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Abstract

An infrared active polyatomic molecule has several vibrational modes, each of which has a characteristic

frequency. If the molecule is trapped in a matrix of perturbing atoms, those vibrational frequencies will

shift, and if the vibrational mode is degenerate, the perturbation may lift the degeneracy. Such shifts and

splitting are due to the dependence of the chromophore/matrix-atom interaction potential on the internal

vibrational motion of the chromophore. Applying a previously-developed model for the shifting and split-

ting of the triply degenerate ν3 mode of SF6 perturbed by a rare gas atom, we use Monte Carlo simulations

to sample the accessible equilibrium configurations of the system and to predict the associated thermally

averaged perturbed IR spectra. Since the experimental spectrum has 10 peaks while the triply degenerate

ν3 mode of SF6 in a particular environment could have at most 3 peaks, the observed spectrum must be a

combination of spectra for SF6 trapped in different types of lattice sites. A fit to experiment of simulated

spectra generated from a family of lattice sites is then used to identify the peaks in the experimental

spectrum, determine the relative importance of the various lattice sites, and semi-quantitatively reproduce

the experimental spectrum.
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Chapter 1

Introduction

Since their inception, matrix-isolation techniques for producing and trapping chemical species have been

applied to a wide range of chemical and physical problems [1]. This methodology was originally developed

as a way of trapping species, especially free radicals, ions, metal clusters, and unstable molecules, in an

inert cryogenic environment where their properties may be studied usually using spectroscopic methods.

When molecular diffusion is repressed, which can be achieved by decreasing the temperature well below the

melting point of the host matrix atoms, the complicating effects of intermolecular interactions, molecular

rotation, and reactivity are also suppressed [1, 2, 3]. The low temperatures employed result in fairly rigid

matrix environments in which rotational structure and hot bands present for gaseous systems are largely

eliminated. As a result, the spectra of matrix-isolated species are generally fairly sharp, and due to the

“pressure broadening” caused by the matrix atoms, the observed transitions have Lorentzian line shapes.

The first application of matrix-isolation techniques was Lewis’s studies of aromatic molecules doped

into a rigid glassy solid [4, 5]. Pimentel [1] and Porter [2] were the first to apply matrix-isolation methods

using rare gas and N2 solids in order to stabilize transient species. Initially, the trapped species studied

were unstable molecules. In the 1980’s the range of transient species studied in this way was extended

to include metal clusters [6] and ions [7], as well as radicals, high temperature species, and photochemical

reaction products. Thanks to the development of high resolution infrared spectroscopy, the behavior of

SF6 in rare gas matrices was examined by Swanson and Jones [3, 8, 9, 10, 11, 12].

The underlying premise in many MIS (Matrix-Isolated System) studies is that guest-host interactions

are minimal, and therefore that the molecular properties of the trapped species should be very similar to

those in the gas phase. For most systems, especially stable molecules isolated in rare gas lattices, this

approximation is reasonable. In fact, the vibrational frequencies obtained for molecules isolated in neon

1



CHAPTER 1. INTRODUCTION 2

matrices, for which the shifts are usually small, are sometimes more reliable than those obtained from

gas phase studies where rovibrational structure and hot bands complicate the spectra [3]. Matrix studies

of several diatomics and a few other small molecules have shown evidence for rotational sub-structure,

indicating that the intermolecular potentials hindering molecular rotation may be quite small [13]. Exper-

imental results and the theories developed to explain molecular rotation in matrices have been reviewed

by Hallam [14] and Barnes [15].

While the guest-host interactions are weak, they perturb the trapped species in many ways. First,

the vibrational frequencies and energies of electronic transition are rarely the same for a matrix-isolated

molecule as they are in the gas phase. Second, since the energy levels of the trapped particle are perturbed,

its characteristic vibrational transition frequencies are shifted. The gas-to-matrix frequency shifts for

molecular vibrations can be quite large even for very stable species such as the hydrogen halides [15].

Perutz and Turner showed that direct interactions between a photo-product and a host matrix would often

occur, thereby giving rise to substantial perturbation of the electronic states [16].

A more subtle matrix effect is the occurrence of multiple trapping sites, each with its own discrete

molecular spectrum. The electronic transitions can be significantly perturbed. For example, Davies et al.

showed that Fe(CO)4 occupies several discrete sites in N2 and Ar matrices, and that infrared laser-induced

rearrangement is site selective [17].

Guest-host interactions can also give rise to a splitting of degenerate modes because the symmetry of the

trapping site is lower than that experienced by the isolated molecule. With improvements in experimental

instrumentation, particularly the increased resolution and decreased time required to obtain high-quality

spectra over a large spectral region, it becomes possible to separate the effects of multiple trapping sites

from the possible occurrence of a site symmetry splitting. Hallam [14] has provided an excellent early

review of matrix effects, and Barnes [15] has discussed the theories which have been developed to model

matrix-molecule interactions.

In the early years, the vibrational spectroscopic studies of matrix effects were limited by the spectral

resolution employed (typically 1 cm−1). In the late 1970’s and 1980’s, high resolution infrared studies were

performed using diode laser and Fourier transform systems. Those experimental results have shown that

matrix-molecule interactions can be very complex. Gunthard and Dubbs [18, 19] pioneered the use of diode

laser spectrometers in studying matrix-isolated molecules. In addition to obtaining accurate line shapes [18],

they were able to observe hole burning for one isomer of trans-difluoroethane isolated in argon [19]. This

kind of high resolution experiment offers a direct means of obtaining the homogeneous line shapes, and by
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Table 1.1: Character Table for Oh molecules (From Ref. [23]).

Oh Ê 8Ĉ3 3Ĉ2 6Ĉ4 6Ĉ
′
2 î 8Ŝ6 3σ̂h 6Ŝ4 6σ̂d

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 1 -1 -1 1 1 1 -1 -1
Eg 2 -1 2 0 0 2 -1 2 0 0 (2z2 − x2 − y2, x2 − y2)
T1g(F1g) 3 0 -1 1 -1 3 0 -1 1 -1 (Rx, Ry, Rz)
T2g(F2g) 3 0 -1 -1 1 3 0 -1 -1 1 (xy, xz, yz)
A1u 1 1 1 1 1 -1 -1 -1 -1 -1
A2u 1 1 1 -1 -1 -1 -1 -1 1 1
Eu 2 -1 2 0 0 -2 1 -2 0 0
T1u(F1u) 3 0 -1 1 -1 -3 0 1 -1 1 (x, y, z)
T2u(F2u) 3 0 -1 -1 1 -3 0 1 1 -1

comparison with the absorption line shapes, obtaining information concerning inhomogeneous broadening.

Bristow et al. [20] have also used high resolution absorption spectra obtained using laser diode spectrometers

as a means of unravelling matrix-molecule dynamics.

The system that will be discussed here is a model for SF6 in an Ar matrix. The SF6 molecule possesses

Oh symmetry. Consequently, from the relevant character table (Table 1.1) and appropriate selection

rules, it can be seen that such a structure will give rise to one non-degenerate A1g vibration (ν1), one

doubly degenerate Eg vibration (ν2), two triply degenerate T1u vibrations (ν3, ν4), one triply degenerate

T2g vibration (ν5), and one triply degenerate T2u vibration (ν6). The character table shows that the

T1u vibrations are infrared active and the A1g, Eg, and T2g vibrations are Raman active, while the T2u

vibration is inactive both in the Raman effect and the infrared. The ν1, ν2, and ν3 modes are associated

with bond stretching vibrations, and ν4, ν5, and ν6 with deformational vibrations [21]. Fig. 1.1 illustrates

the normal mode motions of SF6 [22].

Since SF6 has seven nuclei, it has 3N − 6 = 3× 7− 6 = 15 vibrational modes. Attention in this project

is focussed on the triply degenerate ν3 mode (asymmetric F-S-F stretch) [21], for which the characteristic

fundamental band transition energy is 948 cm−1 [24, 22]. As mentioned earlier, one may expect the host

environment to shift the transition frequency and split it into at most three components.

Swanson and Jones employed an FTIR spectrometer capable of 0.035 cm−1 resolution to study several

high symmetry molecules in a variety of host matrices [8, 10, 11, 12, 25, 26]. Fig. 1.2 shows their spectra for

the ν3 vibrational mode of SF6 trapped in an Ar matrix, observed at 0.5 cm−1 and 0.035 cm−1 resolution.

At 0.5 cm−1 resolution, a single asymmetric line is observed. When observed at 0.035 cm−1 resolution,
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Figure 1.1: Normal modes of SF6, showing the vector displacements of the nuclei. The two mutually
orthogonal components of ν2 are both shown. For the triply degenerate ν3 - ν6 modes, only one component
is illustrated; in each case the other components are identical in form but are oriented orthogonally in
space [22].
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that single broad peak splits into several discrete sharp peaks.

Figure 1.2 shows that the host matrix causes the fundamental band transition frequency to shift from

948 cm−1 to the 938 cm−1 region. Moreover, under the high resolution condition, 9 peaks were observed,

while at most 3 peaks were expected to arise from the the splitting of the triply degenerate ν3 vibrational

mode. Swanson and Jones believed that several distinct trapping sites, as well as site symmetry splittings

gave rise to this phenomenon. By annealing the system at different temperatures, they tried to assign

these peaks to several distinct sites and give a qualitative explanation for them [3]. However, due to the

complexity of the system, they were not able to assign the peaks to particular vacancy sites, nor did they

give an explanation for the composition of each peak or the population of any sites. To our knowledge,

there has been no other published work addressing these questions.

The specific goal of this project is to attempt to explain quantitatively the high-resolution infrared

spectrum of SF6 in an argon matrix. We utilize a perturbation model introduced by Eichenauer and Le

Roy [27] to simulate the infrared spectrum of SF6 in an Ar matrix. Their model is based on a calculation

of the energy shifts of the ground state and that of the first excited state, and the frequency shifts are

obtained from the simple equation ∆ν̃i = (∆E1i − ∆E0) / h c, where i = 1, 2, 3, representing the three

components of this “triply degenerate” band. In order to obtain the values of the energy shifts, they treated

the interaction between the chromophore molecule and the host atoms as the result of an instantaneous-

dipole/induced-dipole (IDID) mechanism. They employed this model to predict the frequency shifts for

SF6−(Ar)n clusters and qualitatively compared their results with the experimental data [28, 29]. This

model proved to be effective and efficient in interpreting the spectral behavior of molecules in clusters of

helium [30, 31, 32, 33, 34, 35, 36, 37, 38], argon [39, 40, 41], and krypton [41, 42].

Chapter 2 will outline the perturbation theory description of level splitting, as well as the model utilizing

the IDID mechanism. Argon atoms at low temperature form a face-centered cubic (FCC) configuration [43].

The edge length of a unit cell is 5.313 Å at 10 K [43], and the distance from the exterior of one fluorine

atom to the exterior of the trans fluorine atom is about 6.2 Å [8]. It is clear that it would be difficult to

admit an SF6 into the matrix and avoid excess crowding without removing one or more argon atoms. The

number of argon atoms removed, as well as the geometry of the vacancy sites may differ from one case to

another. In the smallest vacancies with only zero or one argon atom removed, one can expect that the

site would be highly crowded. On the other hand, if the number of the removed argon atoms becomes

too large, the matrix vacancy tends to become unstable, and could collapse on annealing. For this reason,

there is no need to study vacancy sites with large numbers of argon atoms removed. In this project, we
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Figure 1.2: ν3 region for Ar/SF6 = 10 000 at 9K after 30K anneal; 0.5 cm−1 vs. 0.035 cm−1 resolution [3].
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examined vacancy sites for which the number of removed atoms varies from zero to six. More details will

be presented in Chapter 4.

In order to simulate the behavior of the SF6 molecule and the surrounding argon atoms, it is necessary to

determine the most stable configuration of the system and to calculate the thermally averaged vibrational

frequency shifts. We shall utilize the Monte Carlo (MC) method introduced by Metropolis et al. [44]. In

the MC method, the first step is to randomly select one particle in the system, either the SF6 molecule

or an argon atom. We then move the selected particle in a random direction by a small randomly chosen

distance; if it is the SF6 molecule that is selected, it can also be rotated in random directions by small

random angles. After each such move, the change in energy of the system is calculated and employed

to decide whether or not the proposed move is to be accepted, based on the standard Metropolis MC

acceptance criterion. This acceptance criterion ensures that after a sufficiently large number of moves, the

results reproduce a Boltzmann distribution. We shall discuss these steps in detail in Chapter 4. Chapter

4 also presents some convergence tests of the parameters controlling the simulation.

It is clear from the previous discussion that it is necessary to calculate the potential energy of the system

to carry out the Monte Carlo simulation and to determine the frequency shifts. The potential energy of the

system is treated as the pairwise sum of the Ar-SF6 and argon-argon interaction energies. Only two-body

interactions were taken into account in our simulations. To calculate the Ar-SF6 interaction potential,

we employed an accurate anisotropic multiparameter M3SV (Morse-Morse-Morse-Spline-Van der Waals)

potential model introduced by Pack et al. [45]. In order to save computing time, a simple form of Ar-Ar

potential was utilized. Additional information on these potential models is presented in Chapter 3.

Chapter 5 will describe how the simulated spectra of SF6 in an Ar matrix were obtained. After the

system reached its stable configuration, at each Monte Carlo move, the three frequency shifts were obtained.

After a large enough number of frequency shifts was collected, the simulation was ended. Chapter 5 also

determines the spectrum for each vacancy site.

Because of the stochastic averaging associated with Monte Carlo simulation, the simulated spectra

have Gaussian line shapes. Thus, simulated spectra were fitted to Gaussian functions to obtain the peak

positions, peak height, and full width at half-maximum (FWHM). In contrast, the experimental spectrum

has peaks with Lorentzian line shapes, due to the homogeneous “pressure” broadening caused by the

perturbing matrix atoms [9]. Using the peak positions and relative intensities obtained by fitting a simulated

spectrum to Gaussians, one can generate a Lorentzian-based spectrum for each vacancy site. A non-linear

least-squares technique was then employed to fit the experimental spectrum to the Lorentzian spectra
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generated for the various matrix sites considered. This fit allows us to assign the peaks in the experimental

spectra and to determine the relative populations of the different types of vacancy sites. Chapter 6 will

discuss the theory and details of these fits. Chapter 7 then presents a summary of and conclusions for the

work presented in this thesis.



Chapter 2

Simulating matrix shifts

2.1 Perturbation theory

This section does not attempt to present a comprehensive exposition of perturbation theory, but rather to

describe the essential features of this theory as it is used in this thesis. For a more complete discussion of

this theory, readers are referred to Ref. [46].

