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Abstract

In this thesis, based on the Onsager excluded volume interaction model, two ne-
matic ordering problems of wormlike (semiflexible) polymer are studied: one is to
investigate the isotropic-nematic interface of polymers for three typical cases — the
flexible one, the rigid-rod one and the intermediate one; the other is to investigate

a very long polymer confined between two infinite flat hard walls.

Many previous studies of the isotropic-nematic phase coexistence are mainly
focused on either rigid rod-like polymers with small flexibility, or flexible polymers
with large flexibility. The phase coexistence of polymers with intermediate flexi-
bility is desired to be investigated. For these three typical cases (flexible, rigid-rod
and intermediate), the profiles for density, order parameter and tension contribu-
tion were shown for different tilt angles. The interface tension was studied. The

simulation results are consistent with those reported by other people.

We investigated the confinement of a long polymer between two flat hard walls,
which are separated by a distance comparable to the effective Kuhn length of poly-
mer chain by the wormlike chain model with or without the Onsager excluded
volume interaction. Without the interaction, the results are compared with those
of the Gaussian chain model. Including the interaction, the phase diagram is ana-
lyzed.
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Chapter 1

Introduction

1.1 Motivation

Liquid crystals (LC) are the states in which substances possess the flow proper-
ties of a liquid and, to a degree, the molecular order of a crystalline solid, i.e.,
the symmetric and mechanical properties of LC are intermediate between those
of a crystalline solid and an isotopic liquid. The basic difference between crystals
and liquids is that the molecules in a crystal are ordered whereas in a liquid they
are not. The ordering of the molecules in a crystal is usually both positional and
orientational, i.e., the molecules are constrained both to occupy specific sites in
a lattice and to point their molecular axes in specific directions. Depending on
different positional and orientational orders, liquid crystals can be classified into
many types, such as (isotropic,) nematic, biaxial nematic, smectic A, smectic C,
cholesteric phases, and so on. Figure 1.1 is the schematic plot for some popular
liquid crystalline states. The phase without any positional and orientational orders
is an isotropic phase. In the nematic phase the molecules maintain a preferred
orientational direction called the nematic director, and they diffuse throughout the
sample, i.e., the nematic phase has no positional order throughout the matter. The
smectic phases are those where in addition to orientation order, the molecules are
grouped into layers, enforcing long-range positional order in one or two directions.

Liquid crystalline materials in general may have various types of molecular struc-
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lLiquid crystalline phases
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Figure 1.1: Illustration for some most popular liquid crystalline phases [1].

ture. What in common is that they are all anisotropic. Either their shape is such
that one axis is very different from the other two or, in some cases, different parts
of the molecules have very different solubility properties, or other unsymmetrical

properties.

The study of polymeric liquid crystals is of high importance to improve our
understanding of biological systems and because of various industrial applications
[2, 3]. Most of the chemical compounds present in living organisms contain skele-
tons of covalently bonded carbon atoms (C-C-C). These compounds are known as
organic compounds, because most of these are either present in, or produced by
living things. Organic compounds are the major components of cells and tissues.
They provide energy for life processes, participate in and regulate metabolic reac-
tions, and transmit information. These macromolecules are polymers and made of
smaller subunits (monomers). The subunits of macromolecules are held together
with covalent bonds, and have different structures and properties. For example, the
double helical DNA is a very long polymers with a large number of different sub-

units, formed by four bases: adenine (A), thymine (T), guanine (G) and cytosine
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Figure 1.2: Illustration of the double helical structure of the DNA molecule [4].

(C). The schematic plot of the structure of DNA is shown in Fig. 1.2.

Their roles and the properties richness require much more work. We concentrate
on one aspect, the dynamics of polymers in the liquid state, or in more detail, the
phases formed by main-chain liquid crystalline polymers with or without external

field, the phase transition and the phase coexistence.

One of the most successful models was introduced by Onsager [5]. In 1949, by
considering the purely repulsive anisotropic interactions between molecules, On-
sager showed that a phase transition exhibits in a system of long rigid rods from
an isotropic phase to a denser anisotropic phase. The calculation was based on
a cluster expansion to the second virial for the free energy, which is given as a
functional of the distribution in orientation of the rigid molecules. The ratio of
the length to the cross section diameter of rigid molecules must be high to make
the second virial expansion valid (see A). The difference between the low density

isotropic phase and the high density nematic phase is that the orientational sym-
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metry of isotropic phase is broken in the nematic phase. This rigid-rod model was
applied later to a certain idealized model by Zwanzig [6], in which the orientational
direction is restricted to be parallel to the three coordinate axes and a first or-
der phase transition was observed. Khokhlov and Semenov (KS) [7] extended this
theory to very long semiflexible chains in order to describe the isotropic-nematic
transition for long polymers. The liquid crystalline materials exhibit the richest
varieties of polymorphism. The transition between different phases corresponds to
the breaking of some symmetry. Phase transition of liquid crystalline polymers,
such as isotropic-nematic transition, nematic-smectic transition, uniaxial nematic-
biaxial nematic transition, etc., were studied by many different approaches, and is

still a very active area with many problems unsolved.

Several simple models have been proposed ever since the beginning of micro-
scopic modeling of polymers, two of the most important ones being the freely jointed
chain model and the freely rotating chain model. In both models bond lengths are
constrained to a fixed value. In the freely jointed chain model, the angle formed
by the successive bonds is random, while in the freely rotating chain model, the
polar angle is fixed and the bond can rotate freely about the adjacent bond. We

will discuss these models in detail in the second chapter.

Stemming from these two models, the Gaussian chain model, and especially
the wormlike one are also discussed and used as the basis of this thesis. The bond
length of the Gaussian model is not fixed but it has the same macro-properties of the
freely jointed chain model. The wormlike chain model involves the bending energy
and regards the whole polymer as one continuous chain, characterized by the total
contour length and the persistence length, in which length scale the correlation of

the segments along the chain decays.

1.2 Contribution

The major contribution of this thesis is that two nematic ordering problems are
solved. One is to investigate the phase coexistence of the isotropic phase and
nematic phase, for three typical polymers, flexible, rigid-rod and the intermediate.
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The other is to investigate a long polymer chain confined between two hard walls
by considering the interaction with walls only by the geometric constraint. The
numerical simulation is based on the wormlike chain model while the interaction

between polymer segments is the Onsager type.

Current work on the interface between isotropic phase and nematic phase has
focused either on the rigid rod-like polymers or on the flexible polymers. Even
though some work claimed they have studied the semiflexible polymers by using the
wormlike polymer chain model, they were focused on the two limits, one is that the
persistence length of the polymers is much longer than the contour length, or vice
versa. It is of importance to investigate the phases coexistence of the polymers with
the persistence length comparable to the contour length. This study is presented
in the third chapter.

In the fourth chapter, the confinement of a long polymer between two infinite
hard walls is studied. The separation of two walls is comparable to the persistence
length of polymers, which is much smaller than the contour length of the polymer
chain, i.e., the chain is in the flexible limit. The walls are structureless and sterically
contain the polymer. The study is conducted for wormlike chain with or without
the Onsager excluded volume interaction. Without the interaction, the results are
compared with those of the Gaussian chain. For inclusion of the interaction, the

phase diagram is discussed.



Chapter 2

Theoretical Methods

A polymer is made up by linking many smaller molecules called monomers. Because
of an enormous number of internal degrees of freedom for monomers which form the
backbone of polymer chains, a polymer may take up virtually an infinite number
of configurations, therefore it is very necessary to use the statistical mechanics to
deal with the problem. Many ideal chain models [8] of varying levels of complexity
and reality for ideal chains have been introduced to study the statistical properties

of polymers in the equilibrium state.

2.1 Freely jointed chain model and Gaussian chain
model

Freely jointed chain model is one of the most important models. Consider a single

flexible polymer chain composed of n links, which can be described by the set of

(n + 1) position vectors {rz} = (ro,...,r,) from one end of the chain to the other,
or alternately, by (n) bond vectors {Ry} = (Ry, ..., R,), where

Rk =Ty —Tg_1, k= ]., 2, o n. (21)
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Figure 2.1: Freely jointed chain.

The potential energy of the chain is written in terms of bond vectors {Ry} as

U({Ry}) = Zug )+ V({Re}), (2.2)

where, u; accounts for the connectivity of the chain, V' contains all other inter-
actions. All of the statistical properties of a single chain are contained in the
distribution

G{Ru}) = [ [ mi(Ry) exp[-BV ({Ru})], (2:3)

where
7 (R;) = C exp[—fu;(R;)], (2.4)
with the normalization condition

[ Rom(Ry) =1, 9

is the “probability” that the jth bond has length R;, C' the normalization constant,
B = 1/kgT, kg the Boltzmann constant and T the temperature. From Eq. (2.3),
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in principle, we are able to calculate the partition function by

- = [ aRIGHRY), (2.6)

where .
d{R;} = dR,dR,..dR, = [ [ dR;, (2.7)
j=1

and the distribution function for the entire chain is
P({Ry}) = z7'G({Ry}). (2.8)

If we only consider the interaction of connectivity of the chain, i.e., V = 0, the
simplest model of a real polymer chain is the so-called freely jointed chain model
in which all the bonds have the same length b, and is able to point in any direction

independently of each other,

1

T(R)) = s

I(IR;[ = b), (2.9)

where ¢ is the Dirac delta function. In this model, every bond has a fixed length b.
The interesting thing is to calculate the end-to-end distribution of the chain, which

is expressed in terms of the bond vectors

P(R;n) = / Lﬁ T(Rj)] 5 (zn: R; — R) d{Ry;}, (2.10)

where R is the end-to-end vector, and the delta function selects out all the con-
figurations that R = Z;’:l R; . Note that Eq. (2.10) is, as usual, subjected to a

normalization constant. By using the Fourier representation of the delta function

(Somor) - [ e | (Sron) o] e

equation (2.10) gives a product of n identical factors

P(R;n) = / (2‘1:)3 exp(—ik - R) [ / dR,7(R;) exp(iR,; - k)] " (2.12)
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Substitute Eq. (2.9) into Eq. (2.12), and the integral over R is evaluated by
introducing polar coordinates ((r,8,1), the reference axis of # being taken along
the vector k), Eq. (2.12) would be

P(R;n) = / (2‘1;3 exp(—ik - R) [Sm(kb)]n, (2.13)

kb

where k = |[k|. If n is large, [sin(kb)/kb]™ becomes very small unless kb is small.
For kb < 1 with large n, [sin(kb)/kb]" can be approximated as

sin(kb) 1" k221" nk?b?
—— = |l-—| = — . 2.14
{ kb ] { 6 R G (2.14)
By putting Eq. (2.14) back into Eq. (2.13), we get
dk k2b?
PR;n) = / (21)? exp(—ik - R) exp [_n 6 }
3 \*? 3R?
_ _ 2.1
(27rb2n) xp [ 2nb2] (2.15)

where, for the last step, the standard Gaussian integral is performed for each com-
ponents of the vector k. Thus the distribution function of the end-to-end vector is
Gaussian. The local structure of the chain appears only through the effective bond
length b, because the local structure affects only the effective bond length but does
not otherwise appear in the problem. Therefore, if we are interested in the global
properties of polymers, we can introduce a different 7(R;) from Eq. (2.9),

3 \%? 3R?
7(R;) = <—27rb2> exp (—ﬁ) , (2.16)

with the average (root mean square) of the bond length

\/<RI>=b, (2.17)

which reproduces the properties of Eq. (2.13), but which is mathematically easier
to handle than Eq. (2.9).

Then, the configuration of the chain composed by n Gaussian bonds is given by

PRy} = li[l{;wrﬂexp {—:%?] or (2.18)
P({ry}) = [2562}%/26;@ [_é?ﬂ%bgﬂf] (2.19)
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Note that Eq. (2.19) and Eq. (2.15) have different normalization constant due
to different normalization conditions (the former is for each bond, the latter is for
whole chain). Such a chain is called the Gaussian chain. Although the Gaussian
chain does not correctly describe the local structure of the polymer, it does correctly
describe the property on large length scale.

2.2 The Wiener Integral

For the two flexible polymer models discussed in section 2.1, they both obey the
end-to-end distribution Eq. (2.15), and the mean-square end-to-end distance can
be found as
< R? >=nb® = Lb, (2.20)
with
L=nb (2.21)
where L is the maximum contour length of the chain at full extension, and is

temperature independent. If the chain is not flexible in the length b, and the chain

is long enough, we can use the equivalent gaussian links, defined by

<R? >

| =
L

(2.22)

If the equivalent chain has n gaussian links, each of average length As, the config-

uration of the Gaussian chain Eq. (2.19) can be rewritten as

3 3n/2 n 3 r; -1 2
Piry}) = [ZWZAS] xp [_Z ( 2[As )

i=1

(2.23)

If we treat the chain configuration {r;} as the discrete representation of the con-

tinuous curve r(s), we can get
r; —ro =r(jAs) =r(s;) (2.24)

denote the position of the jth segment with respect to the first end of the chain.
Take the limit As — 0, n — 0o, nAs = L to get a representation of a continuous
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equivalent freely jointed chain. In this limit, the expression in the exponential of
Eq. (2.23) is

hmg {r(sj) - TA(? - AS)rAs . j:l lér(S)

_ /0 dsfi(s)]? (2.25)

Eq. (2.25) follows from the definition of derivatives and integrals in elementary
calculus. In this limit, the probability P({ry}) becomes

Plr(s)] o exp [—% /0 ’ ds[f(s)]2] | (2.26)

This is the well-known Wiener distribution for flexible polymer chains.

