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Abstract

In this thesis we study the interactions of ions and cationic peptides with a nega-

tively charged lipid bilayer in an ionic solution where the electrostatic interactions

are screened.

We first examine the problem of charge renormalization and inversion of a highly

charged bilayer with low dielectric constant. To be specific, we consider an asym-

metrically charged lipid bilayer, in which only one layer is negatively charged. In

particular, we study how dielectric discontinuities and charge correlations among

lipid charges and condensed counterions influence the effective charge of the surface.

When counterions are monovalent, e.g., Na+, our mean-field approach implies that

dielectric discontinuities can enhance counterion condensation. A simple scaling

picture shows how the effects of dielectric discontinuities and surface-charge dis-

tributions are intertwined: Dielectric discontinuities diminish condensation if the

backbone charge is uniformly smeared out while counterions are localized in space;

they can, however, enhance condensation when the backbone charge is discrete.

In the presence of asymmetric salts such as CaCl2, we find that the correlation

effect, treated at the Gaussian level, is more pronounced when the surface has a

lower dielectric constant, inverting the sign of the charge at a smaller value of Ca2+

concentration.

In the last chapter we study binding of cationic peptides onto a lipid-bilayer

membrane. The peptide not only interacts electrostatically with anionic lipids,

rearranging their spatial distributions, but it can also insert hydrophobically into

the membrane, expanding the area of its binding layer (ı.e., the outer layer). We

examine how peptide charges and peptide insertion (thus area expansion) are in-

tertwined. Our results show that, depending on the bilayer’s surface charge density

and peptide hydrophobicity, there is an optimal peptide charge yielding the maxi-

mum peptide penetration. Our results shed light on the physics behind the activity

and selective toxicity of antimicrobial peptides, ı.e., they selectively rupture bacte-

rial membranes while leaving host cells intact.

iii



Acknowledgements

I would like to take this opportunity to acknowledge those who have helped me

complete this thesis. First and foremost, I would like to express my gratitude to my

supervisor, Professor Bae-Yeun Ha – his encouragement, support, and thoughtful

advice have been immensely valuable, both in personal and professional terms. I

am particularly grateful to him for his elegant and interesting research ideas, which

were the best motivations for me to work – I truly enjoyed working with him.

Besides, I am indebted to other members of my defense and advisory committee,

Professors Russell Thompson, Jim Davis and Chris Gray, for their constructive

comments and suggestions that I found useful in improving this work. I am also

grateful to Yang Li, a former member of our group – his constructive cooperation

helped me a lot during the first year of my study here.

I would also like to thank my parents, to whom I would like to dedicate this

thesis: my father who was the first to encouraged me to take the steps into the

world of science during my high school years, and my mother whose patience has

helped me pursue this journey. I would also like to thank my elder brother, Sina,

who first showed me the interesting world of physics, beyond a school curriculum.

His support has been so heartwarming through the years in my high school and

college. I owe to him all the confidence I got to stay in physics as my professional

career.

Finally, I would like to thank Natural Sciences and Engineering Research Coun-

cil of Canada (NSERC) for their financial support.

iv



This thesis is dedicated to my parents,

and my brother for all they did.

v



Contents

1 Introduction 1

1.1 Biological Cells, Cell Membranes and Lipid Bilayers . . . . . . . . . 1

1.2 Antimicrobial Peptides . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Screening of Charged Molecules in Ionic Solutions: Poisson-Boltzmann

and Debye-Hückel theories . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Overview of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Charge Renormalization and Inversion of a Highly Charged Lipid-

Bilayer 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Mean-field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 The Poisson-Boltzmann approach and the matching method 12

2.2.2 Two-state model . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Dielectric discontinuity . . . . . . . . . . . . . . . . . . . . . 15

2.3 charge correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 scaling theory: unscreened cases . . . . . . . . . . . . . . . . 19

2.3.2 Charge correlations and charge inversion . . . . . . . . . . . 23

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vi



3 Binding of Cationic Peptides onto a Negatively Charged Lipid Bi-

layer 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Theoretical Model And Wigner-Seitz Cell Approximation . . . . . . 36

3.3 Binding Isotherm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Redistribution of Lipid Charges Upon Peptide Binding . . . 47

3.4.2 Free energy of a Wigner-Seitz cell . . . . . . . . . . . . . . . 47

3.4.3 Adsorption and penetration . . . . . . . . . . . . . . . . . . 54

3.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 59

vii



List of Figures

1.1 Schematic view of a phospholipid and a lipid bilayer . . . . . . . . . 3

2.1 Schematic view of a negatively-charged lipid bilayer in an ionic solution 11

2.2 Effective planar density obtained from mean-field methods . . . . . 16

2.3 Planar density of condensed counterions obtained from the two-state

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Spatial distribution of counterions near the charged surface of a bi-

lauer in an ionic solution . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Effective planar charge density of the charged surface in the presence

of monovalent and divalent ions . . . . . . . . . . . . . . . . . . . . 28

3.1 Schematic representation of peptides in three different states . . . . 36

3.2 Schematic picture of peptides forming a hexagonal lattice on the

surface (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Schematic picture of adsorption and penetration of peptides (side

view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Local fraction of charged lipids as a function of the radial distance

from peptide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Free energy of a WS cell (excluding the mechanical energy) as a

function of radius of Wigner-Seitz cell radius . . . . . . . . . . . . . 50

3.6 Free energy of an infinitly large WS cell (excluding the mechanical

energy), ∆F(R→∞), as a function of the peptide charge . . . . . 52

viii



3.7 Free energy of an infinitly large WS cell (excluding the mechanical

energy), ∆F(R→∞), as a function of peptide charge . . . . . . . 53

3.8 Peptide to lipid ratio as a function of the free peptide concentration

for highly hydrophobic peptides with low net charge . . . . . . . . . 55

3.9 Peptide to lipid ratio and fraction of penetrated peptides as a func-

tion of the free peptide concentration for highly hydrophobic peptides

with high net charge . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 Peptide to lipid ratio as a function of the free peptide concentration

for peptides with low hydrophobicity . . . . . . . . . . . . . . . . . 58

3.11 Ratio of penetrated peptides to lipids as a function of the free peptide

concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.12 A circular elastic surface, reminiscent of a part of the lipid bilayer

inside a WC cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



Chapter 1

Introduction

1.1 Biological Cells, Cell Membranes and Lipid

Bilayers

Biological cells, sometimes called the building blocks of life, are the structural and

functional units of all living organisms [1]. Some organisms, such as bacteria,

are unicellular, consisting of a single cell. Other organisms, such as humans, are

multicellular. The number of cells in a human body is remarkably large, about three

orders of magnitude more than the number of stars in the Milky Way. However,

regarding their large number, the variety of cells is much smaller: only about 200

distinct types of cells are represented in the collection of about 1014 cells in our

body [2]. According to the cell theory, first developed in 1839 by Schleiden and

Schwann, all organisms are composed of one or more cells; all cells are created

by preexisting cells; all vital functions of an organism occur within cells which

contain the hereditary information necessary for regulating cell functions and for

transmitting information to the next generation of cells [1]. These cells have diverse

capabilities and have remarkably different shapes. Simple cells, like some species

of bacteria, are not much more than inflated bags. Some others, such as nerve

cells, may have branched structures at each end connected by an arm that is more

than a thousand times long as it is wide. The fundamental structural elements

of most cells, however, are essentially the same: fluid membranes encapsulate the
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Chapter 1. Introduction 2

cell and its components, while networks of filaments maintain the cell’s shape and

help organize its contents [2]. Lipid membrane, the interface between a living cell

and the surrounding world, plays a critical role in numerous complex biological

processes. Virus-cell fusion, peptide-bacteria interaction, exocytosis, endocytosis

and ion permeation are a few examples of processes involving membranes [3].

The cell membrane is a complicated supramolecule structure that is mainly com-

posed of phospholipids, forming a bilayer, to which proteins and other biomolecules

are anchored. The phospholipids of a membrane are made of two major compo-

nents: fatty acids and a phosphate group. The phosphates are the head-groups

and fatty acids are the tails of the phosohplipids. Due to the polar nature of the

head-groups they are attracted to the water molecules, showing hydrophilic be-

haviour. Non-polar tails of phospholipids, however, are not attracted to water and

are said to be hydrophobic. In water, phospholipids self-assemble into a bilayer,

where the hydrophobic tails line up against each other and hydrophilic head-groups

are on both sides extending out into the water (Fig. 1.1). This kind of bilayer is

the structural element of the membrane of the living cells. Other than biological

membranes, phospholipids can also form vesicles or closed lipid bilayers extensively

used in experiments. The interior and exterior of the vesicles are water that can

contain different ions as well.

There are different variations of phospholipids including phosphatidyleserine

(PS), phosphatidylglycerol (PG), phosphatidylcholine (PC) and phosphatidylethan-

olamine (PE). The head-group of some of the phospholipids are negatively charged

(like PS). Incorporation of these phospholipids in a lipid bilayer results in a nega-

tive charge density for the membrane. Lipid bilayers of some cell membranes are

charged at both sides, ı.e., symmetrically charged. Some other cells, like red blood

cells, have asymmetrically charged lipid bilayers. In these membranes, the inner

layer of the bilayer is negatively charged while the outer layer is neutral. The

charged layer can interact electrostatically with ions and other charged molecules

near the membrane. These interactions are shown to be important in many biolog-

ical processes such as lysis of bacterial membranes by antimicrobial peptides and

translocation of DNA across a charged membrane [4, 5].

Many of the biomolecules are ionized in solutions. Carrying electric charge,
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Figure 1.1: Schematic view of a phospholipid and a lipid bilayer

they can have electrostatic interaction with each other and other biomolecules.

As mentioned above, these interactions can initiate important biological processes.

This fact prompts us to study the details of the electrostatic interactions between

charged particles in ionic solutions. Due to presence of free ions in the solution,

the electrostatic interactions are screened. In the Sec. 1.3 we present a brief

introduction to the physics of charge screening in ionic solutions.

1.2 Antimicrobial Peptides

Peptides are macromolecules formed by linkage of up to 50 amino acids, from a

total number of 20 standard types of amino acids. Proteins have also the same

primary structures. The difference proteins them and peptides is in the size of the

molecule: proteins have a larger number of amino acids in their structure.

There is a large group of peptides which show antimicrobial activity against
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bacteria, viruses, fungi and cancer cells. Most of these peptides have a net positive

charge. There are more than 500 identified antimicrobial peptides with an average

net charge of 4.54 [6]. Antimicrobial peptides are divided into four major categories:

antibacterial, antiviral, antifungi and anticancer peptides; where the antibacterial

peptides are the largest category among them.

The third chapter of this thesis is devoted to the interactions of antibacterial

peptides with lipid bilayers.

1.3 Screening of Charged Molecules in Ionic So-

lutions: Poisson-Boltzmann and Debye-Hückel

theories

In this section we present a brief introduction to the mean-field theories for the

calculation of potentials in ionic solutions. When a charged molecule is immersed

in an ionic solution, such as NaCl dissolved in water, there would be electrostatic

interaction between the charged molecule with the ions in the solution. As a result

of these interactions, counterions (ions which are oppositely charged to the charged

molecule) are attracted and co-ions are repelled from the charged molecule. Ad-

sorption of counterions onto the surface of the charged molecule is energetically

favorable, however, this process is opposed by entropy. Ions prefer to move freely

in the solution, maximizing the entropy. As the result of the competition between

energy and entropy, the density of counterions would be high near the charged

molecule and decreases at larger distances. In the context of equilibrium statistical

mechanics, we can use the Poisson-Boltzmann equation to find the density profile of

ions in the solution. According to the Boltzmann weight the probability of finding

an ion of the ith kind at position r is exponentially related to the energy of the

ion in that position. If we take only electrostatic energy into account, the energy is

given by Zieψ(r), where Zi is the valence of the ion which includes the sign of the

ion, e is the electronic charge and ψ(r) is the electrostatic potential at r. Since the

density of the ions at r is related to the probability of finding them at r, we can
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write

ni(r) ∝ exp

(−Zieψ(r)

kBT

)
. (1.1)

where ni(r) refers to the density of the ions of the ith kind and kBT is the thermal

energy. On the other hand, from electrostatics, we can relate the charge density to

the divergence of the electric field as

∇. [ε∇ψ(r)] = −4πρ(r) = −4πe
∑

i

Zini(r). (1.2)

Here, ρ(r) is the total charge density at r and
∑

i represents the summation of all

existing ions in the solution. Combination of Eqs. 1.1 and 1.2 gives the well-known

Poisson-Boltzmann (PB) equation:

∇. [ε∇ψ(r)] = −4πe
∑

i

Zini exp

(−Zieψ(r)

kBT

)
. (1.3)

In this equation, ni denotes the number density of the ions of the ith kind in bulk

solution. When the particles in the solution are not highly charged, the electric

potential is low (electric potential at infinity is assumed to be zero). In this case,

the term in the exponential function would be much less than 1 and can be expanded

to first order, yielding a linear differential equation for the potential known as the

Debye-Hückel (DH) equation which in a space with uniform dielectric constant

reads:

∇2ψ(r) =
−4πe

ε

∑
i

Zini

(
1− Zieψ(r)

kBT

)
. (1.4)

In the presence of monovalent and j-valent ions, the DH equation is simplified as

∇2ψ(r) =
4πe2

ε
[2n1 + njZj(Zj − 1)]

ψ(r)

kBT
. (1.5)

Here, n1 and nj are the densities of monovalent and j-valent ions. The particular

combination of the coefficient of ψ(r) in Eq. 1.5 is to reflect the overall electric

neutrality condition (ı.e, the total charge of the system), and defines the Debye

screening length, κ−1, given by κ2 = 4πe2 [2n1 + njZj(Zj − 1)] /εkBT . The electro-

static interactions are exponentially screened at this length scale.

