̅ is a function of triaxiality and Lode parameter; therefore, several tests with 

varying specimen geometry are required to create an appropriate failure locus.  The specimen 

geometry and test procedures used to determine a failure surface of DP780 steel sheet will be 

discussed below in Section 3.0 of the present work.  The damage exponent was assumed as    

2 in accordance with suggestions provided by Xue [44]. 
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Material instability was determined according to [43]: 

 

   
 

  ̅    
 (  

 
 
)   ̅  (4) 

 

where   is the instability measure, and   ̅     is the triaxiality-dependent equivalent plastic 

instability strain and, in the current work, was obtained from an FLD of the same lot of DP780 

sheet, which was determined by Bardelcik et al. [45].  Similar to the D parameter, the instability 

measure, F, is a tracking variable that is used to integrate an FLD for non-linear loading where F 

= 0 corresponds to an undeformed material whereas F = 1, corresponds to the onset of 

localization based on reaching the equivalent strain from the converted FLD.  The major and 

minor strains of the FLD (Figure 1a) were converted to equivalent plastic strain and triaxiality 

based on the work of Müschenborn and Sonne [46] (Figure 1b), assuming linear strain paths and 

plane stress conditions.  Assuming the DP780 to be isotropic, the von Mises equivalent plastic 

strain,   ̅, is found from 

  

  ̅  
 

√ 
√  

    
        

  
(5) 

where      are the major and minor strains.  The ratio of principal strain increments, 

  
   
   
  (6) 

 

is used to calculate the ratio of principal stresses , 

 

  
  
  
 
    

   
  (7) 

 

Finally, triaxiality can be calculated based on the principal stress ratio as 
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 √      
  (8) 

It is important to note that the triaxiality computed in Eq. (8) is for coaxial proportional loading 

conditions where the principal stress and strain directions remain aligned. For example, a 

triaxiailty of zero in Eq. (8) corresponds to pure shear whereas the experimental shear tests of 

sheet materials in torsion or in-plane shear provides simple shear loading condition that is only 

approximately coaxial at low strain levels.  

 

The instability factor,  , accumulates in each element during deformation and when     the 

current value of   is stored as the critical damage value      .  Material softening due to void 

nucleation and growth is approximated by reducing the element stress according to [43]: 

 

   ̃ *  (
       
       

)
 

+  (9) 

 

where   is the reduced stress,  ̃ is the current stress, and   is a fading exponent that is adjusted 

to control the rate of material softening.  For the present work     was found to produce the 

best results. 

 

 
Figure 1 – DP780 forming limit diagrams [45].  a) traditional strain-based diagram, b) transformed into 

equivalent plastic strain versus triaxiality. 
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2.2 Failure Surface Model 

The failure surface model developed by Lou and Huh [26] was implemented in the present work 

to provide the GISSMO model with a failure surface in equivalent plastic strain, triaxiality and 

normalized Lode space.  The failure surface is defined by: 

 

 

(
 

√    
)
  

(
〈    〉

 
)

  

  ̅      

 

(10) 

where        are fitting parameters, 〈 〉 is the Macaulay bracket, and   is the Lode parameter 

classically defined by [47]: 

 

  
         
     

 
 (     )

     
  (11) 

 

and is related to the normalized Lode parameter,  ̅, according to [26]: 

 

   (
  ̅

 
)   

 

√    
  (12) 

 

3.0 Experimental Methods 

1.56mm DP780 cold-rolled hot-dip galvanized sheet manufactured by Dofasco Inc. (now 

ArcelorMittal Dofasco Inc.) was considered in this investigation.  The in-plane uniaxial tensile 

response of the material was determined using sub-size ASTM E8 [48] specimens with a gage 

length of 25 mm.  Anisotropy of the sheet was determined by testing specimens aligned with the 

rolling, diagonal, and transverse directions.  Three repeat tests were acquired for each direction.  

An Instron model 1331 servo-hydraulic test machine operating in displacement control was used 

to test the uniaxial samples at a nominal strain rate of 0.001s-1.  Three-dimensional digital image 

correlation (DIC) was used to determine specimen strain.  A three-dimensional DIC system, 

consisting of a pair of cameras operating in stereo, was chosen to measure strains in the necked 

region of the specimens up to failure permitting a measure of the true strain in the specimen.  A 
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two-dimensional DIC system, consisting of a single camera, could have been used; however, the 

out-of-plane motion of the necking material could introduce strain measurement inaccuracies 

[49].  A subset size of 25, step size of 7, and strain filter size of 13 pixels was used in the DIC 

software to calculate strains. 

 

The failure surface of the sheet material was determined using the butterfly specimens optimized 

by Dunand and Mohr [38].  The butterfly specimen used in the present work is shown in Figure 

2.  The top and bottom of the sheet was symmetrically machined away in the deformation region 

a total of 0.5mm from each surface leaving an approximately 0.56 mm thick section.  A 3.2 mm 

diameter flat corner radius end mill was used to prevent a sharp corner from developing in the 

flat-to-radius transition.  A special fixture was used to support the butterfly specimen to prevent 

bending during machining.  The machined surface was smoothed and polished with 2000 SiC 

grit wet sandpaper to remove potential stress raisers left behind by the machining tools.   

 

 

Figure 2 - Butterfly specimen geometry. 

 

A custom fixture, inspired by the work of Wierzbicki et al. [36], for testing the butterfly 

specimens was mounted in a servo-hydraulic test frame as shown in Figure 3.  The hydraulic 

cylinder was operated in displacement control by a custom LabVIEW program interfaced with 

an MTS FlexTest SE controller.  The fixture of Wierzbicki et al. [36] was operated in load-

control that used a second actuator that would likely provide better control over the stress state. 