2.3 Freely rotating chain model and worm-like

chain model

The Gaussian chain model is very successful to model many flexible polymer sys-
tems. However, because the bending energy is not considered in this model, it is not
good to describe semiflexible or rigid polymer systems, for example, is not good to
describe the DNA chain. The wormlike-chain model was introduced by Kratky and
Porod to describe semiflexible chains in which the rigidity of the polymer chains is

considered [9].

The end-to-end distance of a flexible polymer chain and that with rigidity are
quite different. For a rigid rod, the end-to-end distance is L = nb, the total contour
length, while for a flexible polymer, the root mean square end-to-end distance is,
V< R2> = n'/?b, found from Eq. (2.20). For flexible polymer chains, there
is no correlation between bonds; for polymer chains with stiffness, they do have

correlation between bonds, especially for those bonds not far apart.



CHAPTER 2. THE MODEL 12
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Figure 2.2: Freely rotating chain. The successive bonds form a fixed angle 6, but

can freely rotate along the previous bond axis.

Consider an n bonds chain, in which the bond angles formed by successive bonds
are fixed at say 6 and the bond lengths are fixed at b, as shown in Fig. 2.2. The
only degree of freedom left for the bond is the rotation around the axis of the
previous bond. This model is called the freely rotating chain model. To calculate

the mean-square end-to-end distance of the chain,

<R?*> = <§:Rj-zn:R,->
j=1 i=1

= ii<Rj'Ri>

j=1 i=1
= ) <RI}>+2> ) <R;-R;>, (2.27)
j=1 j=1 i=j+1

where the average is over all values of the torsion angles {¢;}. The correlation

between bond vectors R; and R; must be determined. In this model, for successive
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bonds, the projection R; on the direction of R, 1,
<R; Rj;1 >=R;-Rj; =b*cosb. (2.28)

For the freely rotating chain, the component of R; normal to vector R;;; averages
out to zero due to free rotations of the torsion angle ¢;. The only correlation
between the bond vectors that is transmitted down the chain is the component
of vector R; along the bond vector R;;;. The value of this component is bcos 6.
Bond vector R;; passes this correlation down to vector R;. ., survives due to free
rotations of torsion angle ;1. The leftover memory of the vector R; at this stage
is b(cos 0)%. The correlations from bond vector R; at bond vector R; are reduced
by the factor (cos )7~ due to independent free rotations of |j — 4| torsion angles
between these two vectors. Therefore, the correlation between bond vectors R; and
R, is

<R, -R; >=b*(cos )7, (2.29)

The end-to-end distance Eq. (2.27) becomes,

<R*> = nb®+ 2 Z Z (cos )7 (2.30a)
j=1 i=j+1
n n—j
= nb® +26°) > (cosh)F (2.30b)
j=1 k=1
14cosf 2cosf 1—cos™6
= nb? — : 2.
" {1 —cos @ n (1 —cosf)? (2:30c)
1+ cos¥
~ nb? | 2.
" {1—cosé’] ’ (2:30d)

where, in the last step, we neglect the second term for large enough n and nontrivial
angle 6. For the freely rotating chain, the maximum end-to-end length (contour

length) L can be found when all the bonds lie in a plane, hence

L =nbcos(0/2). (2.31)

It is very clear that for a given nontrivial angle | cos§| < 1, the term (cos )7~

decays rapidly as the number of bonds between bond vectors R; and R, is increased,
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and

(cos 0) 7 = exp[|j — 4| In(cos 8)] = exp {— |js_ 2|] : (2.32)

where, the last step we defined s, as the number of bonds between bond vectors
R; and R; when the correlation between them decays. In the length scale of local
contour length s,bcos(6/2) called the persistence length /,, the correlations between

bond vectors decay,
_ beos(8/2)

In(cos @)
Some typical persistence lengths encountered in biological systems are [, ~ 5mm
for tubulin [10], I, ~ 20um for actin [11, 12], and [, &~ 50nm for double-stranded
DNA [13].

l, = spbcos(0/2) = (2.33)

If we take the limit

beos(6/2) _ b | L, (2.34)

b—0 — b—L, 6—0 - ~
e ’ ’ In(cos@) — 6%2/2

of the discrete the freely rotating chain, we get the worm-like chain [8]. In this case,
the approximation in Eq. (2.30d) is no longer correct, because the term cos™ 6 in

the limit of Eq. (2.34) is not always negligible, and

_ nbcos(6/2)

cos” § = exp[nln(cos )] = exp [ l
p

] - exp[—i]. (2.35)

Therefore, from Eq. (2.30c), the end-to-end distance becomes

2nb* 2b21 — exp[—L/1,)]
62/2 64/4

L
= 2L, — 2 {1 — exp [—ﬂ }
a? 2L

where a = 21, is the effective Kuhn length. We should note that the definition of

the Kuhn length is only for long chains, and equals to two times of the persistence

<R%>

Q

length, and no definition for short chains. For convenience, we introduce the effec-

tive Kuhn length which is always equal to two times of the persistence length no
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matter that the chain is long or short. There are two simple limits of this expres-
sion. The flexible limit of a worm-like chain is when the contour length is much

longer than its persistence length
<R?’>~2Ll,=aL for L>1, (2.37)

The rod-like limit of a worm-like chains is when the contour length is much shorter

than its persistence length. Expanding the exponential in Eq. (2.36)

L L 1[ L)
exp [——] ~1——+ {——] +--- for L <1y, (2.38)
l, L 2| I
and we get
<R>’>=1I1* for L<I, (2.39)

So the wormlike chain has the similar mean-square end-to-end distance with that
of the freely jointed chain only at the flexible limit. Even at this limit, there
exists differences between them. The effective Kuhn length a of the freely jointed
chains are assumed to be completely rigid. Worm-like chains are also stiff on length
scales shorter than the effective Kuhn length, but are not completely rigid and can

fluctuate and bend.

2.4 STY description

For a wormlike chain discussed in the last section, it can be characterized by the
total contour length L and the persistence length [, or the effective Kuhn length a.
When the persistence length is short, the energy needed to bend a given length of
the chain is less than that needed for the case of a longer persistence length. The
potential energy (more information can be seen in B) per unit length stored in a

bent rod is
€

E=—

252’

where ¢ is the bending force constant and R the radius of curvature, which is defined
by

(2.40)

— |a, (2.41)




CHAPTER 2. THE MODEL 16

where,
u(s) =dr(s)/ds =1, and |u(s)] =1, (2.42)

is the unit vector along the tangent direction of the curvature. This unit vector
restriction is suggested by Saito-Takahashi-Yunoki (STY) [14]. The physical mean-
ing of this restriction is clear: for an unstretchable chain, the integration of u along

any part of the chain should equal to the end-to-end vector of it, i.e.,

/Os dtu(t) = r(s) — r(0). (2.43)

For a chain of contour length L, the total potential energy is
) L . 2 £ L .12
V= —/ la(s)|”ds = —/ |#|” ds (2.44)
2 Jo 2 Jo

For a wormlike polymer chain, STY showed that the energy force constant ¢

has a simple relation with the persistence length [,
l, = Be. (2.45)

Thus, the statistical probability of a wormlike chain with persistence length [, under
the restriction Eq. (2.42) or (2.43) is given by

Plr(s),u(s)] o« exp -_%p/o [u(s)]zds_ X H5 -r(s) —r(0) — /Os dtu(t)_ (2.46a)

x exp —% /O “a(s)ds| x T4 [r(s) - x(0) - /O "dtu(t)] (2.460)

where, in Eq. (2.46b), the chain length is rescaled in unit of the effective Kuhn

length a, which does not affect the tangent vector u.

2.5 Omnsager excluded volume interaction

In the models of polymer discussed in the previous sections, we only included the

interaction of a few neighboring segments or a length scale of a few persistence
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lengths along the chain, and we did not include other interactions, i.e., V = 0.
As a matter of fact, however, segments far apart along the chain do interact. One
obvious interaction is that, due to the finite volume of each segment, other segments

cannot come into its own region. It is called the excluded volume effect.

For a sphere with radius r in the space, the total volume other spheres with same
diameter can not enter is 8 times of the volume of the sphere, indicated in Fig. 2.3a
by the dotted line. Then we consider a more complex system, the excluded volume
of rods with different length and cross section diameter, shown in Fig. 2.3b. Note
that here we use the symbol d to denote the diameter, just to avoid the confusion
with the symbol of deviation d. Since rods are anisotropic particles, the excluded
volume depends on the angle formed by the considered rods. For two identical
rods, which form an angle «, in the case of the length L much larger than the cross

section diameter d, Onsager exactly calculated the excluded volume [5]
v = 2L*d|sin "], (2.47)

which is the volume of the prism: the base is a parallelogram with each side length
L, and the height is 2d.

Based on the same rule, the excluded volume of one wormlike polymer caused by
another identical wormlike polymer chain can be calculated in the following way:
suppose that we can divide each chain into many tiny segments, so that all the

segments are rigid rods following Eq. (2.47), then integrate along each chain, as
1 L L
Vworm = 5/ / ds1dsa2dVyd[ri(s1) — ra(ss)]|sin{y[ui(s1), u2(s2)]}| (2.48a)
1 0; ’ L
- 5‘/ / dsydsy2a’dVpdri(sy) — ra(s2)]| sin{y[uy(s1), uz(s2)]}| (2.48b)
o Jo

— %/Oa /Oa dsidsave[ri(s1), us(s1);r2(s2), us(s2)], (2.48¢)

where, 1} is the volume of the container, which is introduced to cancel the effect
of the delta function, the factor 1/2 due to double counting, d the cross section
diameter of polymer chains, delta function means the interaction only happens

when they reach each other at the same position r, angle v now depends on the
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_4 3 .
V=TT +T,) v=L L (d +d,)lsinyl
for L],L2>>d],al2

(a) (b)

Figure 2.3: Excluded volume for two simple cases. (a) spheres with radius r; and
79, respectively; (b) the two rigid rods with length and diameter of cross section
{L1, d1} and {L,, ds}, respectively, with the assumption that lengths are much
larger than the radii. v is the angle formed by them.
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segment vectors u, Eq. (2.48¢c) is again rescaled in the effective Kuhn length, and
Ve[r1, Uy T, Up] = 2a2dVd[ry — 1a]|uy X uyl, (2.49)

where, because tangent vectors are unit vectors, i.e., [u| = 1, we have used in Eq.
(2.48¢) | sin{y[ui(s1),uz(s2)]} = Jug x uyl.

By including the excluded volume potential and other interactions if there exist,

the configuration of a wormlike chain Eq. (2.46b) is adjusted

X ﬁé [r(s) —r(0) — /Os dtu(t)] ;

(2.50)

Plr(s),u(s)] o< exp l—i /05[1'1(3)]2ds - BV

where

1

V=
B oV

/E /3 d81d82ve[r1(31)7 111(81); r2(82), 112(82)] + /B%ther; (251)
0 0

where 5Vyiner contains all other possible potentials.

2.6 Mean field theory

Finally, the partition function for a system with N wormlike polymers contained

in a volume V without external field can be written as

7 = %/HD[ri(s)]D[ui(s)]P[ri(s),u,-(s)] (2.52)

where [ Dir(s)]D[u(s)] indicates a functional integral over the range of all position

and angle, that is over all possible conformations of the polymer chain.

Directly calculating the system involving interactions between elements is not
easy, therefore the mean field approximation needs to be introduced. The basic
underlying idea of the mean field theory is that the complicated interactions be-

tween elements in a system can be replaced by the interaction of the element with
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an effective (or mean) field. In order to avoid getting lost, we give the mean field
result, i.e., the wormlike chain stays in the mean field w(r, u),
Jq(r,u,t)
ot
where ¢(r,u,t) is partial chain partition function defined by Eq. (2.66). In the

= [V2 —au-V, —w(r,u)] ¢(r,u,t). (2.53)

following we will give the detail derivation of the mean field theory.