Suppose the Schrödinger equation for the system of interest is

ĤΨ = EΨ (2.1)

and we are unable to solve this equation. Suppose also that there is a similar system with the relevant

Schrödinger equation having the form

Ĥ(0)Ψ (0) = E(0)Ψ (0) (2.2)

and that this equation can be solved exactly; in other word, Ψ (0) and E(0) are known. We may write the

Hamiltonian operator of Eq. 2.1 in the form

Ĥ = Ĥ(0) + Ĥ(1) (2.3)

in which the first term on the right side is the unperturbed Hamiltonian operator and the additional term

is the perturbation. Standard first-order perturbation theory defines the first-order correction to E(0) to be

9
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expressed as

E(1) =
∫

Ψ (0)∗Ĥ(1)Ψ (0) dτ (2.4)

Using Dirac notation [47], Eq. 2.4 can be expressed as

E(1) =
〈
0

∣∣∣Ĥ(1)
∣∣∣ 0

〉
(2.5)

If the energy level E is d-fold degenerate, the first-order perturbation E(1) will be determined by solving

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
1

∣∣∣Ĥ(1)
∣∣∣ 1

〉
− E(1)

〈
1

∣∣∣Ĥ(1)
∣∣∣ 2

〉
· · ·

〈
1

∣∣∣Ĥ(1)
∣∣∣ d

〉
〈
2

∣∣∣Ĥ(1)
∣∣∣ 1

〉 〈
2

∣∣∣Ĥ(1)
∣∣∣ 2

〉
− E(1) · · ·

〈
2

∣∣∣Ĥ(1)
∣∣∣ d

〉

· · ·
〈
d

∣∣∣Ĥ(1)
∣∣∣ 1

〉 〈
d

∣∣∣Ĥ(1)
∣∣∣ 2

〉
· · ·

〈
d

∣∣∣Ĥ(1)
∣∣∣ d

〉
− E(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (2.6)

2.2 Harmonic-oscillator approximation and normal modes

2.2.1 Harmonic oscillator

Before introducing the perturbation model used to predict the spectral frequency shifts, we will briefly

review the harmonic-oscillator approximation and normal modes. A concrete example of a single harmonic

oscillator is a mass m coupled to a spring of force constant k. For small deformations x, the spring will

exert the force given by Hooke’s law, F = −kx, where k is the force constant, and give rise to a potential

V = kx2/2. The Hamiltonian for this system is

H = T + V =
p2

2m
+

1
2
mω2x2 (2.7)

where ω = (k/m)1/2 is the classical angular frequency of oscillation. Any Hamiltonian of the above form,

quadratic in the coordinate and momentum, is called a harmonic oscillator Hamiltonian. The Schrödinger

equation for the quantum harmonic oscillator has the form

(
− }

2

2m

d2

dx2
+

1
2
mω2x2

)
Ψ = EΨ (2.8)
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The solutions to this equation that lie in the physical Hilbert space are [48]

E = En =
(

n +
1
2

)
}ω (2.9)

Ψ = ΨEn(x) ≡ Ψn(x)

=
(

mω

π} 22n (n!)2

)1/4

exp
(
−mωx2

2}

)
Hn

[(mω

}

)1/2
x

]
(2.10)

in which n = 0, 1, 2, · · · labels the allowed energy levels for a quantum-mechanical harmonic oscillator, and

Hn(y), with y = (mω/})1/2 x, is an n’th order Hermite polynomial [46]. The energy is quantized and the

wave functions are orthonormal.

From the Hermite polynomials H0(y) = 1 and H1(y) = 2y, one can obtain the wave functions for the

ground state and the first excited state of the one-dimensional harmonic oscillator:

Ψ0(x) =
(α

π

)1/4
e−αx2/2 (2.11)

Ψ1(x) =
(

4α3

π

)1/4

x e−αx2/2 (2.12)

with α = (km/}2)1/2. For these wave functions,

〈0 |x| 0〉 = 〈1 |x| 1〉 = 0 (2.13)

2.2.2 Harmonic-oscillator approximation and normal coordinates

The vibrational spectrum of a polyatomic molecule may be readily understood if the molecule is thought of

as a multi-dimensional harmonic oscillator. Consider a diatomic molecule whose equilibrium bond length

is re . The potential energy V (r) can be written as a Taylor series expansion

V (r) = V (re) +
(

dV

dr

)

r=re

(r − re) +
1
2!

(
d2 V

dr2

)

r=re

(r − re)2 +
1
3!

(
d3 V

dr3

)

r=re

(r − re)3 + · · · (2.14)

The first term on the right side of Eq. 2.14 is a constant and is usually chosen to be zero. Because the point

r = re is the minimum of the potential energy curve, the derivative (dV/dr)r=re
vanishes. Therefore, the

second term in Eq. 2.14 is also zero. Moreover, if the displacements are small, then r − re will be small
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and the terms beyond the quadratic term in Eq. 2.14 can be neglected, giving rise to the potential energy

V (r) =
1
2

(
d2V

dr2

)

r=re

(r − re)2 =
1
2
kx2 (2.15)

where k =
(
d2V/dr2

)
r=re

and x = r − re . Eq. 2.15 shows that the general potential energy function

V (r) can be approximated by a harmonic-oscillator potential. The neglected high-order terms in Eq. 2.14

are called anharmonic terms.

The harmonic-oscillator approximation may also be applied to polyatomic molecules. If there are no

external fields, the potential energy of a polyatomic molecule which contains N nuclei is a function of only

the 3N − 5 or 3N − 6 vibrational coordinates. Denoting the displacement about the equilibrium values

of these coordinates by q1, q2, q3, · · · , qNvib
, where Nvib is the number of vibrational degrees of freedom, the

potential energy is given by the multi-dimensional generalization of the one-dimensional case given by Eq.

2.14:

∆V = V (q1, q2, · · · , qNvib
) − V (0, 0, · · · , 0) =

1
2

Nvib∑

i=1

Nvib∑

j=1

(
∂2V

∂qi∂qj

)
qi qj

=
1
2

Nvib∑

i=1

Nvib∑

j=1

fij qi qj (2.16)

in which the fij are quadratic force constants. In general, there exist terms that contain higher powers of

qi, but such anharmonic terms will be neglected here. The presence of cross terms in Eq. 2.16 makes the

corresponding Schrödinger equation difficult to solve. Following the procedure discussed in Chapter 7 of

Ref. [23], a new set of coordinates {Qi} can be found for which Eq. 2.16 becomes

∆V =
1
2

Nvib∑

i=1

Fi Qi
2 (2.17)

in which the cross terms have been eliminated. These new coordinates {Qi} are called normal coordinates

and the vibrations associated with them are called normal modes.

In terms of normal coordinates {Qi}, the vibrational Hamiltonian may be written as

Hvib =
Nvib∑

i=1

(
− }

2

2µi

d2

dQ2
i

+
1
2

Fi Q
2
i

)
(2.18)

Since this Hamiltonian operator is written as a sum of independent terms, the total wave function is a
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product of individual wave functions, and the energy is a sum of independent energies [46]

Ψvib (Q1, Q2, · · · , QNvib
) = Ψvib,1 (Q1)Ψvib,2 (Q2) · · ·Ψvib,Nvib

(QNvib
) (2.19)

Evib =
Nvib∑

i=1

hνi

(
vi +

1
2

)
each vi = 0, 1, 2, · · · (2.20)

The practical consequence of introducing normal coordinates is that under the harmonic-oscillator

approximation, the vibrational motion of a polyatomic molecule will appear as Nvib independent harmonic

oscillators, with each normal mode having its own characteristic fundamental frequency νi if there is no

degeneracy.

2.3 Frequency shifts of the ν3 band of SF6

SF6 is an octahedral molecule. Eichenauer and Le Roy have developed a perturbation model which can

be used to predict spectral frequency shifts for the vibrations of the SF6 in an SF6− (Rg)n clusters [27].

Interest here is focused on the ν3 vibrational mode. This mode is an asymmetric stretching vibration in

which the sulfur atom moves in one direction along one of the F−S−F axes, and all the fluorine atoms

move in the opposite direction (See Fig. 2.1). In the absence of any perturbing forces, the ν3 vibrational

mode is triply degenerate, since the stretching motion may be along either the x, y or z axes. We choose a

coordinate system with the center of mass of SF6 defining the origin and the S−F bonds aligned along the

x, y and z axes. For the z component of the triply-degenerate ν3 vibrational mode, the displacement of the

atoms of the chromophore during a vibrational motion is illustrated in Fig. 2.1. Each atom oscillates about

its equilibrium position with the same frequency and phase, but the sulfur atom and fluorine atoms have

different amplitudes of oscillation. The model for the simulated spectral shifts developed by Eichenauer

and Le Roy is presented briefly below.

The eigenstates of interest here are the ground state, which is denoted by |0〉, and the three degenerate

first excited vibrational states |1i〉, where i = 1, 2, 3 represent antisymmetric stretching motion along the

x, y and z molecular axes, respectively. Fig. 2.2 illustrates the shifts and splitting of the triply degenerate

ν3 transition of an SF6 surrounded by several argon atoms. The fundamental transition frequency of a free

SF6 molecule in the gas phase is 948 cm−1 [24, 22]. On trapping the SF6 molecule in an Ar matrix, both

the ground state and the first excited state energy levels are shifted. A larger lowering of the vibrationally

excited level(s) leads to a net red shift. The values of these energy level shifts are necessary to calculate
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Figure 2.1: Coordinate System and configuration of SF6 molecule: solid circles denote the equilibrium
positions and the dashed circles denote the displacements associated with the Z component of the ν3

mode [22]. (From Ref. [27])
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Figure 2.2: Schematic representation of the shifts and splitting of the triply degenerate ν3 transition of
SF6 on formation of an SF6−(Ar)n matrix. (From Ref. [27])
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the frequency shifts.

From conventional first-order perturbation theory, the energy shift of the ground state is given by

E
(1)
0 = 〈0 |Vp| 0〉 (2.21)

while for the first excited state of the triply degenerate band, the energy shifts E
(1)
1i

(i= 1,2,3) are the roots

of the characteristic equation

∣∣∣∣∣∣∣∣∣∣

〈11 |Vp| 11〉 − E
(1)
11

〈11 |Vp| 12〉 〈11 |Vp| 13〉
〈12 |Vp| 11〉 〈12 |Vp| 12〉 − E

(1)
12

〈12 |Vp| 13〉
〈13 |Vp| 11〉 〈13 |Vp| 12〉 〈13 |Vp| 13〉 − E

(1)
13

∣∣∣∣∣∣∣∣∣∣

= 0 (2.22)

where |0〉 is the ground state, |1i〉 (i= 1,2,3) are the first excited states, and Vp is the total perturbing

potential. As is illustrated schematically in Fig. 2.2, the frequency shifts in the infrared spectrum then

arise from the differences between the energy shifts of the |1i〉 and |0〉 states,

∆ν̃i = (E(1)
1i

− E
(1)
0 ) / hc (2.23)

and in order to solve Eqs. 2.21− 2.23, Vp needs to be known.

If its anharmonicity and rotational degrees of freedom are neglected, the ν3 mode of the SF6 molecule

may be treated simply as a three-dimensional harmonic oscillator. The total perturbing potential

Vp ({Rj} , {Qi}), is a function of the positions {Rj} (j = 1, 2, · · · , n) of the n Ar atoms in the matrix,

and of the normal coordinates {Qi} (i = 1, 2, 3) that characterize the displacements of the sulfur and

fluorine atoms within the SF6 molecule. Three-body and higher-order interactions are neglected in this

model, because the error of this pairwise potential approximation is expected to be much smaller than the

uncertainty of the potential functions [27]. Therefore, the perturbing potential may be written as a sum

over the individual Ar-SF6 pair potentials:

Vp ({Rj} , {Qi}) =
n∑

j=1

Vj (Rj , {Qi}) (2.24)

The maximum normalized, orthogonal displacements for the sulfur atom, for the two axial fluorine atoms,

and for the four equatorial fluorine atoms are, respectively, 0.0458, -0.0320, and -0.0033 Å for the ν3
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vibrational mode [22]. Since the equilibrium value of the S−F bond length, 1.564 Å [49], is much larger

than those intramolecular displacements, V (Rj , {Qi}) may be expanded in the form of Taylor series:

Vj (Rj , {Qi}) = V0(Rj) +
3∑

i=1

∂Vj

∂Qi
Qi +

1
2

3∑

i,k=1

∂2Vj

∂Qi ∂Qk
Qi Qk + · · · (2.25)

in which V0(Rj) is the pair potential when {Qi} = 0, that is, when all the atoms are located in their equi-

librium positions, and the additional terms reflect perturbation of the SF6 energy levels due to interactions

with the matrix atoms.

Because V0(Rj) does not depend on the normal coordinates {Qi}, its contribution to E
(1)
0 and E

(1)
1i

is the same, and hence it has no effect on the ∆νi. Moreover, for any symmetric potential, 〈0 |Qi| 0〉 =

〈1i |Qi| 1k〉 = 0. Thus, since the potential of a harmonic oscillator is symmetric and SF6 is treated as a

harmonic oscillator, the expectation values of the terms linear in Qi, namely
∑3

i=1 (∂Vj / ∂Qi) Qi, vanish.

One can also obtain this result from the property of a harmonic oscillator: the average displacement of a

harmonic oscillator is zero for all the quantum states of a harmonic oscillator (from Eq. 2.13). Similarly,

the terms containing all higher odd powers of (products of) the Qi have no contributions. It is therefore

the quadratic term involving the products QiQk and the second derivatives of V (Rj , {Qi}) with respect

to ν3 stretching normal coordinates that provide the leading contribution to the shifting and splitting of

the vibrational lines.

Eichenauer and Le Roy argued that higher-order perturbation theory terms, the anharmonicity of the

SF6 molecule, and higher-order terms in Eq. 2.25 would have little contribution to the frequency shifts [50].

Since the dependence of the SF6−Ar intramolecular potential on the internal coordinates {Qi} was not

well known, they estimated the importance of these assumptions using the potential energy surface of one

of the few atom-molecule species for which a chromophore-stretching dependent potential energy surface is

known [51]. The contributions arising from these approximations were a fraction of 1% of those due to the

first-order quadratic terms for an Ar−H2 system [50]. On these grounds, they argued that it was unlikely

that such approximations would introduce significant errors into the case of Ar−SF6.

