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Abstract

Let M1 and M2 be matroids such that M2 arises from M1 by relaxing a circuit-
hyperplane. We will prove that if M1 and M2 are both representable over some finite
field GF (q), then M1 and M2 have highly structured representations. Roughly speaking,
M1 and M2 have representations that can be partitioned into a bounded number of blocks
each of which is “triangular”, a property we call weakly block-triangular.

Geelen, Gerards and Whittle have announced that, under the hypotheses above, the
matroids M1 and M2 both have pathwidth bounded by some constant depending only
on q. That result plays a significant role in their announced proof of Rota’s Conjecture.
Bounding the pathwidth of M1 and M2 is currently the single most complicated part in
the proof of Rota’s Conjecture. Our result is intended as a step toward simplifying this
part.

A matroid N is said to be a fragile minor of another matroid M if M/C\D = N for some
C,D ⊆ E(M), but M/C ′\D′ 6= N whenever C 6= C ′ or D 6= D′. As a second result, we will
prove that, given a GF (q)-representable matroid N , every GF (q)-representable matroid
M having N as a fragile minor has a representation which is weakly block-triangular.
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Chapter 1

Introduction

1.1 Background and previous results

In circa 340 AD, long before matroids were formally introduced in the twentieth century,
the very first theorem of matroid theory was proven by Pappus in the Byzantine city of
Alexandria.

Let three points a1, a2, a3 lie on a common line in the plane and let three other points
b1, b2, b3 lie on another common line in the plane. Construct the point c1 as the intersection
point of the line through a1 and b2 and the line through a2 and b1. Similarly, construct c2
as the intersection point of the line through a1 and b3 and the line through a3 and b1 and
c3 as the intersection point of the line through a2 and b3 and the line through a3 and b2.
Pappus’ Theorem states that independently of how exactly the positions for a1, a2, a3 and
b1, b2, b3 are chosen, the points c1, c2 and c3 will lie on a common line; see Figure 1.1.

Nowadays, this picture can be interpreted as the drawing of a simple matroid M of
rank three where the the points stand for the elements of the ground set of M and the
lines indicate sets of rank two. Pappus’ theorem shows that the rank-3-matroid M1 on
{a1, a2, a3, b1, b2, b3, c1, c2, c3} whose set of lines is L = {{a1, a2, a3}, {b1, b2, b3}, {c1, c2, c3},
{a1, b2, c1}, {a2, b1, c1}, {a1, b3, c2}, {a3, b1, c2}, {a2, b3, c3}, {a3, b2, c3}} is R-representable, but
the matroid M2 whose set of lines is L− {{c1, c2, c3}} is not. In fact, it turns out that M2

is not representable over any field. Observe that the line {c1, c2, c3} is both a circuit and
a hyperplane of M1 and that M2 arises from M1 by relaxing that circuit-hyperplane.

This brings up the question whether the loss of representability is what should be
expected in most cases when relaxing a circuit-hyperplane. For finite fields, this thesis

1



Figure 1.1: The Pappus matroid
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yields a clear answer to this question. We will show that for any finite field GF (q) the set
of GF (q)-representable matroids with a circuit-hyperplane whose relaxation does not lose
GF (q)-representability is very restricted. More exactly, we will prove that these matroids
have highly structured representations. In order to provide some context for this result
and its interpretations, we will now turn our attention to some related, more recent results
in matroid theory. Any matroid notation in this thesis follows the conventions of the book
“Matroid Theory” by James Oxley [6].

Matroids were introduced by Whitney in 1935 [13] generalizing the notion of indepen-
dence in linear algebra as well as certain properties of graphs to more abstract objects.
Since then, matroids have had a lot of influence in several fields of mathematics, in partic-
ular in combinatorics. Their importance spreads from geometry and algebra to algorithmic
problems and combinatorial optimization.

Apart from that, a lot of research has been performed in order to get deeper insights
into the structural properties of matroids. Similarly to graphs, there is a minor notion
for matroids bringing up questions of forbidden minors for minor-closed classes. It is of

2



particular interest to determine the minor-closed classes of matroids having only finitely
many forbidden minors.[8]

For the case of graphs, an astonishingly pretty and complete answer to this question
has been found. Paul Seymour and Neil Robertson proved in a series of papers that any
minor-closed class of graphs only has a finite number of forbidden minors. The analogous
statement is not true for matroids, as a family of matroids of rank 3 shows, see 14.1.2 in
[6].

For any given field F it is easy to see that the class of F-representable matroids is minor-
closed. In 1971, Gian-Carlo Rota conjectured that there are only finitely many forbidden
minors for the class of GF (q)-representable matroids for any finite field GF (q).

Several partial results for fields of small cardinality have been proven providing some
evidence for the truth of Rota’s Conjecture. Already before the conjecture was stated,
Tutte proved in 1958 that a matroid is binary if and only if it does not contain U2,4 as a
minor [11]. Seymour [10] and independently Bixby [1] proved in 1979 that a matroid is
GF (3)-representable if and only if it does not contain U2,5, U3,5 the Fano plane or its dual
as a minor. In 2000, Geelen, Gerards and Kapoor characterized the seven forbidden minors
for GF (4)-representable matroids [3]. Despite these complete characterizations, there is
no published proof of Rota’s Conjecture for any field of size at least 5.

Nevertheless, in 2011, Geelen, Gerards and Whittle announced a proof for the general
case of Rota’s Conjecture that has not yet been published, see [4]. A significant part of
this proof is concerned with the analysis of GF (q)-representable matroids having a circuit-
hyperplane whose relaxation yields another GF (q)-representable matroid.

Let M = (E, r) be a matroid and for any set S ⊆ E let λ(S) = r(S)+r(E−S)−r(M).
The pathwidth of M is defined to be the minimum number t such that there is an ordering
(e1, . . . , en) of E such that λ({e1, . . . , ei}) ≤ t for all i = 1, . . . , n− 1. The proposed proof
of Rota’s Conjecture relies on the following conjecture:

Conjecture 1.1.1. If M1 and M2 are GF (q)-representable matroids on a common ground
set such that M2 arises from M1 by relaxing a circuit-hyperplane, then the pathwidth of M1

and M2 is bounded by a constant K(q).

This thesis provides some progress towards a simpler proof of that conjecture.
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1.2 Block-triangular representations

An important tool in the analysis of representable matroids evidently is their represen-
tations. We will make strong use of a varied form of representations, so-called reduced
representations, which are just representations with a suppressed identity matrix.

We will next explain what a reduced representation is. Let M be an F-representable
matroid for some field F and B be a basis of M . Let A be an F-representation of M . As
B is a basis of M , we can apply elementary row operations to make the columns of A
indexed by B an identity matrix, so A is of the form [I|A′]. We will now index the rows
of A′ by the elements of B in the order induced by the identity matrix. We will now call
A′ ∈ FB×(E−B) a reduced representation of M with respect to the basis B. Observe that
deleting a column indexed by an element e ∈ E − B yields a reduced representation of
M\e with respect to B. Also observe that deleting the row indexed by an element bi ∈ B
yields a reduced representation of M/bi with respect to B−{bi} which is easily seen to be
a basis of M/bi.

In Chapter 2, more properties of reduced representations will be discussed. It will turn
out that if M1 and M2 are two GF (q)-representable matroids such that M2 arises from M1

by relaxing a circuit-hyperplane, the reduced representations of M1 and M2 will display
significant similarities. Given F-representable matroids M and N for some field F such
that N is a minor of M and a basis BN of N we can find a basis BM of M such that
BM ∩ E(N) = BN and M/(BM − BN)\(E(M)− E(N)− BM) = N . We will also provide
a lemma that makes a reduced representation of N with respect to a basis BN visible in a
reduced representation of M with respect to BM .

It turns out that much of the work on some matroid properties can be discussed in
the language of matrices rather than in the language of matroids. In order to make the
statements about matrices more precise, we will need the following three definitions of
structural properties of matrices.

Definition 1.2.1. A matrix A if triangular if it has at most two distinct entries and each
non-empty submatrix has a constant row or column.

Algorithmically speaking, this means we can recursively delete constant rows and
columns of A until the remaining matrix is empty.

For example,

A =

β α β
β α β
α α α
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is a triangular matrix. This can be seen by choosing the labelling a2, a3, a4 for the rows
and a5, a1, a6 for the columns. On the other hand,

B =

[
α β
β α

]
is not triangular as it does not contain any constant rows or column.

Given a matrix A with row index set I and column index set J as well as index sets
I ′ ⊆ I and J ′ ⊆ J , let A[I ′, J ′] denote the submatrix of A which uses the row index
set I ′ and the column index set J ′. A C-block decomposition of an I × J-matrix A is a
tuple ((I1, . . . , IC), (J1, . . . , JC)) where (I1, . . . , IC) is a partition of I and (J1, . . . , JC) is a
partition of J .

Definition 1.2.2. For a non-negative integer C, an I×J-matrix A is called weakly C-block-
triangular if there is a C-block-decomposition ((I1, . . . , IC), (J1, . . . , JC)) of A such that
A[Ik, Jl] is triangular for all k, l ≤ C. The C-block-decomposition ((I1, . . . , IC), (J1, . . . , JC))
is called a certificate of weak C-block-triangularity.

For example,

A =


γ δ δ ε ε
γ γ δ ζ ε
β α β η η
β α β η η
α α α η θ


is a weakly 2-block-triangular matrix where the certificate is indicated in the drawing.

Definition 1.2.3. For a non-negative integer C, an I×J-matrix A for disjoint index sets I
and J is called C-block-triangular if there is a C-block-decomposition ((I1, . . . , IC), (J1, . . . , JC))
that is a certificate of weak C-block-triangularity and such that each non-empty submatrix
of A has either a row that is constant in every partition class of (J1, . . . , JC) or a col-
umn that is constant in every partition class of (I1, . . . , IC). The C-block-decomposition
((I1, . . . , IC), (J1, . . . , JC)) is then called a certificate of C-block-triangularity.

Algorithmically speaking, this means we can recursively delete rows and columns that
are constant in each block until the remaining matrix is empty.

For example,

A =


β α ζ ζ
α α ε ε
γ δ η η
γ γ η θ


5



is a 2-block-triangular matrix where the certificate is indicated in the drawing, labelling
the rows by a3, a1, a4, a6 and labelling the columns by a2, a8, a7, a5.

Observe that it follows directly from the definition that it a matrix A that is block-
triangular with certificate D is also weakly block-triangular with certificate D.

In Chapter 2, we will prove the following result that is the main motivation for the
matrix analysis performed in this thesis.

Lemma 1.2.4. Let M be a matroid with a reduced representation A over some field. If A
is C-block-triangular for some integer C, then M has pathwidth at most 2C.

Therefore, the following conjecture implies Conjecture 1.1.1 :

Conjecture 1.2.5. For each finite field GF (q) there is an integer C such that, if M is
a GF (q)-representable matroid with a circuit-hyperplane whose relaxation yields another
GF (q)-representable matroid, then M has a C-block-triangular reduced representation.

For small fields, the GF (q)-representable matroids having a circuit-hyperplane whose
relaxation yields another GF (q)-representable matroid have been completely characterized
proving the conjecture for these cases. Lucas [5] characterized the binary matroids of that
kind. Truemper [12], and independently, Oxley and Whittle [7], proved a characterization
of the ternary matroids of that kind. Only recently, Clark, Oxley and van Zwam did the
same for quaternary matroids [2].

While we are not able to prove Conjecture 1.2.5, we can prove the following slightly
weaker theorem:

Theorem 1.2.6. For each finite field GF (q) there is an integer C such that, if M is
a GF (q)-representable matroid with a circuit-hyperplane whose relaxation yields another
GF (q)-representable matroid, then M has a weakly C-block-triangular reduced representa-
tion.

1.3 Obstructions to weak block-triangularity

We will now define families of matrices Ak,Bk and Ck which are helpful to prove the
theorems above. We say that a matrix A1 is isomorphic to a matrix A2 if A2 can be
obtained from A1 by relabelling rows and columns.

6



The matrix A(a, b, c, k) is the k × k-matrix A over GF (q) having entries a, b and c on,
below and above the diagonal, respectively; for example:

A(a, b, c, 4) =


a c c c
b a c c
b b a c
b b b a

 .

Let Ak be the set of matrices isomorphic to a matrix of the form A(a, b, c, k) where a 6= b
and a 6= c.

The matrix B(a, b, c, d, k) is a 2k×2k-matrix B over GF (q) having the following block-
structure:

B(a, b, c, d, k) =
A(a, c, a, k) A(b, b, a, k)
A(c, c, d, k) A(d, b, d, k)

.

For example,

B(a, b, c, d, 4) =



a a a a b a a a
c a a a b b a a
c c a a b b b a
c c c a b b b b
c d d d d d d d
c c d d b d d d
c c c d b b d d
c c c c b b b d


.

Let Bk be the set of matrices isomorphic to a matrix of the form B(a, b, c, d, k) where
{a, d} ∩ {b, c} = ∅.

The matrix C(a, b, c, k) is a 3k × 3k-matrix C over GF (q) having the following block-
structure:

C(a, b, c, k) =
A(a, a, a, k) A(a, c, a, k) A(b, b, a, k)
A(a, a, c, k) A(c, c, c, k) A(c, b, c, k)
A(b, a, b, k) A(c, c, b, k) A(b, b, b, k)

.

For example,

7



C(a, b, c, 4) =



a a a a a a a a b a a a
a a a a c a a a b b a a
a a a a c c a a b b b a
a a a a c c c a b b b b
a c c c c c c c c c c c
a a c c c c c c b c c c
a a a c c c c c b b c c
a a a a c c c c b b b c
b b b b c b b b b b b b
a b b b c c b b b b b b
a a b b c c c b b b b b
a a a b c c c c b b b b



.

Let Ck be the set of matrices isomorphic to a matrix of the form C(a, b, c, k) where a, b, c
are pairwise distinct.

Furthermore, let A denote
∞⋃
k=1

Ak, let B denote
∞⋃
k=1

Bk and let C denote
∞⋃
k=1

Ck.