In the case of highly charged particles immersed in the solution, the electrostatic

interaction between the charged particle and the counterions in its close proximity
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is strong; some of these counterions are trapped in the vicinity of the charged

particle and are referred to as condensed counterions. In this case, it is useful to

consider the charged particle and condensed counterions as a single entity whose

charge defines the renormalized or effective charge of the charged particles.

Here we should note that PB and DH theories ignore the local fluctuations of

the charge densities and are thus called mean-field approaches. These density fluc-

tuations can get important in some circumstances. As will be discussed in chapter

2 in detail, the density fluctuation can trigger more counterion condensation, which

can even results in charge inversion under certain situations. Charge inversion is a

phenomenon in which the charge of the condensed counterions exceeds the charge

of the particle, in magnitude, resulting in an opposite sign for the renormalized

charge of the particle with respect to its intrinsic charge. This process has been

observed in the electrophoresis experiment where the direction of the movement of

a charged particle in an electrolyte under applied electric field can be inverted in

some situations. This can be attributed to the charge inversion since the sign of

the renormalized charge determines the direction of the force on the particle. In

chapter 2 we will discuss charge inversion and charge renormalization of the lipid

bilayer where charge density fluctuations are incorporated in our calculations.

It is worthwhile to note that the thickness of a lipid bilayer is approximately

40Å. The dielectric constant of the phospholipid tails, the major part of the bilayer,

is 2 (in Gaussian units) which is much smaller than that of the surrounding water

(≈ 80). In this thesis, we show that the dielectric discontinuities in the water

and lipid bilayer systems play an important role in controlling the electrostatic

interactions of the bilayer with ions and charged molecules around the bilayer. The

effects of these discontinuities can be explained using an image charge method.

In electrical systems, effects of dielectric discontinuities can be accounted for

image charges. According to this method, the effects of dielectric discontinuities are

mimicked by image charges. The main advantage is that the dielectric constant of

the resulting system (including the image charges) becomes uniform. In case of one

single flat dielectric discontinuity (two semi-infinite plate with different dielectric

constants attached to each other), the image charge of one particle is on the other

side and the same distance from the interface. The sign and magnitude of this image
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charge is, however, dependent on the dielectric constants of the dielectric media. If

the charged particle is exactly on the interface between two plates, the image charge

would be at the same position as the charged particles. In case of more dielectric

discontinuities, like a dielectric plate in a solution where two parallel dielectric

discontinuities emerge in the system, the image charges would be complicated. In

this case electric fields are reflected over and over again so that there would be

infinite number of image charges. Free ions, like salt ions, in the solution can make

this picture even more complicated since the image charge of each ion should be

taken into account. In chapter 2 and 3 of this thesis, in order to solve for the electric

potentials in the system we take dielectric discontinuities explicitly into account,

ı.e, we do not use image charge method. To explain special features of our results,

however, our description relies on the image charge approach.

1.4 Overview of this thesis

In this thesis we study the interactions of a charged lipid bilayer with ions and

cationic peptides. The thesis has two main parts: chapter 2 is focused on the charge

renormalization of a highly charged lipid bilayer immeresed in an ionic solution;

chapter 3 is concerned with the binding of peptides on the lipid bilayer where they

can be adsorbed on the surface or penetrated inside the bilayer.

In chapter 2, we reexamine the problem of charge renormalization and inversion

of a highly charged surface of a low dielectric constant immersed in ionic solutions.

To be specific, we consider an asymmetrically charged lipid bilayer, in which only

one layer is negatively charged. In particular, we study how dielectric discontinuities

and charge correlations among lipid charges and condensed counterions influence

the effective charge of the surface. When counterions are monovalent, e.g., Na+,

our mean-field approach implies that dielectric discontinuities can enhance coun-

terion condensation. A simple scaling picture shows how the effects of dielectric

discontinuities and surface-charge distributions are intertwined: Dielectric discon-

tinuities diminish condensation if the backbone charge is uniformly smeared out

while counterions are localized in space; they can, however, enhance condensation

when the backbone charge is discrete. In the presence of asymmetric salts such as
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CaCl2, we find that the correlation effect, treated at the Gaussian level, is more

pronounced when the surface has a lower dielectric constant, inverting the sign of

the charge at a smaller value of Ca2+ concentration.

In chapter 3, we study the adsorption and penetration of antimicrobial peptides

onto the surface of a fluid bilayer, composed of neutral and charged phospholipids,

in an ionic solution. Using a three state model, in which peptides can be in one of

the states of free in bulk, adsorbed on the bilayer’s surface or penetrated inside the

bilayer, we find the density of peptides in each state by balancing their chemical

potentials. To find the free energy and chemical potentials, the non-linear Poisson-

Boltzmann equation is solved self-consistently with the boundary conditions on the

surface of the bilayer. These boundary conditions are determined from the local

fraction of charged lipids (to all lipids) which reflects the mobility of the lipids. We

find that depending on the bilayer’s average charge density and hydrophobicity of

the peptides there is an optimal peptide charge which yields the maximum binding

affinity. We also observe a transition in the surface adsorbed and penetrated pep-

tide populations at certain values of free peptide concentration depending on the

hydrophobicity of the peptides and average surface charge density of the bilayer.



Chapter 2

Charge Renormalization and

Inversion of a Highly Charged

Lipid-Bilayer

2.1 Introduction

Macromolecules such as DNA and biomembranes carry a large number of charges

in aqueous solution interacting with other ions. They can thus trap oppositely

charged ions (counterions) in their close proximity under a variety of conditions;

some of them are irreversibly adsorbed onto the surface forming the so called stern

layer, but others are less tightly bound to the surface, forming a diffusive layer of

excess counterions [7, 8]. While permanently adsorbed ions in the Stern layer can

be considered as part of surface charges, the diffusive layer is a dynamic structure,

constantly exchanging ions with those in bulk. Nevertheless, it has proven to be

useful to consider the macroion and its diffusive layer as forming a single object,

which is often referred to as a “dressed ion” [9, 10]. It has long been recognized

that counterions in the diffusive layer play an important role in regulating the

charge properties of macroions as in the electrostatic binding and transport of

macroions [11–13]. It is thus of practical importance to study how their physical

properties can be controlled by experimentally accessible parameters such as ionic

9
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strength, ion valences, and dielectric properties.

In this chapter, we study the (reversible) electric binding of counterions onto

an oppositely charged surface in aqueous solution. To be specific, we consider a

negatively-charged lipid bilayer of thickness d and a dielectric constant ε< , immersed

in electrolyte solutions of a dielectric constant ε>, as illustrated in Fig. 2.1. (The

subscripts > and < are to remind that ε> is typically larger than ε<.) The bilayer

is assumed to be asymmetrically charged: one of the layers is negatively charged

with a charge density −eσ0 and the other one is neutral (as in red blood cell

membranes [14]). In addition to monovalent salts (e.g., NaCl), there can be Z : 1

salts (e.g., CaCl2). The charged surface (at x = 0) can attract counterions (e.g.,

Na+ or Ca2+) and trap them in close proximity. This phenomenon, often referred to

as counterion condensation, results in a renormalization of the surface charge [7,8].

Under certain conditions, the sign of the renormalized charge can be inverted; this

phenomenon is known as “charge inversion” [15–17].

In particular, we study how dielectric discontinuities influence the electric bind-

ing of counterions or simply counterion condensation (thus charge inversion). Our

main focus will be laid on the computation of renormalized charges rather than

on the detailed structure of the diffusive layer. We first tackle this problem at the

meanfield level. To this end, we use two seemingly-distinct methods: a two-state

model [7,8] and a matching method [18]. In the latter case, the Poisson-Boltzmann

(PB) equation is matched, at large distances, with the corresponding Debye-Hückel

(DH) equation (or the linearized PB equation) with a renormalized charge [18].

Both approaches, in good agreement with each other, suggest that the dielectric

discontinuities enhance counterion condensation for 0 < d < ∞; as d → ∞, how-

ever, the effect of dielectric discontinuities becomes irrelevant at the meanfield level

as is also expected from Gauss’s law (see the relevant discussion in Sec. 2.2).

Using a simple physical picture, we also examine the effect on counterion con-

densation of charge correlations and backbone-charge distributions. Interestingly,

we find that the planar distribution of backbones charges can play an important

role: The effect of dielectric discontinuities or image charges depends on how back-

bone charges are treated (see Sec. 2.2.1 for details). When the backbone charge is

assumed to be smeared out uniformly, then the image charge weakens the attrac-
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Figure 2.1: Schematic view of a negatively-charged lipid bilayer of thickness d

immersed in an ionic solution. The dielectric constant of the bilayer ε< is typically

smaller than that of the solution ε> . The bilayer is assumed to be asymmetrically

charged: the left side of the plate at x = −d is neutral while the other side at x = 0

is negatively charged with a charge density −eσ0. The resulting system resembles

an asymmetrically-charged cell membrane (e.g., red blood cell membranes).
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tion of counterions to the surface. When both backbone charges and counterions

are treated on an equal footing, the image charge can enhance condensation.

Finally, we examine the effect of charge correlations by treating both condensed

counterions and backbone charges on equal footing. To this end, we incorporate

correlations at the Gaussian level within the two state model. In the presence of

CaCl2 (or Z : 1 salts, Z > 1), the (renormalized) charge of a highly charged surface

is inverted (when correlations are included), consistent with previous results [15–

17]. Interestingly, we find that the correlation effect is more pronounced when the

dielectric constant of the surface is lower than in the solution, ı.e., ε> > ε<, as

is often the case. As a result, charge inversion can take place in wider parameter

spaces – in this case, the onset of charge inversion takes place at a lower Ca2+

concentration than expected from the case ε> = ε<.

Sections of this chapter are organized as follows: Sec. 2.2 describes charge renor-

malization at the meanfield level; to this end, a few different versions of meanfield

theory are adopted and compared. Sec. 2.3 is devoted to examining the effect

of charge correlations on charge renormalization; a particular emphasis is on the

interplay between charge correlations and dielectric discontinuities.

2.2 Mean-field theory

2.2.1 The Poisson-Boltzmann approach and the matching

method

At the meanfield level, the spatial distribution of counterions is described by the

PB (Poisson-Boltzmann) equation. The PB equation relates the electric potential

ψ(r) to the total charge density ρ(r), where r is the position vector. If ni(r) is the

number density of ions of the ith kind and valence Zi, it follows

ni(r) = ni exp

[
−Zieψ(r)

kBT

]
, (2.1)

where e is the electronic charge, kB the Boltzmann constant, T the temperature,

and finally ni is the bulk concentration of each species. Below we use ni and
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[ith species] interchangeably, where [ith species] is the bulk concentration of the ith

species: [Na+] is, for example, the bulk concentration of Na+. Obviously the total

charge density is given by ρ(r) = e
∑

i Zini(r). The PB equation then reads [19]

∇ · [ε(r)∇ψ] = −4πρ(r) = −4πe
∑

i

Zini exp

[
−Zieψ(r)

kBT

]
. (2.2)

Note that this equation is written in Gaussian units (we adopt Gaussian units

throughout this thesis). Dielectric discontinuities can be taken into account through

a spatially varying dielectric constant ε(r).

Without loss of generality, the surface is assumed to be aligned perpendicular to

the x axis (Cf. Fig. 2.1). At the meanfield level where the local fluctuation of the

ions are ignored, the system is essentially one dimensional due to the translational

symmetry in y and z directions. In other words, ψ(r) and ρ(r) are functions of x

only: ψ = ψ(x) and ρ = ρ(x).