Introducing the microscopic distribution density function

N L
s =3 / " dsdfr — 1i(s)]6[u — wi(s)]. (2.54)
i=1 70
Then the interaction potential can be written as

expl-pV] = [ Dlptr wldlp(r, w) ~ plr. )

2Vo

(
X exp [—i / drlduldrzdugp(rl,ul)ve[rl,u1;r2’u2]P(r2’u2)}
— [ Dlote e, ) — (e, w)

[—a2d/drdu1du2p(r,u1)|u1 X u2|p(r,u2)] , (2.55)

where the Eq. (2.49) is substituted in the last step. By using the integral repre-

sentation of the delta function

STptew) — )] = [ Dlutrwle { [ ardunte wipe.w) - ot u>1}
= [ Dl wexs { [ arduu(e wote,
- i / : dsw(ri<s>,ui<s>>} (2.56)

where, w(r, u) is a imaginary variable, the normalization constant is absorbed by D,
and in the last step, Eq. (2.54) is used. Now we are ready to rewrite the partition
function of Eq. (2.52),

z - % / Dlp(r, )] D[w(r, w)]QN exp [ / drduw(r,u)p(r,u)}

X exp {—a2d/drdu1du2p(r, u)|u; X us|p(r, u2)] (2.57)
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where,

Q= / Dfx(s)] D[u(s)] Pfr(s), u(s)] exp [— / ‘ dsw[r(s),u(s)]] (2.58)

0

is the partition function of one wormlike polymer chain in the external field w
(imaginary). The main step of the self-consistent field approach consists in per-
forming a saddle-point approximation of the integral Eq. (2.57) with respect to
w(r,u) and p(r,u). Note that the imaginary number used here is just for mathe-
matical convenience. After the saddle point approximation, the external field w is
real [8, 15, 16, 17, 18].

Comparing Eq. (2.57) with the definition of the partition function

7 / Do} D[] exp{—BF[p, w]}, (2.59)

we get the Helmholtz free energy

!
BF = In <%> —/drduw(r,u)p(r,u)
+a2d/drdu1du2p(r, up)|u; X ug|p(r, us). (2.60)

The grand thermodynamical potential function €2 of the system can be obtained
from the relation [19],
Q=F—-(, (2.61)
where,
NL
G = u/drdup(r,u) = p— (2.62)
a
is the Gibbs free energy, u the segmental free energy, and totally we have N chains,
each of them having L/a effective Kuhn segments. Finally the grand potential is

written as

5O = In <Qﬂfv> _ / drduw(r, u)p(r, )

+a2d/drdu1du2p(r, u)|u; X ug|p(r,uy) — ﬁu/drdup(r,u). (2.63)
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Performing the saddle point approximation with respect to the mean field w(r,u)

and p(r,u), respectively, we get mean field functions

w(r,u) = 2a2d/du1|u X u|p(r,uy) — Bu, (2.64)

and

N 6Q
p(r,u) - _adw(r’u)

. (2.65)

In order to solve these equations, we need to express Q(w) in terms of the
partial chain distribution function. Considering a partial polymer chain with length
t, the end segment locating at point of r, and pointing in the direction of u, the
distribution function is defined by

) = | 7 Die(e) / ™ Dlu(s)] exp -4 [atoras]

(0) (0)

X exp [- /0 Cdswlr(s), u(s)]} f[a [r(s) —x(0) /0 s ds'u(s')](z.csea)

-/ (()) Dlus)jexp |1 [ a1
X exp [— /O “asw [ r(s) = x(0) + /O s ds'u(s'),u(s)H

X6 [r(t) —r(0) —/O dsu(s)] o (2.66b)
- / % exp { ik - [r(t) — £(0)]|r(=r } x(k, u, ), (2.66¢)

where, in Eq. (2.66b), the functional integral over r(s) is carried out because of
the delta functions; because the point ¢ is restricted, the delta function at point
t survives; r(s) now is the function of u and will not be affected by the Fourier

transform, and

u(t)=u
ik ut) = / Dlu(s)]

(0)

<o = [ ds (w6 + ue(s)u(s) k() | 267
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(A) (B) *

Figure 2.4: Physical meaning of the connection condition in Eqs. 2.71 and 2.72.
The density distribution function for an internal segment (circle) to locate at x with
a tangent vector pointing in u [see (A)] is the product of the distribution function
for a terminal segment to locate at x with a tangent vector pointing in u [see solid
line in (B)] and that for a terminal segment to locate at x with tangent vector

pointing in —u [see dashed line in (B)].

which can be shown to obey the diffusion equation [15],

ox(k,u,t)
ot

Going back to the r space, diffusion equation for the ¢ function is

= [V2 +iak - u — w(r,u)]x(k,u,t). (2.68)

dq(r,u,t)
ot

If we also reduce the spatial coordinates in the effective Kuhn length a, this equation

= [V2 —au-V, —w(r,u)] q(r,u,t). (2.69)

can be rewritten as

dq(r,u,t)
ot

Now we can rewrite the partition function @)

= [Vi—u-V,—w(, u)]q(r, ui) (2.70)

Q= /drduq(r, u,t)q(r,—u,L/a —t) (2.71)

where, the physical meaning of the product of the two ¢ functions is that, two
polymer portions with the terminal ends located at r are required to form a non-

terminal segment at r, and one terminal point in the direction u, while the other
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should point in the opposite direction —u (shown in Fig. (2.4)). Then, the density
function

L/a
p(r,u) = g/ﬂ dtq(r,u,t)q(r,—u,L/a — t). (2.72)

From Eq. (2.66a), we can find the initial condition for the diffusion Eq. (2.69) is
q(r,u,0) = 1. (2.73)

Equations (2.64) to (2.73) form a complete set of self-consistent equations for any
rigidity of wormlike polymer, which can be solved numerically. First we give an
initial guess of the mean field w(r, u), then use the above equations, we can get one
field w'(r,u), compare the difference and correct initial guess. Finally we can get
the self-consistent result. The rigidity is related to the ratio of the total length L
and the effective Kuhn length a.



Chapter 3

Isotropic nematic interface of the

wormlike polymers

The isotropic nematic interface has been the focus of theoretical [20, 21, 22, 23, 24,
25, 26, 27] and experimental study [28, 29, 30, 31] for many decades, for fundamental
importance and industrial applications. One important thing is to estimate the
interface tension at the boundary between the isotropic phase and the nematic
phase of polymer chains. Going back to early studies, due to the difficulty of solving
the interfacial problem, Holyst and Poniewierski [20] assumed a step function for
the total density of the interface and found rod-like polymers have lowest interface
tension at a tilt angle of 60 degree between the interface and the nematic director.
While Doi and Kuzuu [22], Moore and McMullen [21] applied a wider interface and
found that rod-like polymers favor a tilt angle of 90°. Chen (and his coworkers)
solved the problem numerically without those assumption of the interface of both
rod-like polymers [23] and flexible polymers [24], and found that for both cases,
polymers prefer to be parallel to the interface. However, Shundyak and Roij [27]
pointed that the accuracy of Chen’s work in [23] needs to be improved and 15% lower
tension was found, while Koch and Harlen [26] argued that the tension is about
50% higher and the equilibrium profiles are non-monotonic. On the experiment side,
another Chen and coworkers studied the interface tensions between isotropic and

anisotropic phases of solutions of the polymers poly(n-hexyl isocyanate) [28, 29],

25
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schizophyllan [30] and cellulose crystallites [31]. They found the measured values
are in the range predicted by the theoretical work. However, due to the difficulty of
numerical simulations for semiflexible polymer chains, most numerical simulations
were focused on the two limits of the model, one is the flexible limit, where the
contour length L is much larger than the effective Kuhn length a of polymers, the
other is the rigid rods limit, where L < a.

To study the properties of finite flexibility of polymers is the main interest of
this chapter. In the following, we will study the two limits first to compare with
the results reported by forerunners and clarify the uncertainties, then the interface

of semiflexible polymers.

3.1 Isotropic nematic interface

In order to solve the problem of the isotropic-nematic interface numerically, we
need to expand the completed set of the self-consistent equations Eq. (2.64) to Eq.
(2.73) by the spherical-harmonic series,

w(r,u) = Zwl,m(r)Yl’m(u), where Z = Z Z , (3.1)

=0 m=-—1

pe,0) = 3 (1) (), (32)

and

a0, 8) = = 5 (5, Vi (W), (3.3)

where, Y is the spherical-harmonic series, having the form

Vim(w) =Yim(0,¢) = \/ 214; : 8 J_r Zi

! ,
1 Prm(cos §)e™?, (3.4)

where P, ,,(cos#) is the associated Legendre polynomial, and the coefficient leads

to the normalization condition

[ Y @)Y () = 11 B (35)
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Since functions w, p and ¢ are all real functions, the expansion coefficients must

have the following properties,

Wi (T) = W] _p (r)(=1)", (3.6)
PLm(T) = Pl _pm(T)(—=1)"™, (3.7)

and
Qm(r,t) = g _p (T, 1) (=1)™ (3.8)

By using the addition theorem of spherical harmonics, we expand the excluded

volume interaction kernel |u; X up| in spherical-harmonic series [32],

4dr
luy X Uy = %: 517 7 AYim (W)Y (02) (3.9)
where
do = % (3.10a)
dq =0 l odd (3.10b)
20+ 1)1 —2)!
dq = - 7Tl( i )l . 3 [ even. (3.10c)
21, = DIGNG)G + !
The partition function ) now is
Q= /erqu(r, Hqum(r, L/a —t). (3.11)
Im

Rewriting the mean field equations Eq. (2.64) and Eq. (2.72) by the spherical-
harmonics series, and multiply both sides of the equations by Y}, (u) and integral

over u, then we get

8
20+ 1

dipim(r) =/ (47)Bp, (3.12)

Wy (r) =

and

N L/a o
pl,m(r) = 6/ dt Z Z qii,ma (I‘, t)QZ2,m2 (I‘, L/a - t)Il1,m1,l2,m2,ls,—m3(_1) %
0

l1,m1 lz,m2

(3.13)
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where the constant
Ilhml,lz,mz,lmmz = /duyll,ml (u)le,mz (u)Yls,m3 (u)

— / QY] 1y () Vg g (W)Y (W) (—1)™

_ (cqym (20, + 1)(205 + 1)]"?
B 4m(2l3 + 1)
XC(ll,lz,lg;ml,mQ,—mg), (314)

X C(lh l2a l37 07 07 O)

where, C'(ly, ls,13;m1, m2, m3) is the Clebsch-Gordan coefficient. Note that by this

definition, the constant I is invariant in exchanging its coefficient pairs (I;, m;).

For the diffusion-like equation (2.69), special attention should be paid to the
term u - V.. There exist two sets of coordinates in the system: one is the spatial
coordinate (r) = (z,y, z), the other is the polar coordinate u = (ug, uy,, u,). In the
general case, these two sets coordinates do not have a particular relation. Note that
u is also a unit vector, so u = sin 6 cos i, + sin 8 sin i, + cos 0u,, where i, i,, U,
are unit vector along three axes in the polar coordinate, # and ¢ the polar angles.
The diffusion like equation (2.70) is

0
aql,m(r, t) ==l + 1)qm(r,t)

1 N 9 A
1 E[Il,—l,lhml,l,—m — 11,10 ma -] Gl 22T
v .
m 7 ~ a
—(-1) E : T 1y mat—m 110 ma 1, -m] Uy Y | dum (r,t)
3 V2 1
1, ~ 0 2
B 110,01 my 0, -m U 927

- Z Z Wiy,m4 (r)QIz,mz (I‘, t)]lz,mz,ll,mlyl,—m»(_l)m (315)
l1,m1 la,mo
with the initial conditions

Go,0(r,0) = V/4r. (3.16)

The simple case of Isotropic-Nematic interface problems is that densities vary
only in one spatial dimension, say the x axis. Then we can specify the relation
between the two sets of the coordinates. Since the y, z axes are translational invari-
ant, they form a plane paralleling to the interface if there exists, so we can choose

the x — 2 plane, in which the nematic director lies, i.e., u, lies in the & — z plane, as
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Figure 3.1: Definition of the coordinate system. The z axis is along the normal
of the interface. The spherical polar coordinates for describing u are defined in
the u-coordinate frame, while the bulk nematic director is along the u, axis, y axis

parallels to u, axis.

shown in Fig. 3.1. The angle 6; formed by x axis and u, axis is called the tilt angle.
For this one dimensional case, all the variables in terms of r in the self-consistent

equations are now in terms of z, i.e.,

w(r,u) — w(z,u), Wy (T) = wim (),
p(r,u) — p(z,u), PLm () = prm (),
q(r,u,t) — q(z,u,t), Um(r,t) = @m(,t),
/ dr — A / dz, (3.17)

where A is the area of the interface. After adopting the one dimensional coordinate

system, the dotted term in Eq. (3.15) can be simplified and the equation finally
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can be rewritten as

g _ _(_1\m 4_7T 8qh,m1(x>t)
ath’m(x’t) = =+ Dgm(z,t) — (=1)™4/ 3 Zi@x

l1,m1

. Il—llml—m_Illlml—m
% {Slnet >y L,b1,Mma,t, »1901,1101 55, +C039tI1,0,l1,m1,l,—m

V2
- Z Z Wiy ;ma (x)QIzﬂm (33, t)Ilz,mmll,ml,l,—m,(_1)m' (318)

l1,mq la,m2

Adopting the coordinate system shown in Fig. 3.1, for any fixed tilt angle 6;,

q(z,u,t) has the following symmetry properties:
q(z,u,t) = ¢*(z,u,t) = q(z,uy, 1), (3.19)

where u, = (6, —¢) is the mirror image of u = (0, ¢) when the u, = 0 plane is
considered to be the reflection mirror. Hence the coefficient ¢ ,,(z,¢) has these
properties:

Gm (T, 1) = G (2, 1) = (=1)" @1, m (2, ). (3.20)
By using these symmetry properties, we can reduce the number of independent

variables in the actual calculation.

