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Abstract

Many problems in finance and risk management involve the computation of quantities

related to rare-event analysis. As many financial problems are high-dimensional, the quan-

tities of interest rarely have analytical forms and therefore they must be approximated

using numerical methods. Plain Monte Carlo (MC) is a versatile simulation-based numer-

ical technique suitable to high-dimensional problems as its estimation error converges to

zero at a rate independent of the dimension of the problem. The weakness of plain MC is

the high computational cost it requires to obtain estimates with small variance. This issue

is especially severe for rare-event simulation as a very large number, often over millions, of

samples are required to obtain an estimate with reasonable precision.

In this thesis, we develop importance sampling (IS) and stratified sampling (SS) schemes

for rare-event simulation problems to reduce the variance of the plain MC estimators.

The main idea of our approach is to construct effective proposal distributions for IS and

partitions of the sample space for SS by exploiting the low-dimensional structures that

exist in many financial problems. More specifically, our general approach is to identify a

low-dimensional transformation of input variables such that the transformed variables are

highly correlated with the output, and then make the rare-event more frequent by twisting

the distribution of the transformed variables by using IS and/or SS. In some cases, SS

is used instead of IS as SS is shown to give estimators with smaller variance. In other

cases, IS and SS are used together to achieve greater variance reduction than when they

are used separately. Our proposed methods are applicable to a wide range of problems

because they do not assume specific types of problems or distribution of input variables

and because their performance does not degrade even in high dimension. Furthermore,

our approach serves as a dimension reduction technique, so it enhances the effectiveness of

quasi-Monte Carlo sampling methods when combined together.

This thesis considers three types of low-dimensional structures in increasing order of

generality and develops IS and SS methods under each structural assumption, along with

optimal tuning procedures and sampling algorithms under specific distributions. The as-

sumed low-dimensional structures are as follows: the output takes a large value when at

least one of the input variables is large; a single-index model where the output depends
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on the input variables mainly through some one-dimensional projection; and a multi-index

model where the output depends on the input mainly through a set of linear combinations.

Our numerical experiments find that many financial problems possess one of the assumed

low-dimensional structure. When applied to those problems in simulation studies, our

proposed methods often give variance reduction factors of over 1,000 with little additional

computational costs compared to plain MC.
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Chapter 1

Introduction

Many problems in finance and risk management involve rare-event analysis. For instance,

one may want to compute risk measures such as Value-at-Risk or expected shortfall of a

portfolio. As many financial problems are high-dimensional and copula models are often

used to model dependence for this type of problems, the quantities that we are interested

in rarely have analytical forms and therefore they need to be approximated using some

numerical methods. This thesis is concerned with developing estimation techniques for

high-dimensional rare-event simulation problems.

Plain Monte Carlo (MC) is a versatile simulation-based numerical technique suitable to

high-dimensional problems as its estimation error converges to zero at a rate independent

of the dimension of the problem. This is in contrast to more traditional, deterministic

numerical methods such as quadrature rules based on tensor products as these methods

suffer from the curse-of-dimensionality, the phenomenon that the approximation accuracy

deteriorates exponentially fast with the dimension of the problem. Unfortunately, plain

MC is not a cure-all method. Plain MC is notorious for the high computational cost it

requires to obtain estimates with a small error. The estimation error of plain MC converges

to zero at the rate of the square root of the number of samples. One needs, for instance, 100

times as many samples to obtain an estimate with one more digit of accuracy, making it

computationally demanding to obtain estimates with small errors. This issue is especially

severe for rare-event simulation as a very large number, often over millions, of samples are
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required to obtain an estimate with acceptable precision. This is because one generally

needs hundreds to thousands of samples to obtain reasonable estimates, but when the

nature of problem is a rare-event, a lot more, frequently hundreds to thousands times more,

samples need to be generated to gain the said number of observations of rare event. In plain

MC, the size of estimation error is closely connected with the variance of the estimator.

The estimation error is likely to be small when the estimator has a small variance. Thus,

plain MC is often combined with variance reduction techniques (VRTs) (see [76, Ch. 4] for

comprehensive coverage of VRTs) to reduce the variance of the estimator. Plain MC with

and without VRTs has been applied to a variety of problems in finance such as security

pricing [13, 14, 16, 54, 80] and portfolio risk measurement [15, 43, 44, 73, 77].

Importance sampling (IS) [9, 63] and stratified sampling (SS) [21] are VRTs frequently

applied to rare-event simulation. The setup of rare-event simulation that we assume in this

thesis is that the goal is to estimate µ = E[Ψ(X)], where X is a d-dimensional random

vector with support ΩX and pdf fX(x), and Ψ : Rd → R is such that P(Ψ(X) > 0) is small.

In IS, instead from the original distribution fX(x), samples are generated from a proposal

distribution denoted by gX(x), a distribution constructed in such a way that it gives heavier

likelihood to the rare-event region {x ∈ ΩX | Ψ(x) > 0} than the original distribution

does. SS starts by partitioning the domain ΩX into M disjoint strata Ω
(1)
X , . . . ,Ω

(M)
X . SS

then separately estimates strata means mk = E[Ψ(X) |Ω(k
X ], k = 1, . . . ,M and combine

them to construct an SS estimate of µ. In a rare-event setting, a small number of strata

often cover the entire region of rare event. In such a situation, SS concentrates the sampling

effort on the important strata. As the sampling distribution induced by SS can be viewed

as a proposal distribution for IS, SS is a way of doing IS in a loose sense. Thus, we focus

on the IS side instead of SS in motivating our work. We note that, however, IS and SS

can be combined to gain greater variance reduction as done in [38, 39, 40]. Some of the

techniques developed in this thesis also combine IS and SS.

If implemented with an effective proposal distribution, IS achieves substantial variance

reduction and estimates will be highly precise with a reasonable number of samples. Thus,

finding a good proposal distribution is a crucial step in IS. How to construct effective

proposal distributions is, unfortunately, problem-specific and no strategy works for all

types of problems. This is because the nature of rare-event and what constitutes a good
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proposal distribution depends on the specific form of Ψ and the distribution of X. In the

finance and risk management context, the nature of the rare events differs, for instance,

when one is dealing with options, equity portfolios, or collateralized debt obligations. Even

if we restrict our attention to equity portfolios, the characteristics of rare events change

when we assume the Gaussian and t-copula models. Consequently, many existing works

assume certain types of financial problems under certain distribution assumptions and they

use the structure of the problem to design effective proposal distributions and more broadly

the IS schemes.

For pricing path dependent options, Glasserman, Heidelberger, and Shahabuddin (GHS)

developed IS and SS methods that shift the mean of the underlying normal variables [38]

using IS and then use SS to stratify the sample space along with a certain linear combina-

tion of the normal variables. For portfolios consisting of stocks and options, GHS proposed

IS and SS methods to efficiently estimate the Value-at-Risk of the portfolio under normal

[39] and t-distribution [40] models based on applying exponential twisting [9], a popular

IS technique, to alter the distribution of the delta-gamma approximation of the portfolio.

GHS then use SS to stratify the sample space along the value of the delta-gamma approx-

imation. To estimate tail probabilities of equity portfolios under generalized hyperbolic

[88] marginals with a t-copula assumption, Sak, Hörmann and Leydold [106] propose IS

methods that shift the mean of normal variables and change the scale parameter of the

chi-square variable. To estimate tail probabilities of credit portfolios under the Gaussian

copula models, Glasserman and Li [41] propose IS methods that shift the mean of the

normal factor variables and use exponential twisting to alter the default probability of

obligors. For t-copula credit portfolio problems, which are equivalent to Gaussian models

with a common multiplicative shock variable added to it, Bassamboo et al. [12] propose IS

methods that apply exponential twisting to the shock variable and the default probabilities.

In the same paper, Bassamboo et al. propose another IS technique where the distribution

of the shock variable is altered based on Hazard-Rate Twisting. In the same t-copula set-

ting, Chan and Kroese [20] propose to use conditional Monte Carlo [75, pp. 119-125] to

analytically integrate out the shock variable and use IS to change the parameters of the

underlying multivariate normal variables.

As the IS techniques we reviewed are designed for specific financial problems under

3



specific distributions, they achieve substantial variance reduction if they are applied to the

problems originally designed for. The problem with such specialized techniques is that

they may not be applicable to other problems without major modifications, though basic

principles may be transferable. For instance, the IS techniques developed for option pricing

[38] and credit portfolios [41] both rely on shifting the mean of the normal variables, but

they approach the problem of estimating the optimal shift rather differently. Moreover,

as copula modelling has become prominent in finance, there are much more choices in the

distribution of X other than traditional multivariate normal and t distributions. Thus,

designing IS techniques for a specific problem or specific distribution limits the applicability

of the designed techniques. The goal of this thesis is to develop IS techniques that can be

applied to a wide range of financial problems under flexible distribution assumptions. In

particular, we put emphasize on effective IS techniques for copula models.

It has been demonstrated analytically and quantitatively (see [18, 118, 119, 120]) that

various high-dimensional financial problems have low-dimensional structures. Building on

this observation, we focus on certain low-dimensional structures and develop IS techniques

that exploit the assumed low-dimensional structure of the problem. More specifically, our

proposed IS techniques transform the problem so that only a few leading variables are very

important, and then apply IS only to these most important variables. In some cases, SS

is used instead of IS to twist the distribution of the important variables as SS is shown to

give estimators with smaller variance. In other cases, IS and SS are used together to form

stratified importance sampling (SIS) to achieve greater variance reduction than when they

are used separately, following the ideas in [38, 39, 40]. To our knowledge, not many existing

IS techniques focus on the low-dimensional structure of the problems. The work closest to

ours is [38]. In [38], IS and SS are used to exploit the linear and quadratic part of the payoff

function of an option, and we can view such dependence of the payoff function on the input

variables as some form of low-dimensional structures. In fact, we show that the techniques

developed in [38] can be viewed as a special case of the IS and SS techniques developed

in this thesis. The benefit of developing IS based on the low-dimensional structure of the

problem is that it encapsulates the exact way in which Ψ depends on X. Thus, as long

as the financial problems we consider have the assumed low-dimensional structure, we can

apply our IS techniques in a very similar way, whether the problem is about option pricing

4



or estimating a tail probability of a portfolio. Moreover, since we apply IS only to a few

important variables, our IS techniques are less susceptible to the dimensionality problem of

IS discussed in [10, 66, 107]. This means that the performance of our IS techniques do not

degrade even if they are applied to high-dimensional problems. While our IS techniques

do not assume a specific distribution of X, how to samples from the proposal distribution

depends on the distribution of X. For many distributions, the sampling algorithm can

be easily implemented. In this thesis we develop sampling algorithms for Archimedean

and generalized hyperbolic skew-t copulas which contain the Gaussian and t-copulas as

special cases. We believe that similar sampling algorithms can be developed for different

distributions.

Quasi-Monte Carlo (QMC) (see [31, 75, 90]) method is a simulation-based numerical

method similar to MC. Instead of drawing samples based on pseudo-random numbers as

done in MC, QMC draws samples based on a low-discrepancy sequence, a sequence that

produces more uniform sample structure than pseudo-random numbers do. QMC has

been applied to various high-dimensional financial problems and gave superior results than

plain MC [3, 62, 92, 119]. It is widely accepted that the performance of QMC is largely

influenced by the effective dimension of the problem, a concept first introduced by Caflisch,

Morokoff, and Owen [18]. More precisely, QMC works significantly better than plain MC

if the problem has a low effective dimension (see [18, 118, 119, 120]). Thus, QMC is often

combined with dimension reduction techniques, which are techniques aimed at reducing

the effective dimension of the problem. Such techniques include Brownian bridge (see [18]),

principal component analysis (see [3]), the orthogonal transformation of Wang and Sloan

[121], and the linear transformation of Imai and Tan [58]. One notion of effective dimension

is truncation dimension (see [120]). Essentially, a problem has a low truncation dimension

when only a small number of leading input variables are important. Recalling that our IS

techniques transform the problem so that only a few leading variables are very important,

our techniques work as a dimension reduction technique. Thus, the synergy between our

IS techniques and QMC is of great interest in this thesis. In our simulation studies, we

apply our IS techniques with and without QMC and empirically analyze how they work

together.

The success of our proposed IS and SS methods depends on whether or not the problem
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at hand possesses one of the assumed low-dimensional structures. Thus, we investigate a

wide variety of financial problems in simulation studies of this thesis: Asian and rainbow

Asian option pricing under the Black-Scholes framework, basket option pricing under a t-

copula model, computation of the loss probabilities of credit portfolios under the Gaussian

and t-copula assumptions, and estimation of Value-at-Risk and expected shortfall of equity

portfolios under Archimedean and skew-t copulas. It turns out that all these problems have

one of the assumed structures. When applied to those problems in simulation studies, our

proposed methods often give variance reduction factors of over 1,000 with little additional

computational costs compared to plain MC.

The rest of this thesis is organized follows. In Chapter 2, we give the necessary back-

ground for this thesis. In particular, we give a brief introduction to MC and QMC meth-

ods, some background on IS and SS, provide some background on copulas, and discuss the

properties of IS estimators of Value-at-Risk and expected shortfall [88]. In Chapter 3, we

develop IS and SS schemes under the assumption that Ψ takes a large value when at least

one component of X is large. Such problems often arise from dependence models in the

realm of finance and insurance. Explicit sampling algorithms are presented for the case

of Archimedean copulas. The optimal calibration for proposal distribution for IS and the

optimal sample allocation for SS are derived by minimizing the variance of the respective

estimators. Chapter 4 is the main chapter of this thesis. We develop IS and SS methods

for single-index models (see [46], [57], and [95]), where Ψ depends on X mainly through

some parametric one-dimensional transformation. In simulation studies, we investigate

five problems in finance (two for option pricing, two for credit portfolio, and one for equity

portfolio) and find that all the problems considered have the assumed low-dimensional

structure. The optimal calibration for proposal distributions for IS and SIS are derived

by minimizing the variance of the corresponding estimators. Explicit sampling algorithms

for the case of generalized hyperbolic skew-t copulas are presented. The application of the

proposed IS methods to credit portfolio problems suggest that the optimally calibrated IS

method struggles when multiple tail portabilities need to be estimated in one simulation

run. In order to develop IS methods that can better handle multiple estimation for prob-

lems with a structure based on the single-index model, we explore the use of the extreme

value and uniform distribution in Chapter 5. In Chapter 6, we develop IS methods for
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a multi-index model where Ψ(X) depends on X mainly through a set of p ≤ d linear

combinations, a structure closely related to the one studied for sufficient dimension re-

duction (see [4, 22, 24] for an overview of this field fo research). We propose the use of

parametric and nonparametric proposal distributions for this setup and develop calibration

techniques based on the cross-entropy method [26, 102, 103]. A sampling algorithm for the

multivariate normal model is presented.

Some of the very important material in Chapter 3 was originally developed by Arbenz,

Cambou and Hofert in the preprint [7]. More specifically, the motivation for IS, the general

IS framework, and the derivation of the IS weight function given by Theorem 3.3.1 are due

to Arbenz, Cambou and Hofert. These correspond to Section 3.2 – Section 3.3.1 of this

thesis. Our contributions were to develop the sampling algorithm for Archimedean copulas,

propose the use of SS, the variance analysis of the IS and SS estimators, derive the optimal

calibration for IS and SS based on the variance expressions and carry out our simulation

study. These correspond to Section 3.3.2 – Section 3.6 of this thesis. The work [7] was

never published, instead we decided to join our work and published [8] with them.
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Chapter 2

Background

In this chapter, we present the background necessary for the rest of this thesis. When

introducing Monte Carlo, quasi-Monte Carlo and variance reduction techniques, we mainly

follow the notation in [74]

2.1 Plain Monte Carlo Simulation

Suppose that given a function Ψ : Rd → R and a d-dimensional random vector X whose

domain, distribution function, and pdf are ΩX ⊆ Rd, FX(x), and fX(x), respectively, we

want to evaluate the expectation

µ = E[Ψ(X)] =

∫
ΩX

Ψ(x)fX(x)dx. (2.1)

Let X1,X2, · · · ,Xn be n independent samples from fX(x). Then the plain MC estimator

for µ is µ̂MC,n = 1
n

n∑
i=1

Ψ(Xi). This is an unbiased estimator for µ since

E[µ̂MC,n] = E

[
1

n

n∑
i=1

Ψ(Xi)

]
= E[Ψ(X)] = µ. (2.2)
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Furthermore, the Strong Law of Large Numbers (see [70, p. 101]) assures that µ̂MC,n

converges to µ as n →∞ with probability 1.

Although µ̂MC,n converges to µ as n→∞, one can draw only a finite number of samples

in practice. So, µ̂MC,n has some approximation error, and it is important to quantify the

size of the error. The Central Limit Theorem (CLT) [70, p. 134] allows us to derive a

probabilistic error bound in the form of a confidence interval (CI). The CLT states that

√
n
µ̂MC,n − µ

σ

D→ N(0, 1), (2.3)

where σ denotes the standard deviation of Ψ(X). The variance (square of standard devi-

ation) of Ψ(X) is given by

σ2 = E[(Ψ(X)− µ)2] =

∫
ΩX

(Ψ(x)− µ)2fX(x) dx. (2.4)

Then the approximate 100(1− α)% CI for µ is(
µ̂MC,n − z1−α

2
· σ√

n
, µ̂MC,n + z1−α

2
· σ√

n

)
, (2.5)

where zα denotes the point at which P(Z ≤ zα) = α for Z ∼ N(0, 1). Since σ is unknown

in practice, it is replaced with the sample standard deviation

σ̂n =

√√√√ 1

n− 1

n∑
i=1

(Ψ(Xi)− µ̂MC,n)2. (2.6)

The estimation error of a plain MC estimator converges to 0 at the rate O( 1√
n
). Notice

that the convergence rate is independent of d, the dimension of the problem. This is one

of the main reasons why MC is preferred over traditional deterministic numerical schemes

for high-dimensional problems. Deterministic methods based on the tensor product of one-

dimensional quadrature rules suffer from what is called the curse of dimensionality, the

phenomenon that the rate of convergence deteriorates exponentially fast with d.

While MC offers a convergence rate that does not depend on d, the O( 1√
n
) convergence

often makes it computationally very expensive to obtain precise results. For instance,
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one needs 100 times as many evaluations of Ψ to obtain an estimate with one more digit

of accuracy. Thus, we often use some kind of technique to improve the accuracy of the

estimators. Recalling that the half width of the CI for plain MC estimators is proportional

to σ√
n
, there are in general two ways to reduce the size of this quantity: reduce the size of the

numerator by using variance reduction techniques or improve the O( 1√
n
) convergence rate

using quasi-Monte Carlo. We explain the two VRTs, stratified sampling and importance

sampling , used in this thesis in the following section. We give a brief introduction to QMC

in Section 2.3.

2.2 Variance Reduction Techniques

VRTs generally transform the problem in such a way that the estimator for the new

problem has the same expectation but smaller variance. The first property ensures that

the estimator based on variance reduction techniques has the correct expectation, while

the latter property means that the estimator has smaller error bounds (in the form of CI).

This thesis develops new techniques for SS and IS, so we review the basics of the two

methods. Readers are referred to [76] for comprehensive coverage of VRTs, and to [21] and

[9] for in-depth coverage of SS and IS, respectively.

2.2.1 Stratified Sampling

The main idea of SS is to partition the domain ΩX ofX intoM disjoint strata Ω
(1)
X , . . . ,Ω

(M)
X

and estimate the strata means separately. Let pk = P(X ∈ Ω
(k)
X ) and mk = E[Ψ(X)|X ∈

Ω
(k)
X ]. Then we can write

µ = E[Ψ(X)] =
M∑
k=1

pkE[Ψ(X)|X ∈ Ω
(k)
X ] =

M∑
k=1

pkmk. (2.7)

Suppose we know how to draw samples from each stratum and we draw nk samples

from Ω
(k)
X . Then the stratified sampling estimator is

µ̂SS,n =
M∑
k=1

pkm̂k, (2.8)
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where m̂k is the estimate of strata mean based on nk samples

m̂k =
1

nk

nk∑
i=1

Ψ(X
(k)
i ), X

(k)
i

ind.∼ X |Ω(k)
X .

The variance of the SS estimator is given by

Var(µ̂SS,n) =
M∑
k=1

p2
k

nk
v2
k, (2.9)

where v2
k = Var(Ψ(X) |X ∈ Ω

(k)
X ) is the stratum variance.

The efficiency of SS depends on how strata (Ω1, . . . ,ΩM) are designed and how sample

allocation (n1, . . . , nM) is chosen. Suppose for a moment that the strata are already con-

structed. We then want to choose the sample allocation such that Var(µ̂SS,n) ≤ Var(µ̂MC,n).

Proportional allocation gives samples proportionally to the stratum probability, that is,

nk = npk. The variance of the SS estimator under the proportional allocation is

Var(µ̂prop

SS,n) =
1

n

M∑
k=1

pkv
2
k. (2.10)

Let K be a random variable that takes values in {1, . . . ,M} with the probabilities P(K =

k) = pk, k = 1, . . . ,M . Then we can write

nVar(µ̂prop

SS,n) = E[Var(Ψ(X) |Ω(K)
X )] ≤ E[Var(Ψ(X) |Ω(K)

X )] + Var(E[Ψ(X) |Ω(K)
X ])

= Var(Ψ(X)) = nVar(µ̂MC,n). (2.11)

So, the variance of the SS estimator under proportional allocation is always equal to or

smaller than the variance of the plain MC estimator, regardless of the choice of the strata,

and the equality occurs only if µ1 = · · · = µM . The optimal allocation [21, pp. 98-99], often

called Neyman allocation, can be found by minimizing (2.9) subject to n1 + · · ·+ nM = n

as

nk = npkσk

/ M∑
k=1

pkσk. (2.12)

and the variance of the SS estimator under Neyman allocation is

Var(µ̂Ney

SS,n) =
1

n

(
m∑
k=1

pkσk

)2

, (2.13)
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and by Jensen’s inequality Var(µ̂Ney

SS,n) ≤ Var(µ̂prop

SS,n), where the equality holds only when

σ1 = · · · = σM .

As for the choice of strata, (2.11) implies that

Var(µ̂MC,n)− Var(µ̂prop

SS,n) =
1

n
Var(E[Ψ(X) |Ω(K)

X ]),

so the efficiency gain from SS with proportional allocation depends on the variation among

strata means. The ideal stratification is such that Ψ(X) behaves homogeneously within

each stratum so that E[σ2
K ] is small but behaves heterogeneously among different strata

so that Var(µK) is large. How to form such strata is problem-dependent and we do not

discuss it here.

2.2.2 Importance Sampling

IS is a variance reduction technique frequently used in rare-event simulation. The typical

setting is that Ψ(X) is such that P(Ψ(X) > 0) is small. Let A = {x ∈ Rd | Ψ(X)fX(x) >

0} denote the rare-event region. Under plain MC, most samples give Ψ(X) = 0 so they do

not contribute in estimating µ. In IS, one draws samples ofX from a proposal distribution,

a distribution constructed to oversample A. A proposal distribution is often called an IS

proposal distribution and we use the two terms interchangeably. Let gX(x) denote the pdf

of X under the proposal distribution and we assume that gX(x) > 0 for all x ∈ A. The

IS estimator is obtained based on the following identity

Ef [Ψ(X)] =

∫
ΩX

Ψ(x)fX(x)dx =

∫
A

Ψ(x)
fX(x)

gX(x)
gX(x)dx = Eg [Ψ(X)w(X)] ,

where w(x) = dFX(x)
dGX(x)

= fX(x)
gX(x)

is the IS weight function. The w(x) term works as a weight

so that the estimator remains unbiased after changing the sampling distribution. The

subscript f and g on the expectation operator E indicate that expectations are taken with

respect to the original and proposal distribution, respectively. The IS estimator is given

by

µ̂IS,n =
1

n

n∑
i=1

Ψ(Xi)w(Xi), Xi
ind.∼ gX . (2.14)
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Observe that

Eg[Ψ
2(X)w2(X)] =

∫
{}gX(x)>0}

Ψ2(x)w2(x)gX(x)dx

=

∫
A

Ψ2(x)w(x)fX(x)dx = Ef [Ψ
2(X)w(X)].

So,

Var(µ̂IS,n) =
1

n

(
Ef [Ψ

2(X)w(X)]− µ2
)
.

The variance of the IS estimator is smaller than or equal to that of the plain MC estimator

if and only if

Ef [Ψ
2(X)w(X)] ≤ Ef [Ψ

2(X)].

Since Var(µ̂IS,n) depends entirely on the choice of gX(x), finding a “good” proposal distri-

bution is the crucial step in IS. Note that

Eg[Ψ
2(X)w2(X)] ≥ (Eg[|Ψ(X)|w(X)])2 = (Ef [|Ψ(X)|])2, (2.15)

where the inequality holds as an equality if and only if Ψ2(x) ∝ w2(x) ∀x ∈ A by Jensen’s

inequality. Since Ef [|Ψ(X)|] is a quantity that does not depend on gX(x), we can treat

the right hand side of (2.15) as a lower bound for the second moment of the IS estimator.

The choice

g∗X(x) =
|Ψ(x)|fX(x)∫

ΩX
|Ψ(x)|fX(x)dx

, ∀x ∈ ΩX (2.16)

satisfies the equality condition for (2.15) thus this is the optimal proposal density of X.

The optimality of g∗X(x) can be also proved using calculus of variation as in Kahn and

Marshall [63]. If Ψ(x) ≥ 0 or Ψ(x) ≤ 0 for all x ∈ Ω, then g∗X(x) gives a zero-variance

estimator. In practice, such an estimator is not attainable as the normalizing constant is

unknown. Nonetheless, the form of g∗X(x) implies that a “good” proposal density gives

larger weights on the region where the product |Ψ(x)|fX(x) is large.

2.2.3 Dimensionality effect of Importance Sampling

Designing a good IS distribution is challenging in high dimension as the variance of IS

estimators grows without bound as the dimension increases unless the proposal distribu-

tions are carefully chosen [10, 66, 107]. This is an important issue as many problems in
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finance are high-dimensional and the goal of this thesis is to develop IS and SS methods

that work well for such problems. We review Au and Beck’s [10] argument of how the

dimensionality of the problem affects the variance of the IS estimators and discuss an ap-

proach that alleviates the dimensionality effect. The IS techniques that we develop in this

thesis follows this approach so they remain effective even in high dimension, as long as

certain low-dimensional structures exist.

Since Var(µ̂IS,n) = Varg(Ψ(X)w(X))/n, one wants to choose a proposal density gX(x)

so that Varg(Ψ(X)w(X)) is small. Generally, a proposal distribution that gives large

Varg(w(X)) also gives large Varg(Ψ(X)w(X)) [10], so it is important that the class of

IS distributions considered is such that Varg(w(X)) remains bounded as d → ∞, if the

problem of interest is high-dimensional. However, as the analysis in [10] shows, Varg(w(X))

could grow exponentially in d unless the class of proposal distributions is carefully selected,

making the selection of IS distributions delicate for high-dimensional problems.

Suppose for a moment that ΩX = Rd for some large d, say 100. Then, if we use any

d-dimensional distribution gX(x) such that gX(x) > 0 for all x ∈ Rd, the IS estimator

will be unbiased. As discussed earlier, however, such estimators are likely to have very

large variance unless gX(x) is chosen appropriately. With a poor choice of gX(x), the IS

estimator constructed based on a practical number of samples will have a large estimation

error, even though the estimator is theoretically unbiased. We refer to such estimators

as unreliable estimators. We also refer to the estimates that are clearly far from the true

value as unreliable estimates.

If Ψ(X) depends on a small subset of variables of X, one can apply IS only to those im-

portant variables. Then the dimensionality problem will not be as severe as when applying

IS to the entire set of variables of X. Even if Ψ(X) does not have such a structure, it may

be possible to transform Ψ(X) so that the transformed function has the desired structure.

The IS techniques that we develop in this thesis implicitly apply such a transformation

and then we apply IS only to the important variables.
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2.3 Quasi-Monte Carlo

2.3.1 Motivation of QMC

The goal of QMC is the approximation of integrals (or expectations) of the form

µ =

∫
[0,1)d

Ψ(u)du = E[Ψ(U)] (2.17)

for U ∼ U [0, 1)d. It appears restrictive that the domain of integration in (2.17) must

be [0, 1)d, or equivalently that the expectation assumes that the random vector follows

U [0, 1)d. However, any integration domain can be transformed to [0, 1)d using a change

of variables and any random vector can be generated by transforming U [0, 1)d for large

enough d. The formulation (2.17) assumes that such transformations are incorporated in Ψ.

The integration domain in (2.17) is assumed to be [0, 1)d instead of [0, 1]d to circumvent

possible numerical difficulties. Often time, Ψ is such that Ψ(u) = ∞ when any of the

component of u is equal to 1. By assuming that the domain is [0, 1)d, we avoid accidental

evaluation of Ψ at boundaries.

In MC, the samples of U would be generated based on pseudo-random numbers which

are designed to mimic the behaviour of samples from U [0, 1). The aim of QMC is to im-

prove the O(1/
√
n) convergence rate of MC estimator by replacing pseudo-random numbers

with a low-discrepancy sequence (LDS) (see [90]). A LDS offers a more uniform sample

structure than pseudo-random numbers do, which leads to a better coverage of the domain.

Figure 2.1 compares the plots of 128 samples from two-dimensional pseudo-random num-

bers (left) and a Sobol sequence (right), a particular construction of LDS. The left figure

shows that samples from pseudo-random numbers are not equidistributed; some regions

are oversampled and others are undersampled. This poor coverage of the domain partially

explains the slow convergence of MC estimators. Intuitively, the estimator is more accurate

if the sampled points cover the entire domain more uniformly. QMC takes advantage of

such sampling schemes, and can provide faster convergence than MC.

Similarly to the MC estimator, the QMC estimator has the form µ̂QMC,n = 1
n

n∑
i=1

Ψ(ui),

but the points ui come from a LDS instead of pseudo-random numbers. The precise

definition of LDS and the measure of uniformity will be given in the following section.
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Figure 2.1: Plots of 128 samples from two-dimensional pseudo-random numbers and a

low-discrepancy sequence
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(a) Two dimensional Pseudo-Random

Numbers
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(b) Two dimensional Sobol sequence

2.3.2 Star-Discrepancy and Error bound of QMC estimate

Again, we follow the notation in [75]. The star discrepancy of a point set Pn is given by

D∗(Pn) = sup
v∈[0,1)d

|v1 . . . vd − α(Pn,v)/n|,

where α(Pn,v) is the number of points from Pn that are in
d∏
j=1

[0, vj). Take a hyper-rectangle

H of the form
d∏
j=1

[0, vj) and suppose that the volume of H is V . If the point set Pn is truly

equidistributed, exactly V · n of all points should lie in H, for all H. In that case, the

star-discrepancy of Pn is 0. On the other hand, if all the points lie in a small cluster, the

star-discrepancy is close to 1. All sampling schemes are between the two cases. A sequence

of points is called a LDS if D∗(Pn) ∈ O(n−1(log n)d). The Koksma-Hlawka Inequality [51]

relates the star-discrepancy and the error bound of a QMC estimate as

|µ̂QMC,n − µ| ≤ D∗(Pn)V (Ψ), (2.18)

17



provided V (Ψ), the variation in the sense of Hardy and Krause, is finite. We can think of

(2.18) as the bound on the worst case error of a QMC estimate for functions Ψ with finite

variation V (Ψ) in the sense of Hardy and Krause. Hence, QMC offers approximation error

O(n−1(log n)d), which is asymptotically smaller than the MC error O(n−
1
2 ) for any fixed d,

justifying the use of QMC over MC. Notice that, however, this error bound suggests that

the accuracy of QMC deteriorates as the dimensionality of a problem increases.

The problem with the error bound (2.18) is that it is virtually impossible to compute

since D∗(Pn) and V (f) are both very hard to compute. Even if one is able to compute

the error bound, the bound is often too conservative to be useful. Alternatively, one can

add randomness to the underlying LDS so that an error bound can be constructed as a CI,

much like when one uses MC. This technique is called randomized QMC (RQMC) and is

discussed in Section 2.3.4.

