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Abstract

During the process of software development, developers rely heavily on third-party
libraries to enable functionalities and features in their projects. However, developers are
faced with challenges of managing dependency messes when a project evolves. One of the
most challenging problems is to handle issues caused by dependency upgrades.

To better understand the issues caused by Third-party Library Upgrades (TLU), in this
thesis, we conduct a comprehensive study of the bugs caused by dependency upgrades. The
study is conducted on a collection of 8,952 open-source Java projects from GitHub and 304
Java projects on Apache Software Foundation (ASF) JIRA systems. We collect 83 bugs
caused by inappropriate TLUs in total. Our inspection shows that TLUs are conducted
out of different reasons. The most popular reason is that the project is preparing for
release and wants to keep its dependencies up-to-date (62.3%). Another popular reason is
that the older version of a dependency is not compatible with other dependencies (15.3%).
Our inspection also indicates that the problems introduced by inappropriate dependency
upgrades can be categorized into different types, i.e., program failures that are detectable
statically and dynamically. Then, we investigate developers’ efforts on repairing bugs
caused by inappropriate TLUs. We notice that 32.53% of these bugs can be fixed by only
modifying the build scripts (which we call TLU-build bugs), 20.48% of them can be fixed
by merely modifying the source code (which is called TLU-code bugs), and 16.87% of them
require modifications in multiple sources. TLU-build bugs and TLU-code bugs as the two
most popular types, are explored more by us.

For TLU-code bugs, we summarize the common ways used to fix them. Furthermore,
we study whether current repair techniques can fix TLU-code bugs efficiently. For the 14
TLU-code bugs that cause test failures and runtime failures, the study shows that existing
automated program repair tools can only work on 6 of the 14 investigated bugs. Each of
them can only fix a limited amount of the 6 bugs, but the union of them can finally fix 5
out of 6 bugs.

For TLU-build bugs, by leveraging the knowledge from our study, we summarize com-
mon patterns to fix build scripts, and propose a technique to automatically fix them. Our
evaluation shows the proposed technique can successfully fix 9 out of 14 TLU-build bugs.
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Chapter 1

Introduction

In modern software development, the appropriate utilization of third-party libraries un-
doubtedly alleviates repetitive work of project developers, so that they can focus on core
function development. Thanks to the blossoming of open-source software development,
there exist a large number of third-party libraries which cover various kinds of functional-
ities and are suitable for different development environments.

In this thesis, the developer who imports and uses the third-party libraries is called
a client, and the developer who is responsible for developing and improving the third-
party libraries is called a supplier. Clients upgrade a third-party dependency by changing
the library version from an older version to a newer version, note that the terms—“older
version”/“newer version”—used in this thesis mean that a version used by clients in an
older date/a newer date.

When a library is used by clients, the suppliers are also working on improving updat-
ing their product out of these reasons: (1) the suppliers fix some vulnerabilities or bugs
existing in current library version; (2) some modules of the library are rewritten or refac-
tored, some old APIs are deleted or integrated, and new functionalities are introduced;
(3) other external dependencies imported by the library have changed so that the library
has to change itself. Therefore, newer versions will be released continuously, which can
lead to multiple issues, like backward compatibility [52], API deprecation [53], or license
change [14,58].

Previous work has shown that 81.5% of the studied projects still keep their outdated
dependencies [28]. However, sometimes clients have no choice but to do the version upgrade
because of some reasons, for example: (1) the latest version fixes a substantial bug or
vulnerability which could affect their projects; (2) they need to use a new functionality
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that only exists in the newer version; In Junit version 4.111, clients updated the library
Hamcrest2 to version 1.3 in order to use a new feature of Hamcrest 1.3. (3) they want to
update a library in their projects to a more stable version; (4) they just want to keep their
dependencies up-to-date.

Sometimes suppliers go to great lengths to avoid compatibility bugs at the client end
when they release a newer version of a library. In this thesis, we only care about library
changes that break clients’ projects, since other changes will transparently support up-
grades.

1.1 A Study of Third-party Library Upgrade Bugs

An inappropriate Third-party Library Upgrade (TLU) can bring in diverse problems, such
as buggy source code, configuration errors, or obsolete tests, which may affect different
aspects of a program. We use TLU bugs to present bugs caused by TLUs. This thesis
presents an empirical study on TLU bugs.

Our empirical study finds that TLU bugs are fixed in various sources of a program, such
as source code, test code, and build scripts. In terms of different modified sources in which
TLU bugs can be fixed, we use TLU-code bugs to denote bugs that can be fixed by merely
modifying the source code, and TLU-build bugs denote bugs that can be fixed by changes
only in build scripts. Also, there are some TLU bugs that need fixes in other sources, even
across multiple sources (16.87%). Our study starts with all types of TLU bugs, and we find
TLU-code bugs (20.48%) and TLU-build bugs (32.53%) are the two most popular types.
So we then zoom in on TLU-code bugs (RQ4, RQ5) and TLU-build bugs (RQ6a, RQ6b)
separately.

This study is conducted on a collection of 8,952 open-source Java projects from GitHub
and 304 Java projects on ASF JIRA systems. We find 83 TLU bugs in total.

Our study addresses the following research questions:

RQ1: Why do clients upgrade a third-party library?

The motivation of studying RQ1 is as follows. Prior studies are proposed on clients’
responses to library changes. Robbes et al. [53] only focus on API deprecation caused by
library changes, and study how clients react to the API deprecation. The work of Kula

1https://github.com/junit-team/junit4/blob/master/doc/ReleaseNotes4.11.md
2http://hamcrest.org/JavaHamcrest/
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et al. [28] also studies the similar topic. Their study is more related to this thesis. They
find that developers are less likely to migrate their library dependencies, and analyze the
reasons why developers do NOT update a library. These studies mainly show clients’ slow
response to library changes, and analyze reasons behind the reluctance.

However, RQ1 investigate the opposite direction. Although clients are less likely to upgrade
libraries in most cases, sometimes they have to conduct the upgrades. RQ1 wants to answer
under which situation clients need to update a library.

To answer RQ1, we choose 14 popular third-party libraries and collect version change
histories about the 14 libraries from 8,952 GitHub Java projects. Then we analyze these
dependency upgrade histories, and summarize reasons for these upgrade actions. We find
that clients’ reasons for upgrade third-party libraries fall into seven categories: 1) clients
are preparing for release (62.3%) and want to make the program’s dependencies up-to-date;
2) clients update other dependencies and the older version is not compatible with them
(15.3%); 3) the newer version can help fix bugs/vulnerabilities in clients’ program (7.1%);
4) the older version is not compatible with development kits (e.g., JDK/Android SDK)
(6.7%); 5) clients want to use a particular feature not existing in the older version (3.9%);
6) the newer version fixes its bugs (3.6%); 7) the older version is unavailable (1.1%).

RQ2: What are the symptoms of TLU bugs?

Clients choose to upgrade their dependencies for different reasons (answered by RQ1).
Some upgrades are urgent, and push clients to conduct the upgrade in a hurry, which can
lead to inappropriate TLUs. Therefore, we use RQ2 to study the effects of inappropriate
TLUs.

To answer RQ2, we first need to find TLU bugs. We find 83 TLU bugs through two
ways: 1) analyzing JIRA issues; 2) analyzing commit messages. Towards the two ways, we
crawl issues of 304 Java projects found in ASF JIRA issue system, and commits from top
1,000 projects of the 8,952 GitHub projects. Compared with the TLU bugs found through
JIRA issues, the bugs found through commit messages lack detailed bug information.
Therefore, we choose 62 TLU bugs found through JIRA issues as the dataset of RQ2.
We manually analyze text contents (issue summary, description, and discussion) of these
TLU related issues, to study the symptoms of TLU bugs. We find that inappropriate TLUs
can introduce failures that are detectable statically (compilation failures) and dynamically
(test failures and runtime failures).

RQ3: What are clients’ efforts on fixing TLU bugs?

When an inappropriate TLU triggers a TLU bug, clients are dedicated to fixing it. We
propose RQ3 to investigate clients’ efforts on fixing TLU bugs.
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For the 83 TLU bugs collected in RQ2, we collect their bug fixes from patch attachments
on ASF JIRA systems, and code changes in GitHub commits. Then we manually inspect
these bug fixes. We find clients’ bug fixes mainly focus on four sources, i.e., source code
(36.14%), build scripts (42.17%), test cases (22.89%), and version switch (9.64%). Besides,
other actions may be conducted (7.23%), such as waiting for suppliers of the third-party
library to make changes.

RQ4: What are the common ways for clients to fix TLU-code bugs?

Inspecting TLU bug fixes also inspires RQ4, i.e., are TLU bugs fixed according to some
common ways? Since bug fixes conducted in different sources always have diverse charac-
teristics, it is hard to generalize common patterns for all of them. Besides, bug repair in
source code is a most popular research topic at present [27,30,36,49,50,54,64]. Therefore,
we zoom in on TLU-code bugs to study this question.

We examine 17 TLU-code bugs from the 83 TLU bugs, and find 9 of them are fixed by
four ways: 1) adding NULL value check for variables; 2) deleting a statement; 3) Moving
a statement to another location; 4) replacing a statement with another one.

RQ5: Are the state-of-the-art automated program repair tools effective for
repairing TLU-code bugs?

The motivation of RQ5 is that automated program repair has been studied by many re-
searchers. Various automated repair tools are proposed to ease developers’ debugging work.
However, the performance of these tools cannot be thoroughly evaluated due to the lack
of dataset. As TLU-code bugs have not been studied before, letting these repair tools fix
TLU-code bugs is a good way to evaluate their performance on different types of bugs.
Out of this object, we propose RQ5.