A crosshead speed of 0.05mm/s was used for all of the butterfly tests.  Displacement of the 

Reduced
Section
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moveable grip was measured with a linear variable differential transformer (LVDT) mounted to 

the top of the fixture.  Vertical loads were measured with a load cell mounted to the hydraulic 

cylinder.  Horizontal reaction loads were measured with a pair of load cells mounted to the top 

and bottom plates of the fixture.  The central section of the fixture was designed to rotate in 5° 

increments permitting a broad set of stress states from shear to plane strain tension to be 

achieved.  A torque wrench was used to tighten the specimen bolts to ensure consistency 

between tests.  Two sets of fiducial markers, labeled as 1 and 2 in Figure 3, were placed on the 

fixed and moving grips to permit tracking of the displacements and rotations so that the 

boundary conditions in the finite-element models can be accurately captured. 

 

 

Figure 3 - Butterfly test fixture installed at the University of Waterloo. 

 

According to Mohr and Henn [37] the general stress state obtained in the butterfly specimen 

corresponds to simple shear with a plane strain extension. Using this assumption, the triaxiality, 

 , in the butterfly specimen can be approximated according to: 
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    ( )

√ √
 

  
 

      

  (13) 

 

where     ( ) is +1 for tensile loading and -1 for compressive loading, and   is the loading 

angle shown in Figure 2.  Based on Equation (13) a loading angle of 0° produces a triaxiality of 

0 corresponding to a state of simple shear stress while a loading angle of 90° produces a 

triaxiality of  √ ⁄  corresponding to a state of plane strain tension.  In the present work, butterfly 

specimens were tested in tension (    ( )    ) at 0°, 5°, 10°, 20°, 40°, 60°, and 90° with 

three tests per orientation producing approximate triaxialities of 0.00, 0.10, 0.19, 0.34, 0.49, 

0.55, and 0.57.   It is desirable to obtain failure parameters in the compression region (    ( )  

  ); however, the central machined section of the specimen was too thin, resulting in buckling 

under compression.  Stereoscopic DIC was also used to measure the surface strains of the 

butterfly specimens.  A custom camera mount was integrated into the fixture to permit rotation of 

the cameras as the central grip section is rotated and was required to maintain full view of the 

specimen deformation. 

 

4.0 Experimental Results 

Figure 4a displays the uniaxial tensile engineering stress-strain response for the rolling, diagonal, 

and transverse directions with three tests shown per condition, while Figure 4b is the average 

response of the three directions.  As Figure 4a shows there was good repeatability in the tests 

with the scatter in the measured data prior to UTS being less than 1% for each direction.  Figure 

4b demonstrates that there was minimal difference in the stress-strain response with respect to 

sheet direction, with the variation being less than 4% between the average minimum and average 

maximum stresses at an engineering strain of 10%.  Lankford coefficients were determined for 

the three directions and were found to be 0.72, 0.98, and 0.92 for the rolling, diagonal, and 

transverse directions respectively, resulting in an in-plane average value of 0.90.  The uniaxial 

tension results indicate that anisotropy was minimal for the material under investigation; 

therefore, isotropic conditions were assumed for the remainder of the present work. 
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Figure 4  - DP780 uniaxial stress-strain response of rolling, diagonal, and transverse directions at 0.001s-1. (a) 
repeat tests, (b) average response. 

 

4.1 Identification of the true stress-strain curve to large strain levels 

There are several strategies to develop a true stress-true strain curve suitable for input into finite 

element models based on measured data.  Traditional methods use analytical models, e.g. power 

law hardening, to extrapolate measured stress-strain data beyond the point of uniform elongation.  

Although simple and effective, these methods can introduce large errors into finite element 

models if not calibrated correctly.  One common source of error that is prevalent with AHSS is 

the rather low level of strain prior to uniform elongation, rendering the extrapolation prone to 

large errors at high strains.  A recent trend has been to iteratively adjust the input hardening 

curve such that a finite element model matches the measured stress-strain curve beyond necking 

[50].  Although it is possible to produce an accurate uniaxial true stress-true strain curve using 

these inverse methods, post uniform softening due to damage is intrinsically embedded in the 

input curve.  This “linked damage” may be appropriate for simple loading conditions; however, 

it may be inappropriate or inaccurate for more complex loading conditions (e.g. shear, biaxial, or 

combined loading) experienced in real structures.  Alternatively, hydraulic bulge data can be 

used to determine the true stress-true strain response to high strains [51, 52]; however, this data 

was not available for the tested material.  In the present work, DIC data was used to directly 
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measure the true strain,   , in the centre of the neck up to final specimen failure.  The true stress, 

  , was determined based on the true strain,   , and the engineering stress,   , according to: 

 

     [  (   
    )]  (14) 

 

An error is incurred using this method to determine the true stress-strain response of the material 

since the specimen is no longer in a state of uniaxial stress once a neck forms as the formation of 

a neck induces a constraint on the deformation and subsequently a hydrostatic stress to develop.  

Efforts have been made, by e.g. Bridgman [53], to back out the true uniaxial stress from a necked 

uniaxial specimen with varying degrees of success.  Corrections were not applied to the data in 

the present work as the material displayed minimal necking up to failure.  A modified power law 

fit based on the work of Ludwik [54] was applied to the measured true stress-true strain curve 

and extrapolated to facilitate input for finite element calculations.  True stress was calculated 

according to 

 

      
      (15) 

 

where   is the strength coefficient,   is the hardening exponent, and    is a stress offset.  Figure 

5 shows the true stress-true strain data found using Equation (14) for three representative tests in 

the transverse direction as solid lines with the power law fit according to Equation (15) 

extrapolated to a true strain of 1.0 shown as symbols.  The transverse direction was adopted as 

the reference direction as it is the direction with the lowest ductility from the tensile tests.  The 

figure demonstrates a good power law fit to the data as well as the increase in measureable true 

strain using DIC (0.45) compared to conventional extensometer measurements (0.17). 
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Figure 5 – Measured true stress-true  strain data in transverse direction with power law fit. 
 