2.3.3 Construction of a low-discrepancy sequence

This section introduces two constructions of a LDS. The van der Corput sequence is a

famous one-dimensional LDS and it forms the basis for many multidimensional construc-

tions. The Sobol sequence [112] can be seen as a type of multidimensional extension of van

der Corput sequence and this is the QMC point set that we use in this thesis.

van der Corput sequence

Pick some base b ≥ 2. For a non-negative integer i, compute a sequence cl(i), l = 1, 2, . . .

through the base b expansion of i as

i =
∞∑
l=1

cl(i)b
l−1. (2.19)

Let φb denote the radical inverse function in base b which is defined as

φb(i) =
∞∑
l=1

cl(i)b
−l.
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It is easy to see that φb(i) ∈ [0, 1) and the ith term of van der Corput sequence in base b

is defined as φb(i− 1). The first 10 terms of the sequence with base b = 2 are 0, 0.5 , 0.25,

0.75, 0.125, 0.635, 0.375, 0.875, 0.0625, 0.5625. Notice that this sequence cover [0, 1) more

uniformly than a sequence of pseudo random numbers would.

Sobol Sequence

We follow the notation introduced in [75] to describe the construction of the Sobol sequence.

The theme of the Sobol sequence is to apply linear transformation to the digits cl(i) before

applying the radical inverse function. For each dimension j, generating Sobol sequence

requires a primitive polynomial in F2, which we denote by pj(z) and write as

pj(z) = zdj + adj ,1z
dj−1 + · · ·+ aj,1,

where dj is the degree of the primitive polynomial and each aj,l is either 0 or 1. We then

need dj direction numbers of the form

vj,r =
mj,r

2r
, r ≥ 1

where mj,r could be any positive odd integer less than 2r. Once we have the dj initial

direction numbers, we can recursively define the rest as

vj,k = aj,1vj,r−1 ⊕ · · · ⊕ aj,djvj,r−dj+1 ⊕ vj,r−dj ⊕ (vj,r−dj/2
dj),

where ⊕ represents exclusive-or operation. Then ui,j, the jth coordinate of the ith point

of the Sobol sequence, is given by

ui,j = c1(i)v1,j ⊕ c2(i)v1,2 ⊕ · · · ,

where the sequence cl(i), l = 1, 2, . . . are the coefficients of the base 2 (b = 2) expansion of

i computed as in (2.19).

We emphasize that the quality of the Sobol points heavily depends on the choice of the

direction numbers. In this thesis, we use the direction numbers from F.Y. Kuo’s web page

http://web.maths.unsw.edu.au/ fkuo/sobol/, which are originally found by Joe and Kuo

using the search algorithm in [60].
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2.3.4 Randomized Quasi-Monte Carlo

As mentioned in [75], ”randomized quasi-Monte Carlo consists in choosing a deterministic

low-discrepancy point set Pn and applying a randomization such that (i) each point ũi

in the randomized point set P̃n is U [0, 1)d and (ii) the low-discrepancy of Pn is preserved

(in some sense) after the randomization”. Suppose we already have such randomization

scheme and let Pn be a n-point set based on some low-discrepancy sequence. Let P l
n denote

a point set from the lth randomization of Pn for l = 1, . . .m, that is, we randomize m

times.

For l = 1, . . . ,m, let

µ̂l,RQMC =
1

n

n∑
i=1

Ψ(ũl,i), (2.20)

where ũl,i denote the ith point in P̃ l
n. Note that µ̂l,RQMC is an unbiased estimator of µ

since each ũl,i ∼ U [0, 1)d. Randomizing Pn m times, we obtain {µ̂1,RQMC . . . µ̂m,RQMC}.
Each estimator is an unbiased estimator of µ and they are independent and identically

distributed (i.i.d.). This i.i.d. condition allows us to use CLT and derive probabilistic

error bounds. Let

µ̂RQMC,m =
1

m

m∑
i=1

µ̂i,RQMC.

Clearly µ̂RQMC,m is an unbiased estimator of µ. The approximate 100(1 − α)% confidence

interval is

{µ̂RQMC,m ± z1−α
2
· σRQMC,m√

m
}.

As σRQMC,m is unknown, we replace it with the sample standard deviation

σ̂RQMC,m =

√
1

m−1

m∑
i=1

(µ̂i,RQMC − µ̂RQMC,m)2.

The approximate 100(1− α)% confidence interval becomes

{µ̂RQMC,m ± z1−α
2
· σ̂RQMC,m√

m
}.
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Digital Shift

Digital shift is a simple yet popular randomization technique applicable to Sobol sequence.

Suppose we have a QMC point set Pn. Let v = (v1, . . . , vd) ∼ U [0, 1)d and write the base

b expansion of jth component of v as (vj,1, vj,2 · · · )b, that is, we write

vj =
∞∑
l=0

vj,lb
−l.

Also, let (ui,j,1, ui,j,2, · · · ) represent the base b expansion of jth component of the ith point

in Pn. The digitally shifted point set of Pn, which we denote P̃n, consists of points ũi,

i = 1, . . . n whose jth component is

ũi,j =
∞∑
l=0

(ui,j,l + vj,l)b
−l,

where the addition is performed in Zb.

Figure 2.2: Sobol Point Set

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Sobol
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(b) Digitally Shifted Sobol

Figure 2.2 compares a Sobol point set and a digitally shifted version of it. The shift of

(0.81, 0.91) was applied to obtain the point set on the right. As the plot shows, a digital

shift transforms a Sobol point set without breaking the uniform structure.
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2.3.5 ANOVA Decomposition and Effective Dimension

While the O(n−1(log n)d) (worst case) error rate of QMC estimation is asymptotically

smaller than the plain MC rate of O(n−
1
2 ) for fixed d, the size of n required for n−1(log n)d ≤

n−
1
2 to hold can be unrealistically large. For instance, for d = 10, n must be at least about

1039 for the inequality to hold, as in [75, p. 197]. QMC in this sense appears to suffer from

the curse of dimensionality. Nonetheless, QMC has proved to be successful for various

high-dimensional problems [3, 62, 92, 119]. A widely accepted explanation of the success of

QMC is related to the concept of effective dimension, which was first introduced by Caflisch,

Morokoff, and Owen [18]. It has been demonstrated in many examples that QMC works

significantly better than plain MC if the problems have low effective dimensions (see for

instance [18, 119, 120, 118]). Since the definitions of effective dimension is closely related to

the analysis of variance (ANOVA) decomposition [18], we explain ANOVA decomposition

first.

ANOVA Decomposition

The ANOVA decomposition of Ψ(u) is expressed as

Ψ(u) =
∑

J⊆{1,...,d}

ΨJ(u), (2.21)

where Ψ∅ = µ and for a nonempty subset J ⊆ {1, . . . , d}, ΨJ is defined as

ΨJ(u) =

∫
[0,1)d−s

Ψ(u)du−J −
∑

K⊂J,K 6=J

ΨK(u),

where s = |J | and −J = {1, . . . , d} \ J is the complement of J . Since∫
[0,1)d

ΨJ(u)ΨK(u)du = 0

for all nonempty J 6= K, the ANOVA decomposition writes Ψ as a sum of the 2d orthogonal

components.
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The significance of ANOVA decomposition is that it decomposes the overall variance

σ2 = Var(Ψ(U )) =
∫

[0,1)d
(Ψ(u) − µ)2du into the sum of the variance of the ANOVA

component as σ2 =
∑

J σ
2
J , where

σ2
J =

∫
[0,1)d

Ψ2
J(u)du.

Sobol’s global sensitivity index [113] is defined as SJ =
σ2
J

σ2 for J ⊆ {1, . . . , d} and it

measures the fraction of the variance of Ψ explained by ΨJ . We can use such indices as

the measure of the relative importance of the ANOVA components.

Effective Dimension

Definition 2.3.1. The effective dimension of Ψ in the truncation sense (truncation di-

mension) in proportion p is the smallest integer dT such that

1

σ2

∑
J :J⊆{1,...,dT}

σ2
J ≥ p.

The effective dimension of Ψ in the superposition sense (superposition dimension) in pro-

portion p is the smallest integer dS such that

1

σ2

∑
J :|J |≤dS

σ2
J ≥ p.

A truncation dimension of dT indicates that the first dT variables of u explains most of

the variation of Ψ. A superposition dimension of dT means that Ψ(u) is well approximated

by a sum of functions with at most dT variables. This in turn implies that the interaction

effects of order larger than dT are not significant.

As noted earlier, the efficiency gain of QMC over MC depends on the effective dimension

of the problem. Thus, QMC is often combined with dimension reduction techniques, the

techniques aimed at reducing the effective dimension of the problem. Such technique

include Brownian bridge (see [18]), principal component analysis (see [3]), the orthogonal

transformation of Wang and Sloan [121], and the linear transformation of Imai and Tan

[58].
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2.4 Copula Models

Since this thesis emphasizes simulation techniques for copula models, we provide a brief

introduction to copula in this section. Readers are referred to [88] for a more comprehensive

introduction to this topic.

2.4.1 Definitions and Theorems

Definition 2.4.1. A d-dimensional copula is a distribution function on [0, 1]d with standard

uniform marginal distributions.

The definition of copula above directly gives the following three properties of copula.

These properties can be used to define a copula and the two definitions are mathematically

equivalent.

Definition 2.4.2. A d-dimensional mapping C : [0, 1]d → [0, 1] is a copula if

• C(u1, . . . , uj−1, 0, uj+1, . . . ud) = 0 for j = 1, . . . , d

• C(1 . . . , 1, uj, 1, 1) = uj j = 1, . . . , d for j = 1, . . . , d

• For all (a1, . . . , ad), (b1, . . . , bd) ∈ [0, 1]d with aj ≤ bj

2∑
j1=1

· · ·
2∑

jd=1

(−1)j1+···+jdC(u1,j1 , . . . , ud,jd) ≥ 0

holds where uj1 = aj and uj2 = bj for all j ∈ {1, . . . d}.

We sometimes refer to a d-dimensional copula as a d-copula. The following theorem

due to Sklar [110], states that any multivariate distribution is the composition of a copula

and marginals, and is one of the most important theorems in this field.

Theorem 2.4.3 (Sklar 1959). Let F be a joint distribution function with margins F1, . . . Fd.

Then there exists a copula C : [0, 1]d → [0, 1]d such that, for all x1, . . . , xd ∈ R̄ = [−∞,∞],

F (x1, . . . , xd) = C(F (x1), . . . , F (xd)). (2.22)
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If the margins are continuous, then C is unique; otherwise C is uniquely determined on

Ran F1× · · ·× Ran Fd, where Ran Fi = Fi(R̄). Conversely, if C is a copula and F1, . . . Fd

are univariate distribution functions, then the function F defined in (2.22) is a joint dis-

tribution with margins F1, . . . Fd.

The significance of Sklar’s Theorem is that it adds a great deal of freedom in modelling

joint distributions because the theorem allows us to separate the dependence structure

from marginals. With Sklar’s Theorem, one can first choose marginal distributions from

different parametric families then combine them through a copula of their choice. This

two-step procedure is much more flexible than the traditional modelling where full joint

distributions have to be specified altogether.

2.4.2 Some well-known copulas

In this section, we introduce some popular copulas in statistical modelling.

Gaussian Copula

The Gaussian copula is the copula underlying a multivariate normal distribution. Suppose

X ∼ MVN(0, P ), that is, X follows a multivariate normal (MVN) distribution with the

mean vector 0 = (0, . . . , 0)′ and the correlation matrix P . Then the Gaussian copula CG
P

is defined implicitly as

CG
P (u1, . . . , ud) = ΦP (Φ−1(u1), . . . ,Φ−1(ud)),

where ΦP denotes the distribution function of a multivariate normal with mean vector

0 and the correlation matrix P and Φ−1 denotes the quantile function of a univariate

standard normal distribution.

Suppose X ∼ MVN(µ,Σ), where µ is the mean vector and Σ is the covariance matrix.

If P is the corresponding correlation matrix, the copula of X is CG
P . The mean vector

is irrelevant as it contains no information on the dependence of X. The variance of the

components of X is also irrelevant for the same reason. The correlation matrix completely

captures the dependence of the multivariate normal distribution.
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t-copula

Similarly to the Gaussian copula case, the t-copula is the copula underlying the multivariate-

t distribution. Suppose X ∼ tν(0, P ), that is, X follows the multivariate-t distribution

with v degrees of freedom, 0 mean vector and correlation matrix P . The t copula Ct
v,P is

defined as

Ct
ν,P (u1, . . . , ud) = tν,P (t−1

ν (u1), . . . , t−1
ν (ud)),

where tν,P denotes the distribution function of a multivariate t distribution with v degrees

of freedom, 0 mean vector, and the correlation matrix P and t−1
ν denotes the inverse of tν ,

the distribution function of a univariate t-distribution with ν degrees of freedom. Suppose

X ∼ tv(µ,Σ). If P is the correlation matrix of Σ, then Ct
ν,P is the copula of X.

Archimedean copula

Unlike the Gaussian and t-copulas where the copulas are implicitly defined, Archimedean

copulas are explicitly defined as

C(u1, . . . , ud) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud)), (u1, . . . , ud) ∈ [0, 1]d, (2.23)

where ψ is an Archimedean copula generator, a special univariate function with the fol-

lowing properties;

• ψ : [0,∞)→ [0, 1] with ψ(0) = 1 and ψ(∞) = 0

• ψ(x) is continuous and strictly decreasing on[0, ψ−1].

Satisfying the two conditions above is necessary, but not sufficient for ψ to induce an

Archimedean copula. Kimberling’s theorem [67] provides the necessary and sufficient con-

dition for a generator to induce an Archimedean copula for any d ≥ 2.

Theorem 2.4.4 (Kimberling). Let ψ : [0,∞)→ [0, 1] be a continuous, strictly decreasing

function such that ψ(0) = 1 and ψ(∞) = 0. Then ψ induces a copula of any dimension

d ≥ 2 if and only if ψ is completely monotone, that is, (−1)kψ(k)(x) ≥ 0 for k ≥ 1.
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Bernstein’s theorem makes a connection between the notion of complete monotonicity

and the Laplace transform of a random variable.

Theorem 2.4.5 (Bernstein). Let ψ : [0,∞) → [0, 1] be a continuous, strictly decreasing

function such that ψ(0) = 1 and ψ(∞) = 0. Then ψ is completely monotone if and only if

ψ is a Laplace transform of a distribution function.

Combining Kimberling’s theorem and Bernstein’s theorem, ψ induces an Archimedean

copula for any dimension d ≥ 2 if and only if ψ is a Laplace transform of the distribution

function of some positive random variable V , so-called frailty. The following algorithm due

to Marshall and Olkin [83], to which we refer as Marshall-Olkin algorithm, allows us to

efficiently sample from an Archimedean copula Cψ induced by such generator ψ.

Algorithm 1 Marshall-Olkin Algorithm

Generate V whose Laplace transform is ψ

Generate E1, . . . , Ed
ind.∼ Exp(1)

Let Ui = ψ
(
Ei
V

)
for i = 1, . . . , d.

Return (U1, . . . , Ud) ∼ Cψ.

For many popular Archimedean copulas, the frailty random variable V has a known

distribution, for instance V is Gamma distributed for Clayton copulas. Table 2.1 lists the

information about five popular Archimedean copulas and the corresponding frailty random

variables V : see [53, Table 1] for the details concerning Table 2.1.

Table 2.1: Popular Archimedean Copulas

Family Parameter ψ(t) V

Ali-Mikhail-Haq θ ∈ [0, 1) (1− θ)/(exp(t)− θ) Geo(1− θ)
Clayton θ ∈ (0,∞) (1 + t)−1/θ Gamm(1/θ, 1)

Frank θ ∈ (0,∞) − log(1− (1− e−θ) exp(−t))/θ Log(1− e−θ)
Gumbel θ ∈ [1,∞) exp(−t1/θ) S(1/θ, 1, cosθ(π/(2θ)),1{θ = 1}; 1)

Joe θ ∈ [1,∞) 1− (1− exp(−t))1/θ Sibuya(1/θ)
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2.5 Risk Measures and Importance Sampling

In this section, we introduce two widely used risk measures, Value-at-Risk (VaR) and

expected shortfall (ES), and discuss how to design effective IS distributions to estimate

them. We follow the notation in [115] in this section.

2.5.1 VaR and ES

Suppose L is a univariate random variable representing a portfolio loss with distribution

function FL. Let fL denote the pdf of L if it exists. For 0 ≤ α ≤ 1, 100α% Value-at-Risk

or VaRα of L is defined as

v = F−1
L (α) = inf{x : FL(x) ≥ α}.

That is, VaRα is the α% quantile of FL. Similarly, the 100α% Expected shortfall or ESα

is defined as

c =
1

1− α

∫ 1

α

VaRudu.

Expected shortfall is sometimes called conditional Value-at-Risk. Since c = E[L |L > v] if

L has a positive and differential density in the neighbourhood v, we can think of ES as the

expected value of a loss given that the loss exceeds the corresponding VaR. In summary,

VaR is a quantile of a distribution and ES is a conditional expectation for its tail.

2.5.2 IS estimators of VaR and ES

In risk management, one is usually interested in estimating VaRα and ESα for α close to

1. Since this is a rare event simulation, plain MC estimators are not very precise. The

idea of applying IS to enhance the precision of the estimates of VaRα and ESα is explored

in [40, 39] among others. As we apply IS to estimate VaR and ES for copula models in

Chapter 3 and Chapter 4, we discuss in this section how to tailor proposal distribution

to estimate the said risk measures based on the asymptotic normality results of Sun and

Hong [115].
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Suppose that the samples (L1, . . . , Ln) are generated from a proposal distribution GL

of L. Let w(x) = dFL(x)
dGL(x)

denote the IS weight function. Define the IS estimate of the

empirical distribution of L as

F̂IS,n(x) =
1

n

n∑
i=1

1{Li ≤ x}w(Li).

Then the IS estimator of VaRα and ESα are given by [115]

v̂IS,n = inf{x : F̂IS,n(x) > α} (2.24)

and

ĉIS,n = v̂IS,n +
1

nα

n∑
i=1

(Li − v̂)+w(Li), (2.25)

respectively, where x+ = max{x, 0}. Sun and Hong [115] derive the asymptotic normality

of v̂IS,n and ĉIS,n (under some conditions that include the existence of the density of L at

v) as

√
n(v̂IS,n − v)

D−→
√

VarG (1{L > v}w(L))

fL(v)
N(0, 1) (2.26)

√
n(ĉIS,n − c)

D−→
√

VarG ((L− v)+w(L))

α
N(0, 1). (2.27)

Observe from (2.26) and (2.27) that the asymptotic variance of v̂IS,n and ĉIS,n respec-

tively depends on the proposal distribution through Varg (1{L > v}w(L)) and Varg ((L− v)+w(L)).

If GL is such that dFL(x) < dGL(x) for all x > v, then the IS estimator of VaRα and ESα

have smaller variance than the plain MC estimators would.
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Chapter 3

Importance Sampling and

Stratification for Copula Models

3.1 Introduction

Many applications in finance and insurance involve the computation of µ = E[Ψ(X)]

where X = (X1, . . . , Xd)
′ is a d-dimensional random vector and Ψ : Rd → R is some

function. Since this thesis focuses on rare-event simulation, we assume that Ψ(X) takes a

non-zero value with small probability. A popular approach in modelling the distribution

of X is through the use of copulas. If F is the joint distribution function of X and Fj,

j = 1, . . . , d is the marginal distribution functions of the jth component of X, Sklar’s

Theorem allows use to decompose F as the composition of a copula C : [0, 1]d → [0, 1] and

the d marginals as F (X1, . . . , Xd) = C(F1(X1), . . . , Fd(Xd)). With Sklar’s Theorem, one

can specify marginals of X first and then choose an appropriate copula. This is in contrast

to the traditional approach where the full joint distribution is modelled altogether.

The main contribution of this chapter is the study of IS techniques which we design to be

effective for problems where Ψ(X) takes a large value when at least one of the components

of X is large. Such problems often arise from dependence models in the realm of finance

and insurance. We propose a new IS framework which is applicable to all classes of copulas
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from which sampling is feasible. The main idea of our IS approach is to oversample sets of

the form [0, 1]d\[0, λk]d for 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λM ≤ 1. Explicit sampling algorithms are

presented for the case of Archimedean copulas. We show how to construct the optimal IS

distribution by analyzing the variance expression of the IS estimator. We further construct

an SS estimator based on our general IS setup.

As discussed in Section 2.3, QMC is a simulation based numerical technique much like

MC, but it offers a faster convergence for the error rate than MC does by generating samples

based on a low-discrepancy sequence. QMC has proven effective for financial security

pricing problems, among others, where the underlying model is multivariate normal [3, 13,

62]. Recently, its effectiveness for sampling copula models was studied and demonstrated

theoretically and empirically in [19]. Building on that work, we also combine QMC with

our proposed IS approach.

The rest of this chapter is organized as follows. Section 3.2 motivates our proposed

IS techniques. Section 3.3 introduces a general IS setup for copula models and develops a

sampling algorithm for the case of Archimedean copulas. Section 3.4 shows our proposed

IS scheme is similar to SS and then develops an SS scheme by building on this connection.

A sampling algorithm for SS for the case of Archimedean copulas is also given. Section

3.5 derives the variance expressions for IS and SS estimators. By minimizing such variance

expressions, we derive optimal calibration for the proposal distributions, for both IS and

SS. Section 3.6 numerically investigates the effectiveness of the proposed IS and SS schemes

with and without QMC in simulation studies.

3.2 Motivation and Background

In a copula model, we may write µ = E[Ψ(X)] = E[Ψ0(U)], where U ∼ C, a copula of X,

and Ψ0 : [0, 1]d → R is given by

Ψ0(u1, . . . , ud) = Ψ(F−1
1 (u1), . . . , F−1

d (ud)),

where F−1
j (p) = inf{x ∈ R : Fj(x) ≥ p} for j ∈ {1, . . . , d}. Sklar’s Theorem asserts that

C is unique if the d marginals of X are continuously distributed. If C and F1, . . . , Fd are
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known, we can construct a plain MC estimator based on n samples {U1, . . . ,Un}
ind.∼ C as

µ̂MC,n =
1

n

n∑
i=1

Ψ0(Ui).

In this chapter, we consider the case where Ψ0 is large only when at least one of its

arguments is close to 1, or equivalently, if the maximum component of X is large. This

assumption is inspired by several applications in insurance:

• The fair premium of a stop loss cover with deductible D is E[{
∑d

j=1 Xj−D, 0}]. The

corresponding functional is Ψ0(u) = max{
∑d

j=1 F
−1
j (uj) − D, 0}; see the left-hand

side of Figure 3.1 (taken from [7, Figure 1]) for a contour plot of Ψ0 for two Pareto

margins.

Figure 3.1: Left: Contour lines for the excess function Ψ0(u1, u2) = max{F−1
1 (u1) +

F−1
2 (u2)− 10, 0}, where the margins are Pareto distributed with F1(x) = 1− (1 + x/4)−2

and F2(x) = 1 − (1 + x/8)−2. The grey area indicates where Ψ0 is zero. Right: Contour

lines for the product function Ψ0(u1, u2) = F−1
1 (u1)F−1

2 (u2), where X1 ∼ LN(2, 1) and

X2 ∼ LN(1, 1.5).
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• Risk measures for an aggregate sum S =
∑d

j=1Xj, such as value-at-risk, VaRα(S),

or expected shortfall, ESα(S), α ∈ (0, 1), cannot in general be written as an expec-

tation of type E(Ψ(X)). However, they are functionals of the aggregate distribution
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function FS(x) = P(S ≤ x) = E(Ψ(U ;x)), where Ψ0(u;x) = 1{F−1
1 (u1)+···+F−1

d (ud)≤x}.

We can therefore write

VaRα(S) = inf{x ∈ R : E(Ψ0(U ;x)) ≥ α}, ESα(S) =
1

1− α

∫ 1

α

VaRu(S) du,

(3.1)

which depend only on those x for which E(Ψ0(U ;x)) ≥ α holds. This is determined

by the tail behaviour of S, which is strongly influenced by the properties of the copula

C when at least one component is close to 1. Note that capital allocation methods

such as the Euler principle for expected shortfall behave similarly, see [88] and [116],

page 260.

3.3 Importance Sampling for Copula Models

3.3.1 Importance Sampling Algorithm

Since we are interested in estimating the quantities related to the tail of Ψ0(U) for U ∼ C,

we use IS to improve the precision of the plain MC estimator. Let G denote the distribution

function of U under the IS distribution. The IS estimator has the form

µ̂IS,n =
1

n

n∑
i=1

Ψ0(Ui)w(Ui), Ui
ind.∼ G,

where w(u) = dC(u)
dG(u)

is the Radon-Nikodym derivative of C with respect to G.

Let T = max{U1, . . . , Ud} and t = max{u1, . . . , ud}. Since we assume that Ψ0(U) is

large when at least one component of u is large, the ideal IS distribution places greater

weights on the domain of U with large T than the original distribution does. The main

idea of our IS scheme is to first draw a discretely distributed threshold random variable

Λ ∼ FΛ which is concentrated on [0, 1] and is defined by qk := P(Λ = λk), k = 0, . . . ,M

and then sample U |T > Λ under the original distribution. This IS scheme is summarized

in Algorithm 2.

Depending on the choice of FΛ, the IS distribution places heavier weights on the region

with large T . If for instance P(Λ = 0) = P(Λ = 0.9) = 0.5, then greater than 50% of
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Algorithm 2 Importance Sampling Estimator

1: for i = 1, . . . , n do

2: Draw Λi = λi from FΛ

3: Draw Ui ∼ C conditionally on T > λi.

4: Compute w(Ui) = dC(Ui)
dG(Ui)

5: end for

6: return µ̂IS,n = 1
n

n∑
i=1

Ψ0(Ui)ω(Ui).

the samples under IS will lie on [0, 1]d \ [0, 0.9]d on average. On the other hand, the case

P(Λ = 0) = 1 yields G = C, and then IS becomes MC.

Let Cλ(u) be the distribution function of U |T > λ under the original distribution.

Then the IS distribution function, which we denote byG(u), has the mixture representation

G(u) =
M∑
k=0

qkCλk(u),

where

Cλ(u) = P(U1 ≤ u1, . . . , Ud ≤ ud | max{U1, . . . , Ud} > λ)

= P(U1 ≤ u1, . . . , Ud ≤ ud |U /∈ [0, λ]d)

=
C(u)− C (min{u1, λ}, . . . ,min{ud, λ})

1− C(λ1)
, (3.2)

Note that the IS weight function is well-defined if C is absolutely continuous with

respect to G. In order to guarantee this absolutely continuity for any copula C, we make

the following assumption:

Assumption 1. The random variable Λ satisfies P(Λ = 0) > 0.

Since C0 = C, ensuring that P(Λ = 0) > 0 is a form of defensive mixture sampling as

described in Hesterberg [49]. Then, w(u) ≤ P(Λ = 0)−1 on u ∈ [0, 1]d under Assumption

1 and the consistency and asymptotic normality of the IS estimator follows. In order to

construct an IS estimator as in Algorithm 2, one needs to evaluate the IS weight function.

Theorem 3.3.1 derives the expression for w(u).
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Theorem 3.3.1 ([7, Theorem 4.4, Equation (4.1)], see p. 155 for proof). The Radon–

Nikodym derivative w(u) = dC(u)/dG(u) is given by

w(u) =
( M∑
k=1

1{λk ≤ max{u1, . . . , ud}}
1− C(λk1)

qk

)−1

. (3.3)

In order to simplify the notation, let w̃ : [0, 1]→ [0,∞) be defined as

w̃(t) =
( M∑
k=1

1{λk ≤ t}
1− C(λk1)

qk

)−1

(3.4)

so that we have w(u) = w̃(max{u1, . . . , ud}) = w̃(t). In order to evaluate w̃, it is sufficient

to calculate (or approximate) C(λk1) for k ∈ {1, . . . ,M}. These values must be computed

only once and thus this approach is fast and can be easily implemented. In particular, the

density of C does not have to be evaluated to calculate w (or w̃). This is an advantage

in comparison to most other IS algorithms, for which the existence of the density of C is

required.

Remark 3.3.2. Observe that the IS weight function (3.3) depends on u only through

t. That is, the variance of w(U) under the proposal distribution is a function of the

distribution of a univariate random variable T . Thus, the weight function of the IS scheme

of Algorithm 2 does not suffer from the dimensionality effect discussed in Section 2.2.2.

The reason why only the distribution of T matters for the variance of w(U) is due to

Step 3 of Algorithm 2. Because we still sample U |T > Λ under the original distribution

when we apply IS, the density related to U |T > Λ appears both in the numerator and the

denominator of the weight function and thus they cancel each other out. The only part that

remains comes from the distribution of T . The conditional sampling step from the original

distribution essentially reduces the dimension of the IS weight function to 1. We use this

idea of conditional sampling when we develop IS techniques for more general models in

Chapter 4 and Chapter 6.

3.3.2 Sampling Algorithm for Archimedean Copulas

While the IS method from the previous section can be applied to any copula, sampling

from Cλ is difficult in general. While it is possible in principle to sample from Cλ, or any
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multivariate distribution, using a multivariate quantile transform [105], such transform is

generally computationally very expensive as it involves evaluations of conditional quantile

functions that must be approximated numerically. In this section, we develop an efficient

sampling method for Cλ when C is an Archimedean copula.

In light of the MO Algorithm (Algorithm 1), (U1, . . . , Ud)
D
= ψ(E1

V
, . . . , Ed

V
) where Ei

ind.∼
Exp(1) and V is the corresponding frailty random variable. Using some algebra, we can

write the condition T > λ as E(1) ≤ ψ−1(λ)V , where E(1) is the first order statistics of

{E1, . . . , Ed} which is distributed as Exp(d). In summary, sampling from U |T > λ is

equivalent to sampling from (E1, . . . , Ed, V ) |E(1) ≤ ψ−1(λ). Algorithm 3 summarizes the

sampling method for this conditional distribution where we let γ = ψ−1(λ). Proposition

3.3.3 asserts that samples from Algorithm 3 have the right distribution.

Algorithm 3 Sampling Step of the IS algorithm for Archimedean copulas

Require: 0 < γ = ψ−1(λ) <∞.

1: Draw (E(1), V ) | (E(1) < γV ).

2: Draw (E1, . . . , Ed) |E(1).

3: Let Uj = ψ(Ej/V ) for j ∈ {1, . . . , d}.
4: Return (U1, . . . , Ud).

Proposition 3.3.3 (see p. 155 for proof). Let E1, . . . , Ed be iid positive random variables

and V be a positive random variable independent of the Ej’s. Then a sample (E1, . . . , Ed, V )

constructed as in Steps 1–3 of Algorithm 3 has the distribution (E1, . . . , Ed, V ) | (E(1) <

γV ).

While Proposition 3.3.3 holds for general (positive) Ej’s and V , we now give detailed

explanations of how to do the sampling for Steps 1 and 2 of Algorithm 3, i.e., when

Ej
ind.∼ Exp(1) and V is the frailty random variable.

Step 1: Sample (E(1), V ) | (E(1) < γV )

The objective is to sample from the joint distribution of (E(1), V ) conditioned on the event

(E(1) < γV ). Let fE(1)
(x) denote the density of E(1) and fV (v) denote the density of V with
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respect to a reference measure (the Lebesgue measure if V is continuous or the counting

measure if V is discrete). Further, let f(E(1),V )|(E(1)<γV )(x, v) be the conditional joint density

of (E(1), V ) given E(1) < γV . Then by independence of E(1) and V

f(E(1),V )|(E(1)<γV )(x, v) = βfE(1)
(x)fV (v)1(x < γv), (3.5)

where β = 1/P(E(1) < γV ) = 1/P(U(d) > λ) = 1/(1 − C(λ1)) = 1/(1 − ψ(dψ−1(λ))). We

use conditional sampling to sample from this density, that is, we first sample V from the

marginal conditional density fV |(E(1)<γV ) of (3.5) then draw E(1) from (3.5) given V . Note

that

fV |(E(1)<γV )(v) = βfV (v)

∫ γv

0

fE(1)
(x) dx = βfV (v)(1− exp(−dγv)). (3.6)

Unfortunately, the density (3.6) does not belong to a known parametric family for most

Archimedean copulas. Nonetheless, there exist efficient numerical algorithms that allow

one to sample from a univariate distribution given its probability density function. For in-

stance, the NINIGL Algorithm in [30] achieves this through numerical inversion techniques.

Given a density function, the NINIGL Algorithm numerically constructs the inverse CDF

function of the density. One can then efficiently draw multiple samples from the density

by evaluating the inverse CDF function at samples from U [0, 1). Such algorithms could

become costly if they had to be applied for several values of Λ. However in our numerical

experiments, the threshold random variable Λ only takes a small number of distinct values,

such as 10, which is much less than the number of simulations, which is of order 10,000.

Hence, for each value of Λ = λ, we sample from (3.6) thousands of times, which makes the

overhead required to initialize the sampling algorithms negligible.