In the matching method, we find a renormalized or an effective charge by match-

ing solutions of the DH (Debye-Hückel) equation, with a renormalized charge, and

those of PB equations at large distances from the surface. In other words, the PB

approach maps onto the corresponding DH approach with the bare charge replaced

by an effective charge. A simple result for the effective charge density −eσ∗ can be

obtained for sufficiently large σ0 in the limit d→∞, ı.e., a semi-infinite plate (oc-

cupying the space x < 0) in contact with 1 : 1 electrolytes, ı.e., NaCl: It was shown

that σ∗ = κ
π`B

, independent of σ0 [20]. Here and in what follows, `B = e2/ε>kBT

is the Bjerrum length, a length scale at which the electrostatic interaction between

two charges becomes comparable to the thermal energy kBT (≈ 7.1Å at room tem-

perature in water) and ε> is the dielectric constant of the solvent (ı.e., water); the

Debye length κ−1 is related to ion concentrations through κ2 = 4π`B([Na+]+[Cl−]).

Finally, the dielectric constant of water at room temperature is known to be 80.

The electrostatic interaction is thus significantly lower in water than in a vacuum.

2.2.2 Two-state model

In a more analytical treatment, we use a two-state model, in which ions are classified

as either “free” or “condensed” (ı.e.,, those trapped near the surface). If Zieσi is the
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planar charge density of condensed counterions of the ith type, the effective charge

density of the surface is then −eσ∗ = −e(σ0 − σ1 − Zσ2), where the subscripts

1 and 2 refer to monovalent and Z-valent counterions, respectively. Even though

we consider only monovalent ions in this section (ı.e., σ2 = 0), we include Z-

valent counterions for later convenience (Cf. Sec. 2.3). The amount of condensed

counterions can be obtained by balancing chemical potentials of condensed and

free counterions. The chemical potential of free ions is mainly associated with the

configurational entropy of mixing: µfree
i ' kBT ln(niv0), where v0 is the volume

of counterions assumed to be the same for all counterions. The chemical potential

of condensed counterions arises from electrostatic interactions and the entropic

penalty for condensation. If Felec is the electrostatic free energy of the charged

surface per area, then the electrostatic chemical potential of condensed counterions

of the ith kind is µcond
i = ∂Felec/∂σi.

The electrostatic free energy of a surface of a planar density −eσ∗ is simply
1
2

∫
(−eσ∗)ψ0dS, where ψ0 is the electrostatic potential evaluated at the surface and

dS is a surface element. At the DH level (with a renormalized surface charge σ∗),

the electrostatic free energy per unit area is simplified as Felec = 1
2
(−eσ∗)ψ0, since

the charge distribution is assumed to be uniform over the surface. We calculate ψ0

by solving DH equation which is described in details in Appendix A (Cf. Eq. (A4)).

We find that for κ−1 À `c [21]

Felec =
1

2
(−eσ∗)ψ0

= kBT × 2πσ∗2 κ−1`B
(ε< + ε>κ d)

(2ε< + ε>κd)
, (2.3)

where ε< and ε> are dielectric constants of the bilayer and the solvent, respectively,

and κ−1 is the Debye screening length given by κ2 = 4π`B[2n1 + Zn2(Z + 1)] with

n1 and n2 the bulk concentration of monovalent and Z-valent ions, respectively.

We thus have

µi
cond

kBT
= −4πZiσ

∗κ−1`B
(ε< + ε>κd)

(2ε< + ε>κd)
+ ln

(
σiv0

`ic

)
, (2.4)

where `ic is the thickness of the condensed layer. The second term in Eq. (2.4)

corresponds to the entropic penalty for confining counterions in a layer of thickness

`ic.
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Despite its simplicity, the two state model suffers a drawback: there can be

ambiguity in choosing the thickness of condensed layers `c (the superscript i was

dropped). In the past, ion sizes were often chosen as `c [7, 8]. While this sounds

reasonable, it is not clear whether this choice will lead to σ∗ consistent with the

matching method. For a semi-infinite plate (d → ∞) in a 1 : 1 electrolyte, the

two approaches can easily be reconciled by mapping the two state model onto the

matching method. In other words, we equate σ∗ = κ
π`B

with σ∗ obtained from the

two state model. By noting that σ1 ≈ σ0 for large σ0 (this is also the condition

under which σ∗ ≈ κ
π`B

), we find

`c ≈
(
κ−2

λ

)(
4

exp(4)

)
, (2.5)

where 1/λ = 2π`Bσ0. Note that this is valid only when κ−1 À `c; see the relevant

discussion in endnote [21]. This result indicates that `c increases quadratically with

κ−1. As a result, `c can be much larger than the Gouy-Chapmann length λ. For

finite d, dielectric discontinuities will be reflected in `c. On the other hand, this will

not sensitively influence σ∗, since σ∗ varies logarithmically with `c. In this case,

Eq. (2.5) is expected to be a good approximation for a wide range of parameters

(also see Fig. 2.2). The two-state model and the matching method can thus be used

interchangeably. For typical values of parameters (λ ∼ 10Å, κ−1 ∼ 10−100Å), `c

is smaller than typical ion sizes a0 ∼ 5Å. It is thus natural to choose `c ∼ a0 (Cf.

Figs. 2.3 & 2.5).

2.2.3 Dielectric discontinuity

To test `c in Eq. (2.5) in the presence of dielectric discontinuities, we have calculated

σ∗ of the charged surface (at x = 0) using the two state model, with `c determined

by Eq. (2.5), and the matching method. We have plotted σ∗ as a function of σ0

for a few different choices of κ (see Fig. 2.2). We have chosen d = 4nm, ε> = 80,

ε< = 2, and T = 300K. In the figure, two state model and the matching method are

described by the dotted and the solid lines, respectively. The agreement between

the two approaches is excellent. This justifies our expression for `c in Eq. (2.5)
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Figure 2.2: Effective planar density σ∗ obtained from the two state model (the

dashed line) and the matching method (the solid line). We have chosen d = 4nm,

ε> = 80, ε< = 2, and T = 300K; in two-state model calculations, `c has been

determined by Eq. 2.5, which was originally obtained for the limit d→∞ (or κd→
∞). The two approaches are in good agreement with each other, implying that `c

in Eq. (2.5) is valid for a wide range of κd (even when dielectric discontinuities are

allowed.)
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for a wide range of ε< (thus d as well), even though it was originally obtained for

d→∞.

For an asymmetrically-charged bilayer of finite thickness d, it is useful to ex-

amine counterion distributions on both sides of the bilayer. For simplicity we limit

ourselves to monovalent cases, ı.e., a bilayer immersed in an NaCl solution. We

have used the two-state model to calculate the planar density of condensed counte-

rions σ1; the effective planar densities at x = 0 and x = −d are σ∗ = σ0−σ1(x = 0)

and σ∗ = σ1(x = −d), respectively. The chemical potentials of counterions at the

surfaces at x = 0 and x = −d are presented in Appendix A. Using these we have

calculated σ1(x = 0) and σ1(x = −d) (see Fig. 2.3) for a few different values of

ε< ; the top three curves are for the charged surface at x = 0, while the bottom

three curves are for the neutral surface at x = −d. On the other hand, we have

chosen σ0 = 0.2nm−2, ε> = 80, T = 300K, and [Na+] = 15mM (corresponding

to κ−1 = 2.5nm). Finally `c ≈ 4Å in the limit d → ∞. Since ε>κd À ε< for

the parameters used, `c ≈ 4Å is a good approximation for d = 4nm. We have

thus chosen `c = a0 = 5Å (`c cannot be smaller than the ion size a0 ≈ 5Å). As

shown in the figure, σ1 tends to get saturated for large d in an ε<-dependent way;

smaller d is required for smaller ε< in a κ-dependent way. (The κ dependence of

saturation is not shown in the figure but can be inferred from Eq. (2.4). What

matters is this combination: κd.) Also note that σ1(x = −d) tends to a finite

value, σ∞1 = limd→∞ σ1 ≈ 0.005nm−2, as d increases. This is a bit puzzling, since

the attraction of counterions to the surface at x = −d is minimal for ε>κd/ε< À 1,

implying that σ∞1 ' 0. As it turns out, σ∞1 (> 0) reflects [Na+], ı.e., the bulk Na+

concentration: σ∞1 /`c = [Na+]. In other words, the Na+ concentration is uniform

in the region x < −d, meaning that there is no condensation. For typical values

of d (' 4nm) and ε< (' 2), counterion condensation mainly takes place on the

charge surface: σ1(d = 4nm) ≈ σ∞1 . In what follows, we ignore condensation on

the neutral surface.

Our results in Fig. 2.3 indicate that dielectric discontinuities can enhance coun-

terion condensation for 0 < d < ∞. In the limit d → ∞, however, the dielectric

properties of the plate are not felt by counterions. This is not surprising: Our two

state model in this section suppresses charge fluctuations. In this case, Gauss’s law
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Figure 2.3: Planar density of condensed counterions obtained from the two-state

model at the charged and neutral surface. We have chosen σ0 = 0.2nm−2, ε> = 80,

T = 300K, `c = 5Å, and [Na+] = 15mM (thus [Cl−] = 15mM). The top (bottom)

three curves correspond to the charged (neutral) surface at x = 0 (x = −d). Note

that σ1 becomes d independent for κdε>/ε< À 1 (shown clearly in the figure only

for ε< = 2) – in this case, condensation on the neutral surface is minimal and can

be ignored (see the text for details).
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indicates that the electric field cannot penetrate the plate. In other words, the elec-

tric field vanishes for x < 0 independently of ε<, as also implied by Eq. (A4) in the

limit d→∞. This accounts for the ε< independence of σ1 in the limit d→∞. Not

surprisingly, the effect of the dielectric discontinuity becomes minimal as d→ 0.

To augment our finding of ε<-dependent σ1, we have solved the PB equation (Cf.

Eqs. 2.1 and 2.2) for a few different choices of ε< and plotted our results for n+(x)

(= [Na+](x), ı.e., Na+ concentration at x) in Fig. 2.4. To this end, we have used

essentially the same boundary conditions adopted in Appendix A (see Eqs. (A3.1)-

(A3.3)), except that Eq. (A3.3) has been approximated by ψ(x) = 0 at x = 25κ−1.

We have chosen d = 40Å, ε> = 80, T = 300K, and [Na+] = 1mM. As shown in the

figure, n+(x) near the surface is larger for ε< = 2 than for ε< = 80. Our results

suggest that counterion condensation can be more pronounced for smaller values of

ε< (as long as d is not too small or too large), in accord with the results in Fig. 2.3

– note that this happens when ε< < ε> , as is the case for a lipid bilayer immersed

in water.

Our meanfield results in Figs. 2.3 & 2.4 suppress charge correlations and are

expected to work well for low charge densities or at high temperatures. In the next

section, we study how charge correlations can influence counterion condensation.

2.3 charge correlations

2.3.1 scaling theory: unscreened cases

The meanfield approach in the last section indicates that the effect of dielectric

discontinuities becomes irrelevant in the limit d→∞. This appears to be distinct

from those discussed in Refs. [15,16,22,23], which seem to indicate that counterion

condensation is diminished by image charges in this limit. It is tempting to at-

tribute the seeming discrepancy to charge correlations which are suppressed in our

meanfield calculations. In this subsection, we use simple arguments to discuss the

potential effect on counterion condensation of charge correlations and backbone-

charge distributions.
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Figure 2.4: Spatial distribution of counterions near the charged surface in an ionic

solution for different choices of ε< , obtained from the Poission-Boltzmann equation.

We have chosen ε> = 80, σ0 = 0.2nm−2, d = 4nm, T = 300K, and [Na+] = 1mM.

These results indicate that the dielectric discontinuities at x = 0 and x = −d
enhance counterion condensation at the charged surface (x = 0). In the limit

d → ∞ or d → 0, however, the effect of the dielectric discontinuity becomes

minimal (see the inset).
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Following Refs. [16,24], in the limits κ→ 0 and d→∞, the electrostatic energy

of a single (monovalent) counterion at r = (x, y, z) due to surface charges at Rα

and its image charge is given by

u(r)

kBT
= −`B(1 + ∆)

∑
α

1

|r−Rα| +
`B∆

4x
, (2.6)

where ∆ = (ε> − ε<)/(ε> + ε<). In the continuum limit (ı.e., backbone charges are

smeared out), u(r) becomes

u(x)

kBT
= 2π(1 + ∆)`Bσ0x+

`B∆

4x
. (2.7)

Not surprisingly, u(x) has a minimum at a finite value of x = xmin:

xmin =

√
∆

8π(1 + ∆)σ0

. (2.8)

The minimum electrostatic energy is then given by

umin

kBT
= `B

√
∆(1 + ∆)σ0. (2.9)

Clearly, umin increases as ∆ increases, implying that counterion condensation is

diminished by the dielectric jump at the interface x = 0. This contradicts the PB

approach which implies that a single dielectric discontinuity does not affect spatial

distributions of counterions for d→∞.