We only focus on 14 TLU-code bugs that cause test failures and reproducible runtime fail-
ures because existing automated program repair tools focus on the two types of failures.
We reproduce 6 of the 14 TLU-code bugs for the evaluation. As for the other 8 bugs,
their bug fixes involve big code changes or code changes at multiple locations, they cannot
be solved by existing repair tools. Then we select four representative repair tools: Gen-
Prog [31], PAR [27], SPR [35], and Genesis [34], to evaluate their performance on fixing
TLU-code bugs practically or theoretically. Our evaluation indicates that existing tools
can only work on a limited number of TLU-code bugs (6 out of 14). Moreover, for the 6
bugs they can work on, each tool can only fix a small subset of them, but the union of
these subsets can finally fix 5 out of the 6 TLU-code bugs. The other one bug cannot be
fixed by any of the tools.
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1.2 LibugFix

In our comprehensive study, we also observe a significant percentage (32.53%) of TLU bugs
are TLU-build bugs, but there are few studies on automatically fixing buggy build code.
We find there are several common patterns to fix the build scripts. These patterns are
simple and easy to be implemented automatically. Therefore, we propose a technique
named Third-party Library Upgrade Build Bug Fix (LibugFix). LibugFix automates the
patterns found in our observation, to fix TLU-build bugs that cause compilation failures.
TLU-build bugs can cause failures that are detectable statically (compilation failures) and
dynamically (test failures & runtime failures). In this thesis, we only focus on fixing TLU-
build bugs that cause compilation failures, and leave fixing TLU-build bugs that cause test
failures and runtime failures to our future work.

LibugFix addresses the research questions:

RQ6a: What are common patterns for fixing TLU-build bugs?

RQ6b: How effective is LibugFix in fixing build scripts?

To generalize common patterns of fixing TLU-build bugs, we consider building scripts
in the forms of .xml files, .properties files, and .classpath files, as these files’ features are
relatively similar. We use 14 TLU-build bugs that cause compilation failures to evaluate
LibugFix, these bugs are all collected in RQ2. LibugFix can successfully fix 9 out of 14
bugs.

1.3 Contributions

This thesis makes the following contributions:

• We collect a dataset of TLU bugs. The dataset includes 62 bugs extracted from ASF
issue tracking system, and 21 bugs from GitHub projects. For each collected bug, its
related dependency upgrade information, problems that caused by TLU, and bug fixes
are listed. To the best of our knowledge, we are the first to present a bug dataset of this
type.

• We conduct a comprehensive study on TLU bugs. We manually analyze the bug fix of
each TLU bug. We find that TLU bugs are fixed in four sources: modifying the source
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code, fixing build scripts, updating obsolete tests, and switching the current dependency
version to a different one. Moreover, 16.87% of these bug fixes involve modifications
across multiple sources.

• We study the performance of state-of-the-art automated program repair tools on fixing
TLU-code bugs. This study evaluates GenProg, PAR, SPR, and Genesis, which are
representatives of generate-and-validate patch generation tools. The evaluation shows
that for TLU-code bugs whose bug fixes involve big code changes or code changes at
multiple locations, none of these tools can handle them. For TLU-code bugs whose bug
fixes only involve code changes at a single location, every evaluated repair tool can only
cover a limited aspect of them, but the union of these tools has potential to fix 5 out of
6 bugs of this type.

• We propose a technique that can successfully fix TLU-build bugs that causes compilation
errors. For the 14 TLU-build bugs in our dataset, 9 of them can be fixed successfully.

Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 discusses the related work.
Chapter 3 describes the data source of our empirical study. Chapter 4 shows our empirical
study results. Utilizing findings from Chapter 4, Chapter 5 presents LibugFix and its fix
results. Chapter 6 describes the threats of our work. Chapter 7 presents our findings and
gives future work.
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Chapter 2

Related Work

2.1 Software Evolution

Previous studies give comprehensive investigations on software evolution from different
aspects [2, 7, 14, 17, 19, 25, 26, 29, 32, 47, 58, 61], including software license evolution [14, 58],
API migration [29], component refactoring detection [17, 61], and so on. Several aspects
related to this thesis are described specifically.

One related perspective focuses on studying issues caused by evolution of project depen-
dencies [6,15,52]. Bavota et al. [5] observe the evolution of the Java subset of the Apache
ecosystem, and analyze how an upgraded dependency impacts other related projects. Kula
et al. [28] perform an empirical study to investigate the developers’ reactions to library up-
grade. Our study focuses on effects of library upgrades on library users’ projects. Dietrich
et al. [15] inspect evolution problems in Java programs caused by library upgrades. They
focus on system runtime failures due to API changes in libraries that evolve independently,
while our work is not limit to API level.

Another related aspect is studying API stability in software evolution [39,53]. Robbes et
al. [53] conduct an empirical study on ripple effects of API deprecation caused by framework
or library changes in a Smalltalk ecosystem. Their study shows that many deprecated
methods and classes cause ripple effects, and the clients have to adapt to the dependencies
they use. Robbets et al. focus on API level, and limit their work on a closed software
ecosystem. But we are interested in any effects resulting from library upgrades, and we
collect data from both Apache software foundation and GitHub open-source projects.

In addition, Pinto et al. [47] propose an approach and implement it in a tool for helping
study and understand how test cases evolve in reality. The study indicates that test repair
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is just one possible way to solve problems in test-suite evolution, while most changes
involve refactorings, deletions, and additions of test cases. Moreover, test repairs tend to
be complex, which makes them hard to be achieved automatically. Our study also touches
this topic. We find that inappropriate third-party library upgrades may introduce obsolete
tests, which needs to be repaired properly. Obsolete test repair is an interesting topic and
we leave it to future work.

Towards these revealed evolution problems, previous studies propose various techniques
from different emphases, to support library upgrades.

2.1.1 Incompatibility Detection

Dig et al. [16] combine syntactic and semantic analyses together to detect refactoring
in evolving components. Abate et al. [1] utilize dependency analysis to predict upgrade
failures.

More studies are proposed on API level to solve incompatibilities during software evo-
lution. Taneja et al. [55] present a technique and its supporting tool RefacLib to automat-
ically detect API refactorings. RefacLib firstly uses syntactic analysis to quickly detect
refactoring candidates, then uses heuristics to refine the results. Raemaekers et al. [52]
propose a way to measure interface and implementation stability through analyzing histor-
ical values of metrics, weighted by the times methods, classes or packages that are being
used. They use historical version information to evaluate backward compatibility.

Besides, API misuses detection techniques [33, 42,45,57,59] can also be used to detect
bugs introduced by API changes during library upgrade. Gabel et al. [18] firstly present a
dynamic way to automatically learn and enforce properties. Pradel et al. [48] combine the
dynamic analysis and a static checker of API usage constraints to detect illegal API usage
without human-written specifications. Recently, there are many studies [3,24,68] that are
proposed to detect API misuses in dynamic languages.

Although many previous studies propose techniques to detect problems introduced by
evolving components, our study still finds bugs resulting from library upgrades.

2.1.2 Library Client Adaptation

• Dependency Level

Chow et al. [8] firstly assume that standard library change specifications are provided
by the suppliers. Then they propose an approach to semi-automatically help the
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library clients update their code with the change information. However, Xing et
al. [63] think the documents provided by the library developers are incomplete. So
they use a differencing technology on the old and new library versions to catch up the
change, then use the change to make recommendations about likely ways to update
the library.

• API Level

The third-party library clients often encounter deprecated or updated API usage af-
ter updating to a newer library version. Hence research about API usage adaptation
is also related to our work. Henkel et al. [21] present a tool named CatchUp! to
semi-automatically help clients update their software components by capturing and
replay the API refactoring processing. SemDiff [9] provides API replacement recom-
mendation for errors that happen in compilation time. SemDiff suggests method calls
by analyzing the source code history of the evolved component to figure the removed
and newly added methods. Nguyen et al. [43] propose a graph-based approach called
LIBSYNC to help API usage adaptation by learning from successful adaptations of
other projects which have already updated to a new library version. Hora et al. [23]
propose a tool named apiwave, which keeps track of API popularity and migration
to address API backward-incompatibility.

In addition, general API usage recommendation techniques are also helpful for adapt-
ing evolved method calls. Zhong et al. [70] introduce a API usage mining framework
tool, MAPO, to automatically mine API usage patterns, then MAPO uses these
patterns to provide API usage recommendation. Zhang et al. [67] give an approach
named Precise to automatically recommend API parameters. Precise mines the ex-
isting source code, and abstract usage pattern representation for each API. Then it
gives recommendations by finding the abstract usage patterns in similar contexts.

These studies all focus on source code adaptation, while our proposed technique focuses
on fixing build scripts of Java projects.

2.1.3 Obsolete Test

In our empirical studies, we find obsolete tests are a noticeable problem in TLUs. 22.89%
of inappropriate TLUs introduce obsolete tests. Due to clients’ inattention, or because
suppliers do not even describe all the changes in their release notes, the clients cannot catch
every change made in the newer version of the third-party library. Therefore, TLU will

9



cause the current test cases to expect an obsolete behaviour which has changed in a newer
library version, resulting in a failure. Tansey et al. [56] focus on annotation refactoring.
Their work can infer general composite refactorings to help upgrade unit testing code. Hao
et al. [20] adopt the Best-first Decision Tree Learning algorithm to train a classifier, and
use it to identify whether the software failure cause lies in the functional source code or
the test cases. Herzig et al. [22] analyze tens of millions of individual test steps, using
association rule to identify patterns which are unique to false test alarms.

2.2 Fault Repair

Research on fault repair is another topic related to this thesis. Fault repair work includes
repairing bugs existing in product code and repairing test suite.