After sampling V from (3.6), we want to draw E(1) given V . Let fE(1)|(E(1)<γV,V )(x |V )

denote the conditional density of E(1). Then

fE(1)|(E(1)<γV )(x |V ) =
d exp(−dx)1(x < γV )

1− exp(−dγV )

and we can draw a sample from this density using the inversion technique. In particular,

we generate U ∼ U[0, 1) and then let E(1) = −1
d

log(1− U(1− e−γdV )).

Step 2: Sampling (E1, . . . , Ed) |E(1)

Suppose we have drawn E(1) = x(1) from Step 1. Let f(x1, . . . , xd) = exp
(
−
∑d

i=1 xi

)
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be the joint density of (E1, . . . , Ed). Note that each Ej is as likely to be the minimum.

Consider the case where E1 is the minimum. The conditional distribution is

f(x1, . . . , xd |E1 = E(1), E(1) = x(1)) =
e−x(1)−

∑d
j=2 xj

(1/d)de−dx(1)
= e−

∑d
j=2(xj−x(1)) · 1{E1=x(1)}. (3.7)

We can sample from (3.7) by letting Ej = Exp(1) + x(1) independently for j ∈ {2, . . . , d}.

Since any of the Ej’s can be the minimum, we pick the index for the minimum com-

ponent randomly from 1 to d and sample the rest of the components accordingly. This

sampling method works for MC, but may not work very well for QMC. When randomly

choosing the index for the minimum component, we potentially destroy the structure of

the LDS. So, if we are working with an LDS, the sampling method based on Proposition

3.3.4 below is preferred.

Proposition 3.3.4 (see p. 155 for proof). Suppose E1, . . . , Ed are iid Exp(1). Then

P(Ek ≤ xk |E1 = x1, . . . , Ek−1 = xk−1, E(1) = x)

=

1− exp{−(xk − x)}, if xj = x for some j ∈ {1, . . . , k − 1},
1

d−k+1
1{xk<x} + d−k

d−k+1
(1− exp{−(xk − x)}), otherwise.

(3.8)

To sample E1, . . . , Ed, we let k take the successive values k ∈ {1, . . . , d} in (3.8) and

proceed by inversion.

3.4 Stratified Sampling Alternative to Importance Sam-

pling

Recall from Algorithm 3 that our proposed IS scheme starts with sampling a threshold ran-

dom variable Λ, and then proceeds by sampling U |T > λk under the original distribution.

Instead, we can construct an SS estimator based on samples from U |λk+1 > T ≥ λk under

the original distribution. Suppose that Λ takesM distinct values as 0 = λ1 < · · · < λM < 1.
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Then define M strata as

Ω
(k)
C = {u ∈ [0, λk+1]d |λk+1 > t ≥ λk}, k = 1, . . . ,M

= {u ∈ [0, λk+1]d |u /∈ [0, λk]
d}, k = 1, . . . ,M. (3.9)

This strata construction stratifies the domain of U along T as U ∈ Ω
(k)
C if and only if

λk+1 > T ≥ λk. The SS estimator is defined as

µ̂SS,n =
M∑
k=1

pk
nk

nk∑
i=1

Ψ0(U
(k)
i ), (3.10)

where pk is the stratum probability, nk is the number of samples allocated to the stratum

Ω
(k)
C , and U

(k)
i

ind.∼ U |Ω(k)
C under the original distribution. For Archimedean copulas,

pk = ψ(dψ−1(λk+1)) − ψ(dψ−1(λk)). It is easily shown that sampling from U |Ω(k)
C is

equivalent to sampling from

(E1, . . . , Ed, V ) |ψ−1(λk+1)V < E(1) ≤ ψ−1(λk)V.

Define λM+1 = 1 for convenience and let γk = ψ−1(λk) for all k ∈ {1, . . . ,M+1}. Algorithm

4 summarizes the procedure to sample from each stratum.

Algorithm 4 Sampling Uk,j in SS algorithm for Archimedean copulas

Require: 0 < γk+1 < γk <∞.

1: Draw (E(1), V ) | (γk+1V < E(1) ≤ γkV ).

2: Draw (E1, . . . , Ed) |E(1).

3: Let Uj = ψ(Ej/V ) for j ∈ {1, . . . , d}.
4: Return (U1, . . . , Ud).

In this algorithm, Step 2 is exactly the same as for the IS case (Algorithm 3). For

Step 1, we use conditional sampling to draw samples from the joint conditional density of

(E(1), V ) | (γk+1V < E(1) ≤ γkV ). By using an argument similar to the one used for Step 1

of Algorithm 3, one can show that the marginal conditional density of V is

fV |(E(1)<γV )(v) = βfV (v)(exp(−dγk+1v)− exp(−dγkv)), (3.11)
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where fV (v) is the density of V and β = 1/pk = 1/ψ[dψ−1(λk+1)) − ψ(dψ−1(λk)]. Condi-

tional on V drawn from (3.11), generate U ∼ U[0, 1) and then let

E(1) = −1

d
log
[
e−γk+1dy − U(e−γk+1dy − e−γkdy)

]
.

Then (E(1), V ) follows the desired distribution.

Remark 3.4.1. We can follow Algorithm 4 to sample from the SS distribution under QMC,

if the number of samples to be drawn is fixed. In some cases, however, we want to keep

running simulations until some error criterion is met. Since SS requires to have a subset

of points allocated to each stratum, combining it with QMC for n not fixed is challenging.

This is because when the total sample size is increased by successive increments, it means

possibly disjoint subsets of a QMC point set will be used in a given stratum, which is

undesirable. Whether or not this allocation over successive increments can be done in a

clever way that exploits the uniformity of low-discrepancy sequences is a question we leave

for future research.

3.5 Variance Analysis and Calibration Method

In this section, we analyze the variance of the IS and SS estimators and then propose

calibration methods designed to minimize the variance of the respective estimators. We

also show that the SS scheme is more flexible when calibrating and it also gives an estimate

with a smaller variance than IS does. We define the strata Ω1, . . . ,ΩM as in (3.9) and let

Ck = C(λk1) for k = 1, . . . ,M . For clarity, the operators PC , EC , and VarC indicate that

the probability, expectation and variance are computed under the original distribution C.

Similarly, PG, EG, and VarG are for under the IS distribution. The following proposition

gives the variance of the IS estimator.

Proposition 3.5.1 (see p. 156 for proof). Let µ̂IS,n be the IS estimator given by Algorithm

2. The variance of this estimator is

Var(µ̂IS,n) =
1

n

 M∑
k=1

pk

(
k∑
l=1

ql
1− Ck

)−1

m
(2)
k − µ

2

 , (3.12)

41



where pk = PC(U ∈ Ω
(k)
C ), qk = P(Λ = λk) and m

(2)
k = EC [Ψ2

0(U) |Ω(k)
C ].

For the optimal calibration, we want to choose qk’s so that (3.12) is minimized. The

following proposition gives an analytical expression for the optimal calibration.

Proposition 3.5.2 (see p. 157 for proof). The set of qk’s that minimize (3.12) under the

condition m
(2)
1 ≤ . . . ≤ m

(2)
M (with m

(2)
0 = 0 for notational convenience), is

qopt
k =

(1− Ck)
(√

m
(2)
k −

√
m

(2)
k−1

)
M∑
k=1

(1− Ck)
(√

m
(2)
k −

√
m

(2)
k−1

) , k = 1, . . . ,M. (3.13)

Remark 3.5.3. If the condition m
(2)
1 ≤ · · · < m

(2)
M is not met, some of the qopt

k ’s given by

(3.13) will be negative, which makes the IS scheme infeasible. Note that qopt
k < 0 means

that ever having the event [Λ = λk] makes the overall variance greater than when qopt
k .

We propose to then remove λk from the support of Λ if qopt
k < 0. Accordingly, the strata

Ω
(k)
C ’s will change so the stratum second moments need to be recomputed for the optimal

calibration.

Of course, we do not know the true values of the m
(2)
k ’s in practice, so we have to

replace them with estimates. As often done for Neyman allocation, we can first run a

pilot study with a small number of simulations and estimate the m
(2)
k ’s. The condition

m
(2)
1 ≤ . . . ≤ m

(2)
M means that the outer strata must have greater stratum second moments

than the inner strata. We refer to this condition as increasing second moment (ISM)

condition. Whether this ISM condition is met or not depends on the problem at hand. The

assumption that Ψ0(U) is large when T is large and the ISM condition are not incompatible,

although there is no guarantee that such Ψ0(U) satisfies the condition. If the ISM condition

is satisfied, we can substitute (3.13) into (3.12) to obtain

Var(µ̂opt
IS,n) =

1

n

( M∑
k=1

pk

√
m

(2)
k

)2

− µ2

 . (3.14)
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By Jensen’s inequality,

Var(µ̂opt
IS,n) =

1

n

( M∑
k=1

pk

√
m

(2)
k

)2

− µ2

 ≤ 1

n

(
M∑
k=1

pkm
(2)
k − µ

2

)
= Var(µ̂MC,n).

Equality holds only when m
(2)
k is the same for all k. Except for this restrictive case,

the IS estimator with the optimal choice of the qk’s always has a smaller variance than

the plain MC counterpart. If the ISM condition is not met, there is no analytical form

for the optimal qk’s. We can still find the optimal values using widely available convex

optimization solvers. If we let q1 = 1 and let qk = 0 for k = 2, . . . ,M , the proposal

distribution becomes the original distribution. That is, IS become plain MC. Hence, if

the qk’s are chosen appropriately, the IS estimator cannot do worse than the plain MC

estimator. In this sense, the IS estimator is similar to an SS estimator.

Now that we have derived the variance expression and the optimal choice of qk’s for IS

estimator, we move on to the SS estimator (3.10). Using simple algebra, one can show

Var(µ̂SS,n) =
M∑
k=1

p2
kv

2
k

nk
, (3.15)

where v2
k = VarC(Ψ0(U) |Ω(k)

C ), k = 1, . . . ,M are the stratum variances. The optimal

choices of the nk’s is given by Neyman allocation [21, pp.98-99]

nk =
npkvk
M∑
k=1

pkvk

. (3.16)

Unlike the IS estimator, there is no restriction on this optimal allocation. That is, σk does

not need to increase with k. In this sense, the SS estimator is more flexible.

Since the stratum variances are unknown, we have to replace them with estimates.

Investigating the optimal calibration formula for IS (3.13) and SS (3.16), it appears that

the estimation error of the strata moments (the m
(2)
k ’s for IS and the v2

k’s for SS) has

greater impact on the estimated calibration for IS than for SS. Since qk for IS depends on√
m

(2)
k −

√
m

(2)
k−1, the estimation error comes from both estimating m

(2)
k−1 and m

(2)
k . On the
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other hand, for SS, nk depends on σk, so the estimation error comes from estimating v2
k

alone. Consequently, the approximation is likely to deviate more from the actual optimal

calibration for IS than for SS.

The optimal calibration for IS (3.13) and SS (3.16) give the variance minimizing qk’s

and nk’s, respectively, for a given set of threshold values λ1, . . . , λM . Another possible

optimal calibration is to find the variance minimizing λk’s for fixed qk’s or nk’s. We do not

pursue this approach because finding such λk’s is difficult, as the variance of the IS and SS

estimators are not convex in the λk’s.

Going back to IS and as discussed in [49], instead of choosing Λ = λk with probability

qk, it is more efficient to stratify Λ. That is, take nk = nqk observations with λk. Let µ̂det
IS,n

denote such a stratified IS (SIS) estimator. Generally nqk’s will not be integers, so we have

to round them. If each nk is large enough, this rounding effect is negligible. Then we have

the following proposition that compares the variance of the three estimators.

Proposition 3.5.4 (see p. 158 for proof). Suppose we have an IS estimator with P(Λ =

λk) = qk, k ∈ {1, . . . ,M}. If the µk = EC(Ψ0(U)|Ω(k)
C ) are not all equal and n is large

enough, then there exists some strata sample allocation (n1, . . . , nM) for the SS estimator

such that Var(µ̂SS,n) ≤ Var(µ̂det
IS,n) ≤ Var(µ̂IS,n).

This result trivially holds when we use the optimal qk’s (3.13) for stratified and unstrat-

ified IS and use the optimal allocation (3.16) for SS. Since the SS estimator is more flexible

for calibration and it has a smaller variance than the stratified/unstratified IS estimator,

the SS approach is the preferred one if the sampling efforts for (3.6) and (3.11) are not sig-

nificantly different. Nonetheless, depending on the type of the underlying copula, sampling

from the IS distribution could be much easier than sampling from SS distribution.

Remark 3.5.5. The variance minimizing calibration for IS (3.13) and SS (3.16) assume

that the objective is to estimate a standard expectation of the form µ = E[Ψ0(U )]. If the

goal is to estimate quantities that cannot be written as a standard expectation, such as

VaRα and ESα, we cannot directly apply those calibrations. Fortunately, the asymptotic

results (2.26) and (2.27) allow us to pretend during calibration that the goal is to estimate

E[1{L > v̂}] and E[(L− v̂)+] when estimating VaRα and ESα, respectively, where v̂ is an
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initial estimate of VaRα. Since E[1{L > v̂}] and E[(L− v̂)+] are both expectations, we can

use the calibrations of (3.13) and (3.16) and construct effective proposal distributions for

VaRα and ESα, respectively.

3.6 Numerical examples

In this section, we numerically investigate the efficiency of the IS and SS estimators intro-

duced in this chapter. We consider the valuation of tail-related quantities of a portfolio

consisting of stocks from companies in the financial industry listed on the S&P 100. The

five stocks in the portfolio are AIG, Allstate Corp., American Express Inc., Bank of New

York and Citigroup Inc. Their stock symbols are AIG, ALL, AXP, BK and C, respectively.

We assume that the value of the portfolio is 100 and that all the portfolio weights are the

same. The data are daily negative log-returns of these five companies from 2010-01-01 to

2016-04-01 (1571 data points). The computations were carried out on a Dell XPS 13 9350,

Intel CPU 2.3 GHz on 8 GB RAM. All algorithms are implemented in the R program-

ming environment. We fit GARCH(1,1)-models with t-innovations to each return series

to filter out the volatility clustering effect using the R package “rugarch” [34]. The fitted

standardized residuals do not exactly follow a t-distribution, so we fit a semi-parametric

distribution to the residuals using the R package “spd” [35]. The fitted model uses a kernel

density estimate for the centre of the distribution and fits a heavy tailed generalized Pareto

distribution to the tails. The use of generalized Pareto distribution to model the GARCH

filtered residuals to estimate tail-related risk measures in a univariate setting is studied by

McNeil and Frey [87].

Figure 3.2 shows the plot of the density of the semiparametric distributions fitted to

the GARCH filtered residuals for the five stocks in the portfolio. As the figure illustrates,

the fitted semiparametric densities have slightly different shapes. In particular, the density

for ALL and AXP returns have higher peaks and lighter right-tails than the densities for

AIG, BK, and C returns do.
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Figure 3.2: Comparison of Gumbel and Frank copula.
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We let S =
∑d

j=1Xj denote the portfolio loss over a one day period with

Xj = 100ωj

(
1−

d∑
j=1

exp(aj − bjF̃−1
j (Uj))

)
,

where d is the number of assets, ωj’s are the portfolio weights, aj’s are the means of log-

returns, bj’s are the fitted standard deviations from the GARCH(1,1) model, Fj’s are the

fitted semi-parametric distributions from the R package “spd” [35], and (U1, . . . , Ud) follows

the fitted copula. We use R package “distr” [104] to sample from (3.6) and (3.11).

Using the R package “copula” [52], we fit the Gumbel, Frank, Clayton and Joe copulas

to the standardized residuals based on MLE. The idea of fitting a copula to the residuals of

times series models is explored in details by Rémillard [98]. Note that fitting Archimedean

copulas implies that we are assuming that the dependence of the standardized residuals

is static across time. Dynamic copulas ([61, 93, 100]) relax this assumption and model

time-varying dependences. However, we do not purse dynamic copulas in our numerical

studies. Among the four Archimedean copulas, the Gumbel copula with θ = 1.603 gives
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the best fit in terms of log-likelihood, followed by a Frank copula with θ = 4.06. Hence

we proceed assuming that the model we consider is well approximated by a Gumbel or a

Frank copula.

Figure 3.3 compares 500 independent samples of a two-dimensional Gumbel and Frank

copula with θ = 1.604 and θ = 4.06, respectively. As the figure illustrates, the Gumbel

copula has a positive upper tail dependence while the Frank copula has no tail dependence.

A positive tail dependence means higher chance of multiple components of a sample point

being simultaneously large. Intuitively this means that there is a higher chance of large

portfolio loss under the Gumbel copula model than under the Frank copula model. Hence,

we expect larger VaR and ES under the Gumbel copula model than under the Frank copula

model

Figure 3.3: Comparison of Gumbel and Frank copula.
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The three functionals we estimate are stop loss E({L −D}+) with D = 3 for Gumbel

and D = 2 for Frank, VaR0.99 and ES0.99 of S. To define FΛ, we use λk = 1 −
(

1
2

)k−1

for k ∈ {1, . . . ,M}, with M = 10. When constructing an IS estimator, we stratify Λ

regardless of whether we use MC or QMC. When we calibrate the qk’s for IS according to
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(3.13) and SS according to (3.16), we use ES as our objective function as we expect that

the IS distribution that estimates ES well would also estimate the other two quantities

well. Since ES is not an expectation, we cannot directly apply the calibrations (3.13) and

(3.16). Thus, we use the idea from Remark 3.5.5.

Table 3.1: Estimates and variance reduction factors for the Gumbel and Frank copulas

based on n = 30 000.

Gumbel Frank

MC QMC MC QMC

Objective function d Estimate IS SS Plain IS SS Estimate IS SS Plain IS SS

E(max{S −D, 0}) 5 0.012 67 168 33 1730 8085 0.011 6.4 11 14 85 161

20 0.010 49 40 51 1128 3488 0.0034 4.6 4.1 5.7 46 46

VaR0.99(S) 5 3.2 10 26 8.4 39 98 2.4 9.7 9.0 2.6 32 26

20 3.04 7.9 7.2 5.8 19 28 2.1 4.3 4.8 3.6 16 19

ES0.99(S) 5 4.2 89 175 29 6019 16989 2.8 17 21 7.1 250 373

20 4.03 49 39 48 1296 4205 2.3 4.6 3.8 4.0 38 36

Run time 5 3.6 3.7 1.8 3.7 3.8 3.6 3.7 1.1 3.6 3.7

20 2.0 1.9 1.2 1.9 2.0 1.7 1.8 1.1 1.9 2.0

Table 3.1 shows the estimates, variance reduction factors and computational times for

the three functionals for five different estimators for Gumbel and Frank copulas, respec-

tively. The estimates shown are based on SS estimators with QMC. Variance reduction

factors are defined to be the ratios of the variance of the plain MC estimators over the

variance of the estimators with the respective VRTs. As the reciprocal of the variance of

a plain MC estimator is proportional to n, the variance reduction factor is the same as

the sample size reduction factor. For instance, if IS based on n samples gives an estimator

with a variance reduction factor of 2, this equivalently means that IS needs only n/2 sam-

ples to achieve the same precision as the plain MC estimator. The last row of Table 3.1

shows the increase in computation time compared to plain MC. We see that both IS and

SS reduce the variance by large amounts and this is amplified when combined with QMC.

Note that SS estimators have variances smaller than the IS estimators do, as suggested

by Proposition 3.5.4. For IS and SS estimators with and without QMC, we see that the

48



Figure 3.4: Estimated variances of plain MC, IS and SIS estimators of ES0.99 for a Gumbel

and a Frank copula for different n and for d = 5.
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largest variance reduction factors are for ES. This makes sense as we calibrate the qk’s for

IS and the nk’s for SS to minimize the variance of the ES estimator.

We also repeat the same experiment but with a portfolio of 20 stocks from large com-

panies in the financial industry traded on NYSE (see Table 3.2 for stocks symbols); the

results are displayed under d = 20 in Tables 3.1. Overall, the IS and SS schemes introduced

in this chapter are effective for the 20-dimensional problem as well.

Table 3.2: Stock symbols for the 20-dimensional model

AIG ALL AXP BAC BAX BK BLK BRK A C CB

COF GS JPM MA MET MS SPG USB V WFC
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Figure 3.5: Estimated variances of plain MC, IS and SIS estimators of ES0.99 for a Gumbel

and a Frank copula for different n and for d = 20.
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Chapter 4

Importance Sampling and Stratified

Sampling Techniques for

Semiparametric Single-Index Models

4.1 Introduction

In Chapter 3, we developed IS, along with SS, techniques for copula models to estimate

µ = E[Ψ0(U)], where U follows some d-copula and Ψ0 : [0, 1]d → R is some function under

the assumption that Ψ0(U) takes a large value only when max{U} = max{U1, . . . , Ud}
is large. The main idea of the IS techniques is to twist the distribution of the maximum

component of U by oversampling sets of the form [0, 1]d\[0, λk]d for 0 ≤ λ1 · · · ≤ λM < 1.

However, the assumption that Ψ0(U) is large only when max{U} is large may not hold

in some applications. In this chapter, we relax this assumption and design IS techniques

for problems where the output depends on the input variable mainly thorough some one-

dimensional projection. In semiparametric regression, such structure of problems are called

single-index models (see [46], [57],[95]), so we refer to our proposed IS technique as single-

index IS. We do not specifically assume copula modelling in this chapter, so the problem

is to estimate µ = E[Ψ(X)], where Ψ : Rd → R is some function and X follows some

d-dimensional distribution which may or may not be a copula. Since max{U} is a type of
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one-dimensional projection of U , single-index IS generalizes the IS techniques of Chapter

3.

Under a single-index model, Ψ(X) is essentially a function of the transformed variable

T = T (X), where T : Rd → R is some parametric projection function, so we can make

the rare-event more frequent by applying IS to T . More specifically, single-index IS draws

samples of T from a proposal distribution of T and then draws X |T under the original

distribution. The only conditions that single-index IS requires to work well are that the

problem has a strong single-index structure and sampling from X |T is feasible. As long

as the two conditions are met, single-index IS should give large variance reduction. Since

the formulation of single-index IS does not assume specific form for Ψ or the distribution of

X, it is applicable to a wide variety of problems. Moreover, the conditional sampling step

of drawing X |T from the original distribution essentially reduces the dimension of the IS

weight function to 1, so single-index IS does not suffer from the dimensionality problem

discussed in Section 2.2.3 and works well even in high dimension.

Inspired by the work of GHS [38], we also propose single-index stratified IS (SIS) that

combines IS and SS on T in order to achieve further variance reduction. The stratification

part of single-index SIS eliminates the variance of Ψ(X) captured by the single-index

model, which could be as large as 99% in proportion in some problems. In fact, we show that

if a drift vector is used as the stratification direction, GHS’ IS and stratification techniques

[38] are a special case of single-index SIS. Furthermore, single-index IS formulation has a

dimension reduction feature, so it enhances the effectiveness of QMC sampling methods if

they are used together.

The efficiency of single-index IS comes from exploiting the low-dimensional, namely

single-index, structure of the problems at hand. Through literature review, we find that

existing IS techniques do not typically take advantage of the possible low-dimensional

structure of a given problem. An important application of IS in finance is the estimation

of the probability of large losses for a credit portfolio. Glasserman and Li [41] develop IS

techniques for Gaussian copula credit portfolio problems based on exponential twisting of

default probabilities and mean shifting of the multivariate normal factors. For the same

credit portfolio problem, McLeish and Men [86] twist the distribution of the portfolio loss

using an extreme value distribution and shift the mean of multivariate normal factors. For
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t-copula credit portfolio problems, which are essentially Gaussian models with a common

multiplicative shock variable, Bassamboo et al. [12] apply exponential twisting to the shock

variable and the default probabilities. In the same paper, Bassamboo et al. propose another

IS technique where the distribution of the shock variable is altered based on Hazard-Rate

Twisting. In the same t-copula setting, Chan and Kroese [20] use conditional Monte Carlo

to analytically integrate out the shock variable and use IS to change the parameters of the

underlying multivariate normal variables. None of these methods consider whether or not

these credit portfolio problems have a low-dimensional structure. Our simulation studies

reveal that credit portfolio problems based on a Gaussian copula have a strong single-index

structure and that the t-copula credit problems have a moderate to strong single-index

structure depending on the size of the degree of freedom parameter and whether or not

the conditional Monte Carlo method proposed in [20] is used. Our proposed single-index

IS gives greater variance reduction than Glasserman and Li’s IS techniques and when

combined with conditional Monte Carlo, it outperforms Chan and Kroese’s cross-entropy

IS approach. Our simulation studies also show that Asian option pricing problems under

the Black-Sholes framework, basket option pricing problems under t-copula models, and

the estimation of VaR and ES of equity portfolios based on skew-t copulas also have strong

single-index structures and thus single-index IS gives a substantial variance reduction for

those problems.

The rest of this chapter is organized as follows. Section 4.2 introduces a single-index

model and provides an overview of how single-index IS and SIS achieve variance reduction.

Section 4.3 provides the general single-index IS and SIS setup and then derive the variance

expressions of the IS and SIS estimators. Based on those expressions, we derive the optimal

(variance-minimizing) calibrations for the proposal densities for single-index IS and SIS.

The connection between single-index SIS and the IS and stratification techniques in [38] is

also shown. Section 4.4 shows that single-index IS reduces the effective dimension of the

problem and so it can be seen as a dimension reduction technique. Section 4.5 shows that

the stratification part of the SIS scheme is more efficient than control variates in eliminating

the variance captured by the single-index model variates. Section 4.6 develops a sampling

algorithm for the proposal distribution when X follows a generalized hyperbolic skew-t

copula. In Section 4.7, we apply single-index IS and SIS to four problems from finance and
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numerically evaluate the effectiveness of our proposed methods.

4.2 Semiparametric Single-Index Models and an over-

view of the single-index (S)IS techniques

In this section, we provide an overview of single-index models and highlight why single-

index IS works well for the problems with a strong single-index structure, the structure

assumed by single-index model. Readers are refereed to [46], [57], and [95] for more infor-

mation on single-index models. Let Ψ : Rd → R and X be a d-dimensional random vector

whose support, pdf and distribution function are denoted by ΩX ⊆ Rd, fX(x) and FX(x),

respectively. In rare-event simulation, the goal is often to estimate µ = E[Ψ(X)] where

P(Ψ(X) > 0) is small. Suppose that Ψ has a single-index structure, that is, there exists

some unknown parametric transformation function T : Rd → R such that Ψ(X) depends

on X mainly through T = T (X). Denoting the support, pdf and distribution function of

T by ΩT , fT (t) and FT (t), respectively, we have a single-index regression representation

Ψ(X) = m(T ) + εT , εT |T ∼ (0, v2(T )), (4.1)

where m(t) = E[Ψ(X) |T = t], v2(t) = Var(Ψ(X) |T = t), and εT is a random error term.

Here, ε ∼ (a, b) denotes that ε follows some distribution with mean a and variance b. This

model is called single-index because it assumes that the conditional mean, E[Ψ(X) |X],

depends on X only through a univariate aggregated information T = T (X). The model

is semiparametric as it assumes a parametric transformation function T (·) but it does not

assume any parametric form for m(t) nor the specific distribution of εT other than it has

a zero mean. By the law of total variance

Var(Ψ(X)) = Var(m(T )) + Var(εT ), (4.2)

which decomposes the variance of Ψ(X) into two pieces: the one captured by the systematic

part, m(T ), and the other by the random part εT of the single-index model. The ratio

R2 = Var(m(T ))/Var(Ψ(X)) is the coefficient of determination [72] in regression studies

and it measures the fraction of the overall variance explained by the systematic part of the
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model. In some applications, R2 is as large as 0.99, implying that Ψ(X) is mostly driven by

T . We can then apply IS to Ψ(X) through changing the distribution of T . In particular,

our IS scheme draws T from a proposal distribution of T and then samples X |T under

the original distribution. As our numerical study in Section 4.7 shows, such an IS scheme

gives a substantial variance reduction for problems with a single-index structure.

In the stochastic representation (4.1), the form of T (·) is unknown so we must select a

specific form of T (·). A popular approach is to assume the parametric form T (X) = β′X,

for which the model becomes a linear single-index model [57]. We then want to estimate

β, which we call a direction vector, that maximizes the fit of the model. The estimation

procedures for such optimal β include Ichimura’s semiparametric least-squares estimator

[57], the average derivative method [114] of Stocker, and the sliced inverse regression [78]

of Li. For single-index IS to work, T must satisfy two conditions: the distribution of T

is analytical and the conditional sampling of X |T is feasible. For many distributions of

X, including the generalized hyperbolic family [88], the two conditions are satisfied under

the linear single-index models. We note that all the financial problems considered in the

simulation studies have a linear single-index structure.

In this chapter, we also develop a single-index SIS that combines single-index IS and

SS on T , following the idea in Glasserman et al. [38]. We give a brief overview of how

the SIS scheme accomplishes variance reduction to motivate our work. Recall the variance

decomposition Var(Ψ(X)) = Var(m(T )) + Var(εT ). As we will see in Section 4.3.2, the

stratification on T essentially stratifies away Var(m(T )), the variance explained by the

systematic part of the single-index model. The variance left comes from the random part,

εT , which is potentially less than 1% of the variance of Ψ(X), depending on the fit of the

model. Noticing that the variance of εT |T depends on the value of T , the IS part of the SIS

scheme shifts the distribution of T so that it is proportional to v(t)fT (t) to minimize the

variance contribution from εT . This form of proposal density has a close resemblance to the

Neyman allocation [21, pp. 98-99] in statistical sampling where the optimal allocation is

proportional to the product of the stratum probability and the stratum standard deviation.
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4.3 Importance Sampling and Stratified Importance

Sampling Schemes

4.3.1 Single-index IS and SIS Algorithms

Suppose that the transformation function T = T (X) has been selected. We assume that

the support of T under the original distribution is an interval ΩT = (tinf , tsup) with possibly

tinf = −∞ and tsup = ∞, but this assumption can be easily generalized. Let gT (t),

and GT (t) denote the pdf and distribution function of T under the proposal distribution,

respectively. Single-index IS draws T from gT (t) first and then generates X |T under the

original distribution. Let tx = T (x). Since T (x) is completely determined by x, the

conditional density fX|T (x | t) of X |T under the original distribution is zero if t 6= tx.

Note that the distribution of X |T is identical under the original and the IS distribution

by construction, that is, gX|T (x | tx) = fX|T (x | tx). Using this relation, we can write

gX(x) = gX|T (x | tx)gT (tx) = fX|T (x | tx)gT (tx).

Then the IS weight function becomes

w(x) =
fX(x)

gX(x)
=
fX|T (x | tx)fT (tx)

fX|T (x | tx)gT (tx)
=
fT (tx)

gT (tx)
. (4.3)

Thus, the IS weight function is simply the ratio of the original and the IS density of T .

As T is univariate regardless of the dimension of X, single-index IS is less susceptible to

the dimensionality problem discussed in Section 2.2.3. In order to simplify the notation,

define w̃ : R→ R as w̃(t) = fT (t)
gT (t)

. For w(x) to be well-defined, we need gT (t) > 0 whenever

fT (t) > 0. But, we only need gT (t) > 0 whenever m(t)fT (t) > 0 for the IS estimator to be

unbiased. Algorithm 5 summarizes this IS scheme.

Remark 4.3.1. Single-index IS generalizes the IS scheme of Chapter 3 in two ways.

Firstly, single-index IS generalizes the form of the transformation function T (·). While

single-index IS does not assume any specific form of T (·), the IS of Chapter 3 assumes that

T (X) = max{X1, . . . , Xd}. Secondly, single-index IS generalizes the form of the proposed
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Algorithm 5 Single-index Importance Sampling

for i = 1, . . . , n do

Draw Ti ∼ gT

Draw Xi ∼ fX|T (x |Ti)
Compute wi = w̃(Ti) = fT (Ti)/gT (Ti).

end for

return µ̂IS,n = 1
n

n∑
i=i

Ψ(Xi)wi.

density of the transformed variable. The proposal density gT (t) for the IS of Chapter 3 has

a form

gT (t) =
M∑
k=1

qkfTh(t |T > λk) =
M∑
k=1

qk
fT (t)I{t>λk}
1− FT (λk)

, (4.4)

where tinf = λ1 < · · · < λM , qk ≥ 0 and
∑M

k=1 qk = 1. On the other hand, single-index IS

does not impose any restriction on the form of gT (t), so it is more general.

If T captures a large fraction of the overall variance, that is, if the fit of the single-

index model (4.1) is good, we expect that IS on T would give a large variance reduction.

In order to achieve further variance reduction, the single-index SIS combines IS and SS

on T , inspired by the idea of [38]. The SIS scheme splits the domain of T into n strata

of equal probability under GT and draws one sample of T from each stratum. To do this,

let λi = GT
−1( i−1

n
) for i = 1, . . . , n + 1, where G−1

T denote the generalized inverse of GT .

