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Abstract 

In recent years, electric and hybrid-electric vehicles have been gaining market share as a 

viable and environmentally friendly alternative to conventional internal combustion engine 

vehicles, and an increasing number of long-range all-electric vehicles are becoming commercially 

available. The performance of these vehicles’ batteries is strongly influenced by their operating 

temperature, which can vary significantly, not only over the course of a single drive, but also over 

the course of the vehicle’s lifetime, particularly in regions with large seasonal temperature 

changes. 

 This thesis examines the thermal behaviour of LiFePO4 cells and batteries and the influence 

of that behaviour on discharge performance under cold-start operating conditions representative 

of near- and sub-zero temperature driving. The first part of this thesis details the experimental 

characterization of global and local thermal behavior, and global voltage performance, of prismatic 

cells at ambient temperatures ranging from -10oC to 12oC. Characterization is performed on 

prismatic 20Ah LiFePO4 batteries at discharge rates between 2C to 3C, under thermal conditions 

that both encourage and suppress temperature changes throughout the cell in order to examine the 

impacts of temperature variation, both spatially and temporally, on performance. 

In the first instance, an insulated housing is constructed around the battery, minimizing 

heat transfer from the cell to the ambient. Under these conditions, and at low ambient temperatures, 

voltage drop is significant at the onset of discharge due to high impedance, and high charge transfer 

resistance in particular, and reaches as low as 2.74 V at 3C discharge. Thermally, mean cell 

temperature increases during the course of discharge, reaching a maximum at the end of discharge. 

The rate of temperature rise changes, however, over the course of discharge, corresponding to 

changes in charge transfer resistance, ohmic resistance, and mass transport resistance. Temperature 

rise is most rapid at the onset and end of discharge, corresponding to high charge transfer resistance 

and high cathode-side mass transport resistance, respectively. It is noted that as cell temperature 

rises, voltage temporarily increases or “recovers” despite the initial rapid drop at the onset of 

discharge, and that the magnitude of this recovery corresponds to the magnitude of temperature 

rise. It is seen that very similar discharge capacity is achieved regardless of discharge rate, 

demonstrating the tightly coupled feedback relationship between electrochemical and thermal 

behaviour. Discharge rate has a clear effect on temperature rise, with higher C-rates resulting in 
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greater cell impedance and therefore greater temperature rise. Spatially, it is observed that at 2C 

discharge, temperature rise is greatest near the centre of the cell and towards the positive terminal. 

As discharge rate increases, temperature rise at the positive terminal becomes increasingly 

dominant, with strong gradients forming in that region during 3C discharge. Maximum spatial 

temperature variation ranges from 2.9oC at 2C discharge to 7.2oC at 3C. 

In the second characterization instance, the battery is discharged while submerged in a 

circulating water-ethylene glycol solution that rapidly transfers heat from the battery to the 

ambient. Under these conditions, spatial and temporal variation in cell temperature is minimal, and 

discharge voltage is observed to be very strongly dependent on ambient temperature, as cell 

temperature rise and voltage recovery are suppressed. In comparing discharge behaviour under 

such conditions with the earlier conditions described above, it is evident that a cell’s generation of 

waste heat and the corresponding change in its internal operating temperature has a dramatic effect 

on moderating voltage loss at low temperatures. This observation also emphasizes the importance 

of heat transfer conditions in a battery’s wider thermal environment on its performance. 

The second part of this thesis applies the characterization data to validate a 0D lumped 

capacitance model and a 3D thermal-electrochemical coupled model of the cell. These models, 

available under the commercially-available simulation software AutoLion, are then used to 

investigate more specifically the influence of spatial thermal variations. The 0D model is shown 

to have good agreement at low temperatures and discharge rates, with generally poorer though still 

acceptable agreement as either temperature or discharge rate is increased. The 3D model, despite 

predicting an exaggerated voltage recovery effect, shows very good agreement in discharge 

capacity and temperature change. Model disagreements are attributed to 1) uncertainties in the 

coefficients of diffusion in the electrolyte and solid phases and their response to changes in 

temperature and lithium concentration; 2) the assumption of a constant SEI layer resistance that 

does not change with temperature; and 3) suspected inaccuracies in the distribution and magnitude 

of local charge density. The models are then applied to compare discharge behavior for thermally 

uniform and non-uniform cells under otherwise identical operating conditions. The results suggest 

that for thermally nonuniform cells operating at subzero ambient temperatures, the formation of 

temperature gradients, and therefore of areas of high and low local resistance, cannot be neglected 

for its influence on overall cell voltage. Moreover, the results are in contrast to commonly held 
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assumptions in the literature that a more thermally uniform cell should perform better and provide 

greater discharge capacity as a product of evenly distributed reactions across the electrode, 

consistent charge density, and uniform SOC. The findings provide insight into the significance of 

temperature gradients and their effects on prismatic battery performance under cold-start 

conditions, and illustrate the need to further refine models that are capable of describing the effects 

of these gradients under such conditions.  
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1 Introduction 
 

 As the consequences of fossil fuel-based transportation on climate and air quality are 

increasingly understood and acknowledged, greater attention is being placed on the development 

and commercialization of hybrid electric vehicles (HEVs) and battery electric vehicles (BEVs). 