The reasoning leading to Eq. (2.9) is that the backbone charge is smeared out

uniformly while the counterion is localized in space. To see the potential effect of

backbone-charge distributions more clearly, let’s consider only one backbone charge

at the origin interacting with a counterion on the x axis. Eq. (2.6) then reduces to

u1(x) = −`B(1 + ∆)
1

x
+
`B∆

4x
= −`B

(
1 +

3∆

4

)
1

x
. (2.10)

Interestingly, this is more attractive for larger ∆ in contrast to what we would

expect from Eq. (2.9) obtained in the continuum limit.

Neither Eq. (2.7) nor Eq. (2.10) does not necessarily represent our system accu-

rately. First, both backbone charges and counterions are mobile (with the former
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confined to a surface) and can contribute to correlations. They thus have to be

treated on equal footing. Furthermore, these equations are based on a one-particle

picture, a single counterion interacting with a surface in the former and a counte-

rion interacting with a backbone charge in the latter. “Many-body effects” (e.g.,

counterion-counterion interactions) can complicate the picture.

Another extreme case that goes beyond the one-particle description amounts to

picturing backbone charges and counterions as forming a two dimensional ordered

(crystalline) structure on a square lattice of a lattice constant a at the water-plate

interface. An anion is then surrounded by four nearest-neighbor cations and a

cation by four nearest-neighbor anions. Clearly the energy of the resulting system

(per ion) is proportional to `B(1 + ∆)

umin

kBT
= −`B

a
(1 + ∆)

(
−4 +

4√
2

+
4

2
− 8√

5
+ ...

)

≈ −`B
a

(1 + ∆)× 1.14. (2.11)

This is more negative for larger ∆. In this simple picture, counterions are more

strongly attracted to the surface when ε< < ε> , implying that condensation is

enhanced by the dielectric jump at the interface.

This calculation is complimentary to our meanfield approach. If the former is

relevant for high electrostatic couplings, the latter is suitable for low couplings. A

simpler version of the PB approach is a capacitor model in which the double layer

is approximated by a parallel capacitor: a negatively charged plate at x = 0 and

a positively charged layer at x = δ. In the limit d → ∞, the image charge of the

former (per area) located at x = 0 is −e∆σ0, which adds to the backbone charge

−eσ0, while the image charge of the latter (per area) located at x = −δ is e∆σ0.

The total electric field felt by the counterion layer at x = −δ is

Ex =
4πe

ε>

[∆σ0 − (1 + ∆)σ0] = −4πe

ε>

σ0. (2.12)

This is independent of ∆ and accounts for our earlier finding that counterion con-

densation is not influenced by image charges in the limit d→∞. Clearly, we need

to include correlations to see the effect of image charges on counterion condensation

in that limit.
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Our simple arguments presented in the last few paragraphs suggest that the

effect of dielectric discontinuities on counterion condensation depends on how we

treat backbone charges and counterions. This is indeed consistent with a recent

paper by Moreira and Netz [24], which shows how surface-charge modulation is

intertwined with dielectric discontinuities (also see Netz [25]). The effect of image-

charge repulsions is strongest when the surface charges are assumed to be uniformly

smeared out, as also implied by Eq. (2.7). As a result, the spatial distribution of

counterions has a peak at a finite separation from the surface (reminiscent of xmin

in our Eq. (2.7)). As the surface charge distribution becomes more heterogeneous

for a given total surface charge, however, the peak moves towards the surface: xmin

is diminished (see their Fig. 4b for details) as also implied by our simple scaling

analysis. When coupled to correlations, the dielectric jump at the water-bilayer

interface can enhance counterion condensation (even in the limit d→∞).

For a weakly to a moderately highly charged surface, surface charges (both back-

bone charges and condensed counterions) can be driven by thermal fluctuations,

which diminish their lateral ordering. In that case, it is reasonable to consider

them as forming a two dimensional ionic fluid, as compared to a two-dimensional

crystal. In the next section, we develop two-dimensional DH theory of such an ionic

fluid to account for correlations. The resulting approach is distinct from existing

approaches [15, 16, 22, 23] in that we treat both backbone charges and counterions

on equal footing and consider them as fluctuating objects.

2.3.2 Charge correlations and charge inversion

The previous subsection illustrates the interplay between charge correlations and

dielectric discontinuities in determining umin, the minimum electrostatic energy

of a counterion near and at an oppositely charged surface. Here, we study how

charge correlations can influence counterion condensation. A number of theoreti-

cal approaches suggest that charge correlations between condensed counterions (of

high valency) can trigger extra condensation, leading to “charge inversion” of a

highly-charged surface [15–17]. In these approaches [15–17], condensed counteri-

ons are considered as forming a strongly correlated liquid on the background of
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uniformly-distributed backbone charges. As evidenced in Subsec. III.A, backbone-

charge distributions can have a nontrivial effect on counterion condensation. In

our approach, we treat both backbone charges and condensed counterions on equal

footing as fluctuating objects on a plane. To this end, we incorporate in-plane

charge correlations at the Gaussian level.

In order to set up an effective interaction φ(r⊥, r′⊥) between two charges e’s

on the surface at x = 0 (see Fig. 2.1), we first need to integrate out degrees of

freedom associated with free ions. This can be readily done at the DH level: In

the limit d → 0 (the effect of dielectric discontinuities is irrelevant), this amounts

to using a screened electrostatic interaction of the form: φ(r⊥, r′⊥) = e2

ε>

e−κ|r⊥−r′⊥|
|r⊥−r′⊥| .

Obviously, this is the solution of (∇2 − κ2)φ = −(4πe2/ε>)δ(r⊥ − r′⊥). However,

the presence of dielectric discontinuities (coupled with finite thickness) can easily

complicate φ(r⊥, r′⊥). The dielectric discontinuity can be incorporated through a

spatially-varying dielectric constant ε(r):

[∇ · ε(r)∇− ε(r)κ2(r)
]
φ(r, r′) = −4πe2δ(r− r′) (2.13)

Note that the spatially varying screening length κ−1(r) = κ−1(x) is to reflect the

absence of ions inside the plate (see also Appendix B).

At the DH level, the explicit form of φ(r⊥, r′⊥) can be found without further

approximations. By symmetry consideration, we have φ(r⊥, r′⊥) = φ(r⊥ − r′⊥) –

without loss of generality, we can set r′⊥ = 0. In Appendix B, we have solved this

equation for our system depicted in Fig. 2.1 with appropriate boundary conditions

(see the appendix for details). The result is

φ(r⊥) =

∫
d2q

(2π)2
eiq.r⊥φ(q), (2.14)

where φ(q) is the Fourier transform given by

βφ(q) =
4π`B√

κ2 + q2 + ηq

[
1 + ξ (ξ − 1)

exp(−2qd)

1− ξ2 exp(−2qd)

]
, (2.15)

with β = 1/kBT , η = ε</ε> and ξ defined as

ξ =
ε>

√
κ2 + q2 − ε<q

ε>
√
κ2 + q2 + ε<q

. (2.16)
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Note that similar issues have been addressed in the literature. For example,

φ(r⊥) in the limit κ → 0 was first obtained in Ref. [26]. More recently, Netz

considered electrolytes confined to a system of a slab sandwiched between two semi-

infinite half spaces, whose dielectric constants can be different from each other [27].

At the Debye-Hückel level, he derived an effective Coulomb interaction between two

charges (see vDH(r, r′) in Eqs. (A.7)-(A.9) of Ref. [27]). One of the main differences

between φ and vDH is that the latter works for charges that are not on an interface

with a dielectric jump, while the former was constructed exclusively for charges on

such an interface.

At the Gaussian level, the free energy arising from in-plane charge fluctuations

on the surface can be readily taken into account. If δσ(r⊥) is the planar charge

fluctuation (per e) at r⊥ = (y, z) (normal to the x axis), the Hamiltonian describing

fluctuations can be written as [28]

βHcorr =
1

2

∫
dr⊥dr′⊥

[
δ (r⊥ − r′⊥)

χ
+ βφ(r⊥ − r′⊥)

]
δσ(r⊥)δσ(r′⊥), (2.17)

where χ = σ0 + σ1 + Z2σ2 (and β = 1/kBT ). The first term corresponds to

the entropic penalty for charge-density fluctuations. While all surface charges are

taken into account explicitly through σ(r⊥), free ions are considered as screening

the interaction between surface charges and are taken into account through φ.

In the Fourier space q, conjugate to r⊥, the Hamiltonian (per unit area) is

simplified:

βHcorr =
1

2

∫
d2q

(2π)2

[
χ−1 + βφ(q)

] |δσ(q)|2. (2.18)

By carrying out the Gaussian integrals with respect to δσ(q), we find the correlation

contribution to the free energy Fcorr (after subtracting an appropriate “self-energy”

term):

βFcorr =
1

2

∫
d2q

(2π)2

{
ln

[
1 + χβφ(q)

]
− χβφ(q)

}
. (2.19)

In endnote [29], we derive this result using the Debye-charging process. Note that

the correlation free energy in Eq. (2.19) was constructed so that it vanishes as

χ → 0 as it should. In practical calculations of Fcorr, we cut off high q values by
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imposing an upper limit for the integral, which will be chosen to be 2π. On the

other hand, the lower limit will be chosen to be 0.

The charge-correlation contribution to the chemical potential of condensed coun-

terions is simply

µcorr
i =

∂Fcorr

∂σi

. (2.20)

The total chemical potential of condensed counterions is then given as the sum of

this and the one in Eq. (2.4).

We have calculated the amount of condensed counterions. In Fig. 2.5, we have

plotted the effective charge density −eσ∗ as a function of [Ca2+], the bulk Ca2+

concentration in mM, for various choices of ε< . We have chosen ε> = 80, T = 300K,

and σ0 = 0.2nm−2; we have also assumed that the system contains 100mM of

monovalent ions (or [Na+] = 50mM). According to Eq. (2.5), `c ≈ 1.2Å in the

absence of CaCl2. While it is possible to generalize Eq. (2.5) to include Z : 1

salts, we rather invoke simplification based on the following physics ground: Unless

[Ca2+] is too small, Ca2+ can be preferentially condensed onto the surface (see [30]

for details). It is thus reasonable to assume that condensed counterions are mostly

Ca2+. In this case, we expect `c to be twice the corresponding value for Na+ – here

we assume that κ is mainly determined by Na+. (Recall `c ∝ λ−1 and note that

λ−1 for Z = 2 is twice that for Z = 1.) The resulting `c is smaller than typical

ionic sizes (∼ 5Å). We have thus chosen `c = 5Å. A number of interesting features

emerge from the results in the figure:

First, they show that charge inversion occurs beyond a certain value of [Ca2+] or

the onset concentration of Ca2+. This finding is consistent with existing results [15–

17]. The effect of charge correlations on condensation is more pronounced when the

surface has lower dielectric constant, as is the case for lipid bilayers in water. As a

result, charge inversion occurs for a wider range of [Ca2+] for smaller values of ε<.

Interestingly, the onset concentration (of Ca2+) is highly sensitive to ε< : When the

dielectric discontinuity is suppressed (ε< = ε>) [31], the onset of charge inversion

takes place at [Ca2+] ≈ 7mM. For ε< = 2, the onset concentration is ∼ 0.1mM,

about two orders of magnitude smaller than in the case of ε< = ε>.

A related point of interest is that the effect of dielectric discontinuities on con-
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densation is more pronounced for large values of [Ca2+]. This implies that dielectric

discontinuities are more efficiently felt when charge correlations are included. In-

deed our meanfield (MF) results, obtained with the two state model or the matching

method introduced in Sec. 2.2, are much less sensitive to ε<. Additionally, for large

values of [Ca2+], the corresponding meanfield (MF) results deviate appreciably from

our correlation calculations. This indicates that meanfield approaches can easily

break down in the presence of multivalent counterions.

2.4 Conclusions

To summarize, we have studied how the dielectric properties of a charged surface in-

fluence counterion condensation onto the surface. The Poisson-Boltzmann approach

and the two-state model indicate that dielectric discontinuities enhance counterion

condensation (when the surface has a low dielectric constant, as is the case for a

lipid bilayer or other biomolecules in water). This finding appears to contradict

earlier results [15, 16, 22, 23] that counterions are pushed away from the surface by

image charges. Using simple scaling arguments, we have shown how the effect of

image charges is intertwined with backbone-charge distributions. When the back-

bone charge is assumed to be uniformly smeared out while counterions are localized

in space, the image charge tends to diminish counterion condensation [15,16,22,23].

When the backbone charge and counterions are treated on equal footing, however,

image charges rather enhance counterion condensation. Finally, we have also stud-

ied charge inversion of a highly charged surface in a mixture of NaCl and CaCl2

electrolytes. To this end, we have incorporated in-plane charge correlations at the

Gaussian level into the two-state model. At a certain value of Ca2+ concentration,

the sign of the surface charge is inverted, consistent with earlier results [15–17].