Then define the ith stratum as Ω
(i)
T = [T ∈ (tinf, csup) |λi ≤ T < λi+1], i = 1, . . . , n. By

construction, each Ω
(i)
T has probability of 1/n under GT . Algorithm 6 summarizes the SIS

scheme.

We note that the combination of IS and SS is not motivated by the same purpose in

[38] compared to the single-index SIS of Algorithm 6. In [38], IS are SS are used to remove

the variability due to the linear part and the quadratic part, respectively, of Ψ(X). In

single-index SIS, SS is used to eliminate Var(m(T )), the variance captured by systematic

part of the single-index model, and then IS is used to minimize the variance contribution

from εT , the error term in (4.1).

57



Algorithm 6 Single-index Stratified Importance Sampling Algorithm

for i = 1, . . . , n do

Draw Ti ∼ T |Ω(i)
T where T ∼ gT (t)

Draw Xi ∼ fX|T (x |Ti)
Compute wi = fT (Ti)/gT (Ti).

end for

return µ̂SIS,n = 1
n

n∑
i=1

Ψ(Xi)wi.

Suppose that X ∼ MVN(0, Id). The IS and stratification techniques by GHS [38] shift

the mean of X by some drift vector 0 6= η ∈ Rd so that X ∼ MVN(η, Id) under the IS

distribution, and then stratifyX along β′X for some β ∈ Rd such that β′β = 1. In [38], the

optimal shift η is found by solving some optimization problem and it is argued that setting

β = η/
√
η′η often gives a good stratification direction. The following proposition states

that the same can be done with single-index IS. This implies that the IS and stratification

techniques in [38] that use a normalized drift vector as the stratification direction is a

special case of single-index SIS.

Proposition 4.3.2 (see p. 158 for proof). Suppose thatX ∼ MVN(0, Id) under the original

distribution. Fix 0 6= η ∈ Rd and let β = η/
√
η′η. Consider single-index IS (Algorithm

5) with T (X) = β′X and T ∼ N(
√
η′η, 1) under the proposal distribution. Then, X ∼

MVN(η, Id) under the IS distribution.

4.3.2 Variance Analysis and Optimal Calibration for (Stratified)

Importance Sampling

In this section, we analyze the variance of single-index IS and SIS estimators defined in

Section 4.3.1 and propose calibration methods that minimize the variance of the respec-

tive estimators. We first define notation for conditional moments. Recall that m(t) =

E[Ψ(X) |T = t] and v2(t) = Var(Ψ(X) |T = t) and define m(2)(t) = E[Ψ2(X) |T = t].

Note that these conditional moment functions are identical whether X follows the original

or the proposal distributions for single-index IS. In what follows, we use the subscript f and
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g on expectation, variance, and profitability operators to indicate that they are computed

under the original or proposal distribution, respectively.

For a given IS density gT (t) of T , let At = {t ∈ R | gT (t) > 0} and define the following:

µIS =

∫
At

m(t)fT (t)dt, σ2
IS =

∫
At

m(2)(t)
f 2
T (t)

gT (t)
dt− µ2

IS, and σ2
SIS =

∫
At

v2(t)
f 2
T (t)

gT (t)
dt. (4.5)

Notice that µIS depends on gT (t) through the region At of non-zero density of gT (t). In

general, IS and SIS estimators are unbiased only if gT (t) is such that µIS = µ, but we do

not impose this unbiased assumption. The following proposition gives the variance of the

IS estimator and the optimal calibration.

Proposition 4.3.3 (see p. 159 for proof). The mean and the variance of a single-index IS

estimator defined as in Algorithm 5 are given by

E[µ̂IS,n] = µIS, Var(µ̂IS,n) = σ2
IS/n. (4.6)

If Eg[m
2(T )w2(T )] <∞, the IS estimator is asymptotically normal as

√
n(µ̂IS,n − µIS)

d→ N(µIS, σ
2
IS). (4.7)

Suppose that Ψ(x) ≥ 0 or Ψ(x) ≤ 0 for all x ∈ ΩX . Then the density gT (t) that gives an

unbiased IS estimator with the smallest variance is

gopt
T (t) =

√
m(2)(t)fT (t)∫ tsup

tinf

√
m(2)(t)fT (t)dt

, t ∈ (tinf , tsup). (4.8)

With this choice, the variance of the IS estimator, defined as µ̂opt
IS,n, is

Var(µ̂opt
IS,n) =

1

n

((∫ tsup

tinf

√
m(2)(t)fT (t)dt

)2

− µ2

)
. (4.9)

By Jensen’s inequality, Var(µ̂opt
IS,n) ≤ Var(µ̂MC,n) where the inequality holds as an equal-

ity only when m(2)(t) is constant for all t ∈ ΩT . The optimal (variance-minimizing) cali-

bration (4.8) requires the knowledge of the conditional second moment function m(2)(t) =
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Ef [Ψ
2(X) |T = t] ∀t ∈ ΩT . Using pilot simulations, we can estimate m(2)(t) using non-

parametric regression, such as kernel regression [82] or smoothing spline [97]. After approx-

imating gopt
T (t), we need to draw samples from this density to construct an IS estimator.

Numerical inversion techniques such as the NINIGL algorithm of Hörmann, Wolfgang and

Leydold [55] is suitable for this purpose as gopt
T (t) rarely belongs to known parametric

family.

The following proposition gives the variance of the SIS estimator and the optimal

(variance-minimizing) calibration.

Proposition 4.3.4 (see p. 159 for proof). The mean and the variance of the SIS estimator

defined as in Algorithm 6 are given by

E[µ̂SIS,n] = µIS, Var(µ̂SIS,n) = σ2
SIS/n+ o(1/n). (4.10)

where the expression for Var(µ̂SIS,n) holds for large enough n. If Eg |m(T )w(T )|2+δ < ∞
for some δ > 0, the SIS estimator is asymptotically normal as

√
n(µ̂SIS,n − µIS)

d→ N(µIS, σ
2
SIS). (4.11)

Suppose that Ψ(x) ≥ 0 or Ψ(x) ≤ 0 for all x ∈ ΩX and that Pf (v2(T ) = 0, m(T ) 6= 0) = 0.

Then the proposal density gT (t) that gives an unbiased SIS estimator with the smallest

variance is

gopt
T (t) =

v(t)fT (t)∫ tsup
tinf

v(t)fT (t)dt
, t ∈ (tinf , tsup). (4.12)

With this choice, the variance of the SIS estimator, defined as µ̂opt
SIS,n, is

Var(µ̂opt
SIS,n) =

1

n

(∫ tsup

tinf

v(t)fT (t)dt

)2

+ o(1/n). (4.13)

If Pf (v2(T ) = 0, m(T ) 6= 0) > 0, the optimal calibration gives a biased estimator.

By Jensen’s inequality, Var(µ̂opt
SIS,n) ≤ Var(µ̂MC,n) where the inequality holds as an

equality only when v2(t) is constant for all t ∈ ΩT . The calibration (4.12) requires the

knowledge of v2(t) = Var(Ψ(X) |T = t). We can approximate this conditional variance
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function by fitting a nonparametric regression to the square of the first-order difference of

the samples, as proposed by Wang et al. [117]. Unless m(t) = 0 for all t, Var(µ̂SIS,n) ≤
Var(µ̂IS,n) for the same choice of gT (t). This in turn implies that Var(µ̂opt

SIS,n) ≤ Var(µ̂opt
IS,n).

As noted in Proposition 4.3.4, the optimal calibration gives a biased estimator if Pf (v2(T ) =

0, m(T ) 6= 0) > 0. For many problems, this probability is zero so the optimally calibrated

SIS estimator is unbiased. Even if this probability is non-zero so the estimator is biased,

it may be possible to debias the estimator, as done for the credit portfolio problem in

Section 4.7.3.

Remark 4.3.5. The calibrations (4.8) and (4.12) give minimum variance estimators if

Ψ(x) ≥ 0 or Ψ(x) ≤ 0 ∀x ∈ Ω. This assumption holds for many applications in finance

such as when estimating a probability of a certain event, as Ψ(X) is then an indicator

function and when pricing options, as the payoff functions usually take non-negative values.

If Ψ(X) takes both positive and negative values, m(t) could be 0 for some values of t.

We can then improve the optimal calibration by giving zero density over the region where

m(t) = 0. However, since it is generally unknown and hard to estimate for which values of

t give m(t) = 0, this improvement may not be implementable. As the objective of this thesis

is variance reduction, we call the practice of setting gT (t) = gopt
T (t) or its approximation as

“optimal calibration”.

Remark 4.3.6. Observe that Var(µ̂SIS,n) = σ2
SIS/n + o(1/n) does not depend on m(t).

That is, stratification on T asymptotically “stratifies away” the variance captured by the

systematic part of the single-index model, m(T ), so the variance of SIS estimators comes

only from the error term, εT , when n is large. This in turn means that the stronger the fit

of the single-index model is, the greater single-index SIS works. This statement also holds

for single-index IS in general. As long as the problem has a strong single-index structure

and sampling from X |T is feasible, single-index IS and SIS should give large variance

reduction. As those conditions do not assume the specific form for Ψ or the distribution of

X, single-index IS and SIS are applicable to a wide range of problems.

Proposition 4.3.4 asserts the asymptotic normality of an SIS estimator. In order to

construct a confidence interval based on this estimator, we must estimate σ2
SIS. Given n

samples for an IS estimator, we can estimate σ2
IS defined in (4.5) based on the sample
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variance as

σ̂2
IS =

1

n

n∑
i=1

Ψ2(Xi)w
2(Xi)− µ̂IS,n. (4.14)

The consistency of (4.14) stems from the fact that the IS samples are independently and

identically distributed, so the sample variance consistently estimates the population vari-

ance. On the other hand, the sample variance of the SIS samples is biased for σ2
SIS as the

SIS samples are not identically distributed by construction. In order to construct a consis-

tent estimator for σ2
SIS, we take an approach similar to the one by Wang et al. [117] where

the first-order difference of samples is taken to remove the effect of the mean function.

Proposition 4.3.7 (see p. 161 for proof). Suppose that GT (t) is the distribution function

of T under the proposal distribution and an SIS estimator is constructed as in Algorithm 6

based on n samples. If G−1
T , µ(t) and σ2(t) are continuously differentiable over the domain

of T under the proposal distribution, then

σ̂2
SIS,n =

1

2(n− 1)

n−1∑
i=1

r2
i w̃

2(Ti) (4.15)

is a consistent estimator of σ2
SIS, where ri = Ψ(Xi+1)−Ψ(Xi), i = 1, . . . , n− 1.

Proposition 4.3.7 assumes that G−1
T is continuously differentiable which requires that

gT (t) > 0 on the support of T under the proposal distribution. This does not hold if there

exist intervals where gT (t) = 0. In such a situation, we propose to divide the support of

T into disjoint intervals with gT (t) > 0 then apply Proposition 4.3.7 separately to each

interval and combine them to obtain σ̂2
SIS.

4.4 The Effect of the Indirect Sampling Step on Ef-

fective Dimension

Recall that single-index IS draws samples of X indirectly; it generates T first then sample

X |T under the original distribution. If the problem of interest is not rare-event simulation,

IS may not be necessary. Nonetheless, it may be beneficial to take the indirect sampling
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approach rather than drawing X directly, if samples are drawn using a LDS, that is, QMC

is used to estimate µ. This is because, as we show in this section, the indirect sampling

step serves as a dimension reduction technique as it transforms the integrand in such a way

that its truncation dimension is 1 in proportion R2 = Var(m(T ))/Var(Ψ(X)), assuming T

is sampled using the inversion technique. As discussed in Section 2.3.5, the performance

of QMC heavily depends of the effective dimension of the problem, so indirect sampling

enhances the effectiveness of QMC if the fit of the single-index model is good.

In order to have a better understanding of the impact of indirect sampling on effective

dimension, we first make it explicit how X is sampled. In principle, one can draw samples

from any d-dimensional distribution by applying some transformation to a (d+ k), k ≥ 0,

dimensional uniform random vector. That is, there exists η : [0, 1)(d+k) → Rd such that

η(U) ∼ fX(x) for U ∼ U [0, 1)d+k. Generally, the transformation function η is not unique

and the different choices of η correspond to different sampling methods for X.

Suppose (U1, . . . , Ud+k) ∼ U [0, 1)d+k. Let η1 : [0, 1)→ R be defined as η1(u) = F−1
T (u)

and η2 : R× [0, 1)(d+k−1) → Rd be a transformation function such that η2(t, U2, . . . , Ud+k) ∼
fX|T (x | t) for t ∈ ΩT . Then η : [0, 1)d+k → R defined as

η(u1, . . . , ud+k) = η2(η1(u1), u2, . . . , ud+k)

gives samples ofX as η(U1, . . . , Ud+k) ∼ fX(x). The problem of estimating the expectation

can be then expressed as approximating the integral

µ =

∫
[0,1)d+k

Ψ∗(u1, . . . , ud+k)du,

where Ψ∗ : [0, 1)d+k → R is defined implicitly as Ψ∗(u1, . . . , ud+k) = Ψ(η(u1, . . . , ud+k)).
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Note that ∫
[0,1)d+k−1

Ψ∗(u1, . . . , ud+k)du2 · · · duk+d

=

∫
[0,1)d+k−1

Ψ (η2(η1(u1), u2, . . . , ud+k)) du2 · · · duk+d

= E[Ψ(η2(η1(u1), U2, . . . , Ud+k))], (U2, . . . , Ud+k) ∼ U [0, 1)d+k−1

= E[Ψ(Y )], Y ∼ fX|T (X |F−1
T (u1))

= E[Ψ(X) |T = F−1
T (u1)] = m(F−1

T (u1)),

where the third equality follows as η2(η1(u1), U2, . . . , Ud+k) ∼ fX|T (X |F−1
T (u1)) by the

construction of η2. Then recall from Section 2.3.5 that the ANOVA component of Ψ∗ for

the index set {1} is

Ψ∗{1}(u) = m(F−1
T (u1))− µ,

so σ2
{1} = Var(m(T )) and σ2

{1}/σ
2 = R2. Thus, Ψ∗ has a truncation dimension 1 in

proportion R2 and a superposition dimension 1 in proportion greater R2. If the fit of the

single-index model is good, that is, R2 close to 1, indirect sampling serves as a dimension

reduction technique and increase the effectiveness of QMC. The interaction of the indirect

sampling and QMC is investigated in detail in the simulation studies in Section 4.7.1.

By construction Ψ(X)
D
= Ψ∗(U1, . . . , Ud+k) for (U1, . . . , Ud+k) ∼ U [0, 1)d. Suppose that

we apply IS on Ψ∗(U1, . . . , Ud+k) by changing only the distribution of U1. Let gU1(u) denote

the proposal density of U1. It is easy to check that for any proposal density gT (t) of T , if

we let

gU1(u) =
gT (F−1

T (u))

fT (F−1
T (u))

, u ∈ [0, 1) (4.16)

then η1(U1) ∼ gT (t) when U1 is sampled from gU1(u). Thus, the single-index IS scheme

that uses gT (t) as a proposal distribution essentially transforms Ψ(X) so that the problem

becomes the estimation of µ = Eg[Ψ
∗(U1, . . . , Ud+k)], but using (4.16) as the proposal

distribution for U1, which we recall the variable that accounts for 100R2% of the variance

of Ψ∗(U1, . . . , Ud+k). In other words, single-index IS exploits the single-index structure of

the problem by transforming it so that the first variable is very important, and then applies

IS only to that most important variable.
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4.5 Comparison of Stratification and Control Variate

This section shows that the single-index SIS and control variates (CV) with single-index

IS (CVIS) estimators asymptotically have the same variance. The connection between the

CV and post-stratification is noted by Glynn and Szechtman [42]. Readers are referred

to [75, pp. 101-111] for more comprehensive coverage on CV. Suppose that we want to

estimate the expectation of Ψ(X) and there exists a control variable C = C(X) which is

correlated with Ψ(X) and its exact mean, µC , is known. The CV estimator has the form

µ̂CV,n =
1

n

n∑
i=1

Ψ(Xi) + α(µC − Ci), Xi
iid∼ FX ,

where Ci = C(Xi) and α is a constant to be determined. It is easy to check that the CV

estimator is unbiased for any value of α. Suppose that Ψ(X) and C(X) are positively

correlated. If C(Xi) > µC , the chances are that Ψ(Xi) also exceeds µ, so CV compensates

this exceedance by subtracting α(µC − Ci) from Ψ(Xi) for α > 0. The same argument

holds for the case where Ψ(X) and C(X) are negatively correlated, other than in that

case α < 0. In essence, CV uses the correlation between Ψ(X) and C to pull the samples

of Ψ(X) toward its mean.

As in [75, p. 103], the optimal α that minimizes the variance of the CV estimator is

α∗ =
Cov(Ψ(X), C)

Var(C)
. (4.17)

The variance of the CV estimator with α∗ is Var(µ̂opt
CV,n) = 1

n
Var(Ψ(X))(1−ρ2

Ψ(X),C), where

ρΨ(X),C is the correlation coefficient between Ψ(X) and C. So,

Var(µ̂opt
CV,n) = Var(µ̂MC,n)(1− ρ2

Ψ(X),C). (4.18)

Suppose that we use the conditional mean function of the single-index model as a CV, that

is, C(X) = m(T (X)) and combine this CV idea with single-index IS, which we refer to as

single-index CVIS. Then it is easy to show that µC = µIS defined as (4.5) and α∗ = 1, so

the single-index CVIS estimator is

µ̂CVIS,n =
1

n

n∑
i=1

w̃(Ti)(Ψ(Xi) + µIS −m(Ti)), Xi
iid∼ GX ,
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and from (4.10) we have that

nVar(µ̂opt
CVIS,n) = Varg (w̃(T )(Ψ(X)−m(T ))) = Eg[Var(w̃(T )(Ψ(X)−m(T )) |T ]

= Eg[w̃
2(T )σ2(T )] = nVar(µ̂SIS,n) + o(1).

Thus, single-index SIS and single-index CVIS asymptotically give the same amount of

variance reduction. Note that one needs to know m(t) and µIS to construct the CVIS

estimator. If µIS is known, however, we do not need simulation in the first place. The SIS

estimator, on the other hand, requires no knowledge of m(t) nor µIS, so constructing the

SIS estimator is easier than the CVIS estimator, as long as the conditional sampling of

X |T is feasible.

The choice of C(X) = m(T (X)) as CV is optimal in the sense that it gives the smallest

variance among all CV that depends on X through T (X) up to a linear transformation.

To see this, observe that for any α ∈ R, C̃ : R→ R, and µC = Eg[C̃(T )], we have

nVar(µ̂CVIS,n) = Varg

(
w(T )[Ψ(X) + α(µC − C̃(T ))]

)
= Varg

(
Eg[w̃(T )(Ψ(X)− αC̃(T ))|T ]

)
+ Eg

[
Varg(w̃(T )(Ψ(X)− αC̃(T ))|T )

]
= Varg

(
w̃(T )(m(T )− αC̃(T ))

)
+ Eg

[
w̃2(T )σ2(T )

]
≥ Eg

[
w̃2(T )σ2(T )

]
and the choice C̃(T ) = a + b ·m(T ) for any a, b ∈ R such that b 6= 0 achieves this lower

bound for α∗ = 1/b.

4.6 IS and SIS for the skew-t copula

Single-index (S)IS includes a conditional sampling step of sampling X |T . In this section,

we develop the sampling method for this conditional sampling step when X follows the

generalized hyperbolic (GH) skew t-copula as in McNeil, Frey, and Embrechts [88]. It takes

little effort to generalize this sampling algorithm to the one for a GH copula where GH

skew-t copula is a special case.
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4.6.1 Formulation and Properties of the skew-t copula

As defined in [56], a random vector X has a d-dimensional GH distribution if it has the

following stochastic representation

X
D
= µ+Wγ +

√
WZ, (4.19)

where µ and γ are the mean and skewness parameters in Rd, respectively, Z ∼ MVN(0,Σ),

andW ∼ GIG(λ, χ, ψ) is independent ofX. Here, W ∼ GIG(λ, χ, ψ) means thatW follows

a generalized inverse Gaussian (GIG) distribution ([88, A.2.5]) with density

fW (w;λ, χ, ψ) =
χ−λ(

√
χψ)λ

2Kλ(
√
χψ)

wλ−1 exp

(
−1

2
(χw−1 + ψw)

)
,

where Kλ is a modified Bessel function of the third kind with index λ. See [2] for the details

of modified Bessel functions. If γ = 0 and (λ, χ, ψ) = (ν/2, ν, 0) for the parameter of W ,

the distribution of X is the usual symmetric multivariate t distribution with ν degrees

of freedom as GIG(ν/2, ν, 0)
D
= IG(ν/2, ν/2). Here, IG(α, β) is an inverse gamma (IG)

distribution with density

fW (w;α, β) =
βα

Γ(α)
w−α−1 exp

(
−β
w

)
.

The multivariate normal distribution arises if we further assume ν → ∞. We have a GH

skew-t distribution as in [88] if W ∼ IG(ν/2, ν/2) in (4.19). The density of this distribution

is derived in p.80 of [88] as

fst(x; ν,µ,Σ,γ) = c
K(ν+d)/2(

√
(ν +Q(x))γ ′Σ−1γ) exp((X − µ)′Σ−1γ)

(
√

(ν +Q(x))γ ′Σ−1γ)−(ν+d)/2(1 + (Q(x)/ν))(ν+d)/2
, (4.20)

where Q(x) = (x− µ)′Σ−1(x− µ) and the normalizing constant is

c =
21−(v+d)/2

Γ(v/2)(πv)d/2 |Σ|1/2
.

The subscript st of fst denotes that it is the density of a skew-t distribution. We denote this

distribution and its cumulative distribution function by td(ν,µ,Σ,γ) and Fst(x; ν,µ,Σ,γ),

respectively.
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Since X |W = w ∼ N(µ+ wγ, wΣ), the first two moments can be derived as

E[X] = E[E[X |W ]] = µ+
ν

ν − 2
γ,

Cov(X) = E[Var(X |W )] + Var(E[X |W ]) =
ν

ν − 2
Σ +

2ν2

(ν − 2)2(ν − 4)
γγ ′

as in [28]. The covariance of skew-t distributions is finite only when ν > 4 while it is

finite when ν > 2 for symmetric t distributions, so the skewed one imposes a stronger

restriction on ν compared to the symmetric counterpart. A useful property of a skew-t

distribution is that it is closed under affine transformations. In particular, for any h ∈ R
and θ ∈ Rd, we have that h + θ′X ∼ t1(ν, h + θ′µ,θ′Σθ,θ′γ). We refer to the copula

implied by (4.20) as a GH skew-t copula. In particular, we denote by Ct
ν,P,γ the copula of

a td(ν,0, P,γ) distribution, where P is a correlation matrix. Note that taking µ = 0 as

location parameters of a random vector has no effect on their copula. More specifically,

for u ∈ [0, 1)d

Ct
ν,P,γ(u) =

t1∫
−∞

· · ·
td∫

−∞

fst(x; ν,0, P,γ)dx, (4.21)

where ti = Fst
−1(uj; ν, 0, 1, γj) for j = 1, . . . , d. The density of this copula, denoted by

ctν,P,γ , is

ctν,P,γ(u) =
fst(x; ν, 0, P,γ)∏d
i=1 fst(xi; ν, 0, 1, γi)

, u ∈ [0, 1)d, (4.22)

where x = (x1, . . . , xd) and xj = Fst
−1(uj; ν, 0, 1, γj) for j = 1, . . . , d.

The advantage of a skew-t copula over a symmetric one is that the former accommodates

asymmetric upper and lower tail dependencies while the latter is limited to the symmetric

cases. It is well-accepted that equity returns have greater correlation for downside moves

than upside moves (see for example [6] and references therein), supporting the use of a

skewed copula for modelling financial returns. Banachewicz and van der Vaart have derived

tail coefficients of skew-t copulas in [11]. Let X1 = γ1 +
√
WZ1 and X2 = γ2 +

√
WZ2

where W ∼ IG(ν/2, ν/2) and Z1 and Z2 are standard normals with correlation coefficient

ρ. The upper tail dependence coefficient λu of (X1, X2) is given by:

• If γ1, γ2 > 0, λu = 1.
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• If γ1 < 0 or γ2 < 0, λu = 1.

• If γ1 = γ2 = 0, λu = 2tν+1(−
√
ν + 1

√
1− ρ/

√
1 + ρ).

• If γ1 > 0 and γ2 = 0, λu =
1∫
0

(1− Φ(kνu
1/ν))du with kν =

(
2ν/2Γ((ν+1)/2)

2
√
π

)1/ν

,

As noted in [59], since fX(x1, x2; γ1, γ2, ρ, ν) = fX(−x1,−x2;−γ1,−γ2, ρ, ν), the lower tail

dependence coefficient λl is equal to the upper tail dependence coefficient with parame-

ters (−γ1,−γ2, ρ, ν). If a skew-t copula is fitted to bivariate negative daily log-returns of

stocks, the skewness parameters γ = (γ1, γ2) are likely to be both positive, thus the fitted

copula is comonotonic in the upper-right tail. While this seems restrictive and limits the

applicability of GH skew-t copulas, the convergence in the tails are not fast and so this

extreme dependence at the limit may not be a problem in actual modelling, as discussed

by Joe [59].

4.6.2 Transformation function and sampling algorithm for GH

skew-t copulas

Recall from (4.21) that the copula td(ν,0, P,γ) of Ct
ν,P,γ . If X ∼ td(ν,0, P,γ) then X has

the stochastic representation

X
D
= Wγ +

√
WZ, (4.23)

where W ∼ IG(ν/2, ν/2) and Z ∼ N(0, P ), so we can model a problem in terms of

(W,Z). In order to ensure that the conditional sampling of X |T is feasible, we use the

transformation T = T (W,Z) = β0 + β1W + β′2
√
WZ for some constants β0, β1 ∈ R and

a vector β2 ∈ Rd. Then T ∼ t1(ν, β0, σ
2
β2
, β1) where σ2

β2
= β′2Pβ2. Algorithm 7 shows the

steps for sampling from X |T = t. We explain why this algorithm returns variables with

the desired distribution. Using the conditional sampling argument, sampling from X |T
is equivalent to first drawing from W |T , then generating Z |β′2Z. The output variable

of the algorithm X = Wγ +
√
WZ follows the desired conditional distribution. For the

first step, we use the result in [1] that W |T = t ∼ GIG

(
−ν+1

2
, ν +

(
t−β0
σβ2

)2

,
(
β1
σβ2

)2
)

.

Once we draw W from this GIG distribution, we have β′2Z = (t− β0 − γW )/
√
W and we
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denote this quantity by λ. For the last step, we use the result of [48] to get Z |β′2Z = λ ∼
N
(

λ
σ2
β2

β2, P − Pβ2β
′
2P/σ

2
β2

)
.

Algorithm 7 Sampling X | β0 + β1W +
√
Wβ′2Z = t for skew-t copula

Draw W ∼ GIG

(
−ν+1

2
, ν +

(
t−β0
σβ2

)2

,
(
β1
σβ2

)2
)

Let λ = t−β0−β1W√
W

Draw Z ∼ N
(

λ
σ2
β2

β2, P − Pβ2β
′
2P/σ

2
β2

)
Return X = Wγ +

√
WZ.

The only non-trivial part of Algorithm 7 is the first step, sampling W from a GIG distri-

bution. Since one of its parameters depends on the conditioning value T = t, which changes

for each sample, we need GIG generators that support varying parameters. In R, there are

several packages such as the “ghyp” package [81] that implement te said generators. They

are, however, based on rejection sampling, which do not go well with QMC. QMC requires

the quantile function of GIG distributions but they are very computationally expensive to

evaluate. To reduce the computational effort, we propose to use the MC step (i.e. rejection

sampling) to sample W even if the interest is in constructing QMC estimators. Using MC

for some variables and QMC for others may hinder the effectiveness of QMC depending

on how important the MC generated variables are. One way to circumvent this problem

is to set β1 = 0, that is, we remove the linear component in W from T (W,Z). In this

case, W |T is inverse gamma distributed and the quantile function can be evaluated very

quickly, even if the parameters vary, so taking this route reduces the overall computational

efforts for the IS and SIS schemes. Nonetheless, if the linear part in W is significant, it

will reduce the effectiveness of the IS and SIS schemes as the fit of the single-index model

will not be as good. We investigate this point numerically in Section 4.7.5.

4.7 Numerical Experiments

In this section, we apply single-index IS and SIS to four problems in finance and numerically

investigate their effectiveness. We also examine different aspects of the proposed methods
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such as its dimension reduction effect in each of the four problems. In Section 4.7.1,

we apply IS and SIS to the pricing of arithmetic Asian options under the Black-Scholes

framework. We look into the dimension reduction aspect of conditional sampling and

also compare stratification to CV. Section 4.7.2 considers the pricing of basket option

under a t-copula model. We empirically analyze the finite sample properties of V̂ar(µ̂SIS,n)

defined as in Proposition 4.3.7 as a estimate of Var(µ̂SIS,n). In Section 4.7.3 and Section

4.7.4, we look at credit portfolio problems under the Gaussian and t-copula assumptions.

The important finding from the credit portfolio problems is that the proposal distributions

based on optimal calibration for IS and SIS could perform very poorly if multiple quantities

are to be estimated in one simulation run. This observation motivates other calibration

methods and we explore such calibrations in Chapter 5. In Section 4.7.5, we estimate

tail quantities such as VaR and ES of equity portfolios. The focus on this section is the

efficiency of the IS and SIS schemes when model deviate significantly from the multivariate

normal assumption. In particular, the model considered has marginals with heavy tails

and the skewed-t copula as dependence structure. We also compare the performance of

two forms of T (·); one with better fit but slower conditional sampling and the other with

worse fit but faster sampling.

4.7.1 Arithmetic Asian Option Pricing

For arithmetic Asian option pricing in the Black-Scholes framework, it is widely known

that geometric Asian options serve as excellent CV [121]. As the payoff of geometric Asian

options has a single-index structure, it is natural to expect that the same holds for the

payoff of arithmetic Asian options. Thus, this problem is an ideal candidate for our IS

scheme.

Problem Formulation

Suppose that under the risk neutral measure the price of a stock follows a geometric

Brownian motion

dSt = rStdt+ σStdWt, (4.24)
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where St is the price of the stock at time t, r is the risk-free rate, σ is the volatility of the

stocks price, and Wt is a Brownian motion. Fix T ∈ [0,∞) and d ∈ N. Let ∆t = T/d and

tj = j∆t for j = 1, . . . , d. The stock price at time tj has the representation

Stj = S0 exp
(
(r − σ2/2)tj + σXtj)

)
(4.25)

under the risk-neutral measure, where Xtj = N(0, tj). Let X = (Xt1 , . . . , Xtd)
′, then by

the properties of the Brownian motion X ∼ MVN(0,Σ) where Σk,l = ∆t ·min(k, l). Let

v = (v1, . . . , vd) be a vector of weights such that
∑d

i=1 vi = 1. Suppose that the payoff of

the option at maturity is max(Sa−K, 0) where Sa =
∑d

i=1 viStj is the weighted arithmetic

average of the stock prices observed at time t1 . . . , td. By risk-neutral pricing (see [37,

pp. 27-30]), the price of an arithmetic Asian option with strike K is

ca = exp(−rT )E[max(Sa −K, 0)],

where Sa =
∑d

i=1 viStj is the weighted arithmetic average of the stock prices observed at

time t1 . . . , td. Since the distribution of Sa is not analytical, there is no closed form solution

for ca. One option is to use MC simulation to estimate ca.

The payoff of a geometric Asian option is highly correlated with its arithmetic coun-

terpart. The price of the geometric option is

cg = exp(−rT )E[max(Sg −K, 0)],

where Sg =
∏d

i=1 S
wi
tj = exp(b + σv′X) is the weighted geometric average with b =

logS0 + (r − σ2/2)
∑d

i=1 vitj. Since the distribution of Sg is LN(a, σ2v′Σv), a log-normal

distribution, the closed-form expression of cg is easily found, see [121]. Moreover, the payoff

max(Sg − K, 0) depends on X only through v′X. Thus, the payoff of geometric Asian

options have a perfect linear single-index structure with the direction vector v. Given that

the payoff of the two types of options are highly correlated, we expect that the arithmetic

payoff has a strong linear single-index structure with the same direction vector. This is

a rare case where the optimal choice of the direction vector is analytical. The price pro-

cess (4.24) assumes that the variance of the log-returns is constant over time. We note

that the arithmetic payoff has a strong linear single-index structure even under the Heston

model (see [50]) where the variance of the log-returns itself follows a stochastic process.
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The parameters that we use for our experiments are taken from [121]: r = 0.1, σ = 0.2,

S0 = 100, T = 1, d ∈ {16, 64}, and K ∈ {100, 110}. Figure 4.1 shows the scatter plot

of the 1,000 realization of (Sg, Sa) for the d = 16 and d = 64 cases. As the figure shows,

there is an almost perfect linear correlation between Sg and Sa, even at their tails, with

the correlation coefficient over 0.999 for both d = 16 and d = 64 cases. This suggests SIS

will be effective for this problem.