Industry has responded with several such vehicles from major manufacturers including Chevrolet, 

Ford, Nissan, Hyundai, and BMW, and with more boutique options available from conspicuous 

startup Tesla Motors. And within the political sphere, consumer acceptance of electric vehicles is 

being incentivized through the use of various subsidies and rebates [1]. 

Lithium ion (Li-ion) batteries are presently the leading candidate for energy storage in 

HEVs and BEVs due to their high energy and power density, high voltage, low self-discharge, and 

good stability [2]. However, Li-ion-powered vehicles operating in climates with below-freezing 

temperatures face unique challenges to their performance. The electrochemical and 

physicochemical processes occurring in Li-ion cells are highly temperature-dependent, and cells 

experience substantial losses in both power and capacity as temperature declines [2-6]. Addressing 

these losses is currently one of the highest priorities in Li-ion cell development [7, 8]. However, 

in order to optimize batteries and their thermal management systems for the full range of vehicle 

operating temperatures, a detailed understanding of the interplay between battery temperature, 

performance, and thermal response must be achieved. 

 

1.1 Lithium Ion Batteries 
 

A battery is a device that stores energy by means of electrochemical reactions. For 

automotive applications, desired traits in a battery include high energy and power density, long 

cycle life, low maintenance requirements, tolerance to repeated high power charges from 

regenerative braking, tolerance to high operating temperatures without thermal runaway reactions, 

and low cost [9]. Li-ion batteries are currently the favoured technology for automotive use due to 

their existing and further potential abilities to meet these requirements [7, 10]. The basic principles 
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of Li-ion batteries will be explored in the following subsection, followed by an overview of 

commercially available types of Li-ion batteries. 

 

1.1.1 Electrochemical Mechanism of Lithium Ion Batteries 
 

Li-ion batteries exploit the oxidation of lithium to generate an electric current. The battery 

consists of numerous adjacent cells, which in turn are composed of an anode and a cathode 

connected to electrically conductive current collectors and separated by an electronically insulating 

separator membrane. The anode, cathode, and separator are saturated with an ionically conductive 

electrolyte. The anode, or negative electrode, is the site at which lithium is oxidized to lithium ions 

(Li+) during discharge, and is typically a graphitic carbon into and through which lithium particles 

can diffuse, or intercalate. Carbon materials are used for their ability to receive and release a large 

volume of lithium (Li:C=1:6) without changes to the anode’s mechanical or electrical properties. 

The cathode, or positive electrode, is the site at which Li+ is reduced to neutral lithium particles 

during discharge. It is typically a metal oxide with a layered, tunneled, or nano-particle structure 

that supports lithium intercalation with minimal resistance. The batteries used in this thesis use an 

iron phosphate nano-particle cathode. 

When the battery is discharged, Li oxidizes to Li+ at the anode and diffuses through the 

electrolyte to the cathode, where it is reduced to Li. The electrolyte, which consists of layers of 

ionically conductive and electrically non-conductive materials, serves to enable the transport of 

Li+, and the separator layer prevents the transport of electrons between electrodes. Electrons flow 

from anode to cathode via current collector materials in contact with the electrodes and connected 

to an external circuit. In the case of the batteries used in this thesis, the anode-side current collector 

is made of copper and the cathode-side collector is aluminum. 

For the LiFePO4 cells used in this thesis, the chemical reaction during discharge can be 

described as follows: 

  Negative reaction (anode):  𝐿𝑖𝑥𝐶6 ⇋ 𝐶6 + 𝑥𝐿𝑖+ + 𝑥𝑒−   (1.1) 

Positive reaction (cathode):  𝐿𝑖1−𝑥𝐹𝑒𝑃𝑂4 + 𝑥𝐿𝑖+ + 𝑥𝑒− ⇋ 𝐿𝑖𝐹𝑒𝑃𝑂4 (1.2) 
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Total reaction (whole cell): 𝐿𝑖1−𝑥𝐹𝑒𝑃𝑂4 + 𝐿𝑖𝑥𝐶6 ⇋ 𝐿𝑖𝐹𝑒𝑃𝑂4 + 𝐶6 (1.3) 

When the cell is connected to an external load and discharged, the spontaneous reaction is from 

left to right. Conversely, during charging, the reaction proceeds from right to left. The cell 

components and reaction described above are pictured in Figure 1.1. 