The numerical calculation is as the following: for wormlike chains, we can divide
them into a large number N of divisions, each division having a tiny length At =
L/a/X =n/N < 1, ie., Nis much larger than the effective Kuhn segments number
n; the space is also divided into a certain number of slots, basically more points were
assigned to the interface region where our interests are; with the initial condition
of Eq. (3.16), and proper guess values of the mean field w;,,(z), Equation (3.18)
can be evaluated for all ¢ variables, from which we can get @, p, and w, which can
be used for the next iteration. In the updating the iteration, the Crank-Nicholson
algorithm is implemented. The step stops after enough iterations, and all the
variables converge to the final values. In the calculation, we use the assumption

that the tilt angle is fixed across interface region.

The approach mentioned above is ready to study all cases from rigid rod-like
polymers to flexible polymers, because the flexibility is only related to the ratio of
the total contour length L to the effective Kuhn length a, and the value of the ratio
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L/a is the only difference among those cases. Define a variable to characterize the

flexibility of polymers is necessary

e |t

o (3.21)

For the case of @ < 1, the effective Kuhn length is very long compared to the
contour length, the polymer looks like a rigid rod, and the upper integral limit
a = L/a is very small. In the opposite case, a > 1, the effective Kuhn length is
very short compared to the contour length, the polymer looks like a coil and the

upper integral limit « = L/a is very large.

The diffusion equation (3.18) is quite general. The density function Eq. (3.13)
is strongly related to the value of the upper integral limit a.. The diffusion equation
“allows the particles diffuse at a certain speed”. The upper limit « is the “time”
for particles to diffuse. If “time” is short, the particles can not reach any other
position, i.e., the effects can not be transmitted. For a rigid rod case, the “time”
is very short, and variables are almost independent on u, “stay” around the initial
values, which means the term V2 contributes little to the results. If “time” is very
long, the particles can reach any point, the effects can be transmitted. With “time”
enough long, an “equilibrium state” is reached and will not change any more with
more “time”. It means that in the case of a > 1, the term %ql,m(ag, t) contributes
little to the results. This is the flexible limit of polymers. Much work has been
contributed to these two limit cases by neglecting either V2 or %ql,m (z,t) to study

the system of rigid rod-like polymers or flexible polymers, respectively.

In our calculation, we included all these terms, and investigated the cases with
different flexibilities. In the following, we discuss the properties of the phase coex-
istence for different a.

3.2 Interface of the flexible cases: a = 10

In practice, we truncate the expansion in Eqs. (3.1-3.3) after the [ = 10 term.
For a = 10, we divide the contour length L/a into X = 5000, and for the spatial

discretization, because we are interested in the interface region, more points should
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be assigned to that region. For the system, we should have such boundaries: far
apart from the interface region, we should recover the bulk phases, i.e., x = —o0,
where we have the isotropic phase, and x = oo, where we have the nematic phase.

So we redefine a spatial variable £ by

¢ = tanh (x V1t (1/0‘)2) . (3.22)

2

By this definition, we put most of the points into the region which is about 5 ~ 10
times of the interfacial width, for polymers from the flexible limit to the rigid rod
limit. For rigid rod limit, this equation is rewritten in term of L rather than a, as
Eq. (3.45). The interval z = (—o0, 00) now becomes ¢ = (—1,1), which is equally
divided into Ng = 160 piece, each having A{ = 0.0125. The differential term in the
diffusion equation (3.18) is written as 9g; /07 = [(1—€2)4/1 + (1/)2/2]0q; m /€.
The derivative of ¢ ,,(x,t) with respect to £ is approximated by using a finite
difference scheme.

One of the difficulties is that we need the fixed-point iteration scheme to update
the variables w; ,,(z) in Eq. (3.12), i.e.,
- 3.23
20+1 ’ (3:23)

b (o) = whn@)(1 = )+ e { 57 (o) — v/(EmIn

where, the superscript ¢, and ¢ + 1 are the ith and (i + 1)th iteration, respectively,
¢ the fixed-point step. In order to make the iteration converge, ¢ is quite small
practically. In the case of @ = 10, ¢ = 0.001 is used, which make the updating of w
quite inefficient and the running time of the program as long as weeks for a simple
test.

We adopt the definition of the orientational order which is characterized by the
statistical average of the tensor ;(3uu — I) [24],

_ [ dui(3uu - I)p(z,u)
[ dup(z,u)
. V6p2.2(x) — pao() 0 V6p21(x)
= — 0 —V/6p22(z) — p2,(2) 0 (3.24)
2\/3/00,0(1‘) \/6,02’1 (x) 0 2p2,0(33)

S(x)
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After diagonalizing the matrix, we get the principle order parameter S(z),

S(@) = {P20(@) + V6paa(e)

1
4\/590,0@)

+ [9630(0) + 60kaa) + 2464, (0) - 6VBmale)nale)] " | . (325

Integrating p(x,u) over the spherical polar variables, we find the spatial varia-

tion for the number density

C(z) = a2d/dup(a:,u) = (47)2pg (). (3.26)

™ ™ us

Figure 3.2 shows us the density profile for different tilt angles 6; = 0, 5, &, 7, %,

% and 7, respectively.
One important task is to find the interface tension of the system. First we look
at the bulk phase to get the pressure of the system. For the bulk phase, functions

are independent of the spatial coordinate,

q(z,u,t) = q(u,t), (3.27)
w(z,u) = w(u), (3.28)
/ r = Vj, (3.29)
and
Q - %/km«mﬂ«—mLm—w%:%Q: (3.30)
N [P/a N
po) = o [ dtatwtal—uLja—t) = o). (63D

where, @' and p' are independent of the volume. Hence, the grand potential of the
system (Eq. (2.63)) is

80 = () - o [ dw@r

a’dN?
/duldugp'(u1)|u1 X ug|p'(ug) —

BuN
R

QI

/ dug'(u). (3.32)
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The pressure can be found by

__(BoQ
= <a%>N¢

N  a%dN?
= VO + Vz—QQ /duldu2p'(u1)|u1 X 112|pl(112)
0
a

7 /dup(u) + azd/duldugp(u1)|u1 X ug|p(uy), (3.33)

where, for convenience, the grand potential is used in the definition of the pressure
because the Gibbs free energy has no contribution. In the last step, Egs. (3.30)
and (3.31) were used. The main point here is just to avoid the extensive variables

N, Vp, and to use the intensive variables p.

For the bulk phase, the grand thermodynamical potential at equilibrium 3Q! =
—BpVo = =Vo[% [ dup(u) + a®d [ duydusp(uy)|uy x uz|p(up)]. In the presence of
an interface, the contribution from different area to the grand thermodynamical
potential is different, while the pressure should keep constant crossing the interface
and equals to that of the bulk phase. Then we get Q. = —A [ dz[¢ [ dup(z,u) +
a?d [ duydugp(z, ur)|uy x us|p(z,uz)] = —BpVy + Bo A, where Bo is the interface

tension, and A the area of the interface. So the interface tension of the system,

1

+o0
po = 199 - 60f] = [ " dese(a). (3.34)

[e e}

where,

. 4dT Pé,o _p0,0(x) I \2 dl 2
BO(x) = d [ﬁﬂLdo(Po,o) —Z2l+1pz,m(x) ,  (3.35)

,m

is called the tension contribution, where @ = L/a is the flexibility of polymers.
Note that the first term in Eq. (3.35) is inverse proportional to «a, so in the flexible
limit, « is very large, such that this term vanishes [24]. However, in the opposite
limit, a = 0, this term does not make the interface tension infinite because in that
case, the width of the interface is quite small in term of the effective Kuhn length,
which tends to be infinity. More discussion will be made in next section for the

rigid rod limit.
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14

C(x)

13.5

Figure 3.2: Density profile C(z) at the IN interface for a = 10. The centers of the
profiles are shifted by a in order to display them clearly for different title angles,
which are indicated in the figure.



CHAPTER 3. ISOTROPIC-NEMATIC INTERFACE 36

o
(3

M

= | el sllel ]
n
0.2F _
0.1 -
0 I L 1 L 1 I 1 L 1 L I 1 1 1 1
-15 -10 -5 10
X

Figure 3.3: Order profile S(z) at the IN interface for & = 10. The centers also
shifted by a. The tilt angles are indicated in the figure.
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The profiles of the density C(z), the order parameter S(z), the tension contri-
bution ©(z) are calculated for different values of the tilt angles and are plotted as
functions of z in Fig. 3.2, 3.3 and 3.4. Note that the coordinate z is reduced by a
and is dimensionless here. In the calculation, the tilt angles are assumed to be fixed
across the interface. In order to display clearly all profiles of different tilt angles in
one plot, the center of each of the density profile and the order parameter profile

is consecutively shifted by a from the previous one for each given tilt angle 6, .

From Fig. 3.2, we see the interface width of the density profile is roughly 4a. The
interface width is getting narrower with the increase of 6;, and the narrowest one is
at 0; = w/2, about 2a. The density at the two side of the interface are C; = 13.28
and C,, = 14.27, which agree with those obtained from the bulk phase density [33]
for the case of @ = 10. But these numbers are different from those obtained from
the flexible limit [24], which are C; = 13.046 and C,, = 14.029. The reason is that
the case for a = 10 is not the flexible limit. In principle, we can calculate the case
for any «, no matter how large its value is to approach the flexible limit. But,
in practice, we need to use the fixed point iteration (Eq. (3.23)), and the step ¢
is getting smaller with a getting bigger, which makes the efficiency of updating
w;m(z) to decay rapidly. The empirical formula for the relation between them is
¢ ~ 0.01/(a+0.1). However, from figures (order parameter in figure 3, number
density difference in figure 4, etc.) in reference [33] compared with Khokhlov and
Semenov’s work [7], we can see that after a > 10, the lines almost flat, which means

a = 10 is big enough to study the interface properties of the flexible polymers.

Figure 3.3 shows the order parameter profile. The value of the nematic phase
is S, = 0.456, which, similar with the density profile, agrees with that of the bulk
phase and is different from that in the flexible limit, which is S,, = 0.4618. The
width of the order parameter for 6, = 0 is about 4a, while that for 6; = 7/2 is
about 2a, which is very similar with the width of density profile.

Figure 3.4 shows the tension contribution profiles, and the interface tension
o is plotted in Fig. 3.5 for different tilt angles. We see that different area has
different contributions to the interface tension. On both sides far away from the
interface, there is no contribution to the tension. The contribution ranges (profile

widths) have similar features with those of the order parameter profiles, around
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Figure 3.4: Tension contribution profile ©(z) at the IN interface for & = 10. From
the top to the bottom, the tilt angles are 0, 15, 30, 45, 60, 75 and 90, respectively.
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Figure 3.5: The interface tension ¢ as a function of the tilt angles 8; for a = 10.
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4a for 0; = 0 and decreases to 2a for 6, = m/2. The interesting thing is that, in
the contribution range, for different tilt angles, the profiles have different shapes.
For small tilt angles, §; < m/4, the profile decreases first from the isotropic side
(left side), then increases sharply and decreases again (up-down-up) until reaching
the nematic side, i.e., on the isotropic side, the net contribution to the tension is
negative, and the major contribution is from the nematic side. For large tilt angles,
6; > /3, however, situation is totally different. The profile increases first from the
isotropic phase, then decreases sharply and increases again (down-up-down) until
reaching the nematic side. The major contribution comes from the isotropic side
and negative contribution exists on the nematic side. Similar phenomenon is found
by the study of McDonald and Allen [25], who did the MC simulation about the
isotropic-nematic interface of rigid rods, using Onsager’s density functional theory.
We will present the results of rigid rod-like polymer in the next section, and the
profiles have similar up-down-up or down-up-down properties with those presented
in Fig (3.4). However, the strange thing is that our profiles are on the opposite
side of theirs. Our profile for §; = 0 is similar with theirs for “planar” (tilt angle
is 7/2), while ours for 6, = 7/2 is similar with theirs for “normal” (tilt angle is 0),

although we all get the lowest energy when the tilt is /2.

As for the interface tension o obeys similar features obtained by Cui et al [24].
The minimum interface tension is about 0.215 £ 0.010 with the tilt angle 7/2. The
polymers prefer to be parallel to the interface.

3.3 Interface of the rigid cases: a =0

Secondly, we study the isotropic-nematic interface of the opposite limit, the rigid
rod polymers, i.e., @ = 0. One question may arise since « = L/a is the upper
limit of the integral, which makes the density function trivial in Eq. (3.13). This
is because all lengths are reduced by the effective Kuhn length a, which now is an
infinity number. The isotropic-nematic interface for rigid rod-like polymers are in
the length scale of the contour length L, much less than the effective Kuhn length
a. Since our interests are in the interface region, which is in the length scale of

the contour length, we’d better have rewritten those equations in terms of L rather



CHAPTER 3. ISOTROPIC-NEMATIC INTERFACE 41

than a for this special case.