2.2.1 Source Code Repair

Automated program repair has been studied for a long time. Researchers mainly focus
on two fields: generate-and-validate (G&V) techniques [13, 27, 30, 36, 46, 49, 50, 54, 64] and
semantic-based repair techniques [40, 41, 44, 65]. G&V techniques often locate suspicious
location based on test executions, generate a list of candidate patches, then evaluate these
candidates with test cases. Debroy et al. [13] propose a mutation technique to generate
patches. Perkins et al. [46] introduce a tool named ClearView. ClearView firstly learns
invariants from normal and erroneous executions. Then it finds correlated invariants that
characterize normal and erroneous executions, according to which it generates a list of
candidate. It finally decides the most successful patch based on the continued execution.
Semantic-based repair techniques use symbolic execution and constraint solvers (e.g. SMT
solver) to conduct patch synthesis, e.g. SemFix [44], DirectFix [40], Angelix [41], and
Nopol [65]. In this thesis, we focus on G&V techniques.

Recently, a lot of G&V approaches are proposed from different aspects. GenProg [31]
uses genetic programming to generate patches. GenProg as a pioneer work, inspires many
follow-up research work. PAR [27] also uses genetic programming, but it manually inspects
human-written patches, and summarizes common patterns which can be applied to mod-
ify the buggy source code. AE [60] cares about the performance of genetic programming
(e.g., GenProg), it formalizes a cost model in terms of test executions, which can efficiently
reduce the search space. RSRepair [49] shares the same operators with GenProg, but it
uses random search instead of genetic programming. SPR [35] proposes a novel staged
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program repair approach. It firstly defines parameterized transformation schemas, then
uses target value search to decide whether a transformation schema can produce a suc-
cessful patch. Furthermore, it generates a successful repair based on a condition synthesis
algorithm. Using SPR as the baseline, Fan et al. then propose Prophet [36]. Prophet uses
machine learning techniques to learn from successful human-written patches. Based on the
knowledge, it re-orders the patch candidates generated by SPR, so that correct patches are
ranked highly.

These G&V repair techniques have some limitations. First, these techniques such as
GenProg assume that large programs contain the seeds of their own repair, so they use
ingredients from current fields (i.e., current program, current class, or a pre-defined context)
to generate patch candidates. Therefore, their patch search spaces are limited, and a
correct patch can be only generated if the ingredients can be found in existing source code.
Martinez et al. [38] conduct an empirical study to evaluate this fundamental assumption,
this study is conducted on line level and token level. Barr et al. [4] study whether a fix can
be constructed from historical fixes. They look into 15,723 commits from 12 Java projects
and find 30% of the commit elements can be found within the same file, which means the
remaining 70% involve ingredients from external sources. Another limitation is that current
code transforms are pre-defined, which can only cover a small subset of correct bug fixes.
Genesis [34] is a novel system which can automatically infer code transforms from existing
successful human patches. But it can only handle three types of bugs in Java programs:
null pointer, out of bounds, and class cast defects. These limitations caused a limited patch
search space. In our evaluation, we focus on bugs introduced by inappropriate TLUs. In
term of repairing this type of bugs, we find some correct bug fixes do not exist in current
search space, because introducing a newer version of the dependency will also bring in new
components. These new problems brought by a newer version of third-party dependency
cannot always be solved with the current code redundancies. Therefore, enlarging the
search space is an interesting research problem.

2.2.2 Test repair

Different test repair techniques are proposed to fix broken test cases in the software evolu-
tion [62,66,69]. Daniel et al. [12] present a repair suggestion tool named ReAssert to help
developers’ fix failed unit tests. Their technique considers both the dynamic analysis and
static analysis. Daniel et al. then utilize symbolic execution [11] to improve the ReAssert,
and add new repair strategies [10] that enable it to handle assertThat assertions.

As the noticeable obsolete test problem brought by inappropriate TLUs. Test repair is
also a promising research area for TLU.
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Chapter 3

Data Sources

To answer the research questions, we collect data on a collection of 8,952 open-source Java
projects from GitHub and 304 Java projects on ASF JIRA systems. Figure 3.1 shows the
data sources for the research questions.
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Figure 3.1: Data sources of research questions.

In summary, for RQ1, we select 14 target third-party libraries (see Table 3.2), and
extract 3,358 Maven-based Java projects from the 8,952 GitHub projects as the subject
projects of RQ1. The selected 3,358 projects depend on at least one of the 14 libraries.
Then we examine change histories extracted from the 3,358 Maven-based Java projects
about the 14 libraries (RQ1). Next, we study 83 TLU bugs, i.e., 21 found through GitHub
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commits of top 1,000 popular Java projects from the 8,952 GitHub projects, and 62 found
through JIRA issues of the 304 ASF java projects. For the 62 bugs with detailed JIRA
issues, we investigate all their issue summaries, descriptions, and discussions to identify the
symptoms of TLU bugs (RQ2). In addition, we examine patches on the 83 TLU bugs to
see clients’ efforts on fixing TLU bugs (RQ3). Furthermore, according to different sources
in which TLU bugs are fixed, we zoom in on two types of TLU bugs, i.e., TLU-code bugs
(whose fixes are only in source code), and TLU-build bugs (whose fixes are only in build
scripts). We inspect 17 TLU-code bugs and their fixes for RQ4, and evaluate existing
repair tools on 14 of them (RQ5). We then focus on building LibugFix for TLU-build
bugs (RQ6).

3.1 Extracting Third-party Library Version Change

History (RQ1)

To study the motivations of upgrading libraries, we examine the commit messages written
by clients when they conduct TLUs, as clients may leave reasons in the commit messages.
Therefore, we start with 14 popular libraries. Then, we find 3,358 Maven-based Java
projects that depend on at least one of the 14 libraries from the 8,952 GitHub projects.
Next, we extract all the TLU related commits based on the 14 selected target libraries.
Finally, we check each commit message and extract the motivations behind the upgrade
action.

Selecting Target Library: Considering the large amount of third-party libraries on
which a project depends, we cannot study all the existing third-party libraries. Therefore,
we first pick out some representative libraries as our research targets. Many previous
studies have been conducted to find popular and important third-party libraries for Java
projects, such as [51] and [29]. Qiu et al. [51] list the up-to-date top 20 popular Java
libraries by analyzing data from GitHub between 2014/12/29 and 2014/12/31. We selected
14 libraries from the 20 libraries out of our interests in functionality-oriented libraries (See
Table 3.2). As 8 of the 20 libraries all provide testing or logging functionalities used in
testing, e.g., commons-logging and slf4j, we only take log4j and its successor logback into
consideration.

Subject Project: Since a project with a longer development history always has more
dependency upgrade actions, we select only projects that have at least one year of version
history. Also, we only pick non-forked projects with licenses to avoid repetitive and informal
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projects. We choose popular projects that earn at least five stars on GitHub. According
to these rules, we collect 8,952 popular projects in total from GitHub.

Extracting TLU related commits: We currently only focus on Java Maven-based
projects, which enable us to get the dependency relationship from the “pom.xml” file
(Figure 3.2). We consider a commit TLU related if the commit participates in a version
change. We present a version change as V < v1, v2 >, v1 means the older version, and
v2 means the newer version, namely the upgraded version. Note that v2 may be a version
that released before v1. For these 14 target libraries, we crawl and analyze pom.xml files
of the 8,952 projects, and get 3,358 projects which depend on at least one of the 14 target
libraries. Detailed information of these projects is listed in Table 3.3. The number of
extracted TLU related commits for each target library is listed in Table 3.2.

Inspecting TLU related commit messages: After extracting the change history of
all projects, we examine the whole change history files, and summarize the reasons behind
dependency upgrades. Since it is prohibitively expensive to manually examine all TLU re-
lated commit messages to identify library upgrade reasons, we use keyword search to help
filter out TLU related commits without specifying upgrade reasons, then manually inspect
the remaining TLU related commit messages and classify upgrade reasons. Although this
keyword-based approach may miss some commits that specify upgrade reasons in unusual
ways, it is our best effort.

We first manually examine TLU related commit messages for the first five target li-
braries, and summarize keywords in commit messages that are usually relevant to specifying
upgrade reasons (Table 3.1). Then we use these keywords to filter out those TLU related
commits without reasons. Next, we manually inspect the remaining commit messages to
summarize upgrade reasons. We only focus on commit messages written in English in this
thesis.

Table 3.1: Keywords used to identify TLU related commits that specify upgrade reasons.

Keywords used fix, repair, bug, error, vulnerab, exception, fail,
brok, break, build, compil, chang, new, feature,
function, method, unavailabl, prepar, releas, com-
patibl, deprecat, unavailabl
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Table 3.2: Target third-party libraries. In a Maven-based project, the combination of
groupId and artifactId can identify a library.

Rank Library name (GroupId) Library name (ArtifactId) # TLU related
commits

1 log4j log4j 1,525
2 com.google.guava guava 2,226
3 commons-io commons-io 1,393
4 commons-lang commons-lang 924
5 javax.servlet servlet-api 702
6 org.springframework spring-context 1,485
7 org.apache.httpcomponents httpclient 1,265
8 ch.qos.logback logback-classic 1,312
9 commons-codec commons-codec 906
10 com.google.android android 154
11 org.springframework spring-core 1,267
12 joda-time joda-time 837
13 org.springframework spring-webmvc 853
14 org.codehaus.jackson jackson-mapper-asl 664

Table 3.3: Subject projects for extracting TLU related commits.