 

Figure 1.1: Schematic of cell components and reaction in a LiFePO4 cell. Modified from [9]. 

 

 The theoretical energy that can be obtained during discharge is defined by the change in 

the free energy of the cell, ∆𝐺 [9]: 

 ∆𝐺o = −𝑛𝐹𝐸o (1.4) 

where 𝑛 is the number of electrons transferred in the reaction, 𝐹 is the Faraday constant, and 𝐸o is 

the standard potential, or voltage, of the cell. The cell’s standard potential is defined as the sum of 

the oxidation potential of the anode and the reduction potential of the cathode. It is dependent on 

the active materials used in the cell’s design, and can vary significantly between different battery 

types. 

Li1−𝑥FePO4 Li𝑥C6 
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 In practice, the energy provided by a given cell during discharge is less than that indicated 

in equation 1.4. It is limited by irreversible losses, categorized as activation polarization, 

concentration polarization, and ohmic polarization. Activation polarization is due to limits to the 

rate of charge transfer at the electrodes. Concentration polarization arises due to limits to mass 

transfer of lithium through the cell. Ohmic polarization is a result of ohmic resistance to the flow 

of charged particles in the cell, and is a combination of the ionic resistance of the electrolyte and 

the electrical resistance of the current conducting materials. These irreversible losses consume 

some of the cell’s maximum available energy and convert it to waste heat. 

 The cell voltage after accounting for the above polarization effects can be expressed as 

 𝐸 = 𝐸0 − [(𝜂𝑐𝑡)𝑎 + (𝜂𝑐)𝑎] − [(𝜂𝑐𝑡)𝑐 + (𝜂𝑐)𝑐] − 𝐼𝑅𝑖 (1.5) 

where 𝐸0 is the open-circuit voltage of the cell, (𝜂𝑐𝑡)𝑎 and (𝜂𝑐𝑡)𝑐 are the activation polarization at 

the anode and cathode, respectively, (𝜂𝑐)𝑎 and (𝜂𝑐)𝑐 are the concentration polarization at the 

anode and cathode, respectively, 𝐼 is the operating current of the cell, and 𝑅𝑖 is the internal or 

ohmic resistance of the cell. The effects of polarization on cell voltage are illustrated in Figure 1.2. 

 

Figure 1.2: Cell voltage and polarization as a function of current [9]. 
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 The above discussion of cell voltage has assumed the cell and its active chemical species 

are at standard state conditions. In reality, a cell operating within an automotive battery system 

may deviate significantly from these conditions. Under these circumstances, the voltage can be 

expressed using the Nernst equation [9]: 

 
𝐸 = 𝐸0 −

𝑅𝑇

𝑛𝐹
ln

𝑎𝐶
𝑐 𝑎𝐷

𝑑

𝑎𝐴
𝑎𝑎𝐵

𝑏  (1.6) 

where 𝑅 is the universal gas constant, 𝑇 is absolute temperature, 𝑎𝐴
𝑎 and 𝑎𝐵

𝑏  are the chemical 

activities of the reactants at the anode and cathode, respectively, and 𝑎𝐶
𝑐  and 𝑎𝐷

𝑑  are the chemical 

activities of the products of oxidation and reduction at the anode and cathode, respectively. As can 

be seen in equation 1.6, the actual cell voltage depends both on the activities of the active species 

in the cell, which change during the course of discharge, as well as on cell operating temperature. 

As temperature changes, the cell voltage may increase or decrease, affecting the overall 

electrochemical performance of the battery system and therefore the performance of the vehicle 

itself. 

A cell, however, is not a one-dimensional system, nor does it operate under constant 

temperature conditions during real-world driving conditions. It is three-dimensional, and its 

operating temperature varies spatially and over time, as will be described in Section 2. In order to 

design an optimal battery system to perform under realistic driving conditions, it is necessary to 

understand the effects of both spatial and temporal changes in cell temperature on its voltage 

behaviour. 

 

1.1.2 Types of Lithium Ion Batteries 
 

A lithium ion battery is a secondary, or rechargeable, battery which, as described above, 

uses the oxidation and reduction of lithium as its mechanism to release and store energy. Several 

types of Li-ion batteries have been developed for a range of applications, and differ notably in the 

materials and form factors used. 
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Li-ion batteries are typically named for the cathode material used. The first Li-ion batteries 

to be made commercially available were lithium cobalt oxide, or LiCoO2. Since then, a number of 

other materials have been marketed, including manganese oxide (LiMn2O4) and nickel cobalt 

oxide (LiNi1-xCoxO2) [9]. For this thesis, the batteries used are lithium iron phosphate (LiFePO4) 

with a nominal capacity of 19.5 Ah, developed by A123 systems (A123M1HD-A). The LiFePO4 

chemistry is considered suitable for automotive applications due to its ability to support high rates 

of Li mass transport and therefore high discharge rates, as well as its safety; even at relatively high 

temperatures, the electrodes and electrolyte are not prone to secondary reactions which would lead 

to degradation or thermal runaway and fires [9]. 