Figure 6 demonstrates the effectiveness of the preceding method for DP780 as it shows excellent 

agreement between the measured and finite element predicted engineering stress-strain curves. 

Note that the finite element model incorporates the same methods and the full GISSMO 

implementation described later in this work. Additional evidence is provided in the comparison 

between the DIC measured and finite element predicted strain contours.  Both X- and Y-strain 

contours are shown at an elongation of 0.19 and reveal excellent agreement in the contour shapes 

and values. The finite element predicted results do show slightly higher peak strains in the neck 

and can be attributed to a smaller element size compared to that used for the DIC measurements. 

It is unclear if this relatively simple analysis method is valid for other material systems with 

more severe anisotropy but for DP780, the method performed very well.  
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Figure 6 - Comparison of measured and finite element predicted tensile response. 

 

4.2 Butterfly Experiments 

Figure 7 (a and b) shows the normalized vertical force as a function of vertical displacement and 

the normalized horizontal force as a function of vertical displacement of the butterfly specimens 

as a function of loading angle.  The force was normalized by the specimen cross-sectional area to 

account for variations in specimen machining.  Three tests are shown for each condition in the 

figures.  It can be observed in Figure 7a that peak vertical force generally increases and 

elongation to failure decreases as the loading angle is changed from 0° (shear) to 90° (plane 

strain tension).  Peak vertical force was observed to decrease for loading angles of 5° and 10° 

and was also observed by Wierzbicki et al. [36].  The horizontal forces shown in Figure 7b 

indicate that some motion occurred in the horizontal direction.  As one would expect, there was 

negligible horizontal force when the specimens were tested in the 90° orientation.  Larger 

horizontal forces were present for the 5°, 10°, 20°, 40°, and 60° orientations due to the 

asymmetric loading of the specimen.  The 0° orientation showed minimal horizontal force up to 

approximately 1.5mm of vertical displacement followed by a slow increase in force up to 

specimen failure.  Repeatability of the vertical force is good overall for the three repeats while 

the repeatability of the horizontal force is less consistent for all three repeats. 
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Figure 7 – Normalized load as a function of vertical displacement for butterfly tests.  (a) vertical load, (b) 
horizontal load. 

 

Figure 8 (a and b) shows the Y- and X- displacements of the moving grip, respectively.  The 

displacements for one test in each loading orientation are shown for clarity; however, analysis of 

multiple tests showed good repeatability of the measurements.  In Figure 8a, the measurements 

obtained using the LVDT mounted to the test fixture are included with the measurements 

obtained using the fiducial markers and the consistency between the two measurements verifies 

the Y-displacements.  Two X-displacements are shown for each loading orientation in Figure 8b 

representing each fiducial marker on the moving grip and it can be seen that the displacements 

do not match during the test (there is an offset between the two displacement curves) except for 

the 60° and 90° orientations.  Close inspection of the initial movements revealed that the X-

displacements of each fiducial marker matched during initial specimen loading followed by an 

offset; thus creating two distinct (but very similar) curves for each loading condition.  

Subsequent movement was the same after this offset materialized and suggests that a small 

rotation of the grip occurred as the specimen and fixture were loaded.  The root cause of the 

rotation is not fully understood; however, it was likely a result of some play in the grip system 

and the asymmetric shape of the system.  Had there not been any rotation the X-displacements 

would have been identical for all loading orientations. 
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Figure 8 - Moving grip displacements.  (a) Y-displacement, (b) X-displacement. 

 

Figure 9 (a and b) shows the Y- and X-displacements of the fixed grip, respectively.  The 

displacements for one test in each loading orientation are shown for clarity; however, analysis of 

multiple tests showed good repeatability of the measurements.  Figure 9a shows similar Y-

displacements for the 5°, 10°, 20°, 40°, and 60° loading conditions.  The Y-displacements in the 

0° and 90° loading conditions may be different from the other orientations as they do not induce 

a combined loading mode in the specimen.  Figure 9b shows the X-displacements and, similar to 

the moving grip, display evidence of a small rotation of the fixed grip.  The total Y- and X-

displacements of the fixed grip are small compared to the moving grip, which suggests that they 

could be safely ignored.  However, recent work by Dunand and Mohr [38] discussed the 

importance of including the boundary condition motion in finite element models to correctly 

predict specimen strain.  
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Figure 9 - Fixed grip displacements.  (a) Y-displacement, (b) X-displacement. 

 

Rotation of the fixed and moving grip was calculated based on the measured X- and Y-

displacements and the results are shown in Figure 10.  The calculations showed that the fixed 

and moving grips rotated in unison; therefore, only one set of data is shown in the figure.  The 0° 

specimen rotates during initial loading of the specimen and then ceases to rotate further.  The 90° 

specimen did not rotate.  The 5°, 10°, and 20° specimens rotate identically and rotations decrease 

as the loading angle decreases as shown by the 40° and 60° specimens.  Evidently, grip 

movement was complex and may be attributed to elasticity in the system.  Moreover, careful 

examination of images acquired during the tests revealed small movements of the specimen at 

the interface of the grips; therefore, the actual specimen movement near the grip will be used in 

the finite element models and will be discussed below in Section 5.1. 
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Figure 10 - Calculated rotations. 

 

The butterfly specimen was designed to promote failure at the centre of the reduced section [38]; 

however, this was not always the case.  Plotting the maximum shear strain rate just before 

failure, as shown in Figure 11 for a loading angle of 0°, demonstrates that the shear band has 

undergone significant rotation and is interacting with the edge of the reduced section near the 

shoulder radius.  Failure was observed to begin at this shoulder radius for predominantly shear 

loaded specimens (0°, 5°, 10°, 20°) and likely originated at machining defects despite efforts to 

minimize stress raisers through careful machining and polishing.  Specimens loaded 

predominantly in tension (40°, 60°, 90°) failed in the centre of the specimen.  It was not possible 

to determine if the specimens failed at the surface or inside the specimen. 