Interestingly, a smaller Ca2+ concentration is required for charge inversion when

the surface has a lower dielectric constant; the dielectric discontinuity can lower the

onset concentration of Ca2+ dramatically, indicating that the in-plane correlation

is more important in the presence of dielectric discontinuities.
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Figure 2.5: Effective planar charge density of the charged surface in the presence

of 50mM of NaCl as a function of [Ca2+], the bulk Ca2+ concentration in mM. We

have chosen −eσ0 = −0.2e/nm2, T = 300K, `c = 5Å, d = 40Å, and ε> = 80. At

low Ca2+ concentrations, the surface is undercharged (ı.e., −eσ∗ < 0) but, beyond

a certain concentration, it is overcharged (ı.e., −eσ∗ > 0). The onset concentration

for overcharging is sensitive to the dielectric properties of the surface; it is smaller

for a smaller value of ε<.
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Appendix A

In this Appendix, we recapture some of our results at the Debye-Hückel (DH) level,

which are relevant for low surface charge densities; we also derive chemical potentials

of condensed counterions within the two-state model. Our major conclusion, ı.e.,

enhanced counterion condensation by dielectric discontinuities, can be augmented

by the DH calcualtions. To this end, we consider a dielectric plate with thickness

d and dielectric constant ε< immersed in an ionic solution of dielectric constant ε>

(typically larger than ε<); only one side of the plate at x = 0 is charged with charge

density −eσ, as illustrated in Fig. 2.1. The main advantage of examining the DH

limit lies in that it allows an analytically tractable analysis of the spatial distribution

of counterions. Our DH calculations will thus test more elaborate results reported

in the main text. We show that, as ε< → ε> , the density of counterions reduces

near and at the charged surface and increases around the neutral surface. Of course

the entire system is always subject to the overall electric neutrality condition:

−
∫ ∞

−∞
ρ(x)dx = −eσ, (A1)

where ρ(x) is the total charge density of ions at x. This condition implies that at

large distances from the surface the electric fields are vanishingly small, since the

backbone charge is almost completely screened by surrounding ions.

The linearized Poisson-Boltzmann (PB) equation or the DH equation reads:

d2ψ

dx2
= κ2(x)ψ(x), (A2)

where κ(x) is the position-dependent inverse Debye length given by κ(x) = 0 for

−d < x < 0 and κ(x) ≡ κ =
√

4π`B [2n1 + Zn2(Z + 1)] otherwise (refer to Sec.

2.2.1). This equation can be solved with appropriate boundary conditions: at

water-dielectric interfaces, the electric potential is continuous while the electric field

is discontinuous. The jump in the normal component of the electric displacement

field is −4πeσ. In addition, we assume that electric potential goes to zero as

x→ ±∞, which results in zero total charge density at infinity. To summarize, the
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boundary conditions read

x = 0 : ε>∂x ψ|0+ − ε<∂xψ|0− = −4πeσ (A3.1)

x = −d : ε<∂xψd|−d+0+ − ε>∂xψ|−d−0+ = 0 (A3.2)

x→ ±∞ : ψ = 0. (A3.3)

Solving the DH equation subject to these conditions, we find electric potentials

in three distinct regions:

ψ(x) =





−4πeσ

ε>κ

ε< + ε>κd

2ε< + ε>κd
e−κx, x ≥ 0 (A4.1)

−4πeσ

2ε< + ε>κd

(
x+

d

2

)
− 2πeσ

ε>κ
, −d < x < 0 (A4.2)

−4πeσ

ε>κ

ε<

2ε< + ε>κd
eκ(x+d), x ≤ −d (A4.3)

For similar calculations, see Refs. [11,19] and references therein.

From these solutions we can easily infer the effect of dielectric discontinuities

on charge distributions. At the DH level, total charge densities are proportional to

electric potentials: ρ = (ε>/4π)κ2ψ. As a result, one can simply write:

ρ(x = 0) ∝ ε< + ε>κd

2ε< + ε>κd
, (A5.1)

ρ(x = −d) ∝ ε<

2ε< + ε>κd
. (A5.2)

It is instructive to take various limits: As d→ 0, the effect of dielectric discon-

tinuities vanishes as expected. For ε>κdÀ ε< ,
ε<+ε>κd

2ε<+ε>κd
≈ 1. In this case, dielectric

discontinuities become irrelevant. According to Eq. (A5.1), the charge density at

the right side of the plate, (ı.e., x = 0), increases as ε< → 0. In other words, the

dielectric jump there enhances the attraction of counterions to the surface. On the

other hand, ρ(x = −d) has the opposite behavior: it decreases as ε< decreases.

This tendency is consistent with the results in Fig. 2.3.

Now suppose both surfaces are charged with planar densities σ
L
≡ σ(x = −d)

and σ
R
≡ σ(x = 0). To obtain electric potentials at the two surfaces, note that the
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DH equation is linear. A linear combination of two DH solutions is a solution of

the DH equation. If ψ
R
(σ

L
= 0, σ

R
) (ψ

R
(σ

L
, σ

R
= 0)) is a potential at x = 0 with

σ
L

= 0 (σ
R

= 0), then the DH potential at the surface is ψ
R
(σ

L
, σ

R
) = ψ

R
(σ

L
=

0, σ
R
) + ψ

R
(σ

L
, σ

R
= 0). Accordingly, the electric potential at the surface x = 0 is

ψ
R

= −4πeσ
R

ε>κ

(ε< + ε>κd)

(2ε< + ε>κd)
− 4πeσ

L

ε>κ

ε<

(2ε< + ε>κd)
. (A6)

Note that this satisfies the required boundary conditions at x = −d and x = 0. As

a result, the chemical potential of counterions on the surface is

µ
R

kBT
= −4π`BσR

κ

(ε< + ε>κd)

(2ε< + ε>κd)
− 4π`BσL

κ

ε<

(2ε< + ε>κd)
+ ln

[
σ1(x = 0)v0

`c

]
. (A7)

Similarly, we find the electric potential at the surface x = −d:

ψ
L

= −4πeσ
L

ε>κ

(ε< + ε>κd)

(2ε< + ε>κd)
− 4πeσ

R

ε>κ

ε<

(2ε< + ε>κd)
. (A8)

This results in

µ
L

kBT
= −4π`BσL

κ

(ε< + ε>κd)

(2ε< + ε>κd)
− 4π`BσR

κ

ε<

(2ε< + ε>κd)
+ ln

[
σ1(x = −d)v0

`c

]
. (A9)

The results in Eqs. (A7) and (A9) are used to construct Fig. 2.3.

Appendix B

In this appendix, we derive the Debye-Hückel Green function φ(r⊥−r′⊥) introduced

in Eq. (2.15) for a dielectric plate immersed in an ionic fluid. Note that similar

problems have been studied in the literature [26,27]. However, as they are, results

presented in these references are not directly applicable to our problem for the

reason explained in the text (see the relevant discussion below Eq. (2.16)). Here,

we present the essential steps leading to φ(q) in Eq. (2.15). To this end, we use

the Debye-Hückel (DH) approach to the system depicted in Fig. 2.1: a system

with a non-uniform dielectric constant ε(r) and a position-dependent screening

length κ−1(r). To appropriately incorporate dielectric discontinuities within the
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DH approach, we first consider φ(r, r′): the electric energy of a point charge e at

r (the field point) due to another point charge e at r′ (the source point) or simply

the DH Green function. The DH equation for φ is then

[∇ · ε(r)∇− ε(r)κ2(r)
]
φ(r, r′) = −4πe2δ(r− r′). (B1)

Noting that φ has a translational invariance in the y-z plane, following Ref. [27],

we express φ as a Fourier transform with respect to y − y′ and z − z′:

φ(r, r′) =

∫
d2q

(2π)2
eiq.(r⊥−r′⊥)φ(x, x′,q), (B2)

where q is the Fourier conjugate to r⊥ = (y, z).

If we use Eq. (B2) in Eq. (B1), we find
(
κ2 + q2 − ∂2

∂x2

)
φ(x, x′,q) =

4πe2

ε>
δ(x− x′), x ≥ 0 (B3.1)

(
q2 − ∂2

∂x2

)
φ(x, x′,q) =

4πe2

ε<
δ(x− x′), −d ≤ x < 0 (B3.2)

(
κ2 + q2 − ∂2

∂x2

)
φ(x, x′,q) =

4πe2

ε>
δ(x− x′), x < −d (B3.3)

where κ−1 is Debye screening length defined in Sec. 2.2.1 and below Eq. (A2). (Note

that similar equations can be found in Ref. [27]. But we use different boundary

conditions; see below). For the computation of φ(r⊥, r′⊥), it suffices to choose r′ =

(0, 0, 0) at the water-plate interface. In what follows, we drop x′ from φ(x, x′,q).

Up to this point, the field point r can be anywhere; later it will be chosen to be at

the plane x = 0 (see Eq. (B.7)).

The function φ(x,q) is continuous everywhere but its normal derivatives at

x = 0 and x = −d are discontinuous (as long as ε> 6= ε<):

lim
x→−0

ε<
∂

∂x
φ(x,q)− lim

x→+0
ε>

∂

∂x
φ(x,q) = 4πe2, (B4.1)

lim
x→−d−0

ε>
∂

∂x
φ(x,q)− lim

x→−d+0
ε<

∂

∂x
φ(x,q) = 0. (B4.2)

As in the text, ε< and ε> are dielectric constants of the plate and water, respectively.

The term on the right hand side of Eq. (B1) is to reflect the source charge assumed

to be located at x = 0.
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With the boundary conditions in Eqs. (B4) and φ→ 0 at x = ±∞, we find the

solutions of Eqs. (B3) for q 6= 0 [32]:

βφ(x,q) =





2π`B√
κ2 + q2

e−x
√

κ2+q2 (1 + ξ)
(
1− ξe−2qd

)

1− ξ2e−2qd
, x ≥ 0 (B5.1)

2π`B
ηq

(
exq − ξe−xq−2qd

) 1− ξ

1− ξ2e−2qd
, −d ≤ x < 0 (B5.2)

2π`B
ηq

e(x+d)
√

κ2+q2 (1− ξ2)e−qd

1− ξ2e−2qd
, x < −d (B5.3)

where β = 1/kBT , `B = e2/ε>kBT , η = ε</ε>, and ξ is defined in Eq. (2.16):

ξ =
ε>

√
κ2 + q2 − ε<q

ε>
√
κ2 + q2 + ε<q

. (B6)

For the r = (0, r⊥) (both the source and field points are in the same plane: x = 0),

φ(0,q) = φ(q) is simplified as

βφ(q) =
4π`B√

κ2 + q2 + ηq

[
1 + ξ (ξ − 1)

exp(−2qd)

1− ξ2 exp(−2qd)

]
. (B7)

This is identical to Eq. (2.15) in Sec. 2.3.2.



Chapter 3

Binding of Cationic Peptides onto

a Negatively Charged Lipid

Bilayer

3.1 Introduction

Antibacterial peptides such as Magainins, Defensins and Indolicidins are the main

components of innate defense, which were discovered in animals as well as in

plants [4, 33]. These peptides, typically made of 12-40 amino acid residues, target

the cytoplasmic membranes of microorganisms. They have the ability to discrim-

inate between host and microbial cells: they attach to the bacterial membranes,

penetrate inside its bilayer and kill bacteria by permeablizing and/or disrupting

their membrane while leaving the host cell intact. The major part of the membranes

of living cells is their lipid bilayer, composed of self-assembled phospholipids, where

proteins and other biomolecules are attached to it. The most sailent difference

between bacterial and host cell membranes is the composition and topological ar-

rangement of lipids in their bilayers [33]. The outer leaflet of host cell membranes is

electrically neutral whereas the outmost leaflet of bacterial cell membranes contain

large amount of negatively charged (acidic) phospholipids.

Antibacterial peptides typically have a number of positively charged amino acid

34
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residues in their structure. As a result, they carry a net positive charge and would

be attracted to oppositely charged membranes (e.g., bacterial membranes). This

attraction has shown to play an important role in the activity and selectivity of

antimicrobial peptides [4, 33–35]. Charged peptides are reported to have higher

binding affinity for negatively charged biomembranes (e.g., bacterial membranes)

than for electrically neutral membranes (e.g., the outer layer of eukaryotic cell

membranes). In a number of experimental studies the binding affinity is shown to be

stronger for more highly charged membranes [34,36,37]. These findings demonstrate

the significance of the electrostatic interactions in peptide-lipid attraction, which

will essentially create the selectivity of antimicrobial peptides.

Besides the electrostatic interactions between lipid bilayers and peptides, there

are some other essential forces governing the dynamics and statics of such systems.