Battery form factor also varies depending on the battery’s chemistry and intended 

application. Cylindrical and coin batteries are commonly used in consumer electronics for which 

primary (non-rechargeable) cells are sufficient. Secondary cylindrical batteries have also been 

developed, including Li-ion chemistries, and have been used for EV applications. The batteries 

used in this thesis, however, are a prismatic type, with individual cells stacked in parallel. This 

form factor is common in existing EVs and HEVs due to its space-efficient geometry and because 

its high surface area-to-volume ratio is favourable for designing effective thermal management 

systems. 

 

1.2 Motivation for This Work 
 

Li-ion-powered vehicles operating in climates with below-freezing temperatures face unique 

challenges to their performance. The electrochemical and physicochemical processes occurring in 

Li-ion cells are highly temperature-dependent, and cells experience substantial losses in both 

power and capacity as temperature declines [2-6]. Addressing these losses is currently one of the 

highest priorities in Li-ion cell development [7, 8]. 

As discussed, the dominant factors responsible for low-temperature performance losses are 

generally understood to be 1) sluggish charge transfer kinetics at the electrodes (activation 

polarization), 2) poor rates of mass transport through various regions of the cell concentration 

polarization), and 3) resistance to electron transport through the current collector layers (ohmic 
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polarization). These sources of internal resistance affect a cell’s behaviour not only by limiting its 

electrical performance, but also by influencing its internal heat generation. As a cell’s operating 

temperature decreases, the corresponding rise in overall internal resistance results in greater heat 

generation, and cell temperature may increase depending on its operating conditions and external 

environment [2, 11, 12]. The process of cell self-heating is therefore a tightly coupled system of 

electrochemical and thermal feedback processes that promote heat generation during low-

temperature operation and attenuate heat generation as temperature increases and electrochemical 

efficiency improves [2, 7]. The highest rates of heat generation during discharge have been 

observed at very high and very low state-of-charge (SOC), corresponding to high charge transfer 

resistance and cathode-side diffusion resistance, respectively [2, 13]. Additionally, while ohmic 

resistance may not be a dominant contributor to cell impedance at low temperatures, its 

contribution to heat generation can be substantial, particularly in the large prismatic cells employed 

in EVs and HEVs. The high specific power and specific energy of these cells enable high discharge 

current densities, and their geometries favour edge current collection, resulting in especially high 

current density near the terminals. Consequently, prismatic cells can exhibit significant ohmic 

losses and Joule heating at the terminals, to an extent that is not apparent in smaller cylindrical and 

coin cells [14-17]. 

Large prismatic cells are therefore especially prone to the formation of large spatial 

temperature gradients. The effects of thermal non-uniformity on cell voltage and effective 

capacity, however, are not yet well understood. Numerical modeling approaches have been 

developed to predict thermal and electrochemical cell behaviour under a range of operating 

conditions. Initially, such models simplified the cell to a one-dimensional electrochemical system 

with a lumped capacitance, or 0D, thermal model that represents temperature as uniform over the 

entire cell. However, more recently developed models have expanded to multi-dimensional 

electrochemical and thermal models, and the results highlight the limitations of 0D modeling under 

low-temperature conditions, as such conditions promote thermal non-uniformities that cannot be 

adequately represented by lumped capacitance models. 

In order to assess the applicability of fully 3D thermal-electrochemical modeling to 

prismatic cell operation at low temperatures, further validation is necessary. Despite the unique 

non-uniform thermal behaviour exhibited by prismatic cells, few experimental studies have 
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investigated their low-temperature performance, particularly at discharge rates representative of 

real-world driving. Furthermore, spatially-resolved temperature data under these conditions is 

presently unavailable for 3D modeling validation. Lastly, while the heat transfer coefficient 

between a cell and its surroundings is an important input for thermal models [18], heat transfer 

conditions are rarely reported in experimental studies of cell performance. 

This thesis first details the experimental characterization of global and local thermal 

behavior, and global voltage performance, of prismatic cells at ambient temperatures ranging from 

-10oC to 12oC. Characterization is performed on prismatic 20Ah LiFePO4 cells at discharge rates 

between 2C to 3C, under thermal conditions that both encourage and suppress temperature changes 

throughout the cell in order to examine the impacts of temperature variation, both spatially and 

temporally, on performance. Characterization results are then used to validate commercialized 3D 

and lumped capacitance models to assess the applicability of each model to prismatic batteries 

operating at cold-start temperatures, and identify specific areas for future improvement such 

models. 