Figure 4.1: Scatter plots of (Sg, Sa) for d = 16 and d = 64
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Choice of Covariance Decomposition

The payoff of both options is a function of X ∼ MVN(0,Σ) where Σk,l = ∆t · min(k, l).

Let B be a matrix such that BB′ = Σ. Then X
D
= BZ where Z ∼ MVN(0, Id), where Id

is the d ∗ d identity matrix. The decomposition of B such that BB′ = Σ is not unique and

different choices of B correspond to different ways of generating the path of the Brownian

motion. In MC, the choice of B has no effect on the variance of the estimator because

the sampled X has the same distribution regardless of the choice of B. The variance of

QMC estimators, on the other hand, often depends on the choice of B primarily because

the effective dimension of the problem is influenced by the choice of B.
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Cholesky decomposition is the most standard way of constructing B. Thus, we call this

STD decomposition. Another popular one is based on the eigenvalue decomposition of Σ.

Since this decomposition has a close connection to the principal component analysis (PCA)

(see [3]), we call this PCA decomposition. The problem with these two decompositions

is that they do not take the nature of the integrand Ψ into account. As long as the

covariance matrix C is the same, STD and PCA decompositions always return the same

B regardless of how Ψ depends on X. Naturally, STD works better than PCA for some

problems and vice versa. The work by Sloan and Wang [121] generalizes this idea and

states that no fixed decomposition is superior to others. Based on this observation, Wang

and Sloan propose Orthogonal Transformation (OT) that takes the integrand into account

for finding B. Their main idea is to find a good decomposition for an easy problem and

apply it to related problems. In Asian option pricing, geometric option is the easy problem.

Recall that Sg depends on X through v′X. For a fixed decomposition B, we can write

Sg = h(v′X) = h(v′BZ) where h(x) = exp(a+ σx). The OT approach constructs B such

that v′BZ = cZ1 for some constant c ∈ R. That is, the geometric average is determined

by the first component of Z. So if this decomposition is used for geometric option pricing,

the problem becomes one-dimensional. The OT approach then uses this B to price the

arithmetic option. Since the arithmetic payoff is almost perfectly correlated with the

geometric payoff, the first element of Z captures the large majority of the overall variance.

Thus, the truncation dimension of the arithmetic option problem with this choice of B will

be in proportion over 99.9% for typical sets of model parameters.

The indirect sampling also provides a dimension reduction feature as discussed in Sec-

tion 4.4. Suppose that we take T = Sg = h(v′X). The indirect sampling step first generates

T then samples X |T under the original distribution. Assuming that T is sampled using

the inversion technique, the first input variable determines the geometric average. Re-

calling that the first input variable also determines the geometric average under OT, the

truncation dimension of the arithmetic option problem under single-index IS is 1 in the

same proportion as under the OT, which is over 99.9% for typical sets of model parame-

ters. This in turn implies that other variables are fairly irrelevant under OT and indirect

sampling. Since OT and indirect sampling draw the most important variable in the same

manner, we expect that their performance are comparable for this problem. We test this
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claim numerically.

Since X |T follows a multivariate normal distribution with some covariance matrix Σ2,

we test whether decomposing Σ2 by STD and PCA has any effect on the variance of the

estimator. Two types of weights are considered: Type A is the equal weights vj = 1/d,

j = 1, . . . , d and Type B is the weights of alternating sign vj = c(−1)j−1/j, j = 1, . . . , d,

where c is the normalizing constant. The Type B weights are chosen somewhat artificially

to illustrate that STD could produce a more QMC friendly decomposition than PCA does,

depending on the weights.

Table 4.1 lists the variance reduction factors (VRFs) of QMC estimators with different

decompositions over plain MC estimators. I-STD and I-PCA denote indirect sampling

with the STD and PCA decomposition of Σ2, respectively. The table shows that whether

we decompose Σ2 by STD or PCA, it does not have a significant effect on the variance of

the QMC estimator when indirect sampling is used. Also, PCA does better than STD for

type A weights but the reverse holds for type B. Both OT and indirect sampling work well

for either type of weights. As expected, there is no significant difference between OT and

indirect sampling in terms of VRFs.

Table 4.1: Variance reduction factors of different decompositions, n = 215, 30 replications

K = 100 K = 120

Type d STD PCA OT I-STD I-PCA STD PCA OT I-STD I-PCA

A 16 1.8E+02 6.4E+03 5.9E+03 6.3E+03 6.4E+03 7.1E+01 3.9E+03 3.4E+03 3.7E+03 3.7E+03

A 64 6.7E+01 4.9E+03 5.9E+03 6.2E+03 6.1E+03 2.3E+01 2.9E+03 3.4E+03 3.9E+03 3.5E+03

B 16 1.3E+02 7.8E+01 5.3E+03 5.9E+03 5.3E+03 4.3E+01 6.6E+00 9.2E+02 9.2E+02 8.0E+02

B 64 2.1E+02 3.8E+01 6.6E+03 6.1E+03 5.2E+03 6.0E+00 1.1E+00 2.4E+01 2.4E+01 2.3E+01

Comparison of VRT

We compare the performance of single-index SIS with the IS and stratification techniques

of Glasserman, Heidelberger and Shahabuddin [38], which we refer to as GHS IS, and with

the CV method that uses geometric option as a control variate with no IS feature. We

consider the Asian option with equal weights vi = 1/d, i = 1, . . . , d. Table 4.2 and Table
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4.3 list the VRFs with and without QMC for d ∈ {16, 64} and K ∈ {100, 110} for n = 213

and n = 215. The VRFs are computed based on 30 replications. For the plain QMC

estimator, OT is used to decompose the covariance matrix Σ.

Table 4.2: Variance reduction factors of different decompositions, n = 213, 30 replications

MC QMC

d K CV GHS IS SIS Plain CV GHS IS SIS

16 100 1.12E+03 3.63E+03 2.49E+03 2.04E+03 2.44E+04 2.19E+05 4.93E+05

16 110 5.86E+02 5.17E+03 2.46E+03 1.17E+03 3.21E+03 2.44E+05 7.12E+05

64 100 1.14E+03 5.37E+03 2.25E+03 1.93E+03 3.08E+03 8.45E+04 1.86E+05

64 110 5.82E+02 6.81E+03 2.18E+03 1.06E+03 1.15E+03 5.45E+04 2.00E+05

Table 4.3: Variance reduction factors of different decompositions, n = 215, 30 replications

MC QMC

d K CV GHS IS SIS Plain CV GHS IS SIS

16 100 1.14E+03 4.40E+03 2.91E+03 5.87E+03 2.64E+04 6.92E+05 8.91E+05

16 110 5.99E+02 5.11E+03 3.11E+03 3.36E+03 3.92E+03 5.81E+05 9.64E+05

64 100 1.14E+03 3.81E+03 2.66E+03 5.88E+03 9.34E+03 1.91E+05 6.24E+05

64 110 5.78E+02 3.98E+03 2.83E+03 3.37E+03 2.03E+03 1.54E+05 4.09E+05

From the table, we see that GHS IS performs better than SIS for MC but the other way

around for QMC. Both techniques give larger variance reduction than CV does, especially

when combined with QMC. This is more so when K = 110 than when K = 100. The

reason is that the importance sampling part of SIS and GHS IS shifts the underlying

distribution toward the region of non-zero payoff but CV does not have this IS feature.

When K is large, there is lower chance of non-zero payoff, so the IS becomes more effective

when K = 110 than when K = 100.
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4.7.2 Pricing of Basket Option

Problem Formulation

The experiments in the previous section showed that single-index IS and SIS work well for

the Asian option pricing problem where the underlying distribution of the model is mul-

tivariate normal. The primary focus of the simulation studies in this section is to analyze

how our proposed methods work when the underlying model deviates from multivariate

normality. The problem is the pricing of basket options when the log-returns of individual

stocks marginally follows a normal distribution but their dependence is described by a

t-copula. We chose a t-copula because it is commonly used in financial modelling and it

exhibits tail dependence which Gaussian copulas lack. Kole et al. [68] fit Gaussian, t, and

Gumbel copulas to the daily returns of indices on stocks, bonds and real estate and find

that only t-copula is not rejected with the estimated ν, the degrees of freedom parameter,

being 12.1. Note that the Gaussian copula is a special case of a t-copula where ν =∞.

A basket option is similar to an Asian option in that the payoff of both options depend

on the average of stock prices. The two differ in that the average price or return of multiple

stocks is used for basket options while the average price of a single stock over time is used

for Asian options. Suppose that the price of an asset j, j = 1, . . . , d at time T under the

risk-neutral measure is given by

Sj,T = Sj,0 exp{(r − %j − σ2
j/2)T + σj

√
TYj}, (4.26)

where Sj,0, %j, σj denote the price at time 0, dividend rate and volatility of stock j, respec-

tively, r denotes the risk-free rate, and Yj’s follows a N(0, 1) marginally and collectively

follow a t-copula. The payoff of the option is a function of the weighted average of the

individual stocks returns and the option price can be written as

cb = exp(−rT )E

[
max

(
d∑
j=1

vi
Sj,T
Sj,0
−K, 0

)]
, (4.27)

where v = (v1, . . . , vd)
′ is the vector of portfolio weights and K is the strike price.

Under a t-copula model, we have that Y
D
= (Φ−1(tν(X1)), . . . ,Φ−1(tν(Xd))) for X =

(X1, . . . , Xd) ∼ t(0, P, ν) where ν is the degrees of freedom parameter, P is an d ∗ d
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correlation matrix, and tν is the distribution function of a t-distribution. For B such that

BB′ = P , Z ∼ MVN(0, Id) and W ∼ IG(ν/2, ν/2), an inverse gamma distribution, we

can write X
D
=
√
WLZ. We let T = T (W,Z) =

√
Wβ′Z where β ∈ Rd and β′β = 1.

We could include a linear term in W for T (·), that is, letting T = β0W +
√
Wβ′Z, but

doing so hardly improves the fit of the single-index model while it makes the conditional

sampling more computationally expensive, so we opt not to take this route.

The parameters we use are taken from the numerical example in [89] where the pricing

of a basket option on the market indices of G7 nations (d = 7) are considered. For the

t-copula model, we consider the case with a small degrees of freedom (ν = 4) and one

with a large degrees of freedom (ν = 10) to investigate how different values of ν affect the

performance of single-index IS and SIS.

Figure 4.2 shows the scatter plot of T against the weighted average of the returns based

on 10,000 observations for different distributions ofX: normal, t4 and t10. The figure shows

that the relationship between T and the average return is generally linear and the fit of

the single-index model is fairly good for the normal and t10 models but it is worse for the

t4 model especially at both tails. From the plots, we expect that single-index IS and SIS

work better for the normal and t10 model than the t4 model.

Finite sample properties of the standard error of the IS and SIS estimators

Before analyzing the performance of IS and SIS, we numerically investigate the finite

sample properties of V̂ar(µ̂IS,n) := σ̂2
IS/n and V̂ar(µ̂SIS,n) := σ̂2

SIS/n, the squared standard

error of µ̂IS,n and µ̂SIS,n, respectively, where σ̂2
IS and σ̂2

SIS are defined in (4.14) and (4.15),

respectively. The approximate 100(1− α)% CI for µ̂IS,n is constructed as(
µ̂IS,n − z1−α

2
·
√

V̂ar(µ̂IS,n), µ̂IS,n + z1−α
2
·
√

V̂ar(µ̂IS,n)

)
,

where zα denotes the point at which P(Z ≤ zα) = α for Z ∼ N(0, 1). So, it is important

that V̂ar(µ̂IS,n) is not too far off from Var(µ̂IS,n) for the CI to be meaningful. The same

argument holds for V̂ar(µ̂SIS,n).

To analyze the finite sample properties of V̂ar(µ̂IS,n), we repeat the IS procedures 1,000

times under the normal model with n = 10, 000 samples each. For each replication, we
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Figure 4.2: Plot of Transformed variable (T ) vs Average Return based on 10,000 observa-

tions

(a) normal model (b) t10 model (c) t4 model
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compute V̂ar(µ̂IS,n) , so we end up with 1000 realization of V̂ar(µ̂IS,n). We repeat the

same procedure for plain MC, SS (SIS without IS), and SIS. For plain MC, V̂ar(µ̂MC,n) is

computed based on the sample variance.

Table 4.4 and Figure 4.3 show the summary statistics and histograms of the 1,000

realized squared standard error for the plain MC, SS, IS, and SIS estimators. The variability

of V̂ar(µ̂SS,n), V̂ar(µ̂IS,n), and V̂ar(µ̂SIS,n) appear to be compatible to the variability of

V̂ar(µ̂MC,n). As the variability of the squared standard errors are small, the CIs for IS, SS,

and SIS estimators are reliable, at least for this basket option pricing problem.

Table 4.4: Summary statistics of the 1,000 realized squared standard error

Min 1st Qu. Median Mean 3rd Qu. Max.

Plain MC 4.881e-07 5.197e-07 5.265e-07 5.264e-07 5.329e-07 5.632e-07

SS 2.453e-09 2.679e-09 2.743e-09 2.747e-09 2.813e-09 3.130e-09

IS 7.236e-08 7.465e-08 7.538e-08 7.535e-08 7.603e-08 7.855e-08

SIS 1.764e-09 1.956e-09 1.996e-09 1.998e-09 2.040e-09 2.225e-09

Comparisons of VRTs

We investigate the efficiency of single-index IS and SIS estimators with and without QMC

for the basket option problem. We also consider the single-index SS estimator which is the

single-index SIS estimator without IS part. Table 4.5 shows the variance reduction factors

of different methods for K = 1 and K = 1.2. From the table, we see that the IS and

SIS schemes work better when ν is large. Among the VRTs considered, SIS with QMC

gives the best results for all three models. Note that QMC with SS performs much better

than plain QMC. This numerically confirms that indirect sampling reduces the effective

dimension of the problem and enhances the effectiveness of QMC as argued in Section 4.4.
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Figure 4.3: Histogram of the 1,000 realized squared standard error
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Table 4.5: Variance reduction factors of different VRTs, n = 214, 30 replications

K=1 K=1.2

normal t10 t4 normal t10 t4

SS 2.26E+02 1.79E+02 5.11E+01 8.64E+01 2.10E+02 2.73E+01

IS 3.38E+01 1.42E+01 8.27E+00 6.92E+01 2.04E+02 1.46E+02

SIS 3.03E+02 1.54E+02 5.31E+01 1.16E+03 2.73E+03 9.69E+01

QMC Plain 7.87E+02 3.77E+02 3.02E+02 7.11E+01 4.52E+01 2.98E+01

QMC SS 2.61E+03 9.19E+02 5.81E+02 4.43E+02 3.66E+02 1.17E+02

QMC IS 3.19E+03 5.67E+02 1.36E+02 2.36E+02 8.97E+02 6.19E+02

QMC SIS 2.15E+04 1.56E+03 2.61E+02 1.21E+04 3.30E+04 9.69E+02

4.7.3 Tail probabilities of a Gaussian Copula Credit Portfolio

In this section, we study the efficiency of the proposed methods for a credit portfolio

problem based on a Gaussian copula studied by Glasserman and Li [41], where the goal is

to estimate the probability of large losses. We compare single-index IS and SIS to the IS

technique of Glasserman and Li, to which we refer as the G&L IS.

Problem Formulation

As in [41], we introduce the following notation:

h = number of obligors to which portfolio is exposed;

Yk = default indicator for kth obligor

= 1 if kth obligor defaults, 0 otherwise;

pk = marginal probability that kth obligor defaults;

ck = loss resulting from default of kth obligor;

L = c1Y1 + · · ·+ chYh = total loss from defaults.

The goal is to estimate P(L > l) for some large l ∈ R. Under a Gaussian copula model,

the dependence between the default indicators are modelled through multivariate normally
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distributed latent variables X = (X1, . . . , Xh) as

Yk = 1{Xk>xk}, k = 1, . . . h,

where xk is chosen such that P(Yk = 1) = P(Xk > xk) = pk. Without loss of generality,

assume that eachXk marginally follows a standard normal distribution. Then xk = Φ−1(1−
pk). As in [41], assume that each Xk has the following factor structure

Xk = ak1Z1 + · · ·+ akdZd + bkεk,

in which

• Z1, . . . , Zd are independent systematic risk factors, each following a N(0, 1) distribu-

tion;

• εk is an idiosyncratic risk associated with kth obligor, independent from Z1, . . . , Zd,

also N(0, 1) distributed;

• ak1, . . . , akd are the factor loadings for the kth obligor, a2
k1 + · · ·+ a2

kd ≤ 1;

• bk =
√

1− (a2
k1 + · · ·+ a2

kd) so that Xk is N(0, 1).

As in [41], we consider a portfolio with h = 1, 000 obligors in a 10-factor model (i.e.

d = 10). The marginal default probabilities are pk = 0.01 · (1 + sin(16πk/h)), k = 1, . . . , h

and exposures are ck = (d5k/he)2, k = 1, . . . , h. The marginal default probabilities vary

between 0% and 2% and the possible exposures are 1, 4, 9, 16 and 25, with 200 obligors

at each level. The factor loadings akj’s are independently generated from a U(0, 1/
√
d).

Letting Z = (Z1, . . . , Zd)
′ and ε = (ε1, . . . , εh)

′, we write L = L(Z, ε). We investigate

whether or not L has a single-index structure. Let T = β′Z where β ∈ Rd such that

β′β = 1, so T ∼ N(0, 1). We estimate β using the average derivative method of Stoker

[114]. The estimated β has almost equal entries close to
√

1/d. This makes intuitive

sense as each component of Z is likely to be equally important because the factor loadings

are generated randomly. Figure 4.4 shows the scatter plot of (T, L). The left figure is

where T is sampled from the original distribution N(0, 1) while the right figure is where

T is generated from U(−2, 5) so that more observations from the right tail are sampled.

The figure reveals the single-index model fits L well even in the extreme tail, implying

single-index IS based on this choice of T will give substantial variance reduction.
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Figure 4.4: Plot of Transformed variable (T ) vs Portfolio Loss (L) based on 10,000 obser-

vations.

(a) T is generated from the original dis-

tribution N(0, 1).

(b) T is generated from U(−2, 5) so

that more observations from the tail

are sampled.
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Debiasing SIS estimators

The SIS estimators based on the optimal calibration (4.12) gives a biased estimator for

this problem. We describe the procedure to debias the estimators in this section. Let

Z = (Z1, . . . , Zd)
′ and ε = (ε1, . . . , εh)

′. Fix l > 0 and let pl = P(L > l). Since this is a

problem of probability estimation, Ψ(Z, ε) = 1(L(Z, ε) > l). The conditional probability

function is pl(t) = E[Ψ(Z, ε) |T = t] = P(L > l |T = t) and the conditional variance

function is v2(t) = Var(Ψ(Z, ε) |T = t) = pl(t)(1 − pl(t)). Since gopt
T (t) ∝ v(t)fT (t), the

optimal calibration gives zero density over the region where v(t) = 0, or equivalently the

region where pl(t) = 0 or pl(t) = 1. In practice, pl(t) is unknown so we replace it with an

estimate p̂l(t). Similarly, we replace v2(t) with v̂2(t) = p̂l(t)(1 − p̂l(t)). The approximate

optimal proposal density of T is then

ĝopt
T (t) ∝ p̂l(t)(1− p̂l(t))fT (t) (4.28)

and this is the proposal density of T that we draw samples from to construct the IS

estimator. Noting that ĝopt
T (t) > 0 only if 0 < p̂l(t) < 1, we have

E[µ̂SIS,n] =

∫
ĝoptT (t)>0

pl(t)
fT (t)

gT (t)
gT (t)dt =

∫
0<p̂l(t)<1

pl(t)fT (t)dt (4.29)

=

∫
0<p̂l(t)<1

pl(t)fT (t)dt = pl − Pg(p̂l(T ) = 1), (4.30)

the debiased SIS estimator, µ̂db
SIS,n, is obtained as µ̂db

SIS,n = µ̂SIS,n+Pg(p̂l(T ) = 1). Figure 4.5

shows the plot of p̂l(t) as a function of t for l = 1, 000. In further numerical studies, we

find that p̂l(t) has a similar shape for other values of l. As the figure illustrates, p̂l(t) is a

monotone function in t, then there exists tl ∈ R such that p̂l(t) = 1 for all t > tl. Then

the debiased estimator becomes

µ̂db
SIS,n = µ̂SIS,n + Pg(T > tl) = µ̂SIS,n + Φ(−tl).

Observe that since p̂l(t) is monotone increasing in t for this problem, the CDF correspond-

ing to ĝopt
T (t) is

GT (t) =

∫ t
−∞ v̂(s)fT (s)ds∫∞
−∞ v̂(s)fT (s)ds

=

∫ t
−∞ v̂(s)fT (s)ds∫ tl
−∞ v̂(s)fT (s)ds

,
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Figure 4.5: Plot of estimated p̂l(t) for l=1,000
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so tl = G−1
T (1). Therefore, we can write

µ̂db
SIS,n = µ̂SIS,n + Pg(T > tl) = µ̂SIS,n + Φ(−G−1

T (1)).

In single-index IS, we generally sample T under the proposal distribution using the inversion

technique, which assumes that we have numerically constructed G−1
T , for instance using

the NINIGL algorithm [55].

Comparison of Variance Reduction Factors

We now compare single-index IS and SIS to G&L IS by computing the variance reduction

factors for estimating P(L > l) for l ∈ {1, 000, 1, 500, 2, 000, 2, 500}. All the three methods

need to optimize the proposal distribution before running the main simulation. In this

comparison, we optimize the proposals at each loss level of l and estimate the corresponding

loss probability. Table 4.6 shows the estimated probabilities as reference and the variance

reduction factors of the three methods over plain MC. The estimated probabilities are

based on SIS with n = 100, 000 and they are listed to show how rare those events are.
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The table shows that single-index SIS gives the greatest variance reduction, followed by in

Table 4.6: Variance Reduction Factors based on 30,000 samples

l 1,000 1,500 2,000 2,500

Estimates 8.29E-02 2.43E-02 8.10E-03 2.84E-03

G&L 5.07E+01 1.34E+02 4.38E+02 8.26E+02

IS 1.24E+02 3.97E+02 1.26E+03 2.34E+03

SIS 2.78E+02 9.12E+02 3.00E+03 5.48E+03

order of single-index IS and G&L IS. For all three methods, VRFs increase as the cutoff

value l gets larger.

For the simulation above, we calibrated the proposal distributions for each value of l. In

order to estimate P(L > l) for l ∈ {1, 000, 1, 500, 2, 000, 2, 500} using SIS for instance, we

ran the entire simulation four times. Often we want to estimate multiple loss probabilities in

one simulation run. To pursue this idea further, next we calibrate the proposal distributions

for l = 1, 000 and estimate P(L > l) for l ∈ [1, 000, 5, 000] in a single simulation. Figure

4.6 shows the estimated probabilities in the base 10 log scale and the estimated relative

errors (RE) of the estimators based on n = 30, 000 samples.

Our experiments based on large n find that logP(L > l) is linear in l, consistent with

the asymptotic result in [40]. This implies that if the estimated probabilities in log scale

deviate from a linear trend, the estimates are inaccurate. From the log-probability plot of

Figure 4.6, G&L IS seems to produce estimates with relatively small errors for all values

of l ∈ [1, 000, 5, 000]. The SIS estimator is clearly biased for l > 1, 200, indicating that

the optimally calibrated SIS proposal distribution performs poorly if it is used to estimate

multiple loss probabilities. The plain MC and single-index IS appear to struggle estimating

the loss probabilities for l > 2, 700 and l > 3, 500, respectively. The RE plot of Figure

4.6 agrees with these findings. The plot shows that the RE of the SIS estimator quickly

escalates with l and the same holds with plain MC and single-index IS estimators to a

lesser extent. Only G&L IS gives an estimator with moderately low RE for all values of

l ∈ [1, 000, 5, 000].
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Figure 4.6: Plot of Estimated Log-Probability and Relative Error based on 30,000 obser-

vation. The proposal distributions are calibrated to estimate P(L > 1, 000).
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Overall, it appears that single-index IS calibrated to estimate pl for a specific l estimates

this probability very well but struggles to estimate probabilities based on different l. This

makes sense as the optimal calibrations are constructed to minimize the variance of a given

problem and do not take anything else into account. In Chapter 5, we develop calibration

methods which balance the performance of multiple estimations.

4.7.4 Tail probabilities of a t-Copula Credit Portfolio

In this section, we apply single-index IS to a credit portfolio problem under a t-copula

model. This model can be viewed as being equivalent to the Gaussian copula model studied

in Section 4.7.3, but with a multiplicative shock variable added to it. This t-copula model

is a special case of the models with extremal dependence studied by Bassamboo et al. [12].

Unlike the Gaussian copula models, the t-copula ones support tail dependence of latent

variables, so simultaneous defaults of many obligors are more probable under the t-copula

model than its Gaussian copula counterpart.
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Problem Formulation

The t-copula model with ν degrees of freedom is the same as the Gaussian copula model

except that the latent variables X = (X1, . . . , Xd) are multivariate-t distributed. That is,

Xk =
√
W (ak1Z1 + · · ·+ akdZd + bkεk), (4.31)

where W ∼ IG(ν/2, ν/2), Z1, . . . , Zd, εk
ind.∼ N(0, 1). Accordingly, the default threshold

for the kth obligor is xk = t−1
ν (1 − pk). We use the same set of parameters as in the

Gaussian copula model studied in Section 4.7.3. In particular, we consider a portfolio with

h = 1, 000 obligors in a 10-factor model (i.e. d = 10). The marginal default probabilities are

pk = 0.01 · (1 + sin(16πk/h)), k = 1, . . . , h and exposures are ck = (d5k/he)2, k = 1, . . . , h.

The marginal default probabilities vary between 0% and 2% and the possible exposures

are 1, 4, 9, 16 and 25, with 200 obligors at each level. The factor loadings akj’s are

independently generated from a U(0, 1/
√
d). For the degree of freedom parameter of the

t-copula model, we consider ν = 12 and ν = 4.

Let Z = (Z1, . . . , Zd)
′ and ε = (ε1, . . . , εh). Chan and Kroese [20] propose a very

effective IS technique based on conditional Monte Carlo (CMC). Letting Sl(Z, ε) = P (L >

l |Z, ε) their main idea is to estimate P (L > l) by the sample mean of Sl(Z, ε) which can be

computed analytically once (Z, ε) is sampled. This technique is effective as it analytically

integrates out W , the variable which accounts for a large portion of the variance of L. Chan

and Kroese further combine this CMC idea and IS on Z and ε to make the event {L > l}
more frequent based on the cross-entropy method (see [26, 102, 103] and references therein

for the details of the cross-entropy method). We refer to Chan and Kroese’s method as

C&K CMC+IS. The numerical study in [20] demonstrates that C&K CMC+IS achieves

substantial variance reduction. We investigate whether or not L and Sl have single-index

structures.

Fit of Single-Index models with and without conditional Monte Carlo

We first consider a single-index model without the CMC idea. That is, we investigate

whether L = L(Z, ε) has a single-index structure. Let ZW be the quantile-quantile trans-

formed variable of W to a standard normal variable, that is, ZW = Φ−1(FW (W )). Let
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T1(W,Z, ε) = βWZW +β′LZ such that β2
W +β′LβL = 1. Under this constraint, T1 ∼ N(0, 1).

We estimate the coefficients (βW ,βL) that maximize the fit of the single-index model by us-

ing the average derivative method of Stoker [114]. Figure 4.7 shows scatter plots of (T1, L)

for ν = 12 and ν = 4 where T1 ∼ N(0, 1) o6 T1 ∼ U(0, 6). The plots for T1 ∼ U(0, 6) show

more observations in the right-tail of T1. The figures show that there is a strong association

between T1 and L but the dependence is stronger when ν = 12 than when ν = 4. When

ν = 4, there is a significant variation of L that cannot be captured by the single-index

model based on T1 in the right-tail. This observation holds more generally; the smaller ν

is, the worse the fit of the single-index model becomes in the right-tail. Hence, when ν is

small, we expect that single-index IS based on T1 becomes less effective when estimating

pl for large l compared to when ν is large.

We now consider a single-index model with the CMC idea, that is, we examine whether

or not Sl = Sl(Z, ε) has a single-index structure. Let T2 = β′SZ with βS such that

β′SβS = 1. The coefficients βS that maximize the fit of the single-index model are estimated

by using the average derivative method [114]. Figure 4.8 shows the scatter plot of (T2, Sl)

for l = 1, 000 and l = 2, 000 based on 10,000 observations for degrees of freedom parameters

ν = 12 and ν = 4. In order to obtain enough samples in the right-tail, T2 is drawn from

U [−2, 6]. From the figure, we see that the fit of T2 is excellent even in the extreme right-tail

for both the ν = 4 and ν = 12 cases. This means that the fit of T2 is less sensitive to the

degree of freedom parameter than T1 is. This makes sense as the variance due to W , the

only variable that depends on ν, is integrated out by the CMC step.

Comparison of Variance Reduction Factors

We compare single-index IS with and without CMC to C&K CMC+IS by computing

the variance reduction factors for estimating the probabilities of the form P(L > l) for

l ∈ {1, 000, 1, 500, 2, 000, 2, 500}. Table 4.7 shows the estimated probabilities as refer-

ence and the variance reduction factors of the three IS methods: C&K CMC+IS, single-

index IS based on T2 with CMC, and single-index IS based on T1 without CMC. For

this problem, we calibrate the proposal densities of the three methods for each value of

l ∈ {1000, 1500, 2000, 2500}. From the table, we see that the IS methods that use CMC
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Figure 4.7: Scatter plots of T1 vs L. The two plots in the first row are for ν = 12 and

the second row are for ν = 4. The plots in the first column are for T1 ∼ N(0, 1) and the

second column for T1 ∼ U(0, 6)

(a) ν = 12, T ∼ N(0, 1) (b) ν = 12, T ∼ U(0, 6)

(c) ν = 4, T ∼ N(0, 1) (d) ν = 4, T ∼ U(0, 6)
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Figure 4.8: Plot of Transformed variable (T2) vs Conditional probability (Sl) based on

10,000 observations

(a) Conditional Probability for l = 1, 000

under conditional MC, ν = 12

(b) Conditional Probability for l = 2, 000

under conditional MC, ν = 12

(c) Conditional Probability for l = 1, 000

under conditional MC, ν = 4

(d) Conditional Probability for l = 2, 000

under conditional MC, ν = 4
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(C&K CMC + IS and CMC + IS on T2) give greater variance reduction than the one that

does not use CMC (IS on T1). Among the two that use CMC, the one based on single-index

IS works better than the Chan and Kroese’s IS method. Note that single-index IS with

CMC gives about 10 times greater variance reduction than the one without CMC. This is

consistent with the observation based on Figure 4.7 and Figure 4.8 that Sl has a stronger

single-index structure than L does.

Table 4.7: Variance Reduction Factors based on 30,000 samples. “C&K CMC + IS”

denotes Chan and Kroese’s CMC and IS technique. “CMC+IS on T2” denotes single-

index IS with T2 combined with CMC. “IS on T1” denotes single-index IS on T1 without

CMC.

l 1,000 1,500 2,000 2,500

ν = 12

Estimates 1.68E-02 7.17E-03 3.43E-03 1.74E-03

C&K CMC + IS 2.18E+02 4.52E+02 8.19E+02 1.56E+03

CMC + IS on T2 6.99E+02 1.38E+03 2.57E+03 5.56E+03

IS on T1 1.30E+02 2.75E+02 5.55E+02 1.07E+03

ν = 4

Estimates 2.58E-02 1.45E-02 8.81E-03 5.55E-03

C&K CMC + IS 4.12E+02 6.23E+02 8.47E+02 1.24E+03

CMC + IS on T2 9.92E+02 1.89E+03 2.95E+03 4.80E+03

IS on T1 1.17E+02 1.74E+02 2.25E+02 3.40E+02

As we did for the Gaussian copula credit portfolio problem in Section 4.7.3, we estimate

multiple loss probabilities in one simulation run. The IS schemes based on the CMC

idea is not suited to multiple estimation because the CMC becomes very computationally

expensive as P(L > l |Z, ε) must be computed for all samples of (Z, ε) for each value of l.