Chapter 3 will be mainly concerned with proving the following theorem that is a crucial
step in the proof of Theorem 1.2.6.

Theorem 1.3.1. Let GF (q) be a finite field. For every integer k there is an integer n
such that every matrix over GF (q) that is not weakly n-block-triangular has a submatrix
in Ak,Bk or Ck.

This proof will first characterize all matrices A such that A does not have a constant
row or column but all of its proper submatrices do. It turns out that these matrices are
exactly the matrices in B1 and C1.

After that, we will apply some Ramsey theory to show that a matrix consisting of
a bounded number of blocks that are weakly C-block-triangular with respect to some
bounded number C are themselves weakly block-triangular with respect to some bounded
number. The analogous statement is not true for block-triangularity and that is the reason
why the proofs of Theorem 1.2.6 cannot be easily generalized to prove Conjecture 1.2.5.

We will then finish the proof by a decomposition argument. The characterization will
be relatively good in the sense that the sets Ak,Bk and Ck are fairly small and allow to
prove the desired matroid results in Chapter 4.

It would be desirable though to find a family F of matrices satisfying the properties of
Theorem 1.3.1 such that for all k there is an n such that no matrix in F of size at least n is

8



weakly k-block-triangular. Such a family could be considered a complete characterization
of weakly block-triangular matrices. While this is easily seen to fail for B and C, we will
be able to show that for all k there is an n such that no matrix in A∪B∪C of size at least
n is k-block-triangular. This can be seen as an indication that the matrices in Ak,Bk and
Ck could play a crucial role in proving Conjecture 1.1.1.

The fourth chapter is concerned with showing that the results of Chapter 3 are appli-
cable to matroid theory. In particular, we will show the following theorem. Observe that
if M1,M2 are matroids such that M2 arises from M1 by relaxing a circuit-hyperplane H,
then H − {e} ∪ {f} is a basis of both M1 and M2 for all e ∈ H and all f ∈ E(M1)−H.

Theorem 1.3.2. For some finite field GF (q), let M1 and M2 be GF (q)-representable
matroids such that M2 arises from M1 by relaxing a circuit-hyperplane H and let A be a
reduced representation of M1 or M2 with respect to a basis B of the form H − {e} ∪ {f}.
Then, after scaling its rows and columns, A does not contain any submatrix in Aq4 ,B2, C3.

We will derive Theorem 1.2.6 from Theorem 1.3.2 and Theorem 1.3.1.

1.4 Fragile minors

The fifth chapter deals with fragile minors of representable matroids.

A matroid N is a fragile minor of another matroid M if M/C\D = N for some C,D ⊆
E(M), but M/C ′\D′ 6= N whenever C 6= C ′ or D 6= D′. The following conjecture is
interesting as, together with Lemma 1.2.4, it implies that every matroid that has a certain
fragile minor has bounded pathwidth:

Conjecture 1.4.1. For each finite field GF (q) and GF (q)-representable matroid N there
is an integer C such that if M is a GF (q)-representable matroid having N as a fragile
minor, then M has a C-block-triangular reduced representation.

While we cannot prove this conjecture, we can prove the following weaker version:

Theorem 1.4.2. For each finite field GF (q) and GF (q)-representable matroid N there is
an integer C such that if M is a GF (q)-representable matroid having N as a fragile minor,
then M has a weakly C-block-triangular reduced representation.

As a crucial step in the analysis of fragile minors, we will prove the following theorem:

9



Theorem 1.4.3. Let F be a finite field of order q, let N be an F-representable matroid
and M an F-representable matroid having N as a fragile minor. Then there is a field F1

of order q2
|N|+1

and F1-representable matroids M1,M2 such that:

(i) M2 is obtained from M1 by relaxing a circuit-hyperplane,

(ii) M/C\D = M1/c\d for some partition (C,D) of E(N) and some c, d ∈ E(M1).

This theorem connects fragile minors and circuit-hyperplane relaxations and has several
impacts on the questions discussed in this thesis. It gives us the possibility to apply results
for circuit-hyperplane relaxations to fragile minors. We will explain how Theorem 1.4.3
and Theorem 1.2.6 imply Theorem 1.4.2. Furthermore, we will show that Theorem 1.4.3
and Conjecture 1.2.5 imply Conjecture 1.4.1.

Most of the theory in this thesis, in particular Theorem 1.2.6, as well as the rough
ideas to prove it have been developed by Geelen, Gerards and Whittle during the process
of proving Rota’s Conjecture. Our work can be viewed as an effort to work out the details
of this proof. During this process, we came to a surprising result that made the proof easier
than expected, namely that for Theorem 1.3.2, the matrices in B and C can be chosen of
constant size, meaning independently of q and their concrete entries.

10



Chapter 2

Matroids and matrices

This chapter is meant to clarify some of the relationships between several technical objects
and provide the necessary preliminaries for the main proofs in the following chapters. Recall
that for all integers C, a C-block-triangular matrix is also weakly C-block-triangular. In
the first part we will show that the converse is false.

The second part collects some basic properties of reduced representations considering
the settings of circuit-hyperplane relaxations and minors. It also gives a theorem that con-
nects block-triangularity of reduced representations with the pathwidth of the underlying
matroid.

2.1 Block-triangularity and weak block-triangularity

If A is a matrix that is k-block-triangular with a certificate D, then A is also weakly k-
block-triangular with certificate D. Unfortunately the converse is false. For example, the
matrices in B are weakly 2-block-triangular by definition, but Lemma 2.1.2 below shows
that the matrices in B have unbounded block-triangularity. We also prove similar results
for A and C, although while the matrices in C are weakly 3-block-triangular, the matrices in
A have unbounded weak block-triangularity. This highlights the importance of the matrix
classes A,B and C for the purpose of finding a good obstruction for block-triangularity.

We will first need to introduce a bit of notation that will facilitate the proofs of the
above statements. Recall that a k-block-decomposition of an I × J-matrix A is a tu-
ple ((I1, . . . , IC), (J1, . . . , JC)) where (I1, . . . , IC) is a partition of I and (J1, . . . , JC) is a
partition of J . One block-decomposition of A refines another if each part of the first
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is contained in a part of the second. Note that, given a C1-block-decomposition and a
C2-block-decomposition, there is a n-block-decomposition that refines them both, with
n ≤ C1C2.

A block-decomposition ((I1, . . . , IC), (J1, . . . , JC)) of an I × I-matrix is symmetric if
Ii = Ji for each i ∈ {1, . . . , C}. Now let A be an I × J-matrix in Ak and consider an
isomorphism from A to A(a, b, c, k). Observe that the isomorphism is unique whenever
k ≥ 3. A block-decomposition ((I1, . . . , IC), (J1, . . . , JC)) of A is symmetric with respect to
the isomorphism if, for each i ∈ {1, . . . , C}, the sets Ii and Ji map to the same set under
the given isomorphism.

We will use the fact that if A is a C-block-triangular matrix with certificate of block-
triangularity ((I1, . . . , Ik), (J1, . . . , Jk)), then any submatrix A′ of A on I ′ ⊆ I and J ′ ⊆ J
is k-block-triangular with certificate ((I1 ∩ I ′, . . . , Ik ∩ I ′), (J1 ∩ J ′, . . . , Jk ∩ J ′)).

We are now ready give the proofs of the facts mentioned above. Recall that for example
a matrix A(a, b, c, 4) ∈ A4 is of the form

a c c c
b a c c
b b a c
b b b a


for some a, b, c such that a 6= b and a 6= c.

Lemma 2.1.1. Matrices in A2k2 are not weakly k-block-triangular, so in particular not
k-block-triangular.

Proof. The statement is trivial for k = 1. Let A be a matrix in A2k2 for some k ≥ 2 where
the rows as well as the columns of A are labelled by I = {1, . . . , 2k2} in the canonical
order. For the sake of a contradiction, we will assume that A is weakly k-block-triangular.
So there is a certificate (I0,J0) of k-block-triangularity.

Observe that because of the symmetry of A, (J0, I0) also is a certificate of k-block-
triangularity. Therefore, there is a symmetric refinement I of (I0,J0) and (J0, I0) that is
a certificate of k2-block-triangularity.

By a majority argument there must be some partition class I∗ of I that is of size at
least 2, without loss of generality exactly 2. By construction,

A[I∗, I∗] =

[
a c
b a

]
.

12



We can see that A[I∗, I∗] does not contain a constant row or column. This is a contradiction
to I being a certificate for k2-block-triangularity.

Recall that a matrix B(a, b, c, d, k) ∈ Bk is of the form

B(a, b, c, d, k) =
A(a, c, a, k) A(b, b, a, k)
A(c, c, d, k) A(d, b, d, k)

,

where {a, d} ∩ {b, c} = ∅.
Lemma 2.1.2. Matrices in B4k4 are not k-block-triangular.

Proof. Let A = B(a, b, c, d, 4k4) be a matrix in B4k4 and let the rows and columns be
indexed in the following way:

[ Jγ Jδ
Iα A(a, c, a, k) A(b, b, a, k)
Iβ A(c, c, d, k) A(d, b, d, k)

]
.

For the sake of a contradiction, we will asumme that A is k-block-triangular. So
there is a certificate (I,J ) of k-block-triangularity. By refining, we can now obtain
a certificate (I ′,J ′) of 2k4-block-triangularity whose restriction is symmetric in all of
A[Iα, Jγ], A[Iα, Jδ], A[Iβ, Jγ] and A[Iβ, Jδ] and such that (I ′,J ′) refines ((Iα, Iβ), (Jγ, Jδ)).

By a majority argument, there must be some partition class I1 of I ′ of size at least 2,
without loss of generality exactly 2, all of whose elements are in Iα. Using the symmetry
conditions, we can find I2, J1, J2 such that

A[I1 ∪ I2, J1 ∪ J2] =

a a b a
c a b b
c d d d
c c b d

,

where the partition classes of I ′ are indicated in the drawing. A[I1 ∪ I2, J1 ∪ J2] does not
have a row a row or column that is constant in every row of J ′ or I ′, respectively. This is
a contradiction to (I ′,J ′) being a certificate of 2k4-block-triangularity.

Recall that a matrix C(a, b, c, d, 3) ∈ Ck is of the form

C(a, b, c, k) =
A(a, a, a, k) A(a, c, a, k) A(b, b, a, k)
A(a, a, c, k) A(c, c, c, k) A(c, b, c, k)
A(b, a, b, k) A(c, c, b, k) A(b, b, b, k)

.

for distinct a, b and c.
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Lemma 2.1.3. Matrices in C6k6 are not k-block-triangular.

Proof. Let A = C(a, b, c, d, 6k6) be a matrix in B6k6 and let the rows and columns be
indexed in the following way:


Jδ Jε Jζ

Iα A(a, a, a, k) A(a, c, a, k) A(b, b, a, k)
Iβ A(a, a, c, k) A(c, c, c, k) A(c, b, c, k)
Iγ A(b, a, b, k) A(c, c, b, k) A(b, b, b, k)

.

For the sake of a contradiction, we will assume that A is k-block-triangular. So there
is a certificate (I,J ) of k-block-triangularity. By refining, we can now obtain a certificate
(I ′,J ′) of 3k6-block-triangularity whose restriction is symmetric in A[Ik, Jl] for all k ∈
{α, β, γ} and l ∈ {δ, ε, ζ} and such that (I ′,J ′) is a refinement of ((Iα, Iβ, Iγ), (Jδ, Jε, Jζ)).

By a majority argument, there must be some partition class I1 of I ′ of size at least 2,
without loss of generality exactly 2, all of whose elements are in Iα. Using the symmetry
conditions, we can find I2, I3, J1, J2, J3 such that

A[I1 ∪ I2 ∪ I3, J1 ∪ J2 ∪ J3] =

a a a a b a
a a c a b b
a c c c c c
a a c c b c
b b c b b b
a b c c b b

.

where the partition classes of I ′ are indicated in the drawing. A′ does not have a row or
column that is constant in every row of J ′ or I ′, respectively. This is a contradiction to
(I ′,J ′) being a certificate of 3k6-block-triangularity.

2.2 Reduced representations

We will now discuss some important properties of reduced representations that will play
crucial roles in this thesis. Recall that a reduced representation of a matroid M with
respect to a basis B is a matrix A ∈ FB×E(M)−B over some field F such that the matrix
[I|A] is a representation of M where I is a B × B identity matrix. Clearly a matroid is
completely determined by its reduced representation. Another important property is that

14



if A is a reduced representation of a matroid M with respect to some basis B, and A′ is
obtained from A by row and column scalings, then A′ is also reduced representation of M
with respect to B.

Lemma 2.2.1. Let M be a matroid with a reduced representation of the form

A =

[X2 Y2
X1 A1 A2

Y1 A3 A4

]
.

Then λM(X1 ∪X2) = r(A2) + r(A3)

Proof. Observe that A2 is a reduced representation of M/Y1\X2 and therefore r(A2) =
rM/Y 1(Y2). Similarly, r(A3) = rM/X1(X2). Also, as X1 ∪ Y1 is a basis of M , we have
r(M) = rM(X1) + rM(Y1). Therefore, we can calculate:

λM(X1 ∪X2) = rM(X1 ∪X2) + rM(Y1 ∪ Y2)− r(M)

=rM/X1(X2) + rM(X1) + rM/Y 1(Y2) + rM(Y1)− r(M)

=rM/X1(X2) + rM/Y 1(Y2) = r(A3) + r(A2).

We are now ready to prove Lemma 1.2.4, which is the following statement.

Lemma (Restatement of Lemma 1.2.4). Let M be a matroid with a reduced representation
A over some field. If A is C-block-triangular for some integer C, then M has pathwidth at
most 2C.