 

1.3 Objectives of This Work 
 

The objectives of this thesis are as follows: 

1. To achieve spatially-resolved thermal and voltage characterization of prismatic Li-ion 

battery behaviour during cold-start discharge. The results of this objective provide the 

necessary foundation of discharge behaviour data and observations on which the remaining 

objectives depend. 

2. To investigate the applicability of a) a lumped capacitance, or 0D, thermal model; and b) a 

3D thermal model to prismatic Li-ion batteries during cold-start operation. This objective 

seeks to ascertain whether more commonly-employed lumped capacitance models can 

accurately describe prismatic battery performance under cold-start conditions, and 

furthermore whether a 3D model can provide significant improvement and may therefore 

be warranted over its simplified counterpart. 
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3. To identify specific areas for improvement in a commercialized model for further 

refinement. This thesis applies an existing, commercially-available model software 

package capable of both lumped capacitance and 3D thermal modeling and assesses its 

strengths and weaknesses, with specific weaknesses identified for improvement. 

4. To describe the influence of the presence or absence of temperature gradients on discharge 

voltage behaviour. Using the models validated and assessed in objectives 2 and 3, this 

thesis seeks to verify assumptions that are commonly held but difficult to demonstrate 

experimentally: that, all other factors being held constant, the presence or absence of local 

temperature minima and maxima across prismatic batteries should affect the battery’s 

performance, and moreover that a thermally uniform battery should provide greater 

discharge capacity that a non-uniform battery.  

 

1.4 Scope and Outline of This Thesis 
 

It is the aim of this thesis to investigate the effects of thermal non-uniformity on cell 

performance and to assess the applicability of a lumped capacitance, or 0D, thermal model and a 

fully 3D thermally-coupled electrochemical model to prismatic Li-ion batteries operating at cold-

start temperatures. This is accomplished specifically under low-temperature (-10 – 12oC) 

conditions, as the temperature-sensitivity of Li-ion cells is particularly evident under such 

conditions and because such conditions remain a limitation to EV performance goals. 

 First, experimental characterization of global and local thermal behavior, and global 

voltage performance, is undertaken under the aforementioned temperature conditions. 

Characterization is performed at discharge rates representative of real-world driving, under 

thermal conditions that both encourage and suppress temperature changes throughout the cell in 

order to examine the impacts of temperature variation, both spatially and temporally, on 

performance. Experimental methods are described in Section 3, and characterization results in 

Section 5.1. 

 Next, characterization data are used to validate a one-dimensional electrochemical with 

lumped capacitance thermal model, and a three-dimensional thermal-electrochemical model, of 
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the cell’s thermal and voltage behaviour during discharge. The models are discussed in Section 4, 

and validation results are presented in Section 5.2. The validated models are then used to examine 

the suitability of each model in describing discharge behaviour under cold-start conditions and the 

effects of thermal non-uniformity on a cell’s electrical performance under low-temperature 

conditions. 

 Finally, in Section 6, the key findings of this thesis are summarized, and recommendations 

for future research are presented.  
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2 Literature Review 
 

Battery-powered vehicles operating in climates with below-freezing temperatures face 

unique challenges to their performance. The electrochemical and physicochemical processes 

occurring in Li-ion batteries are highly temperature-dependent, and cells experience substantial 

losses in both power and capacity as temperature declines. Addressing these losses is currently one 

of the highest priorities in their development [7], and the U.S. Department of Energy (USDOE) 

has set long-term industry targets for cold-cranking power and minimum operating temperature 

[8], as shown in Table 2.1. Effective thermal management of battery systems is therefore a crucial 

component of electric vehicle (EV) development. 

 

Table 2.1: Summary of USDOE FreedomCAR energy storage goals for HEVs [8]. 

Characteristics Units 

Requirements 

Minimum Maximum 

Peak discharge pulse power (10 s) kW 25 40 

Peak regenerative pulse power (10 s) kW 20 35 

Total available energy kWh 300 500 

Cold cranking power at -30oC kW 5 7 

Calendar life years 15 

Maximum weight kg 40 60 

Maximum volume L 32 45 

Operation temperature range oC -30 52 

Survival temperature range oC -46 66 
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 To achieve effective thermal management of Li-ion battery systems, the thermal behaviour 

of Li-ion cells should first be well understood, both temporally and spatially, during sub-zero 

discharge. Once the mechanisms that govern interactions between cell temperature and 

electrochemical and physicochemical processes are reasonably understood, models can be 

developed to aid in the design of thermal management solutions. The following sections review 

the thermal and chemical interactions that occur in Li-ion cells at low temperatures, followed by 

the efforts made to model those interactions. 