Among others, the hydrophobic interactions turn out to play a crucial role [33,

38–40]. Hydrophobic force is responsible for penetration of peptides inside the

lipid bilayer. Once adsorbed on the bilayer surface, a peptide can even penetrate

inside the bilayer since some of the amino acid residues of the peptide are highly

hydrophobic. These hydrophobic residues tend to insert the peptide inside the

head-group area of the lipid bilayer, being in contact with lipids rather than water

molecules. Penetration of the peptides inside the bilayer causes strain on the surface

of the bilayer. As the density of the penetrated peptides reaches a threshold value,

some transient pores start to form on the surface of the biomembrane, so as to

relieve the unfavorable energy of membrane perturbation [33, 41]. Formation of

these pores results in leakage of cell’s content and/or translocation of peptides

inside the cell, this finally gives rise to lysis of the cell’s membrane [4, 33,35].

This work is aimed at understanding the binding modes, thus surface activi-

ties, of antibacterial peptides. In particular, finding the density of bound peptides

(peptides that are adsorbed on or penetrated inside the bilayer) as a function of

the concentration of free peptides (those in bulk), electrical properties of the bi-

layer and the net charge of the peptides (We do not consider formation of pores on

the bilayer). To this end, we introduce a three-state model in which peptides can

be in one of the states of (i) free, (ii) surface adsorbed or (iii) penetrated inside

head-group area of lipids, as depicted in Fig. 3.1. In our model, the details of which
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will be discussed in the next section, peptide-peptide interactions on the surface

are taken into account by assuming that peptides form a hexagonal lattice on the

surface of the bilayer (Cf. Sec.3.2). The electrostatic energies are calculated taking

into account the peptide-peptide interactions (on the surface) as well as the local

changes in the composition of the lipids in the bilayer. The hydrophobic energy and

entropic penalty for adsorption or penetration of peptides are added later regarding

the fact that these energies are independant of electrostatic interactions between

pepetides and salt ion, ı.e., they are not influenced by peptide-peptide interactions

on the surface of the bilayer.

Figure 3.1: Schematic representation of peptides in three different states: (a) A

free peptide in bulk, (b) Surface adsorbed peptide and (c) a peptide inserted inside

the head-group region.

3.2 Theoretical Model And Wigner-Seitz Cell Ap-

proximation

The lipid bilayer is assumed to be a two-dimensional binary fluid mixture of zwitte-

rionic (electrically neutral) and monovalent acidic (negatively charged) lipids which

are ideally mixed in the absence of charged macromolecules around the bilayer. The

charge density of the bilayer is determined by the fraction of charged lipids, ı.e, num-

ber of charged lipids/total number of lipids, α (0 ≤ α ≤ 1), and the area occupied
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by the head-group of each lipid, a. Since the charge of acidic lipids is equal to the

electronic charge, −e, the surface charge density of the bilayer can be written as

σ = −eα/a. For simplicity all lipids are assumed to have the same headgroup area

and membrane proteins are not included.

Molecular details of peptides are largely ignored. They are modeled as uniformly

charged disks with a negligible thickness, radius Rp and, electric charge ofQp. These

disks thus have a constant surface charge density of Qp/πR
2
p.

The bilayer is immersed in an electrolyte with dielectric constant of ε = 80 con-

taining negative and positive monovalent ions (e.g., Na+ and Cl−) with densities

of [Na+] = [Cl−] = n0 at large distances from the bilayer and any other macro-

molecule, where the electric potential is effectively zero. In the presence of these

ions, the electrostatic interactions are screened. The screening length (or Debye

length), κ−1, is given by κ2 = 8πn0e
2/εkBT where e is the electronic charge and

kBT is the thermal energy. In addition to the salt ions, we also consider some

peptides in the solution (charged disks in our model). Carrying an electric charge,

peptides can interact with each other, with ions or with the bilayer via electrostatic

forces. The concentration of peptides at bulk, Cf , is assumed to be low enough

so that peptide-peptide interactions can be ignored in this region (peptides in this

region are also referred to as “free peptides”). Due to the screening effect of the

salt ions there would be no significant interaction between the bilayer and free pep-

tides. In the close vicinity of the lipid bilayer, however, the electrostatic attraction

between the peptide and bilayer can be important. In this region, the peptide can

bind to the bilayer electrically. At the same time, this binding can influence the

distribution of charged and neutral lipids in the bilayer. When there is no highly

charged macromolecule on the surface of the bilayer, neutral and charged lipids

are ideally mixed, ı.e., the local fraction charged lipids, α, is constant over the

bilayer’s surface. Upon adsorption of a positively charged macromolecule on the

bilayer, lipids are redistributed (demixed) so that the density of negatively charged

lipids increases near the positively charged macromolecule. This change of the local

composition of the lipids, which is not entropically favorable, can reduce the free

energy of the system by lowering the electrostatic energy as discussed in a number

of experimental works [42,43].
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On the bilayer, peptides can be in either “surface adsorbed” or “penetrated”

state. Surface adsorbed peptides are those that are attached to the surface of the

bilayer (Fig. 3.1). This state is driven by the electrostatic attraction between pep-

tides and charged lipid headgroups. Beside this state, some of the peptides are

penetrated inside the head-group region of the lipids. In this case, the peptide

pushes the head-groups of lipids aside forcing a gap to form inside the bilayer. It

is, however, known that the fatty tails of the lipids fill any gap and prevent gap

formation by decreasing the local thickness of the bilayer. Due to the elasticity of

the bilayer, there ia a mechanical energy cost associated with adsorption or pene-

tration of the peptides, given by 1
2
Ka∆A

2/A, where Ka is the stretching modulus

of one leaflet of the bilayer, ı.e., one monolayer, A is the area of the bilayer and ∆A

is the area increment caused by penetration and adsorption of peptides (in other

words, difference between the area of the bilayer, A, and its equilibrium).

Peptide densities in different states can be calculated by balancing their chem-

ical potentails. Since the concentration of peptides at bulk (free peptides) is low,

peptide-peptide interactions can be ignored and the chemical potential of the pep-

tides at bulk solution is mainly from the configurational entropy of the mixing and

thus given by µfree = kBT ln(Cfvp), where kB is the Boltzmann constant, T tem-

perature, and vp is the volume of a peptide. Note that here and in what follows,

electical free energies of peptides are calculated with respect to the charging energy

of one single peptide in bulk solution (peptide-peptide interactions are ignored).

Computation of the chemical potentials of surface adsorbed and penetrated pep-

tides is complicated by peptide-peptide interactions on the bilayer. The density of

the peptides in these states, as evidenced in experimental works [37–39], are typ-

ically high enough that peptide-peptide repulsion needs to be taken into account.

To this end, we present a hexagonal lattice model for peptides on the bilayer. In

this model, each peptide on the surface is surrounded by six other peptides being

at equal radial distance of 2R. Based on this assumption, peptides on the surface,

regardless of the state they are in, define a two-dimensional Wigner-Seitz (WS)

cell with radius R as depicted in Fig. 3.2. With this model, chemical potentials of

peptides on the bilayer can be obtained from the free energy of one WS cell. In

this section, we find the free energy of one WS cell based on minimization of the
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functional form of the free energy. The next section will be devoted to computation

of chemical potentials of peptides on the surface in different states.

The Wigner-Seitz cell scheme as an approximation for the arrangement of charged

particles on a charged surface has been used in different works before. Owicki and

McConnell used this method for protein-lipid and protein-protein interactions on

the bilayer membrane [44]. Nguyen and colleagues used this lattice model for the ad-

sorption of ions on a uniformly charged surface [45]. This method was also used for

charged spherical particles (model of charged protein) interacting with each other

and a lipid bilayer at a constant distance form the surface [46]. The drawback of

the WS cell method for such systems is that it supresses the lateral fluctuations of

the adsorbates. This problem can be, however, remedied to some extent by adding

an entropic part to the free energy of the system which treats the adsorbates as

particles that can change their positions on the surface, ı.e., an entropic term that

is proportional to the logarithm of the density of adsorbates. In general, the WS

lattice model is more accurate in two limiting cases: when the density of adsorbate

is sufficiently low on the surface and when the density of adsorbates is high enough.

In the former, there is no interaction among the adsorbates on the surface and thus

the system reduces to one adsorbate on the surface. In this case it is not important

how we assume the arrangement and geometrical distribution of the adsorbate. In

the later, the repulsion force between adsorbates (in our system peptides) makes

them form a hexagonal lattice on the surface. In the intermediate level, lateral

fluctuations of adsorbate can reduce the accuracy of the model.

The Wigner-Seitz (WS) cell in our model consists of one charged disk (model of

a peptide) which is on the bilayer of low dielectric constant (≈ 2). This disk can be

adsorbed on the surface or penetrated inside the head-group area. Since we ignore

the thickness of the disk the only difference between these two states comes from

the distribution of the lipids on the bilayer: when the peptide is penetrated, lipid

head-groups cannot move to the area occupied by the peptide; when the peptide is

adsorbed on the surface, however, lipids can migrate to this region as depicted in

Fig. 3.3. The functional form of the free energy that we use for a WS cell arises

from the entropy of the mobile ions and lipids, as well as the electrostatic energy
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Figure 3.2: Schematic picture of peptides forming a hexagonal lattice on the surface

(top view).

Figure 3.3: Schematic picture of adsorption and penetration of peptides (side view).
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of the system:

F
kBT

=
1

2

ε

kBT

∫

V

(∇Φ)2dv

+

∫

V

[
n+ ln

n+

n0

+ n− ln
n−
n0

− (n+ + n− − 2n0)

]
dv

+
1

a

∫

a

[
α ln

α

α
+ (1− α) ln

1− α

1− α

]
ds

+λ
1

a

∫

a

(α− α)ds, (3.1)

where Φ = Φ(r, z) is the electrostatic potential, ε the dielectric constant of the

solvent, n+ = n+(r, z) and n− = n−(r, z) densities of positive and negative mono-

valent ions, respectively, α = α(r) and α are the local and average fraction of the

charged lipids in the bilayer, and a is the area of each head-group (assumed to be

the same for charged and neutral lipids).

The first term in Eq. 3.1 is the electrostatic energy of the system where the

integral runs over the whole volume of the WS cell. The second term accounts for

the change in the entropy of salt ions. Near charged molecules, density of positive

(negative) mobile ions, n+ (n−), are altered due to electrostatic interactions. Far

away from any charge molecule we have n+ = n− = n0 and thus there would be no

change in entropy. The third term takes the entropic penalty of the lipid demixing

into account and the integral is over the bilayer within the WS cell. Here we should

note that when the peptide is penetrated, the head-group area of the lipids, a,

reduces so that the peptide can be accommodated in the head-group region. This

process affects the third term in the free energy. The last term is added to impose

the charge conservation condition in the WS cell. λ is the Lagrange parameter and

is determined by the charge conservation condition.

The dielectric constant of the bilayer is assumed to be much smaller than that of

the electrolyte. The thickness of lipid bilayer is about 40Å and the Debye length of

the electrolyte is about 10−100Å. Given this thickness, the dielectric constant of the

bilayer and the debye screening length, there would be no electrostatic interaction

between peptides and ions in one side of the bilayer with other charged particles

on the other side of the bilayer [47]. In this case, the bilayer acts similar to an
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infinitely thick insulator and we can safely ignore the free energy associated with

the mobile ions and lipids on the other side of the bilayer.

The minimization of the free energy, F , with respect to the densities of the

mobile ions (n+ and n−) and the local fraction of charged lipids (α) gives the non-

linear Poisson-Boltzmann equation for the electric potential in the aqueus phase,

∇2Φ =
kBTκ

2

e
sinh

(
eΦ

kBT

)
, (3.2)

where κ is the inverse debye length and e is the electronic charge. The relation for

the local fraction of charged lipids is obtained as

α =

exp

(
eΦ

kBT
− λ

)

1− α

α
+ exp

(
eΦ

kBT
− λ

) . (3.3)

In order to find the electrostatic potential in the WS cell we need to solve

Eq. 3.2 subject to the boundary conditions. The boundary conditions reflect the

properties of Φ at the WS cell as well as the surface charge density of the bilayer

and the potential at infinity. On the WS cell boundary we impose

∂Φ

∂r

∣∣∣∣
r=Rp

= 0, (3.4)

where r is the radial distance form the center of the WS cell and Rp is the radius

of the cell. This condition forces the electric field to vanish on the boundary of the

cell. On the interface between electrolyte and the bilayer, the normal derivative of

the electric field is determined by the surface charge density σ = −eα/a. Since the

dielectric constant of the bilayer is much less than that of the electrolyte we assume

that electric field cannot penetrate inside the lipid area. Thus we have

∂Φ

∂z

∣∣∣∣
z=0

=





−eα
εa
, r > Rp

−eα
εa

+
Qp

πR2
p

, r ≤ Rp,
(3.5)
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where z denotes the distance from the bilayer’s surface and ε is the dielectric con-

stant of the electrolyte. For penetrated peptides, a changes to a new value and the

first term for r ≤ Rp in Eq. 3.5 is turned off. The density profile of the lipids on the

surface should be determined by the combination of the Eqs. 3.3 and 3.5. These

equations are solved self-consistently with Eq. 3.2.