In terms of the normal coordinates, a three-dimensional harmonic oscillator may be treated as a combi-

nation of three one-dimensional harmonic oscillators. The Hamiltonian of the three-dimensional harmonic

may be written as

H = Hx + Hy + Hz
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=

(
p2

x + p2
y + p2

z

2m

)
+

1
2
mω2

(
x2 + y2 + z2

)
(2.26)

with corresponding wave functions and eigenvalues given by

Ψ = Ψx Ψy Ψz (2.27)

E = Ex + Ey + Ez

=
(

n +
3
2

)
}ω

=
(

nx +
1
2

)
}ω +

(
ny +

1
2

)
}ω +

(
nz +

1
2

)
}ω (2.28)

where n = nx + ny + nz; nx, ny, nz = 0, 1, 2, · · ·
Using Eqs. 2.11 − 2.12 and 2.26 − 2.28, one can obtain

〈
0

∣∣∣∣∣∣

3∑

i,k=1

∂2 Vj

∂ Qi∂ Qk
QiQk

∣∣∣∣∣∣
0

〉
=

}
2ω

3∑

i=1

∂2 Vj

∂ Q2
i

(2.29)

〈
1i

∣∣∣∣∣∣

3∑

i,k=1

∂2 Vj

∂ Qi∂ Qk
QiQk

∣∣∣∣∣∣
1k

〉
=





}
2ω

(
2
∂2 Vj

∂ Q2
i

+
3∑

l=1

∂2 Vj

∂ Q2
l

)
i = k

2
}
2ω

∂2 Vj

∂ Qi∂ Qk
i 6= k

(2.30)

in which ω is the angular frequency associated with the fundamental band of the ν3 mode of the free SF6

molecule (ω/2πc = 948 cm−1) [22]. The following equations may be generated from Eqs. 2.29 and 2.30:

〈0 |Vj | 0〉 = V0(Rj) +
}
4ω

3∑

i=1

∂2 Vj

∂ Qi
2 (2.31)

〈1i |Vj | 1k〉 = V0(Rj) δi,k +
}
4ω

(
2

∂2 Vj

∂ Qi∂ Qk
+ δi,k

3∑

l=1

∂2 Vj

∂ Ql
2

)
(2.32)

By substituting Eqs. 2.31 and 2.32 into Eqs. 2.24, 2.21, 2.22, one may obtain the energy shifts of

the ground state and the first-excited state due to a single perturbing Ar atom located at Rj . Examining

Eqs. 2.31 and 2.32, one can see that two terms needed to be determined. One term, V0 (Rj), is the rigid

SF6−Ar pair potential. More details of this potential will be discussed in Chapter 3. The other term,

∂2Vj / ∂Qi∂Qk, was successfully described by using the IDID model introduced by Eichenauer and Le

Roy [27].
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2.4 The instantaneous-dipole/induced-dipole mechanism

SF6 is an octahedral molecule. Due to this high symmetry, an SF6 molecule has no dipole moment when

all the atoms are at their equilibrium positions. Moreover, for vibrations governed by a symmetric (not

necessarily harmonic) potential, such as that for the ν3 mode, the average value of the dipole moment is

zero. However, when the system is displaced from equilibrium in the course of the ν3 vibrational motion,

an instantaneous electric dipole moment arises. For small displacements, which is the case for the ν3

vibration, the instantaneous electric dipole moment p may be approximated as a linear function of the

displacement coordinates {Qi} :

p =
∣∣∣∣
∂p
∂Q

∣∣∣∣
3∑

i=1

Qi êi (2.33)

where the {êi} are unit vectors in the x, y, and z directions and the coefficient |∂p/∂Q| was determined

from the measured intensity of the ν3 band of an isolated SF6 molecule to have a value of 226.1 esu g−1/2

(e = 1.602062× 10−19 C = 4.80287× 10−10 esu) [52].

The electric potential at a position r relative to this instantaneous dipole moment p is written as

U(r,p) =
p · r
|r|3 =

p · r̂
r2

=
p cos θ

r2
(2.34)

where r is the vector from the dipole with the length r, r̂ is the unit vector in the r direction, and θ is the

angle between p and r. The electric field of this dipole p is given by

E(r,p) = −∇U

= −∇
(

p · r̂
r2

)
= − 1

r2
∇ (p · r̂) − (p · r̂) ∇

(
1
r2

)

= − 1
r2
∇ (p · r̂) +

2 (p · r̂) r̂
r3

(2.35)

where the symbol ∇ is the usual vector operator

∇ = ê1
∂

∂x
+ ê2

∂

∂y
+ ê3

∂

∂z
(2.36)

Because p is independent of r̂, ∇ (p · r̂)becomes

∇ (p · r̂) =
p − r̂ (p · r̂)

r
(2.37)
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Substituting Eq. 2.37 into Eq. 2.35, one obtains

E(r,p) = − 1
r2

p − r̂ (p · r̂)
r

+
2 (p · r̂) r̂

r3
=

3 (p · r̂) r̂ − p
r3

=
3 (p · r) r − r2 p

r5
(2.38)

Therefore, the electric field at the positions Rj of Ar atom j is

E(Rj ,p) =
[
3 (Rj · p)Rj − R 2

j p
]
/R 5

j (2.39)

where Rj,i = Rj ·êi denotes the i-th Cartesian component of the vector Rj in the molecule-fixed coordinate

system of Fig. 2.1, and Rj = |Rj | is the distance from the j-th Ar atom to the center of mass of the SF6

molecule. The dipole moment induced at the j-th Ar atom is simply αE(Rj ,p), where α (= 1.642 Å3) is

the dipole polarizability of Ar atoms [53]. The interaction energy between this induced dipole moment at

the j-th Ar atom and the instantaneous dipole moment at the SF6 molecule is therefore

V int(Rj ,p) = −pid ·E = −αE ·E

= −α |E(Rj ,p)|2 (2.40)

Substituting Eq. 2.39 into Eq. 2.40,

V int(Rj ,p) = −α |E(Rj ,p)|2

= −α
{[

3 (Rj · pi)Rj − R 2
j pi

] · [3 (Rj · pk)Rj − R 2
j pk

]}
/R10

j

= − α

R6
j

(
3

Rj,iRj,k

R2
j

+ δi,k

)
pi pk (2.41)

The second-order partial derivative of V int(Rj ,p) with respect to the normal coordinates may be written

as
∂2 V int

∂ Qi∂ Qk
= − α

R6
j

(
3

Rj,iRj,k

R2
j

+ δi,k

)
∂2 (pi pk)
∂ Qi∂ Qk

(2.42)

Eq. 2.33 defines pi = |∂ p/∂ Q| Qi and pk = |∂ p/∂ Q| Qk, thus

∂2 (pi pk)
∂ Qi∂ Qk

=
∣∣∣∣
∂ p
∂ Q

∣∣∣∣
2

(2.43)
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so Eq. 2.42 becomes
∂2 V int

∂ Qi∂ Qk
= − α

R6
j

(
3

Rj,iRj,k

R2
j

+ δi,k

) ∣∣∣∣
∂ p
∂ Q

∣∣∣∣
2

(2.44)

This IDID interaction is taken to be the main vibrational stretching dependent contribution to the SF6−Ar

interactions [27]. Therefore, on replacing Vj in the derivatives in Eqs. 2.31 and 2.32 by V int and substituting

Eq. 2.44 into Eqs. 2.31 and 2.32, one obtains

〈0 |Vj | 0〉 = V0(Rj) − ξ

R6
j

(2.45)

〈1i |Vj | 1k〉 = V0(Rj) δi,k − ξ

R6
j

(
Rj,iRj,k

R2
j

+
4
3

δi,k

)
(2.46)

where ξ = 3α} |∂ p/∂ Q|2 /2ω = 0.4641 eV·Å6 is a constant.

Summing over all perturbing Ar atoms then allows Eqs. 2.21 - 2.23 to be used to calculate the vibra-

tional frequency shifts and splitting pattern for any particular arrangement of perturbers. Examination of

the secular determinant obtained by substituting Eq. 2.46 into Eq. 2.22 shows that the three eigenvalues

E
(1)
1i

(i = 1, 2, 3) depend only upon relative positions of the Ar atoms and their distances from the center

of mass of the SF6 molecule. However, as described in Chapter 3, the overall potential energy depends not

only on the distances from the Ar atoms to the sulfur atom, but also on the orientation and the position

of the SF6 molecule.



Chapter 3

Potential energy functions

3.1 Introduction

As discussed above, in order to calculate the values of level energy shifts, the rigid molecule−surrounding

atoms potential, V0 (Rj), is the next term needed. Moreover, as we will see in Chapter 4, the potential

energy is necessary in performing Monte Carlo simulations. In this chapter, we shall examine this potential

in detail.

The overall potential energy of this matrix plus impurity system is a sum of two independent parts

V0 =
n∑

j=1

VArj−SF6 +
n−1∑

i=1

n∑

j=i+1

VAri−Arj (3.1)

in which n is the number of the argon atoms in the model used for the matrix. The first term on the right

side of Eq. 3.1 is the Ar−SF6 interaction potential; it will be discussed in Section 3.2. The second term is

the Ar−Ar interatomic potential, described in Section 3.3. No three-body or higher-order interactions are

considered. This approximation is necessary to save computing time, and it is not expected to introduce

significant errors into the calculations [27].

3.2 The Ar−SF6 interaction potential

Pack et al. point out that although an SF6 molecule is octahedral and is often treated as a heavy “spherical”

perturber in experiments with other molecules, this is not true [45]. In particular, SF6 is known to be

rotationally relaxed rapidly by itself [54, 55] and by noble gases [56, 57], and some scattering experiments [58]

22
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have shown some effects due to potential function anisotropy.

An early attempt to determine the anisotropic potential for an Ar−SF6 system was reported by Isnard et

al. [59, 60]. However, that model shows unphysical behavior and gives very poor results for properties other

than the virial coefficient [45]. A better approximation to the strongly anisotropic atom plus rigid-molecule

portion of this potential, V0 (Rj), was determined by Pack et al. [61] using the damping of oscillations

in the total differential cross section (DCS), which is directly related to the potential anisotropy, in an

analysis based on the infinite order sudden approximation (IOSA) [45, 62]. This section will discuss their

anisotropic potential model in detail.

The SF6–Ar interaction is sensitive to the relative orientation of Ar and SF6. The intermolecular

potential may be written in the form

V0(Rj , θj , φj) =
∑

l,m

vlm(Rj) Ylm(θj , φj) (3.2)

in which l = 0, 1, 2, · · ·, m = 0, ±1, ±2, · · · , ±l, and the vlm(Rj) represents the radial parts of the

potential with Rj being the distance from the center of mass of the SF6 molecule to the j-th Ar atom. The

angular part of the potential is represented by the spherical harmonic functions Ylm(θj , φj).

For the low energy collisions studied by Pack et al . [45, 62], vibrational excitation is very unlikely, so

SF6 can be treated as a rigid rotor. Following Ref. [45, 62], we employed a Morse-Morse-Morse-Spline-

Van der Waals (M3SV) potential to calculate the Ar−SF6 interaction energies. The M3SV potential is

illustrated in Fig. 3.1. In regions i = I, II, and III, it is represented by Morse potentials

Vi(R) = εi {exp [− 2αi (R− rmi)] − 2 exp [−αi (R− rmi)]} (3.3)

which are chosen so that they are continuous and have continuous first derivatives at the points at which

they join. The first derivative of a Morse function V is

∂Vi

∂R
= 2 αi εi e

−αi(R− rmi)
[
1 − e−αi(R− rmi)

]
(3.4)

Examining the first derivatives of the potentials at rm, the position of the overall potential minimum, one

has
∂VII

∂R

∣∣∣∣
rm

=
∂VIII

∂R

∣∣∣∣
rm

= 0 (3.5)
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Figure 3.1: Typical M3SV potential with regions to scale. Regions I, II, and III are the Morse potential
regions; IV is the spline region, and V is the long range van der Waals region (from Ref. [62]).
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which turns out to be

rm,II = rm,III = rm (3.6)

and the potentials at rm satisfy the relation

VII (rm) = VIII (rm) (3.7)

Substituting Eq. 3.6 into Eq. 3.7, one has

εII = εIII = ε (3.8)

Therefore, the only different parameters of VII and VIII are αII and αIII. Moreover, at r0, the requirements

that

VI (r0) = VII (r0) = 0 (3.9)

and
∂VI

∂R

∣∣∣∣
r0

=
∂VII

∂R

∣∣∣∣
r0

(3.10)

yield the relationship

ε1 =
αII

αI
ε (3.11)

r0 = rm − ln 2
αII

(3.12)

and

rmI = r0 +
ln 2
αI

(3.13)

Thus αI is the only independent parameter in VI.

The potential in region IV is represented by a single cubic spline function

VIV(x) = β1 + (x− x1){β2 + (x− x2) [β3 + (x− x3)β4]} (3.14)

where x = R/rm is a reduced distance.

In region V, the potential has the form of a Van der Waals expansion

VV(R) = − C6

R6
− C8

R8
− C10

R10
(3.15)
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Given VIII and VV, VIV is completely determined by the requirements of continuity of the potential and its

slope via the relations

β1 = VIV(x1)

= VIII(r1) (3.16)

β2 =
1

x2 − x1
[VIV(x2) − β1]

=
1

x2 − x1
[VV(r2) − β1] (3.17)

β3 = − 1
x2 − x1

(
∂VIV

∂x

∣∣∣∣
x1

− β2

)

= − 1
x2 − x1

(
∂VIII

∂R

∣∣∣∣
r1

rm − β2

)
(3.18)

β4 =
1

x2 − x1

[
1

x2 − x1

(
∂VIV

∂x

∣∣∣∣
x2

− β2

)
− β3

]

=
1

x2 − x1

[
1

x2 − x1

(
∂VIV

∂R

∣∣∣∣
r2

rm − β2

)
− β3

]
(3.19)

Thus, although this M3SV form appears to have 18 parameters, only ten (ε, rm, αI, αII, αIII, x1, x2, C6,

C8 and C10) are independent, the remaining parameters being determined by the continuity requirements.

In practice the three Cn values are assumed known, and varied only if the data cannot be fit otherwise.

Similarly, x1 is usually taken as the inflection point of VIII,

x1 = r1/rm = [rm + αIII
−1 ln 2]/rm (3.20)

and x2 is usually held fixed at some value (about 1.5) such that r2 (= rmx2) is large enough that the

series in Eq. (3.15) is expected to be adequate, but small enough to prevent the spline in Eq. (3.14) from

oscillating [62]. Furthermore, we use α = αI = αII. Thus, there are really only four parameters (ε, rm, α

and αIII) that are freely varied, with limited or no variation of the others.

Anisotropy is introduced by allowing ε, rm, and αi to depend on the relative orientation of Ar and

SF6, and as illustrated in Fig. 3.2, the anisotropy of the potential depends upon the direction in which the

argon atom approaches the SF6. Following Ref. [45], we have

ε = ε̄ [ 1 + a4T4 + a6T6 + · · · ] (3.21)
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Figure 3.2: Radial behavior of the empirical Ar−SF6 potential energy surface of Pack et al. [45, 62] along
the two, three, and fourfold molecular symmetry axes of SF6.
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Table 3.1: Ar-SF6 Potential parameters. The first seven are in atomic units, while the last six are dimen-
sionless (From Ref. [45]).
Parameter ε̄ r̄m ᾱI = ᾱII ᾱIII C6 C8 C10

(7.5± 0.1)× 10−4 8.39± 0.02 0.97± 0.03 0.88± 0.03 252± 10 6100 180 000
a4 a6 b4 b6 x1 x2 d4i/6i

-0.5±0.1 +0.15±0.10 +0.10±0.03 -0.02±0.01 Infl. pt. 1.4 0

rm = r̄m [ 1 + b4T4 + b6T6 + · · · ] (3.22)

αi = ᾱi [ 1 + d4iT4 + d6iT6 + · · · ] (3.23)

in which the Tn are the spherical tensor elements

T4 =
1
2

{√
5
6

[Y4, 4(θ, φ) + Y4,−4(θ, φ) ] +

√
7
3

Y4, 0(θ, φ)

}
(3.24)

T6 =

√
1
8

{
−

√
7
2

[Y6, 4(θ, φ) + Y6,−4(θ, φ) ] + Y6, 0(θ, φ)

}
(3.25)

The parameters of the Pack et al. [45] potential for Ar-SF6 are listed in Table 3.1.