 

2.1 Temperature Effects in Lithium Ion Batteries 
 

Significant losses in cell power and capacity during low-temperature operation have been 

widely documented for a variety of Li-ion cell types [2-6, 19, 20], and these losses remain a major 

limitation to cell performance in vehicular and other applications [5]. 

Nagasubramanian [3] reported 95% loss in energy density and 99% loss in power density 

for cylindrical 18650 cells when temperature was decreased from 25oC to -40oC. The authors 

attributed these losses to greater cell impedance at lower temperatures, as measured impedance 

increased by an order of magnitude over the same temperature range. The response of individual 

sources of internal resistance to temperature, however, was seen to vary. Charge transfer resistance 

and resistance at the solid electrolyte interface (SEI) layer on the cathode side dominated, while 

ohmic resistance was minimal and nearly constant across all temperatures.  

SEI resistance can be attributed to lithium diffusion rates; as temperature decreases, the 

kinetic energy of cyclable lithium declines, and diffusion across the cell layers is impeded. Andre 

et al. [6] showed that poor diffusion at low temperatures creates strong resistance to mass transport 

at the SEI, where lithium intercalation occurs, as well as within the electrolyte layer. Additional 

studies, both experimental [21-23] and numerical [11, 12], highlighted the electrolyte layer, citing 

greatly reduced ionic conductivity as a cause of poor low-temperature performance. A third 

notable source of mass transport resistance occurs due to poor solid-state diffusion within the 

electrodes themselves, and likewise increases with decreasing temperature [24, 25]. 
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Charge transfer resistance in particular, however, has been found to be especially sensitive 

to temperature. Zhang et al. [4, 19] found that charge transfer resistance increases exponentially 

with decreasing temperature relative to a reference point of 20oC, and they and other authors [26-

28] have demonstrated that it dominates all other resistances at temperatures below -10oC. The 

problem of poor low-temperature cell performance has therefore largely been attributed to 

electrode reaction kinetics.  

The above findings were reinforced by Chen and Li [29], who observed a 95% loss in 

discharge capacity for large 20Ah prismatic cells when cell temperature was decreased from 20oC 

to -10oC. They highlighted the sensitivity of cell capacity to small changes in temperature; even at 

a near-optimal operating temperature [30] of 22oC, a 2oC drop in temperature produced a 2.3% 

drop in capacity [29]. Their work on accurate cell temperature control methods to account for a 

cell’s own internal resistive heating suggests that the response of internal resistances, and therefore 

of cell performance, to temperature may be even more sensitive than previously indicated in prior 

experimental studies. 

Table 2.2 summarizes the conditions and cell geometries for which low-temperature 

discharge performance has been examined. Note that investigations of prismatic cells are presently 

limited in number and scope. 

While work remains to be done to better understand the exact mechanisms and relative 

importance of various internal resistances during low-temperature operation, the role of these 

resistances in heat generation has been widely acknowledged. Heat generation in batteries can be 

divided into a reversible component (entropic changes) and an irreversible component (resistive 

losses). Irreversible heat generation is highly sensitive to operating temperature, as it is composed 

of three fundamental temperature-dependent sources: charge-transfer or activation resistance, 

diffusion or mass transport resistance, and ohmic resistance or Joule heating [7]. 
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Table 2.2: Summary of cell geometries and operating conditions employed in experimental 

studies of low-temperature lithium ion cell performance. 

Author 
Battery 

Geometry 

Ambient 

Temperature(s) 

(oC) 

Discharge 

Rate(s) 

Chen and Li [29] Prismatic -10 – 40 C/5 – 3C 

Awarke et al. [31] Prismatic -2 3C 

Lin et al. [20] Prismatic -15 – 40 Unspecified 

Nagasubramanian 

[3] 
Cylindrical -40 – 35 C/70 – 3C 

Linden and Reddy 

[9] 
Cylindrical -20 – 20 C/14 

Ji et al. [2] Cylindrical -20 – 45 1C – 4.6C 

Andre et al. [6] Cylindrical -30 – 50 C/50 – 1C 

Zhang et al. [4] Experimental -40 – 20 C/2 

 

An expression for volumetric heat generation using a thermodynamic energy balance on a 

complete cell was developed by Bernardi et al. [32] and simplified by Gu and Wang [14], and has 

been applied extensively to a variety of battery models. The expression is given as follows: 

 
𝑞 = 𝑖(𝑈 − 𝑉) − 𝑖 (𝑇

𝜕𝑈

𝜕𝑇
) (2.1) 

 

where 𝑞 (J/m3∙s) is the volumetric heat generation rate, 𝑖 (A/m3) is the volumetric current density 

and is positive for discharge and negative for charging; 𝑈 and 𝑉 (V) are the open circuit voltage 

and instantaneous voltage, respectively; and 𝑇 (K) is the cell temperature. The first term 

encompasses heat generation due to irreversible losses, as these losses are reflected in the 
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overpotential (𝑈 − 𝑉) at a given cell temperature, while the second term describes entropic 

heating. 