Proof. Let M be a representable matroid having a C-block-triangular reduced represen-
tation A with respect to some basis B. Let I be the row index set and J be the column
index set of A. There is a certificate of C-block-triangularity ((I1, . . . , IC), (J1, . . . , JC)).
Observe that this induces an ordering (e1, . . . , en) of I ∪ J such that the row or column of
A[I∩{ei, . . . , en}, J∩{ei, . . . , en}] which is indexed by ei is constant in every partition class
of J or I, respectively. Recall that E(M) = I ∪ J by definition and so it suffices to prove
that for every i = 1, . . . , n − 1,we have λ({e1, . . . , ei}) ≤ 2C. For that purpose, fix some
i ∈ {1, . . . , n−1}. Let Ia be defined as B∩{e1, . . . , ei} and Ja be (E(M)−B)∩{e1, . . . , ei}.
Similarly, let Ib be defined as B ∩ {ei+1, . . . , en} and Jb be (E(M) − B) ∩ {ei+1, . . . , en}.
Let A1 = A[Ia, Ja], A2 = A[Ia, Jb], A3 = A[Ib, Ja] and A4 = A[Ib, Jb], so
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A =

[ Ja Jb
Ia A1 A2

Ib A3 A4

]
.

Observe that Ia = (I1 ∩ Ia, . . . , IC ∩ Ia) is a partition of Ia, Ib = (I1 ∩ Ib, . . . IC ∩ Ib) is
a partition of Ib and, analogously, Ja = (J1 ∩ Ja, . . . , JC ∩ Ja) is a partition of Ja and
Jb = (J1 ∩ Jb, . . . , JC ∩ Jb) is a partition of Jb. Observe that every partition class of Ib is
a subset of a partition class of I.

As every row of Ia is of lower index then every column of Jb, every row of Ia is constant
in every partition class of Jb, so the rows of A2 are constant in every partition class of Jb.
It follows that any two columns of A2 in the same partition class of Jb are identical, so A2

has at most C distinct columns, so r(A2) ≤ C.

Similarly, as every column of Ja is of lower index then every row of Ib, every column
of Ja is constant in every partition class of Ib, so the columns of A3 are constant in every
partition class of Ib. It follows that any two rows of A3 in the same partition class of Ib
are identical, so A3 has at most C distinct rows, so r(A3) ≤ C.

It so follows by Lemma 2.2.1 that λ(Ia ∪ Ja) = r(A2) + r(A3) ≤ 2C. This finishes the
proof.

We will now prove an important lemma that describes circuit-hyperplane relaxations
in the context of reduced representations. Observe that if M1 and M2 are matroids such
that M2 is obtained from M1 by relaxing a circuit-hyperplane H, for any e ∈ H and
f ∈ E(M1)−H, H − {e} ∪ {f} is a basis of both M1 and M2.

Lemma 2.2.2. Let M1 and M2 be rank-r matroids on the same ground set E such that
M2 is obtained from M1 by relaxing a circuit-hyperplane H, and let B = (H − {e}) ∪ {f}
for some e ∈ B and f ∈ E − B. If A1 and A2 are reduced representations of M1 and M2,
respectively, with respect to B, then

1. For each I ⊆ B and J ⊆ E − B, the matrices A1[I, J ] and A2[I, J ] have the same
rank unless I = {f} and J = {e},

2. Up to scaling, A1 and A2 have the form


e

1

A′1
...
1

f 1 . . . 1 0

 and


e

1

A′2
...
1

f 1 . . . 1 1

 ,respectively.
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Proof. As H is a circuit in M1, we have A1(f, e) = 0 and A1(g, e) 6= 0 for any element
g ∈ H − {f}. Similarly, since E − H is a circuit in M∗

1 , we have A1(f, g) 6= 0 for each
g ∈ E − (H ∪ {e}). Since M2\e = M1\e and M2/f = M1/f , we have A2(a, e) 6= 0 for all
a ∈ E − (H ∪ {f}) and and A2(f, b) 6= 0 for all b ∈ H − {e}. Moreover, since H is a basis
in M2, we have A2(f, e) 6= 0. It follows that A1 and A2 can be scaled to have the required
form.

The next lemma roughly speaking states the converse of the previous one, as it shows
that matrices with similar properties as above are reduced representations of matroids
M1,M2 such that M2 arises from M1 by relaxing a circuit-hyperplane.

Lemma 2.2.3. Let M1 and M2 be matroids on a common ground set E with r(M1) =
r(M2) and let H ⊆ E. If M1 and M2 agree in rank on all subsets of E except H and
rM1(H) < rM2(H), then H is a circuit-hyperplane in M1 and M2 is obtained from M1 by
relaxing H.

Proof. Observe first that rM1(H) < rM2(H) ≤ |H|, so H is dependent in M1. Let B ⊆ E
be a basis of H in M2. If B 6= H, then rM1(B) = rM2(B) = rM2(H) > rM1(H). So H is
independent in M2 and so are all its proper subsets. As M1 agrees on them with M2, they
are independent in M1. It follows that H is a circuit of M1.

Observe that r∗M1
(E−H) < r∗M2

(E−H) and r∗M1
(X) = r∗M2

(X) for all X ⊆ E that are
different from E−H. It follows by the argumentation above that E−H is a circuit of M∗

1

and therefore that H is a hyperplane of M1.

It follows immediately from the rank condition that M2 arises from M1 by relaxing this
circuit-hyperplane.

We will finally prove a small lemma that allows us to make a reduced representation
of a matroid N visible in the reduced representation of a matroid M if N is a minor of
M . This will be applied in Chapter 5. For a minor N of M , we will say that B displays
N if (M/B −E(N))|E(N) = N . Observe that if A is a reduced representation of M with
respect to a basis B displaying N , then deleting the rows of A in B − E(N) and deleting
the columns of A in E(M)− (X ∪B) yields a reduced representation of N with respect to
B − E(N).

Lemma 2.2.4. Let M be a matroid and N be a minor of M . Then there is a basis of M
that displays N .
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Proof. By the scum theorem (see 3.3.2 in [6]), there is an independent set C and a coinde-
pendent set D such that M/C\D = N . As D is coindependent, E(M)−D is spanning and
so there is some basis B that is disjoint from D. As C is independent, we can repeatedly
apply the third independence axiom in order to find a basis B′ such that C ⊆ B′ ⊆ B ∪C.
It follows that M [E(N), B′] = M/(B′ − E(N))\(E(M) − (E(N) ∪ B′)) = M/C\D = N ,
so B′ displays N .
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Chapter 3

Obstructions for weak
block-triangularity

This chapter will highlight the significant role played by the matrix classes Ak,Bk and Ck,
which were defined in the introduction. In particular, our main goal is to prove Theorem
1.3.1. We will start with three lemmas which we will later apply in the proof of the main
theorem, shortening the latter significantly. The first one characterizes all matrices that
do not have a constant row or column but all of whose proper submatrices do.

3.1 Characterizing minimal matrices without constant

row or column

Let D2 denote the set of 2× 2 matrices [
a b
c d

]
with {a, d} ∩ {b, c} = ∅, and let D3 denote the set of 3× 3 matrices that are isomorphic toa b b

a a c
c b c


where a, b and c are distinct. Observe that D2 = B1 and D3 = C1. Now let D = D2 ∪ D3.
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Lemma 3.1.1. If A is a matrix that does not contain a constant row or column, then A
contains a submatrix in D.

Proof. We may assume that A is submatrix-minimal having no constant row or column.

So, for some integers m and n, let A be a matrix on {1, . . . ,m} × {1, . . . , n} such that
A does not contain a constant row or column but all of its proper submatrices do. Observe
that any 2× 2-matrix without a constant row or column is in B1, so we may assume that
A has at least 3 rows or columns and will then prove that A is in C1. We will start by
excluding small counterexamples.

Claim 1. If A is not a 2× 2-matrix, then A contains at least 3 rows and 3 columns.

Proof. A matrix with only one row (column) has obviously constant columns (rows), so
without loss of generality we may assume that A has two rows and n columns for some
n ≥ 3 aiming for a contradiction. As the first column is not constant, we know that
A(1, 1) = a and A(2, 1) = b for some a 6= b.

As the first row of A is not constant, there is some j ∈ {2, . . . , n} such that A(1, j) = c
for some c 6= a. As the j-th column of A is not constant, it follows that A(2, j) 6= c.
As A[{1, 2}, {1, j}] must contain a constant row or column, it follows that A(2, j) = b.
Observe that b 6= c.

Similarly, as the second row of A is not constant, there is some k ∈ {2, . . . , n} such
that A(2, k) = d for some d 6= b. As the k-th column of A is not constant, it follows that
A(1, k) 6= d. As A[{1, 2}, {1, k}] must contain a constant row or column, it follows that
A(1, k) = a. Observe that a 6= d.

Therefore, we get that c, d /∈ {a, b} and therefore A[{1, 2}, {j, k}] does not contain a
constant row or column, a contradiction.

For the rest of the proof, we will assume that A has m ≥ 3 rows and n ≥ 3 columns.
We will now continue with proving some facts about the structure of A.

Claim 2. There is an injective function f : {1, . . . ,m} → {1, . . . , n} such that after the
deletion of the i-th row, the remainder of the f(i)-th column is constant.

Proof. After deleting row i, A must contain at least one constant column by definition.
For all i, let f(i) = j where j is the index of such a column. We still need to prove that
f is injective. Assume otherwise, so f(i1) = f(i2) for some i1, i2 ∈ {1, . . . ,m}. As A
contains at least three rows {1, . . . ,m} − {i1, i2} is nonempty. As f(i1) = j, it follows

20



that Ai,j = Ai2,j for all i ∈ {1, . . . ,m} − {i1, i2}. As f(i1) = j, it follows that Ai,j = Ai1,j
for all i ∈ {1, . . . ,m} − {i1, i2}. Therefore, it follows that the j-th column is constant, a
contradiction.

Applying the claim to AT , we get that there also is an injective function g : {1, . . . , n} →
{1, . . . ,m} such that after the deletion of the j-th column, the remainder of the g(j)-th
row is constant.

It therefore follows that m = n and that f and g are both bijections. As f and g are in
particular surjective, every row and column has exactly one special entry that is different
from all others.

Claim 3. The bijections f and g are uniquely defined.

Proof. It suffices to prove that f is uniquely defined. Assume otherwise, so there are
distinct bijections f1 and f2 such that the remainders of the f1(i)-th column and the f2(i)-
th column are constant after deleting the row i for all i ∈ {1, . . . ,m}. By assumption,
there are some i1, j1, j2 ∈ {1, . . . ,m} with j1 6= j2 such that f1(i1) = j1 and f2(i1) = j2.
It follows that the remainder of the column j1 is constant after deleting the row i1. As f2
is a bijection, there is some i2 6= i1 such that f2(i2) = j1. It follows that the remainder of
the column j1 is constant after deleting the row i1. As the column j1 has at least three
elements, it follows that it is constant in A, a contradiction.

This yields that whenever we delete a row there is exactly one constant column and
whenever we delete a column there is exactly one constant row.

Without loss of generality, we will assume that the special element of the first row is
its first entry.

Claim 4. There are no i, j ∈ {1, . . . ,m} such that after deleting the i-th row the remainder
of the j-th column is constant and after deleting the j-th column the remainder of the i-th
row is constant.

Proof. Assume that this is not the case, and without loss of generality i = j = 1. So A is
of the form 

a b . . . b
c
...
c

 .
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Now consider A′ = A[{2, . . . ,m}, {2, . . . ,m}]. As the first row is the unique one whose
remainder is constant after deleting the first column of A, A′ does not contain a constant
row. Similarly, A′ does not contain a constant column. This is a contradiction to the choice
of A as being minimal with the property of not having a constant row or column.

By symmetry, we may now assume that the i-th element in row i is special for row i for
all i = 1, . . . ,m and, by Claim 4 that the second element in column 1 is special for column
1. Let A(1, 1) = a, A(1, 2) = b and A(2, 1) = c. Observe that a /∈ {b, c}. As the first row
has A(1, 1) for its special element, A(1,m) = . . . = A(1, 3) = A(1, 2) = b. As the second
row has A(2, 2) for its special element, A(2,m) = . . . = A(2, 3) = A(2, 1) = c. As the first
column has A(2, 1) for its special element, A(m, 1) = . . . = A(3, 1) = A(1, 1) = a. As the
third row has A(3, 3) for its special element, A(3,m) = . . . = A(3, 4) = A(3, 2) = A(3, 1) =
a. So A is of the form 

a b b b . . . b
c c c . . . c
a a a . . . a
a
...
a


.

As A[{1, 2}, {1, 2}] must contain a constant row or column, it follows that A(2, 2) is either
b or c. As A(2, 2) is the special element of the second row, we know that A(2, 2) 6= c, so
A(2, 2) = b. Observe that this also implies that b 6= c. As A[{2, 3}, {2, 3}] must contain a
constant row or column, it follows that A(3, 3) is either a or c. As A(3, 3) is the special
element of the second row, we know that A(3, 3) 6= a, so A(2, 2) = c.

This yields

A[{1, 2, 3}, {1, 2, 3}] =

a b b
c b c
a a c

 .
Observe that A[{1, 2, 3}, {1, 2, 3}] does not have a constant row or column, which means
that A[{1, 2, 3}, {1, 2, 3}] is the whole matrix, A = A[{1, 2, 3}, {1, 2, 3}]. As A is in D3, this
finishes the proof.
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3.2 Some properties of weak block-triangularity

The next lemma will be helpful to take care of matrices that do not contain matrices in
B1 or C1.

Lemma 3.2.1. A matrix over some finite field GF (q) all of whose submatrices have a
constant row or column is q-block-triangular.

Proof. Let A be an I×J-matrix over GF (q) where, without loss of generality I ∩J = ∅. It
suffices to prove that there is a q-block-decomposition (I,J ) such that A[I0, J0] has only
two distinct entries for all I0 ∈ I and J0 ∈ J . As all submatrices of A have a constant
row or column, we can recursively delete constant rows and columns. Therefore, there is
an ordering (a1, . . . , an) of I ∪ J and a function Γ : I ∪ J → GF (q) such that , for each
i ∈ {1, . . . , n}, the entries in the row or column of A[I ∩ {ai, . . . , an}, J ∩ {ai, . . . , an}]
which is indexed by ai are all equal to Γ(ai). Let Ie = {ai ∈ I|Γ(ai) = e} and Je = {ai ∈
J |Γ(ai) = e} for all e ∈ GF (q).