3.3 The Ar−Ar interatomic potential

An accurate Ar−Ar pair potential reported by Aziz and Slaman [63] has the form

V (r) = ε

[
A · exp

(−α · (r/rm) + β · (r/rm)2
) −

(
C6

(r/rm)6
+

C8

(r/rm)8
+

C10

(r/rm)10

)
· f(r)

]
(3.26)

in which

f(r) = exp
(
− (1− (D · rm)/r)2

)
if

r

rm
≤ D (3.27)

= 1 otherwise (3.28)

The relevant parameters are: rm = 3.7565 Å, α = 10.77874743, β = −1.812004, D = 1.36, C6 =

1.10785136, C8 = 0.56072459, C10 = 0.34602794, A = 2.26210716× 105, ε = 99.5 cm−1 [63].

Monte Carlo simulations will require the calculation of many Ar−Ar pair interactions. For example, for

a system containing an SF6 molecule surrounded by 1000 Ar atoms, after each move of the SF6 molecule,

1000 Ar−SF6 potentials will need to be re-calculated; if an argon atom moved, one Ar−SF6 potential and
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Table 3.2: Parameters of the approximate potentials of Eq. 3.29
A6 (eV Å6) A9 (eV Å9) A12 (eV Å12)

Ar−Ar -59.7 -6.94×102 10.97×104

999 Ar−Ar potentials will need to be re-calculated. Moreover, the possibility of the latter case occurring

is 1000 times larger than that of the former, and there may be about 106 trial moves per atom to occur in

the whole simulation, resulting in about 6 × 108 calculation for Ar−Ar potentials if the acceptance ratio

is 60 percent. Moreover, when the overall potential is calculated the first time, one needs to calculate

1000 Ar−SF6 potentials and (1000× 999/2 = ) 499 500 Ar−Ar potentials. Therefore, use of the actual

Aziz-Slaman Ar−Ar potential would be very time-consuming and a simple, yet good approximation would

be reasonable. For the sake of computational efficiency, we therefore followed Eichenauer and Le Roy [27]

and used this interaction energy by employing a simple form

V (r) =
A12

r12
+

A9

r9
+

A6

r6
(3.29)

with parameters A12, A9 and A6 determined from a least squares fit of Eq. 3.29 to the well region of

the Ar−Ar potential recommended by Aziz and Slaman [63]. The resulting parameters are listed in Table

3.2. Figure 3.3 shows how this simple Ar−Ar potential model (dotted curve) agrees with the Aziz-Slaman

model (solid curve).

Although this simplified potential is a rough approximation, its inadequacies were believed to be much

smaller than the uncertainties in the Ar−SF6 potential, especially at the energies associated with the low

temperature matrices of interest [27]. Thus, the gain in computational speed is considered to be well worth

the slight loss of accuracy.
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Figure 3.3: Ar−Ar interaction potential. Dotted curve: simple model with the form as Eq. 3.29. Solid
curve: accurate model reported by Aziz and Slaman [63].



Chapter 4

Thermal averaging procedure

Using the perturbation theory model and potential functions described in the preceding chapters, one can

readily calculate the frequency shifts of the components of the ν3 band of SF6 for any given SF6 and

lattice atom arrangement. However, the number of energetically accessible arrangements contributing to

the thermal average is quite large at most temperatures. Monte Carlo (MC) and molecular dynamics

(MD) simulations are two methods for obtaining the thermally averaged arrangement. In this project,

the MC method was utilized to simulate the “relaxation” of an SF6 molecule in an argon matrix, and to

determine the thermal average of the frequency shifts of the three-component ν3 mode. The reason that

an MC calculation was employed is that simulations are easier to perform using MC than using MD, since

no velocities, forces, or accelerations need to be calculated. The focus of this project is on the pattern

of the ν3 frequency shifts in a thermally equilibrated system, and on the assignment of the peaks in the

experimental spectrum. While this type of information may in principle be obtained by both methods, MC

is utilized here, as it is simpler to implement and less time consuming than analogous MD calculations.

The following sections will first outline the standard Monte Carlo simulation procedures, and will then

describe some details of our Monte Carlo simulation program.

4.1 Monte Carlo simulations

Monte Carlo methods for molecular simulation were first introduced in 1953 when Metropolis et al. reported

a simulation of a system of 224 hard disks [44]. The name Monte Carlo was initially applied to a class

of mathematical methods by scientists working on the development of nuclear weapons in Los Alamos in

the 1940s, and today many types of calculations are referred to as Monte Carlo calculations. All Monte

31
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Carlo methods are built around some sort of random sampling which involves the use of a random-number-

generating algorithm. In the present context, a Monte Carlo simulation is one in which the locations and

orientations of molecules are chosen according to a statistical distribution. In particular, many possible

conformations of a molecule could be examined by choosing the conformation angles randomly. If enough

iterations are done and the results are weighted by a Boltzmann distribution, the resulting average is the

correct thermodynamic value of that property. The steps in a Metropolis Monte Carlo simulation for a

molecular system are as follows.

1. Choose an initial set of particle positions. For a molecule, this would include a randomly selected

orientation. In liquid simulations the molecules are often started with a lattice arrangement. For

solvent-solute systems, the solute is often placed at the center of a collection of solvent molecules

located in positions obtained from a simulation of the pure solvent [64]. For our matrix impurity

problem, the Ar atoms will initially be arranged in a face-centered cubic (FCC) lattice with zero or

one or more atoms removed to form a vacancy in which we shall place an SF6 molecule.

2. Compute the potential energy of the system. In our case, this will be done by summing over all

pairwise interactions.

3. Randomly choose a trial move for the system. This could involve moving all particles at once, but

more often it involves moving one atom or molecule at a time, for reasons of computational efficiency.

In the present work, this step will be broken into two parts: (i) randomly choose a particle to be

moved, and then (ii) move that particle with the vector displacement (δX, δY, δZ), with increments

δX, δY and δZ randomly chosen with uniform probability subject to the constraint that

−∆ ≤ |(δX, δY, δZ)| ≤ ∆ (4.1)

where ∆ is a critical parameter governing the efficiency of the simulation (see below).

4. Compute the potential energy of the system in the new configuration.

5. Decide whether to accept the new configuration. The acceptance criterion in the Metropolis method

is based on the old and new energies, and ensures that after a sufficiently large number of moves,

the collection of all accepted and rejected moves represents a Boltzmann distribution. This criterion

determines whether we keep the new configuration or restore the selected particle to its previous
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position. When a move is performed, the new energy will usually differ from the old one. If the move

is downhill in energy, that is, the change in potential energy ∆V (r) is negative, the move is always

accepted. When the move is uphill in energy (i.e., ∆V (r) is positive), then the move is accepted with

a probability determined according to the following procedure. First a random number is generated

with a value x ∈ [0, 1]. If x is less than or equal to the probability factor P , with P given by

P = e−∆V (r)/kT (4.2)

then the move will be accepted. The probability factor is based on the Boltzmann distribution. This

step may be summarized mathematically by noting that we accept any move (uphill or downhill

in energy) with probability min {1, exp(−∆V (r) /kT )}. If the increase in energy is large, then the

probability factor is very small and the move is more likely to be rejected. On the other hand, if

the rise in potential is small, the factor is relatively large and the move will more likely be accepted.

Because this probability has to be greater than the random number x, only small positive changes in

lattice energy have a significant probability of being accepted. Accepting moves that are energetically

unfavorable allows the simulation to sample a larger configuration space. The sampling procedure

allows the system to migrate from a given configuration through slightly more repulsive configurations,

to arrive at a more stable structure.

6. Iterate Steps 3 through 5 until the system is thermally equilibrated.

7. Continue iterating and collecting data to compute the desired property. The expectation value of

any property is simply its average value, defined by the sum of its calculated values divided by the

total number of trial moves considered. This should yield a valid Boltzmann average as long as

the acceptance criterion mentioned in Step 5 ensures that the probability of a configuration being

accepted is equal to the probability of it being included in a Boltzmann distribution.

The size of the move in Step 3 of the above procedure will affect the computational efficiency of the

simulation. An inefficient simulation is one that requires an excessively large number of iterations, i.e.,

more potential energy calculations to obtain results of a given accuracy. For example, if the step size is too

small it will take many iterations for the atom arrangements to change significantly. On the other hand, if

the move size is too large few moves will be accepted, and there is little movement through configuration

space. In practice, the step size ∆ is often adjusted during the simulation so that about half the trial
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Figure 4.1: Top view of FCC lattice. (From Ref. [68])

moves are accepted, i.e., the acceptance ratio is about 0.5. This ratio is defined as the number of times a

move was accepted (Step 5 above) divided by the total number of attempted moves. Efficient calculations

are generally associated with an acceptance ratio between 0.5 and 0.7 [64, 65].

4.2 Details of the simulation program

4.2.1 Initial configuration and types of vacancy

As described in Sec. 4.1, the first step of a Monte Carlo simulation is to specify an initial configuration for

the whole system. Argon is chemically inert and optically transparent, and its intermolecular forces are

relatively weak. The properties of rare gases have been well studied and reviewed [66, 67]. X-ray diffraction

studies have shown that the rare gases normally crystallize in a cubic close-packed (CCP) structure with

a face-centered cubic (FCC) unit cell [43]. In this geometry, the lattice may be viewed as closed-packed

layers of atoms stacked one on the other. Each atom in the lattice has six nearest neighbours in each layer.

In CCP structures, the interstitial volume is minimized and each atom is in contact with three other atoms

in the plane below and three other atoms in the plane above (see Figs. 4.1 and 4.2). Therefore, each atom

has twelve nearest neighbours. Figure 4.3 illustrates the unit cell of a face-centered cube formed by argon

atoms. Grey circles denote argon atoms “hidden” behind the visible face of the cube; lines shown there

are not meant to represent bonds, but merely to illustrate the framework of the FCC unit cell. The labels
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Figure 4.2: The unit cell of the face-centered cube formed by argon atoms. (From Ref. [68])

adjacent to some of the black points of the unit cell illustrate four types of position in the FCC unit cell:

one located at the corner with the coordinate (0, 0, 0), one located at the center of the face (l/2, 0, l/2),

one located at the center of the bottom (l/2, l/2, 0), and the fourth one located at the center of the side

(0, l/2, l/2), where l is the edge length of the unit cell. All the other positions of this unit cell, and then

all the other positions of the entire matrix, may be reproduced by moving these four initial points along

x, y, or z directions by n l (n is an integer) distances. The starting configuration for our simulation is

generated by assuming we have a large number of argon atoms in a perfect FCC arrangement.

The model which we use to represent the matrix is an approximately spherical sample of up to 1505

argon atoms with the SF6 located at the center of that sphere. Since the perturbation of the argon atoms

located farther from the SF6 molecule will decrease drastically, as described in Sec. 2.4, 1505 or so argon

atoms is believed to be sufficient to simulate a good matrix environment (See Ref. [69]). After the argon

matrix was set up, it is necessary to label the argon atoms in some appropriate manner so that they can

be identified and moved during the MC procedure. In our simulation, all the argon atoms were labelled

with respect to their distances from the center of the matrix; in other word, the farther away the atom is,

the larger its numerical label is. For our 1505-atom spherical lattice, the distance from the center of the

matrix to the farthest shell of argon atoms is about 24 Å.
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Figure 4.3: The unit cell of the face-centered cube formed by argon atoms. Labels illustrate four types of
positions in the unit cell.
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Figure 4.4: Different vacancy sites may be formed by removing different combination of labelled atoms.

Although there are about 1500 argon atoms in the matrix model used in our simulation, not all of the

atoms need to move during the simulation. This is also because the perturbing atoms most distant from

the SF6 molecule will make much smaller contributions to the frequency shifts than the inner surrounding

atoms will. Moving only the inner atoms can save computer time, and still provides a good approximation

to the system. In our project, the number of movable argon atoms varied from about 50 to about 600, and

the radius of this sphere of movable atoms was varied from 8 Å to 18 Å.

There are two ways to introduce an SF6 molecule into the matrix, interstitially, or by removing one

or more argon atoms. The edge length of the FCC unit cell for a pure Ar lattice is 5.313 Å at 10 K and

5.328 Å at 30 K [43], while the distance from one fluorine atom to the other along the F−S−F bond is

about 6.2 Å [8]. The potential curves for SF6-Ar and Ar-Ar discussed in Chap. 3 also show that SF6 is

larger than an argon atom (See Fig. 3.2 and 3.3). Thus, it would seem to be energetically very unfavorable

to introduce an SF6 into the matrix interstitially. Thus, it would seem more likely that the chromophore

is admitted to be introduced into the matrix and approximately maintain the FCC packing of the lattice

through the removal of lattice atoms. Different numbers of argon atoms may be removed, and for a given

number of removed argon atoms the geometry of the vacancy site could vary; thus there are several types

of vacancy sites that could contain an SF6 molecule.

Figure 4.4 represents two FCC unit cells of the argon matrix in which a number of atoms are labelled
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numerically. These atoms are labelled using the techniques described above, where we assume that argon

atom No. 1 defines the center of the system.

Site 0 is the interstitial site formed by placing the SF6 at the center of a unit cell, without removing

any argon atoms from the lattice. One would expect this configuration to be very unstable. Site 1 is

formed through the removal of the No. 1 atom from the system. It has the highest symmetry, with twelve

nearest neighbors adjacent to the vacancy. The splitting of the ν3 frequency for an SF6 molecule in Site 1

is expected to be minimal. Moreover, because this site is heavily crowded, one may expect it to relax to a

more stable configuration during the simulation. In Site 2, formed by removing argon atoms No. 1 and 2,

one would expect there to be a distinction between an internal SF6 vibration parallel to the site axis and

one perpendicular to it.

Two possible ways to remove three argon atoms from a lattice were examined: Site 3a which has a

compact triangular form arising from the removal of argon atoms No. 1, 2 and 6, which are all nearest

neighbours, and Site 3b which has a linear form arising from the removal of argon atoms No. 1, 2 and

5, which comprise two nearest-neighbour pairs. In Site 3b SF6 vibrational motion perpendicular to the

symmetry axis of the vacancy is expected to be the most restricted, while in Site 3a its vibrations perpen-

dicular to the plane defined by the three removed atoms is restricted. In each case, however, the motion

perpendicular to the symmetry axis is expected to be at least approximately doubly degenerate, and the

motion along that axis is singly degenerate.