Thus, we estimate l ∈ [1, 500, 7, 000] using plain MC and single-index IS with T1. We do

not consider single-index SIS as it has already shown to give very unreliable estimates in

Section 4.7.3. Figure 4.9 shows the plot of estimated logP(L > l) and RE for ν = 12 and

ν = 4 cases for plain MC, single-index IS with T1, and UIS. UIS is a IS technique that we

develop specifically for multiple estimation in Chapter 5. As the RE plots of Figure 4.9
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shows, UIS gives estimates of pl with very low RE for all l ∈ [1, 500, 7, 000]. Thus, we can

use the log-probability curve given UIS as the reference for the true log-probabilities. If

the estimated probabilities in log scale significantly deviate from the ones based on UIS,

the estimates are inaccurate. From the log-probability plot of Figure 4.9, plain MC and

single-index IS give unreliable estimates for l > 4, 000 and l > 6, 000 when ν = 12 and

l > 4, 000 and l > 6, 500 when ν = 4, respectively. It appears that plain MC and single-

index IS, the estimation quality of pl deteriorates faster in l when ν = 12 than when ν = 4.

From the RE plots of Figure 4.9, the RE of plain MC and single-index IS grows quickly in

l, as it was the case for the Gaussian copula model, though this is to a lesser extent when

ν = 4 than when ν = 12.

Overall, we have the same conclusion as we had for the Gaussian copula model that

single-index IS calibrated to estimate pl for a specific l estimates this probability very well

but struggles to estimate probabilities based on different l. We development calibration

methods that handle multiple estimation well in Chapter 5.

4.7.5 Skew-t copula equity portfolio

In this section, we numerically investigate the efficiency of single-index IS and SIS for

estimating tail quantities of an equity portfolio under the skew-t copula models. To obtain

model parameters, we fit the said copula to daily negative log-returns of the stock of 10

large firms in the financial sector from 2010-01-01 to 2016-04-01 (1571 data points). We

fit GARCH(1,1)-models with t-innovations to each return series to filter out the volatility

clustering effect using the R package “rugarch” [34]. The fitted standardized residuals do

not exactly follow a t-distribution, so we fit a semi-parametric distribution to the residuals

using the R package “spd”[35]. We then fit normal, t, and skew-t copulas to the fitted

standard residuals. The skew-t copulas are fitted using the procedure in Appendix A. We

first examine whether skew t-copulas provide a better fit than t and Gaussian copulas. For

the skew t-copula, we consider the one with exchangeable skewness parameter assumption

(all skewness parameters are the same) which we call a skew tex model and the one with

different skew parameters which we simply call a skew-t model.
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Figure 4.9: Plot of Estimated Probability and Relative Error based on 30,000 observations
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(b) Estimated Relative Error, ν = 12
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(c) Estimated logP(L > l), ν = 4
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(d) Estimated Relative Error, ν = 4
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Model Fit

Table 4.8: Fit of the Copulas

# Param. Log-like. AIC BIC

Gaussian 45 5141.0 -10192.0 -9950.824

symmetric t 46 5478.1 -10864.2 -10617.664

skew tex 47 5505.7 -10917.4 -10665.505

skew t 56 5517.5 -10923.0 -10622.870

Table 4.9: Estimated Parameters

ρ1,2 ν γ1 γ2 γ3

Gaussian 0.57

symmetric t 0.61 10.0

skew tex 0.60 10.7 0.275 0.275 0.275

skew t 0.61 10.7 0.387 0.260 0.359

All four copulas considered have a correlation matrix as parameters. The fitted matrix

for the four models turn out to be almost identical. Table 4.8 lists the log-likelihood,

AIC and BIC of the copula models. Table 4.9 lists the selected parameters of the fitted

copulas: ρ1,2, the (1, 2)th element of the correlation matrix, ν, the degrees of freedom

parameter, and the first three elements of the skewness parameters, γ. Table 4.10 shows

the estimated correlation matrix of the skew-t copula, and then the skewness parameters,

γ, on the last row. Table 4.8 shows that the skew-t copula provides a better fit than the

symmetric-t copula, which in turn fits better than the Gaussian copula, in terms of both

AIC and BIC. Note that the estimated skewness parameters, γ, are all positive, suggesting

the greater dependence for losses than returns. This aligns with the observation made

by Ang and Chen that U.S. stocks have a stronger correlation for downside moves than

upside [6]. The skew tex-copula gives the best fit in terms of BIC while the skew t-copula

does the best in terms of AIC. So, there is no clear indication of weather the exchangeable

skewness parameters assumption is valid. We use the skew t-copula with varying skewness

parameters in our numerical experiments.
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Table 4.10: Estimated Correlation Matrix and skewness parameters of skew-t copula

1.00 0.61 0.57 0.64 0.42 0.62 0.60 0.59 0.67 0.61

0.61 1.00 0.58 0.61 0.46 0.64 0.62 0.67 0.63 0.71

0.57 0.58 1.00 0.61 0.47 0.65 0.62 0.61 0.63 0.58

0.64 0.61 0.61 1.00 0.42 0.72 0.62 0.62 0.82 0.59

0.42 0.46 0.47 0.42 1.00 0.47 0.51 0.50 0.46 0.48

0.62 0.64 0.65 0.72 0.47 1.00 0.68 0.66 0.72 0.62

0.60 0.62 0.62 0.62 0.51 0.68 1.00 0.65 0.65 0.61

0.59 0.67 0.61 0.62 0.50 0.66 0.65 1.00 0.64 0.67

0.67 0.63 0.63 0.82 0.46 0.72 0.65 0.64 1.00 0.61

0.61 0.71 0.58 0.59 0.48 0.62 0.61 0.67 0.61 1.00

0.39 0.26 0.36 0.25 0.17 0.29 0.34 0.22 0.23 0.29

Comparison of Variance Reduction Techniques

Let L denote the portfolio loss over a one day period,

L = 100

(
1−

d∑
j=1

vj exp
(
aj − bjF̂−1

j (Uj)
))

,

where d is the number of assets, vj’s are the portfolio weights, aj’s are the means of log-

returns, bj’s are the fitted conditional standard deviations from the GARCH(1,1) model,

F̂j’s are the fitted semi-parametric distributions, and (U1, . . . , Ud) follows the fitted copula.

In this simulation study, we consider a portfolio with equal weights, that is, vj = 1/d for

j = 1, . . . , d. The transformation functions we use are T1(W,Z) = β0 +
√
Wβ′2Z and

T2(W,Z) = β0 + β1W +
√
Wβ′2Z. The difference between the two is that T2 includes the

linear term in W while T1 does not. The coefficients βk’s are estimated by fitting a linear

model. This estimation procedure is valid as the conditional mean E[L |T1] and E[L |T2]

are linear in T1 and T2, respectively, for this problem.

We first examine whether or not the inclusion of the β1W term improves the fit of

the single-index model. Figure 4.10 shows the scatter plot of (T1, L) and (T2, L). From

the figure we see that the inclusion of the β1W term significantly improves the fit of the
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model, which implies that single-index IS and SIS based on T2 will perform better than

the ones based on T1. However, as discussed in Section 4.6.2, the presence of the β1W

term makes the conditional sampling more computationally expensive. Thus, we compare

variance reduction and the computation time relative to plain MC estimators to decide

which one is more efficient.

Figure 4.10: Scatter plot of (T1, L) (left) and (T1, L) (right) based on 10,000 observations.

We now investigate the efficiency of the IS and SIS schemes. The quantities we are inter-

ested in are stop loss E[(L−3)+], 99% value-at-risk VaR0.99(L), and 99% expected shortfall

ES0.99(L). The proposal distribution for IS and SIS are calibrated against ES0.99(L) as we

expect that the proposal that works well for ES0.99(L) would also work well for E[(L−3)+]

and VaR0.99(L).

Table 4.11 shows the estimates of the three objective functions, variance reduction fac-

tors of various methods and the ratios of computation time relative to plain MC estimators.

The estimates are taken from SIS based on T2 combined with QMC. From the table, we

see that both the IS and SIS schemes improve the estimation precision and this is more

so when combined with QMC. Also, the IS and SIS schemes perform better with T2 than
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Table 4.11: Estimates and Variance Reduction Factors: 10-dimensional, n = 215.

E[(L− 3)]+ VaR0.99(L) ES0.99(L) Time

T1 + MC

IS 4.08E+01 1.45E+01 3.18E+01 1.20

SIS 3.65E+01 1.65E+01 3.03E+01 1.14

T1 + QMC

Plain 3.94E+01 9.26E+00 5.35E+01 0.93

IS 1.18E+02 1.53E+01 7.04E+01 1.24

SIS 5.94E+01 2.54E+01 4.40E+01 1.20

T2 + MC

IS 2.36E+02 9.26E+01 2.28E+02 2.15

SIS 7.63E+03 4.49E+02 7.23E+03 2.16

T2 + QMC

Plain 3.94E+01 9.26E+00 5.35E+01 0.93

IS 2.92E+04 1.09E+03 2.66E+04 2.13

SIS 2.56E+04 6.10E+02 2.09E+04 2.19

Estimates 5.25E-03 2.68 3.46

with T1 as expected from the superior fit of the model with T2 as shown in Figure 4.10.

The computation time does increase when T2 is used but the reduced variance outweighs

the additional computation time.

We repeat the same experiments except the portfolio now consists of 20 stocks (see

Table 3.2 for stocks symbols) considered in Section 3.6. Figure 4.11 shows the scatter

plot of (T1, L) and (T2, L). The plot shows that the fit of the model based on T1 and

T2 are not much different from the 10-dimensional case. Table 4.12 shows the estimates,

variance reduction factors and ratio of computation time relative to plain MC estimators.

From the table, we find that the analysis for the 10-dimensional case mostly holds for this

20-dimensional case, except that actual variance reductions are slightly worse this time.
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Figure 4.11: Plot of T1 vs Portfolio Loss (left) and T2 vs Portfolio Loss (right) based on

10,000 observations, 20 dimensional.

Table 4.12: Estimates and Variance Reduction Factors: 20-dimensional, n = 215.

E[(L− 3)]+ VaR0.99(L) ES0.99(L) Time

T1 + MC

IS 3.60E+01 1.65E+01 3.39E+01 1.24

SIS 1.78E+01 2.55E+01 1.79E+01 1.17

T1 + QMC

Plain 4.68E+01 1.39E+01 4.81E+01 1.01

IS 1.24E+02 9.70E+01 1.22E+02 1.20

SIS 1.17E+03 7.26E+01 1.29E+03 1.17

T2 + MC

IS 4.12E+02 1.15E+02 4.26E+02 1.78

SIS 1.16E+04 8.84E+02 1.12E+04 1.75

T2 + QMC

Plain 4.68E+01 1.39E+01 4.81E+01 1.00

IS 2.01E+04 7.25E+02 1.85E+04 1.80

SIS 1.41E+04 1.27E+03 1.50E+04 1.80

Estimates 7.39E-03 2.91 3.73
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Chapter 5

Extreme Value and Uniform

Importance Sampling for Multiple

Portfolio Loss Probabilities

5.1 Introduction

In Chapter 4, we developed IS and SIS schemes for single-index models and proposed

optimal calibration techniques for proposal densities (4.8) and (4.12) that aim to mini-

mize the variance of the resulting IS estimator. The numerical study of credit portfolio

problems under a normal and t-copula model in Section 4.7.3 and Section 4.7.4 reveals

that such optimally calibrated densities could perform poorly if they are used to estimate

multiple loss probabilities in one simulation run. More specifically, when estimating prob-

abilities of the form P(L > l) for different values of l, the RE of the estimators based on

those densities deteriorates relatively quickly as l increases, compared to, for instance, the

Glasserman and Li’s IS method [41]. In this chapter, we explore the proposal calibrations

for single-index IS designed to perform well in estimating multiple loss probabilities. In

particular, we propose to use extreme value (EV) distributions and uniform distributions

as the parametric families of the transformed variable of the single-index model. We refer

to such IS schemes as single-index extreme value importance sampling (EVIS) and uniform
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importance sampling (UIS), respectively.

The rest of this chapter is organized as follows. In Section 5.2, we give a brief review

of single-index models and the IS technique developed for such models in Chapter 4. In

Section 5.3, we analyze why the optimally calibrated densities fail for multiple estima-

tion and show that this is partially because those densities have right-tails that decay at

the same rate as the originally densities. To make sure that the proposal densities are

more heavy-tailed than the original ones, we propose in Section 5.4 to use extreme value

(EV) distributions as proposal distributions, following the EVIS idea of McLeish [85] and

McLeish and Men [86]. In Section 5.5, we propose another parametric family of IS distri-

butions by observing that only samples from a subset of the domain of the transformed

variable is relevant for multiple estimation. More specifically, we propose to use uniform

distribution over a truncated domain of the transformed variable. In Section 5.6, we apply

single-index EVIS and UIS to the credit portfolio problem under a normal and a t-copula

model and numerically evaluate the effectiveness of our proposed IS techniques.

5.2 Single-index Models and Importance Sampling

In this section, we provide a brief review of single-index models and the IS technique for

such models developed in Chapter 4 in the context of portfolio loss probability estimation.

LetX be a d-dimensional random vector with a pdf denoted by fX(X) and L : Rd → R
be a function such that L = L(X) represents a portfolio loss. The quantity of interest is

pl = P(L(X) > l) for a large l ∈ R such that pl is small. Suppose that L has a single-

index structure, that is, there exists some unknown parametric transformation function

T : Rd → R such that L(X) depends on X mainly through T = T (X). If we write

L(X) = m(T ) + εT , εT |T ∼ (0, v2(T )), (5.1)

where m(t) = E[Ψ(X) |T = t], v2(t) = Var(Ψ(X) |T = t), and εT is a random error term,

we say that L(X) has a single-index structure if R2 = Var(m(T ))/Var(L) is close to 1, say

R2 > 0.9.

102



Let FT (t) fT (t), and fX|T (x | t) denote the distribution function of T , pdf of T , and

the conditional pdf of X | T = t, respectively, under the original distribution. We assume

that the support of T is an interval ΩT = (tinf , tsup) with possibly tinf = −∞ and tsup =∞,

but this assumption can be easily generalized. We further let gX(x), gT (t), FT (t) denote

the pdf of X, the pdf of T and the distribution function T under the IS distribution. In

Chapter 4, we proposed to use an IS distribution of the form

gX(x) = fX|T (x | tx)gT (tx), (5.2)

where tx = T (x). One can generate samples from (5.2) by drawing T from gT (t) first

and then generating X |T under the original distribution. Since, fX|T (x | t) is fixed, we

want to choose gT (t) that minimizes the variance of the resulting IS estimator. Let pl(t) =

P(L > l |T = t). Then from (4.8), the optimal proposal density of T for estimating pl has

the form

gopt
T, l(t) = cl

√
pl(t)fT (t), cl =

(∫
ΩT

√
pl(t)fT (t)dt

)−1

, (5.3)

and we call the practice of setting gT (l) = gopt
T, l(t) or its approximation as “optimal calibra-

tion”. To contrast with single-index EVIS and UIS that we introduce later, we call the IS

scheme with optimal calibration as single-index optimally calibrated IS (OCIS). Suppose

gopt
T, l(t) has been constructed for l = lc where lc ∈ R is some calibration point. Since the

calibration criterion is to minimize the variance of estimating plc , the resulting density is

likely to perform poorly if it is used to estimate pl for a value l that is not very close to lc.

In the following section, we demonstrate this point under a simple linear normal model.

5.3 Analysis of Why Optimal Calibrations Fail in Mul-

tiple Loss Probability Estimations

In this section, we show that the proposal density based on optimal calibration does not

perform well with multiple estimations, partly because the resulting IS density has a right-

tail that decays as fast as that of the original distribution. Based on this finding, we

motivate the use of EV distribution and uniform distribution as a proposal distribution.
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Consider a linear normal problem. The conclusions drawn for this simple model gener-

alize to more complex models, at least to the normal and t-copula credit portfolio problems

studied in Section 5.6. Suppose that

L = αT + εT , (5.4)

where T ∼ N(0, 1), α > 0 and εT |T ∼ N(0, s2) such that α2 + s2 = 1. Note that

L ∼ N(0, 1) and Var(m(T ))/Var(L) = α2, so L has a single-index structure when α2 is

close to 1. The model assumptions give analytical expressions for pl and pl(t) as

pl = P(L > l) = P(N(0, 1) > l) = Φ̄(l) and (5.5)

pl(t) = P(L > l|T = t) = P(N(0, s2) > l − α1t) = Φ̄

(
l − α1t

s

)
. (5.6)

From (5.3), we can write

gopt
T, l(t) = cl

√
Φ̄

(
l − α1t

s

)
fT (t), cl =

(∫ ∞
t=−∞

√
Φ̄

(
l − α1t

s

)
fT (t)dt

)−1

. (5.7)

Suppose that the model parameters are α2 = 0.95 and s2 = 0.05 and the goal is to

estimate P(L > l) for l ≥ 3. Figure 5.1 shows the plot of gopt
T, l(t) for l ∈ {3, 4, 5}. The

figure shows that the optimally calibrated densities for l ∈ {3, 4, 5} mostly give samples of

T in the range [l − 1, l + 1], respectively. Suppose that we want to use gopt
T, 3(t) to estimate

pl for l ≥ 3. Note that this density gives very few samples of T in the range [4, 6], which

is the most important subset of the domain of T when estimating p5. So IS based on

gopt
T, 3(t) will give poor estimates of pl for l > 5. Figure 5.2 shows the plot of pl(t) for l = 3.

Since p3(t) ≈ 1 for t > 3.5, it follows that gopt
T, 3(t) ≈ c3fT (t) for t > 3.5. This implies

that the optimally calibrated density decays at the same rate as the the original density

in the right-tail. Since c3 ≈ 392 for this specific problem, the IS with gopt
T, 3(t) gives about

400 times more samples in the important region of T for estimating p5 than the plain MC

does. However, since the original density fT (t) = 1√
2π
e−

1
2
t2 approaches 0 at a square of

an exponential rate in t, the large coefficient such as c3 = 392 becomes irrelevant when

estimating pl for l large enough with gopt
T, 3(t).
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Figure 5.1: Plot of optimal IS densities gopt
T, l(t) for l = 3, 4 and 5
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If one is more concerned with estimation precision for l close to 3 and less with l further

away from 3, we would want a proposal density that gives many samples of T around 3

and moderate number of samples for large T . In order to obtain such samples, we need to

make sure that the IS density has a heavier right-tail than the original density does. For

this purpose, we propose to use the EV distribution of T as the parametric family of IS

distribution, following the ideas of McLeish [85] and McLeish and Men [86]. In Section 5.4,

we give the details of EVIS.

If one is equally concerned with the estimation precision of pl for all l in some finite

interval, such as l ∈ [3, 5], one approach is to construct gopt
T, l(t) for multiple values of l in

the interval and construct a mixture of such optimal densities. This approach, however,

could be time consuming as we have to construct many gopt
T, l(t) and each requires the

approximation of the conditional probability function pl(t) for many values of l. Instead, we

propose to use uniform distribution over a truncated domain of T as a proposal distribution

of T and explore this UIS idea in Section 5.5. The numerical studies in Section 5.6 show

that UIS gives estimates whose RE remains relatively the same for varying values of l.

5.4 Single-Index Extreme Value Importance Sampling

The main idea of [85] and [86] is that when d = 1, the proposal distributions related to the

EV distribution of the input variable give estimators with bounded RE. The heavy tailed

nature of the EV distributions ensures that the estimation quality does not deteriorate

quickly in l in a multiple estimation setting. As we are interested in problems with d > 2,

single-index EVIS uses an EV distribution as the proposal density of T . Consider a proposal

density of the form

gT (t; θ) = cθe
−θF̄T (t)fT (t)dt, cθ =

θ

1− e−θ
, (5.8)

where F̄T (t) = 1 − FT (t) and θ > 0 is a parameter to be calibrated. Note that cθ ≈ θ

when θ is large and the typical value of θ is large enough to make this approximation very

accurate. Since e−θF̄T (t) is increasing in t for θ > 0, gT (t; θ) has a heavier right-tail than

fT (t) and gopt
T, l(t) do. Given a calibration point lc, pick a θ that minimizes the variance of
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the IS estimator for plc , that is, find

θ∗ = argmin
θ>0

1

cθ

∫ tsup

tinf

plc(t)e
θF̄T (t)fT (t)dt− p2

l . (5.9)

If pl(t) is known, the integral for (5.9) can be computed numerically for a given θ, so

one can find θ∗ by running some one-dimensional optimization algorithm. Since pl(t) is

generally unknown, we replace it with a non-parametric approximation of it and proceed

with optimization.

Since the proposal distribution of (5.8) does not belong to known parametric families,

directly sampling from the IS density requires numerical algorithms. As in [86], we instead

draw samples from an EV distribution that approximates this IS density. The advantage of

this approach stems from the fact that EV distributions have analytical quantile functions,

so the sampling step becomes trivial. Noting that (5.8) is approximately the distribution

of the maximum of θ independent copies of T ∼ fT (t) as in [86] when θ takes an integer

value, the samples from gT (t; θ) follow an EV distribution if normalized appropriately. The

proposal distribution based on EV distribution has the following distribution function

GEV
T (t) =


exp

(
−
(

1 + ξ t−µev
σev

)− 1
ξev

)
, ξev 6= 0,

exp
(
− exp

(
− t−µev

σev

))
, ξev = 0,

where µev, σev, and ξev are the location, scale, and shape parameters, respectively. The pa-

rameters µev and σev are calibrated to approximate gT (t; θ∗) and ξ is determined from fT (t).

From Theorem 1.18 and Remark 1.19 of Haan et al. [27], we can find these parameters as

ξev = lim
t↑tsup

(
1− FT (t)

fT (t)

)′
,

µev = F−1
T

(
1− 1

θ∗

)
, and σev =

1

θ∗fT (µev)
. (5.10)

While (5.10) is applicable to any distribution that attains an EV distribution, we use

parameters implicitly defined by

1

θ∗
=

exp(−0.5µ2
ev)

µev

√
2π

and σev =
1

µev

(5.11)

with ξev = 0 if T ∼ N(0, 1), as suggested in Hall [45].
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5.5 Single-Index Uniform Importance Sampling

Suppose that we are interested in estimating pl for l ∈ [l1, l2] for some l1, l2 ∈ R. The main

idea of single-index UIS is to truncate the domain of T from (tinf , tsup) to an interval [t1, t2]

and then use a uniform distribution over this range as a proposal distribution.

We consider the linear normal problem of (5.4) to illustrate that not all domain of T

is relevant and we only need samples from a subset of the domain. Suppose α2 = 0.95 and

s2 = 0.05 so that Figure 5.1 shows the optimal proposal densities for pl for l ∈ {3, 4, 5}.
If l1 = 3 and l2 = 5, this figure suggests that the optimally calibrated density for any

l ∈ [3, 5] would almost never generated samples of T < 1.5 and T > 6.5. That is, the

relevant domain of T for this specific problem is contained in [1.5, 6.5]. Single-index UIS

then uses U [1.5, 6.5] as a IS distribution of T .

We now explain how to choose the truncated domain and construct a UIS estimator.

Suppose that for small ε1, ε2 > 0, there exist t1, t2 ∈ (tinf , tsup) such that pl(t) ≤ ε1 for

t ≤ t1 and pl(t) ≥ 1 − ε2 for t ≥ t2 for all l ∈ [l1, l2]. Treating pl(t) ≈ 0 for t < t1 and

pl(t) ≈ 1 for t > t2, we can approximate pl as

pl =

∫ tsup

tinf

pl(t)fT (t)dt

=

∫ t1

tinf

pl(t)fT (t)dt+

∫ t2

t1

pl(t)fT (t)dt+

∫ tsup

t2

pl(t)fT (t)dt

≈
∫ t2

t1

pl(t)fT (t)dt+ F̄T (t2) = pUIS
l ,

and the bias is

pl − pUIS
l =

∫ t1

tinf

pl(t)fT (t)dt−
∫ tsup

t2

(1− pl(t))fT (t)dt

≤ ε1FT (t1) + ε2F̄T (t2). (5.12)

Choosing ε1 and ε2 in such a way that the bias (5.12) is much smaller than pl for l ∈
[l1, l2], we can estimate pl by constructing an estimator for pUIS

l . This approximation

procedure effectively truncates the domain from (tinf , tsup) to [t1, t2]. We then use a uniform
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distribution on [t1, t2] as a proposal proposal distribution for T , that is,

gU
T (t) =

1

t2 − t1
1 [t ∈ [t1, t2]] . (5.13)

The UIS estimator based on n samples has the form

p̂UIS
l,n =

1

n
(t2 − t1)

n∑
i=1

1[Li > l]w̃T (T ) + F̄T (t2), Ti
ind.∼ U [t1, t2], Xi ∼ fX|T (x |Ti).

Generally, we choose T (·) such that T ∼ fT (t) has an analytical distribution so F̄T (t2) can

be computed with high accuracy.

As we will see in the numerical study of Section 5.6, UIS gives estimators whose RE

are less sensitive to l for the normal and t-copula credit portfolio problems, compared to

the estimators based on the optimally calibrated IS and EVIS.

5.6 Numerical Experiments

5.6.1 Gaussian Copula Credit Portfolio Problem

In this section, we study the efficiency of single-index EVIS and UIS for the estimation of

large loss probabilities of a credit portfolio under the Gaussian copula model studied by

Glasserman and Li [41]. We applied IS and SIS with optimal calibrations to this problem

in Section 4.7.3 and found that the optimal calibration is not suitable for multiple loss

probabilities estimation. See Section 4.7.3 for the problem formulation and the parameters

used for this problem.

The objective is to estimate pl = P(L > l) for all l ∈ [1, 000, 5, 000] in one simulation

run. We apply single-index OCIS, EVIS, and UIS to this problem and compare them to the

Glasserman and Li’s IS method of [41], to which we refer as G&L IS. For OCIS, EVIS and

G&L IS, the proposal distribution is calibrated for lc = 1, 000. The reason that calibration

is done for lc = 1, 000 is that the three IS methods perform poorly in estimating pl for l

smaller than lc. If for instance we let lc = 2, 000, the estimate of pl for l ∈ [1, 000, 1500] will
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be very unreliable, which do not meet our objectives. For UIS, the domain of T is truncated

to estimate pl = P(L > l) for all l ∈ [1, 000, 5, 000]. Figure 5.3 shows the histogram of

10,000 samples of L based on OCIS, G&L IS, EVIS, and UIS. As expected, EVIS and UIS

both give more samples of L in the right-tail than the OCIS does. UIS gives the samples

with heaviest tail, followed by in the order of G&L IS, EVIS and optimally calibrated IS.

Figure 5.3: Histogram of Portfolio Loss based on 10,000 observations
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Figure 5.4 shows the estimated probabilities in log-scale and RE of the three methods.

The estimated loss probabilities from the three methods are almost identical except when

l > 4, 000. As for RE, no single method dominates other methods for all range of l ∈
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Figure 5.4: Plot of Estimated Probability and Relative Error based on 30,000 observations
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[1, 000, 5, 000]. EVIS and G&L IS provide estimates of pl with small RE when l is close to

lc and the RE increases as l gets further away from the calibration point. EVIS gives smaller

RE than G&L IS does when l is close to lc, but G&L IS outperforms EVIS when l is much

larger than lc. The RE of the UIS estimates, on the other hand, remains fairly constant

across the different values of l, which is desirable if all estimates of pl, l ∈ [1, 000, 5, 000]

are equally important. If the estimate of pl is more important for the value of l closer to

lc = 1, 000, EVIS and G&L provide better estimates than UIS does.
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5.6.2 t-copula Credit Portfolio Problem

In this section, we study the efficiency of single-index EVIS and UIS for the estimation of

large loss probabilities of a credit portfolio under the t-copula model that we examined in

Section 4.7.4. There, we applied single-index IS based on T1 to estimate multiple loss prob-

abilities and saw that the optimally calibrated density struggles with multiple estimation.

We do not consider the IS schemes based on the conditional Monte Carlo [20] as the CMC

becomes very computationally expensive when multiple probabilities are to be estimated.

See Section 4.7.3 and Section 4.7.4 for the problem formulation and the parameters used

for this problem.

The objective is to estimate pl = P(L > l) for all l ∈ [1, 500, 7, 000] in one simulation

run. Figure 5.5 shows the plot of estimated logP(L > l) and RE for ν = 12 and ν = 4

cases for OCIS, EVIS, and UIS based on T1 (see Section 4.7.4 for how T1 is defined). The

proposal distributions for optimally calibrated IS and EVIS are calibrated for lc = 1, 500.

For either case of the degree of freedom parameter, optimally calibrated IS gives smallest

RE while UIS gives the largest RE for l near lc = 1, 500. Similarly to the Gaussian copula

case, the RE of UIS estimates remains fairly constant for all l ∈ [1, 500, 7, 000]. Thus, if one

is concerned with the estimation quality of pl for all l ∈ [1, 500, 7, 000], UIS is the preferred

approach. The RE of OCIS and EVIS grows with l, but the growth is slower with EVIS.

Thus, if the estimate of pl is more important for the value of l closer to lc = 1, 500 and

the estimates with moderate size of l, say 5,000, is also of interest, EVIS is the preferred

approach.
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Figure 5.5: Plot of Estimated Probability and Relative Error based on 30,000 observations
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Chapter 6

Importance Sampling for

Multi-Index Model

6.1 Introduction

In Chapter 4 and Chapter 5, we have focused on problems based on single-index models

where the output variable, Ψ(X), depends on a d-dimensional random vector X, mainly

through some one-dimensional projection T = T (X). The problems that we have examined

for simulation studies in those chapters all had the linear single-index structure where Ψ(X)

depends on X mostly through some linear combination of X. Our proposed single-index

IS and SIS methods achieved substantial variance reduction for those types of problems.

For some applications, however, the single-index model may be too restrictive, even if these

applications have some low-dimensional structure. In this chapter, we relax the single-index

assumption and develop multi-index IS, the IS techniques for a multi-index model where

Ψ(X) depends on X mainly through a set of linear combinations of the form β′X, where

β ∈ Rd×p denotes a direction matrix and p is the number of relevant linear combinations.

This multi-index model contains the linear single-index model as a special case when p=1.

Multi-index IS is a two-stage procedure. In the first stage, it estimates the direction

matrix β. The form of β may be known analytically or one can use the existing methods
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that are developed to estimate β such as sliced inverse regression of Li [78]. If β is

correctly specified, one can identify the p-dimensional projection vector T = β′X that

jointly explains the majority of the variation of Ψ(X) under the multi-index model. In

the second stage, multi-index IS applies IS on Ψ(X) through changing the distribution of

T to make the rare event more frequent. In particular, it samples T from some proposal

distribution of T and then samples X |T under the original distribution.

Multi-index have strengths similar to those of single-index IS. Multi-index IS is appli-

cable to many problems as it does not assume specific form of Ψ nor distribution of X.

The conditional sampling step of sampling X |T reduces the dimension of the IS weight

function of p, so if p� d, multi-index IS is less susceptible to the dimensionality problem

discussed in Section 2.2.3 than the IS methods that change the distribution of X alto-

gether. If p is equal to 2 or 3, the multi-index formulation allows us to use a kernel density

as the proposal density.

The focus of this chapter is the second stage of multi-index IS. The emphasis is on

the construction and the calibration of effective parametric and nonparametric proposal

distributions of T . While the accurate estimation of β in the first stage is crucial to

correctly identify the projected variable T , a variety of estimation methods of β have been

already proposed, including the linear transformation of Imai and Tan [58], sliced inverse

regression of Li [78], and principal fitted component model of Cook and Forzani [23]. Since

one can use these existing techniques to deal with the estimation of β, we focus on the

design of proposal distributions.

The rest of this chapter is organized as follows. Section 6.2 introduces multi-index

models and Section 6.3 presents the general multi-index IS setting. A sampling procedure

for X |T when X follows a multivariate normal distribution is also given. Section 6.4

develops calibration methods for parametric and nonparametric proposal densities. Section

6.5 applies multi-index IS to rainbow Asian option pricing problems.
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6.2 Multi-Index Models

Multi-index model assumes that there exists a d × p direction matrix β such that Ψ(X)

depends on X mainly through T = T (X) = β′X, p linear combinations of X, as

E[Ψ(X)] = m(T ), (6.1)

where m(t) = E[Ψ(X) |T = t] is the conditional mean function. We can equivalently

write (6.1) as

Ψ(X) = m(T ) + εT , εT |T ∼ (0, v2(T )), (6.2)

where v2(t) = Var(Ψ(X) |T = t) is the conditional variance function. Note that in the

special case p = 1, (6.2) becomes a linear single-index model. As in single-index models, we

can decompose the variance of Ψ(Y ) as the sum of the variance captured by the systematic

part of the multi-index model and the variance of the error term as

Var(Ψ(X)) = Var(m(T )) + Var(εT ).