Let Ae,f denote A[Ie, Jf ] for e, f ∈ GF (q). We will prove that Ae,f is a triangular
matrix for all e, f ∈ GF (q) finishing the proof of the claim.

We will prove that the only entries of Ae,f are e and f . Consider A(ai, aj) with ai ∈ Ie
and aj ∈ Jf . Assume first that ai is of lower index in the ordering above than aj. This
implies that the row indexed by ai of A[I ∩ {ai, . . . , an}, J ∩ {ai, . . . , an}] is constant of e.
As A(ai, aj) is a part of that row, it follows that A(ai, aj) = e. Similarly, if aj is of lower
index in the ordering above than ai, it follows that A(ai, aj) = f .

We need one more lemma that makes a matrix highly structured if all of its blocks are.

Lemma 3.2.2. If A is a matrix of the form

A =

A1,1 . . . A1,n

...
. . .

...
An,1 . . . An,n

,

such that each of the blocks Ak,l is weakly t-block-triangular for some t ∈ N, then A is
weakly ntn-block-triangular.

Proof. Let Ik be the index set of the rows and Jl be the index set of the columns of Ak,l.
Without loss of generality all these sets are pairwise disjoint. By assumption Ak,l is weakly
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t-block-triangular for all k and l and so by definition, for all k, l there is a certificate
((Ik,l,1, . . . , Ik,l,t), (Jl,k,1, . . . , Jl,k,t)) of weak t-block-triangularity. We will now define new
partitions for every Ik and every Jl in the following way:

For every k and for every sequence s ∈ {1, . . . , t}n define Ik,s =
n⋂
l=1

Ik,l,sl . Similarly, for

given l and for every sequence s ∈ {1, . . . , t}n define Jl,s =
n⋂
k=1

Jl,k,sk . Observe that this

partitions I and J each into at most ntn partition classes. Also observe that for every k, l,
and for all sequences r, s, Ik,r is a subset of Ik,l,rl and Jl,s is a subset of Jl,k,sk . It follows
that A[Ik,r, Jl,s] is a submatrix of A[Ik,l,rl , Jl,k,sk ] which is triangular by assumption. As
the property of being triangular is hereditary under taking submatrices, it follows that
A[Ik,r, Jl,s] is triangular. So, ((Ik,s : k = 1, . . . , n, s ∈ {1, . . . , t}n), (Jl,s : l = 1, . . . , n, s ∈
{1, . . . , t}n)) is a certificate of weak ntn-block-triangularity. This finishes the proof.

3.3 The main proof of Theorem 1.3.1

We are now ready to give the main proof of Theorem 1.3.1, which, for convenience, will be
reformulated in the following way :

Theorem (Restatement of Theorem 1.3.1). There is a function f : N2 → N, such that for
each q and k ∈ N, if A is a matrix over some finite field GF (q), then either

(i) A is weakly f(q, k)-block-triangular, or

(ii) A has a submatrix in Ak, Bk or Ck.

for all k ∈ N.

Proof. For the proof of this theorem, we will need to introduce the notion of a special
matrix. It will prove useful as it helps constructing an intermediate step in the proof of
the theorem.

Definition 3.3.1. We will recursively define a special matrix of depth t. A special matrix
of depth 1 is a matrix in A1, B1 or C1. Given a special matrix A0 of depth t − 1, we
construct a special matrix of depth t by one of the following three operations:
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(i)

A =

a b . . . b
c

A0
...
c

,

where a, b, c ∈ GF (q) and a /∈ {b, c}

(ii)

A =

a b a . . . a
c d d . . . d
c b

A0
...

...
c b

,

where a, b, c, d ∈ GF (q) and {a, d} ∩ {b, c} = ∅,

(iii)

A =

a a b a . . . a
a c c c . . . c
b c b b . . . b
a c b

A0
...

...
...

a c b

,

where a, b, c ∈ GF (q) are distinct.

According to which of the above conditions is satisfied, we will say that the l-th block
of a special matrix is of type (i), (ii), (iii), respectively. For example,

A =



a c c c c c c c
e f f g f f f f
e f h h h h h h
e g h g g g g g
e f h g i j i i
e f h g k l l l
e f h g k j m n
e f h g k j o p


,
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is a special matrix of depth 4, where the blocks are of type (i), (i), (ii), (iii), (i), respec-
tively. Observe that the entries in different blocks do not need to be different.

Observe that a matrix of the form

[
a b
c d

]
.

with {a, d} ∩ {b, c} = ∅ is a special matrix of depth 2 and a special matrix of depth 1.

The main part of the proof of Theorem 3.3 is divided into two lemmas whose combi-
nation then yields the result easily.

The most difficult part of the proof is subsumed in the following result that finds big
special submatrices in all matrices that are not weakly block-triangular with respect to
some bounded number. Its proof makes use of the three preceding lemmas.

Lemma 3.3.2. There is a function g : N2 → N such that, if A is a matrix over GF (q)
and t ∈ N, then for all t ∈ N either

(i) A contains a special matrix of depth t, or

(ii) A is weakly g(q, t)-block-triangular.

Proof. We will show that the statement holds for the function q that is recursively defined
by g(q, 1) = 1 and q(q, t+ 1) = g(q, t)(q3 + 1)g(q,t)

By Lemma 3.2.1 we can assume that A contains a submatrix without constant row or
column. As every 1 × 1-matrix is a special matrix of depth 1, the statement is trivial for
t=1, so we can assume it holds for all integers up to some t.

By Lemma 3.1.1 , it follows that A contains a submatrix A1 in B1 or C1, so there are
matrices A2, A3 and A4 such that

A =
A1 A2

A3 A4
.

Let l be the number of rows of A1; thus l ≤ 3. Observe that A2 has l rows and A3 has l
columns. We will now partition the row index set of A4 in sets (Iv : v ∈ GF (q)l) such that
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the index i belongs to the index set Iv if the i-th row of A3 equals v. Observe that there
are at most q3 partition classes as A3 has l columns.

Similarly, we will partition the column index set of A4 in sets (Jv : v ∈ GF (q)l) such
that the index j belongs to the index set Jv if the j-th column of A2 equals v. Again, there
are at most q3 partition classes as A2 has l rows. For v, w ∈ GF (q)l, let Av,w = A4[Iv, Iw].
We can now apply the inductive hypothesis to each of the Av,w, yielding that each of them
either is weakly g(q, t)-block-triangular or contains a special matrix of depth t. We will
need to distinguish two cases.

Case 1. Av,w is g(q, t)-block-triangular for all v, w ∈ GF (q)l.

We need to prove that A is weakly C-block-triangular for some constant number C
depending only on q. By assumption Av,w is weakly g(q, t)-block-triangular for all v and
w. Observe that A1 is trivially weakly 3-block-triangular and also A2[{1, . . . , l}, Jw] for all
w ∈ GF (q)l as well as A3[Iv, {1, . . . , l}] for all v ∈ GF (q)l are weakly 3-block-triangular.
So we can apply Lemma 3.2.2 to see that A is weakly g(q, t)(q3 + 1)g(q,t)-block-triangular.
This finishes the case.

Case 2. There are some v, w such that Av,w contains a special matrix of depth t.

Consider a submatrix A′4 of Av,w that is isomorphic to a special matrix of depth t. By
construction the rows in A3 and the columns of A2 that extend to A′4 are all the same.
So adding the rows and columns of A1 yields a matrix of the following form where the
columns of A′3 and the rows of A′2 are constant:

A′ =
A1 A′2
A′3 A′4

.

We will prove that A′ has a special submatrix of depth t + 1. If there are some i, j ≤ l
such that A′i,j is different from the entry in the i-th row of A′2 and the entry in the j-th
column of A′3, we can get a special matrix of depth t+ 1 with the first block of type (i).

Theefore, we may assume this is not the case and can finish the proof by a small case
analysis.

Subcase 1. A1 is in B1
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We know that A′ is of the following form:
a b e . . . e
c d f . . . f
g h

A′4...
...

g h

 .

As the first block is not of type (i), it follows that either e = a or g = a. Assume first that
e = a. As b 6= a, it follows that h = b. Similar arguments yield f = d and g = c. This
makes A′ a special matrix of depth t+ 1 where the first block is of type (ii).

If on the other hand g = a, it follows that f = c. We can reduce this to the other case
by switching the first two rows and relabelling a, b, c, d.

Subcase 2. A1 is in C1

We know that A′ is of the following form:

a a b d . . . d
a c c e . . . e
b c b f . . . f
g h i

A′4...
...

...
g h i


.

As the first block is not of type (i), it follows that either d = a or g = a. Assume first that
d = a. By similar arguments as before, it follows that i = b, e = c, g = a, f = b and h = c.
This makes A′ a special matrix of depth t+ 1 where the first block is of type (iii).

Assuming that g = a, the analogous argumentation yields the same matrix, so again
A′ is a special matrix of depth t+ 1 where the first block is of type (iii).

We will now show how to find a large matrix in A∪B∪C in a special matrix of sufficient
depth.

Lemma 3.3.3. Every special matrix over GF (q) of depth 3kq4 has a submatrix in Ak,Bk
or Ck.

Proof. Let A be a special matrix of depth 3kq4 for some k. It follows that A either contains
kq4 blocks of type (i), kq4 blocks of type (ii) or kq4 blocks of type (iii).
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Case 1. A contains kq4 blocks of type (i).

We will prove that A contains a matrix in Ak. Recall that for example a matrix in A4

is of the form

A(a, b, c, 4) =


a c c c
b a c c
b b a c
b b b a

 ,

where a /∈ {b, c}. We will first delete the rows and columns corresponding to all other
blocks of A. Now observe that every block i is characterized by the element Ai,i and by the
elements in the constant part of the i-th row and column. As there are only q possibilities
for each of these parameters and there are kq4 blocks, there must be some a, b, c that
characterize at least k of the blocks. Keeping only these rows and columns yields the
matrix A(a, b, c, k).

Case 2. A contains kq4 blocks of type (ii).

We will prove that A contains a matrix in Bk. Recall that for example a matrix in B4
is of the form

B(a, b, c, d, 4) =



a a a a b a a a
c a a a b b a a
c c a a b b b a
c c c a b b b b
c d d d d d d d
c c d d b d d d
c c c d b b d d
c c c c b b b d


,

where {a, d} ∩ {b, c} = ∅. We will first delete the rows and columns corresponding to all
other blocks of A. Now observe that every block is characterized by its four parameters.
As there are only q possibilities for each of these parameters and there are kq4 blocks, there
must be some a, b, c, d that characterize at least k of the blocks. Keeping only the rows
and columns contained by these blocks yields a matrix A′ of the form

a b a . . . a
c d d . . . d

c b
. . .

...
... a b

c b c d

 .
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So A′ contains k blocks. Denote rows in each block i by (i, 1) and (i, 2) and the columns in
each block by (j, 1) and (j, 2). Reordering the rows and columns in lexicographical order
starting with the second coordinate yields the matrix B(a, b, c, d, k).

Case 3. A contains kq4 blocks of type (iii).

We will prove that A contains a matrix in Ck. Recall that for example a matrix in C4
is of the form

C(a, b, c, 4) =



a a a a a a a a b a a a
a a a a c a a a b b a a
a a a a c c a a b b b a
a a a a c c c a b b b b
a c c c c c c c c c c c
a a c c c c c c b c c c
a a a c c c c c b b c c
a a a a c c c c b b b c
b b b b c b b b b b b b
a b b b c c b b b b b b
a a b b c c c b b b b b
a a a b c c c c b b b b



,

where a, b and c are pairwise distinct. We will first delete the rows and columns correspond-
ing to all other blocks of A. Now observe that every block is characterized by its three
parameters. As there are only q possibilities for each of these parameters and there are
kq4 blocks, there must be some a, b, c, d that characterize at least k of the blocks. Keeping
only the rows and columns of these blocks yields a matrix A′ of the form

a a b a . . . . . . a
a c c c . . . . . . c
b c b b . . . . . . b

a c b
. . .

...
...

... a a b
...

...
... a c c

a c b b c b


.

So A′ contains k blocks. Denote rows in each block i by (i, 1)(i, 2) and (i, 3) and the columns
in each block by (j, 1), (j, 2) and (j, 3). Reordering the rows and columns in lexicographical
order starting with the second coordinate yields the matrix C(a, b, c, k).
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Applying the two lemmas, we can now finish the proof of the main theorem. Let
f : N2 → N be defined as f(q, k) = g(q, 3kq4). Let A be a matrix over some finite field
GF (q) and let k be an integer. We may assume that A is not f(q, k)-block-triangular. So
by Lemma 3.3.2, A contains a special matrix of depth 3kq4. Now applying Lemma 3.3.3,
we get that A contains a matrix in Ak,Bk or Ck. This finishes the proof.
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Chapter 4

Representations of circuit-hyperplane
relaxations

This chapter will mainly be concerned with proving a strengthening of Theorem 1.3.2: In
order to do this, we will first examine a set of matrices possibly appearing as reduced
representations and determine whether they are singular or non-singular. We will then
apply these results to the reduced representations of two matroids M1 and M2 such that
M2 arises from M1 by relaxing a circuit-hyperplane, yielding a contradiction to Lemma
2.2.2 if they contain matrices in Aq2 ,B2 or C3 in a certain way. The first part is concerned
with determining whether certain matrices in A,B and C are singular, results that will be
needed to get the contradiction in the end.

4.1 Singular and non-singular matrices

Lemma 4.1.1. Let A be a (k + 1)× (k + 1)-matrix of the form
a b . . . b 1

b
. . . . . .

...
...

...
. . . . . . b

...
b . . . b a 1
1 . . . . . . 1 ε

 .

over some finite field GF (q), where a 6= b, and ε ∈ {0, 1}. If q divides k, then A is singular
if and only if ε = 1.
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Proof. We will subtract the last row b times from all other rows. This yields the following
matrix where a′ denotes a− b which is non-zero as a 6= b:

a′ 0 . . . 0 1− bε
0

. . . . . .
...