Site 4a is formed through the removal of argon atoms No. 1, 2, 6 and 10, which are all nearest neighbours;

it has tetrahedral symmetry, so the resulting spectrum is not expected to show a large splitting of the

degenerate vibration, due to the high symmetry of this type of vacancy. Three more sites with four atoms

removed were also examined: Site 4b formed by removing atoms No. 1, 2, 6 and 5; it may be regarded as

a combination of Sites 3a and 3b, Site 4c is formed by removing atoms No. 1, 2, 6 and 17, and Site 4d is

formed by removing atoms No. 1, 2, 3 and 10. These four vacancy sites may all be looked on as Site 3a

plus one other atom. Although the last three sites are not symmetric, in a simulation they could relax to

a tetrahedral shape or some other relatively compact site.

Site 5a, with atoms No. 1, 2, 6, 10, and 3 atoms removed, is similar to Site 4a, but with an additional

atom removed from one of the sides of the tetrahedron. Site 5b, with atoms No. 1, 2, 6, 10 and 17 removed,

is similar to Site 5a, so these two may be expected to have similar ν3 frequency shifts. One loose site with

five atoms removed is Site 5c which has atoms No. 1, 2, 3, 4 and 5 removed. Site 5d is formed through

the removal of atoms No. 1, 6, 7, 10, and 11, which is also loose.
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Four possible vacancy sites with six atoms removed were considered: Site 6a has atoms No. 1, 2, 6,

10, 3 and 11 removed, and may be viewed being Site 4a with two close atoms removed. Site 6b has

atoms No. 1, 2, 3, 4, 5 and 6 removed, and Site 6c has atoms No. 1, 2, 6, 10, 5 and 11 removed; it may

be viewed as being Site 4a with one close atom and one relatively distant atom removed. Site 6d has an

octahedral configuration, with atoms No. 1, 6, 7, 10, 11, and 19 removed. One might expect Site 6d would

be relatively stable and have little contribution to the frequency splitting of ν3 band of the SF6 molecule.

The low symmetry of the first three six-atom-vacancy sites makes it difficult to make predictions regarding

their vibrational splitting patterns.

The simulations may show, however, that the memory of the initial geometry of the vacancy sites

may be at least partly lost when one allows for annealing and thermal averaging. Since the most stable

configuration for a pure argon lattice at low temperature is an FCC matrix [43], as the number of removed

argon atoms increase, the stability of the system decreases. Therefore, there should be no need to examine

too large vacancies. In our simulation, we found that those sites with more than five argon atoms removed

have made relatively little contribution to the frequency shifts (see following chapters).

In summary, placing an SF6 in an interstitial site or a vacancy created by the removal of a single Ar

atom is very restrictive, due to the size difference between the chromophore and an Ar atom; the lattice

would not be able to remain in a pure FCC configuration. On the other hand, removing too many atoms

would create a vacancy that is energetically unfavorable, since it becomes more likely for the vacancy to

collapse when the matrix is annealed. However, we expect to find that several types of vacancies will be

energetically and thermally accessible, and our modelling of various vacancy types should determine the

most likely such sites. In the simulations described herein, SF6 was initially placed in the center of the

chosen vacancy.

4.2.2 Performing a move

The main part of an MC simulation is the movement of particles. This procedure contains three major

steps: choosing a particle, moving the particle, and deciding whether the move is to be accepted.

Random number generator

One might expect that computer programs would be able to generate “absolutely random” numbers. If that

were the case, by generating random numbers, computer programs would be capable of using the random

movements of particles to sample an ensemble perfectly. However, it is impossible for a computer program



CHAPTER 4. THERMAL AVERAGING PROCEDURE 40

to generate absolutely random numbers, since any program can only produce output that is entirely

predictable, and hence it cannot be absolutely random. The word “random” in real life and in computer

simulations describe concepts at different levels. In real life, to be random means to be unpredictable,

and to be uncontrollable. In computer simulations, it is conceptually and physically impossible to reach

complete randomness, although one may expect to attain the same statistical result from a sufficiently long

simulation.

An imprecise, but working, definition of randomness in the context of computer-generated sequences,

is to say that the deterministic program that produces a random sequence should be different from, and,

in all measurable respects, statistically uncorrelated with, the computer program that uses its output [70].

In other words, any two different random number generators should be able to produce statistically the

same results when coupled to a particular applications program. Otherwise, at least one of them is not a

good generator, at least with regard to that particular application.

The above definition is circular, comparing one generator to another. However, there exist several

generators which do satisfy this condition over a very broad class of applications programs. It is also found

empirically that statistically identical results are obtained from random numbers produced by physical

processes [70].

The most common random number generator, usually supplied by the computer system, is a linear

congruential generator, which generates a sequence of integers I1, I2, I3, · · ·, each between 0 and m − 1

(a large number) by the recurrence relation

Ij+1 = a Ij + c (mod m) (4.3)

where m is the modulus, and a and c are positive integers called the multiplier and the increment, re-

spectively [70]. One always needs to specify a seed for a random number generator to begin generating

numbers. Each initializing value will typically return a different subsequent random sequence, or at least

a different subsequence of some one enormously long sequence. However, the same seed will always return

the same random sequence for this linear congruential generator. Eq. 4.3 will eventually repeat itself, with

a period that is clearly no greater than m. Moreover, the length of the period depends on how m, a, and c

are chosen. This system-supplied random number generator usually runs very rapidly, requiring only a few

arithmetic operations per call, and it is almost universally applicable. On the other hand, the disadvantage

of this generator is also obvious: it is not free of sequential correlation on successive calls. For example,
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one cannot use this random number generator to generate k-random points to “fill up” a k dimensional

space, but rather will lie on (k − 1)-dimensional “planes”. There will be at most about m1/k such planes.

Another flaw is that with this generator the low-order (least significant) bits are often much less random

than their high-order bits [70]. Because of these shortcomings, one might need to be cautious regarding a

system-supplied random number generator.

Reference [70] introduced several substitutional random number generators. The generator ran1 passes

most statistical tests and is fairly fast. The only disadvantage of ran1 is that its period, which is approx-

imately 1 × 108, is somewhat short. However, ran1 is still a good random number generator for general

use. The generator ran2 is about 50 percent slower than ran1. However, ran2 is believed to be able to

provide perfect random numbers, within the limits of its floating-point precision. Thanks to its much

longer period, ran2 is particularly useful when one needs to generate more than 1×108 random numbers in

a single calculation. An even better generator is ran4, but it consumes twice the computing time of ran2.

The average number of trial moves per particle during one of our simulations may be as many as

1×106 and there are about 1 500 argon atoms in the matrix, so there would be about 1.5×109 trial moves

in the entire procedure. During a trial move, one needs one random number to choose a particle, three

random numbers to translate a particle in the three-dimensional space, three more random numbers to

rotate the SF6 molecule if it is the chosen particle, and one random number to decide whether this trial

move is to be accepted. Therefore, more than 7.5 × 109 random numbers need to be generated during a

typical simulation. Thus, considering the precision and speed of the simulation, the excellent yet still fast

subroutine ran2 from Ref. [70] is utilized.

Choosing a random member

Assuming the number of movable argon atoms is nmove, a random variable i is defined by

i = INT (ran2 (seed) (nmove + 3)) (4.4)

where INT is a fortran function, which converts specified types to type integer by truncating toward 0 (the

fraction is lost), and ran2 is the random number generator described above. The value of i is therefore

within the range [0, nmove + 2]. Discarding too small i values, since several argon atoms are removed from

the matrix to form vacancies, the choosing criteria are described as follows. If i ≤ nmove, the i-th argon

atom is chosen to translate. If i = nmove + 1, the SF6 molecule is chosen to translate. If i = nmove + 2,
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the SF6 is chosen to rotate.

Moving a particle

To translate a particle (an argon atom or the SF6 molecule) is quite straightforward. One can simply use

the random number generator to obtain a random vector (δX, δY, δZ). The new position for the particle

then will be (X + δX, Y + δY, Z + δZ).

Because Pack’s model for SF6−Ar interaction potential [45, 62] is anisotropic, the relative orientation

of each argon atom with respect to the SF6 bonds needs to be calculated. When the SF6 molecule rotates,

not only the angles of the F−S−F bonds with respect to the coordinate system but also the angles of

every argon with respect to the SF6 molecule vary, giving rise to complexity when calculating the SF6−Ar

interactions. It was found to be convenient to fix the SF6 at the origin and to translate and rotate the

argon atom lattice in the “opposite” direction. To perform such a rotation, one needs to first generate

three random Euler angles, δφ, δθ, and δψ. Then the matrix of the first rotation by an angle δφ about

the z axis is

D =




cos δφ sin δφ 0

− sin δφ cos δφ 0

0 0 1




(4.5)

The matrix of the second rotation by an angle δθ ∈ [0, π] about the x axis is

C =




1 0 0

0 cos δθ sin δθ

0 − sin δθ cos δθ




(4.6)

And the matrix of the third rotation by an angle ψ about the z axis (again) is

B =




cos δψ sin δψ 0

− sin δψ cos δψ 0

0 0 1




(4.7)

Then the whole rotation matrix is

A = BCD (4.8)
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and the new coordinates of the argon atom is




X ′

Y ′

Z ′




= A




X

Y

Z




(4.9)

Since the SF6 doesn’t “computationally” rotate (but it is regarded as already “physically” rotated), it is

easy to calculate the orientation of an argon atom with respect to the SF6 molecule by simply using the

(rotated) cartesian coordinates of the argon atom.

As Eq. 4.1 illustrated, the magnitude of the steps for the translation and the angles of the rotation

must be limited by a carefully chosen step size ∆. The values of ∆ were varied in several trial simulations

to determine values for which about fifty to seventy percent of trial moves will be accepted. The value of

the step size determined in this way are 0.06 Å for translation, and 0.1 π for rotation. These values were

used in the simulations reported herein.

4.2.3 Flowchart

Figure 4.5 presents a flow chart for our simulation. It shows that our simulation follows the standard

Metropolis Monte Carlo procedure. First we set up an initial configuration in which SF6 is positioned

at the center of the particular type of vacancy in the FCC lattice of argon atom. After we calculate the

potential energy of the system, we randomly choose a particle and perform a random move. Then we use

the acceptance criterion based on the Boltzmann distribution to determine whether this trial move is to be

accepted. If it is accepted, we will reset the configuration to the new one. Then the above sequence of steps

is iterated until the number of moves reaches MEQ, the assumed value for the number of moves required to

equilibrate the system. In our simulation, the potential energy of the system does not change significantly

after a relatively short run of about 1 000 moves per moving argon atom. Therefore, MEQ need not be

very large. In this equilibration phase, there is no need to perform the additional computational work of

calculating the frequency shifts.

The simulation then continues, and in each step the ν3 frequency shifts are calculated. After enough

values (this is controlled by setting the value of MAV) for the ν3 shifts are collected, the simulation ends.

The value of MAV was tested by varying it between 3× 104 and 1× 106 moves per moving argon atom.
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Figure 4.5: A flow chart of the standard Monte Carlo simulation
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4.3 Convergence tests

Several parameters determine the computing time and affect the quality of the results. In order to obtain

converged results as well as to save computing time, several convergence tests were performed to optimize

these parameters.

Ref. [69] found 1 500 argon atoms can form a near perfect argon matrix with respect to the properties

examined herein. The number of movable argon atoms was varied from about 50 to over 600, and 650

moving argon atoms was found to be adequate to simulate the behavior of the argon matrix. The system

reached equilibrium after about 1 000 moves per moving argon atom. Initially, a total of 100 000 moves

per moving argon atom was thought to be sufficient to obtain good simulated spectra for all the vacancy

sites. However, the unexpected behavior of Site 2 indicated that about 1 × 106 moves per moving argon

atom was necessary for its rational spectrum to be obtained (See Sec. 5.2.2 for more details).



Chapter 5

Frequency shift calculations

Using the IDID model developed by Eichenauer and Le Roy [27], the infrared spectrum of an SF6 molecule

in an argon matrix may be obtained by performing MC simulations. Sec. 5.1 will introduce line shape

functions and least-squares fitting methods used herein. Sec. 5.2 will present the simulated spectra for each

vacancy site and the results obtained from fits to the raw simulated spectra.

5.1 Fitting spectra to a sum of Gaussian functions

Figure 5.1 illustrates the spectrum for Site 3a obtained from our simulation. This figure was obtained

in the following way: the x-axis was divided into small bins of width 0.001 cm−1. After each step in

which frequency shifts were calculated, each of the three values obtained would be associated with one

of the bins. After enough MC steps have been carried out for each bin to have a statistically significant

number of values, a distribution curve of intensity vs. frequency shift is obtained. In other words, each

MC move gives us three sticks on the frequency shift axis, as schematically illustrated in Fig. 5.1, and the

distribution curve is obtained by counting the number of sticks within the same frequency-shift bin after

MAV MC moves. The curve in Fig. 5.1 has a Gaussian line shape and the peak area ratio appears to be

approximately 1 : 2. Since Site 3a has a triangular configuration (see Sec. 4.2.1), one might expect to find

that SF6 vibration within the plane is doubly degenerate while the vibration perpendicular to the plane

is singly degenerate. This would explain why the peak area ratio appears to be approximately 1 : 2. To

examine the area ratio more precisely, least-squares fit methods were utilized (see following discussion).

46
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Figure 5.1: Simulated spectrum for Site 3a. Black sticks represent three frequency shifts obtained from
one MC move.

5.1.1 Gaussian and Lorentzian functions

The simulated spectrum may be expected to have a Gaussian line shape due to the stochastic averaging

associated with the Metropolis Monte Carlo simulation which reproduces the Boltzmann distribution.

In contrast, the experimental spectrum has peaks with Lorentzian line shapes, due to the homogeneous

“pressure” broadening caused by the perturbing atoms (See Fig. 1.2) [9].

A Gaussian function has the form

G(ν) =
2

∆ν1/2

√
ln 2
π

e− 4 ln 2 [(ν− ν0) / ∆ν1/2]
2

(5.1)

and a Lorentzian function has the form

L(ν) =
∆ν1/2/ (2π)

(
∆ν1/2/2

)2 + (ν − ν0)
2

(5.2)

in which ν0 is the peak position, and ∆ν1/2 is the full width at half maximum (FWHM). The peak heights
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for these functions are related to the linewidths ∆ν1/2 by

G(ν0) =
2

∆ν1/2

√
ln 2
π

(5.3)

L(ν0) =
2

π ∆ν1/2
(5.4)

5.1.2 Least-squares fitting

In order to verify that the spectra obtained from the simulations have Gaussian line shapes, and to

obtain the peak positions, peak height, FWHM, and peak area ratio of these spectra, one needs to fit

each simulated spectrum to a sum of Gaussian functions. Non-linear least-squares fitting methods were

employed to perform these fits. A brief description of the linear and non-linear least-squares fitting methods

will be given here. For a thorough and detailed discussion of these techniques, see Chap. 15 of Ref. [70].