 

 
Figure 11 - Maximum shear strain rate for a specimen loaded at 0°. 
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5.0 Finite Element Models 

Finite element models were developed in LS-DYNA [43] to extract failure parameters using the 

butterfly experimental data.  The butterfly model was used to determine the equivalent plastic 

strain, triaxiality, and normalized Lode parameter at failure of the sheet material.  The 

performance of the models will be compared to experimental load-displacement data and DIC 

strain data. 

 

5.1 Butterfly Specimen Model 

The finite element model of the butterfly specimen consisted of 8-noded, selectively reduced 

integration, solid brick elements and was solved using implicit time step integration.  The 

element size in the central region of the specimen was chosen to provide 8 elements through the 

thickness of the reduced section of the geometry with an aspect ratio close to unity in the center 

of the geometry that created element edge lengths of approximately 0.13mm.  Element size was 

increased away from the reduced section of the model.  Symmetry about the XY-plane was 

exploited and only half of the butterfly specimen was modeled with appropriate boundary 

conditions applied to the symmetry plane.  The motion of the specimen adjacent to the fixture 

grips was extracted from the DIC data and mapped to the finite element model; therefore, the 

material clamped within the grips was not accounted for in the model.  Material damage and 

failure were not initially included in the model and isotropic conditions were assumed.  Figure 12 

shows the finite element mesh of the modeled butterfly specimen in which the inset image is a 

local magnification of the reduced section of the specimen to illustrate that element quality was 

high.  The butterfly model consisted of 43,776 elements and required between 19 minutes (for 

the 90° specimen) and 51 minutes (for the 0° specimen) to complete the solution using single 

precision on a 4-core AMD computer. 
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Figure 12 - Butterfly specimen finite element mesh. 

 

Figure 13 (a and b) compares the measured (solid lines) and finite element predicted (symbols) 

load-displacement in the vertical and horizontal directions, respectively.  Only one representative 

measured curve is displayed for each measured loading condition.  As the figure demonstrates, 

the finite element model accurately reproduces the response in the vertical direction until the 

specimen eventually fails.  (Note that the predictions in Figure 12 include damage and failure 

treatments using the methods described below.)  The finite element model does not predict the 

horizontal forces with the same accuracy for the shear dominated loading conditions; however, 

the results are still good especially in light of the very low horizontal force levels.  

 

 
Figure 13 – Comparison of finite element predicted and measured load-displacement data for butterfly 

specimen.  (a) vertical load, (b) horizontal load. 
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Figure 14 compares the measured and finite element predicted equivalent true strains on the 

surface of the specimens when maximum load was reached for each loading angle.  The figure 

shows good agreement between the two sets of images in terms of contour shape as well as 

values.  Note that some gaps exist in the DIC data that are caused by calculation difficulties 

related to sharp corners (where the reduced section begins); this does not affect the strain 

computation in the gage region.  Slight differences between the finite element predicted and 

measured strain contours could be attributed to anisotropy in the sheet (which may be 

exacerbated by the machining process) that is not accounted for in the model. 

 

 
Figure 14 – Comparison between measured and finite element predicted equivalent true strain contours at 

maximum vertical load. 
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As the finite element models have been shown to accurately reproduce measured quantities, they 

can now be used to determine stress state variables for implementation into a fracture surface.  It 

is experimentally challenging to determine if crack initiation occurred on the surface or within 

the specimen.  For the purposes of the present work it was assumed to occur at the central mid-

plane for all specimens and, therefore, all finite element quantities were extracted from this 

location.  Comparison of the extracted quantities at the centre and the actual location of failure 

for the loading conditions that did not produce a central failure did not show appreciable 

differences.  It is acknowledged that this is a potential shortcoming of the presented method and 

likely results in a lower bound on the results and similar arguments have been made by Dunand 

[55].  Additional work by Abedini et al. [56] compared the shear loading response of the 

butterfly specimen to a more conventional mini-shear specimen developed by Peirs et al. [57] 

and found that for the same DP780 material used in the present work the butterfly specimen 

produced similar, but lower, fracture strains compared to the mini-shear specimen.  Therefore, 

the assumptions of central, mid-plane crack initiation resulting in a lower bound estimate appear 

reasonable.  Figure 15 (a and b) shows the predicted equivalent plastic strain as a function of 

triaxiality and Lode parameter histories for each loading condition, respectively.  In Figure 15a, 

the theoretical triaxialities for shear, uniaxial, and plane strain loading conditions have been 

added for reference.  As the figures demonstrate, some of the loading conditions produce nearly 

constant stress states (0°, 5°, 90°) while others do not.  Ideally, only these constant stress states 

would be used to calculate a failure surface; however, all of the stress states were used to create a 

more representative data set.  Average triaxiality,     , and normalized Lode angle parameter, 

 ̅   , values were calculated to account for the stress histories according to: 

 

     
 

  ̅
∫     ̅

 ̅ 

 

 (16) 

 

and  
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  ̅
∫  ̅   ̅

 ̅ 

 

 (17) 

 

The dashed line in Figure 15 (a and b) is a fit to the failure data using the procedures described 

by Lou and Huh [26] and shows a good prediction of the data.  Interested readers should refer to 

Lou and Huh’s work for model calibration details.  The parameters used in the fit are included in 

Figure 15b.  This fitted data will be used in the verification and validation cases to produce a 

smooth failure surface input curve. 

 

 
Figure 15 - Failure locus from butterfly tests. (a) triaxiality space, (b) normalized Lode angle parameter 

space. 
 