...
...

. . . . . . 0
...

0 . . . 0 a′ 1− bε
1 . . . . . . 1 ε

 .
Observe that if b = 1 and ε = 1, all the entries above the diagonal of A are zero and all
the entries on the diagonal are non-zero. Therefore, A is non-singular and we are done in
that case. Otherwise, we can now multiply all rows but the last one with (1− bε)−1 giving
the following matrix where a′′ denotes a′(1− bε)−1, which is obviously non-zero:

a′′ 0 . . . 0 1

0
. . . . . .

...
...

...
. . . . . . 0

...
0 . . . 0 a′′ 1
1 . . . . . . 1 1

 .
Finally, we will add all other rows −(a′′)−1times onto the last row. Observing that q = 0
in GF (q), we get the following matrix:

a′′ 0 . . . 0 1

0
. . . . . .

...
...

...
. . . . . . 0

...
0 . . . 0 a′′ 1
0 . . . . . . 0 ε

 .
If ε = 0, then A has a row of zeros and therefore is singular. If, on the other hand,
ε = 1 then all the entries below the diagonal are zero and all the diagonal entries of A are
non-zero, so A is non-singular.

Lemma 4.1.2. Let A be a (k + 1)× (k + 1)-matrix of the form
a c . . . c 1

b
. . . . . .

...
...

...
. . . . . . c

...
b . . . b a 1
1 . . . . . . 1 ε

 .
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over some finite field GF (q), where a, b and c are pairwise distinct, ε ∈ {0, 1} and bε 6= 1.
If q − 1 divides k, then A is singular if and only if ε = 1.

Proof. Firstly, we will subtract the last row b times from all other rows. This yields the
following matrix where a′ denotes a− b and c′ denotes c− b, which are both non-zero:

a′ c′ . . . c′ 1− bε
0

. . . . . .
...

...
...

. . . . . . c′
...

0 . . . 0 a′ 1− bε
1 . . . . . . 1 ε

 .

As bε 6= 1, we can now multiply all rows but the last one with (1 − bε)−1 yielding the
following matrix where a′′ denotes a′(1− bε)−1 and c′′ denotes c′(1− bε)−1:

a′′ c′′ . . . c′′ 1

0
. . . . . .

...
...

...
. . . . . . c′′

...
0 . . . 0 a′′ 1
1 . . . . . . 1 1

 .

Observe that a′′ and c′′ are both non-zero and also a′′ 6= c′′. Now consider the vector

x = (− 1

a′′
,− 1

a′′
(1− c′′

a′′
),− 1

a′′
(1− c′′

a′′
)2, . . . ,− 1

a′′
(1− c′′

a′′
)k−1, 1) ∈ GF (q)k

and let v = xA. We can calculate the entries of v. For all 1 ≤ j ≤ k, we get:

vj =

j−1∑
i=1

− 1

a′′

(
1− c′′

a′′

)i−1
c′′ − 1

a′′

(
1− c′′

a′′

)j−1
a′′ + 1

= − c
′′

a′′

j−2∑
i=0

(
1− c′′

a′′

)i
−
(

1− c′′

a′′

)j−1
+ 1

= − c
′′

a′′
1−

(
1− c′′

a′′

)j−1
1−

(
1− c′′

a′′

) − (1− c′′

a′′

)j−1
+ 1

= −

(
1−

(
1− c′′

a′′

)j−1)
−
(

1− c′′

a′′

)j−1
+ 1
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= 0.

Furthermore, we can calculate:

vk = − 1

a′′

k∑
i=1

(
1− c′′

a′′

)i−1
+ ε

= − 1

a′′

k−1∑
i=0

(
1− c′′

a′′

)i
+ ε

= − 1

a′′
1−

(
1− c′′

a′′

)k
1−

(
1− c′′

a′′

) + ε

= ε,

as the (q−1)-th power of any number in GF (q) is 1. So, in total, this yields v = (0, . . . , 0, ε).
Observe that v is in the row space of A. If ε = 0, v is the zero vector and so A is singular.
If ε = 1, v and the first k rows of A and v span GF (q)k+1, so A is non-singular.

Lemma 4.1.3. Let A be a 5× 5-matrix of the form
a a b a 1
c a b b 1
c d d d 1
c c b d 1
1 1 1 1 ε

 .
over some finite field GF (q), where {a, d}∩{b, c} = ∅, ε ∈ {0, 1}, bε 6= 1 and cε 6= 1. Then
A is non-singular if and only if ε = 1.

Proof. We will now add the last row −c times to all other rows yielding the following
matrix where a′ = a− c, b′ = b− c and d′ = d− c:

a′ a′ b′ a′ 1− cε
0 a′ b′ b′ 1− cε
0 d′ d′ d′ 1− cε
0 0 b′ d′ 1− cε
1 1 1 1 ε

 .
As cε 6= 1, we can now multiply every row but the last one with (1 − cε)−1 yielding the
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following matrix where a′′ = a′(1− cε)−1, b′′ = b′(1− cε)−1 and d′′ = d′(1− cε)−1:
a′′ a′′ b′′ a′′ 1
0 a′′ b′′ b′′ 1
0 d′′ d′′ d′′ 1
0 0 b′′ d′′ 1
1 1 1 1 ε

 .
We will now add the last row −a′′ times to the first row and −d′′ times to the third row
yielding the following matrix:

0 0 b′′ − a′′ 0 1− a′′ε
0 a′′ b′′ b′′ 1
−d′′ 0 0 0 1− d′′ε

0 0 b′′ d′′ 1
1 1 1 1 ε

 .

We will next add the last column −b′′ times to the third column yielding the following
matrix: 

0 0 a′′(b′′ε− 1) 0 1− a′′ε
0 a′′ 0 b′′ 1
−d′′ 0 −b′′(1− d′′ε) 0 1− d′′ε

0 0 0 d′′ 1
1 1 1− b′′ε 1 ε

 .
Now consider the vector

x = (
d′′ − b′′

a′′(1− b′′ε)d′′
,− 1

a′′
,

1

d′′
,
b′′ − a′′

a′′d′′
, 1) ∈ GF (q)5

and let v = xA.

We can calculate the entries of v.

v1 =
1

d′′
(−d′′) + 1

= 0,

v2 = − 1

a′′
a′′ + 1

= 0,

v3 =
d′′ − b′′

a′′ (1− b′′ε) d′′
(a′′ (b′′ε− 1)) +

1

d′′
(−b′′ (1− d′′ε)) + 1− b′′ε
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= −1 +
b′′

d′′
− b′′

d′′
+ b′′ε+ 1− b′′ε

= 0,

v4 = − 1

a′′
b′′ +

b′′ − a′′

a′′d′′
d′′ + 1

= − b
′′

a′′
+
b′′

a′′
− 1 + 1

= 0,

v5 =
d′′ − b′′

a′′ (1− b′′ε) d′′
(1− a′′ε)− 1

a′′

+
1

d′′
(1− d′′ε) +

b′′ − a′′

a′′d′′
+ ε

=
(d′′ − b′′) (1− aε)
a′′ (1− b′′ε) d′′

− (1− b′′ε) d′′

a′′ (1− b′′ε) d′′

+
(1− d′′ε) (1− b′′ε) a′′

a′′ (1− b′′ε) d′′
+

(b′′ − a′′) (1− b′′ε)
a′′ (1− b′′ε) d′′

+
a′′ (1− b′′ε) d′′ε
a′′ (1− b′′ε) d′′

=
1

a′′ (1− b′′ε) d′′

(
d′′ − a′′d′′ε− b′′ + a′′b′′ε− d′′ + b′′d′′ε+ a′′ − a′′b′′ε− a′′d′′ε+ a′′b′′d′′ε2

+ b′′ − (b′′)
2
ε− a′′ + a′′b′′ε+ a′′d′′ε− a′′b′′d′′ε2

)
=
b′′d′′ε− a′′d′′ε− (b′′)2 ε+ a′′b′′ε

a′′ (1− b′′ε) d′′

=
−ε (b′′ − a′′) (b′′ − d′′)

a′′ (1− b′′ε) d′′
.

So, in total, this yields

v = (0, 0, 0, 0,
−ε(b′′ − a′′)(b′′ − d′′)

a′′(1− b′′ε)d′′
)

. Observe that v is in the row space of A. If ε = 0, v is the zero vector and so A is singular.
If ε = 1, the last entry of v is non-zero as a′′ 6= b′′ and b′′ 6= d′′. We will prove that the first
four rows of A and v span GF (q)5. As A(5, 5) and A(4, 4) are nonzero, it suffices to prove
that A[{1, 2, 3}, {1, 2, 3}]=  0 0 a′′(b′′ε− 1)′′

0 a′′ 0
−d′′ 0 −b′′(1− d′′ε)
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is non-singular. All entries above its anti-diagonal are zero, while all the entries on the
anti-diagonal are non-zero. It follows that A[{1, 2, 3}, {1, 2, 3}] is non-singular.

Therefore, A is non-singular.

Lemma 4.1.4. Let A be a 10× 10-matrix of the form

a a a a a a b a a 1
a a a c a a b b a 1
a a a c c a b b b 1
a c c c c c c c c 1
a a c c c c b c c 1
a a a c c c b b c 1
b b b c b b b b b 1
a b b c c b b b b 1
a a b c c c b b b 1
1 1 1 1 1 1 1 1 1 ε


.

over some finite field GF (q), where a, b, c are pairwise distinct, ε ∈ {0, 1}, aε 6= 1 and
bε 6= 1. Then A is non-singular if and only if ε = 1.

Proof. We will add the last row −a times to all other rows yielding the following matrix
where b′ = b− a and c′ = c− a:

0 0 0 0 0 0 b′ 0 0 1− aε
0 0 0 c′ 0 0 b′ b′ 0 1− aε
0 0 0 c′ c′ 0 b′ b′ b′ 1− aε
0 c′ c′ c′ c′ c′ c′ c′ c′ 1− aε
0 0 c′ c′ c′ c′ b′ c′ c′ 1− aε
0 0 0 c′ c′ c′ b′ b′ c′ 1− aε
b′ b′ b′ c′ b′ b′ b′ b′ b′ 1− aε
0 b′ b′ c′ c′ b′ b′ b′ b′ 1− aε
0 0 b′ c′ c′ c′ b′ b′ b′ 1− aε
1 1 1 1 1 1 1 1 1 ε


.

As a 6= 1, we can multiply all rows but the last one by (1 − aε)−1 yielding the following
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matrix where b′′ = b′(1− aε)−1 and c′′ = c′(1− aε)−1:

0 0 0 0 0 0 b′′ 0 0 1
0 0 0 c′′ 0 0 b′′ b′′ 0 1
0 0 0 c′′ c′′ 0 b′′ b′′ b′′ 1
0 c′′ c′′ c′′ c′′ c′′ c′′ c′′ c′′ 1
0 0 c′′ c′′ c′′ c′′ b′′ c′′ c′′ 1
0 0 0 c′′ c′′ c′′ b′′ b′′ c′′ 1
b′′ b′′ b′′ c′′ b′′ b′′ b′′ b′′ b′′ 1
0 b′′ b′′ c′′ c′′ b′′ b′′ b′′ b′′ 1
0 0 b′′ c′′ c′′ c′′ b′′ b′′ b′′ 1
1 1 1 1 1 1 1 1 1 ε


.

We will now add the last row −c′′ times to the fourth row and −b′′ times to the seventh
row. This yields 

0 0 0 0 0 0 b′′ 0 0 1
0 0 0 c′′ 0 0 b′′ b′′ 0 1
0 0 0 c′′ c′′ 0 b′′ b′′ b′′ 1
−c′′ 0 0 0 0 0 0 0 0 1− c′′ε

0 0 c′′ c′′ c′′ c′′ b′′ c′′ c′′ 1
0 0 0 c′′ c′′ c′′ b′′ b′′ c′′ 1
0 0 0 c′′ − b′′ 0 0 0 0 0 1− b′′ε
0 b′′ b′′ c′′ c′′ b′′ b′′ b′′ b′′ 1
0 0 b′′ c′′ c′′ c′′ b′′ b′′ b′′ 1
1 1 1 1 1 1 1 1 1 ε


.

We will now add the last column −c′′ times to the fourth column and −b′′ times to the
seventh column. This yields

0 0 0 −c′′ 0 0 0 0 0 1
0 0 0 0 0 0 0 b′′ 0 1
0 0 0 0 c′′ 0 0 b′′ b′′ 1
−c′′ 0 0 c′′(c′′ε− 1) 0 0 b′′(c′′ε− 1) 0 0 1− c′′ε

0 0 c′′ 0 c′′ c′′ 0 c′′ c′′ 1
0 0 0 0 c′′ c′′ 0 b′′ c′′ 1
0 0 0 b′′(c′′ε− 1) 0 0 b′′(b′′ε− 1) 0 0 1− b′′ε
0 b′′ b′′ 0 c′′ b′′ 0 b′′ b′′ 1
0 0 b′′ 0 c′′ c′′ 0 b′′ b′′ 1
1 1 1 1− c′′ε 1 1 1− b′′ε 1 1 ε
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Now consider the vector x =(
(b′′ − c′′) (c′′ε− 1)

(c′′)2 (b′′ε− 1)
,−(c′′ − b′′)2

b′′ (c′′)2
,
c′′ − b′′

b′′c′′
,

1

c′′
,− b′′

(c′′)2
,
b′′ − c′′

(c′′)2
,

b′′ − c′′

b′′c′′ (b′′ε− 1)
,− 1

b′′
,

1

c′′
, 1

)

∈ GF (q)10 and let v = xA.