Projects creation dates before 2014-12-31
Projects last update after 2016-01-01
Project type Java Maven projects
Project popularity marked at least 5 stars on GitHub
# Target libraries included >= 1
# projects 3,358

Table 3.4: Study subjects. For projects from ASF JIRA system, the investigated unit is
the issue, and for projects from GitHub, the investigated unit is the git commit.

From # Projects # Files LOC # Units
ASF JIRA 304 362,534 40,136,072 539,194
GitHub 1,000 694,789 68,929,396 1,098,764
Total 1,304 1,057,323 109,065,468 1,637,958
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1 <project xmlns="http: //maven.apache.org/POM /4.0.0"

2 xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

3 xsi:schemaLocation="http: // maven.apache.org/POM /4.0.0

4 http://maven.apache.org/maven -v4_0_0.xsd">

5 ...

6 <dependencies >

7 ...

8 <dependency >

9 <groupId >commons -io</groupId >

10 <artifactId >commons -io</artifactId >

11 <version >1.4</version >

12 </dependency >

13 ...

14 </dependencies >

15 ...

16 </project >

Figure 3.2: An XML snippet example.

3.2 TLU Bugs and Patches Collection (RQ2 - RQ6)

To study RQ2 - RQ4, we need to collect TLU bugs and their fixes. One challenge of
collecting TLU bugs is that it is hard to identify whether a bug is caused by TLU. Mostly
the developers will not describe the cause of a bug. Hence, although we can use heuristic
techniques to help filter out irrelevant information, the manual investigation is still essential
at the final step to decide whether or not a bug is a TLU bug. It is hard for researchers
to manually check all the 8,952 GitHub projects, so we select the top 1,000 popular Java
projects from them. The popularity of a project is evaluated with the number of stars that
is marked by other GitHub users.

Also, we find JIRA issues can help indicate TLU bugs thanks to the issue links existing
between issues. Therefore, we choose the ASF JIRA issue system as another source to find
TLU bugs. We inspect 304 ASF projects that are listed in the ASF JIRA system.

Specifically, we utilize Scrapy crawling framework1 to collect dataset from Apache JIRA
systems2 and GitHub open-source community3. Both of them provide APIs4 5 to facilitate
data crawling. Table 3.4 shows the projects we use in this thesis. Our manual study focuses
on two kinds of units: JIRA issues and GitHub commits.

1https://scrapy.org
2https://issues.apache.org/jira/
3https://github.com
4https://developer.atlassian.com/jiradev/jira-apis/jira-rest-apis
5https://developer.github.com/v3/
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Figure 3.3: An overview of JIRA issues collection. We first crawl all the JIRA issues of
Apache projects, then extract upgrade related issues from them. Next, we find all issues
broken by these upgrade related issues, and collect fixes for these broken issues. We use
both automatic techniques and manual inspection to conduct this data collection.

Collecting TLU bugs through JIRA issues: Apache JIRA, as an issue tracker,
provides a lot of features which encode the relationships between issues. Figure 3.3 shows
an overview of JIRA issues collection and analysis. First, we crawl all issues of Apache
projects which release their source code in GitHub. A JIRA issue is composed of various
fields6, for our study we mainly focus on the fields of summary, key, description, affects
version(s), fix version(s), Attachment(s), and issue link(s). Then, we utilize stemming
techniques to stem the summary and description of the issues. After stemming, we filter
out irrelevant issues and keep 47,222 issues which include key words “updat”, “upgrad”,
“bump” in their summary or description.

To analyze the effects of upgrade issues, we extract the issue links7 of each upgrade
related issue. An issue link describes the association between two existing issues. In our
study, we present an interested issue link as L < I1, I2 >, in which I1 means an issue
that conducts a dependency upgrade action, and I2 means an issue that is broken by I1,
namely is affected by the dependency upgrade action. We only pay attention to the issue
link whose type is “breaks” or “is broken by”. Figure 3.4 gives an example of issue links.
This figure shows issue links related to a TLU related issue. The project HBASE upgrades
its thrift dependency to version 0.9.2, which introduces a bug (HBASE-14162) in their
project. In this way, we collect 650 upgrade related issues that breaks other issues.

Although we automatically filter out irrelevant issues, the remaining issues are not
all about TLU related issues. For example, the issue ACCUMULO-4646 is flagged as a
possibly TLU related issue, as its summary is: “Updates to INSTALL.md”. However,
this issue actually updated the project INSTALL.md file, which is not about upgrading

6https://confluence.atlassian.com/jira064/what-is-an-issue-720416138.html
7https://confluence.atlassian.com/jiracoreserver073/linking-issues-861257339.html

17

https://confluence.atlassian.com/jira064/what-is-an-issue-720416138.html
https://confluence.atlassian.com/jiracoreserver073/linking-issues-861257339.html


Figure 3.4: An example of issue links. The issue HBASE-14045 upgrades its dependency
thrift to version 0.9.2, this TLU related issue breaks another issue HBASE-14162, and is
related to issue HBASE-7972. In this work, we only care about issue links whose types are
“breaks”.

a third-party library. To mitigate the false positive, we further filter out these irrelevant
issues with manual analysis. We finally collect 62 bugs through mining JIRA issues.

Collecting TLU bugs through GitHub commit messages: Unlike JIRA issue
system, GitHub does not provide explicit features to describe associations between existing
commits, which increases the difficulty of identifying the cause of a bug. We firstly crawl the
whole commit histories of top 1,000 popular Java projects on GitHub. Similarly, we stem
the commit messages with stemming techniques. After manually looking into around 1,000
commit messages, we generalize some common expression patterns to indicate whether a
commit is to fix bugs introduced by TLU, and use these patterns to automatically extract
650 relevant commits. Table 3.5 lists the patterns that we use to extract TLU related
commits. Then, we also conduct manual inspections to reduce the false positives. In total,
we collect 21 bugs through analyzing commit messages. GitHub also provides an issue
tracking system, which contains many useful information. We will explore this data source
in the future.

Table 3.5: Commons Expression Patterns.

No. Expression Pattern
1 fix/repair/handle ... after/because/as/since...upgrad/updat/bump
2 fail/error ... upgrad/updat/bump
3 cause/reason ... upgrad/updat/bump
4 upgrad/updat/bump ... introduc/caus/bring ... fail/error
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Collecting developers’ patch for TLU bugs: After obtaining TLU bugs through
JIRA issues and GitHub commit messages, we can then collect patches for these bugs.

For bugs found through JIRA issues, we use two ways to find corresponding patches:
for each issue link L < I1, I2 >, we first check whether patch attachments are available in
I2, if not, we search the issue number of I2 in GitHub to find related commits.

For bugs found through GitHub commits, we will use the code change of the current
commit as the patch.

3.3 TLU-code bugs (RQ4 and RQ5)

As TLU-code bug is the second popular type in TLU bugs, and existing automated program
repair tools care more about TLU-code bugs. So we zoom in on TLU-code bugs in RQ4
and RQ5.

In total, there are 17 TLU-code bugs among the 83 TLU bugs. We examine the 17
bugs to find common fix patterns for RQ4.

For RQ5, most existing automated repair tools only consider bugs that are detectable
dynamically, i.e., test failures and runtime failures, and they focus on fixing them by
modifying the source code. We hence collected 14 TLU-code bugs of this type.

Also, most existing automated repair tools only conduct patch synthesis at a single
location. Considering their limitation we hence select TLU-code bugs whose fixes satisfy
constraints below:

1) the fix fixes a bug which can be reproduced by more than one failed test case;

2) the fix only modifies source code files (or modifies both source code and obsolete tests,
as we can manually change the tests to be correct and keep the source code unchanged);

3) the fix only involves code changes at a single location;

4) the fix does not change code statements with special Java language features, such as
Java annotation.

According to constraints above, we select 6 TLU-code bugs from the 14 bugs, and reproduce
them to evaluate existing automated repair tools
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3.4 TLU-build bugs (RQ6)

For the 83 TLU bugs that we collected, 18 bugs of them are TLU-build bugs that cause
compilation errors, i.e., their fixes only involve modifications on build scripts. Table 3.6
lists the 18 TLU-build bugs. Build scripts are usually XML files (Maven-based or Ivy-based
projects), .classpath files, .properties files, build.gradle files (Gradle-based projects), Bash
scripts, or Python scripts. We manually inspect bug fixes of the 18 TLU-build bugs, and
summarize common patterns of fixing TLU-build bugs (RQ6a). The results are shown in
Section 5.1.

Table 3.6: TLU-build bugs that cause compilation errors. “GitHubProj” means projects
from GitHub.

Project # Bug Suffix of fixed build scripts
ACCUMULO 1 .xml
BIGTOP 2 .py
HADOOP 5 .xml, .sh, .conf
HBASE 1 .xml
HIVE 4 .xml, .classpath, .thrift
ZOOKEEPER 1 .xml
SOLR 2 .xml, .properties
GitHubProj 2 .xml
Total 18

Through studying RQ6a, we find these common patterns are mainly applied to fix
build scripts whose types are .xml files, .properties files, and .classpath files. Therefore,
we propose LibugFix to automatically repair build scripts that belong to the three types
(RQ6b). There are 14 TLU-build bugs whose build scripts are .xml files, .properties files,
or .classpath files. The 14 TLU-build bugs will be used as the dataset of LibugFix.
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Chapter 4

Manual Study

4.1 RQ1: Why do clients upgrade a third-party li-

brary?

Commit messages contain useful information: they describe changes, and sometimes, rea-
sons for these changes. We manually checked commit messages of the library-upgrade
changes, and classified different types of reasons.

Table 4.1 shows the number of TLU commits with reasons why the clients upgrade
the target libraries. Although we have a large number of projects with plenty of library-
upgrade changes, the number of commits with upgrade reasons is not that big. We only
have 9.5% of commits telling the reason. Fortunately, we still have 926 pieces of useful
messages for our study.