5.2 Verification 

Verification of the failure parameters extracted from the finite element models was performed by 

re-simulating the butterfly models with GISSMO active and comparing the measured and 

predicted displacement at failure and location of crack initiation.  The results of the butterfly 

model with GISSMO are shown in Figure 13.  The model predicted peak load, vertical 

displacement at failure, and the strain contours show good agreement to the experimental data.  

Figure 16 compares the excellent correlation between the model predicted crack initiation sites to 
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the experimental observations for each loading angle.  The DIC experimental observations show 

contours of maximum shear strain rate, with the observed initiation site indicated by the intense 

contour localization.  The good predictions of the simulations of the butterfly experiments are to 

be expected in that the stress states have been extracted, averaged, and then used to calibrate the 

damage model based on the failure strains corresponding to the experimental displacements.  

This closed-loop validation is important to understand how well the model can recreate the 

experiments and provide confidence in the failure locus for the relatively proportional loading 

conditions used in its development.  It is important to emphasize that severely non-proportional 

stress (or strain) paths have not been considered in the fracture locus calibration and the model 

can only be strictly valid for the proportional stress states used in its calibration.  To properly 

evaluate the performance of the failure surface, a series of independent validation experiments 

and simulations will be performed in the subsequent sections.  
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Figure 16 - Comparison between experimentally observed and finite element predicted crack initiation 

locations. 

 

6.0 Validation 

Four independent validation tests were performed to assess the performance of the extracted 

failure parameters and included a hole tension test, flat and conical hole expansion tests, and a 

hemispherical punch test.  These tests were chosen as they are significantly different from the 

tests used to obtain the failure parameters and represent a broad range of stress states; therefore, 

accurate prediction of these tests indicates a robust set of failure parameters.  The chosen 
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validation tests incorporate generally monotonic loading paths; therefore, the non-proportional 

damage treatment of GISSMO is not being evaluated and is the subject of future work.  The 

same material lot used to determine the constitutive and failure parameters was used for the 

validation tests.  The experimental methods and results for each validation test will be discussed 

and compared to finite element models developed using the constitutive and failure parameters 

determined above. 

 

6.1 Hole Tension Test 

The hole tension test is similar to a uniaxial tension test; however, a central hole is machined into 

the middle of the gauge section which alters the state of stress. A 10 mm diameter hole was 

fabricated by drilling and reaming followed by manual polishing with 1200 grit SiC paper to 

remove any traces of a burr or edge imperfection to mitigate premature cracking. The geometry 

used in the present work was based on the findings of Bao [58] and is shown in Figure 17 with 

relevant dimensions.  The hole tension tests were performed using the same equipment and 

procedures as the uniaxial tension tests as discussed in Section 3.0.  Specimen alignment was 

carefully controlled to ensure even loading on either side of the machined hole. 

 

 
Figure 17 - Hole tension specimen geometry. 

 

Figure 18 shows the finite element mesh of the modeled hole tension geometry in which the inset 

image is a local magnification of the reduced section of the specimen to illustrate mesh topology 

near the hole.  Symmetry about the XY- and XZ-plane was used with appropriate boundary 

conditions applied.  Material outside of the reduced section of the specimen was not modelled to 

reduce computational effort; examination of the DIC strain fields showed acceptably low 

deformation in these regions.  A velocity profile was applied to the end of the specimen to match 
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that used during the experiments.  Nodes were placed in the finite element model corresponding 

to the location of the extensometer used in the DIC software so as to accurately match the 

displacement history of the experimental tests.  The element size around the hole was 0.13mm 

with an aspect ratio of approximately unity to match that used in the butterfly model resulting in 

a model consisting of 12,240 elements and requiring 39 minutes to complete the solution using 

single precision on a 4-core AMD computer. 

 

 
Figure 18 – Hole tension specimen finite element mesh. 

 

Figure 19 compares the measured (solid line) and finite element predicted (symbols) nominal 

stress-strain response of the hole tension test and shows that the model is able to accurately 

predict the measured response.  Only one representative measurement is shown for clarity; 

however, multiple tests showed good repeatability.  Figure 20 (a, b and c) provides additional 

qualitative evidence of the accuracy of the finite element predictions.  Figure 20a shows the mid-

thickness face of the finite element model and demonstrates that failure was predicted inside the 

specimen and away from the edge of the hole, which is supported by Figure 20 (b and c) and was 

also reported by Lou and Huh [59].  Figure 20b shows an etched micrograph of a partially failed 

hole tension specimen that shows intense strain localization in the form of elliptical-shaped 

banding, where the centre of the ellipse appears to be located near the crack tip.  Figure 20c 

shows a large void present at mid-thickness of a representative DP600 hole tension specimen 

before crack initiation occurred where the size and location of the void are also in good 

agreement with the DP780 finite element predictions.  Efforts were made to capture the onset of 

fracture in the current DP780 material in a manner similar to that in Figure 20c; however, it was 
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difficult to stop the test after such a large void had nucleated and before a crack had propagated.  

Note that the authors are not implying that the location of failure would be the same for two 

different alloys; rather, the location of the void in the DP600 specimen is being used to illustrate 

and support the argument that crack initialization can occur away from the hole’s edge.  Indeed, 

as shown by Roth and Mohr [60], the location of failure in a hole tension test is highly dependent 

on the material properties and specimen geometry.  Based on the micrographs and the finite 

element model it is hypothesized that intense strain localization occurred away from the edge of 

the hole leading to void nucleation and growth.  This in-turn increased the strain in the ligament 

at the edge of the hole.  Once this ligament failed a crack started to propagate from the edge of 

the hole and through the specimen.  It is also plausible that the finite element predictions are for 

ideal conditions with perfect edge quality leading to failure away from the hole.  Damage due to 

machining may lead to failure starting at the edge of the hole. It is expected that an anisotropic 

material model would better capture localization just behind the hole edge.     