In the following study, we will find that the width of the interface is always in
the length scale of the mean-square of end-to-end distance over the contour length,
i.e., < R? > /L, which is equal to a for flexible limit, and equal to L for rigid rod
limit. However, < R? > /L by Eq. (2.36) is too complicated to be used to reduce
the spatial variables for any possible a. More discussions on it will be made about

it later.

Reducing all the variables by the contour length L instead of the effective Kuhn
length a in the previous sections, and expanding them by the spherical harmonics,

we get the equations in one dimension,

w(z,u) = Z Wi (2) Y] m (1), (3.36)

o) = 2333 prn(@)Vign ), (3.37)

and

q(z,u,t) = \/de Z Gm(z, 0)Y m(0). (3.38)

The partition function ) now is
Q= /da: Z U (T, )@ m(z, 1 — 1), (3.39)
l,m

where the reduced chain is labeled from 0 to 1. And

5T diorm(z) + /(B (3.40)

() = 57

N 1
pl,m(x) = 6/0 de Z Z qii,ma (x’t)qlz,mz(x’ 1_t)Ill,m1,lz,m2,l3,—m3(_1)m3‘ (341)

l1,m1 l2,m2
In the differential equation of Eq. (3.18), after we adopt the reduced variable, the

first term in the right hand side receives a factor of L/a, which kills the term,
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therefore the equation is rewritten as

0 | 4m g1, my (2, 1) m1 (z,t)
%ql,m(x)t) = Z

l1,m1

1 —1,l1,m1,l,—m Illllmll —-m
X {sm 6, + cos 9tI170,117m1,l,_m}

V2
- Z Z Wi, ml qlz mz(x t)Ilz sma,li,ma,l,—m, ( 1)m' (342)

l1,my l2,m2

The interface tension equation for rigid rod-like polymers is

Bo = / " qwse(), (3.43)
where
4 d
sow) = 21 [p—w%() b~ Y gt @) (344

Note that the first term in the right side is not a small contribution to the interface

tension.

In the calculation, for @ = 0, we divide the contour length into X = 500, and
the spatial discretization is defined by Eq. (3.22) but in terms of L rather than in
term of a which is for other cases, i.e., in the rigid case, the spatial variable z is
reduced by L,
1+ (1/«)?

2
¢ is again divided into N = 160 piece, each having A = 0.0125. The fixed point

iteration is also needed here, and the fixed point step ¢ = 0.1 is used.

xL
¢ = tanh(—2

) = tanh(g). (3.45)

Figures 3.6 and 3.7 show the density profile C'(z) and order parameter profile
S(z), respectively. The centers of the profiles shifted as before to see them clearly.
The density of isotropic at the left side is C; = 4.19, while that of nematic phase is
C,, = 5.32, the order parameter of nematic phase is .S, = 0.789, which agree with
the previous data [33]. The width of profiles are very similar with that for o = 10,
the interfacial width of both the density profile and order profile are about 4 ~ 5L.
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Figure 3.6: Density profile C(z) at the IN interface for @« = 0. The centers of
the profiles are shifted by the contour length L for different title angles, which are
indicated in the figure.
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Figure 3.7: Order profile S(z) at the IN interface for & = 0. The centers also shifted
by L. The tilt angles are indicated in the figure.
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Figure 3.8: Tension contribution profile ©(z) at the IN interface for @« = 0. From
the top to the bottom, the tilt angles are 0, 15, 30, 45, 60, 75 and 90, respectively.
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Figure 3.9: The interface tension o as a function of the tilt angle 6; for a = 0.
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Figures 3.8 and 3.9 show the tension contribution profiles ©(z) and interface
tension o, respectively. The similar features have been found on the plots. The
tension contribution profiles exhibit the same down-up-down for small tilt angles
and up-down-up for large tilt angles. But the drop on the profile is not as deep as
that we found for & = 10 compared with the increasing part. And the change from
down-up-down to up-down-up happens at smaller tilt angle than that for a = 10.
At 0, = w/6, we almost can not see the concave (the decrease part) on the profile,

with positive contribution cross the interface.

The lowest interface tension is at 6, = 7 /2, i.e., when polymers are parallel to
the flat interface. The value is 0.15540.010, which is slightly lower than that found
in [23], but very close to the value 0.156 4+ 0.001 found by Shundyak and van Roij
[27], who used a refined spatial grid by putting more points in the range of the
interface to recalculate the interfacial problem reported in [23]. They found that
40 grid points used by Chen to the spatial range [—5L, 5L], the grid points per rod
length M = 40/10L = 4/L, is not enough. M = 20/L, i.e., 200 grid points for that
range is enough to make the interface tension converge. However, after we redefined
the spatial coordinate by Eq. (3.45), M = 30/L is in the interfacial range (about
4L), despite only 160 points were used for all the space, from negative infinity to

positive infinity.

3.4 Interface of the semiflexible cases: o =1

In this section, a = 1 is studied. In this case, the effective Kuhn length a is equal to
the total contour length L. Both formula are good for this section, but we’d like to
adopt those on the section for flexible cases, i.e., to rescale the space by a, regarding
the rigid limit as a special one. The contour length is divided into 8 = 2000, and
the spatial discretization is as Eq. (3.22). The fixed point step ¢ = 0.01 is used.

The density profile C(z), order parameter profile S(x), tension contribution
profile ©(z) and interface tension o are plotted in Fig. 3.10, 3.11, 3.12 and 3.13,
respectively. C; = 15.85, C,, = 16.90 and S,, = 0.445 all agree with the bulk data.
The interesting thing is the width of the profiles are quite narrow compared with
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those found for both limits, where we found the width are about 4a for o = 10 and
4L for a = 0 with §; = 0, although they obey the property that width decreases
with the increase of the tilt angles and that of 6; = 0 is about half of that of
0; = w/2. The widest width on the density and order parameter for a = 1 is about
2a or 2L.

To find out why the width is somehow “narrower”, we turn to the end-to-end
distance of polymer chains. For a@ = 1, from Eq. (2.36), we can find the mean-
square end-to-end distance over the contour length of polymers is [, =< R? >
/L = L{1 — [1 — exp(—2)]/2} =~ 0.568L, which means [, for a« = 1 is about half
of that of rigid rod limit, L, or half of that of flexible limit, a. So for a = 1, the
width of profile at §; = 0 is also about 4 times of [., the equivalent segment length
of polymer chain, and 2 times of I, at # = /2. One can make an guess of the
relationship between the interface width and the equivalent segment length of the
polymer chain: the widest width of isotropic-nematic interface at 6; = 0, is about
4 times of the ratio of the mean-square end-to-end distance to the contour length
(i.e., 4l.), with the increase of tilt angle, the width decreases and the narrowest one
is about 2l, at 6; = 7/2, from flexible polymers to rod-like polymers. Note that [,
is different from the persistent length [,.

Figure 3.12 shows us a similar scenario with those found for the two limits. The
inverse of the pressure happens around 6; = w/4. We already mentioned that for

a = 10, it happened over 7 /4, while for o« = 0, it happened below 7 /4.
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Figure 3.10: Density profile C(z) at the IN interface for « = 1. The centers of
the profiles are shifted by the contour length a for different title angles, which are
indicated in the figure.
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Figure 3.11: Order profile S(z) at the IN interface for a = 1. The centers also
shifted by a. The tilt angles are indicated in the figure.
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Figure 3.12: Tension contribution profile ©(z) at the IN interface for & = 1. From
the top to the bottom, the tilt angles are 0, 15, 30, 45, 60, 75 and 90, respectively.
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Figure 3.13: The interface tension ¢ as a function of the tilt angle 6; for a = 1.



Chapter 4

A wormlike polymer confined

between hard walls

A polymer confined in certain geometry is of fundamental importance in polymer
physics because it underlies some important biological processes and technological
applications. This area has attracted many interests, for example, polymer con-
fined in a spherical surface [34], polymer confined in a tube [35, 36, 37, 38], polymer
confined between slit [39, 40]. The confinement of flexible polymer causes an en-
tropy change, while the confinement of semiflexible polymer causes both energy

and entropy changes.

Although a lot of work have been done in this area, there are still many open
questions. So far no work has been done for a wormlike polymer confined between
two hard walls, which are separated to a distance comparable to the effective Kuhn
length. In this chapter, we will discuss the confinement of two types of polymer

models, one is the flexible Gaussian model, and the other is wormlike chain model.

4.1 Flexible polymer confined in hard walls

To start with, we give a review of the well-formulated treatment of the structure of

a flexible polymer chain in an external potential field. The flexible polymer chains

33
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are normally modeled by the Gaussian chain model, which has been introduced in
the second chapter. The configuration of a flexible polymer is usually described by a
reduced continuous space curve r(t), where ¢ is the contour coordinate varying from
0 to L/a, L the total contour length, a the effective Kuhn length. The statistical
weight of a flexible polymer in an external field V' (r), acting on unit segment of the

polymer, is described by

Plr(t)] o< exp [—/05 dt{i dr(?)

== +mf[r<t>]}], (4.1

where 8 = 1/kgT, kp the Boltzmann constant and T the temperature. The model
in Eq. (4.1) is accurate for description of the physical features of a polymer where
the characteristic length scale under examination is much greater than the effective
Kuhn length a. Indeed, the formalism has been widely used in developing essential

statistical-physics approaches to polymers [41, 35, §].

We can follow the similar approach of Eq. (2.66a) to define the probability
function, ¢%(r,t), of finding the terminal end of a polymer segment of length ¢ at
location r, where the superscript g denotes the Gaussian chain. Using the statistical
weight in Eq. (4.1), one can show that ¢9(r, t) satisfies [15],

o¢(r,t) .a?
a6
To completely specify the physical problem represented in the above partial differ-

V? — BV (r)lg (x, t). (4.2)

ential equation, an “initial” condition,

¢’(r,0) =1, (4.3)
needs to be supplemented. The segmental density, after the consideration of the
entire polymer of length L, can be written as,

o foL/a dtq?(r,t)q?(r; L/a — t)
p(r) = fdrqg(r,L/a)

For an infinite square well with the surfaces perpendicular to the z axis [see Fig.

(4.4)

4.1A], we can write the potential V' (r) in one dimension,

Vo(z) =0 for 0<z<W, (4.5)
and

Vo(z) = 00 for r>W or <0 (4.6)
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X

Figure 4.1: (A) Schematic diagram of wormlike chains between two parallel walls,
(B) left half of the normalized segment density profile, and (C) right half of the
orientational order parameter profile. The two hard walls, located at x = 0 and z =
W respectively, are assumed without any features and sterically contain wormlike
chains. The solid curve in plot (B) represents the limit of W > a and can be
obtained exactly. Circles, squares, diamonds, triangles, and crosses represent the

profiles obtained numerically for W/a = 6,4,2,1 and 0.5, respectively.
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For a small wall separation (the distance separated by the two walls, W), i.e., when
W is much smaller than the radius of gyration of the polymer v/La, the solution
to the partial differential equation is dominated by the ground-state eigenfunction
associated with the operator on the right-hand side of Eq. (4.2) [41]. The ground-
state eigenvalue can be identified with the reduced segmental chemical potential
B in this case [42]. Hence, all we need to do is to solve the eigenvalue problem of
[az d?

@4 ﬁvw@:)] &), (47)

—Burgj(x) = 6 da?

With the potential Eq. (4.5-4.6), Eq. (4.7) has a simple ground-state solution
¢ (z) = Asin(rz/W), (4.8)

and eigenvalue
Bu = (7*/6)(a/W)?, (4.9)

where A is a normalization constant. Within this ground-state dominating limit,
we have ¢9(z,t) =~ qj(x)exp(—Lut) asymptotically; the segmental density in Eq.
(4.4) can then be related to gj(z) by

p(x) o< (8 ())*, (4.10)

which yields a normalized segmental density function for polymer confined in a wall
separation W,
p(x) = 2sin®(rx/W). (4.11)

Half of p(z), between x = 0 and = = W/2, is plotted as a solid curve in Fig. 4.1B.
Similar results were reported by Hsu and Grassberger [39] using the Monte Carlo

simulations.

With the caution that the solution is valid in the limit W < +v/La (the wall
separation is much smaller than the radius of gyration of the polymer), a few
simple conclusions can be drawn from this solution. First, the normalized density
(Eq. (4.11)) is a universal function of z/W, independent of the magnitude of the
effective Kuhn length a. The confinement influences the polymer segments directly

near the wall boundaries; the effects of the confinement, however, propagate through
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the entire polymer. To maximize the entropy, this would normally result in re-
arrangement of the entire polymer conformation in a length scale comparable to the
radius of gyration, of the order v/La. In the current system, because the dominating
length scale is W, not v/La, the polymer undergoes conformation change across the
entire separation W. Secondly, the free energy of the polymer, F', can be written
as the number of segments, L/a, multiplied by the segmental chemical potential,
. This leads to

F = uL/a « kgT(VLa/W)?  kgT(Ry/W)?, (4.12)

where Ry is the radius of gyration; the harder the polymer is squeezed between
the gap (smaller W), the higher the conformation entropy is penalized. Though
Eq. (4.12) is the direct result of the statistical weight in Eq. (4.1), the scaling
relation between F', Ry and W is fully consistent with the result from a simple

scaling argument based on, for example, the “blob” picture [35].