Table 4.2 shows the distribution of the different reasons why clients choose to change
the versions. We classify all the reasons into 7 different types: 1) new version with bugs
fixed; 2) version with particular feature; 3) version unavailable; 4) prepare for releasing; 5)
compatible with other dependencies/frameworks/platforms; 6) fix bugs/vulnerabilities of
the project; 7) compatible with development kit (JDK/Android SDK).

“Prepare for release” is a more interesting phenomenon: before releasing a new version
of the project, clients seem to always upgrade the versions of all dependencies to the
newest ones. It seems a custom in software developing, as we found 62.3% TLUs specify
this reason.

“Compatible with other dependencies/frameworks/platforms” means that the current
version of the library will cause some problems when cooperating with other dependencies
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Table 4.1: Upgrade commits with reasons. “# TLU related” means the number of total
TLU related commits, “# TLU related with reasons” presents the number of TLU related
commits that specify upgrade reasons.

GroupId ArtifactId # TLU related # TLU related
with reasons

log4j log4j 597 73 (12.2%)
com.google.guava guava 1,409 219 (15.5%)

commons-io commons-io 664 82 (12.4%)
commons-lang commons-lang 290 10 (3.5%)
javax.servlet servlet-api 158 27 (17.1%)

org.springframework spring-context 1,432 90 (6.3%)
org.apache.httpcomponents httpclient 986 40 (4.1%)

ch.qos.logback logback-classic 915 215 (23.5%)
commons-codec commons-codec 521 15 (2.9%)

com.google.android android 52 14 (26.9%)
org.springframework spring-core 1,133 52 (4.6%)

joda-time joda-time 508 13 (2.6%)
org.springframework spring-webmvc 738 57 (7.7%)
org.codehaus.jackson jackson-mapper-asl 300 19 (6.3%)

Total 9,703 926 (9.5%)

Table 4.2: Classification of upgrade reasons.

Type of reasons Number %
Prepare for release 577 62.3
Compatible with other dependencies/frameworks/platforms 142 15.3
Fix bugs/vulnerabilities of the project 66 7.1
Compatible with development kit (JDK/Android SDK) 62 6.7
Version with particular features 36 3.9
New version with bugs fixed 33 3.6
Version unavailable 10 1.1
Total 926 100

or running on some frameworks or platforms. So the clients decide to replace it with
another version.
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Table 4.3: Upgrades and downgrades. The combination of groupId and artifactId can iden-
tify a library. # Changes column shows the number of version changes we collect. These
version changes are composed of upgrade version changes (4th column) and downgrade
version changes (5th column).

GroupId ArtifactId #
Changes

Upgrade
(%)

Downgrade
(%)

log4j log4j 597 87.1 14.6
com.google.guava guava 1,409 88.2 11.9
commons-io commons-io 664 89.0 11.0
commons-lang commons-lang 290 94.1 5.9
javax.servlet servlet-api 158 87.3 12.7
org.springframework spring-context 1,432 91.6 8.5
org.apache.httpcomponents httpclient 986 91.6 8.4
ch.qos.logback logback-classic 915 83.4 16.6
commons-codec commons-codec 521 85.8 14.2
com.google.android android 52 86.5 13.5
org.springframework spring-core 1,133 93.1 6.9
joda-time joda-time 508 89.8 10.2
org.springframework spring-webmvc 738 94.9 5.2
org.codehaus.jackson jackson-mapper-asl 300 91.0 9.0

Total 9,703 89.8 10.2

“Fix bugs/vulnerabilities of the project” means that clients change the version to fix
bugs in their own projects.

“Compatible with development kit (JDK/Android SDK)” means the clients change
the version of the library because the current version is not compatible with the JDK or
Android SDK they use.

“Version with particular features” means that the clients choose to change (either “up-
grade” or “downgrade”) the version because they want to use some particular features only
in the target version.

“New version with bugs fixed” is different from “Fix bugs/vulnerabilities of the project”.
The goals of the two reasons are different. For “New version with bugs fixed”, suppliers
release a newer library version, and this newer version fixes bugs existing in the older
version. These fixed bugs may or may not cause problems for the clients’ project at
this time. Sometimes clients upgrade the library in advance to avoid potential troubles.
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For “Fix bugs/vulnerabilities of the project”, clients already encounter problems in their
project due to the current library version, e.g., the behaviours of the older version are
compatible with other dependencies. Clients want to fix the problems by upgrading the
library.

“Version unavailable” is, just as its literal meaning, that the clients cannot use the
current version of the library at the time of the TLU commit. In our observations, it
may be because the current version has been removed from Maven Central Repository, or
because there are no public download sources of this version now.

By comparison, we find that besides preparing for a version release (which is more like a
custom in software development), the library version with fewer bugs is not that attractive
for clients when deciding if it is needed to change the version. However, if the new version
can fix problems in their own projects, like fixing bugs or ensuring the compatibility, a
change will be more likely to be made.

Another interesting discovery is that the version changes are not always “upgrades”, and
sometimes clients may choose to “downgrade” the third-party libraries they use. Table 4.3
shows the number of upgrades and downgrades in our dataset. Although upgrades are
the majority, “downgrades” still accounts for more than 10% of TLUs. This phenomenon
relates to the frequent “revert” actions on GitHub. When faced with a problem which may
be caused by TLUs, a revert is always conducted immediately to avoid troubles.

4.2 RQ2: What are the symptoms of TLU bugs?

We use this question to investigate how TLU bugs affect clients’ projects. To answer this
question, we investigate 62 TLU bugs collected through ASF JIRA issue systems, because
they always have detailed issue reports and discussions. We do not consider TLU bugs
collected through GitHub commit messages, because for the 21 TLU bugs from GitHub,
the client often leaves a simple message, e.g., “fix problems caused by library upgrade”.
So it is hard to get clues from these commit messages.

For the 62 TLU bugs, we look into any available sources from issue description, dis-
cussion contents, and commits messages. We find that TLUs can introduce failures that
can be detected statically or dynamically. “Detectable statically” column lists the number
of failures detected statically. Failures detected statically means bugs that can be caught
during compilation time, i.e., compilation failures. “Detectable dynamically” column lists
the number of failures detected dynamically. A failure that is detectable dynamically can
be a test failure, or a crash during runtime.
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Table 4.4: The types of TLU bugs. “Detectable statically” column lists the number of fail-
ures detected statically, and “Detectable dynamically” column lists the nubmer of failures
detected dynamically.

Project # broken issues
Detectable statically
(Compilation failure)

Detectable dynamically
Test failure Runtime failure

Accumulo 10 3 7 0
Bigtop 4 4 0 0
Camel 1 1 0 0
Hadoop 20 9 6 5
Hbase 4 1 1 2
Hdfs 2 0 2 0
Hive 7 5 1 1
Jclouds 1 0 0 1
Kafka 1 0 1 0
Karaf 1 0 0 1
Oak 1 0 1 0
Ofbiz 2 0 0 2
Oozie 1 0 1 0
Pig 1 0 1 0
Rave 1 0 0 1
Solr 4 2 2 0
Zookeeper 1 1 0 0

Total 62 26 (41.94%) 23 (37.10%) 13 (20.97%)

Table 4.4 shows the composition of bug types introduced by TLUs. For the problems
caused by inappropriate TLUs, 41.94% of them are detectable statically, and the failures
found dynamically are composed of test failures (37.10%) and runtime failures (20.97%).
Note that the number does not mean that inappropriate TLUs will lead to more failures
that are detectable dynamically. In reality, it is easier for clients to detect compilation
failures when they conduct a build action. Developers often fix them at once, but they do
not leave any written records about this issue.

Indeed, one wonders why compilation failures exist at all. There are two possible
reasons: (1) developers use continuous integration testing to check the program that passes
local unit tests; (2) some compilation errors are not detected when developing, but happen
on other platforms.
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4.3 RQ3: What are clients’ efforts on fixing TLU bugs?

In our study, we find clients often fix TLU bugs from four sources: modifying the source
code, fixing build code, fixing obsolete tests, and avoid current dependency version. Ta-
ble 4.5 describes the fix effort of clients.

Table 4.5: Fix efforts of clients. In column 4-8, the number outside the () means the
number of bugs whose fixes involve modifying this source; the number inside the () means
the number of bugs that can be fixed by modifying the single source.

Project
# broken
issues

Multiple
sources

Fix effort
Source code Build scripts Test cases Version switch Others

Accumulo 10 3 6 (3) 4 (1) 1 (1) 1 (1) 1 (1)
Bigtop 4 0 1 (1) 2 (2) 0 (0) 0 (0) 1 (1)
Camel 1 1 1 (0) 1 (0) 1 (0) 0 (0) 0 (0)
Hadoop 20 3 5 (3) 10 (8) 4 (2) 1 (1) 3 (3)
Hbase 4 1 2 (1) 2 (2) 1 (0) 0 (0) 0 (0)
Hdfs 2 0 1 (1) 0 (0) 0 (0) 1 (1) 0 (0)
Hive 7 0 0 (0) 5 (5) 1 (1) 1 (1) 0 (0)
Jclouds 1 0 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)
Kafka 1 0 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)
Karaf 1 0 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)
Oak 1 0 1 (1) 0 (0) 0 (0) 0 (0) 0 (0)
Ofbiz 2 0 0 (0) 1 (1) 0 (0) 0 (0) 1 (1)
Oozie 1 0 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)
Pig 1 0 0 (0) 0 (0) 1 (1) 0 (0) 0 (0)
Rave 1 0 0 (0) 1 (1) 0 (0) 0 (0) 0 (0)
Solr 4 0 0 (0) 2 (2) 2 (2) 0 (0) 0 (0)
Zookeeper 1 0 0 (0) 1 (1) 0 (0) 0 (0) 0 (0)

GitHubProj 21 6 13 (7) 6 (4) 8 (4) 0 (0) 0 (0)

Total 83 14 30 (17) 35 (27) 19 (11) 8 (8) 6 (6)
Percentage - 16.87% 36.14% 42.17% 22.89% 9.64% 7.23%

100% - (20.48%) (32.53%) (13.25%) (9.64%) (7.23%)

In the “Project” column of Table 4.5, we list all projects found from the ASF JIRA
system and GitHub. As projects collected from GitHub are discrete across many different
projects, it is hard to list all names of these projects. So we use “GitHubProj” to present
projects from GitHub. “Source Code”, “Build Scripts”, “Test Cases”, and “Version switch”
present the modified sources for fixing TLU bugs. “Version switch” means clients choose
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Table 4.6: Mean and five-number summary of fixing time for TLU bugs.