To solve the problem numerically, we used the finite element numerical method.

Due to the cylindrical symmetry of the WS cell it suffices to take a two dimensional

grid point mesh to represent the potentials in our three dimensional space. Density

of grids in r direction (distance from the center of the cylindrical cell) is 5 grid points

per Å and is constant for different values of z (distance from the bilayer). In the z

direction, a total number of 70 grids are chosen, distance between these grid points

increases exponentially as a function of z. The meshing scheme thus provides more

dense grids near the bilayer’s surface and the density of grids decreases exponentially

as z increases. The electric potential (Φ), the density of salt ions (n+ and n−) and

composition of the lipids on the bilayer (α) are found simultaneously. The free

energy, F , is then calculated according to Eq. 3.1.

The adsorption or penetration free energy of one WS cell containing a peptide

is given by

Fa = F − F0

Fp = F − F0 + Ep, (3.6)

where F is obtained from the functional form in Eq. 3.1 (its value is different for

surface adsorbed and penetrated peptides), F0 is the sum of charging free energy of

one single peptide at bulk (the peptide is fixed in space and peptide-peptide inter-

actions are ignored) and the free energy of an unperturbed bilayer in the solution

with the surface charge density of σ = −eα/a and area of πR2. The last term for Fp

in Eq. 3.6 is added to account for other effects including hydrophobic energy. This

term is not influenced by peptide-peptide interactions and thus are not dependent

on WS cell radius. In the next section, we also take the mechanical energy of the

bilayer into account which does not depend on electrostatic interactions, yet is a

function of the peptides density. Using these free energies, Fa and Fp, we calculate

chemical potentials of the peptides in different states.
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3.3 Binding Isotherm

Densities of surface adsorbed and penetrated peptides can be found by balancing

chemical potentials of peptides in different states. In this section we calculate

chemical potentials of the peptides. To this end, we first find the free energy of

the bilayer and peptide system (per unit area) based on the results of the previous

section. Let σa and σp be the densities of the peptides in surface adsorbed and

penetrates states, respectively. Consider a bilayer with the area of A whose outer

layer area, including peptides, remains constant. The free energy of the combination

of the lipid bilayer and peptides (surface adsorbed and penetrated peptides) per

unit area can be written as

F = σaFa+σpFp+
1

2
Ka

(
∆A

A

)2

+kBT [σa ln(σaAp)− σa + σp ln(σpAp)− σp] (3.7)

The first two terms in Eq. 3.7 correspond to the electrostatic energy of the peptides,

the mixing entropy of the lipids and the entropy of mobile ions in the solution

according to our definition of F in Eq. 3.1, Fa and Fp in Eq. 3.6. The third term

accounts for the mechanical energy cost of the peptide binding. Ka is the stretching

modulus of the lipid layer (we assume that it is not altered by penetration and

adsorption of peptides), (∆A) is the extension or compression of the bilayer from

its equilibrium state and A is the equlibrium area of the bilayer in absence of the

peptides. The last two terms account for the mixing entropy of the peptides. Note

that the peptide-peptide repulsions on the surface are implicitly taken into account

in Fa and Fp through the Wigner-Seitz cell radius, R. The dependence of Fa and

Fp on the densities, ı.e., σa and σp, through R, determines the dependence of F on

the densities of the peptides and on the peptide-peptide repulsions. Nevertheless,

the last two terms, entropic terms, also depend on R since σa and σp can be related

to R.

∆A is mainly determined by two opposing factors: compression of the lipids,

caused by penetration of the peptides; and lateral pressure on the charged lipids,

due to adsorption or penetration of peptides, ı.e., attraction of the lipids to the

peptide which shrinks the head-group of lipids and thus decreases the equilibrium
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area of the bilayer. In terms of a WS cell, the area of the cell (πR2) and the

number of lipids in the cell remains constant after adsorption of a peptide. The

equilibrium area, however, decreases by peptide adsorption. Therefore, adsorption

of a peptide results in stretching of the surface from its equilibrium state. When a

peptide penetrates inside the head-group region, the area of the WS cell occupied by

lipids, thus the head-group area of each lipid, decreases. In this case, compression

of the lipids is partially because of the lateral electric pressure on the surface, and

partially because of the repulsion of the lipids from the hard disk peptide (ı.e, lipids

can’t move to the area occupied by the peptide). In the appendix of this chapter we

present our calculation scheme for the computation of such area changes. ∆Aeq
p and

∆Aeq
a denote the difference between the area of a WS cell, πR2, and the equilibrium

area that the surface (inside the WS cell) could reach if it was not connected to

the rest of the bilayer for a penetrated or surface adsorbed peptide, respectively.

According to the density of the peptides on the surface, ∆A can be written as

∆A

A
= −σp(Ap + ∆Aeq

p )− σa∆A
eq
a (3.8)

∆Aeq
p and ∆Aeq

a are negative showing that equilibrium area is decreased by the

lateral tension imposed by peptide on the surface.

Taking the derivative of the Eq. 3.7 with respect to the density of the peptides

in each state gives the chemical potential of the peptides:

µi =
∂F

∂σi

= Fi + σa
∂Fa

∂σi

+ σp
∂Fp

∂σi

+
1

2
Ka

∂

∂σi

(
∆A

A

)2

+ kBT ln(σiAp), (3.9)

where i denotes the state of the peptide, ı.e., i = a or p. Since in our calculations

Fp and Fa are found as a function of WS radius, R, we need to rewrite Eq. 3.9 in

terms of R. Instead of using σa and σp, we can use R and f as two independent

variables defined as



Chapter 3. Binding of Peptides onto a Lipid Bilayer 46

R =
[
2
√

3(σa + σp)
]−1/2

,

f =
σp

σa + σp

. (3.10)

The first equation in Eq. 3.10 reflects the fact that peptides form a hexagonal

lattice on the surface. One peptide occupies the area equal to 2
√

3R2 on the surface.

The density of all peptides peptides (σa + σp) can be thus related to the radius of

the WS cell. The second equation defines the fraction of penetrated peptides on the

surface. Using Eq. 3.10 and assuming that ∂σa

∂σp
= ∂σp

∂σa
= 0, Eq. 3.9 can be rewritten

in terms of R and f as

µi(R, f) = Fi − 1

2
R

[
(1− f)

∂Fa

∂R
+ f

∂Fp

∂R

]
(3.11)

+
1

2
Ka

∂

∂σi

(
∆A

A

)2

+ kBT ln(σiAp).

Here again, i denotes the state of the peptide which can be either a or p. In writing

Eq. 3.12 we used the fact that in our formalism Fa and Fp are functions of R and do

not depend on the fraction of penetrated peptides, f , (∂Fp

∂f
= ∂Fa

∂f
= 0). We should

note that this is an approximation which is a result of Wigner-Seitz cell calculation

scheme. In equlibrium condition, chemical potentials of peptides are balanced. We

thus have

µa(R, f) = µfree

µp(R, f) = µfree (3.12)

Solving these equations for R and f , we can obtain densities of surface adsorbed

and penetrated peptides using σp = f/2
√

3R2 and σa = (1− f)/2
√

3R2.
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3.4 Results and Discussions

3.4.1 Redistribution of Lipid Charges Upon Peptide Bind-

ing

As the peptides reach the surface of the lipid bilayer, the electrostatic attraction

between charged lipids and peptides alters the distribution of the lipids. The local

fraction of negatively charged lipids, α, increases near the peptide and decreases at

larger distances from the peptides. In our model we assumed that the head-group

area of lipids, a, is the same for the charged and neutral lipids in a Wigner-Seitz

cell; as a result, the density of lipids is uniform in the WS cell. However, the

fraction of charged lipids is position-dependetnt. When a peptide penetrates inside

the head-groups, lipids cannot migrate to the region occupied by the peptide. They

are thus accomodated in the rest of the WS cell area while their head-groups are

shrinked.

As depicted in Fig. 3.4 higher fractions of charged lipids are observed near the

peptide; α decays as the distance from the peptide increases. Due to the charge con-

servation condition in the WS cell (in other words, conservation of lipids) we have∫ R

r=0
2απrdr = απR2. As can be seen from Fig. 3.4, the lowest fraction of charged

lipids, α(r = R), varies with radius of WS cell, R. When R increases, α(r = R) gets

closer to the average fraction, α. For R → ∞ we have α(r = R) = α. This case

corresponds to the adsorption or penetration of one single peptide on the surface

of a lipid bilayer. In this limit, the Wigner-Seitz cell approximation does not play

any role since the system is not influenced by peptide-peptide interactions. Here we

note that the lagrange factor λ is found by the condition of charge conservation in

the WS cell according to Eq. 3.3; the last term in Eq. 3.1 will vanish after imposing

this condition.

3.4.2 Free energy of a Wigner-Seitz cell

In Sec.II we introduced the Wigner-Seitz cell approximation scheme and presented

a method to calculate the free energy of a WS cell. In this section, we present
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Figure 3.4: Local fraction of charged lipids as a function of the radial distance from

the center of and adsorbed (solid lines) and a penetrted peptide (dashed lines) for

two different radii of the Wigner-Seitz cell, R = 25 and R = 50. Here α = 0.2 and

Qp = 4 and 6.
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our results for ∆F = F − F0 where F is the free energy of a WS cell defined in

Eq. 3.1 and F0 is the charging free energy of one fixed single peptide in bulk and

an unperturbed membrane (for more details refer to Sec. 3.2 below Eq. 3.6). ∆F is

the free energy of a WS cell excluding the mechanical part. ∆F explicitely depends

on charge properties of peptide and lipids as well as the solution. Thus, a detailed

analysis of ∆F gives us a physical insight on the effects of the electrical properties

of the system on penetration and adsorption of peptides.

∆F is mainly affected by three major factors: peptide-lipid attractions, peptide-

peptide repulsions on the surface and interaction of peptides with their image

charges. Since the dielectric constant of the lipid bilayer is much less than that

of water, the dielectric discontinuity can be important near the interface. In elec-

trostatic systems with dielectric discontinuities, image charges can be introduced

to take these discontinuities into account. When image charges are included in

the system, the dielectric constant of the system should be assumed constant. In

our calculation scheme, described in Sec.3.2, we explicitly considered low dielectric

constant for lipids (Eq. 3.5). Therefore, there was no need to include this effect

through image charges in the system. Later in this section, however, we will use

image charge descriptions to explain our results from a more physical point of view.

Fig. 3.5 shows the results for ∆F as a function of WS cell radius, R for different

peptides charge, Qp = 6 and 8, and different fractions of charged lipids, α = 0.15

and 0.30. Increasing the fraction of charged lipids, α, (reminiscent of increasing

negative charge density of lipid bilayer) results in lower (ı.e., more negative) ∆F .

This arises from a stronger attraction between a peptide and the lipid bilayer. As

can be seen in Fig. 3.5 increasing α has the same effect on penetrated and surface

adsorbed peptides namely in both cases, peptides have a higher binding affinity for

highly charged surfaces than for surfaces with lower charge densities. This is indeed

consistent with results of experimental works [36].