Although ohmic resistance may not be a dominant contributor to cell impedance at low 

temperatures, its contribution to total irreversible heating can nevertheless be substantial, 

particularly in the large prismatic cells employed in EVs. The high specific power and specific 

energy of prismatic cells enable high discharge current densities for long durations. In addition, 

the geometry of prismatic cells lends itself to edge current collection, resulting in especially high 

current density near the terminals. Consequently, these cells can experience significant ohmic 

losses and Joule heating at the current collectors, to an extent that is not apparent in smaller 

cylindrical and coin cells [14-17, 33]. To account for this additional Joule heating, an expression 

for volumetric heat generation has been developed specifically for prismatic cells [14, 34]: 

 
𝑞 = 𝑎𝐽 [𝑈 − 𝑉 − 𝑇

𝜕𝑈

𝜕𝑇
] + 𝑎𝑝𝑟𝑝𝑖𝑛

2 + 𝑎𝑛𝑟𝑛𝑖𝑛
2 (2.2) 

 
𝑖𝑝 = −

1

𝑟𝑝
∇𝑉𝑝 (2.3) 

 
𝑖𝑛 = −

1

𝑟𝑛
∇𝑉𝑛 (2.4) 

 

where 𝑎 (m-1) is the specific area of the battery; 𝐽 (A/m2) is the current density; 𝑎𝑝 and 𝑎𝑛 (m-1) 

are the specific areas of the positive and negative electrodes, respectively; 𝑖𝑝 and 𝑖𝑛 (A/m) are 

the current density vectors in the positive and negative electrodes, respectively; 𝑟𝑝 and 𝑟𝑛 (Ω) are 

the electrical or ohmic resistance in the positive and negative electrodes, respectively; and 𝑉𝑝 and 

𝑉𝑛 (V) are the potential in the positive and negative electrodes, respectively. The third and fourth 

terms encompass the additional Joule heating at the electrodes. 

 Equations 2.1 – 2.4 are based on an energy balance being performed over an entire cell and 

assume a uniform cell temperature [14]. As discussed in Section 2.2 below, this assumption does 

not always hold, particularly for large form factor cells for which edge effects are not negligible, 

and more sophisticated expressions for heat generation have therefore been developed (see Section 

4). However, for the purposes of the present discussion, the above equations illustrate the positive 
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relationship between internal resistance and heat generation, and several studies [2, 11, 12, 33] 

confirm that as cell temperature drops, the rate of heat generation increases. Chen et al. [33] 

developed a calorimeter for prismatic Li-ion cells and observed that at 1C discharge, the maximum 

rate of heat generation approximately tripled as cell temperature decreased from 40oC to -10oC 

when testing the same LiFePO4 cells used in this thesis. Arora et al. [35], in similar calorimetry 

experiments on prismatic cells of the same chemistry and capacity, observed more than a seven-

fold increase in maximum heat generation when temperature dropped from 50oC to -10oC, at the 

same discharge rate of 1C.  

A cell’s self-heating behaviour can vary, however, depending on SOC and cell design. SOC 

influences cell impedance and thus affects the rate of heat generation. Specifically, the greatest 

heat generation during discharge is observed at very high and very low SOC, corresponding to 

high charge transfer resistance and cathode-side diffusion resistance, respectively [2, 13]. Chen et 

al. [33] demonstrated that the greatest rates of heat generation occur in the regions of the discharge 

curve where charge-transfer and mass transport resistances dominate, respectively, and reach a 

maximum at the end of discharge. Cell design considerations can alter both heat generation and 

heat dissipation rates; for example, the size and placement of current collectors will affect Joule 

heating [16], while geometry influences how effectively heat is dissipated [36]. In particular, the 

small cross-sectional area of prismatic cells, such as those used in this thesis, provides a large 

surface area-to-volume ratio that promotes heat dissipation to the ambient. 

 Lastly, it should be pointed out that as heat generation increases the temperature of a cell, 

impedance is reduced. The process of cell self-heating is therefore a tightly coupled system of 

electrochemical and thermal feedback processes that promote heat generation during low-

temperature operation and attenuate heat generation as temperature increases and electrochemical 

efficiency improves [2, 7]. Electrochemical and thermal behaviour thus depends on cell design, 

operating temperature, and the heat transfer conditions within and surrounding the cell. 