Fix time (day) Mean Min. 1st Qu. Median 3rd Qu. Max.
Multi-sources 34.6 0 1 3.5 12.3 227
Source code 53.8 0 0 3 11.8 277
Build scripts 57.3 0 1 6 64.5 386
Test cases 182.7 0 1 1 174 928
Version switch 24.3 0 1 1 3.5 182

to avoid current dependency version to fix the problem. A version switch may be: 1)
reverting to its previous version; 2) changing to another different version. The number
in the bracket means the number of bugs that can be fixed by modifying one single filed.
“Multiple sources” (column 3) lists the number of bugs whose fixes need to modify more
than one source. “Others” in this table means all other situations that are not covered by
the first four sources. For example, this bug is not urgent, and clients find it is caused by
a bug existing in the third-party library. So they just wait for the bug of the third-party
library is fixed. Or they are still working on the bug until the day when we collected data.

The correct fixes for 16.87% of these bugs involve modifying multiple sources, for them,
clients should have an eye on the global sources of the program, instead of focusing on the
single source. Also, merely 20.48% of TLU bugs can be fixed by modifying the source code.
In addition, 33.73% of TLU bugs involves changing build scripts, which is a significant part.

Table 4.6 shows the time spent on fixing bugs that involve modifications in different
sources. The mean and five-number summary is given to evaluate the fixing time. Note
that the fixing time cannot directly reflect the difficulty of bug fixing, because it is also
related to the significance of a bug. For bugs fixed in multiple sources, they are always
repaired very soon, which means these bugs have a significant influence on the program.
For bugs that are repaired by merely modifying test cases, they always cannot draw clients’
attention immediately. So this bug type always takes a longer time to fix.

4.4 RQ4: What are the common ways for clients to

fix TLU-code bugs?

Focusing on the source code source, we examine 17 TLU-code bugs and summarize some
common fixing ways for 9 of them. We found they are fixed according to four common
ways: 1) add null check (NC); 2) deleting the buggy statement (DEL); 3) changing the
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position of the buggy statement (MOV); 4) replacing the buggy statement with another
statement, or replacing the value of variables/constant in the buggy statement with another
one (REP). Table 4.7 presents in which way the 9 bugs are fixed. We use the case study
to help explain these common ways.

Table 4.7: Common Ways to Fix TLU-code Bugs. means the bug is fixed in this way.

Bug NC DEL MOV REP
ACCUMULO-4077-4117
ACCUMULO-898-3342
HADOOP-12767-11859
HADOOP-9623-10589
HBASE-13339-13574
HDFS-9080-9187
OAK-3996-4018
Dropwizard-821174
tomahawk-android-8a40d9b
Total (9) 3 3 1 2

4.4.1 Case Study

• NC

1 private String getUserName(HttpServletRequest request) {

2 -- List <NameValuePair > list = URLEncodedUtils.parse(request.getQueryString (), UTF8_CHARSET );

3 ++ String queryString = request.getQueryString ();

4 ++ if(queryString == null || queryString.length () == 0) {

5 ++ return null;

6 ++ }

7 ++ List <NameValuePair > list = URLEncodedUtils.parse(queryString , UTF8_CHARSET );

8 ...

9 }

Figure 4.1: HADOOP-12767-11859.

Figure 4.1 presents an example of NC.

HADOOP-127671 upgrades its httpclient dependency from 4.2.5 to 4.5.2, and httpcore
dependency from 4.2.5 to 4.4.4. This upgrade causes test failure that method Pseu-
doAuthenticationHandler throws a Null Pointer Exception (NPE). The reason is that

1https://issues.apache.org/jira/browse/HADOOP-12767
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PseudoAuthenticationHandler method calls an API, URLEncodedUtils.parse (String,
Charset), which is from the httpclient dependency. In httpclient 4.2.5, the parse() method
can gracefully handle the first argument being NULL. However, after httpclient 4.4.4, it
will throw an NPE if the first argument is NULL.

• DEL

1 public boolean isMaxFileSizeSettingSpecified () {

2 ...

3 getFilterFactories (). stream (). forEach(f -> appender.addFilter(f.build ()));

4 -- appender.stop ();

5 appender.start ();

6 ...

7 }

Figure 4.2: Dropwizard-821174.

Figure 4.2 shows an example of DEL.

In this example, the appender of the program cannot be started after upgrading logback
version from 1.1.3 to 1.1.6. We checked the source code of logback, and found that the
start() method FileAppender.java changed in logback. In the version beyond 1.1.5 of
logback, before starting an appender, it will conduct a collision check, which means that
if an appender has already been used, it cannot be restarted. In the original source code
the program, an appender always conducts a stop() action before a start() to make sure a
starting appender does not be started again, even if the appender is initiated just before
the start(). Before the upgrading, the “always stop()” action before start() does not
cause problems. But after upgrading, as the collision check of logback beyond version
1.1.5, the appender.start() in line 5 cannot be correctly executed.

• REP

1 public Globber(FileSystem fs , Path pathPattern , PathFilterfilter) {

2 ...

3 this.filter = filter;

4 -- this.tracer = fs.getTracer ();

5 ++ this.tracer = FsTracer.get(fs.getConf ());

6 }

Figure 4.3: HDFS-9080-9187.

Figure 4.3 shows an example of REP.

HDFS-90802 updates htrace version to 4.0.1, which causes an NPE in HDFS-91873. The
motivation of this upgrade is that clients want to use new features from htrace 4.0.1,

2https://issues.apache.org/jira/browse/HDFS-9080
3https://issues.apache.org/jira/browse/HDFS-9187
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in which package org.apache.htrace.core is introduced. Along this upgrade, clients also
make a big code change in their program to coordinate with this upgrade. After the
upgrade, an NPE will happen, because the tracer will be null if the filesystem is not
constructed via FileSystem#createFileSystem. The best way to solve this problem is
adding a new object “NullTracer” in htrace library to present the null tracer, but this
depends on contribution of clients of htrace. Waiting for suppliers of htrace to solve this
problem will waste lots of time, and leave uncertainty. Hence, clients change the way to
get tracer, instead of get tracer from fs (which may be a null value), they get tracer from
a pre-defined configuration file.

• MOV

1 private void setChildOrder () {

2 ...

3 ++ for (PropertyEntry property : bundle.getPropertyEntries ()) {

4 ++ String name = createName(property.getName ());

5 ++ try {

6 ++ ...

7 ++ } catch (Exception e) {

8 ++ }

9 ++ }

10
11 //code to prepare mixinTypes

12 Set <String > mixins = newLinkedHashSet ();

13 ...

14
15 -- for (PropertyEntry property : bundle.getPropertyEntries ()) {

16 -- String name = createName(property.getName ());

17 -- try {

18 -- ...

19 -- } catch (Exception e) {

20 -- }

21 -- }

22 return properties;

23 }

Figure 4.4: OAK-3996-4018.

Figure 4.4 shows an example of MOV.

In the OAK project, OAK-39964 upgrades its jackrabbit version from 2.11.3 to 2.12.0,
which causes test failures (OAK-40185). The newer version jackrabbit 2.12.0 modifies its
jcr:mixinTypes property in JackrabbitNodeState#createProperties() method. In the Oak
project, the jcr:mixinTypes is prepared before line 15. Then the mixinTypes property is
exposed in NodePropBundle#getPropertyEntries() collection (line 15 - 21). This upgrade
causes that the original jcr:mixinTypes property (defined by jackrabbit) overrides the

4https://issues.apache.org/jira/browse/OAK-3996
5https://issues.apache.org/jira/browse/OAK-4018
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one prepared by the Oak project. The fix for this bug is simple, that is, moving the for
statement (line 15 - 21) before the code that prepares the jcr:mixinTypes (line 11), in
this way the wanted jcr:mixinTypes will not be overridden.
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Table 4.8: Available transformations that different automated program repair tools can implement
semantically. means the tool is able to implement this transformation , means the tool
implements a subset of this transformation.