 

 
Figure 19 - Comparison between measured and finite element predicted engineering stress-strain for the hole 

tension test. 
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Figure 20 - Comparison between measured and predicted failure initiation location.  (a) finite element 
predicted, (b) etched DP780 micrograph, (c) polished DP600 micrograph. 

 

 

6.2 Hole Expansion Tests 

Hole expansion tests are common industrial operations used to determine the edge formability of 

sheet metal.  The test is performed according to ISO standard 16630:2009 [61] by forcing a 

conical or flat tool through a hole, in the present work, machined into a blank.  A greater 

expansion of the hole diameter prior to failure indicates a material less prone to edge cracking.  It 

is important to state that a reamed (machined) hole and not a sheared hole was used in the 

experiments to avoid modelling the complex shearing process and strain distribution at the edge.  

A machined hole is used to match the finite-element model of the test where the hole edge 

quality is “ideal”.  Previous work [62, 63, 64] reported lower edge formability while using a flat 

punch compared to a conical punch.  Figure 21 shows a cross-section of the hole expansion 

processes adopted in the present work and performed at ArcelorMittal Dofasco.  The blank 

measured 130 x 130 mm with a reamed 10 mm pilot hole in the center, a sufficiently high blank 

holder force was applied to prevent draw-in (minimum of 50kN), the holding diameter was 52 

mm, and the draw ring had a 60 mm diameter opening with a 12mm corner radius.  The blank, 

binder, and draw ring were identical for all tests.  The conical punch had a diameter of 50 mm 

with a 60° included angle.  The flat punch had a diameter of 50 mm with a 9 mm corner radius 
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and incorporated a 25 mm diameter relief to prevent the edge of the blank from rubbing on the 

punch.  Punch speed was a constant 1mm/s for both tools.  A light oil film was applied to the 

blank to lubricate the punch-blank interface.  An imaging system was in place above the 

apparatus to record the diameter of the expanding hole.  The bottom edge of the hole was used to 

determine the hole expansion ratio (   ), which is found from: 

 

    
     

  
  (18) 

 

where    and    are the final and initial diameters of the hole.  The test is halted and the final 

diameter is measured under load when the first through thickness crack appears.  A detailed 

description of the hole measurement technique is provided by Pathak et al. [64].  A minimum of 

10 tests was performed to obtain a statistically significant sample size.  Load was not measured 

during testing at Dofasco; additional testing was performed at the University of Waterloo with 

the same tooling to measure load-displacement and surface strains with DIC.  The hole 

expansion ratio was found to be the same at both locations. 

 

 
Figure 21 - Hole expansion test experimental setup. 
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Symmetry about the XZ- and YZ-planes was exploited and as such only one-quarter of the 

geometry was meshed to reduce the number of elements and solution time.  Appropriate 

boundary conditions were applied to the symmetry faces.  All tooling was assumed rigid and was 

discretized using rigid shell elements.  Figure 22 shows a representation of the finite element 

mesh for the conical tool with the inset image demonstrating the mesh detail at the edge of the 

hole; the mesh for the flat punch model was similar but is not included for brevity.  A penalty 

function-based contact definition was used between the tooling and the blank.  A coefficient of 

friction of 1.0 was used between the binder/draw ring and the blank to simulate a knurled 

surface.  The coefficient of friction between the punch and the blank was not measured; 

however, a value of 0.2 was found to result in a load-displacement response that matched the 

measured behaviour.  This value was thought reasonable for this situation involving a light 

machine oil lubricant between the punch and blank.  The element size around the hole was 

0.13mm with approximately unity aspect ratio to match that used in the butterfly model; element 

size was increased away from the hole resulting in a model consisting of 51,000 solid elements 

for the blank and 14,400 shell elements for the rigid tooling.  73 and 84 minutes were 

respectively required to solve the conical and flat models on a desktop computer with a 4-core 

AMD CPU.  

 

 
Figure 22 – Conical hole expansion finite element mesh. 

 

Figure 23a shows a typical load-displacement curve for the conical punch test.  The solid lines 

are representative experimental data while the symbols are the finite element model predictions.  

The figure shows that the model accurately predicted the observed load-displacement response 

with a peak load of 24.8kN, which is close to the observed value of 24.8kN.  Table 1 lists the 
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experimentally observed average and standard deviation     and peak load, and finite element 

predicted     and peak load for the conical punch and shows that the predicted     was well 

within the scatter of the observed    .  A crack was assumed to have occurred in the model 

when the first element had been deleted and the corresponding hole diameter was used to 

calculate the predicted    . 

 
Table 1 – Measured and finite element predicted hole expansion ratios and peak loads for conical and flat 
punch geometries. 

Punch 
Geometry 

Measured 
    [%] 

Predicted 
    [%] 

Measured Peak 
Load [kN] 

Predicted Peak 
Load [kN] 

Conical 51.0±10.0 53.0 24.8±0.1 24.8 
Flat 39.0±2.8 36.4 77.5±0.9 79.6 
 

Figure 23b shows side-by-side images of the observed and predicted holes at the time of crack 

initiation for the conical punch.  The images have been scaled to the same linear dimensions.  