Note that a multi-index model perfectly fits any function Ψ if one chooses p = d and β to

be an identity matrix (or any d ∗ d full rank matrix). Nevertheless, such models provide

no insight on the structure of Ψ(X). Ultimately we want to learn the low-dimensional

representation of the problem, if it exists, and use this information to construct effective

proposal distributions Thus, we say that a problem has a multi-index structure if the

measure of fit R2 = Var(m(T ))/Var(Ψ(X)) is close to 1 for p � d, preferably p = 2 or

p = 3.

The main idea of multi-index IS is to apply IS on Ψ(X) through changing the dis-

tribution of T . To do so, one first needs to identify p, the number of significant linear

combinations, and β, the coefficient matrix for linear combination, to define T and this is

the first stage of multi-index IS. In some cases, one may be able to deduce p and the form

of β by analyzing the structure of the problem. If that is not possible, we propose to use

existing methods for estimation. A variety of techniques have been proposed to estimate

β (and p) in the context of sufficient dimension reduction (see [4, 22] for overview of this

field), including sliced inverse regression [78], sliced average variance estimates [25], and
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principal fitted components [23]. One can also use the linear transformation of Imai and

Tan [58] developed in the context of dimension reduction for QMC. Note that conditioning

on T = β′X is equivalent to conditioning on (βκ)′X for any full rank p×p matrix κ, thus

β is identifiable up to span(β).

6.3 Multi-index Importance Sampling

Suppose that a Rd×p direction matrix β has been estimated and let ΩT ⊆ Rp denote the

the domain of T under the original distribution. The multi-index IS draws T from a pro-

posal density of T denoted by gT (t) and then draws X |T under the original distribution.

Following an argument similar to the one for single-index IS in Section 4.3.1, it is easy to

show

gX(x) = fX|T (x | tx)gT (tx) and w(x) =
fT (tx)

gT (tx)
, (6.3)

where tx = β′x. Note that the IS weight function is simply the ratio of the original and

the IS density of T . In order to simplify the notation, define w̃ : Rp → R as w̃(t) = fT (t)
gT (t)

.

For w(x) to be well-defined, we need gT (t) > 0 whenever fT (t) > 0. But, we only need

gT (t) > 0 whenever m(t)fT (t) > 0 for the IS estimator to be unbiased. Algorithm 8

summarizes this IS scheme.

Algorithm 8 Multi-index Importance Sampling

for i = 1, . . . , n do

Draw Ti ∼ gT (t)

Draw Yi ∼ fX|T (x |Ti)
Compute wi = w̃(Ti) = fT (Ti)/gT (Ti).

end for

return µ̂IS,n = 1
n

n∑
i=i

Ψ(Xi)wi.

We now explain the conditional sampling step for (X |T = t) when X follows a

multivariate normal distribution. If X ∼ MVN(µX ,ΣX), then T ∼ MVN(µT ,ΣT ), where
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µT = β′µX and ΣT = β′ΣXβ. If rank(ΣT ) = p, then by [48, Theorem 1]

(X |T = t) ∼ MVN
(
µX|T (t),ΣX|T

)
, where

µX|T (t) = µX + ΣXβΣ−1
T (t− µT ) and

ΣX|T = ΣX − ΣXβΣ−1
T β

′ΣX . (6.4)

The sampling efficiency of multi-index IS for MVN models comes from the fact that the

covariance matrix, ΣX|T of (6.4) does not depend on the conditioning value t, so this matrix

needs to be decomposed only once during the entire IS algorithm. If X ∼ MVN(0, Id) and

β is such that β′β = 1, then (6.4) simplifies to

(X |T = t) ∼ MVN (βt, Id − ββ′) . (6.5)

In order to sample from (6.5), we need to find a matrix C ∈ Rd∗d such that CC ′ = Id−ββ′.
As in [38], since (Id − ββ′)(Id − ββ′)′ = Id − ββ′, we can simply let C = Id − ββ′. Then,

for Z ∼ MVN(0, Id), we have that

(X |T = t)
D
= βt+ (Id − ββ′)Z = βt+Z − β(β′Z). (6.6)

The significance of (6.6) is that we do not need to explicitly compute ββ′. This saves

substantial computational effort when d is large.

6.4 Calibration of Proposal Density for the Multi-

Index IS

Recall from (6.3) that the proposal density of X considered by multi-index IS has the form

gX(x) = fX|T (x | t)gT (t). Since fX|T (x | t) is fixed, we have freedom in choosing gT (t),

the proposal density of T . In this section, we develop calibration methods for parametric

and nonparametric proposal densities of T .

6.4.1 Variance Minimization and Cross Entropy Method

Let m(2)(t) = E [Ψ2(X) |T = t], s(t) = E [|Ψ(X)| |T = t], and At = {t ∈ Rp | gT (t) > 0}.
Using an argument similar to the variance analysis for the single-index IS (Proposition
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4.3.3), it is easy to show that

nVar(µ̂IS,n) =

∫
At

m(2)(t)
f 2
T (t)

gT (t)
dt− µ2,

assuming that the IS estimator is unbiased. The proposal density gT (t) that minimizes

the variance of the IS estimator is

gVM
T (t) =

√
m(2)(t)fT (t)∫

Rd
√
m(2)(t)fT (t)dt

, t ∈ Rp. (6.7)

The calibration criterion for (6.7) is variance-minimization (VM) as it aims to minimize

the variance of the resulting IS estimator. Another popular calibration criterion is the

minimization of Kullback-Leibler divergence (KLD) [71] with respect to the theoretically

optimal proposal distribution and IS based on such calibration techniques is called the

cross-entropy (CE) method (see [26, 102, 103] and references therein). The advantage of the

CE method over the VM calibration is that the former often leads to optimization problems

that are easier to solve than the latter does. Recall from (2.16) that the theoretically

optimal proposal density has the form

g∗X(x) = c∗|Ψ(x)|fX(x), c∗ =

(∫
ΩX

|Ψ(x)|fX(x)dx

)−1

. (6.8)

Let DKL (·||·) denote a KLD operator, that is,

DKL (h(x)||r(x)) = Eh

[
ln
h(X)

r(X)

]
=

∫
Rd

ln

(
h(x)

r(x)

)
h(x)dx

for d-dimensional densities h(x) and r(x). Define

gKL
T (t) = c∗s(t)fT (t), t ∈ ΩT , (6.9)

where the normalizing constant c∗ is the same as the one for g∗X(x). The following propo-

sition states that when searching for a proposal density of X multi-index IS (6.3), min-

imizing DKL (g∗X(x)||gX(x)) is equivalent to minimizing DKL

(
gKL
T (t)||gT (t)

)
. Trivially,

gT (t) = gKL
T (t) is the optimal proposal density of T in the CE method.
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Proposition 6.4.1 (see p. 162 for proof). For a proposal density of X defined through

gT (t), that is, gX(x) = fX|T (x | t)gT (t),

DKL (g∗X(x)||gX(x)) = DKL

(
gKL
T (t)||gT (t)

)
+ c, (6.10)

where gKL
T (t) is defined as in (6.9) and c is a constant that does not depend on gT (t).

Of course, we do not know the exact shape of gKL
T (t) as it depends on the unknown con-

ditional absolute mean function s(t). Nonetheless, Proposition 6.4.1 provides a guideline

when searching for a proposal density of T ; we want to choose gT (t) that gives a heavier

weight to the region of ΩT where the product of gT (t) and s(t) is large. This observa-

tion becomes useful when choosing a parametric form for gT (t) in the simulation studies

of Section 6.5. The following proposition states how samples from g∗X(x) and gKL
T (t) are

related.

Proposition 6.4.2 (see p. 163 for proof). Let X∗ ∼ g∗X(x) defined as in (6.8) and let

T ∗ = T (X∗). Then T ∗ ∼ gKL
T (t) defined as in (6.9).

By Proposition 6.4.2, once we have samples from g∗X(x), we also have samples from

gKL
T (t). Of course, we cannot sample exactly from g∗X(x) but this observation becomes

useful when developing calibration methods for parametric and nonparametric proposal

distributions in Section 6.4.2 and Section 6.4.3.

From (6.7) and (6.9), gVM
T (t) = gKL

T (t) if v2(t) = 0 for all t ∈ ΩT . This occurs when

the multi-index model (6.2) gives a perfect fit. Otherwise, gVM
T (t) gives the estimator with

a smaller variance by construction, but the difference in variance should be small if the

fit is near perfect. We were able to use numerical inversion techniques to sample (almost)

exactly from the variance-minimizing proposal density for single-index IS (4.8) because T

is univariate under single-index model. For multi-index IS, T is multivariate, so sampling

exactly from (6.7) and (6.9) is a much more difficult task and one generally needs Markov

Chain Monte Carlo (MCMC) [36, 99] for this purpose. As MCMC is computationally

intensive, in this chapter we instead use parametric and nonparametric distributions that

approximate the optimal densities as proposal distributions.
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6.4.2 Parametric IS Density of T

Suppose that we have decided on the parametric form of the proposal density as gT (t;θ),

where θ ∈ Θ is the vector of parameters. Let gX(x;θ) = fX|T (x | t)gT (t;θ) denote the

corresponding proposal density of X. For simplicity, we assume that the support of T is

ΩT for all θ ∈ Θ. Ideally, we want to find the variance-minimizing θVM which satisfies

θVM = argmin
θ∈Θ

∫
ΩX

Ψ(X)
f 2
X(x)

gX(x;θ)
dx = argmin

θ∈Θ

∫
ΩT

m(2)(t)
f 2
T (t)

gT (t;θ)
dt, (6.11)

but it is generally difficult to solve this minimization problem. We thus take the CE

approach as it leads to optimization problems that are easier to solve. In particular, we

search for θKL that minimizes DKL (g∗X(x)||gX(x;θ)) and find

θKL = argmin
θ∈Θ

∫
ΩX

ln

(
g∗X(x)

gX(x;θ)

)
g∗X(x)dx

= argmax
θ∈Θ

∫
ΩX

ln (gX(x;θ)) |Ψ(x)|fX(x)dx

= argmax
θ∈Θ

∫
ΩX

ln (gT (tx;θ)) |Ψ(x)|fX(x)dx

= argmax
θ∈Θ

E[ln (gT (T ;θ)) |Ψ(X)|], X ∼ fX(x) (6.12)

= argmax
θ∈Θ

E[ln (gT (T ;θ)) s(T )], T ∼ fT (t) (6.13)

where tx = T (x). It is easier to solve (6.12) than (6.13) as s(T ) does not need to be known

or approximated when solving (6.12). Since analytically solving (6.12) is still difficult,

we may solve the stochastic counterpart based on M samples of X from the original

distribution

θ̂KL
M = argmax

θ∈Θ

1

M

M∑
i=i

ln(gT (Ti;θ))|Ψ(Xi)|, Xi ∼ fX(x). (6.14)

If the problem is rare-event simulation, then Ψ(X) = 0 for most samples ofX ∼ fX(x),

and therefore θ̂KL
M will not be a reliable estimate of θKL. We can use IS to improve the

quality of the estimation of θKL. To distinguish from the proposal distribution gX(x) of
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X used to construct an IS estimator µ̂IS,n, we refer to the proposal distribution of X used

to estimate θKL as a “design distribution” of X and we denote such a distribution of X

by hX(x). We then refer to wh(x) = fX(x)
hX(x)

as a design weight function. Given M design

samples (X1, . . . ,XM)
ind.∼ hX(x) and Ti = T (Xi) for i = 1, . . . ,M , one may solve the IS

version of (6.14)

θ̂KL
M = argmax

θ∈Θ

1

M

M∑
i=i

ln(gT (Ti;θ))|Ψ(Xi)|wh(Xi), Xi ∼ hX(x). (6.15)

If the shape of gKL
T (t) is approximately MVN, one may choose gT (t;θ) = gT (t;µT ,ΣT ) to

be the density of MVN(µT ,ΣT ) as the parametric family. Then, the analytical solution to

(6.15) is given by [20];

µ̂KL
T =

∑M
i=1|Ψ(Xi)|wh(Xi)Ti∑M
i=1|Ψ(Xi)|wh(Xi)

, Σ̂KL
T =

∑M
i=1|Ψ(Xi)|wh(Xi)(Ti − µ̂KL

T )(Ti − µ̂KL
T )′∑M

i=i|Ψ(Xi)|wh(Xi)
.

(6.16)

If the shape of gKL
T (t) is heavily skewed or multimodal, an MVN distribution may

not be an appropriate parametric family for gT (t;θ). In such a situation, more flexible

distributions, such as the generalized hyperbolic (GH) distribution [88] or a mixture of the

GH distributions may provide a better fit. The expectation-maximization (EM) algorithm

[29] is usually employed to estimate the parameters of the (mixture) GH distributions

[17, 88], but this technique is not directly applicable to (6.15). However, if hX(x) =

g∗X(x) = c∗|Ψ(x)|fX(x) as in (6.15), (X∗1 , . . . ,X
∗
M)

ind.∼ g∗X(x), and T ∗i := T (X∗i ) for

i = 1, . . . ,M , then (6.15) becomes

θ̂KL
M = argmax

θ∈Θ

1

M

M∑
i=i

ln(gT (T ∗i ;θ)) (6.17)

and computing such θ̂KL
M is similar to calculating maximum likelihood estimate (MLE) of

θ based on the samples (T ∗1 , . . . ,T
∗
M), as pointed out by Akaike [5]. In light of Proposition

6.4.2, this is equivalent to estimating θKL by computing the MLE of θ based on samples

from gKL
T (t). If samples from g∗X(x) were available, we could use techniques developed to

compute MLE, such as the EM algorithm, to obtain θ̂KL
M . However, in our case sampling
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exactly from g∗X(x) is infeasible and we only have samples from some design distribution

hX(x). We thus propose to use Sampling/Importance Resampling (SIR) [101, 111] to

obtain approximate samples from g∗X(x) based on samples from hX(x). Algorithm 9 gives

the detailed procedure for the SIR step. Starting with M samples from hX(x), Algorithm

Algorithm 9 Sampling/Importance Resampling to sample from g∗X(x) = c∗|Ψ(x)|fX(x)

1: Draw M samples (X1, . . . ,XM)
ind.∼ hX(x);

2: Compute the weights wi = |Ψ(Xi)|fX(Xi)
hX(Xi)

, i = 1, . . . ,M ;

3: Normalize the weights w̄i = wi/
∑M

i=1 wi, i = 1, . . . ,M ;

4: for i = 1, . . . ,M do

5: Draw r ∈ {1, . . . ,M} with probabilities (w̄1, . . . , w̄M) and let X#
i = Xr;

6: end for

7: return (X#
1 , . . . ,X

#
M).

9 returns M approximate samples (X#
1 , . . . ,X

#
M) from g∗X(x). We then let T#

i = T (X#
i )

for i = 1, . . . ,M and compute the MLE of θ based on the T#
i ’s.

As mentioned in Smith and Gelfand [111], the efficiency of SIR depends on how closely

hX(x) approximates g∗X(x). If hX(x) deviates significantly from g∗X(x), one needs to start

with a very large number of samples from hX(x) to obtain approximate samples from

g∗X(x) of acceptable quality.

6.4.3 Nonparametric (Kernel) IS density of T

Construction Kernel IS density Estimator

From Proposition 6.4.1, gKL
T (t) defined in (6.9) is the optimal proposal density of T in

the CE method. In this section, we construct a kernel density estimate [46, 109, 108] of

gKL
T (t). Let K : Rp → R be a p-variate kernel function (see [108, p. 153]), let H denote

a (nonsingular) p × p bandwidth matrix with determinant det(H), and define KH(t) =
1

det(H)
K (H−1t). See [47, Table 3.1] for a list of common univariate kernel functions and

[108, p. 153] for the conditions that K needs to satisfy to be a proper multivariate kernel.
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If we have M independent design samples (T ∗1 , . . . ,T
∗
M) from gKL

T (t), we can construct a

nonparametric density estimate of gKL
T (t) as

gKD
T (t) =

1

M

M∑
i=1

KH (T ∗i − t) . (6.18)

By Proposition 6.4.2, if we have samples from g∗X(x), we can construct the nonparametric

proposal density (6.18). Of course, sampling from g∗X(x) is infeasible and the estimate

(6.18) is not attainable. If we instead haveM independent design samples (X1, . . . ,XM)
ind.∼

hX(x), we can compute Ti = T (Xi), i = 1, . . . ,M and construct the IS version of (6.18)

as

gKD
T (t) = cKD

M∑
i=1

KH (Ti − t)
|Ψ(Xi)|fX(Xi)

hX(Xi)
=

M∑
i=1

KH (Ti − t)wi, (6.19)

where KD stands for kernel density, cKD =
(∑M

i=1
|Ψ(Xi)|fX(Xi)

hX(Xi)

)−1

is the normalizing con-

stant, and wi = cKD |Ψ(Xi)|fX(Xi)
hX(Xi)

.

If the kernel K(·) is a pdf of some p-dimensional random vector, we can interpret (6.19)

as a mixture of M distributions centred at Ti’s where wi is the mixture weight of ith

component. In this chapter, we use the multivariate normal kernel

KMVN(t) = (2π)−
p
2 exp

(
−1

2
t′t

)
. (6.20)

Noting that KMVN
H (T − t) is the density of MVN(T , H ′H), one can draw a sample from

(6.19) based on the MVN kernel (6.20) by first drawing an index J ∈ {1, . . . ,M} according

to the probabilities {w1, . . . , wM} and then generating a sample from MVN(TJ , H
′H).

Selection of the bandwidth matrix H

The performance of kernel methods, such as density estimation and regression, heavily

depends on the choice of the bandwidth parameters. The performance of IS based on the

kernel density (6.19) is also sensitive to the selection of bandwidth matrix H. Thus, we

discuss our strategy of finding a good bandwidth matrix here.
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Suppose that we have M design samples of (X∗1 , . . . , X
∗
M) from g∗X(x). We then want

to choose H that accurately approximates the density of T ∗i = T (X∗i ), i = 1, . . . ,M in

light of Proposition 6.4.2. If the shape of gKL
T (t) is well approximated by the density of

MVN(ηKL
T ,ΣKL

T ), Härdle et al. [47, p.73] suggest a generalization of Scott’s rule [108, p.152]

that sets

H = M−1/(p+4)(ΣKL
T )1/2. (6.21)

The estimate Σ̂KL
T of ΣKL

T can be computed as in (6.16) based on the design samples. Since

we essentially have M weighted samples from g∗X(x), we replace M in (6.21) with the

effective sample size (see [84],[91, Ch.9]) Me =
(∑M

i=1wi

)2

/
∑m

i=1 w
2
i , where wi is defined

in (6.19) and set

H = M−1/(p+4)
e (Σ̂KL

T )1/2. (6.22)

If the shape of gKL
T (t) is not elliptical, the covariance part of H does not carry much

information. In this case, setting the off-diagonal entries of H to 0 may be a better option.

Computational Aspect

The bottleneck of using the nonparametric density (6.19) as a proposal distribution is

the high computational cost associated with evaluating the density. If M design samples

are used to construct a nonparametric IS distribution and n samples are drawn from this

distribution to construct an IS estimator, the nonparametric proposal density must be

evaluated n times in order to computes the IS weights, costing O(Mn) operations under

naive implementation. Hence, when M and n are moderately large, the computation of

the IS weights becomes prohibitively slow, hindering the variance reduction achieved by

nonparametric IS meaningless. Thus, techniques that speed up the calculation of kernel

density should be employed for IS that uses kernel density estimations, such as the fast

Gaussian transformation [32, 122].
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6.5 Simulation Study: Pricing an Arithmetic Rain-

bow Asian Option

In this section, we apply multi-index IS to the pricing of arithmetic rainbow Asian options

whose payoffs are essentially the maximum of two arithmetic Asian payoffs. Efficient pricing

of those options are investigated by Peng and Peng [94] where the geometric rainbow Asian

options are used as CV to reduce the variance of estimating the arithmetic option prices.

The success of the CV scheme suggests that the arithmetic payoffs have a multi-index,

or more specifically double-index, structure so we can test whether or not our proposed

multi-index IS method performs well when the problem indeed has the desired multi-index

structure. We compare the efficiency of multi-index IS to that of single-index IS and IS

without any dimension reduction features.

6.5.1 Problem Formulation

Suppose that the price of Stock A and Stock B under the risk-neutral measure follow

correlated geometric Brownian motions

dSAt = rSAt dt+ σAS
A
t dW

A
t ,

dSBt = rSBt dt+ σBS
B
t dW

B
t ,

where SAt and SBt are the price of Stock A and Stock B at time t, respectively, r is the

risk-free rate, σA and σB are the respective volatility parameters, and WA
t and WB

t are

correlated Brownian motions with the correlation coefficient ρ such that dWA
t ·dWB

t = ρdt.

Fix T ∈ [0,∞) and d ∈ N. Let ∆t = T/d and tj = j∆t for j = 1, . . . , d. Given (SA0 , S
B
0 ),

the price of Stock A and Stock B at time tj, j = 1, . . . , d can be recursively expressed as

SAtj = SAtj−1
exp

(
(r − σ2

A/2)∆t+ σA
√

∆tZ
(1)
j

)
,

SBtj = SBtj−1
exp

(
(r − σ2

B/2)∆t+ σB
√

∆t
(
ρZ

(1)
j +

√
1− ρ2Z

(2)
j

))
,

where Z
(1)
1 , . . . , Z

(1)
d , Z

(2)
1 , . . . , Z

(2)
d

ind.∼ N(0, 1). Let SAa = 1
d

∑d
j=1 S

A
tj

and SBa = 1
d

∑d
j=1 S

B
tj

denote the arithmetic averages of the prices of Stock A and Stock B, respectively, observed
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at time tj, j = 1, . . . , d. The payoff of an arithmetic rainbow Asian option with strike price

K is max(max(SAa , S
B
a ) − K, 0). Then by risk-neutral pricing (see [37, pp. 27-30]), the

price of the option is written as

ca = exp(−rT )E[max(max(SAa , S
B
a )−K, 0)].

Let Z = (Z
(1)
1 , . . . , Z

(1)
d , Z

(2)
1 , . . . , Z

(2)
d ), then since SAa and SBa are functions of Z, we can

write the payoff function as

Ψ(Z) = max(max(SAa (Z), SBa (Z))−K, 0).

Note that the dimension of this problem is 2d and Ψ(z) ≥ 0 for all z ∈ R2d. Since

E[max(max(SAa , S
B
a ) − K, 0)] does not have an analytical form, we use multi-index IS to

estimate the price of this option. The parameters we consider are SA0 = SB0 = 100, r = 0.05,

σA = σB = 0.3, K = 120, ρ ∈ {0, 0.5, 1}, and d ∈ {16, 64, 128}. Under these parameters,

SAa and SBa are identically distributed.

6.5.2 Single vs Double-index Model for Rainbow Asian Payoff

Let SAg = (
∏d

j=1 S
A
tj

)1/d and SBg = (
∏d

j=1 S
A
tj

)1/d denote the geometric averages of the prices

of Stock A and Stock B, respectively, observed at time tj, j = 1, . . . , d. The payoff of the

geometric rainbow Asian option is max(max(SAg , S
B
g )−K, 0). For b = 1+d

2
(r− σ2/2)∆t, it

is easy to show that

SAg =

(
d∏
j=1

SAtj

)1/d

= SA0 exp

(
b+ σ

√
∆t

1

d

d∑
j=1

(d− j + 1)Z
(1)
j

)
,

SBg =

(
d∏
j=1

SAtj

)1/d

= SA0 exp

(
b+ σ

√
∆t

1

d

d∑
j=1

(d− j + 1){ρZ(1)
j +

√
1− ρ2Z

(2)
j }

)

Define β1,β2 ∈ R2d as β1 ∝ (d, d − 1, . . . , 1, 0, . . . , 0)′ and β2 ∝ (0, . . . , 0, d, d − 1, . . . , 1)′

such that β′1β1 = β′2β2 = 1 so T = (T1, T2)′ = (β
′
1Z,β

′
2Z)′ ∼ MVN(0, I2). Notice that the

geometric rainbow payoff depends on Z only through T , that is, the geometric rainbow
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Asian option has a perfect double-index structure. We then expect that the arithmetic

counterpart has a strong double-index structure, as implied by the analysis in [94].

The question is whether double-index IS is necessary. If the single-index model fits as

well as the double-index one does, one can simply use single-index IS. If ρ = 1, we essentially

have only one asset and the problem reduces to pricing an arithmetic Asian option on a

single asset. As shown in Section 4.7.1, the problem has a nearly perfect single-index

structure and single-index IS gives substantial variance reduction. The same argument

holds for the case ρ = −1, but we mainly consider ρ > 0. It is not immediately clear how

good the fit of the single-index model will be when |ρ| 6= 1, so we numerically compare

the fit of the single-index model to that of the double-index one. The transformation

variable that we use for single-index IS has the form TS = β
′
SZ, where β

′
SβS = 1 so that

TS ∼ N(0, 1). Unlike the double-index case, the form of the direction vector β
′
S cannot

be deduced analytically. Thus, we used the average derivative method of Stoker [114] and

found that the optimal βS has the form βS = ρβ1 +
√

1− ρ2β2, where β1 and β2 are

defined above for multi-index IS.

Figure 6.1 shows the scatter plot of (TS,Ψ(Z)) for the single-index model and

(T1, T2,Ψ(Z)) for the double-index model, for ρ = 0 and ρ = 0.5 based on 5,000 samples

from the original distribution for d = 16. The figure shows that the double-index model

gives a near perfect fit while single-index model fits very poorly, for both ρ = 0 and ρ = 0.5.

These scatter plots suggest that multi-index IS will perform better than the single-index

counterpart if ρ = 0 and ρ = 0.5. While additional plots are not included, we note that

the fit of the single-index and double-index models are fairly constant for different values

of d. For instance, the double-index model gives a near perfect fit even when d = 128.

We test parametric and nonparametric double-index IS based on the calibration meth-

ods developed in Section 6.4.2 and Section 6.4.3. For parametric double-index IS, it is

important to choose an appropriate parametric family of the proposal density of T . Thus,

we use a visual aid to gauge the rough shape of gKL
T (t). Figure 6.2 shows the scatter plots

of (T1, T2,Ψ(X)fT (T )) for ρ = 0 and ρ = 0.5 based on 5,000 samples from the original dis-

tribution. Since gKL
T (t) ∝ E[Ψ(Z) |T ]fT (t), the plot shows an unnormalized, unsmoothed

version of gKL
T (t). From the figure, Ψ(Z)fT (T ) is bimodal so gKL

T (t) should also be bimodal.

Thus, we use a mixture of two bivariate normal distributions as a parametric family.
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Figure 6.1: Scatter plot of index variables against payoff based on 5,000 observations

(a) (TS ,Ψ(Z)), ρ = 0 (b) (T1, T2,Ψ(Z)), ρ = 0

(c) (TS ,Ψ(Z)), ρ = 0.5 (d) (T1, T2,Ψ(Z)), ρ = 0.5
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Figure 6.2: Scatter Plot of index variables against payoff based on 5,000 observations

(a) (TS ,Ψ(Z)fT (T )), ρ = 0 (b) (T1, T2,Ψ(Z)fT (T ))), ρ = 0.5

6.5.3 Comparison of Single, Multi-index and Full IS

We compare the performance of single-index IS, double-index IS and IS without dimension

reduction. Table 6.1 lists the IS techniques considered in this section and we explain each

technique here. All IS techniques considered require samples from a design distribution

to calibrate the proposal distribution and we use the original distribution as the design

distribution, that is, hZ(z) = fZ(z) for this simulation study. For single-index IS, referred

to as “Single-index”, we use the variance-minimizing density (4.8) as the proposal density

of TS. For double-index IS, we consider parametric density of T based on a mixture of two

bivariate normal distributions, referred to as “DI-MixBVN”, and then a nonparametric

proposal density, referred to as “DI-NP”, defined by (6.19). For DI-MixBVN, the param-

eters are calibrated using the EM algorithm as in [96] based on the approximate samples

from g∗X(x) obtained by applying the SIR method of Algorithm 9 to design samples. To

assess the validity of the dimensionality problem of IS discussed in Section 2.2.3, we con-

sider IS schemes that directly applies IS on Z without any dimension reduction technique.

Note that directly applying IS on Z is equivalent to the multi-index IS with p = 2 ∗ d and

β = I2∗p so we call such IS schemes as “full IS”. For full IS, we consider MVN(µZ ,ΣZ),

131



referred to as “Full-MVN1”, MVN(µZ , I2∗d), referred to as “Full-MVN2”, and a nonpara-

metric distribution, referred to as “Full-NP”, defined by (6.19) as proposal distributions

of Z, where µZ and ΣZ are calibrated as in (6.16). Tables 6.2, 6.3, and 6.4 respectively

show the estimated price of the option, the variance reduction factors, and the ratio of

computation time over plain MC, with and without QMC.

Table 6.1: Summary of Variance Reduction Techniques

Method Description

Plain Plain (Q)MC (no IS)

Single-index Single-index IS with the optimal calibration (4.8).

DI-MixBVN Multi-index IS with a mixture of two bivariate normal as a proposal for T .

DI-NP Multi-index IS with a noparametric proposal density (6.19) for T .

Full-MVN1 IS with MVN(µZ ,ΣZ) as the proposal distribution of Z, where µZ ,ΣZ are estimated as (6.16).

Full-MVN2 IS with MVN(µZ , I2∗d) as the proposal distribution of Z, where µZ is estimated as (6.16).

Full-NP IS with a nonparametric proposal density (6.19) for Z.

In Table 6.2, the estimates with large estimation errors are underlined. We note that

the support of all IS distributions considered are Rd, so they give unbiased estimators in

theory. As the estimates are based on a fairly large number of samples (214 ∗ 30 samples),

estimates with large estimation errors suggest that the corresponding IS methods give

unreliable estimates (see Section 2.2.3 for the notion of unreliable estimates and estimators).

In general, Full-MVN1 and Full-NP give unreliable estimates unless d = 16 and ρ = 1.

Among the three full IS methods considered, only Full-MVN2 appears to give reliable

estimates. This observation is consistent with the result in Au and Beck [10] that altering

the covariance matrix of the original distribution for IS often leads to unreliable estimates.

The estimates based on single-index and double-index IS all seem reliable.

In Table 6.3, the VRFs corresponding to the estimates given by Full-NP for d = 64

and d = 128 are underlined. As the estimated prices given by Full-NP are clearly far from

the true prices, the seemingly large VRFs do not reflect the actual performance of Full-NP

because the mean squared errors are large. Single-index IS gives the greatest variance

reduction when ρ = 1 but it struggles when ρ = 0 and ρ = 0.5, consistent with the poor

fit of the single-index model for ρ = 0 and ρ = 0.5, as shown in Figure 6.1. In those two
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cases, DI-NP and DI-MixBVN achieve the greatest variance reduction for MC and QMC,

respectively. It appears that DI-NP does not work well with QMC. Note that Full-MVN1

gives greater variance reduction than Full-MVN2 does when d = 16 and ρ = 1. This result

indicates that having a flexible covariance matrix for the proposal density of T improves the

performance of IS compared to when the covariance matrix is constrained to the identity

matrix when the dimension of the problem is low. But the advantage disappears and the

estimate becomes unreliable in high dimension. Overall, DI-NP and DI-MixBVN seem to

be the best methods as they give reliable estimates with small variance.