Transformation GenProg PAR SPR
Deleting the buggy statement 1

Swapping the buggy statement with another statement existing in
the program

2

Inserting a statement before the buggy statement
Inserting an initialization for variables in the buggy statement 3

Inserting an if-guard statement whose condition expression is a con-
stant related condition4

Inserting a null checker for object references existing at the buggy
location
Inserting a range checker to check whether an index exceeds up-
per/lower bounds
Inserting a class cast checker to check the castee is an object of the
casting type if the buggy statement is a class-casting statement
Introducing a new control flow (return, break, goto) whose condi-
tion expression is generated from an abstract condition4

Changing a branch condition by replacing condition expression with
another existing condition expression
Changing a branch condition by concatenating current condition
expression and a constant related condition4 using && or ||
Adding/Removing parameters of a method at the buggy location
if this method has overloaded methods
Replacing a value (variable/constant/method) with another one in
the suspicious statement

5

1 SPR can delete a statement by inserting an if-guard, such as if (!(1)) {...}.
2 PAR only swaps statements both existing at the buggy location.
3 PAR only initializes parameters of a method call if there exists a method call at the buggy

location.
4 A constant related condition is in forms of (1), !(1), (variable == const), or !(variable ==

const), the pair of varialbe and const can be found during the program execution.
5 For variable/constant replacement, PAR only replaces them when they are used as parameters

of a method call if there exists a method call at the buggy location. For method replacement,
PAR only replaces method with another existing one which calls the same parameters. PAR
and SPR both replace variable with another one existing in the program.
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4.5 RQ5: Are the state-of-the-art automated program

repair tools effective for repairing TLU-code bugs?

We use 14 TLU-code bugs that cause test failures or runtime failures to evaluate this
research question. For 8 bugs of them, their bug fixes involve big changes or code changes
in multiple locations. Existing program repair tools are not able to generate this kind of
patches for them. Therefore, we use the remaining 6 bugs listed in Table 4.9 to evaluate
the performance of automated program repair tools.

Since GenProg is initially designed for bugs in C, in this thesis, we use jGenProg, which
is a Java version of GenProg implemented by a program repair framework named Astor [37].
We run jGenProg to repair the 6 bugs, with the default setting same as Astor. For PAR,
SPR, and Genesis, we conduct theoretical analysis. SPR is a repair tool for C programs.
We want to evaluate it because it defines various code transforms. But we cannot find a
Java implementation of SPR. PAR is a Java program repair tool, but the authors does not
release their tool to the public. Genesis is an interesting repair approach for Java program.
It can automatically infer code transforms from successful human-written patches, so we
also want to discuss it in this research question. However, this tool is newly released,
and it needs to be run under a virtual machine with a fixed configuration. It is hard to
successfully deploy these bugs to the virtual machine. Due to time constraints, we do not
run Genesis and leave it into future work.

We compare the code transforms that GenProg, PAR, and SPR can conduct during
the patch generation processing. As Genesis generates patches by automatically inferring
code transforms from existing code, we cannot list the fixed transforms that it can achieve.
The comparison is given in Table 4.8.

Table 4.9 shows our evaluation results. We find that HDFS-9080-9187 cannot be fixed
by any inspected tools. The correct fix for HDFS-9080-9187 involves replacing the buggy
statement with another statement that does not exist in the program. This means the
ingredients for this correct patch are not in the program. This problem cannot be handled
by any of the evaluated tools.

For jGenProg, it generates two correct patches for Dropwizard-821174 and ACCUMULO-
898-3342. The two bugs are both fixed by DEL. jGenProg generates a plausible patch for
OAK-3996-4018, which also conducts a DEL. A plausible patch means a patch that is ac-
tually incorrect, but passes all the test cases because of test incompleteness. According to
Table 4.8, we can see that GenProg cannot insert a null check, so it cannot fix HADOOP-
12767-11859 and HADOOP-9623-10589 because their correct fixes are not in the search
space.
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Table 4.9: Current Repair Tools on TLU Bugs. “ ” means the tool generated a correct
patch for the TLU bug, “ ” means the tool generates a patch, but the patch is plausible.
A plausible patch means a patch passes all the test cases, but is incorrect. “ ” means the
tool could, in principle, generate a patch that fix the TLU bug. “-” means the tool cannot
generate the correct fix theoretically.

Defect GenProg PAR SPR Genesis
HDFS-9080-9187 (REP) - - - -
Dropwizard-821174 (DEL) - -
ACCUMULO-898-3342 (DEL) - -
HADOOP-12767-11859 (NC) - - -
HADOOP-9623-10589 (NC) - - -
OAK-3996-4018 (MOV) - - -
Total 2 0 2 2

For PAR, although it does not release their tool, it makes their fix templates and
generated patches publicly available6. We inspect the fix templates and generated patches,
and find that PAR cannot fix the 6 inspected bugs. It seems that PAR may fix HADOOP-
12767-11859, and HADOOP-9623-10589. However, PAR only checks object references
existing at the buggy location. That is, if a parameter is not referenced, it does not check
whether it is null. The objects that need NC in HADOOP-12767-11859 and HADOOP-
9623-10589 are both not referenced, so PAR cannot fix them.

For SPR, it cannot fix HADOOP-12767-11859, HADOOP-9623-10589, and OAK-3996-
4018 as it cannot conduct corresponding code transforms to generate correct fixes.

Genesis takes a different approach from the first three tools. It can only handle three
types of bugs: null pointer, out of bounds, and class cast defects. Also, Genesis auto-
matically infers code transforms for patch generation. Considering the correct fixes for
HADOOP-12767-11859 and HADOOP-9623-10589 are both adding a null check for an ob-
ject in the buggy statement. We inspect the patches generated by Genesis for null pointer
bugs, and find they are similar with patches for HADOOP-12767-11859 and HADOOP-
9623-10589. Therefore, Genesis may be able to generate correct fixes for these two bugs,
at least they exist in Genesis’s search space.

6https://sites.google.com/site/autofixhkust/home/fix-templates
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Chapter 5

LibugFix

5.1 RQ6a: What are common patterns for fixing TLU-

build bugs?

A large program often includes multiple sub-modules, these sub-modules share a set of
dependencies, but also manage their own dependencies. To handle this, every sub-module
has its own build scripts, at the same time inheriting its parent build scripts. When updat-
ing a third-party library, clients often do not handle the complex dependency relationships
very well. Therefore, in Table 5.1, we summarize three common fix patterns used to repair
build scripts.

Pattern 1 focuses on the problems of inconsistent upgrades. When updating a third-
party library, all corresponding should also be updated. However, clients often forget
to update all features related to the third-party library, which will cause conflicts. For
example. in the ZOOKEEPER-23781 issue, clients upgrade their ivy dependency version
from 2.2.0 to 2.4.0. However, they forgot to update the corresponding ivy version in its
contrib sub-module. The issued ivy version in the build script of contrib is still 2.2.0, which
causes a build failure.

The fix for Pattern 1 is to align the versions of dependencies related to L to the newer
version.

Pattern 2 solves the problems resulting from the incomplete upgrades. This problem
often appears when upgrading a version from null to a version number (introducing a new

1https://issues.apache.org/jira/browse/ZOOKEEPER-2378
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Table 5.1: Common patterns for fixing build scripts.

No. Pattern Description Example
1 Aligning attribu-

tions related to
the upgraded de-
pendency with the
latest version

This pattern can fix
a bug which is caused
by incomplete or in-
consistent upgrade

  <dependency>

       <groupId>group_id</groupId>

       <artifactId>artifact_id</artifactId>

-      <version>order_version</version>

+      <version>latest_version</version>

   </dependency>

2 Removing/Adding
extra/duplicated
dependencies

This pattern can fix a
bug which is caused
by duplicated/miss-
ing dependencies
introduced by library
upgrade

-  <dependency>

-       <groupId>group_id</groupId>

-       <artifactId>artifact_id</artifactId>

-      <version>1</version>

-   </dependency>

3 Reverting attri-
butions of the
dependencies which
belong to the
same group ID
with the upgraded
dependency

This pattern can fix
a bug that the de-
pendencies originally
sharing the same at-
tributions with the
upgraded dependency
miss the newest up-
grade

  <dependency>

       <groupId>group_id</groupId>

       <artifactId>artifact_id</artifactId>

-      <version>latest_version</version>

+      <version>order_version</version>

   </dependency>

dependency), or from a version number to null (removing a dependency) For example,
HIVE-32562 upgrades library asm from 3.1 to null, i.e., removing this dependency. But
the classpath for asm is still retained, which breaks the Eclipse build.

The fix for Pattern 2 is to remove the redundant or add the missing dependency in
build scripts.

Pattern 3 aims at counter cases of Pattern 1. Clients sometimes make libraries under
the same groupId share the same version. However, it is possible that the versions of
libraries under the same organization are not synchronized. For example, SOLR-44513

upgraded the versions of libraries under the org.apache.httpcomponents group to 4.2.3.
But httpclient 4.2.3 actually depends on the older version of httpcore.

2https://issues.apache.org/jira/browse/HIVE-3256
3https://issues.apache.org/jira/browse/SOLR-4451

36

https://issues.apache.org/jira/browse/HIVE-3256
https://issues.apache.org/jira/browse/SOLR-4451


The fix for Pattern 3 is to arbitrarily choose one dependency from libraries that belong
to the same groupId with L, and revert its version to the the older one. If the patch
does not pass, then select another one to conduct the revert. The reverting action will
be repeated until a patch passes the evaluation or all dependencies belonging to the same
group are traversed.

5.2 Approach of LibugFix

We propose a technique, LibugFix, to repair compilation failures by fixing build scripts
From inspecting TLU-build bugs that cause compilation errors, we summarize some com-
mon patterns used to modify the build scripts (Section 5.1). All the common patterns are
found from three types of build scripts: .xml files, .properties files, and .classpath files. The
reason may be because the three types of files share similar semantic features. Therefore,
LibugFix focuses on fixing build scripts of the three mentioned types. There are 14 TLU-
build bugs whose build scripts belong to the three special types. LibugFix will conduct
repair work on the 14 TLU-build bugs that cause compilation errors.

Buggy Build 
Scripts

Suspicious 
Location Collection

Patterns Selection & 
Modifying Build Scripts

Passing Build

Accepted Build 
Scripts

Figure 5.1: Overview of LibugFix. LibugFix first collects a list of suspicious locations, then
chooses patterns to fix the build scripts. The successful compilation is used to validate the
patch.