The predicted     agrees well with the measured value, although some differences can be 

observed in the figure with respect to the predicted and observed crack location (around the hole) 

and orientation through the blank thickness.  These differences are attributed to the isotropy 

assumption in the model.  Experimentally, cracking always initiates in the rolling direction 

which corresponds to tensile loading in the transverse direction due to the circumferential 

loading of the hole.  The transverse direction also has a higher stress ratio relative to the rolling 

direction and the lowest ductility so it is not unexpected that the isotropic model does not capture 

localization and failure initiating at the rolling direction as in the experiment.  Figure 23c 

compares the measured and finite element predicted equivalent true strain contours at a     of 

37% and shows good agreement.  DIC strains could not be computed on the inner hole surface as 

it is not initially visible during the test; it only becomes visible as the sheet is expanded by the 

tooling and explains the apparent discrepancy at the edge of the hole where the highest strain 

levels are achieved.  Detailed analysis of the strain history near the hole should therefore be 

conducted using a finite element model as opposed to DIC.  Agreement of the load-displacement 

curve,    , and strain contours indicates a well formulated model. 
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Figure 23 - Comparison between measured and finite element predicted quantities for the conical hole 
expansion test.  (a) load-displacement, (b) crack pattern, (c) equivalent true strain contours. Note that 

measured DIC contours cannot be capture for the inside edge of the hole. 

 

Figure 24a shows a typical load-displacement curve for the flat punch test.  The solid lines are 

representative experimental data while the symbols are the finite element model predictions.  The 

figure shows that the model accurately predicted the observed load-displacement curve with a 

predicted a peak load of 79.6kN, which is close to the observed value of 77.5kN.  Table 1 lists 

the experimentally observed average and standard deviation     and peak load, and finite 

element predicted     and peak load for the flat punch and shows that the predicted     was 

well within the scatter of the observed    .  A crack was assumed to have occurred in the 

model once a line of elements had been deleted through the blank thickness and the 

corresponding hole diameter was used to calculate the predicted    .  Figure 24b shows the 

predicted crack initiation for the flat punch and the measured DIC equivalent true strain 

contours.  The images have been scaled to the same linear dimensions.  Some differences can be 

observed in the figure with respect to the predicted crack location and the maximum strain.  The 

DIC measurements demonstrate some in-plane anisotropy in the strain contours, where the 

strains localize in the transverse direction and failure initiates behind the hole edge.  The finite 

element model predicts failure away from the hole edge and, since isotropic conditions were 

assumed, not aligned with either the rolling or transverse directions.  Failure away from the hole 
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edge is logical when considering an initially damage-free material since triaxiality transitions 

from nearly uniaxial at the hole edge to nearly biaxial at the radius of the punch.   

 

 
Figure 24 - Comparison between measured and finite element predicted quantities for the flat hole expansion 

test.  (a) load-displacement, (b) effective strain contours and crack pattern. 

 

6.3 Hemispherical Punch Test 

Hemispherical punch tests (also known as Limit Dome Height tests) are common operations 

used to determine the biaxial formability of sheet metals.  The test is performed by forcing a 

solid hemispherical punch into a clamped specimen until failure occurs in the specimen.  Figure 

25 shows a cross-section of the hemispherical punch test adopted in the present work.  The blank 

measured 200 x 200mm, the blank holder force was 650kN, the binder diameter was 105mm, the 

lock bead diameter was 135mm, and the draw ring had a 105mm diameter opening with a 6mm 

corner radius.  The punch had a diameter of 100mm.  Punch speed was a constant 1mm/s.  

Alternating layers of petroleum lubricant and Teflon sheets were placed between the punch and 

specimen to minimize friction. 
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Figure 25 – Hemispherical punch test experimental setup. 

 

Symmetry about the XZ- and YZ-planes was exploited and as such only one-quarter of the 

geometry was meshed to reduce the number of elements and solution time.  Appropriate 

boundary conditions were applied to the symmetry faces.  All tooling was assumed rigid and was 

discretized using shell elements.  Figure 26 shows a representation of the finite element mesh for 

the hemispherical punch test with the inset image demonstrating the mesh quality at the center of 

the blank.  A penalty function-based contact definition was used between the tooling and the 

blank.  A coefficient of friction of 1.0 was used between the binder/draw ring and the blank to 

simulate a knurled surface.  The coefficient of friction between the punch and the blank was not 

measured; however, a value of 0.1 was found to produce a load-displacement response that 

matched the measured behaviour.  This value was thought reasonable for this situation involving 

a Teflon and lubricant stack separating the tooling from the specimen.  Element size at the center 

of the blank was 0.13mm with approximately unity aspect ratio to match that used in the 

butterfly model; element size was increased away from the symmetry point resulting in a model 

consisting 42,192 solid elements for the blank and 9,000 shell elements for the rigid tooling.  97 

minutes were required to solve the model using single precision on a desktop computer with a 4-

core AMD CPU. 

 

R6mmBlank

Binder

Draw Ring
105mm

105mm 650kN

100mm

Not to scale

135mm
Lock Bead Diameter



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T 
Figure 26 – Hemispherical punch finite element mesh. 

 

Figure 27a shows a typical load-displacement curve for the hemispherical punch test.  The solid 

lines are representative experimental data while the symbols represent the finite element model 

predictions.  The figure shows a good model prediction compared to the observed load-

displacement data.  The predicted peak load of 202.8kN is high compared to the observed value 

of 167.9kN; however, the predicted displacement to failure is in good agreement with 

observations.  Over prediction of the load may be associated with the extrapolated hardening 

curve generating too great a stress for the relatively high strains that can be achieved in the 

biaxial condition.  Figure 27b shows the finite element predicted and the measured DIC 

equivalent true strain contours just before failure initiates.  The images have been scaled to the 

same linear dimensions.  Overall, there is a good visual match between the strain contours.  A 

crack was observed to propagate along the transverse direction; however, the finite element 

model predicted cracks forming simultaneously in the rolling and transverse directions due to 

isotropic material assumptions. It is important to mention that although the failure locus was not 

calibrated directly with a biaxial test, there may be some good fortune associated with the good 

correlation between FE predictions and observations.  The biaxial tests were performed after the 

butterfly tests were completed and the close agreement with the biaxial test was unexpected. It is 

also possible that the good correlation was due to the accurate prediction of the shape of the 

failure locus in this region using the Lou and Huh failure locus model (Equation (10)) but this 

result should only be considered for the present DP780 alloy.  
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Figure 27 - Comparison between measured and finite element predicted quantities for the hemispherical 

punch test.  (a) load-displacement, (b) equivalent true strain contours. 