4.2 STY weight for a wormlike chain in external
field

Both Eqs. (4.11) and (4.12) are known results and can be found in, for example,
Ref. [41]. However, for a wormlike polymer, the persistence length [, = a/2 can
become large in comparison with a typical characteristic length scale in the system.
In some systems, we are interested in cases where [, is comparable to W. For
example, a double-stranded DNA molecule has a persistence length of a few hundred
A depending on the ionic strength of the solvent, and some of the biological systems
consist of DNA molecules confined in the geometry with length scales comparable
to its persistence length [43, 44]. Most importantly, the orientation of an individual
segment, which is particularly relevant to handling the Onsager excluded-volume

interaction [5], needs to be explicitly considered.

For a flexible polymer, the statistical weight in Eq. (4.1) is a good approximation
of practical systems only when the physical features in a length scale shorter than
a can be ignored. In this chapter, we adopt the approach taken by STY [14] for
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treating wormlike polymer chains (introduced in the second chapter), where most
universal physical features at a scale less than [, are maintained. The configuration
of a polymer is still described by a continuous space curve r(t), but the statistical

weight depends on the local curvature variation and an external potential,

P o exp [_ /0 : dt{% d‘;—ff)ﬁ + AVIE(E), u(®)]}| | (4.13)

where u(t) is the unit vector u(¢) = dr(¢)/dt and V(r,u) is the external potential
acting on a unit segment, a function of both r and u. One can show, for a “free
polymer” where V(r,u) = 0, that the conformational properties described by this
statistical weight recover those described by the statistical weight in Eq. (4.1), in
the limit of L > [,, and those described by a simple rigid rod model, in the limit
of L < 1, [8, 42]. In this section, for a long wormlike chain (L > l,) confined
between two walls with separation W, we demonstrate that the STY weight in Eq.
(4.13) recovers the results based on (Eq. 4.7) in the limit of Ry > W > [, (the
same condition for validity of the model in Eq. (4.1), and yields different physical
features in the parameter regime Ry > /1,W.

Because orientation of a polymer segment is explicitly considered in Eq. (4.13),
we are able to examine a physical quantity that is a function of both r and u. To
this end, we are interested in the conditional probability, ¢(r,u,t), that a polymer
portion of length ¢ has an end located at r and whose tangent vector point in the
direction u. The computation of ¢(r,u,t) is equivalent to solving the differential
equation (2.69), with the “initial” condition of Eq. (2.73). The segmental distrib-
ution function, for an internal segment of the polymer to located at r and with a

tangent vector pointing at u, can be written as,

fOL/a dtQ(r7 u, t)Q(I', —u, L/a - t)
[ drdug(r,u, L/a)

p(r,u) = (4.14)

We have already discussed in the third chapter that Eq. (4.14) is a general
equation. Different ratio of L/a gives us different properties of polymers. For
L/a < 1, we have the rigid rod-like polymers, on the other side, for L/a > 1, we

have the flexible polymers. In the rest of this chapter, we are only concerned about
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long wormlike chains where the radius of gyration of the chain, Ry, is much greater
than both [, and W. Within this parameter regime, the ground-state solution
for the operator in the square brackets of Eq. (2.69) is the dominating function
contributing to the free energy and segmental density distribution. Adopting the
coordinate system in Fig. 4.1A, we need to obtain the ground-state solution of the
eigen problem for the partial differential equation

e, ) = [V — ans -~ BV (2, )]z, w), (4.15)

where u, is the projection of the u vector onto the z axis. Asymptotically for large

t, we have
77[1(513,11; t) ~ d’(%u) eXP(—BHt)- (416)

Considering the relationship between the p and 9 in Eq. (4.14), we can readily

write

p(z,u) < P(z,u)(z, —u). (4.17)

Note that the physical meaning of the product on the right hand sides of both
Eqgs. (4.14) and (4.17) have the same meaning as that in Fig. 2.4. The negative
sign in front of the second u vector can only be omitted for systems containing a
reversal symmetry in u, such as in the case of studying the bulk properties of a
nematic phase [7, 33, 45]. This fact was not always appreciated in some studies
[46].

This formalism has been used for studying interfacial properties between two
immiscible wormlike polymers [47] and between the isotropic and nematic states of

wormlike liquid-crystal polymers [24, 48].

4.3 Recovery of the results in Section 4.1 for W >
a
One of the most important features of the above formalism for ¢ (z,u) is that it

recovers the formalism for ¢9(z), discussed in Section 4.1 for a “wide” confinement
gap, W > a. In this limit, to see how Eq. (4.15) reduces to Eq. (4.7) for a
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square well potential (Egs. 4.5 and 4.6), we start by noting that the only relevant

orientational variable is u, = u - X, where X is a unit vector along the z axis [47].

Expanding ¢(z, u,) in terms of Legendre functions P;(u,), we write

o0

Y@ up) =Y (@) Pi(ug), (4.18)
1=0
where, at this stage, ¥;(z)’s (I = 0,1,2,...) are undetermined functions of z. The
substitution of this expression into Eq. (4.15) allows us to identify the coupled
differential equations that ;(z)’s must satisfy,

l l+1d

—Buh(z) = =+ h(z) - 2l—1d B T e

—1(x). (4.19)
More specifically, the first two coupled equations, valid for 0 < z < W, read

~Butn(z) = — 5 (@), (4.20)

and
d 2a d
—Buihi(z) = =2¢1(2) — ag do(z) = = da(z). (4.21)
An examination of Eq. (4.20) reveals that Sy is of order (a/W)? for small a/W.
And the last term in Eq. (4.21) is of order (a/W)?. Keeping terms of order (a/W)?
or lower in Eq. (4.21), we neglect the left-hand side because it is of order (a/W)3.

Then Eq. (4.21) can be rewritten as
291 (z) = —a—1o(x) (4.22)
1(z a o(z). .

Together with Eq. (4.20), we can easily see, when W/a > 1, y(x) satisfies
Eq. (4.2) , and 91 (x) is of order (a/W). Hence, Eq. (4.2) is a special, asymptotic
case of Eq. (2.69). It is known that most physical properties of a wormlike chain
[obeying Eq. (4.13)] recover those of a flexible chain [obeying Eq. (4.1)] in the limit
of L > a; we see here no exception for systems where W > a.
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4.4 The case of W ~ a

We now return to the general case of W ~ a that requires numerical consideration
of Eq. (2.69) [24]. Cautions have to be made to impose the boundary conditions
at the walls. For the geometry of hard walls described in Fig. 4.1, it is clear that
the external potential Vi (z,u) = oo for x < 0 or x > W, which is a condition that
would be normally invoked in a typical potential-well problem. The situation at
r = 0T, however, is more complex; a polymer terminal segment that points to the
negative z-direction is not directly influenced by the hard-wall steric interaction,
hence has a non-zero density distribution; on the other hand, a polymer terminal
segment that points to the positive x-direction is subject to the hard-wall steric
interaction [49]. This implies that V, (07, u) = co for u-%x > 0 and V4 (0", u) =0
for u - % < 0; according to the same rational, Vi, (W — 0", u) = oo for u-% < 0 and
Vo(W —07,u) =0 for u-x > 0.

To solve the eigenproblem in Eq. (4.15), we need to implement Legendre ex-

pansions for the angular dependence in both ¢(z,u) (Eq. (4.18)) and Vi, (z,u)[32],

o0

Va(z,u) = Via(z) Pi(uy). (4.23)

=0

Applying the boundary mentioned above, we get

20+1 2
Va(0T) = VOOT+ dfsin 6 P,(cos ) (4.24a)
0
20+1 [T
Va(W —=07) = VOOT+ dfsin §P;(cos §) (4.24b)
Var(z) = 0 for 0<xz<W, (4.24c)
Vai(otherwise) = Vi, (4.24d)

where cos 6 = u,, and V, a quite big number used to describe the infinite potential

walls, and practically 5000 was used.

Using these equations, we numerically solved for any value of W/a. Figure 4.2
shows the numerical solution for the eigenvalue Su as a function of W/a. Note that
Bu(W/a)? approaches the asymptote m2/6 at W/a > 1, agreeing with the analytic
solution to Eq. (4.2).
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Figure 4.2: Numerical solution for the reduced chemical potential u(W/a)?/kgT as
a function of the reduced wall separation W/a for a wormlike chain. The dashed

line represents the asymptotic limit 72/6, based on a model for flexible chain.
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The normalized segment density and order parameter profiles, p(z) = [ dup(z, u)
and S,(z) =< Py(cosb,) >, are plotted in Fig. 4.1B and 4.1C for several values
of W/a, where < ... > is performed in reference to the conditional density prob-
ability function in Eq. (4.4) with a fixed z. The illustration shows that as W/a
is decreased from a rather large value (circles where W/a = 6) to a small value
(crosses where W/a = 0.5), p(z) deviates from the prediction based on Eq. (2)
(solid curve); instead of occupying the central region between the walls to maxi-
mize the entropy, the polymer segments are forced towards the near-wall regions by
the smaller separations. In the mean time, polymer segments near the walls develop
significant orientational ordering, lying parallel to the walls — a value —1/2 for S,

would imply that the segments are perfectly parallel to the surface of the wall.

4.5 The confined wormlike polymer interacting

with the Onsager approximation

So far we have discussed the structure of wormlike chains without mutual segment-
segment interactions. To include excluded-volume interactions, a wormlike chain
can be treated as a cylindrical filament (which can still be described by a space
curve specifying the filament axis) characterized by a cross-sectional diameter d. In
a typical bead-spring model for polymers where the excluded-volume interaction is
usually characterized by the size of a bead, the interaction energy is independent
of the orientation of the polymer bonds. However, the excluded-volume interaction
of cylindrical filaments has a clear orientation dependence. In the limit [, > d,
the excluded volume between two perpendicular rigid segments of length [, is ap-
proximately 2dI%, which is much greater than that between two parallel segments,
2md?l,. Onsager derived a free energy expression based on the second-virial coef-
ficient approximation for the excluded-volume interaction between two rods of an
arbitrary relative orientation [5]. The Onsager approximation is considered accu-
rate for long polymers [7], where L > a > d, a condition that can be easily satisfied
by most polymer systems, in particular, DNA molecules. To describe the current

system, the interaction between a polymer segment and others is approximated by
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a mean-field background potential energy U(x,u) acting on this segment. Within

the Onsager approximation, this is given by [7, 24] 2,
BU(z,u) = 2a2d/du'p(x,u')|u xu'|. (4.25)
The potential V(z,u) in Eq. (4.15) is now
V(z,u) = U(z,u) + Vy(z,u). (4.26)

Equations (4.15-4.26) completely specify a set of self-consistent equations, which

we can solve numerically.

We adopted a similar definition of the coordinate system defined in the third
chapter. The only difference is now we have two separated walls in the space as
shown in Fig. 4.3. We already mentioned the spatial variable (in Fig. 4.1(A)),
the = axis is along the normal of the infinite structureless walls; the system is
translational invariant in the y and z directions. The polar variables to describe
u are defined in the tilted coordinate frame labeled by the Cartesian variables u,,
uy, and u,. The direction of the u, coordinate coincides with the bulk nematic
director, so that the angle between the direction of the u, axis and the normal to
the surface x is the tilt angle 6;. The u, direction is chosen in the same direction
as the y axis. Similar with Eq. (3.15), for a fixed tilt angle 6;, expanding in the u
space, the variable

Uy = cos B sin B cos ¢ + sin B cos 0, (4.27)
where, 6 and ¢ are polar angles.

The nematic director is no longer along the = axis when the tilt angle is nontriv-

ial. In the vicinity of the walls, the rotation symmetry of ¢(z,u) is broken, which

2We should note that the Onsager term in Eq. A4 in reference [24] is incorrect. A ‘2’ factor
is missing on the right hand side of the formula, therefore the relative term should multiply by
this factor in the following equations: Eq. 1, Eq. 7, Eq. 8, Eq. 19, Eq. 20, and Eq. 37. Note
that there is another misprint in Eq. 37; the sign factor (—1)™ should not be there. The correct
formula is as Eq. (4.40) in present paper. The last term in Eq. 25 needs one more sign factor
(=1)™1. Fortunately, the two equations used for calculation Eq. 12 and Eq. 25 do have a ‘2’
factor and the code for both Eq. 25 and Eq. 37 are in the correct form, which generated correct
results present in that paper.
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Figure 4.3: The similar definition of the coordinate system as that shown in Fig.
3.1. The z axis is along the normal of the wall. The spherical polar coordinates for
describing u are defined in the u-coordinate frame, while the bulk nematic director

is along the u, axis.

make the Legendre functions no longer suitable for the expansion of the eigenfunc-
tion. Hence, to solve this set of self-consistent equations, we again expand all the
functions by the spherical harmonics

1
Va2d

Yz, u) = > Yt (@) Yigm(w), (4.28)
Im

where 1 ,,(x) is dimensionless.