A least-squares fit seeks to find the values of a set of M parameters pj (j = 1, 2, · · · , M) which will

optimize the agreement between a set of N experimental (or ‘observed’) data yo(i) (i = 1, 2, · · · , N)

and calculated values for these data yc ({pj}; i) (i = 1, 2, · · · , N) generated from a model defined by the

M parameters. If all of the data are weighted equally, the least-squares fitting problem is concerned with

determining the set of parameter values for which the weighted dimensionless sum of squares of derivations

DSSD ≡ DSSD({pj}) =
N∑

i=1

[
yo(i) − yc ({pj} ; i)

u(i)

]2

(5.5)

is a minimum [71]. Here u(i) is the uncertainty of the observed datum yo(i). It is clear that DSSD will

reach its minimum when
∂ DSSD({pj})

∂ pk
= 0 (5.6)

for all parameters pk, simultaneously.

A least squares problem is called “linear” if the function defining the model may be written as

yc(i) ≡ yc ({pj}; i) =
M∑

j=1

pj φj(i) (5.7)

and the partial derivatives

φj(i) ≡
[
∂yc ({pj}; i)

∂pj

]

{pk}, k 6=j

(5.8)

have no dependence on the parameters pj ; if φj(i) is not independent of the pj ’s, it is a “non-linear”
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least-squares problem. A linear least squares fit has exactly one solution, consisting of a single unique set

of pj values. However, a non-linear problem may in general have a number of sets of pj ’s for which the

DSSD function has local minima, and there exists no a priori way of knowing how many such local minima

exist or which one is the global minimum. In practice, however, converged fits may usually be obtained by

performing an iterative series of linear fits until convergence is achieved.

Le Roy developed a subroutine NLLSSRR.F which can perform linear or non-linear least-squares fits

and (if desired) automatically uses sequential rounding and refitting to minimize the numbers of parameter

digits that must be quoted. To employ this subroutine, the following procedure may be followed. When a

linear least-squares fit is performed, the only input information required are the experimental data yo(i)’s,

their estimated uncertainties u(i)’s, and a knowledge of the partial derivatives of each calculated data

point yc({pj}; i) with respect to each parameter of the model, pk. When a non-linear least-squares fit is

performed, the overall procedure will consist the following steps:

1. Read in the experimental data yo(i) and generate some initial set of trial values for the parameters

defining the model, {pj(trial)}.

2. Prepare the arrays YO(i) = [yo(i) − yc ({pj(trial)}, i)] and DYDP(i, j), the partial derivatives of

i-th datum with respect to each of the free parameters pj (j = 1, 2, · · · , M) varied in the fit.

3. Call the linear least-squares routine and update the parameter values: pj(new) = pj(trial) + ∆pj .

4. Iterate these steps until convergence is reached.

The quality of fit to an experimental data set, and the ability of a given set of parameters to accurately

reproduce those data are represented by the dimensionless standard error (DSE) of the fit

σ̄f =

{
1

N − M

N∑

i=1

[
yc(i) − yo(i)

u(i)

]2
}1/2

(5.9)

where u(i) is the uncertainty of the experimental datum yo(i) [72]. If the experimental uncertainties used

are correct, a σ̄f value of less than 1.0 means that on average, the calculated values generated from the

model differ from the experimental data by less than the associated experimental uncertainties, while a

value of (say) 4.5 would mean that on average the predictions of the model differ from the experiment by

4.5 times the experimental uncertainties.

It is clear that fitting our simulated spectra to a sum of Gaussian functions is a non-linear least-squares
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fit problem. The program PEAKFIT.F developed by Le Roy calls the subroutine NLLSSRR.F and performs

such fits. Utilizing PEAKFIT.F, all the simulated spectra were fit to a sum of Gaussians, and the fitting

results will be discussed in the next section.

5.2 Frequency shifts for different sites

5.2.1 Frequency shifts for the vacancy sites

Utilizing the non-linear least-squares fit methods described above, the simulated spectrum for each type

of vacancy site was fitted to a sum of Gaussian functions. The simulated spectrum for Site 3a shown

in Fig. 5.2 was first normalized by fixing the total peak area to be 3, to reflect presence of the three

components in the ν3 vibrational band. The uncertainties, u(i), of the experimental data were set to be

1.0. The spectrum was then fitted to Gaussians, first with no constraints, and then with the peak area ratio

fixed at 1 : 2, yielding the results presented in Table 5.1. Comparing the two sets of results, we see that

the peak positions, heights, and FWHM from the two fits are very similar. Although the DSE associated

with the area-fixed fit (σ̄f = 0.1500) is somewhat larger than that associated with the no-constraints fit

(σ̄f = 0.1322), there are no obvious differences between the simulated spectrum and the curve generated

using the data from the lower part of Table 5.1, as illustrated in Fig. 5.2. One may conclude that the peak

area ratio for Site 3a should be fixed at 1 : 2, as expected from its geometric structure.

The same fit methods and uncertainty settings were employed for the other sites. Their spectra and

fitting results are presented in Figs. 5.3 - 5.14 and Tables 5.2 - 5.13. Site 0 is an interstitial site, and is

expected to be highly symmetric, but also quite crowded. The single peak of its simulated spectrum

represents its high symmetry. Site 1 is formed by removing one argon atom, and the perturbation by the

argon atoms again might be expected to be symmetric. However, as illustrated in Fig. 5.4, a “shoulder”

is observed, showing that the relaxed configuration of Site 1 is not symmetric. Moreover, the average

magnitude of the frequency shift for Site 1 is larger than that for Site 0. This might to be due to the fact

that the number of nearest neighbours for Site 1, which is 12, is larger than that for Site 0, which is 6,

resulting in a stronger perturbation occurring in the former case even though these neighbours might, on

average, be farther away. The simulated spectrum for Site 2 shows unexpected features: three peaks are

observed, but the peak area ratio is not the expected 1 : 1 : 1. Instead, the peak area ratio is roughly

3 : 2 : 1, as shown in Table 5.4. Fig. 5.7 shows that the simulated spectra for Sites 4a, 4b and 4d are the

same, with one single peak observed. This implies that both Sites 4b and 4d collapsed to Site 4a during
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the MC simulation, and the tetrahedral symmetry of Site 4a gives rise to a single peak in the corresponding

simulated spectrum. Several other sites also collapsed during the MC simulation: in particular, Sites 5a

and 5b have the same simulated spectrum; Sites 6a and 6b have the same simulated spectrum. Site 6d

is an octahedral site, and its simulated spectrum shows single peak as might be expected. Site 5d has a

similar geometry to that of Site 6d, and it also has a single peak in its simulated spectrum.
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Figure 5.2: Dotted curve: simulated spectrum for Site 3a. Line curve: the Gaussians generated using the
data from the lower part of Table 5.1.

Table 5.1: Non-linear least-squares fitting results for Site 3a. The upper part is the results for fitting with
no constraints, while the lower one is that for fitting with peak area ratio fixed to be 1 : 2

No constraints DSE= 0.1322
Peak Type Parameter Value Uncertainty
1 Gaussian position -6.7357 0.0003

width 0.3205 0.0008
height 12.21 0.02

2 Gaussian position -6.2308 0.0002
width 0.3478 0.0005
height 21.35 0.02

Area ratio 1:2 DSE = 0.1500
Peak Type Parameter Value Uncertainty
1 Gaussian position -6.7379 0.0003

width 0.3100 0.0006
height 12.16 0.02

2 Gaussian position -6.2323 0.0002
width 0.3536 0.0002
height 21.32
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Figure 5.3: Simulated spectrum for Site 0.

Table 5.2: Non-linear least-squares fitting results for Site 0.
DSE= 0.1452

Peak Type Parameter Value Uncertainty
1 Gaussian position -7.5917 0.0001

width 0.3231 0.0002
height 34.86 0.02
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Figure 5.4: Simulated spectrum for Site 1.

Table 5.3: Non-linear least-squares fitting results for Site 1. The upper part is the results for fitting with
no constraints, while the lower one is that for fitting with peak area ratio fixed to be 1 : 2

No constraints DSE= 0.0530
Peak Type Parameter Value Uncertainty
1 Gaussian position -7.8683 0.0005

width 0.3523 0.0008
height 11.36 0.01

2 Gaussian position -7.5633 0.0002
width 0.2840 0.0002
height 25.65 0.02

Area ratio 1:2 DSE = 0.0608
Peak Type Parameter Value Uncertainty
1 Gaussian position -7.8778 0.0002

width 0.3376 0.0003
height 11.14 0.01

2 Gaussian position -7.5666 0.0001
width 0.2885 0.0001
height 26.06
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Figure 5.5: Simulated spectrum for Site 2.

Table 5.4: Non-linear least-squares fitting results for Site 2. The upper part is the results for fitting with
no constraints, while the lower one is that for fitting with peak area ratio fixed to be 3 : 2 : 1

No constraints DSE = 0.0783
Peak Type Parameter Value Uncertainty
1 Gaussian position -7.612 0.0002

width 0.3650 0.0004
height 12.59 0.01

2 Gaussian position -6.813 0.0002
width 0.2876 0.0005
height 9.10 0.01

3 Gaussian position -6.0300 0.0002
width 0.2301 0.0005
height 7.04 0.01

Area ratio 3:2:1 DSE =0.2452
Peak Type Parameter Value Uncertainty
1 Gaussian position -7.613 0.0005

width 0.3560 0.0001
height 12.42 0.04

2 Gaussian position -6.813 0.0006
width 0.3120 0.0001
height 9.45

3 Gaussian position -6.0300 0.0007
width 0.2160 0.0001
height 6.82
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Figure 5.6: Simulated spectrum for Site 3b.

Table 5.5: Non-linear least-squares fitting results for Site 3b. The upper part is the results for fitting with
no constraints, while the lower one is that for fitting with peak area ratio fixed to be 1 : 1 : 1

No constraints DSE = 0.0530
Peak Type Parameter Value Uncertainty
1 Gaussian position -7.6120 0.0002

width 0.3109 0.0005
height 12.23 0.01

2 Gaussian position -7.2618 0.0002
width 0.2906 0.0004
height 12.77 0.01

3 Gaussian position -6.0201 0.0001
width 0.2493 0.0002
height 15.08 0.01

Area ratio 1:1:1 DSE =0.0543
Peak Type Parameter Value Uncertainty
1 Gaussian position -7.6135 0.0001

width 0.3078 0.0002
height 12.21 0.01

2 Gaussian position -7.263 0.0001
width 0.2935 0.0002
height 12.80

3 Gaussian position -6.0201 0.0001
width 0.2493 0.0002
height 15.07
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Figure 5.7: Simulated spectrum for Site 4a/4b/4d.

Table 5.6: Non-linear least-squares fitting results for Site 4a/4b/4d.
DSE= 0.0464

Peak Type Parameter Value Uncertainty
1 Gaussian position -5.8950 0.0002

width 0.2728 0.0006
height 41.30 0.01
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Figure 5.8: Simulated spectrum for Site 4c.

Table 5.7: Non-linear least-squares fitting results for Site 4c. The upper part is the results for fitting with
no constraints, while the lower one is that for fitting with peak area ratio fixed to be 1 : 2

No constraints DSE= 0.1230
Peak Type Parameter Value Uncertainty
1 Gaussian position -6.3060 0.0002

width 0.2742 0.0005
height 13.71 0.02

2 Gaussian position -5.4768 0.0001
width 0.2540 0.0002
height 29.47 0.02

Area ratio 1:2 DSE = 0.1233
Peak Type Parameter Value Uncertainty
1 Gaussian position -6.3060 0.0002

width 0.2735 0.0004
height 13.69 0.02

2 Gaussian position -5.4768 0.0001
width 0.2541 0.0002
height 29.48
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Figure 5.9: Simulated spectrum for Site 5a/5b.

Table 5.8: Non-linear least-squares fitting results for Site 5a/5b. The upper part is the results for fitting
with no constraints, while the lower one is that for fitting with peak area ratio fixed to be 2 : 1

No constraints DSE= 0.0491
Peak Type Parameter Value Uncertainty
1 Gaussian position -5.6858 0.0001

width 0.2770 0.0002
height 27.12 0.01

2 Gaussian position -5.3466 0.0001
width 0.2697 0.0003
height 13.92 0.01

Area ratio 2:1 DSE = 0.0491
Peak Type Parameter Value Uncertainty
1 Gaussian position -5.6858 0.0004

width 0.2770 0.0001
height 27.12 0.01

2 Gaussian position -5.3467 0.0001
width 0.2698 0.0002
height 13.92
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Figure 5.10: Simulated spectrum for Site 5c.

Table 5.9: Non-linear least-squares fitting results for Site 5c. The upper part is the results for fitting with
no constraints, while the lower one is that for fitting with peak area ratio fixed to be 1 : 2

No constraints DSE= 0.0598
Peak Type Parameter Value Uncertainty
1 Gaussian position -7.296 0.0001

width 0.3057 0.0003
height 12.30 0.01

2 Gaussian position -5.698 0.0001
width 0.2495 0.0001
height 30.11 0.01

Area ratio 1:2 DSE = 0.0598
Peak Type Parameter Value Uncertainty
1 Gaussian position -7.2964 0.0001

width 0.3055 0.0002
height 12.29 0.01

2 Gaussian position -5.6978 0.0001
width 0.2495 0.0001
height 30.11
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Figure 5.11: Simulated spectrum for Site 5d.

Table 5.10: Non-linear least-squares fitting results for Site 5d.
DSE= 0.1447

Peak Type Parameter Value Uncertainty
1 Gaussian position -5.3678 0.0001

width 0.2956 0.0002
height 38.04 0.02
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Figure 5.12: Simulated spectrum for Site 6a/6b.

Table 5.11: Non-linear least-squares fitting results for Site 6a/6b. The upper part is the results for fitting
with no constraints, while the lower one is that for fitting with peak area ratio fixed to be 1 : 2

No constraints DSE= 0.0650
Peak Type Parameter Value Uncertainty
1 Gaussian position -5.4977 0.0002

width 0.2890 0.0004
height 12.86 0.01

2 Gaussian position -5.1102 0.0001
width 0.2729 0.0002
height 27.59 0.01

Area ratio 1:2 DSE = 0.0667
Peak Type Parameter Value Uncertainty
1 Gaussian position -5.4970 0.0001

width 0.2916 0.0002
height 12.86 0.01

2 Gaussian position -5.1099 0.0001
width 0.2719 0.0001
height 27.59



CHAPTER 5. FREQUENCY SHIFT CALCULATIONS 63

Figure 5.13: Simulated spectrum for Site 6c.

Table 5.12: Non-linear least-squares fitting results for Site 6c. The upper part is the results for fitting
with no constraints, while the lower one is that for fitting with peak area ratio fixed to be 2 : 1

No constraints DSE= 0.1258
Peak Type Parameter Value Uncertainty
1 Gaussian position -5.4458 0.0001

width 0.3225 0.0003
height 23.28 0.02

2 Gaussian position -4.8325 0.0002
width 0.2559 0.0004
height 14.74 0.02

Area ratio 2:1 DSE = 0.1261
Peak Type Parameter Value Uncertainty
1 Gaussian position -5.4458 0.0001

width 0.3228 0.0003
height 23.29 0.02

2 Gaussian position -4.8324 0.0002
width 0.2552 0.0004
height 14.73
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Figure 5.14: Simulated spectrum for Site 6d.