LibugFix takes three inputs to generate patches: 1) the buggy build scripts; 2) the
upgraded third-party library L; 3) the version change V < v1, v2 >. Figure 5.1 presents
the overview of LibugFix. LibugFix first collects a list of suspicious locations from the
buggy build scripts. Then, it selects proper patterns to fix the build scripts. LibugFix uses
the successful build as its measurement to validate generated patches.

37



5.2.1 Suspicious Location Collection

Source code repair tools detect suspicious locations based on test executions. However, our
target bugs lie in build scripts, so we use the following rules to decide suspicious locations
related to L in build scripts.

(1) All property specifications about upgraded library L.

(2) All property specifications about libraries which share the same groupId with L

A dependency specification is composed of many property specifications. In the example
shown in Figure 3.2, a dependency specification includes three property specifications,
which specify the groupId, artifactId, and version number of a library.

5.2.2 Pattern Selection

According to the suspicious locations collected in the previous stage, LibugFix automati-
cally selects an available pattern to generate fixes based on rules as follows. LibugFix uses
pattarns (see Table 5.1) found in RQ6a (Section 5.1).

For a given bug, if we find properties specifications related to L are not synchronized, we
select Pattern 1 to fix it. If these collected properties specifications share the same version,
we select Pattern 3 to fix it. If either one value of the given version change V < v1, v2 >
is null, we select Pattern 2 to fix it.

5.2.3 Patch Evaluation

To fix build scripts for repairing a build failure, we need a new measurement to validate the
generated bug fixes, that is, we use successful compilation as our oracle. The absence of
test case validation may lead to plausible patches, as the repaired program may encounter
test failures.

However, the measurement is a tradeoff between fix effectiveness and efficiency. The
reasons are as follows. Through our empirical study, we find TLU-build bugs are more
likely to appear in large programs, i.e., a programs including multiple submodules. These
large programs always have long development histories and have a large number of test
cases. Running test cases once for them may even needs several days. Another reason is,
for those TLU-build bugs that are detectable dynamically, most of them (6 out of 9) are
runtime failures and no test cases can reveal them. Therefore, using test cases executions
to validate bug fixes for TLU-build bugs is not worth the time and effort.

38



5.3 Fix Results (RQ6b: How effective is LibugFix in

fixing build scripts?)

Table 5.2: Fix results of LibugFix.

Project # Bug # Fixed Pattern 1 Pattern 2 Pattern 3
ACCUMULO 1 0 0 0 0
HADOOP 3 3 0 2 1
HBASE 1 1 1 0 0
HIVE 4 2 0 2 0
ZOOKEEPER 1 1 1 0 0
SOLR 2 2 0 1 1
GitHubProj 2 0 0 0 0
Total 14 9 (64.29%) 2 (14.29% ) 5 (35.71% ) 2 (14.29%)

The fix results of LibugFix answer RQ6b. For the 83 bugs that we collected, the fixes
for 28 of them only involve build script modifications. As our tool conducts repair on .xml,
.properties, and .classpath files, we only focus on bugs whose fixes modify build scripts of
the three types. Also, we only focus a subset of TLU-build bugs that causes compilation
failures. According to this rule, we choose 14 bugs from them. Table 5.2 lists the fix results
of LibugFix.

1 <project xmlns="http: //maven.apache.org/POM /4.0.0" ... >

2 ...

3 <dependencies >

4 ...

5 <dependency >

6 <groupId >com.amazonaws </groupId >

7 <artifactId >DynamoDBLocal </artifactId >

8 -- <version >${aws -java -sdk.version}</version >

9 ++ <version >1.11.86 </ version >

10 </dependency >

11 ...

12 </dependencies >

13 ...

14 </project >

Figure 5.2: Bug fix generated by LibugFix for HADOOP-14283-14589.

LibugFix successfully generates patches for 9 bugs. Specifically, among the 9 bugs, 2
bugs are fixed with pattern 1, 5 bugs are fixed with pattern 2, and 2 bugs are fixed with
pattern 3.
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1 <project xmlns="http: //maven.apache.org/POM /4.0.0" ... >

2 ...

3 <dependencies >

4 ...

5 <dependency >

6 <groupId >com.amazonaws </groupId >

7 <artifactId >DynamoDBLocal </artifactId >

8 -- <version >${aws -java -sdk.version}</version >

9 ++ <version >${ dynamodb.local.version}</version >

10 </dependency >

11 ...

12 ++ <dynamodb.local.version >1.11.86 </ dynamodb.local.version >

13 </dependencies >

14 ...

15 </project >

Figure 5.3: Bug fix generated by clients for HADOOP-14283-14589.

Figure 5.2 gives an example of a patch generated by LibugFix for bug HADOOP-
14283-14589. Clients update their AWS-SDK dependency version from 1.11.86 to 1.11.134.
Before the version 1.11.134, AWS-SDK dependency always has DynamoDBLocal, so clients
have DynamoDBLocal share the same version number with AWS-SDK. However, AWS-
SDK 1.11.134 does not have DynamoDBLocal anymore. When clients upgrade the AWS-
SDK dependency, as DynamoDBLocal is set to share the same version with AWS-SDK,
the version of DynamoDBLocal is also changed by mistake, but Maven cannot find the
com.amazonaws-DynamoDBLocal 1.11.134, which stops the s3guard build.

The fix generated by LibugFix reverts the version of DynamoDBLocal, which is seman-
tically equal to the fix generated by clients.
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Chapter 6

Threats to Validity

6.1 Data Collection

For collecting upgrade reasons, we examine upgrade related commits for 14 popular Java
third-party libraries [51], because we cannot study all the existing third-party libraries
considering the large amount of them. So the upgrade reasons that we summarize from
these upgrade related commits may not reflect all reasons for other library upgrades.

Moreover, since we get 15,513 library upgrade commits that are used to identify library
upgrade reasons, it is prohibitively expensive to examine all of them manually. We use the
keyword search on commit messages, to extract all library upgrade related commits that
possibly specify upgrade reasons. We summarize these keywords by manually inspecting
upgrade related commits for the top 5 of the 14 target libraries. Then we use these
keywords to process commit messages for the remaining 9 libraries and extract useful
information. The keyword-based approach might miss some upgrade reasons of which the
clarifications do not include keywords used by our search. Meanwhile, the summarization
work is conducted by two people including the thesis author and another labmate. Hence
the keywords used in this data collection may be not objective enough.

Furthermore, we find TLU bugs from: (1) 539,194 JIRA issues; (2) 1,098,764 GitHub
commits. To reduce the manual work, we also utilize a keyword-based approach. We may
miss some TLU bugs due to incomplete keywords.
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6.2 Manual Classification

To classify library upgrade reasons, we gather different types of upgrade reasons when
we look through commit messages. This work is done by the thesis author and another
labmate, which may lead to bias. We will use more approaches to collect library upgrade
reasons in the future, e.g., conducting a questionnaire survey, or utilizing natural language
processing techniques to help process commit messages.

6.3 LibugFix

LibugFix aims to repair TLU-build bugs that cause compilation errors by fixing build
scripts. We propose LibugFix based on the patterns we learned from our empirical study.
For the evaluation of LibugFix, we evaluate it on the same data as what we use to sum-
marize the fix patterns because of the insufficiency of collected TLU-build bugs, which
may introduce overfitting problems. LibugFix might not show the same performance on
other different TLU-build bugs. We should collect more TLU-build bugs in the future, and
perform LibugFix on a larger dataset.
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Chapter 7

Conclusions and Future Work

This thesis studies bugs caused by inappropriate Third-party Library Upgrades (TLUs).
Bugs of this type are known little before. We first summarize the motivations for upgrading
a third-party library. We also classify the types of TLU bugs. We find 41.94% of them
are able to be detectable statically (compilation failures), and the rest can be detected
dynamically (test failures (37.10%) and runtime failures (20.97%)). In addition, the efforts
on repairing TLU bugs are investigated. We find that 16.87% of these bugs need fix efforts
across multiple sources, 20.48% of these bugs can be fixed by merely modifying the source
code, and 32.53% of them can be repaired by only fixing build scripts.

As current program repair tools focus on source code repair, we specifically inspect the
fixes of TLU bugs which only modify the source code. We find nearly half of these bugs can
be fixed by four common ways: null checking, deletion, moving the buggy statement, and
replacement. We also evaluate four state-of-art program repair tools to explore whether
they are effective for fixing TLU bugs, and we find that each tool can only cover a small
subset of these bugs.

Furthermore, we propose an approach, LibugFix, to automatically fix build scripts.
Evaluation results show that LibugFix can successfully fix 9 out of 14 bugs.

For future work, we plan to explore the following aspects.

Enlarging search space: Most of the current program repair tools use ingredients from
the programs being repaired to generate patches. However, using the redundancy of the
current program seems insufficient for fixing TLU bugs, because when upgrading a third-
party library, new components are introduced along with the newer version of the library.
So a correct fix may need new ingredients outside the current program. In the future,
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we plan to find new ingredients to enlarge the search space, like new ingredients from
stackoverflow or external projects.

Repairing build scripts: In this thesis, we fix build scripts using three simple patterns,
which can only generate patches a limited number of TLU bugs. We plan to improve our
repair tool by finding more patterns that can cover various kinds of bugs.

Repairing obsolete tests: Our study finds that 22.89% of inappropriate TLUs cause
obsolete test issues. One challenge to repair obsolete tests is that we do not have oracles
for it. Fixing obsolete tests is also an interesting topic in the future.
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