The effect of the peptide-peptide repulsions, as mentioned before, are taken into

account through the radius of WS cell in our model. A smaller radius of the WS cell

corresponds to a closer distance and stronger repulsion between peptides resulting in

larger values for ∆F as evidenced in Fig. 3.5. In the limit R→ 0, larger free energy

is expected for highly charged peptides than peptides with lower electric charge (of
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Figure 3.5: Free energy of a WS cell (excluding the mechanical energy), ∆F , as

a function of the radius of Wigner-Seitz cell radius for surface adsorbed (a) and

penetrated (b) peptides. Average fraction of charged lipids are chosen as α = 0.15

and 0.30. Curves are plotted for two different peptide charge: Qp = 8 (dashed line)

and Qp = 6 (solid line).
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course if other parameters remain constant). This shows that accumulation of

highly charged peptides can be hindered by peptide-peptide repulsions. In the

limit R→∞, the peptide-peptide repulsion is minimal as the system reduces to a

single peptide bound to the bilayer. In this limit, where the peptide-lipid bilayer

attraction and peptide interactions with image charges are dominant, effects of

changing the peptide charge on the free energy depend on the fraction of charged

lipids, α. Fig. 3.6 shows ∆F(R → ∞), ı.e., ∆F in the limit R → ∞ in which

peptide-peptide repulsions are “turned off”, as a function of the peptide’s charge,

Qp, with different fractions of charged peptides, α. For penetrated peptides, ∆F
monotonically increases as Qp increases. For surface adsorbed peptides, the curve

with lowest α (= 0.05) shows that ∆F increases with increasing Qp. For larger

values of α, however, a higher charge on peptides can lower the free energy of the WS

cell. Effects of peptide charges can be explained in terms of image charges. Since

the dielectric constant of lipids is much less than that of water, a peptide’s image

charge has the same charge as the peptide, which results in repulsion of the peptide

from the surface of the lipid bilayer. For penetrated peptides, in the limit R→∞,

this effect is dominant because there is no charged lipid between the peptide and

the bilayer. Thus, penetration of highly charged peptides inside a bilayer with low

dielectric constant can be hindered because of the high free energy cost associated

with peptide-image charge interactions. There is, however, a different scenario when

the peptide is adsorbed on the surface and is not penetrated inside the bilayer. In

this case, since the charged lipids can move under the peptide, ı.e., the area that the

peptide is adsorbed on, increasing the peptide charge gives rise to a higher number

of negatively charged lipids in the intimate vicinity of the peptides. These lipids can

then neutralize peptide charges, decrease the repulsion between the peptide and its

image charge and at the same time decrease the electrostatic energy associated with

peptide-lipids attraction. This process can lower the energy of the system unless

the mean fraction of charged lipids, α, is too low. If α is too low, then there would

be a high entropic penalty for the lipids to efficiently neutralize peptides charge. In

this case, highly charged peptides have a lower affinity for the lipid bilayer’s surface

than peptides with lower charges.

We have also calculated ∆F(R →∞) for penetrated peptides in the case that
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Figure 3.6: Free energy of an infinitly large WS cell (excluding the mechanical

energy), ∆F(R→∞), as a function of the peptide charge, Qp for surface adsorbed

(upper figure) and penetrated peptides (lower figure). These curves correspond to

different values of α. For large values of α, ∆F(R → ∞) tends to decrease as Qp

increases.
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there is no dielectric discontinuity and thus no image charges. Results are plotted

in Fig. 3.7. Since there is no image charge-peptide repulsion, increasing peptides

charge always lowers the free energy of binding, unlike the Fig. 3.6 where the

interactions of peptide with the image charges increased ∆F(R→∞).
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Figure 3.7: Free energy of an infinitly large WS cell (excluding the mechanical

energy), ∆F(R → ∞), as a function of peptide charge, Qp, when there is no

dielectric discontinuity in the system. These curves correspond to different values

of α. ∆F(R→∞) decreases with increasing peptide charge.

In the next section, we use Fa and Fp combined with other effective energies,

e.g., entropy of the peptide distrinution on the surface and mechanical energy, to

find density of penetrated and surface adsorbed peptides as a function of the bulk

concentration of the peptides.
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3.4.3 Adsorption and penetration

Highly Hydrophobic peptides with a low net charge

Peptides with highly hydrophobic residues and low net charge have a great tendency

for penetration inside the bilayer. For these peptides, fraction of penetrated pep-

tides is close to one (f ≈ 1) due to the lower free energy associated with penetration

in comparision with the free energy of surface adsorbed state. Low peptide charge

results in lower peptide-image charge repulsion, encouraging penetration. Fig. 3.8

shows our results where peptide to lipid ratio, (P/L), is plotted as a function of the

free peptide concentration, Cf . As expected, increasing fraction of charged lipids,

α, gives rise to a higher number of peptides bound to the bilayer. In Fig. 3.8 Ep,

the hydrophobic energy, is chosen to be −16kBT which corresponds to relatively

highly hydrophobic peptides. Two sets of curves correspond to different stretching

moduli, Ka = 0.05 and 0.1kBT/Å
2
. Not surprisingly, over the whole range of Cf

in our figure, for a given fraction of charged lipids, (P/L) is higher for the surface

with lower Ka (blue lines) than for the surface with higher Ka (red lines). This

is due to the smaller mechanical energy cost of penetration on the surfaces with

lower stretching modulus while almost all the peptides are penetrated, f ≈ 1, for

the range of parameters selected in Fig. 3.8.

Highly hydrophobic peptides with a high net charge

In this section we present our result for highly charged peptides. The peptide

charge can influence two factors: peptide-lipid attractions and peptide-image charge

repulsion. The former can be dominant for surface adsorbed peptide while the

later is more important for penetrated peptides. In Fig. 3.9 the peptide to lipid

ratio, (P/L), and fraction of penetrated peptides, f , are plotted as a function

of the free peptide concentration, Cf . In comparion with Fig. 3.8, the fractions

of penetrated peptides are lower. This shows the tendecy of peptides to remain

adsorbed on the surface rather than penetrating inside the bilayer. This is because

of the lower energy associated with adsorption of peptides on the surface (due

to stronger peptide-lipids attraction) and higher energy associated with peptide
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Figure 3.8: Peptide to lipid ratio as a function of the free peptide concentration,

Cf . Here, Qp = 4 and Ep = −16kBT . Surface stretching modulus si chosen as

Ka = 0.05kBT/Å
2

(blue lines) and Ka = 0.1kBT/Å
2

(red lines). For the parameter

range selected in this figure, the fraction of penetrated peptides, f , is close to one.
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penetration (due to image charge-peptide repulsion).

An intersting feature of our theory emerges from Fig. 3.9 for the curves with high

α with Ka = 0.05kBT/Å
2
. A transition is observed in the population of peptides in

different states on the surface. As the concentration of the free peptides increases,

peptides flip to penetrated states from surface adsorbed states. This behaviour was

indeed observed in an experimental work by Binder and Lindblom in (P/L) as a

function of α [36].

Peptides with low hydrophobicity

Hydrophobic energy is responsible for penetration of peptides inside the bilayer.

Peptides with low hydrophobicity preferentially remain adsorbed on the surface

instead of penetrating inside the bilayer. In this case, increasing the fraction of

charged lipids results in higher (P/L) ratio. There is, however, an optimal charge

for the peptide which results in a maximum (P/L) ratio. Regarding the electrostatic

energy of one single peptide on the surface, the peptide charge encourages adsoption

of peptides to the bilayer. When there is a high density of peptides on the surface,

higher values for the peptide charge results in stronger peptide-peptide repulsions.

On the other hand, it also gives rise in larger ∆A (defined in Sec.3.3) and thus larger

mechanical energy cost. As a result, there is an optimal charge for the peptide

binding which depends on the fraction of charged lipids, α, and bulk concentration

of peptides, Cf . Fig. 3.10 shows our results where Ep is chosen to be −5kBT . The

fraction of penetrated peptides calculated for the range of parameters in Fig. 3.10 is

lower than 0.1, meaning that almost all of the peptides are adsorbed on the surface.

Optimal peptide charge for penetration

Penetration of the peptides is an important factor in the rupture of the membranes

in Fig. 3.11. When the density of the penetrated peptides reaches a threshold value,

the transient pores start to form on the bilayer which finally gives rise to rupture

of the membrane.

In this section we present our results for the density of penetrated peptides. We

find that for highly charged surfaces, α ≥ 0.25, (P/L) ratio for penetrated peptides
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Figure 3.9: Peptide to lipid ratio (upper figure) and fraction of penetrated pep-

tides (lower figure) as a function of the free peptide concentration, Cf , for surface

stretching modulus of Ka = 0.05kBT/Å
2

(blue lines) and Ka = 0.1kBT/Å
2

(red

lines). Here, Qp = 10 and Ep = −16kBT



Chapter 3. Binding of Peptides onto a Lipid Bilayer 58

0 5 10 15 20
Cf (µM)

0

0.005

0.01

0.015

0.02

0.025

0.03

(P
/L

)

α
_

 = 0.25
α
_

 = 0.2
α
_

 = 0.15
α
_

 = 0.1

Figure 3.10: Peptide to lipid ratio as a function of the free peptide concentration,

Cf . Curves are plotted for different values of peptide charge, Qp = 4 (solid line),

Qp = 7 (dashed line) and Qp = 10 (dot-dashed line). Hydrophobic energy and

surface elastic modulus are chosen as Ep = −5kBT and Ka = 0.05kBT/Å
2
.
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Figure 3.11: Ratio of penetrated peptides to lipids as a function of the free peptide

concentration, Cf . Curves are plotted for different fractions of charged lipids, α =

0.25 (dashed lines) and α = 0.3 (solid lines). Hydrophobic energy and surface

elastic modulus are chosen as Ep = −20kBT and Ka = 0.05kBT/Å
2
.

changes non-monotonically as a function of Qp. For α = 0.25 maximum penetration

corresponds to Qp = 5 (red dashed line in the figure) and for α = 0.3 the optimal

peptide charge is at Qp = 6 (violet solid line in the figure). This finding shows that

there is an optimal charge for the peptides which can rupture the lipid bilayer.

3.5 Summary and Conclusions

In summary, we have studied theoretically the interactions of charged antimicrobial

peptides with negatively charged lipid bilayers. In particular, we have calculated

the density of the peptides bound to the surface of the lipid bilayer where they can

be either adsorbed on the surface of the lipid bilayer or penetrated inside the head-

group of the lipids. To this end, we have used a three-state model for the peptides
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in which they can be in one of the states of surface adsorbed, penetrated inside the

bilayer or free at bulk. The densities of the peptides in different states on the surface

(at equilibrium) are found by balancing the chemical potentials of different states.

In our theory, hydrophobic energy is a tuning parameter while the electrostatic

and mechanical energies are calculated explicitly. We have used a hexagonal lattice

model for the spatial distribution of the pepetides on the surface of the bilayer,

which approximately captures the peptide-peptide interactions. Our results show

that dielectric discontinuities play an important role in the penetration of a highly

charged peptide inside a lipid bilayer. Due to peptide-image charge repulsions,

dielectric discontinuities discourage penetration of the pepetides. On the other

hand, adsorbed peptides reduce the mechanical free energy penalty for insertion

by reducing the head-group area of lipids in their binding layer. The competition

between mechanical energy and electrostatic energy results in an optimal charge

for the penetration of peptides. Under certain conditions, the density of bound

peptides changes abruptly when the surface charge density of the bilayer or the free

peptide concentration is increased. Our results show that at the transition point,

the fraction of penetrated peptides increases to large values (≈ 1) meaning most

of bound peptides are penetrated. This finding is consistent with the experimental

work by Binder and Lindblom [36].

Appendix A

In this appendix we find the area change of an elastic circular surface, reminiscent

of a part of a lipid bilayer inside the WS cell described in Sec. 3.2., due to a radius

dependant excess pressure (resulting from the electrostatic attraction of lipids to

the peptide) attracting each part of the surface to the center. We assume that the

elastic modulus of the surface, Ka, is constant over its area and does not change

upon area changes. The radius of the surface is initially R. Each point of the

surface is attracted to the center, the displacement of a point at distance r (from

the center) due to the excess pressure is represented by U(r). The area change of

the surface is thus π[U(R)2 + 2RU(R)]. The longitudinal and transverse tensions

are denoted by γ(r) and ζ(r), respectively. The area change of a differential part
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Figure 3.12: A circular elastic surface, reminiscent of a part of the lipid bilayer

inside a WC cell.

of the surface (Fig. 3.12) due to the longitudinal force, γ(r)rdθ, is dUrdθ. Relating

them to the elasticity of the surface we obtain

dU

dr
=
γ(r)

Ka

, (3.13)

where Ka is the elastic modulus of the surface. Similar equation for the area change

in the transverse direction reads

U

r
=
ζ(r)

Ka

. (3.14)

Since the differential part of the surface depicted in Fig. 3.12 is at equilibrium

the resultant of the forces on this part should vanish. The force analysis on this

differential part gives

ζ(r) = r
dγ

dr
+ γ − P (r)r, (3.15)
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where P (r) is the electrostatic force per unit area of the surface at distance r from

the center (this force is directed towards the center). Combining Eqs. 3.13, 3.14

and 3.15, a differential equation can be obtained for U(r),

r2d
2U

dr2
+ r

dU

dr
− U = r2P (r)

Ka

. (3.16)

This differential equation, subject to the boundary conditions, is solved numerically

to find the area changes of the lipid bilayer when a peptide is penetrated or adsorbed

on the surface of the lipid bilayer. The boundary conditions on the circumference

of surface, r = R, arises from the fact that the tension on a free edge should be

zero and thus, according to Eq. 3.13, dU/dr should vanishe at r = R. The other

boundary condition when the peptide is penetrated (surface adsorbed) is at r = Rp

(r = 0) where U(r = Rp) = 0 (U(r = 0) = 0). ∆Aeq used in Sec. 3.3. is obtained

as

∆Aeq = π[U(R)2 + 2RU(R)] (3.17)
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