Table 5.13: Non-linear least-squares fitting results for Site 6d.
DSE= 0.0900

Peak Type Parameter Value Uncertainty
1 Gaussian position -5.1293 0.0001

width 0.3666 0.0002
height 30.80 0.01
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All the spectra presented above were obtained using the following simulation settings.

• The radius defining the size of the matrix sample is 24 Å, which means that up to 1 505 (the value

for Site 0) argon atoms surround the SF6 molecule.

• The maximum distance from the center of the matrix to the farthest moveable argon atoms is 18 Å,

which means that the number of moveable argon atoms is at most 627 (the value for Site 0). The

more distant argon atoms are frozen in perfect FCC positions during the simulation.

• The average number of MC move for one of the movable argon atoms during the simulation is 106.

• For the first 105 MC steps, the temperature of the system is set at 10 K. After that, the temperature

increases to 30 K. After a total of ca. 3× 108 more MC steps, the temperature drops back to 10 K.

105 more MC steps later, the frequency shifts begin to be collected.

The simulation for each spectrum requires about eighteen days to run on 1 CPU of a Silicon Graphics

Origin 380, or five days on 1 CPU of an IBM 690HP.

For a particular site, one would expect that the ν3 vibrational band of SF6 might be split into two to

three components. One may therefore expect that the area ratio for the two-components case is 1 : 2 or

2 : 1, and that for the three-components case is 1 : 1 : 1. As one can see from the fitting results, most of the

simulated spectra for these vacancies accurately reproduce this behavior, with DSE for each no-constraints

case being only slightly smaller than that for the corresponding area-fixed one. As is also expected, as

the size of the vacancy increases, the peaks tend to have frequency shifts which are smaller in magnitude,

because a larger vacancy leads to a weaker perturbation of the SF6 molecule.

5.2.2 Site 2 is a special case

As discussed above, if the ν3 band of SF6 is split into three components, we would normally expect the

peak area ratio to be 1 : 1 : 1. However, Site 2 appears to be an exception to this rule; its spectrum has

three peaks, but the area ratio is approximately 3 : 2 : 1. Moreover, the DSE for the no-constraints fit is

0.0783 while that for the area-fixed case is 0.2452, 210% larger.

At first, it was thought that this result reflected the fact that the simulation had not reached conver-

gence, so the number of MC moves per argon atom was increased from 3 × 104 to 1 × 106; however, the

same results were obtained. The number of moveable atoms was then increased from about 55 to about
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627, and the number of moves during the annealing procedure was also increased, but the simulation still

generated the same spectrum.

The unexpected peak area ratio, 3 : 2 : 1, then drew our attention. One possible explanation was that

the simulated spectrum for Site 2 was actually a combination of two (or even more) sites. If this is true,

however, it is necessary to find a way to distinguish the two (or more) cases.

This was done in the following manner. First, the average frequency shift was examined at each MC

move. Unfortunately, these average values showed no obvious features that demonstrated that the “Site 2”

spectrum was due to more than one type of vacancy. We then examined the maximum separation among

the three ν3 peaks during the simulation, and obtained the results shown in Fig. 5.15. From Fig. 5.15, one

can see that these peak separation values are distributed between two distinct sets. This figure implies

that “Site 2” is indeed composed of two different types of vacancy. Sorting these points into two groups

based on the maximum peak separations yielded the spectra shown in Figs. 5.16 and 5.17. Fitting each of

these spectra to a sum of Gaussians using the non-linear least-squares techniques described above yielded

the results shown in Tables 5.14 and 5.15, respectively. The fitting results thus proved that the “Site 2”

spectrum of Fig. 5.5 is actually the combination of Site 2a, for which the area ratio is 2 : 1 and peak splitting

is about 1.6 cm−1, and Site 2b, for which the area ratio is 1 : 2 and the peak splitting about 0.7 cm−1. The

ratio of the probability of finding Site 2a vs. 2b is about 1.2 : 1. These results appear to indicate that at

equilibrium there exist two distinct types of two-atom vacancy sites. A summary of the fitting results for

all of the various vacancy site types is represented in Table 5.16.
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Figure 5.15: Maximum peak separations versus MC moves for Site 2.
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Figure 5.16: Simulated spectrum for Site 2a.

Table 5.14: Non-linear least-squares fitting results for Site 2a. The upper part is the results for fitting
with no constraints, while the lower one is that for fitting with peak area ratio fixed to be 2 : 1

No constraints DSE= 0.2201
Peak Type Parameter Value Uncertainty
1 Gaussian position -7.6471 0.0003

width 0.3525 0.0006
height 21.42 0.03

2 Gaussian position -6.0297 0.0003
width 0.2333 0.0007
height 16.14 0.04

Area ratio 2:1 DSE = 0.2201
Peak Type Parameter Value Uncertainty
1 Gaussian position -7.6471 0.0003

width 0.3523 0.0006
height 21.42 0.03

2 Gaussian position -6.0297 0.0003
width 0.2336 0.0006
height 16.15
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Figure 5.17: Simulated spectrum for Site 2b.

Table 5.15: Non-linear least-squares fitting results for Site 2b. The upper part is the results for fitting
with no constraints, while the lower one is that for fitting with peak area ratio fixed to be 1 : 2

No constraints DSE= 0.0765
Peak Type Parameter Value Uncertainty
1 Gaussian position -7.5233 0.0002

width 0.3094 0.0004
height 12.16 0.01

2 Gaussian position -6.8127 0.0001
width 0.2946 0.0002
height 25.54 0.01

Area ratio 1:2 DSE = 0.0764
Peak Type Parameter Value Uncertainty
1 Gaussian position -7.5233 0.0002

width 0.3094 0.0003
height 12.16 0.01

2 Gaussian position -6.8127 0.0001
width 0.2946 0.0002
height 25.54
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Table 5.16: Properties of the simulated spectra for the various vacancy types considered.
Site No. of peaks Peak position/cm−1 Peak area
0 1 -7.59 3
1 1 -7.88 1

2 -7.57 2
2a 1 -7.65 2

2 -6.02 1
2b 1 -7.52 1

2 -6.80 2
3a 1 -6.74 1

2 -6.23 2
3b 1 -7.61 1

2 -7.26 1
3 -6.02 1

4a/b/d 1 -5.90 3
4c 1 -6.31 1

2 -5.48 2
5a/b 1 -5.68 2

2 -5.35 1
5c 1 -7.30 1

2 -5.70 2
5d 1 -5.37 3

6a/b 1 -5.50 1
2 -5.11 2

6c 1 -5.44 2
2 -4.83 1

6d 1 -5.13 3

5.3 Energies for different sites

Table 5.17 represents the potential energies for different sites considered in this project. The second

column of this table shows the total potential energy for the interstitial and vacancy sites in a pure argon

system. The third column shows the total potential energy for the interstitial and vacancy sites with an

SF6 molecule in the matrix. The fourth column illustrates the difference ∆E1 between the second and

the third columns. The fifth column shows the value of ∆ E2 (= ∆E1 − ∆E1 (min)). The sixth column

shows the sum of the SF6−{Ar matrix} potential energy for the initial configuration of each site and the

seventh column shows the energy for the relaxed configuration at each site. The eighth column shows the

final SF6−{Ar matrix} potential energy difference for each site relative to that of Site 0.

Examining the total potential energy for each site in a pure argon system, one sees that as the size of

the vacancy increases its total potential energy also increases. The same trend is observed for the total
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Table 5.17: Energies for different sites.
Total potential energy / eV SF6−matrix energy / eV

Pure Ar With SF6 Difference Total E SF6−Ar Difference
Site Etot E′tot ∆E1

a ∆E2
b Initial Relaxed ∆E3

c

0 -126.36 -125.50(2)d 0.86 0.50 90.446 -0.407(3)d 0
1 -126.16 -125.56(1) 0.60 0.24 1.140 -0.363(4) 0.044
2a -125.98 -125.10(6) 0.88 0.52 5.713 -0.369(2) 0.038
2b -125.98 -125.25(5) 0.73 0.37 5.713 -0.379(2) 0.028
3a -125.81 -125.31(1) 0.50 0.14 3.641 -0.369(1) 0.038
3b -125.78 -125.25(2) 0.53 0.17 0.706 -0.348(4) 0.059
4a -125.65 -125.27(2) 0.38 0.02 -0.353 -0.386(1) 0.021
4b -125.62 -125.15(1) 0.47 0.11 1.755 -0.365(3) 0.042
4c -125.64 -125.19(1) 0.45 0.09 1.531 -0.348(2) 0.059
4d -125.62 -125.26(1) 0.36 0 37.852 -0.385(2) 0.022
5a -125.48 -125.02(2) 0.46 0.10 -0.206 -0.366(2) 0.041
5b -125.48 -125.04(1) 0.44 0.08 -8.017 -0.369(1) 0.038
5c -125.44 -124.93(2) 0.51 0.15 0.427 -0.336(2) 0.071
5d -125.48 -125.00(2) 0.48 0.12 2.168 -0.340(2) 0.067
6a -125.32 -124.88(1) 0.44 0.08 -0.273 -0.349(2) 0.058
6b -125.28 -124.78(2) 0.50 0.14 0.491 -0.317(2) 0.090
6c -125.31 -124.88(1) 0.43 0.07 0.946 -0.362(2) 0.045
6d -125.33 -124.91(1) 0.42 0.06 -0.304 -0.353(2) 0.054

a ∆E1 ≡ Etot − E′tot
b ∆E2 ≡ ∆E1 −∆E1 (min) = ∆ E1 −∆E1 (4d)
c ∆E3 ≡ ESF6−Ar − ESF6−Ar (min) = ESF6−Ar − ESF6−Ar (0)
d Numbers in parenthesis are uncertainties, defined as u =

√∣∣∣E2 − E2
∣∣∣.

potential energy for each site with an SF6 molecule in the matrix. However, no clear trend could be found

for the total SF6−{Ar matrix} potential energy. The potential energy differences shown in column four

decrease as the size of the vacancy increases. This is because for larger sites, the interaction between the

SF6 molecule and the argon atoms are weaker, leading to a smaller difference between the total potential

energy for a pure argon system and that for a system containing an SF6 molecule.

One might expect that p = exp (−∆Ei / kT ) (i = 1, 2, or 3) would indicate the relative stability of the

various sites. However, we found that the magnitudes of most of the energy differences ∆ Ei (i = 1, 2, or 3)

were quite large compared with kT , 8.6 × 10−4 eV, resulting in quite small p values. This indicates

that the various sites cannot be in equilibrium, otherwise the site stability would be determined by the

corresponding p value. We do not yet understand how to relate these relative energies to the observation

that the experimental spectrum shows presence of multiple sites.
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Fitting to the experimental spectrum

Figure 6.1 shows the experimental spectrum for SF6 in Ar at a concentration ratio of Ar/SF6 = 10 000,

taken from Ref. [8]. This figure shows an unexpectedly large amount of structure, with 9-11 observed

peaks. The major goal of this project is to attempt to explain quantitatively the high-resolution spectrum

of SF6 in an argon matrix. Now that the spectra for a set of vacancies have been obtained, one can fit the

experimental spectrum to a sum of these simulated spectra, utilizing non-linear least-squares fit methods.

6.1 Representation of the experimental spectrum

The experimental spectrum has peaks with Lorentzian line shapes, due to the homogeneous “pressure”

broadening caused by the perturbing atoms [9]. Because of the stochastic averaging associated with the

Metropolis Monte Carlo simulation, which reproduces the Boltzmann distribution, the simulated spectra

have Gaussian line shapes. The IDID model can predict the frequency shifts for the ν3 vibrational band of

SF6 in an argon matrix, but it does not consider any lifetime broadening factors. Thus, although the line

shapes are different, one may still utilize the peak positions and peak heights from the simulated spectra

to reproduce the experimental spectra. Therefore, Lorentzian spectra for all the site types are generated

using the peak positions and relative peak heights of the simulated results from Table 5.16 and all the peak

widths are set to be 0.07 cm−1 which is the average width of the experimental spectral peaks (See Table

6.1). The Lorentzian spectra are illustrated in Fig. 6.2.

Before this simulated spectrum could be fitted to the experimental one, the latter must be digitized.

Unfortunately, no digital experimental spectrum could be obtained from Swanson and Jones. However,

information about the peaks given in Ref. [3] is listed in Table 6.1. Using the data from the table and

72
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Figure 6.1: ν3 absorption spectrum at T= 10 K for Ar/SF6 = 10 000. Lower: unannealed. Upper: after
being annealed by heating to 30 K [8].
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Figure 6.2: Lorentzian spectra generated from the peak positions and peak heights of the simulated results.
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Table 6.1: Frequencies and FWHM for ν3 peaks of SF6 in argon: 1/10 000 (From Ref. [3])
T= 10 K T = 30 K

Peak FWHM / cm−1 ν / cm−1 ν / cm−1 Heighta / Arbitrary Units
A 0.05b 935.857c 936.057 0.35
B 0.08 936.806 936.975 0.52
C 0.12 936.993 · · · 0.10
D d 937.416 936.555 0.65
E 0.03 937.631 937.834 1.35
F 0.06 937.930 938.073 3.00
G 0.10 938.321 938.347 0.75
H 0.04 938.475 · · · 1.50
I 0.07 938.617 938.645 2.70

a The values in this column were obtained from UNGRAPH, representing the peak height of the corre-
sponding Lorentzian functions.
b Full width at half maximum, estimated by deconvolution from the observed spectrum and instrumental
line shape.
c Uncertainty of frequencies is ± 0.005 cm−1.
d This is a composite of at least two peaks [3].

those from the program UNGRAPH, which can roughly create digital data from a scanned picture, a new

“experimental” spectrum was then generated, and is illustrated by the solid curve in the upper segment

of Fig. 6.3. The dotted curve in Fig. 6.3 is made up of points obtained from a scanned experimental

spectrum using UNGRAPH. It is clear that the new “experimental” spectrum, which is a sum of Lorentzian

functions, does not reproduce the experimental spectrum very well, with somewhat large differences in

peak heights between these two curves, especially in the region from 935.3 cm−1 to 937.6 cm−1. Therefore,

an “asymmetric Lorentzian” baseline was introduced to diminish these differences. This “asymmetric

Lorentzian” baseline is defined by a peak located at 937.8 cm−1, its left FWHM being 3.0 cm−1 and right

one being 1.7 cm−1; it is illustrated by the dashed curve in Fig. 6.4. The “experimental spectrum” with

the baseline added is illustrated by the solid curve in the lower segment of Fig. 6.3, and it fits the scanned

spectrum fairly well. It appears that one shoulder between peaks F and G cannot be reproduced by this

new “experimental spectrum”. This may reflect the fact that there is an additional peak there which

Swanson and Jones were unable to isolate. Our simulation, in fact, predicts the presence of weak peaks in

this region (see Sec. 6.3 for more details).
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Figure 6.3: Dotted curves: scanned experimental spectrum. Solid curves: Lorentzians generated from the
data of Table 6.1. Upper: without a baseline. Lower: with an “asymmetric Lorentzian” baseline added.
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Figure 6.4: New “experimental” spectrum generated from the data of Table 6.1 and those from UNGRAPH.
The dashed line is the “experimental” background.
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6.2 Fitting of the simulated spectra

Comparing the simulated spectra of Fig. 6.2 with the experimental one of Fig. 6.1, one sees that the sim-

ulated spectral peaks are mostly located from − 5 cm−1 to − 8 cm−1, while the experimental ones range

from − 9.5 cm−1 to − 12.1 cm−1. This difference reflects the fact that the IDID model is not perfect.