For the boundary condition, again because the rotational symmetry of the sys-
tem around the nematic director is no longer valid for the nontrivial tilt angle, the
limits of the integral in Eq. (4.24a) and Eq. (4.24b) have been changed, which
make it difficult to integrate directly. However, by using the addition theorem, we
can rotate the coordinate system, and express Vi, (x,u) by the spherical harmonics
in terms of the coefficients Vi (x) in Eq. (4.24),

Vae(z,0) =) Ve (2)Yim (), (4.29)

where

4
Ty (6:,0), (4.30)

le,m<x) - VWl(x)%——H I,m
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where 6, is the tilt angle.
Multiply both sides of Eq. (4.15) by ¥}’ (u), integrate over u, and rescale the

variable x in units of the effective Kuhn length a. This procedure yields

[[(1+1) = Bulbim(z \/EZ d% i (

l1,m1

I 1y -1
: ) lamlvlv_m lvlallvmlala_m
X [Sln(ﬁt) + €08(0:) 11,011 ,m1 1, ~m

V2
8w et
+ Z (_1)l4+ * ldllwl2»m2 (x)¢l3,m3 (x)wl4»m4 (x)'[l,_m»llvmlvl2,m2

XIllv_mlvl3am3al4am4 = 07 (4.31)

where the bold faced indices I, m in the third term indicate that the sum is over all
relevant values of Iy, ls, I3, 14, m1, Mo, m3, and my. The constant I comes from the
integral of three spherical harmonics, defined by Eq. (3.14).

The density distribution function
1
u) = 22d sz,m(fﬂ)Yl,m(U)a (4.32)
I,m

in which the coefficient p; () is ready to be deduced from v, ()

le - Z Z Il —m,l1,ma,lz2, mz( 1>l1+mwl1,m1 (w)wlz,mz (517) (433)

l1,mq lz,m2

In the vicinity of the walls, the functions ¢, ,,(z) change sharply when the spatial
variable x approaches them, so more representative points should be assigned to the
region close to the walls. Hence, we chose a new way to define the spatial variable.
In the calculation, for the left half space [0, W /2a], we use a spatial variable defined
by 1/3

2az
- ] a
where the interval of £ is [0, 1] for the left half. The points of the right half space
is just the mirror image of the left side when the x = W/2a plane is chosen to be

the reflection mirror,

(4.35)

2ax 1/3
]

2 ¢= [2——
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Hence the interval of ¢ for the whole system is [0, 2], which can be discretized into
N¢ equally spaced slabs. Practically, N = 160 was used. For the differential term
dyym(x)/dz in Eq. (4.31), we have two choices to express in difference: one is to
use d)m(z)/de ~ (d€/dz) Ay m(x(£))/AE; the other, used in the calculation, is

to express directly

d¢l,m(x) ~ /le,m(x(g + Aé.)) _ /le,m(x(é. _ Aé))
dz o(€+AE) —x(€ - Ag)

(4.36)

For the first and the last point, respectively, the forward and backward difference

was used instead of the central difference.

For the coordinate system chosen in Fig. 4.3, with an arbitrary 6;, we already
have the symmetry properties of Eq. (3.19-3.20). Besides this, the excluded-volume
interaction prefers to have a tilt angle of 7/2 [24, 50], which give us another sym-

metry properties
Y(z,u) = v*(z,u) = Y(z,u,), (4.37)

where u, = (7 — 6, ) is the mirror image of u = (6, ¢) when the u, = 0 plane is
considered to be the reflection mirror. Therefore the coefficient 9 ,,(z) = 0 for all
the odd [ + m terms. In practice, by using these symmetry properties, we reduced
the number of independent variables, and truncate the expansion in Eq. (4.28)
after the [ = 10 term.

For the order parameter of the system, here we would like to take another
definition: in the third chapter, we defined the principle order parameter in Eq.
(3.25), which is according to the u coordinate system; here we’d like to choose that
according to the spatial coordinate to see clearly the biaxial effect. With the tilt
angle 6; = m/2, the order parameters can be expand explicitly in terms of p;,, as
the following,
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Figure 4.4: Phase diagram for wormlike chains confined between walls. The hori-
zontal axis is the wall separation, while the vertical axis is the chemical potential
per effective Kuhn segment. Filled symbols represent the numerical solution to Egs.
(4-7) based on which solid curves (first-order phase boundaries) are projected. The
open symbol represents the critical point.
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) = u-i _ fdup(a:,u) [% sin 0 cos? p — %]
T J dup(z,u)

_ Vopa(e) = prale), (4.384)

2\/5p0,0(:1:) 2 2
= _\/ggiféizvo_(;z"](x) ; (4.38D)
stoyc e > - T lietesd

_ Pz,o(ff?) c
-~ Vbpoe(z) (359

With all formula mentioned above, we numerically investigate the problem of
a flexible polymer confined between two walls. We have found that three distinct
structures are possible, depending on the magnitude of W/a and Su (see Fig. 4.4);
the latter can be viewed as a controlling parameter related to the average segment
density between the walls. Qualitatively, long wormlike chain can be viewed as rods
of length 2{, freely jointed together; the three phases found here can be compared
to similar phases that appear in the system of rod-like molecules between walls [27].

The error this simulation mainly comes from two sources: one is from the finite
discretization of the space, the other is that we must truncate the spherical series
at a certain number. In order to calculate how big the error bar is, we chose
some cases, in which we calculate the spherical harmonics series after [ = 12, and
N¢ = 320, and found the error for uniaxial-biaxial transition is quite small. For
example, the case of W/a = 2, the data are: [ = 10, N; = 160 is 15.855 (this
number is the chemical potential at the bi-uni phase transition); [ = 10, N = 320
is 15.865; [ = 12, N = 160are 15.885. Thus the estimate error can be regarded as
+0.05 for this case by using [ = 10, N; = 160. For biaxial-condensed transition, the
data shown that even lower error bar, due to the slight stronger first order phase
transition. In the case of W/a = 6, for [ = 10, Ny = 160 is 20.3835; for [ = 10,
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N¢ = 240 is 20.3839; for [ = 12, Ny = 160 is 20.3848. So for B-C transition, the
estimated error is about £0.004.

4.6 Uniaxial-Biaxial transition

Consider a system where W/a > 1.8 (Fig. 4.4). At low Su (hence low p) the
excluded-volume interaction between segments is less important and the orienta-
tional ordering of those near-wall segments is mainly the consequence of the steric
interaction with the wall. Within a distance of a from the wall, there exists a
depletion layer of polymer segments, as the segment density profiles in Fig. 4.5A
show. With the increasing of distance from the wall, the segments have less steric
interaction with the wall, and tend to form the bulk isotropic-like phase. From
Eq. (4.38), we know only two of these three order parameters are independent
[Se(z) + Sy(z) + S.(x) = 0]. At z =07, S,(z) attains the value S,(07) = —1, while
both S, (z) and S (z) have the value }, which indicates that pss(x) = 0, the density
profile is rotational invariant around the x axis, and a pancake shape distribution
is present. Throughout the entire region, the uniazial symmetry S,(z) = —S,(z)/2
is maintained (Figs. 4.5C and 4.5E).

Increasing the reduced segment density, which is written as
p(z) = a’dp(zx) = a2d/dup(a:,u) = Vdrpgo(z), (4.39)

corresponds to increasing Su. As Su approaches 16 (more exactly, the solid curve
associated with squares in Fig. 4.4), a phase transition to a biaxial phase, that has
different orientational properties, can be seen. Khokholv and Semenov were the
first to suggest that a nematic liquid-crystal phase can form provided that p is high
enough, where the orientation-dependent Onsager interaction is the mechanism re-
sponsible for this transition [7]. We see here the manifestation of a similar principle
at work in a confined system. Polymer segments far from the wall are still oriented
nearly randomly and give rise to the similar density as in a uniaxial phase. The
segments close the wall begin to develop a density-enhanced layer with nematic

characteristics [Fig. 4.5B]; a preferred direction parallelling to the wall surface is
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Figure 4.5: Density profiles and order parameter profiles in half space for the uni-
axial (left half) and biaxial (right half) states for W/a = 2 (circles), 1 (squares), 0.5
(diamonds), and 0.25 (triangles) at the uniaxial-biaxial transition, corresponding
to Bu = 15.86,15.98,15.80 and 14.84 respectively.
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selected as the local nematic direction (defined as z in Fig. 4.1). Orientational
order parameters in this phase display typical biaxiality: S,(z) > |Sz(z)|/2 [Fig.
4.5D and 4.5F].

Is the phase transition, caused by the presence of the walls, first order or second
order? To answer this question, we calculate the surface tension fo of the two
states, where the surface tension is defined by the difference between the grand
thermodynamic potential of the polymer between walls and that of the bulk phase,
isotropic phase, written in terms of p; ,,

4T W/a I 2 dlplz,m(x)
fo = @/0 dz ldo[ﬂo,o(w)] - a1 | (4.40)

l,m

which is the flexible limit of the tension definition by Eqs. (3.34, 3.35). Figure
4.6A’s show the surface tensions of the uniaxial S0, (dashed lines) and the biaxial
phases Boy, (solid lines) as function of the chemical potential Su for the wall separa-
tion of W/a = 2,1, % and i, respectively. Each case appears a typical second order
phase transition. However, closely examining them, we found these two lines in
each case did cross each other. The surface tension difference between the uniaxial
and biaxial phases Ao = fo, — Boy, against the chemical potential are shown in
Fig. 4.6B’s. Figure 4.6C’s are the square root of the difference /Ao, where for
negative data, we find the square root of the absolute value and multiply by the
negative sign. All the lines in Fig. 4.6C’s have the negative parts, which indicate
the surface tension lines do cross each other. So the phase transition is a weak first
order transition. The crossing point is the phase transition point, i.e., the point
where the surface tension of the biaxial phase is lower than that of the uniaxial
phase when we increase the chemical potential Su from a point where the uniaxial
phase is stable. It is easy to see that for wider wall separation, the negative part on
the profile of v/BAc is smaller. However, we examined the infinite wall separation
(a half system, with one wall at z = 0 point, and W/2a = o0), which is still a weak

first order phase transition.

The phase diagram of uniaxial-biaxial transition is shown by the square-symbols
in Fig. 4.4. This uniaxial-biaxial phase transition line is replotted in Fig. 4.7A (the

chemical potential against the inverse of the wall separation), in order to see clearly
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Figure 4.6: Surface tension of the uniaxial and the biaxial phases for different wall
separation as functions of Su. (A) the solid line is the surface tension of the biaxial
phase oy, while the dashed line of the uniaxial phase So,; (B) the difference of

the surface tension between these two phases; (C) the square root of the difference.



CHAPTER 4. POLYMER CONFINEMENT 74

what happens for large wall separation. For wider wall separation, the chemical
potential tends to be a constant. It can be explained that, at the uniaxial-biaxial
phase transition, the biaxial layers are developed only in the area close to the
walls. Far away from the wall, the segments of the polymer do not have the steric
interaction with the wall; due to the lower density (below the value in the isotropic
phase of the bulk isotropic-nematic transition), the bulk isotropic-like phase exists
in the middle area. The existing isotropic phase between the two biaxial layers has
no contribution to the phase transition. This can also be seen on Fig. 4.5, for wider
wall separation (for example W/a = 2), in the middle area, the density profile (Fig.
4.5B) is flat, and the order parameters (Fig. 4.5D, F) tends to zero.

Comparing the density profiles for the uniaxial and biaxial phases shown in Fig.
4.5A and 4.5B, respectively, we can see that in the two phases, the densities are
different from each other, especially for narrower wall separation. Integrate the
density profile throughout the whole space, we get the total amount of the polymer

confined between the two walls,

W/a W/a
R, = a2d/ dzdup;(z,u) = / dzp;(z), (4.41)
0 0

where ¢ can be u, b and ¢, which stand for the uniaxial state, the biaxial state and
the condensed state, respectively. The difference of R between the uniaxial phase

and biaxial phase at the phase transition point

W/a
AR =Ry — Ry — /0 dz[pn(z) — pu(@)], (4.42)

which is shown by the uptriangle-symbol line in Fig. 4.7B. The peak of the profile
appears around a/W = 1.8, which is different from the peak of the phase transition
(Fig. 4.7A) around a/W & 1.5. We can see that the difference of the density R
appears to be a constant for large wall separation (a/W < 0.4). It again shows us
that the biaxial phase is mainly a surface phenomenon where a thin layer is devel-
oped in the length scale of the effective Kuhn length a. When the wall separation
is larger than 2a, the segments of polymer away from the walls are not affected by
the walls, and the isotropic state is present, which has no contribution to the phase

transition.
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a/W

Figure 4.7: (A) the chemical Su as function of the inverse of the wall separation
a/W at the uniaxial-biaxial transition, (B) the density difference between the two
phases AR against a/W.
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4.7 Biaxial-Condensed transition

As the overall density is further increased, the biaxial phase remains stable as long
as the density far from the wall is below the value in the isotropic phase of the bulk
isotropic-nematic transition, g; = 13.046 (corresponding to Sumn = 20.49) [24, 33].
The density-enhanced layer near the wall develops stronger nematic characteristics
and the local density may even exceed py = 14.029, the value in the nematic phase
of the bulk IN transition. The thickness of the surface layer expands beyond a and
develops into a thick partial wetting layer. For very large W/a, this behavior of the
biaxial phase continues until Su reaches Sumn, where the thickness of the wetting
layer diverges, which results in complete wetting by the nematic phase at a single
wall [49]. For smaller W/a, however, the dense wetting layers extending from both
walls tend to merge, resulting in a new (capillary) condensed phase, which becomes
stable after Su reaches the solid phase boundary associated with the circles in
Fig. 4.4. After this phase transition, the density within the entire space between
the walls jumps to a value comparable to py. Orientational order parameters still
display typical biaxiality: S,(z) > |Sz(x)|/2, but the average order parameter .S,
grows and approximately reaches the asymptotic value S, = 0.4618, found for the
bulk isotropic-nematic transition [24, 33]. Ultimately, as W/a — oo, the first-order

biaxial-condensed transition becomes the bulk isotropic-nematic transition.