We can calculate the entries of v.

v1 =
1

c′′
(−c′′) + 1

= 0,

v2 = − 1

b′′
b′′ + 1

= 0,

v3 = − b′′

(c′′)2
c′′ − 1

b′′
b′′ +

1

c′′
b′′ + 1

= 0,

v4 =
(b′′ − c′′) (c′′ε− 1)

(c′′)2 (b′′ε− 1)
(−c′′)

+
1

c′′
c′′ (c′′ε− 1) +

b′′ − c′′

b′′c′′ (b′′ε− 1)
b′′ (c′′ε− 1) + 1− c′′ε

= −(b′′ − c′′) (c′′ε− 1)

c′′ (b′′ε− 1)
+ c′′ε− 1 +

(b′′ − c′′) (c′′ε− 1)

c′′ (b′′ε− 1)
+ 1− c′′ε

= 0,

v5 =
c′′ − b′′

b′′c′′
c′′ − b′′

(c′′)2
(c′′) +

b′′ − c′′

(c′′)2
c′′ − 1

b′′
c′′ +

1

c′′
c′′ + 1

=
c′′

b′′
− 1− b′′

c′′
+
b′′

c′′
− 1− c′′

b′′
+ 1 + 1

= 0,

v6 = − b′′

(c′′)2
c′′ +

b′′ − c′′

(c′′)2
c′′ − 1

b′′
b′′ +

1

c′′
c′′ + 1

= −b
′′

c′′
+
b′′

c′′
− 1− 1 + 1 + 1

= 0,
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v7 =
1

c′′
b′′ (c′′ε− 1) +

b′′ − c′′

b′′c′′ (b′′ε− 1)
b′′ (b′′ε− 1) + 1− b′′ε

= b′′ε− b′′

c′′
+
b′′

c′′
− 1 + 1− b′′ε

= 0,

v8 = −(c′′ − b′′)2

b′′ (c′′)2
b′′ +

c′′ − b′′

b′′c′′
b′′ − b′′

(c′′)2
c′′ +

b′′ − c′′

(c′′)2
b′′ − 1

b′′
b′′ +

1

c′′
b′′ + 1

= −1 + 2
b′′

c′′
− (b′′)2

(c′′)2
+ 1− b′′

c′′
− b′′

c′′
+

(b′′)2

(c′′)2
− b′′

c′′
− 1 +

b′′

c′′
+ 1

= 0,

v9 =
c′′ − b′′

b′′c′′
b′′ − b′′

(c′′)2
c′′ +

b′′ − c′′

(c′′)2
c′′ − 1

b′′
b′′ +

1

c′′
b+ 1

=
c′′ − b′′

c′′
− b′′

c′′
+
b′′ − c′′

c′′
− 1 +

b′′

c′′
+ 1

= 0,

v10 =
(b′′ − c′′) (c′′ε− 1)

(c′′)2 (b′′ε− 1)
1− (c′′ − b′′)2

b′′ (c′′)2
1 +

c′′ − b′′

b′′c′′
1

+
1

c′′
(1− c′′ε)− b′′

(c′′)2
1 +

b′′ − c′′

(c′′)2
1 +

b′′ − c′′

b′′c′′ (b′′ε− 1)
(1− b′′ε)

− 1

b′′
1 +

1

c′′
1 + ε

=
(b′′ − c′′) (c′′ε− 1)

(c′′)2 (b′′ε− 1)
− (c′′ − b′′)2

b′′ (c′′)2
+

1

b′′
− 1

c′′
+

1

c′′
− ε− b′′

(c′′)2

+
b′′

(c′′)2
− 1

c′′
+

b′′ − c′′

b′′c′′ (b′′ε− 1)
(1− b′′ε)− 1

b′′
+

1

c′′
+ ε

=
(b′′ − c′′) (c′′ε− 1)

(c′′)2 (b′′ε− 1)
− (c′′ − b′′)2

b′′ (c′′)2
+

(b′′ − c′′) (1− b′′ε)
b′′c′′ (b′′ε− 1)

=
1

b′′ (b′′ε− 1) (c′′)2

(
b′′ (b′′ − c′′) (c′′ε− 1)

− (b′′ε− 1) (c′′ − b′′)2 + c′′ (b′′ − c′′) (1− b′′ε)
)

=
1

b′′ (b′′ε− 1) (c′′)2

(
(b′′)

2
c′′ε− (b′′)

2 − b′′ (c′′)2 ε+ b′′c′′
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− (b′′)
3
ε+ 2 (b′′)

2
c′′ε− b′′ (c′′)2 ε+ (b′′)

2 − 2b′′c′′ + (c′′)
2

+ b′′c′′ − (b′′)
2
c′′ε− (c′′)

2
+ (c′′)

2
b′′ε

)
=
−ε
(
(b′′)3 + 2 (b′′)2 c′′ + b′′ (c′′)2

)
b′′ (b′′ε− 1) (c′′)2

=
−ε (b′′) (b′′ − c′′)2

b′′ (b′′ε− 1) (c′′)2
.

So, in total, this yields

v = (0, 0, 0, 0, 0, 0, 0, 0, 0,
−ε (b′′) (b′′ − c′′)2

b′′ (b′′ε− 1) (c′′)2
)

. Observe that v is in the row space of A. If ε = 0, v is the zero vector and so A is singular.
If ε = 1, the last entry of v is non-zero as b′′ 6= 0 and b′′ 6= c′′. We will prove that the first
nine rows of A and v span GF (q)10. As all entries not in these blocks are zero, it suffices to
prove that A[{1, 4, 7}, {1, 4, 7}] and A[{2, 3, 5, 6, 8, 9}, {2, 3, 5, 6, 8, 9}] are non-singular for
ε = 1.

We know that A[{1, 4, 7}, {1, 4, 7}]= 0 −c′′ 0
−c′′ c′′(c′′ − 1) b′′(c′′ − 1)

0 b′′(c′′ − 1) b′′(b′′ − 1)

 .
After exchanging the last two columns and the last two rows, we get the following matrix: 0 0 −c′′

0 b′′(b′′ − 1) b′′(c′′ − 1)
−c′′ b′′(c′′ − 1) c′′(c′′ − 1)

 .
All entries above its anti-diagonal are zero, while all the entries on the anti-diagonal are
non-zero. It follows that A[{1, 4, 7}, {1, 4, 7}] is non-singular.
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We know that A[{2, 3, 5, 6, 8, 9}, {2, 3, 5, 6, 8, 9}]=
0 0 0 0 b′′ 0
0 0 c′′ 0 b′′ b′′

0 c′′ c′′ c′′ c′′ c′′

0 0 c′′ c′′ b′′ c′′

b′′ b′′ c′′ b′′ b′′ b′′

0 b′′ c′′ c′′ b′′ b′′

 .

As there is only one nonzero entry in the first row, we can expand to get the following
matrix: 

0 0 c′′ 0 b′′

0 c′′ c′′ c′′ c′′

0 0 c′′ c′′ c′′

b′′ b′′ c′′ b′′ b′′

0 b′′ c′′ c′′ b′′

 .
As there is only one nonzero entry in the first column we can expand to get the following
matrix: 

0 c′′ 0 b′′

c′′ c′′ c′′ c′′

0 c′′ c′′ c′′

b′′ c′′ c′′ b′′

 .
We will now add the second column − b′′

c′′
times to the last column yielding the following

matrix: 
0 c′′ 0 0
c′′ c′′ c′′ c′′ − b′′
0 c′′ c′′ c′′ − b′′
b′′ c′′ c′′ 0

 .
As there is only one nonzero entry in the first row, we expand to get the following matrix:c′′ c′′ c′′ − b′′

0 c′′ c′′ − b′′
b′′ c′′ 0

 .
We will now add the second row −1 times to the first row yielding
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c′′ 0 0
0 c′′ c′′ − b′′
b′′ c′′ 0

 .
Now exchanging the second and the third row yieldsc′′ 0 0

b′′ c′′ 0
0 c′′ c′′ − b′′

 .
All entries above its diagonal are zero, while all the entries on the diagonal are non-zero.
It follows that the matrix is non-singular.

4.2 The main proof of Theorems 1.2.6 and 1.3.2

We will prove Theorems 1.2.6 and 1.3.2 in this chapter. We will first prove some lemmas
to shorten the proof of Theorem 1.3.2 which will follow them. Afterwards, the proof of
Theorem 1.2.6 will be an easy combination of Theorem 1.3.2, Theorem 1.3.1 and Lemma
3.2.2.

In order to do this we will first need to introduce the notion of an auxiliary graph which
is helpful in proving some lemmas providing strong similarities between the representations
of two matroids M1 and M2 such that M2 arises from M1 by relaxing a circuit-hyperplane.
Given a matrix A on disjoint row and column sets X and Y , define the simple graph GA on
the vertex set V (GA) = X × Y and with the edge set E(GA) = {(i1, j1)(i2, j2) : A(i1, j1) =
A(i2, j2) and (i1 = i2 or j1 = j2)}. Observe that GA[I,J ] = GA[I × J ] for all I ⊆ X and
J ⊆ Y .

Lemma 4.2.1. Let A1 and A2 be X × Y -matrices with X ∩ Y = ∅ such that A1 is of the
form  A′1

1
...
1

1 . . . 1 0

 ,
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A2 is of the form  A′2

1
...
1

1 . . . 1 1


and A1[I, J ] and A2[I, J ] are either both singular or both non-singular for all non-empty
I ⊆ X and J ⊆ Y such that |I| = |J | and (I, J) 6= ({s}, {t}), where s and t index the last
row and column, respectively. Then GA′

1
= GA′

2
.

Proof. Assume otherwise. By definition GA′
1

and GA′
2

have the same vertex set, so there
is an edge in E(GA′

1
)4E(GA′

2
). Assume first there is some edge (i1, j1)(i2, j2) ∈ E(GA′

1
)−

E(GA′
2
). By definition, either i1 = i2 or j1 = j2. By symmetry, we may assume that i1 = i2.

It follows by definition that A1(i1, j1) = A1(i1, j2), but A2(i1, j1) 6= A2(i1, j2), therefore

A1[{i1, s}, {j1, j2}] =

[
A1(i1, j1) A1(i1, j1)

1 1

]
,

which is singular whereas

A2[{i1, s}, {j1, j2}] =

[
A2(i1, j1) A2(i1, j2)

1 1

]
,

which is non-singular as A2(i1, j1) 6= A2(i1, j2). This is a contradiction to the singularity
assumption.

The proof that E(GA′
2
)− E(GA′

1
) = ∅ is completely analogous.

In order to facilitate some of the following arguments, we need to introduce some
notation. For every natural number k, let A+

k be the set of matrices in Ak that are
isomorphic to a matrix A(a, b, c, k) such that b = c and let A−k be the set of matrices in
Ak that are isomorphic to a matrix A(a, b, c, k) such that b 6= c. Observe that (A+

k ,A
−
k ) is

a partition of Ak for all k ≥ 3.

Lemma 4.2.2. Let k be a positive integer and let q1 and q2 be prime powers. Now let
A1 and A2 be matrices in GF (q1)

X×Y and GF (q2)
X×Y , respectively, where GA1 = GA2. If

either A1 or A2 contains a matrix in A+
q1q2k

, then there exist k-element subsets I ⊆ X and

J ⊆ Y such that A1[I, J ] and A2[I, J ] are in A+
k .
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Proof. By symmetry, we may assume that A1 contains a matrix in A+
q1q2k

. By deleting
all other rows and columns we may assume that A1 = A(a, b, b, q1q2k) for some distinct
a, b ∈ GF (q1). For e ∈ {a, b}, let Ze = {(i, j)|A1(i, j) = e}. Observe that Zb induces a
connected component of GA1 as q1q2k ≥ 3 and therefore also of GA2 . This implies that
there is some b′ ∈ GF (q2) such that A2(i, j) = b′ for all (i, j) ∈ Zb.

Observe that there are q1q2k elements in Za, so there is a subset S of Za of size k as well
as some a′ ∈ GF (q2) such that A2(i, j) = a′ for all (i, j) ∈ S. There are no edges between
S and Zb but as q1q2k ≥ 2 there are some i ∈ X and j1, j2 ∈ Y such that (i, j1) ∈ S and
(i, j2) ∈ Zb. It follows that a′ 6= b′. Now let I denote the set of all i ∈ X such that there is
some j ∈ Y such that (i, j) ∈ S and, similarly, let J denote the set of all j ∈ Y such that
there is some i ∈ X such that (i, j) ∈ S.

We can now see that A1[I, J ] = A(a, b, b, k) and A2[I, J ] = A(a′, b′, b′, k), so A1[I, J ]
and A2[I, J ] are both in A+

k as b 6= c and b′ 6= c′.

Lemma 4.2.3. Let k be a positive integer, let q1 and q2 be prime powers. Now let A1 and
A2 be matrices in GF (q1)

X×Y and GF (q2)
X×Y , respectively, where GA1 = GA2. If either

A1 or A2 contains a matrix in A−q1q2k, then there exist k-element subsets I ⊆ X and J ⊆ Y

such that A1[I, J ] and A2[I, J ] are in A−k .

Proof. By symmetry, we may assume that A1 contains a matrix in A−q1q2k. By deleting
all other rows and columns we may assume that A1 = A(a, b, c, q1q2k) for some pairwise
distinct a, b and c. For all e ∈ {a, b, c}, let Ze = {(i, j)|A1(i, j) = e}. Observe that Zb and
Zc induce connected components of GA1 and therefore also of GA2 . This implies that there
is some b′ ∈ GF (q2) such that A2(i, j) = b′ for all (i, j) ∈ Zb and similarly, there is some
c′ such that A2(i, j) = c′ for all (i, j) ∈ Zc. There are no edges between Zb and Zc but as
q1q2k ≥ 3 there are some i ∈ X and j1, j2 ∈ Y such that (i, j1) ∈ Za and (i, j2) ∈ Zb. It
follows that b′ 6= c′.

Observe that there are q1q2k elements in Za, so there is a subset S of Za of size k as well
as some a′ ∈ GF (q2) such that A2(i, j) = a′ for all (i, j) ∈ S. There are no edges between
S and Zb but as q1q2k ≥ 2 there are some i ∈ X and j1, j2 ∈ Y such that (i, j1) ∈ S and
(i, j2) ∈ Zb. It follows that a′ 6= b′. Similarly, a′ 6= c′. Now let I denote the set of all i such
that there is some j ∈ Y such that (i, j) ∈ S and, similarly, let J denote the set of all j
such that there is some i ∈ X such that (i, j) ∈ S.