From Table 6.4, we see that the nonparametric IS, DI-NP and Full-NP, take much

more computation time than plain MC and parametric IS, hindering the effectiveness of

these methods. As discussed in Section 6.4.3, the bottleneck of the nonparametric IS is

the evaluation of the nonparametric proposal densities to compute the IS weights. Hence,

the implementation of techniques to speed up the computation of nonparametric proposal

densities is necessary to use nonparametric IS in practice. For IS techniques that do not use

kernel density, the ones with a dimension reduction feature (Single-index and DI-MixBVN)

appear to run faster than the ones without (Full-MVN1, Full-MVN2). When estimation

reliability, variance reduction, and computation time are taken into account, DI-MixBVN

seems to be the best method.
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Table 6.2: The estimated price of the rainbow Asian option: n = 214, 30 replications

Method d = 16 d = 64 d = 128

ρ = 0 ρ = 0.5 ρ = 1 ρ = 0 ρ = 0.5 ρ = 1 ρ = 0 ρ = 0.5 ρ = 1

MC

Plain 4.13 3.69 2.16 3.77 3.37 1.96 3.71 3.32 1.93

Single-index 4.12 3.69 2.15 3.78 3.37 1.97 3.72 3.32 1.94

DI-MVN 4.13 3.69 2.16 3.77 3.37 1.97 3.71 3.32 1.94

DI-NP 4.13 3.69 2.16 3.77 3.37 1.97 3.71 3.31 1.94

Full-MVN1 4.28 3.93 2.15 4.41 4.06 2.63 5.87 8.18 14.45

Full-MVN2 4.13 3.68 2.16 3.79 3.38 1.97 3.69 3.31 1.94

Full-NP 4.18 3.60 2.13 0.00 0.00 0.00 0.00 0.00 0.00

QMC

Plain 4.12 3.68 2.16 3.77 3.37 1.97 3.71 3.31 1.94

Single-index 4.12 3.68 2.15 3.77 3.37 1.97 3.71 3.32 1.94

DI-MVN 4.13 3.69 2.16 3.77 3.37 1.97 3.71 3.32 1.94

DI-NP 4.13 3.68 2.16 3.77 3.37 1.97 3.71 3.32 1.94

Full-MVN1 4.30 3.94 2.16 4.42 4.10 2.84 7.55 14.29 239.6

Full-MVN2 4.13 3.68 2.16 3.77 3.37 1.97 3.71 3.32 1.94

Full-NP 4.10 3.57 2.11 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.3: The variance reduction factors of various methods: n = 214, 30 replications

Method d = 16 d = 64 d = 128

ρ = 0 ρ = 0.5 ρ = 1 ρ = 0 ρ = 0.5 ρ = 1 ρ = 0 ρ = 0.5 ρ = 1

MC

Single-index 2.0E+00 4.8E+00 3.2E+02 2.4E+00 7.1E+00 5.0E+02 1.9E+00 4.5E+00 5.0E+02

DI-MVN 1.4E+01 1.7E+01 4.3E+01 4.6E+01 3.1E+01 3.6E+01 2.2E+01 3.3E+01 4.6E+01

DI-NP 1.9E+01 2.2E+01 6.9E+01 7.0E+01 4.5E+01 4.6E+01 2.5E+01 2.0E+01 9.6E+01

Full-MVV1 3.1E+00 2.0E+00 3.4E+00 5.0E-02 4.0E-02 1.0E-02 3.4E-04 4.6E-05 6.1E-06

Full-MVV2 1.6E+00 3.9E+00 1.7E+01 2.7E+00 6.7E+00 1.1E+01 1.7E+00 2.9E+00 1.1E+01

Full-NP 1.2E-02 1.2E-02 3.2E-02 1.1E+05 9.3E+05 8.9E+06 1.4E+41 4.7E+39 1.4E+39

QMC

Plain 9.2E+00 5.7E+00 2.8E+01 8.0E+00 9.5E+00 5.2E+00 3.4E+00 6.9E+00 4.7E+00

Single-index 1.8E+01 1.5E+01 9.4E+03 2.3E+01 3.9E+01 1.3E+03 9.4E+00 2.8E+01 2.7E+03

DI-MVN 3.1E+02 4.4E+02 1.2E+03 1.2E+02 6.4E+01 1.1E+03 2.0E+02 5.4E+02 1.2E+02

DI-NP 7.0E+01 3.8E+01 2.8E+02 1.3E+02 7.2E+01 8.5E+01 5.6E+01 2.7E+00 6.7E+01

Full-MVN1 4.7E+00 2.4E+00 5.4E+00 5.6E-02 4.2E-02 5.4E-04 1.2E-04 1.4E-06 1.4E-09

Full-MVN2 4.0E+00 4.0E+00 6.1E+01 1.6E+01 2.0E+01 2.1E+01 4.3E+00 8.3E+00 3.5E+01

Full-NP 1.3E-02 1.5E-02 3.6E-02 3.3E+09 2.1E+08 7.8E+09 1.2E+39 8.5E+36 1.1E+39
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Table 6.4: The computational time relative to plain MC: n = 214, 30 replications

Method d = 16 d = 64 d = 128

ρ = 0 ρ = 0.5 ρ = 1 ρ = 0 ρ = 0.5 ρ = 1 ρ = 0 ρ = 0.5 ρ = 1

MC

Single-index 1.2 1.3 1.3 1.8 1.7 1.7 2.1 2.2 2.3

DI-MVN 1.3 1.3 1.3 1.8 1.7 1.7 2.1 2.2 2.2

DI-NP 14.0 13.4 8.7 5.5 4.5 3.7 4.1 3.8 3.2

Full-MVV1 1.4 1.5 1.5 2.6 2.4 2.7 4.2 4.2 4.1

Full-MVV2 1.3 1.4 1.3 2.0 1.8 2.1 2.9 3.0 3.1

Full-NP 54 50 31. 28 23 16 23 23 15

QMC

Plain 0.9 1.0 1.0 0.9 0.8 1.1 0.9 1.0 1.0

Single-index 1.2 1.4 1.2 1.7 1.5 2.0 2.2 2.2 2.3

DI-MVN 1.2 1.3 1.3 1.6 1.5 1.7 2.2 2.3 2.3

DI-NP 14.0 13 8.6 5.3 4.5 4.1 4.1 4.0 3.2

Full-MVV1 1.4 1.4 1.4 2.6 2.3 2.7 3.9 4.0 4.0

Full-MVV2 1.2 1.3 1.3 2.0 1.8 2.0 2.8 2.9 2.9

Full-NP 54 50 32 29 22 16 23 22 15
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Chapter 7

Concluding Remarks and Future

Research Directions

In this thesis, we explored IS techniques that exploit low-dimensional structures commonly

observed in high-dimensional financial problems. In particular, we developed IS and SS

schemes for three structural assumptions: the output takes a large value when at least one

of the input variables is large; a single-index model where the output depends on the input

variables mainly through some one-dimensional projection; and a multi-index model where

the output depends on the input mainly through a set of linear combinations. We applied

the techniques developed in this thesis to a variety of financial problems and our IS and

SS schemes achieved substantial variance reduction in many cases.

The two major IS frameworks developed in this thesis are single-index and multi-index.

Our treatment of multi-index IS is far from complete and we believe that we can improve

multi-index IS in many ways. We discuss three of such ideas that we would like to explore

in the future.

The first idea for improvement is the development of multi-index SIS. For the single-

index IS developed in Chapter 4, it was fairly straightforward to combine that single-index

IS with the SS idea and form single-index SIS. The stratified version of multi-index IS

developed in Chapter 6 was never considered in this thesis. Single-index SIS essentially

stratifies the domain of X along T = T (X). As T is univariate, such stratification makes
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sure that the sampled T are well structured. The same idea is hard to generalize for multi-

index IS as T is now multivariate. If p = 3 and we stratify each component of T into 10

strata, it generates 103 strata overall. If we look only at one-dimensional projections of T ,

that samples will not be as well structured as the single-index case because we only have

10 strata in each dimension. A more clever approach would be to use a QMC point set

when generating T . This way, the low-dimensional projection of T will be well structured.

For problems involving the pricing of path-dependent European options under the Black-

Scholes framework, using a QMC point set to generate T is equivalent to using a QMC

point set to stratify certain weighted sums of the path of the Brownian motion. Such

idea has been explored by Kolkiewicz [69] and the numerical examples in [69] demonstrate

substantial variance reduction when applied to Asian option pricing problems.

The second idea for improvement is modifying the calibration methods for multi-index

IS developed in Section 6.4. Recall from Proposition 6.4.1 that the optimal proposal density

for T for the CE calibration has the form gKL
T (t) = c∗s(t)fT (t). The calibration technique

for the parametric proposal density gT (t;θ) developed in Section 6.4.2 searches for θKL

such that

θKL = argmax
θ∈Θ

∫
ΩX

ln (gT (tx;θ)) |Ψ(x)|fX(x)dx

= argmax
θ∈Θ

E[ln (gT (T ;θ)) |Ψ(X)|], X ∼ fX(x) (7.1)

= argmax
θ∈Θ

E[ln (gT (T ;θ)) s(T )], T ∼ fT (t). (7.2)

We proposed to solve (7.1) instead of (7.2) as s(T ) does not need to be known or ap-

proximated when solving (7.1). If p (the dimension of T ) is large, it is very hard to

nonparametrically approximate the conditional moment function s(T ). So the procedure

that avoids approximating s(T ) is a better option. If p is 2 or 3, however, it is possible

to nonparametrically approximate s(T ) with reasonable accuracy and solve (7.2) with the

approximation. We can use the same idea when calibrating the nonparametric regression.

That is, replace |Ψ(X)| with s(T ). Our preliminary work finds that taking this route often

gives a more reliable estimate of θKL. We would like to investigate this point further in

the future.

The third idea for improvement is to compare the techniques developed to estimate the
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direction matrix β for multi-index IS and examine which ones work best with multi-index

IS. As mentioned in Section 6.2, Imai and Tan [58] developed an estimation procedure for β

as a dimension technique for QMC. On the other hand, a variety of estimation procedures

for β such as sliced inverse regression [78] and sliced average variance estimates [25] have

been proposed for sufficient dimension reduction. We did not apply these techniques to

estimate β for rainbow Asian option pricing in Section 6.5. Rather, we deduced the

form of β analytically. Since such analytical form for β is rarely available, we would

like to implement these methods and estimate β for financial applications and compare

and see which estimation techniques of β work best with multi-index IS. Also, it would

be interesting to investigate whether the techniques developed for sufficient dimension

reduction can be used as dimension reduction techniques for QMC.
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Appendix

A Parameter estimation for GH skew-t copulas

The fitting procedure based on the EM algorithm [29] for the GH skew-t distribution

is studied by Aas and Haff [1]. On the other hand, there is currently no work, to our

knowledge, that addresses the parameter estimation for the GH skew-t copula. We explore

the semi-parametric pseudo-MLE procedure that takes advantage of the EM algorithm in

this section.

Suppose we have n samples of independent and identically distributed d-dimensional

vectors X1, . . . ,Xn. We write the jth component of ith vector as Xi,j. Our goal is to

find the MLE estimates of the parameters for the GH skew-t copula while the d marginals

are estimated non-parametrically by the empirical CDFs. Such estimation procedures are

called the semi-parametric pseudo-MLE estimation [33]. The empirical CDF of the jth

component of X is

F̂j(x) =
1

n+ 1

n∑
i=1

1{Xi,j ≤ x}.

The pseudo-copula samples are constructed as

Ûi =
(
F̂1(Xi,1), . . . , F̂d(Xi,d)

)′
, i = 1, . . . , n.

As discussed in [28], the pseudo-observations are dependent even if the original samples

X1, . . . ,Xn are independent. Nevertheless, the pseudo-MLE method treats the pseudo-

copula samples as independent and maximize the copula likelihood. The log-likelihood to
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maximize is

logL(ν,γ, P ; Û1, . . . , Ûd) =
n∑
i=1

log ctν,P,γ(Ûi), (3)

and by (4.22) we can write

logL(ν,γ, P ; Û1, . . . , Ûd) =
n∑
j=1

log fst(X̂i; ν, 0, P,γ)−
n∑
j=1

d∑
i=1

log fst(X̂i,j; ν, 0, 1, γj), (4)

where X̂i,j = Fst
−1(Ûi,j; ν, 0, 1, γi) for i = 1, . . . , n and j = 1, . . . , d and X̂i = (X̂i,1, . . . , X̂i,d).

We refer to the X̂i’s as pseudo-skew-t samples. The fact that the marginal transforma-

tions xi,j = Fst
−1(Ûi,j; ν, 0, 1, γj) depend on the parameters to be estimated makes this

log-likelihood hard to maximize. Demarta and McNeil [28] argue that the maximization is

not particularly easy in higher dimensions for symmetric t-copulas as we have to maximize

over the space of the correlation matrix P . For a skew-t copula, we also need to estimate

the skewness parameters γ, making the maximization harder. The main idea of our ap-

proach is that if we fix ν and γ, we can use the EM algorithm to efficiently estimate the

correlation matrix P , turning the 1 + d(d − 1)/2 + d dimensional optimization problem

into a 1 + d dimensional problem. This is a large reduction in complexity of the problem,

especially in high-dimensional cases.

Observe that the marginal transformations X̂i,j = Fst
−1(Ûi,j; ν, 0, 1, γj) do not depend

on the correlation matrix P . That is, the second term of (4.22) is constant with respect

to P . If we treat ν and γ as fixed, we only need to find P that maximizes the first term

of (4.22). This is simply a problem of finding the MLE of the correlation matrix under a

GH skew-t distribution, and we can use the EM alogrithm for this purpose. Then, we use

some non-convex optimization solver to find the MLE of ν and γ. Since the EM algorithm

does not require that the estimated covariance matrix be a correlation matrix, we have

to scale the estimated covariance matrix to a correlation matrix. By the construction of

the pseudo skew-t samples, the d marginals have a unit variance. Thus, the estimated

covariance matrix will have its diagonal entries close to 1, so the scaling will not alter the

estimated matrix much. That is, we will not lose much by scaling the covariance matrix

in terms of log-likelihood.
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B Proofs

Proof of Theorem 3.3.1. Due to Leibniz’ integral rule, dG(u) =
∫ 1

0
dCλ(u)dFΛ(λ). From

the definition of Cλ, we can derive the differential

dCλ(u) =

0, u ∈ [0, λ]d,

dC(u)
1−C(λ1)

, otherwise.

Using both identities, we obtain

dG(u) = dC(u)

∫ 1

0

1{λ≤max{u1,...,ud}}

1− C(λ1)
dFΛ(λ),

leading to the desired result.

Proof of Proposition 3.3.3. We sample (E1, . . . , Ed, V ) | (E(1) < γV ) using conditional dis-

tribution sampling. That is, we first sample (E(1), V ) | (E(1) < γV ), which is the Step 1

of Algorithm 3. Given the (E(1), V ) drawn, we then want to sample (E1, . . . , Ed) | (E(1) <

γV,E(1), V ) which is equivalent to sampling (E1, . . . , Ed) |E(1) and this is the Step 2 of the

algorithm.

Proof. Proof of Proposition 3.3.4 First, consider the case where xj = x for some j =

1, . . . , k − 1. Without loss of generality assume that x1 = x, i.e., E1 = E(1). So we want

to find P(Ek ≤ xk |E1 = x1, . . . , Ek−1 = xk−1, E(1) = E1 = x). From (3.7), the conditional

distribution of Ek is x+ Exp(1). So the above probability equals

P(Ek ≤ xk |E1 = x1, . . . , Ek−1 = xk−1, E(1) = x) = 1− e−(xk−x). (5)

Next, we consider the case xj 6= x for all j = 1, . . . , k − 1. This means that Ej = E(1)

for some j = k, . . . , d. Since all Ej are iid, there is a 1
d−k+1

probability that Ek = E(1). In

such a case Ek = x with probability 1 as we are given E(1) = x. Suppose Ek 6= E(1), which
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occurs with probability of d−k
d−k+1

. Then we need to find the probability

P(Ek ≤ xk |E1 = x1, . . . , Ek−1 = xk−1, E(1) = x,Ej 6= E(1), j = 1, . . . k)

=
d∑

j=k+1

1

d− k
P(Ek ≤ xk |E1 = x1, . . . , Ek−1 = xk−1, E(1) = x,Ej = E(1))

= P(Ek ≤ xk |E1 = x1, . . . , Ek−1 = xk−1, E(1) = x,Ed = E(1)) = 1− e−(xk−x).

The last equality again holds by (3.7) and the result follows.

Proof of Proposition 3.5.1. Recall that the IS estimator with n samples is

µ̂IS,n =
1

n

n∑
i=1

Ψ0(Ui)w(Ui), Ui
ind.∼ G (6)

and the weight function is

w(u) =
( M∑
k=1

1{λk ≤ max{u1, . . . , ud}}
1− C(λk1)

qk

)−1

. (7)

Note from (7) that w(u) is constant over each stratum Ω
(k)
C defined as in (3.9). Thus, for

u ∈ Ω
(k)
C , we can define the stratum weight as

wk =

(
k∑
l=1

ql
1− Cl

)−1

, k = 1, . . . ,M. (8)

The second moment of Ψ0(U)w(U) under the IS distribution is is

EG[Ψ2
0(U)w2(U)] = EG[Ψ2

0(U)w(U)] =
M∑
k=1

pkEC [Ψ2
0(U)w(U) |Ωk]

=
M∑
k=1

pkw̃kEC [Ψ2
0(U) |Ωk] =

M∑
k=1

pkwkµ
(2)
k =

M∑
k=1

pk

(
k∑
l=1

1

1− Cl
ql

)−1

µ
(2)
k .

The third equality holds because w̃(t) is constant over each stratum. The last equality

follows from (8). Then the variance of the importance sampling estimator based on n

samples is

Var(µ̂IS,n) =
1

n

 M∑
k=1

pk

(
k∑
l=1

1

1− Cl
ql

)−1

µ
(2)
k − µ

2

 .
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Proof of Proposition 3.5.2. Since the variance expression (3.12) is convex in the qk’s, the

minimization problem can be solved using the Lagrange multiplier method. Nevertheless,

we simplify (3.12) so that minimization problem becomes easier. Let p̃k = P (Ũ ∈ Ωk), the

stratum probability under the proposal distribution. Observe that

p̃k =
M∑
l=1

ql · PG(Ũ ∈ Ωk |Λ = λl) =
k∑
l=1

ql · PC(U ∈ Ωk |Λ = λl)

=
k∑
l=1

ql · PC(U ∈ Ωk |T > λl) =
k∑
l=1

ql
pk

1− Cl
= pk

k∑
l=1

ql
1− Cl

. (9)

By (8) and (9), we can write wk = pk
p̃k

. The stratum weight wk is the ratio of the stratum

probability under the original distribution to the one under the IS distribution. Substitut-

ing this expression into (3.12),

Var(µ̂IS,n) =
1

n

(
M∑
k=1

p2
k

p̃k
µ

(2)
k − µ

2

)
. (10)

Using the Lagrange multiplier method, it is easy to show that the optimal p̃k for k =

1, . . . ,M is

p̃optk =
pk

√
µ

(2)
k

M∑
k=1

pk

√
µ

(2)
k

. (11)

Note that this optimal choice of p̃k’s resembles the Neyman allocation, the optimal alloca-

tion under stratified sampling. Using the relation qk = (1−Ck)
(
p̃k
pk
− p̃k−1

pk−1

)
, (with p̃0

p0
= 0)

the optimal qk has the form

qopt
k ∝ (1− Ck)

(√
µ

(2)
k −

√
µ

(2)
k−1

)
, (with µ

(2)
0 = 0). (12)

The assumption that µ
(2)
1 ≤ · · · ≤ µ

(2)
M ensures that qopt

k ≥ 0 for k = 1, . . . ,M .
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Proof of Proposition 3.5.4. We have µ̂det
IS,n = 1

n

∑M
k=1

∑nqk
j=1 Ψ(Ũki)w(Ũki), Ũki

iid∼ U |Λ =

λk. Thus Var(µ̂det
IS,n) = E

[
Var(Ψ(Ũ)w(Ũ) |Λ)

]
/n + O(1/n2) (term due to rounding nqk).

Since Var(µ̂IS,n) = 1
n

Var(Ψ(Ũ)w(Ũ), we have Var(µ̂det
IS,n) ≤ Var(µ̂IS,n) as long as n is large

enough for theO(1/n2) term due to rounding to be smaller than Var(E(Ψ(Ũ)w(Ũ)|Λ))/n >

0. As shown before, p̃k = P(Ũ ∈ Ωk) = pk
∑k

l=1
ql

1−Cl
. Consider an SS estimator

with nk = np̃k. Then Var(µ̂SS,n) = 1
n

∑M
k=1

p2k
p̃k
σ2
k. Also Var(Ψ(Ũ)w(Ũ) |Λ = λk) =

Var(Ψ(Ũ)w(Ũ) |T > λk) ≥ E[Var(Ψ(Ũ)w(Ũ) |T > λk, T ∈ Ωj)] =
∑M

j=k
pj

1−Ck
w2
jσ

2
j .

Then, using (8) and wk = pk/p̃k we get

Var(µ̂det
IS,n) ≥ 1

n

M∑
k=1

qk

M∑
j=k

pj
1− Ck

w2
jσ

2
j =

1

n

M∑
k=1

pkw
2
kσ

2
k

k∑
j=1

qj
1− Cj

=
1

n

M∑
k=1

pkwkσ
2
k =

1

n

M∑
k=1

p2
k

p̃k
σ2
k = Var(µ̂SS,n).

Proof of Proposition 4.3.2. Since T ∼ N(0, 1) under the original distribution, we have

under the proposal distribution that

(X |T = t) ∼ MVN (βt, Id − ββ′) (13)

by [48, Theorem 1]. For any a ∈ Rd, we have that

Eg[exp(a′X)] = Eg [Eg[exp(a′X) |T ]] = Eg

[
exp

(
a′β · T +

1

2
a′ (Id − ββ′)a

)]
= Eg [exp (a′β · T )] · exp

(
1

2
a′ (Id − ββ′)a

)
= exp

(
a′β
√
η′η +

1

2
(a′β)2

)
· exp

(
1

2
a′a− 1

2
(a′β)2

)
= exp

(
a′η +

1

2
a′a

)
where the third and fifth equalities follow from the moment generating function of the MVN

distribution [37, p. 65]. Thus, X ∼ MVN(η, Id) under the IS distribution by uniqueness

of the moment generating function.
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Proof of Proposition 4.3.3. Firstly (4.6) follows from

Eg[µ̂IS,n] = Eg[Ψ(X)w̃(T )] = Eg[µ(T )w̃(T )]

=

∫
At

m(t)
fT (t)

gT (t)
gT (t)dt =

∫
At

m(t)fT (t)dt and

nVarg(µ̂IS,n) + µ2
IS = Eg[Ψ

2(X)w̃2(T )]

=

∫
At

m(2)(t)
f 2
T (t)

g2
T (t)

gT (t)dt =

∫
At

m(2)(t)
f 2
T (t)

gT (t)
dt.

The asymptotic normality of (4.7) follows from the central limit theorem (CLT) (p.190 of

[65]). Now, we want to find the gT (t) that minimizes Var(µ̂IS,n) or equivalently

Eg[m
(2)(T )w̃2(T )] when Ψ(x) ≥ 0 or Ψ(x) ≤ 0 for all x ∈ ΩX among the gT (t) that

gives an unbiased estimator. The IS estimator is unbiased when At ⊇ Aubt = {t ∈ ΩT |
m(t)fT (t) 6= 0}. By the assumption on Ψ(x),

√
µ(2)(t)fT (t) = 0 for t /∈ Aubt . Jensen’s

inequality gives

Eg[m
(2)(T )w2(T )] ≥

(
Eg

[√
m(2)(T )w̃(T )

])2

=

(∫
At

√
m(2)(t)fT (t)dt

)2

=

(∫ tsup

tinf

√
m(2)(t)fT (t)dt

)2

, (14)

where the last equality follows from the assumption that gT (t) is such that it gives an

unbiased estimator and the inequality holds as equality only if
√
µ(2)(t)w̃(t) is constant

in t which occurs when gT (t) = gopt
T (t) ∝

√
µ(2)(λ)fT (t). Note that the right hand side

of the inequality of (14) is a constant independent of gT (t), so if some gT (t) achieves this

lower bound, it gives an estimator with smallest variance. Since goptT (t) achieves the lower

bound, gopt
T (t) is optimal.

Proof of Proposition 4.3.4. Observe that

E[µ̂SIS,n] =
1

n

n∑
i=1

Eg[Ψ(X)w̃(T ) |T ∈ Ω
(i)
T ] =

1

n

n∑
i=1

Eg[Eg[Ψ(X)w̃(T ) |T ] |T ∈ Ω
(i)
T ]

=
1

n

n∑
i=1

n

∫ λi+1

λi

m(t)
fT (t)

gT (t)
gT (t)dt =

∫
At

m(t)fT (t)dt.
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The statement that Var(µ̂SIS,n) = σ2
SIS/n + o(1/n) is a slight generalization of Lemma 4.1

of [38] in that stratification is combined with IS, but the it can be essentially proved in the

same way. Let ηn(t) denote the index of the stratum containing t. Then,

nVar(µ̂SIS,n) =
1

n

n∑
j=1

Varg

(
Ψ(X)w̃(T ) |T ∈ Ω

(i)
T

)
= Eg [Varg (Ψ(X)w̃(T ) | ηn(T ))] .

Let ξ = Eg[Ψ(X)w̃(T ) |T ] = m(T )w̃(T ) and define the sequence ξn = Eg[ξ | ηn(T )].

Note that the σ-algebra generated by ηn(T ) forms an increasing family as n increases

through a constant multiple of power of two. Observe that Eg[|ξ|] < ∞ and sup
n

ξn <

Eg[Ψ
2(Y )w2(T )] = Eg[m

(2)w2(T )] < ∞. Also, ξn is a martingale if n increases through

a constant multiple of power of two as it is a Doob’s Martingale Process [64, p. 246].

Then using the arguments similar to the proof of Lemma 4.1 of [38], we can show that

Varg(µ̂SIS,n) = σ2
SIS/n+ o(1).

We then prove the asymptotic normality of the SIS estimator (4.11) by showing that

the Lyapunov condition [68, p. 134] holds. Let mi = Eg[Ψ(X)w̃(T ) |T ∈ Ω
(i)
T ] and v2

i =

Varg[Ψ(X)w̃(T ) |T ∈ Ω
(i)
T ]. It is easily checked that 1

n

∑n
j=1 mj = µIS and 1

n

∑n
i=1 v

2
i =

σ2
SIS + o(1). Now, for all 1 ≤ i ≤ n,

Eg[|Ψ(Xi)w̃(Ti)−mi|2+δ] ≤ 22+δ
(

Eg[|Ψ(Yi)w̃(Ti)|2+δ] + Eg[|mi|2+δ]
)

= 22+δ

(
Eg[|Ψ(X)w̃(T )|2+δ |T ∈ Ω

(i)
T ] + Eg

[∣∣∣Eg[Ψ(X)w̃(T ) |T ∈ Ω
(i)
T ]
∣∣∣2+δ

])
≤ 22+δ

(
Eg[|Ψ(X)w̃(T )|2+δ |T ∈ Ω

(i)
T ] + Eg[Eg[| Ψ(X)w̃(T ) |2+δ |T ∈ Ω

(i)
T ]]
)

= 23+δEg

[
|Ψ(X)w̃(T )|2+δ |T ∈ Ω

(i)
T

]
,

where the first inequality follows from the cr-Inequality as in [79, p.155]. The Lyapunov
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condition is satisfied since

1

(
∑n

j=1 σ
2
j )

1+δ/2

n∑
i=1

Eg |Ψ(Xi)w̃(Ti)−mj|2+δ

≤ 23+δ

(
∑n

j=1 σ
2
j )

1+δ/2

n∑
i=1

Eg[|Ψ(X)w̃(T )|2+δ |T ∈ Ωj]

=
23+δn

(nσ2
SIS + o(n))1+δ/2

Eg |Ψ(X)w̃(T )|2+δ n→∞−−−→ 0

by the assumption that Eg |Ψ(X)w̃(T )|2+δ <∞. Then by Lyapunov Central Theorem [68,

p. 134] and Slutsky’s Theorem, we have that µ̂SIS,n
D−→ N(µ, σ2

SIS/n).

We want to find the optimal calibration for the SIS estimator among gT (t) that gives

unbiased estimators when Ψ(x) ≥ 0 or Ψ(x) ≤ 0 ∀x ∈ ΩX and Pf (v2(T ) = 0, m(T ) 6=
0) = 0. Under these assumptions, the IS estimator is unbiased when At ⊇ {t ∈ ΩT |
v(t)fT (t) > 0}. Ignoring the o(1) term, Jensen’s inequality gives that

nVar(µ̂SIS,n) = Eg[v
2(T )w̃2(T )] ≥ (Eg [v(T )w̃(T )])2

=

(∫
At

v(T )fT (t)dt

)2

=

(∫ tsup

tinf

σ(T )fT (t)dt

)2

, (15)

where the last equality holds from the unbiased estimator assumption and the inequality

holds as equality only if v(t)w̃(t) is constant in t which occurs when gT (t) = gopt
T (t) ∝

v(t)fT (t). By using the argument similar to the one for the proof of Proposition 4.3.3, it is

easy to show that gopt
T (t) givens an unbiased estimator with the smallest variance. Also, it

is easy to see that if Pf (v2(T ) = 0, m(T ) 6= 0) > 0, the optimal calibration gives a biased

estimator.

Proof of Proposition 4.3.7. Note that by the construction of SIS estimators, the samples

of Ti are ordered, that is, T1 < T2 · · · < Tn. Since Ti
D
= G−1

T ( i−1+Ui
n

) where Ui
ind.∼ U(0, 1)

for i = 1, . . . , n,

Ti+1 − Ti = (G−1
T )′(ξi)

(
1 + Ui+1 − Ui

n

)
=

1

gT (G−1
T (ξi))

(
1 + Ui+1 − Ui

n

)
= O(1/n)
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for some ξi between Ti+1 and Ti, which implies that for any continuously differentiable

function a, a(Ti+1) = a(Ti) +O(1/n). Then we have

r2
i =

[
(m(Ti+1) + εTi+1

)− (m(Ti + εTi)
]2

= (m(Ti+1)−m(Ti))
2 + (εTi+1

− εTi)2 − 2 (m(Ti+1)−m(Ti))
(
εTi+1

− εTi
)

= (εTi+1
− εTi)2 − 2 (m(Ti+1)−m(Ti))

(
εTi+1

− εTi
)

+O(1/n2)

and so

Eg[r
2
i w̃

2(Ti)] = Eg[Eg[r
2
i w̃(Ti) |Ti, Ti+1]] = Eg[w̃

2(Ti)(v
2(Ti) + v2(Ti+1))] +O(1/n2)

= 2Eg[w̃
2(Ti)v

2(Ti)] +O(1/n),

which means that

Eg[σ̂
2
SIS] =

1

2(n− 1)

n−1∑
j=1

Eg[r
2
i w̃

2(Ti)] =
1

n

n∑
i=1

Eg[v
2(T )w̃2(T ) |T ∈ Ω

(i)
T ] +O(1/n)

= Eg[v
2(T )w̃2(T )] +O(1/n) = σ2

SIS +O(1/n)→ σ2
SIS.

So, σ̂2
SIS is a consistent estimator of σ2

SIS.

Proof of Proposition 6.4.1. We first show that the normalizing constant for gKL
T (t) is indeed

c∗ defined as (6.8). Observe that∫
ΩX

|Ψ(X)|fX(x)dx = Ef [|Ψ(X)|] = Ef [Ef [|Ψ(X) |T |]]

= Ef [s(T )] =

∫
ΩT

s(T )fT (t)dt,
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so the result for the normalizing constant follows. We then have

DKL (g∗X(x)||gX(x)) =

∫
ΩX

ln

(
g∗X(x)

gX(x)

)
g∗X(x)dx

= −
∫

ΩX

ln (gX(x)) g∗X(x)dx+ c1 = −
∫

ΩX

ln
(
fX|T (x | tx)gT (tx)

)
g∗X(x)dx+ c1

= −
∫

ΩX

ln (gT (tx)) g∗X(x)dx+ c2 = −Ef [ln (gT (T )) c∗|Ψ(X)|] + c2

= −Ef [Ef [ln (gT (T )) c∗|Ψ(X)| |T ]] + c2 = −Ef [ln (gT (T )) c∗s(T )] + c2

=

∫
ΩT

− ln (gT (t)) gKL
T (t)dt+ c2 =

∫
ΩT

ln

(
gKL
T (t)

gT (t)

)
gKL
T (t)dt+ c3

= DKL

(
gKL
T (t)||gT (t)

)
+ c3,

where c1, c2, and c3 are given by

c1 =

∫
ΩX

ln (g∗X(x)) g∗X(x)dx, c2 − c1 = −
∫

ΩX

ln
(
fX|T (x | tx)

)
g∗X(x)dx,

c3 − c2 =

∫
ΩT

ln
(
gKL
T (t)

)
gKL
T (t)dt

so that c3 is a constant that does not depend on gT (t).

Proof of Proposition 6.4.2. For any r ∈ Rp,

Eg∗T

[
er
′T ∗
]

=

∫
ΩX

er
′T (x)c∗|Ψ(x)|fX(x)dx = c∗Ef [e

r′T (X)|Ψ(X)|] = c∗Ef [e
r′T s(T )]

=

∫
ΩT

er
′tc∗s(t)fT (t)dt =

∫
ΩT

er
′tgKL
T (t)dt = EgKL

T

[
er
′T
]
, (16)

Therefore, T ∗ ∼ gKL
T (t) by uniqueness of the moment generating function.
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