This scenario of three stable phases needs to be revised for W/a < 1.8. Because
the space between the walls is so narrow, the system does not support the adequate
development of the partial wetting biaxial state; the latter might already have a
wetting width that exceeds W/a. Figure 4.9 shows us surface tension of the biaxial
state and condensed state against the chemical potential near the phase transition
point for different wall separations (more data is shown by the close-circle symbol
in Fig. 4.4). For W/a = 6, the two line crosses each other with large angle;
for W/a = 2, the angle formed by lines almost disappear. For even narrower
wall separation, the crossover between the partial wetting and condensed states is
continuous without any signature of a phase transition. The first order biaxial-
condensed phase transition terminated at the critical point (the open symbol in

Fig. 4.4). The open symbol on the phase diagram will be determined later.
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Figure 4.8: Density and order parameter profiles in half space for the condensed
(right half) and biaxial (left half) states for W/a = 6 (circles), 4 (squares), 3
(diamonds), and 2 (triangles) at the biaxial-condensed transition, corresponding to
Bu = 20.4,20.3,20.1, and 19.8 respectively.
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Figure 4.9: Surface tension of the biaxial phase (triangles) and the condensed phase

(circles) as function of chemical potential for W/a = 6,4, 3 and 2, respectively.
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Figure 4.11: (A) the difference of the average density as function of the wall sep-
aration. (B) the square of the difference of the average density as function of the

wall separation. The asymptotic line crosses = axis around W/a = 1.8.
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From Fig. 4.9, we can see that for wider wall separation, the phase separation
is at higher chemical potential. For W/a = 6, the phase transition happens at
Bp =~ 20.4, which is close to the bulk isotropic-nematic phase transition point.
While the phase transition point for W/a = 3 is at Su =~ 20.1, and W/a = 2 is at
Bu ~ 19.85, which means the density-enhanced layers merged easier for narrower

wall separation and phase transition at lower chemical potential.

Closing to the critical point, the two surface tension lines can not be distin-
guished easily (can not find the crossing point). To determine the critical point
is of interest. Going back to Figs. 4.8A and 4.8B, we find that the density for
biaxial phase changes much slower than that of the condensed phase when the wall
separation changes, i.e., the density difference for the two phase getting smaller
when the wall separation decreases. The first order phase transition terminates at

a point where the density difference at the phase transition disappears.

We have discussed in the previous section that the uniaxial-biaxial phase tran-
sition is mainly a surface phenomenon, which is characterized by the difference of
the total amount of polymer confined between two walls (Eq. (4.42)). However, for
the biaxial-condensed phase transition, it is mainly contributed from the middle
area, and the difference of the average density between the walls is more useful.

The difference of the average density can be simply defined as

aR. aRy
- — 4.43
LS (443

<APp>=E<p > — < p>p=

where < p >. and < p >, are the average densities for the condensed phase and
biaxial phase, respectively, R, and Ry, the total amount of polymer confined between
the walls defined by Eq. (4.41) for the condensed and biaxial phase, respectively.

Figures 4.10A and 4.10B show the average density difference and the square
of the average density difference against the chemical potential at the biaxial con-
densed phase transition, respectively. From Fig. 4.10B, we can see that, close to
the critical point, the critical behavior < Ap >2~ (Bu — Buc) is clear, where B
is the critical chemical potential, and the value is Bu. = 19.75 + 0.05. The similar
critical behavior is found on the relationship between the square of the difference

of the average density and the wall separation, which is shown in Fig. 4.11B, i.e.,
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< Ap >2~ (W/a — W./a), where W./a = 1.80 £ 0.10 is the critical wall sepa-
ration. Hence, the critical point of the biaxial-condensed phase transition is at
(We/a = 1.80 and Bu. = 19.75) shown by the open circle on the phase diagram
Fig. 4.4.

Van Roij and coworkers [51] studied of the confinement of hard-rods by two
hard walls, based on the Zwanzig model, in which the orientations are restricted
to three orthogonal directions. The interaction is chosen as Onsager type. A very
similar phase diagram is plotted with three phases, uniaxial, biaxial and condensed
phases. The biaxial-condensed phase transition terminates at a critical point when
the wall separation is 2.08 4 0.01 times of the length of the rods, while the critical
point in this thesis for flexible polymer is at the point when the wall separation
is 1.80 + 0.10 times of the length of the effective Kuhn length. In his paper, the
coexistence curve for biaxial-condensed transition is plotted as a function of average

number density.

In order to compare the plot to our results, we also plot the coexistence curves
in Fig. 4.12. Figure 4.12A is ‘a/W— < p >’ (the inverse of wall separation versus
the average density) coexistence phase diagram. The coexistence curves are shown
by diamond-symbol line for the condensed phase and by square-symbol line for the
biaxial phase, respectively. The two lines merged at the critical point found in
the early discussion for narrower wall separation. At wider wall separation, the two
densities tend to the values of the isotropic phase and the nematic phase of the bulk
isotropic-nematic phase transition, respectively, (C; = 13.048 and Cy = 14.039
[24]), shown by the two cross symbols (x). The triangle symbols are the curves
with fixed chemical potential, which is very similar to the P-V diagram of the gas-
liquid phase transition. It is similar to that of the rigid rod case. Besides the two
curves (uniaxial-biaxial transition and biaxial-condensed transition curves shown
in Fig. 4.12) meet at different wall separation, the density is also different. The
critical density for their figure is between the bulk coexistence densities C; and Cl,
and ours is lower than the bulk coexistence densities. The reason is that for lower
average density the narrower wall separation causes the phase transition to happen

at lower chemical potential.

Figure 4.12B is ‘Bu— < p >’ (the chemical potential versus the average density)
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Figure 4.12: The coexistence curve for the biaxial-condensed nematic phase tran-
sition.(A) the inverse of wall separation against the average densities. (B) the

chemical potential against the average densities.
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coexistence phase diagram. The dashed lines are the coexistence curves and they
merged at the critical point. The symbolled lines are for fixed wall separation.
With the increase of the chemical potential, the density increases. When it reaches
the coexistence curve, the density jumps from the value of the biaxial phase to that

of the condensed phase. The jumps are shown by the dotted lines.



Chapter 5
Summary

In this thesis, we have discussed two nematic ordering problems of semiflexible
(wormlike) polymers: one is the study of the isotropic-nematic interfaces of poly-
mers for some typical cases (flexible, rod-like and intermediate), and the other is
the study of a very long wormlike polymer confined between two infinite flat hard

walls.

By using the functional integral approach, the mean field theory of semiflexible
polymers in the three dimensions was introduced. This numerical procedure of the
general form has been developed before in the work of Chen and coworkers [24].
The interaction of the segments of polymers is that of the Onsager excluded volume

type.

In the study of isotropic-nematic interfaces, the numerical calculations have
been performed to investigate the phase coexistence for different type of polymers.
The profiles of density , order parameter, tension contribution and the interface
tension have been given for polymers with the flexibility o = 10, @ = 0 and o = 1,
which represent the three typical cases, the flexible one, the rod-like one, and the
intermediate one, respectively. For these three cases, we found that the interface
tension is always a monotonic function of the tile angle and has a minimum at
6; = m/2. The contribution to the interface tension for different tilt angle comes
from different area. For 6; = 0, the major contribution comes from the nematic

phase side, while for §; = 7/2, the major contribution comes from the isotropic
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phase side. The interface width is also a monotonic function of tilt angle and has a
minimum at #; = 7/2, and is proportion to the ratio of the mean-square end-to-end
distance to the total contour length for these three cases. The simulation results

are consistent with work by other people.

In the study of the confinement, we investigated the case of a long polymer con-
fined between two flat hard walls, which are separated by a distance comparable
to the effective Kuhn length of polymer chain for wormlike chain model with or
without the Onsager excluded volume interaction. The domination of ground-state
is assumed for the long polymer. For wider wall separation, without Onsager ex-
cluded volume interaction, the wormlike chain recovers most of the properties of
a Gaussian chain. However, for the wall separation comparable with the effective
Kuhn length, the Gaussian chain model is no longer good for the polymer confine-
ment. Including the interaction, the numerical simulation show that three phases,
uniaxial, biaxial and condensed phases may exist. The results are compared with
the similar findings for the hard-rod fluid.



Appendix A

Virial expansion of excluded

interaction

The following is to evaluate the excluded interaction of hard particles. Based on

the method developed by Mayer and Mayer, assuming additive forces:

w=wnli@). .. ()] = 32w, (A1)
wiy = wila), (47 (A2)

where (g;) are the coordinates of the ith particle. We use Mayer function

fij = fijl(@), (¢;)] = exp[—w;;/kpT] — 1 (A.3)

So the interaction between the particles are

N -1

exp[—w] = exp[—Zwa]

i=1 j=1
N i-1

= [T+ #)

i=1 j=1

N -1 i N -1\’
_ 1+ZZf]+%ZZ<ZZ> fuifoy+ (A4)

i=1 j=1 i=1 j=1 \i'=1j'=1
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where prime on the summation means (¢, j') should be different from (i, j). .............

Mayer and Mayer obtain an expansion for the integral in terms of the irreducible

cluster integrals
1
o = V/fl’gdrldrg (A5)

1
Q2 = W/f1,2f1,3f2,3d1‘1dr2d1’3~ (A-6)

It is not very easy to calculate o easily. In the following we first do some
calculation on spheres, which is the easiest one. For two hard spheres, the potential

is only depending on the distance between them

< 2R:
wg=13 o0 T (A7)
0, T1,2 Z 2R .

where R is the radius of the sphere, r12 = |r; |, and r1 2 = ry — ry so the Mayer

-1 < 2R;
f%] — Y 7'1’2 ) (A.8)
O, 1,2 > 2R .

function will be

For the second order virial expansion

1
oy = V/fl,zdhdrz

1
= V/dﬁ/fl,zdl‘l,z

= —%”(23)3 (A.9)

For the third order virial expansion
1
Qy = W / f1,2f1,3f2,3d1‘1d1‘2d1‘3

1
= oy dI‘1/f1,2d1‘1,2/f1,3f2,3d1‘2,3

1 R 2m 3 r1,2)2 r1,2
= _W/drl/(; 47T7’1’2d7”1’2?(2R) ( —E) <2+E)

= —%#’Rﬁ (A.10)
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Figure A.1: Schematic diagram of the second and third virial expansion of hard

spheres
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Then we got the relation between the second order and the third order expansion
15
—Qg = (@) o, (A.11)

As for rods with length [ and diameter D, the calculation is on the same way,

18

This the result for spheres.

but much more complicated. Onsager got the results for second order with [ > D
a1 = —212Dsin v, (A.12)

where v is the angle formed by two rods. Onsager also gave the estimate of the

third virial expansion as
s = —(2D)3[13(sin v12/ sin ¢3) + O(I2D)] (A.13)

where 75 is angle formed by rod 1 and 2, and ¢; is the angle formed by the
planel2 and planel3. So the relation between the second order and the third order

expansion is

[212D sin 712)?

~J

o ( (2D)?13(sin 715/ sin ¢3)> (A.14)
D
l

(A.15)

Since [ > D then we can cut off after the second virial expansion. Fig A.2 shows
us the third virial expansion of three rods perpendicular to each other. The third

virial expansion is about the D3I®, which is agree with the above result.

We should note that if the three rods are nearly coplanar, ¢3 would be so small,
and with nontrivial angle 712, as will be infinite, the above relation between the

estimate second and third order will be revised to

~22 —0q). (A.16)
%
This is a case of two dimension problem. At three dimension, if the density is not

so high, the above revision is not necessary.
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Figure A.2: Schematic diagram of the second and third virial expansion of hard
rods. The left side shows the second virial expansion, which is a box of volume 2D.
The right side is the third virial expansion, which is ~ D?] - DI? = D3[3.



Appendix B

Bending energy of hard rods

According to Hooke’s law, the angle is proportional to the force on the rod’s
f~0 (B.1)
then the potential stored in the unit length of the rod is

B~ (B.2)

From Fig. B.1 we see that the relationship between 6 and the radius of the curve

R
o _ b2

tan 5= R (B.3)
Since 8 < 1 )
g~ — B.4
- (B.4)
Then we get
1
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Figure B.1: Explaining the bending energy. Two conjunctive segments with length

b along the wormlike chain form an angle 6, R are the radius of the curve.
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