We can now see that A1[I, J ] = A(a, b, c, k) and A2[I, J ] = A(a′, b′, c′, k), so A1[I, J ]
and A2[I, J ] are both in A−k as b 6= c and b′ 6= c′.
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Lemma 4.2.4. Let q1 and q2 be prime powers. Now let A1 and A2 be matrices in
GF (q1)

X×Y and GF (q2)
X×Y , respectively, where GA1 = GA2. If either of A1[I, J ] or

A2[I, J ] is in B2 for some I ⊆ X and J ⊆ Y , then both A1[I, J ] or A2[I, J ] are in B2.

Proof. Without loss of generality we will assume that A1[I, J ] = B(a, b, c, d, 2) for some
a, b, c, d ∈ GF (q1) such that {a, d} ∩ {b, c} = ∅ and that I = X and J = Y . For all e ∈
{a, b, c, d}, let Ze = {(i, j)|A1(i, j) = e}. Observe that Ze induces a connected component
of GA1 and therefore also of GA2 for all e ∈ {a, b, c, d}. This implies that there are some
a′, b′, c′, d′ ∈ GF (q2) such that A2(i, j) = a′ for all (i, j) ∈ Za, A2(i, j) = b′ for all (i, j) ∈ Zb,
A2(i, j) = c′ for all (i, j) ∈ Zc and A2(i, j) = d′ for all (i, j) ∈ Zd. There are no edges
between Za and Zb but there is some i ∈ X and j1, j2 ∈ Y such that (i, j1) ∈ Za and (i, j2) ∈
Zb. It follows that a′ 6= b′. Similarly, a′ 6= c′,d′ 6= b′ and d′ 6= c′, so {a′, d′} ∩ {b′, c′} = ∅
and therefore A2[I, J ] ∈ B2.

Lemma 4.2.5. Let q1 and q2 be prime powers. Now let A1 and A2 be matrices in
GF (q1)

X×Y and GF (q2)
X×Y , respectively, where GA1 = GA2. If either of A1[I, J ] or

A2[I, J ] is in C3 for some I ⊆ X and J ⊆ Y , then both A1[I, J ] or A2[I, J ] are in C3.

Proof. Without loss of generality we will assume that A1[I, J ] = C(a, b, c, 3) for some
pairwise distinct a, b, c ∈ GF (q1) and that I = X and J = Y . For all e ∈ {a, b, c}, let
Ze = {(i, j)|A1(i, j) = e}. Observe that Ze induces a connected component of GA1 and
therefore also of GA2 for all e ∈ {a, b, c}. This implies that there are some a′, b′, c′ ∈ GF (q2)
such that A2(i, j) = a′ for all (i, j) ∈ Za, A2(i, j) = b′ for all (i, j) ∈ Zb and A2(i, j) = c′

for all (i, j) ∈ Zc. There are no edges between Za and Zb but there is some i ∈ X and
j1, j2 ∈ Y such that (i, j1) ∈ Za and (i, j2) ∈ Zb. It follows that a′ 6= b′. Similarly, a′ 6= c′

and b′ 6= c′, so A2[I, J ] ∈ C3.

We are now ready to start with the main proof of Theorem 1.3.2. We will prove the
following, slightly stronger restatement. For facility, let S denote A+

q21q
2
2
∪A−q1q2(q1−1)(q2−1) ∪

B2 ∪ C3.

Theorem (Restatement of Theorem 1.3.2). For any pair of finite fields GF (q1), GF (q2),
let M1 be a GF (q1)-representable and M2 be a GF (q2)-representable matroid on a common
ground set E such that M2 arises from M1 by relaxing a circuit-hyperplane H and let B
be a basis of M1 and M2 of the form H − {e} ∪ {f}. Let A1 and A2 be reduced GF (q1)
and GF (q2)-representations of M1 and M2, respectively, with respect to B. Then, after
rescaling rows and columns neither A1 nor A2 contain a matrix in S whose row set is
disjoint from {f} and whose column set is disjoint from {e}.
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Proof. Let M1 be a GF (q1)-representable and M2 be a GF (q2)-representable matroid on
a common ground set E such that M2 arises from M1 by relaxing a circuit-hyperplane H,
and let B be a basis of the form H−{e}∪{f} for M1 and M2, let A1 be a reduced GF (q1)-
representation of M1 with respect to B and let A2 be a reduced GF (q2)-representation of
M2 with respect to B. We have that A1(e, f) = 0, A2(e, f) 6= 0 and all other elements in
the row e and the column f are nonzero for both A1 and A2. By rescaling, we can achieve

that A1 =


e

1

A′1
...
1

f 1 . . . 1 0

 and A2 =


e

1

A′2
...
1

f 1 . . . 1 1

 ,respectively.

If A′1 or A′2 contain a matrix Ã in S, there are index sets I, J such that A′1[I, J ] and
A′2[I, J ] are both in S0 and are both of the same kind where S0 = A+

q1q2
∪A−(q1−1)(q2−1)∪B2∪

C3. This follows from Lemma 4.2.2, Lemma 4.2.3, Lemma 4.2.4 or Lemma 4.2.5, whichever
kind Ã is of. Observe that A′2(i, j) 6= 1 for all i ∈ B − {f} and j ∈ E(M) − B − {e}
as otherwise A1[{i, f}, {j, e}] is non-singular and A2[{i, f}, {j, e}] is singular, contradicting
Lemma 2.2.2. We can therefore apply the lemmas 4.1.1, 4.1.2, 4.1.3 and 4.1.4, yielding
that A1[I ∪ {f}, J ∪ {e}] is singular and A1[I ∪ {f}, J ∪ {e}] is nonsingular. This is a
contradiction to the singularity condition stated in Lemma 2.2.2. This finishes the proof.

We will now conclude the following slight strengthening of Theorem 1.2.6. This will be
an easy application of some previous results.

Theorem (Restatement of Theorem 1.2.6). For every pair of finite fields GF (q1), GF (q2)
there is some constant K(q1, q2) such that if M1 and M2 are GF (q)-representable matroids
on a common ground set E such that M2 arises from M1 by relaxing a circuit-hyperplane
H and A is a reduced representation of M1 or M2 with respect to a basis of the form
H −{e}∪ {f} for some e ∈ H and f ∈ E−H, then A is weakly K(q1, q2)-block-triangular
after scaling.

Proof. LetGF (q1), GF (q2) be a pair of finite fields and letM1 andM2 beGF (q)-representable
matroids such that M2 arises from M1 by relaxing a circuit-hyperplane H. Let B be a
basis of the form H − {e} ∪ {f} for some e ∈ H and f ∈ E − H and let A1 be a re-
duced representation of M1 with respect to B on disjoint index sets I and J . By Theorem
1.3.2 after scaling A1[H − {e}, E − H − {f}] does not contain a submatrix in Aq21q22 ,B2
or C3. It follows now from Theorem 1.3.1 that there is some number n1(q1, q2) such that
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A1[H−{e}, E−H−{f}] is weakly n1(q1, q2)-block-triangular. As we only append a single
row and column, this means that A1 is weakly q21n1(q1, q2)-block-triangular.

Similarly, if A2 is a reduced representation of M2 with respect to B, there is some
constant with respect to which A2 is weakly block-triangular. Choosing K(q1, q2) to be the
maximum of the two constants finishes the proof.
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Chapter 5

Fragile minors of matroids

This chapter is concerned with finding a connection between two different objects of ma-
troid theory; circuit-hyperplane relaxations and fragile minors. Recall that a matroid N
is a fragile minor of another matroid M if M/C\D = N for some C,D ⊆ E(M) but
M/C ′\D′ 6= N whenever C 6= C ′ or D 6= D′. We will start with the main proof of The-
orem 1.4.3. Afterwards, we will have Theorem 1.4.2 as a first corollary of Theorem 1.4.3
and, as a second corollary of Theorem 1.4.3, we will prove that Conjecture 1.2.5 implies
Conjecture 1.4.1.

5.1 The proof of Theorem 1.4.3

We will first introduce the notion of matrix fragility which will allow us to formulate several
lemmas as matrix results that can be easily transformed to matroid results. The definition
is motivated by Lemmas 5.1.2 and 5.1.3.

Definition 5.1.1. Let A be an X × Y -matrix with X ∩ Y = ∅ and let I ⊆ X and J ⊆ Y
such that A[I, J ] = 0. Then A is called (I, J)-fragile if for all I ′ ⊆ X − I and J ′ ⊆ Y − J
such that I ′ ∪ J ′ 6= ∅, it holds that rank(A[I ′, J ′]) < rank(A[I ′ ∪ I, J ′ ∪ J ]).

If I, J are disjoint finite sets, then we denote by R(I, J) the matroid with ground set
I ∪ J such that I is a set of coloops and J is a set of loops. We call matroids of the form
R(I, J) isolated; thus a matroid is isolated if each of its components has size one.

We say that for a matroid M on ground set E, two subsets X ⊆ E and Y ⊆ E are
skew if rM(X) + rM(Y ) = rM(X ∪ Y ).
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Lemma 5.1.2. Let M be a representable matroid having a fragile minor N and let B be
a basis of M displaying N . If A is a reduced representation of M with respect to B of the
form

A =

[E(M)− E(N)−B E(N)−B
B − E(N) A1 A2

E(N) ∩B A3 A4

]
,

then the matrix

A′ =

[E(M)− E(N)−B E(N)−B
B − E(N) A1 A2

E(N) ∩B A3 0

]
.

is (E(N) ∩B,E(N)−B)-fragile.

Proof. Assume otherwise. Then there are some C ⊆ E(M) − E(N) − B and some D ⊆
B−E(N) such that rank(A′[D∪(E(N)∩B), C∪(B−E(N))]) = rank(A′[D,C]). Without
loss of generality, we may assume that C = E(M)−E(N)−B and D = B−E(N). Consider
the matrix

A′′ =

[D X C Y Y ′

I 0 A1 A2 A2

0 I A3 A4 0

]
,

where X = B ∩ E(N) and Y = E(N)− B and let M ′′ = M(A′′). We will first need some
claims about M ′′.

Claim 1. N = (M ′′/Y ′)|E(N)

Proof. In order to contract Y ′, we apply a number of row operations to the rows in the top
part of A′′ until the columns of Y ′ are either all zeros or contain a single one in a row that
does not contain any other nonzero entry in a column indexed by Y ′. As we only applied
row operations, the bottom part of the matrix representing M ′′|E(N) is still identical. So

by removing these rows, we get that (M ′′/Y ′)|E(N) is represented by A′′ =

[X Y

0 0
I A4

]
,

so (M ′′/Y ′)|E(N) = N
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Claim 2. r′′M(C ∪ Y ′) = r′′M(C)

Proof. By assumption rank(A1) = rank(A′). As A1 is a submatrix of the representation of
M ′′|C and A′ is the representation of C ∪ Y ′, the statement follows.

Claim 3. C is skew to E(N) in M ′′/Y ′.

Proof. By the block structure of the representation of X ∪ C, we have that r′′M(X ∪ C) =
r′′M(X)+rank(A1). By assumption, rank(A1) = rank(A′) and therefore r′′M(C) = rank(A1).
This yields rM(X ∪ C) = r′′M(X) + r′′M(C).

We will prove that rM ′′/Y ′(C) + rM ′′/Y ′(E(N)) = rM ′′/Y ′(E(N) ∪ C).

The rank formula yields rM ′′/Y ′(C) + rM ′′/Y ′(X) = rM ′′(Y ′ ∪C)− rM ′′(Y ′) + rM ′′(Y ′ ∪
X)− rM ′′(Y ′).

As C spans Y ′ in M ′′ by Claim 2 and rM ′′(X)+rM ′′(Y ′) = rM ′′(X∪Y ′) by construction,
the above equals rM ′′(X ∪ C) − rM ′′(Y ′) = rM ′′/Y ′(X ∪ C), so rM ′′/Y ′(C) + rM ′′/Y ′(X) =
rM ′′/Y ′(X ∪ C).

As X spans E(N) in M ′′, it follows that rM ′′/Y ′(C) + rM ′′/Y ′(E(N)) = rM ′′/Y ′(E(N) ∪
C).

We will now give the main proof. By Claim 1, N = (M ′′/Y ′)|E(N). By Claim 3, C
and E(N) are skew and so E(N) is not influenced by whether elements in C are deleted
or contracted and so N = ((M ′′/Y ′)|(E(N) ∪ C))/C = ((M ′′/C)/Y ′)|E(N). By Claim 2,
this equals (M ′′/C)|E(N) which is the same as (M/C)|E(N).

This is a contradiction to N being a fragile minor of M .

Lemma 5.1.3. Let A be an X×Y -matrix that is (I, J)-fragile and let M = M [I|A]. Then
M is R(I, J)-fragile.

Proof. Assume otherwise, then there are some I1 ⊆ X − I and J1 ⊆ Y − J such that
M/(X − I1 ∪ J1)\(Y − J1 ∪ I1) = N . Without loss of generality, we may assume that
I1 = X− I and J1 = Y −J , so M/J1\I1 = N . This means in particular that rM/J1\I1(I) =
rN(I) = |I| and rM/J1\I1(J) = rN(J) = 0.

Using the rank formula, this means that

|I| = rM/J1\I1(I) = rM/J1(I) = rM(I ∪ J1)− rM(J1)

= rM/I(J1) + rM(I)− rM(J1) = |I|+ rank(A[I1, J1])− rM(J1)
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so rank(A[I1, J1]) = rM(J1).

Furthermore, 0 = rM/J1\I1(I) = rM(I1 ∪ J1)− rM(J1) = rank(A)− rM(J1).

Therefore, rank(A) = rank(A[I1, J1]), which is a contradiction to A being (I, J)-fragile.