 

7.0 Discussion 

The butterfly specimens have been shown to produce a broad range of stress states suitable for 

fitting to a published failure surface.  The validation and verification results demonstrate the 

accuracy and usability of the developed failure parameters.  Of particular importance is the 

ability to predict failures in the biaxial stress state with the hemispherical punch test as this stress 

state was not included in the experimental data obtained from the butterfly tests.  However, it 

should be stressed that the parameters identified in the present work are a function of the model 

assumptions, such as constitutive model, element type, solution procedure, and damage 

formulation, and post-uniform softening treatment.  Nevertheless, the results demonstrate the 

applicability of the chosen test specimens, failure model, and damage accumulation model to 

simulating industrial tests; however, some questions remain. 

 

One of the disadvantages of the butterfly specimen is the necessity to machine through the sheet 

thickness to encourage centre failure.  This machining may introduce damage to the sheet that 

would reduce deformation prior to failure.  Moreover, machining marks may provide failure 

initiation sites that may not be present in the as-received sheet.  Despite careful machining and 
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specimen polishing to minimize these effects, residual damage likely remains, as such the 

developed failure locus should be considered a lower bound. 

 

All testing was performed at quasi-static rates, whereas many forming operations are performed 

at moderate strain rates to enhance productivity.  The GISSMO model implemented in LS-

DYNA does provide scaling of failure as a function of strain rate.  As shown by Anderson et al. 

[6] this sheet material has minimal sensitivity to increases in strain rate in the uniaxial condition 

up to approximately 1s-1, above which peak stress and true failure strain increased; however, 

sensitivity to increases in strain rate increased as triaxiality increased when using notched tensile 

specimens.  It may be suitable to scale the failure parameters of the present work according to the 

results of Anderson et al. [6] provided triaxiality-dependent scaling is performed.  It could be 

argued that most forming operations experience strain rates on the order of 1s-1 or less, which 

may negate the need to scale the failure parameters as a function of strain rate.  Deformations 

during crash are typically in the range of 100 – 1000s-1; therefore, scaling should be performed.  

Performing the butterfly tests of the present work at elevated loading rates would lead to a more 

thorough understanding of the effects of strain rate on the shape and magnitude of the failure 

surface. 

 

From a practical perspective, it is important to emphasize that all simulations were performed 

with solid elements with similar element sizes in critical regions of approximately 0.13 mm. This 

is not a typical mesh size or element type for industrial applications. For example, sheet metal 

forming and vehicle crash simulations employ considerably larger shell elements. Larger element 

size can be accounted for using mesh regularization routines where scaling is used to adjust 

equivalent plastic strain to failure as element size is increased.  Shell elements do not require a 

failure surface; therefore, Lode dependence is not required.  Analysis of the triaxiality and Lode 

values obtained from the present work showed that nearly plane stress conditions were obtained 

for the 0, 5, 10, and 20° loading conditions according to [30] 
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however, some tests did not maintain plane stress conditions (40, 60, 90°) and may be 

transitioning towards plane strain (as the 90° loading condition should).  The data that does not 

conform to plane stress conditions could be excluded from the fitting procedure of a simplified 

2D failure locus in equivalent plastic strain and triaxiality space; however, a poor fit could be 

obtained depending on which data points are neglected.  Alternatively, the procedure described 

in the present work could be followed and the appropriate 2D failure locus extracted from the 3D 

failure surface.  It is the opinion of the present authors that developing a 3D failure surface is 

more appropriate as it provides additional data that could be used for in-depth analysis of 

components that may warrant extra data. 

 

A final consideration that should be addressed is the isotropic assumption.  Most of the presented 

tests did not show strong anisotropy in the bulk response of the material.  Anisotropy was 

apparent during the hole expansion and hemispherical punch tests where failure predominantly 

occurred in the tangential direction.  This preferred failure direction may be associated with 

microstructural features brought on by sheet chemistry and processing conditions and could also 

explain the reduced uniaxial elongation to failure in the tangential direction.  It is expected that 

an anisotropic plasticity model along with the proposed isotropic failure model would 

significantly improve prediction of the failure location in the hole expansion tests as plastic strain 

localization would occur in the preferred failure direction, spurring damage development and 

failure at that location.  Additionally, an anisotropic failure surface could be measured and used 

in conjunction with an appropriate anisotropic yield surface should desired model fidelity 

warrant an accurate prediction of failure direction.  Considering the quantity of testing required 

and the potential scatter in the failure data it may be more effective to use an isotropic failure 

locus and an anisotropic yield surface.  The above methodology was published by Lou et al. [65] 

with good results during the completion of the present work. 

 

 

8.0 Conclusions 

The presented work has developed a failure surface for dual-phase 780 steel sheet using a 

butterfly specimen optimized by Dunand and Mohr [38].  A custom fixture, inspired by the work 

of Wierzbicki et al. [36], was used to index the specimens generating a range of equivalent 
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plastic strains to failure, triaxialities, and Lode parameters covering stress states from shear to 

plane strain tension.  Digital image correlation was used to measure the surface strains.  A 

numerical model of the butterfly specimens was used to extract the failure surface parameters 

and a smooth surface was fit to the data.  The GISSMO damage model available in LS-DYNA 

was used to predict failure of the butterfly specimens as well as four independent validation tests. 

 

The results showed that the developed failure surface and finite element model could predict the 

load-displacement and the surface strains of the butterfly specimens.  Independent validation 

tests showed the versatility of the model by predicting the load-displacement and surface strains 

of these tests as well.  The failure direction of the validation tests was not predicted due to the 

isotropic assumption of the model. 
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