For example, neither the instantaneous-dipole/induced-quadrupole interaction nor changes in the repul-

sive short-range SF6−Ar potential associated with vibrational stretching have been taken into account,

and the SF6 is treated as a rigid molecule during the simulation. On the assumption that use of a better

frequency shift model would yield much the same pattern and relative peak positions, the effect of these

missing terms will be approximated here by an empirical scaling and shifting of the frequency scale in the

simulated spectrum of Fig. 6.2,

∆νexp = A ∆νsim + B (6.1)

where ∆νexp and ∆νsim are the frequency shifts in the experiment and in the simulations, respectively.

Taking account of this empirical scaling and shifting and the different population of different types of

vacancy sites, we assume that the experimental spectrum may be represented in the following manner:

Stot = p1 S1(ν,Γ1) + p2a S2a(ν, Γ2a) + p2b S2b(ν, Γ2b) + · · · (6.2)

Here, Stot is the overall simulated spectrum which is to be compared with the experimental spectrum, Si

(i = 1, 2a, 2b, · · ·) is the simulated spectrum for Site i, pi (i = 1, 2a, 2b, · · ·) is the corresponding population

(or weight) in the total spectrum, and Γi is the corresponding FWHM. A non-linear least-squares fit to

the experimental spectrum is used to determine the parameters (A, B, {pi} , {Γi}) in Eqs. 6.1 and 6.2.

After the experimental spectrum was digitized, it could be fitted to Eq. 6.2, using a non-linear least-

squares technique. As described before, the partial derivative of the experimental spectrum with respect to

the fitting parameters are required when performing this fit. From Eq. 6.2, one may obtain these derivatives

∂Stot

∂pi
=

∂ (
∑

i pi Si)
∂pi

= Si (6.3)

∂Stot

∂Γi
=

∂ (
∑

i pi Si)
∂Γi

= pi
∂Si

Γi
(6.4)

∂Stot

∂A
=

∂ (
∑

i pi Si)
∂A

=
∑

i

pi
∂Si

∂A
(6.5)

∂Stot

∂B
=

∂ (
∑

i pi Si)
∂B

=
∑

i

pi
∂Si

∂B
(6.6)
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Table 6.2: Results of fitting experimental spectrum to a sum of simulated spectra. Large vacancy sites
were neglected due to instability. Numbers in parenthesis are 95% confidence limit uncertainties in the last
digit shown.

Site 1 2a 2b 3a 3b 4a/4b/4d 4c 5a/5b
Relative population 2.0(3) 0.04(1) 2.7(3) 5.8(3) 1.4(5) 1.8(2) 16.2(3) 4.7(3)
A 0.878(2)
B −4.55(1)

6.3 Results and discussion

If the FWHM of the spectrum associated with each type of vacancy site is free to vary, there will be

(2Nsite + 2) parameters to be determined. Since this fit is non-linear, it could be difficult to determine

the optimum values for so many parameters. Therefore, the FWHM for each vacancy site was held at a

constant value of 0.07 cm−1, which is the average FWHM for all the peaks in Table 6.1. Since a non-linear

least-squares fit may converge on different local minima due to different choices of initial trial parameter

values, it is important to sample the parameter space thoroughly so that “good” trial values may be

obtained. This was achieved by taking the following two steps. The first step was to perform linear

least-squares fits, with the parameters A and B being held constant. One was able to attain a qualitative

indication of combinations of A and B that gave local minima. By freeing up A and B, the second step was

to perform non-linear least-squares fits with the trial values set to be close to those different local minima.

These non-linear fits would determine the various local minima in the {A, B} domain, and by comparing

the values of the DSE’s, one could find the global minima of the non-linear least-squares fit. Table 6.2

and Fig. 6.5 illustrate the results of fitting our version of the “experimental” spectrum (upper segment)

to a sum of the simulated spectra, with the FWHM of each site fixed at a constant of 0.07 cm−1. The

lower segment of Fig. 6.5 shows the curve generated from the fit, in which the labels illustrate the peak

assignments, e.g. 3b(2) means the second peak of the simulated spectrum for Site 3b. Note that only Sites

1, 2a, 2b, 3a, 3b, 4a/b/d, 4c and 5a/b were considered here.

Comparing the upper and lower segments of Fig. 6.5, one can see that the main patterns of the experi-

mental spectrum are successfully reproduced, and the peaks are successfully assigned to particular lattice

vacancy types. The shoulder between peaks F and G, although absent in the “experimental” spectrum of

Fig. 6.4, are reproduced by peaks 2a(2) and 3b(3). Peak A in the experimental spectrum is not reproduced

however. We conclude that it may be due to the existence of SF6 dimers or to SF6 located at some lattice

discontinuity site. Moreover, since the experimental spectrum shows no analog of 1(1) and the initial ge-
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Figure 6.5: Upper: experimental spectrum. Lower: spectrum generated from the fitting results represented
in Table 6.2. The peaks are labelled by different sites. For example, 3b(2) denotes the 2nd peak of Site
3b.
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ometry of Site 1 is expected to be heavily crowded, perhaps Site 1 should not be included. It may appear

that to determine the values of 10 parameters by fitting 9 peaks is quite flexible. However, this is not true.

Note Fig. 6.2 shows that relative positions of multiple peaks for a particular site, and positions of peaks

for different sites are fixed.

It is clear, however, that this initial fit is not ideal. Possible reasons are:

1. The SF6−Ar pair potential is not perfect for reproducing the position and orientation of the SF6

molecule in the various matrix sites.

2. The IDID model is not perfect. For instance, no instantaneous-dipole/induced-quadrupole interac-

tions are taken into account.

3. The SF6 molecule is treated as a rigid molecule in the MC simulation.

For the above reasons, some modifications may be necessary. Assuming that the shortcomings of our

frequency shift model are adequately accounted for by the frequency-shift scaling and shifting of Eq. 6.1,

we will examine the effect of ad hoc changes to the SF6−Ar pair potential. By modify the SF6−Ar potential

curve, the effect on the resulting average lattice structure may change the relative peak positions enough to

give better agreement with experiment. The first type of modification consists of multiplying the strength

of the SF6−Ar pair potential by a factor of 1.1, while in the second, the SF6−Ar potential is displaced to

smaller distance by 0.1 Å. These two types trial modifications may be written as

ṼSF6−Ar = VSF6−Ar × 1.1 (6.7)

R̃SF6−Ar = RSF6−Ar − 0.1 (6.8)

Comparison of columns 3 and 5 in Table 6.3 shows that the energy scaling of the SF6−Ar pair poten-

tial, shown as Eq. 6.7 did not cause much change in the relative peak positions. Thus, this modification

is expected to yield the same fitting results as did the original SF6−Ar pair potential model. However,

the second modification, shown as Eq. 6.8, did change the relative peak positions significantly. The “ex-

perimental” spectrum was then fit to a sum of the simulated spectra with these new peak positions. The

results of this fit are listed in the last column of Table 6.3, and the spectrum generated using these fitting

results is illustrated in Fig. 6.6.

The spectrum obtained by using this new potential model match the simulated one somewhat better

than that obtained using the original potential function. For example, peaks 4c(1) and 3a(2) are closer
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Figure 6.6: Upper: experimental spectrum. Lower: spectrum generated from the fitting results represented
in Table 6.3. The peaks are labelled by different sites.
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Table 6.3: Peaks for different SF6−Ar potential models
Original Model Ṽ = V × 1.1 R̃ = R − 0.1

Site Peak Γ
(
cm−1

)
Populationa Γ

(
cm−1

)
Γ

(
cm−1

)
Populationb

1 1 −7.88 2.0(3)c −7.82 −7.56 d
2 −7.57 −7.51 −7.24

2a 1 −7.65 0.04 −7.62 −7.41 0.5(3)
2 −6.02 −6.03 −5.86

2b 1 −7.52 2.7(3) −7.49 −7.25 4.0(3)
2 −6.80 −6.81 −6.61

3a 1 −6.74 5.8(3) −6.71 −6.50 7.2(3)
2 −6.23 −6.25 −6.05

3b 1 −7.61 1.4(5) −7.56 −7.27 2.0(4)
2 −7.26 −7.21 −6.95
3 −6.02 −5.98 −5.77

4a/b/d 1 −5.90 1.8(2) −5.91 −5.75 0.6(2)
4c 1 −6.31 16.2(3) −6.30 −6.10 14.6(3)

2 −5.48 −5.49 −5.34
5a/b 1 −5.68 4.7(3) −5.70 −5.54 4.4(3)

2 −5.35 −5.37 −5.20

a This fit gives rise to A = 0.878(2), B = −4.55(1).
b This fit gives rise to A = 0.960(2), B = −4.24(1).
c Numbers in parenthesis are 95% confidence limit uncertainties.
d Site 1 was omitted in this fit.

together in Fig. 6.6 than they are in Fig. 6.5, resulting in a better fit to Peak F in the experimental

spectrum. Peak 2b(2) and 3a(1) are more separated in Fig. 6.6 than they are in Fig. 6.5, giving rise to

a better representation of Peaks D and E in the experimental spectrum. Moreover, the quality of fit,

represented by σ̄f , is about ten percent better than the previous fit. Although this new model still did not

give us perfect fitting results, it did improve the fit and provided suggestions for possible improvements to

the SF6−Ar pair potential.
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Summary and Conclusions

7.1 Summary

The ν3 vibrational band of a free SF6 molecule is triply degenerate. When an SF6 molecule is trapped in

an argon matrix, its vibrational frequencies are shifted, and if the perturbing environment is not spheri-

cally symmetric, the three-component ν3 vibrational band will give rise to three distinct spectral peaks.

However, the experimental spectrum of SF6 in an argon matrix showed nine to eleven peaks. To our

knowledge, no quantitative explanation of the fine structure of this spectrum has been proposed prior to

this study. Employing a combination of IDID model developed by Eichenauer and Le Roy and Metropo-

lis Monte Carlo simulations, this thesis has semi-quantitatively explained the experimental spectrum and

provided assignments for the fine structure appearing there. Table 7.1 summarizes our assignments of the

experimental spectral peaks to particular lattice sites.

In our analysis, SF6 is treated as a three-dimensional harmonic oscillator. The instantaneous dipole

Table 7.1: Experimental spectral peak assignments
Peak Assignments

A –
B 2b(1), 3b(1)
C 3b(2)
D 2b(2)
E 3a(1)
F 3a(2), 4c(1)
G 3b(3), 4a/4b
H 5a(1)
I 4c(2)
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arises from the ν3 intramolecular vibration of SF6 and its electric field induces dipole moments on surround-

ing argon atoms. The interaction between the instantaneous dipole and the induced dipole was assumed

to provide the dominant contribution to the frequency shifts.

The anisotropic model developed by Pack et al. [45] was employed to represent the SF6−Ar interaction

potential. This model utilizes a Morse-Morse-Morse-Spline-Van der Waals radial form and reproduces the

anisotropy by allowing the parameters of this radial potential to depend on the relative orientation of argon

and the SF6. For the Ar−Ar pairwise potential, a simple model was utilized to save computing time. The

fact that both the SF6−Ar and the Ar−Ar interaction potentials are reasonably well known is important

to this simulation.

At low temperature, argon atoms have a perfect face-centered cubic configuration. Since an SF6

molecule is much larger than an argon atom, it would appear that the way to readily admit the SF6

molecule into the argon matrix is through the removal of one or more argon atoms. The vibrations of SF6

in smaller vacancy sites are expected to be more restricted, causing the site to relax to form a more relaxed

conformation. However, as the number of removed argon atoms increases, the substitutional site is expected

to become increasingly unstable. For highly symmetric sites, the perturbations to the chromophore are

expected to be symmetric, and not to split the ν3 vibrational band. For planar sites, one may expect the

vibrations within the plane to be doubly degenerate, while those perpendicular to the plane to be singly

degenerate.

For any given SF6−Ar arrangement, the frequency shifts of the ν3 band of SF6 can be calculated

using the perturbation model and potential functions. At most temperatures, the number of energetically

possible arrangements contributing to the thermal average is quite large. Thus, the Metropolis Monte Carlo

procedure was utilized for averaging over the contributions. The relaxation of an argon matrix hosting

an SF6 molecule was simulated using the MC method. The SF6 molecule is initially put at the center of

the chosen vacancy site, and with about 1 500 argon atoms surrounding SF6. During the simulation, the

SF6 molecule is allowed to rotate and translate, and nearby argon atoms are allowed to translate while the

outer ones are frozen in perfect FCC configuration.

The ν3 frequency shift distributions were then obtained by collecting the values for the frequency shifts

after the system reached its equilibrium. As one finds in the simulated results, the ν3 band of SF6 in argon

matrix are split into up to three components. By fitting these simulated spectra to a sum of Gaussian

functions, the area ratio are proved to be 1 : 2 or 2 : 1 for the two-component case, and 1 : 1 : 1 for the

three-component case. It is also clear that the simulated spectrum for a larger site has a smaller frequency
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shift.

Due to the stochastic averaging procedure associated with the Metropolis MC method, the simulated

spectra have Gaussian line shapes. In contrast, the experimental spectra have Lorentzian line shapes, due

to the homogeneous “pressure” broadening caused by the argon atoms. Thus, Lorentzian spectra with the

peak positions and area ratios obtained from the simulation results are generated.

Since the frequency shift model is not perfect, a scaling and shifting procedure is employed for mapping

the domain of the simulated spectra onto that of the experimental spectrum. After utilizing this mapping,

the experimental spectrum is fitted to a sum of the simulated Lorentzian spectra, using non-linear least-

squares techniques. The experimental spectrum of the ν3 vibrational band for SF6 in argon matrix is

successfully reproduced by combining the simulated spectra, and the peaks are assigned to different types

of vacancy sites. Thus, the fine structure in experimental spectrum is assigned to peaks associated with

particular vacancy sites.

7.2 Future work

The ad hoc scaling and shifting of frequency shifts show that the IDID model is not perfect. One may

consider the instantaneous-dipole/induced-quadrupole interaction when calculating the frequency shifts.

We would not expect to use the fitting results to determine the SF6−Ar potential energy surface, but the

modification shows that some changes in the pairwise potential can affect the resulting spectra. Moreover,

the effect of the potential energy differences between every site may need to be studied.
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