Lemma 5.1.4. Let M be an F-representable matroid with a fragile minor N , and let B be
a basis of N . Then there is an F-representable matroid M ′ such that E(M) = E(M ′), M ′

has a fragile minor R(B,E(N)−B), and M ′/B\(E(N)−B) = M/B\(E(N)−B).

Proof. Let M,N,B as in the statement and consider a reduced representation A of M with
respect to a basis containing B. Let A′ be the matrix which arises from A by replacing
A[B∩E(N), E(N)−B)] by an all-zero matrix. By Lemma 5.1.2, A′ is (B∩E(N), E(N)−B)-
fragile. Let M ′ = M(A′). By Lemma 5.1.3, R(B,E(N)−B) is a fragile minor of M ′. Also,
by construction, M ′/B\(E(N)−B) = M/B\(E(N)−B).

For some prime power q and some natural number n, consider the nested set of fields
F0 ( F1 ( . . . ( Fn+1 where Fi = GF (q2

i
). A vector x ∈ Fnn+1 is called hyper-extending

for q if xi ∈ Fi+1 − Fi for all i = 1, . . . , n.

Now consider an X × Y -matrix A over some finite field GF (q) of the form

A =

[Y − J J

X − I A1 A2

I A3 0

]
for some I ⊆ X and J ⊆ Y . Let vi denote the row of A3 which is indexed by i ∈ I

and let wj denote the column of A2 which is indexed by j ∈ J . Now consider an ordering
a = (a1, . . . , an) of I ∪ J such that {a1, . . . , a|I|} = I and {a|I|+1, . . . , an} = J . For some
hyper-extending vector x of length n, now consider the (X−I∪{s})×(Y −J∪{t})-matrix
A′ with

A′ =


Y − J t

X − I A1

|J |∑
j=|I|+1

xjwaj

s
|I|∑
i=1

xivai 0


Such a matrix is called a free homomorphism of A with respect to (I, J) and a. We will

also refer to xi as xai.
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Lemma 5.1.5. Let A be an X × Y -matrix over GF (q) and let I ⊆ X and J ⊆ Y such
that A[I, J ] is an all-zero matrix and A is (I, J)-fragile. Now let A′ be an (X − I ∪ {s})×
(Y − J ∪ {t})-free homomorphism of A with respect to (I, J) and some ordering a. Then
A′ is ({s}, {t})-fragile.

Proof. Assume otherwise, then there are some sets I ′ ⊆ X − I and J ′ ⊆ Y − J such
that rank(A′[I ′ ∪ {s}, J ′ ∪ {t}]) = rank(A′[I ′, J ′]). Without loss of generality, we may
assume that I ′ = X − I and J ′ = Y − J . As A is (I, J)-fragile, it follows that either
rank(A[X, Y − J ]) > rank(A[X − I, Y − J ]) or rank(A[X, Y ]) > rank(A[X, Y − J ]).

Assume first that rank(A[X, Y − J ]) > rank(A[X − I, Y − J ]). Recall that the row
s of A′ is defined by vs =

∑
i∈I
xivi, where vi is the row indexed by i of A. As vs is freely

placed among {vi : i ∈ I} and the rows of A[X − I, Y − J ] do not span all the rows
{vi : i ∈ I} by assumption, they also do not span vs. It follows that rank(A′[I ′∪{s}, J ′]) >
rank(A′[I ′, J ′]) and therefore rank(A′[I ′ ∪ {s}, J ′ ∪ {t}]) > rank(A′[I ′, J ′]), a contradiction
to the assumption.

Assume now that rank(A[X, Y ]) > rank(A[X, Y − J ]) and recall that the column t
of A′ is defined by wt =

∑
j∈J

xjwj, where wj is the row of A which is indexed by j. As

wt is freely placed among {wj : j ∈ J} and the columns of A[X, Y − J ] do not span
all the rows {wj : j ∈ J} by assumption, they also do not span wt. It follows that
rank(A′[I ′∪{s}, J ′∪{t}]) > rank(A′[I ′∪{s}, J ′]) and therefore rank(A′[I ′∪{s}, J ′∪{t}]) >
rank(A′[I ′, J ′]), a contradiction to the assumption.

This finishes the proof.

The following result gives a matroidal interpretation to Lemma 5.1.5, it shows that
in order to prove Conjecture 1.4.1, it suffices to consider the case that N has only two
elements.

Lemma 5.1.6. Let R = R(I, J) be an isolated matroid and let R′ = R({e}, {f}) where
e ∈ I and f ∈ J . If M is a GF (q)-representable matroid having R as a fragile minor, then

there is a GF (q2
|R|

)-representable matroid M ′ such that R′ is a fragile minor of M ′ and
M ′/e\f = M/I\J .

Proof. Let A be a reduced representation on X×Y of M with respect to a basis displaying
R. Obviously A[I, J ] = 0. By Lemma 5.1.2, A is (I, J)-fragile. Now consider a free
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homomorphism A′ of A on X − I ∪ {e} × Y − J ∪ {f}. It follows from Lemma 5.1.5 that
A′ is ({e}, {f})-fragile. It therefore follows by Lemma 5.1.3 that M ′ has R′ as a fragile
minor.

Lemma 5.1.7. Let A1 be an X × Y -matrix over some finite field GF (q) and let there be
s ∈ X and t ∈ Y such that A1(s, t) = 0 and A1 is ({s}, {t})-fragile. Now let F be an
extension field of GF (q) and let z ∈ F − GF (q). Now let A2 be an X × Y -matrix over F
which is defined by

A2(i, j) =

{
z if i = s and j = t

A(i, j) else
.

Then for any I ⊆ X and J ⊆ Y such that |I| = |J | and either I 6= {s} or J 6= {t}, it holds
that A1[I, J ] and A2[I, J ] are either both singular or non-singular.

Proof. If s /∈ I or t /∈ J , A1[I, J ] = A2[I, J ] and so the statement trivially holds. So we
may assume for the rest of the proof that s ∈ I and t ∈ J . Let C = A1[I −{s}, J −{t}] =
A2[I − {s}, J − {t}] Observe that by Laplace expansion, we can get that det(A2[I, J ]) =
zdet(C)+det(A1[I, J ]). Therefore, if C is singular, we get that det(A2[I, J ]) = det(A1[I, J ])
and so the statement holds. So we can now assume that C is non-singular and will show
that under these conditions both A1[I, J ] and A2[I, J ] are non-singular.

As C is non-singular and A1[I, J ] has one more row and column and higher rank than
C, A1[I, J ] is non-singular. We still need to prove that A2[I, J ] is non-singular. Recall that
det(A2[I, J ]) = zdet(C) + det(A1[I, J ]). As z is in F−GF (q) and det(C) and det(A1[I, J ])
are in GF (q), det(A2[I, J ]) is in F−GF (q) and so in particular non-zero. This finishes the
proof.

Lemma 5.1.8. Let N = R({e}, {f}), let M be a GF (q)-representable matroid having N
as a fragile minor and let C,D ⊆ E(M) such that M/C\D = N . Then C∪{e} is a circuit-
hyperplane of M and the matroid obtained by relaxing C ∪ {e} is GF (q2)-representable.

Proof. Let A1 be a reduced GF (q)-representation of M on X ×Y with respect to C ∪{e}.
As A1(e, f) = 0, A1 is {e}, {f}-fragile by Lemma 5.1.2. Now let A2 be defined as

A2(i, j) =

{
z if i = e and j = f

A(i, j) else
,
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where z ∈ GF (q2)−GF (q). By Lemma 5.1.7, A1[I, J ] and A2[I, J ] are either both singular
or both nonsingular for all I ⊆ X and J ⊆ Y such that |I| = |J | and either I 6= {s} or
J 6= {t}. Hence the statement follows by Lemma 2.2.3 and the fact that the relaxation of
M is equal to M(An) and therefore GF (q2)-representable by construction.

We will now prove the following slightly more technical, but stronger version of Theorem
1.4.3:

Theorem 5.1.9 (Restatement of Theorem 1.4.3). Let F be a finite field of order q, let
N be an F-representable matroid and M an F-representable matroid having N as a fragile
minor. Furthermore, let B be a basis of M displaying N . Then there is a field F1 of order
q2

|N|+1
and F1-representable matroids M1,M2 on E(M)− E(N) ∪ {c, d} such that:

(i) B −BN ∪ {d} is a circuit-hyperplane of M1,

(ii) M2 is obtained from M1 by relaxing a circuit-hyperplane B −BN ∪ {d}, and

(iii) M/C\D = M1/c\d for some partition (C,D) of E(N).

Furthermore, there is a B × (E(M) − B)-matrix A1 over F and a (B − E(N) ∪ {c}) ×
(E(M)− E(N)−B ∪ {d})-matrix A2 such that:

(i) A1 is a reduced representation of M with respect to B,

(ii) A2 is a reduced representation of M1 with respect to B − E(N) ∪ {c}, and

(iii) A1[B − E(N), E(M)−B − E(N)] = A2[B − E(N), E(M)−B − E(N)].

Proof. Let A be a reduced representation of M with respect to B, so A is of the form

A =

[E(M)− E(N)−B E(N)−B
B − E(N) A1 A2

B ∩ E(N) A3 A4

]
.

Now consider the matrix A′ where

A′ =

[E(M)− E(N)−B E(N)−B
B − E(N) A1 A2

B ∩ E(N) A3 0

]
.
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Let M ′ be the matroid which has A′ as a reduced representation and let N ′ be the matroid
that has

[E(N)−B
B ∩ E(N) 0

]
as its reduced representation. By Lemma 5.1.4, N ′ is a fragile minor of M ′.

Now let A′′ be a free homomorphism of A′ with respect to (E(N) ∩ B,E(N) − B).
Observe that the index sets of A′′ are B − E(N) ∪ {c} and E(M) − B − E(N) ∪ {d}
and that A′′ is a matrix over F|N |. Let M ′′ be the matroid that has A′′ as a reduced
representation and let N ′′ be the matroid that has

[ {t}
{s} 0

]
as a reduced representation. By Lemma 5.1.6, N ′′ is a fragile minor of M ′′. Hence,
E(M ′′)−E(N ′′) cannot contain a loop or coloop and so no row of A′′ in B−E(N) and no
column of A′′ in E(M) − B − E(N) is constant of zeros. Now let z ∈ F|N |+1 − F|N | and
define C by

C(i, j) =

{
z if i = c and j = d

A′′(i, j) else
.

LetM1 = M ′′ and letM2 be the matroid that has C as a reduced representation. By Lemma
5.1.8, B − E(N) ∪ {d} is a circuit-hyperplane of M1 and M2 arises from M1 by relaxing

B −E(N)∪ {d}. By construction, M1 and M2 are representable over Fn+1 = GF (q2
|N|+1

).
Also, by construction, A′′[B−E(N), E(M)−B−E(N)] = C[B−E(N), E(M)−B−E(N)]
and therefore, M/B ∩ E(N)\E(N)−B = M1/{c}\{d}. This finishes the proof.

5.2 Applications of Theorem 1.4.3

In this part we will prove Theorem 1.4.2. We will prove the following, slightly stronger
version.

Theorem (Restatement of Theorem 1.4.2). For every GF (q)-representable matroid N
there is a constant C such that, if M is a matroid having N as a fragile minor and A is
a reduced GF (q)-representation of M with respect to a basis B displaying N , then A is
weakly C-block-triangular.
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Proof. Let A be a matrix as in the statement, so A is of the form

A =

[E(M)− E(N)−B E(N)−B
B − E(N) A1 A2

B ∩ E(N) A3 A4

]
.

By Theorem 5.1.9, A1 is a submatrix of a (B−E(N)∪ {c})× (E(M)−E(N)−B ∪ {d})-
matrix A′ over GF (q2

|N|+1
) which is a reduced representation of a matroid M1 which has

a circuit-hyperplane H with |H − (B − E(N) ∪ {c})| = 1 whose relaxation yields another

GF (q2
|N|+1

)-representable matroid. It follows by Theorem 1.2.6 that there is some constant
C1 such that A′ is weakly C1-block-triangular after row and column scalings. This yields
that A′ is weakly qC1-block-triangular. As A1 is a submatrix of A′, A1 is also weakly
qC1-block-triangular.

Observe that for any weakly C-block-triangular matrix A, the matrix that arises from
A by appending a row or column is weakly qC-block-triangular. This can be seen by
choosing the index classes in which the new row/column is constant and refining them
with a certificate of weak C-block-triangularity for A.

Applying the above fact repeatedly yields that A is weakly q|N |+1C1-block-triangular,
a number depending only on N and q.

Theorem (Conjecture 1.2.5 implies Conjecture 1.4.1). Assuming the truth of Conjecture
1.2.5, for every GF (q)-representable matroid N there is a constant C such that, if M is a
matroid having N as a fragile minor and A is a reduced GF (q)-representation of M with
respect to a basis B displaying N , then A is C-block-triangular.

Proof. Let A be a matrix as in the statement, so A is of the form

A =

[E(M)− E(N)−B E(N)−B
B − E(N) A1 A2

B ∩ E(N) A3 A4

]
.

By Theorem 5.1.9, A1 is a submatrix of a (B−E(N)∪ {c})× (E(M)−E(N)−B ∪ {d})-
matrix A′ over GF (q2

|N|+1
) which is a reduced representation of a matroid M1 which has

a circuit-hyperplane H with |H − (B − E(N) ∪ {c})| = 1 whose relaxation yields another

GF (q2
|N|+1

)-representable matroid. It follows now by Conjecture 1.2.5 that there is some
constant C1 such that A′ is C1-block-triangular. As A1 is a submatrix of A′, A1 is also
C1-block-triangular.
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Observe that for any C-block-triangular matrix A, the matrix that arises from A by
appending a row or column is qC-block-triangular. This can be seen by choosing the index
classes in which the new row/column is constant, refining them with a certificate of weak
C-block-triangularity for A and observing that the newly appended row/column is trivially
constant in all partition classes.

Applying the above fact repeatedly yields that A is q|N |C1-block-triangular, a number
depending only on N and q.
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