 While the above review establishes the general effects of, and generation of, heat in lithium 

ion cells, it is important to recognize that thermal behaviour is not spatially uniform throughout a 

cell. Spatial considerations are discussed in the following section.  
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2.2 Temperature Distributions 
 

The performance of a Li-ion cell can be influenced in part by two factors: the size and 

shape of its electrodes, and the size and placement of the current collectors. If an electrode design 

is sub-optimal, voltage and current density will be distributed non-uniformly, resulting in spatial 

variations in the utilization of the active material. Additionally, the voltage drop along the current 

collectors due to ohmic losses may be great enough to further affect current density distributions, 

with greater current density near the terminals [13, 16].  This localized active material utilization 

and inhomogeneous current density translates to spatial variations in charge-transfer and ohmic 

resistances, particularly during high-power discharge. Heat generated at points of high local 

impedance is conducted through the cell to areas of lower local temperature, producing 

temperature gradients over the reaction sites and forming a non-uniform distribution [37]. 

Studies of temperature distributions and their underlying mechanisms have been conducted 

at ambient temperatures ranging from -2 – 25oC, for discharge rates between 0.25 – 25C. For 

example, Keyser et al. [38] reported temperature gradients of 13.5oC across prismatic cells 

undergoing 6C discharge, though the authors did not specify the ambient temperature. Local 

temperature was highest near the battery terminals, particularly near the positive electrode 

terminal. This thermal non-uniformity is attributed to the edge current collection design of 

prismatic cells, which results in high current density near the terminals and therefore in significant 

local ohmic resistance and joule heating. Due to the high ohmic resistivity of the aluminum positive 

electrode relative to the copper negative electrode, the greatest cell heating is observed near the 

positive electrode terminal. This pattern of terminal-dominated heat generation, pictured in Figure 

2.1, has been demonstrated in additional studies, both experimental [13, 16] and numerical [16, 

31]. 

Fleckenstein et al. [39] expanded on this work, identifying variations in local current 

density and local state of charge within cylindrical cells due to the presence of temperature 

gradients, with higher-temperature areas exhibiting greater current density and lower state of 

charge. For a maximum spatial temperature difference of 20oC between the hottest and coldest 

locations within a cell, local current density varied by 29% and local state of charge by 9%.  
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Figure 2.1: Infrared image of temperature distribution for a prismatic Li-ion cell after 5C 

discharge at room temperature [16]. 

 

These inhomogeneities in local thermal and electrochemical behaviour may have adverse 

effects on cell operation, as studies suggest that the presence of temperature gradients leads to 

accelerated cell aging and reduced cell lifespan [16, 36, 39]. This appears a particularly relevant 

challenge for large prismatic cells manufactured for EVs, as Kim et al. [16] demonstrated 

numerically that current density and temperature become increasingly non-uniform as a cell’s 

electrode size, and therefore cell size, increases. A spatially-resolved understanding of the thermal 

behaviour of large-format prismatic cells is therefore of interest. 
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Table 2.3 summarizes the test conditions and results of experimental studies of temperature 

distributions. The largest variations in temperature are observed for very high discharge rates 

which are unrealistic under normal EV driving conditions. However, given the strong dependency 

of internal heat generation rates on cell temperature as discussed in the previous section, and the 

inhomogeneity of heat generation as discussed above, it can be expected that significant 

temperature gradients may develop for cells operating at low ambient temperatures, even for 

moderate discharge rates. Therefore, an investigation of spatial thermal behaviour is necessary at 

low temperatures if EV battery systems are to be optimized for cold-start, low-temperature driving 

conditions. 

 

Table 2.3: Maximum spatial temperature variation observed during experimental discharge of Li-

ion cells. 

Author 
Battery 

Geometry 

Ambient 

Temperature(s) 

(oC) 

Discharge 

Rate(s) 

Maximum 

Spatial 

Temperature 

Variation (oC) 

Kim et al. [16] Prismatic Room temperature 0.5C – 5C 23 

Keyser et al. [38] Prismatic Unspecified 2C – 6C 13.5 

Yang et al. [13] Prismatic 25 1C – 25C 10.1 

Awarke et al. [31] Prismatic -2 3C 1.9 

Chen and Li [29] Prismatic 20 0.25C – 3C 4.3 

Inui et al. [36] 

Prismatic 16 1C 3 

Cylindrical 16 – 22 0.5C – 1C 4 

Fleckenstein et al. 

[39] 
Cylindrical 5 5C – 8C 20 
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Additionally, it is worth noting that the cited experimental studies do not report the heat 

transfer conditions between the cell surface and its environment during testing, with the exception 

of Chen and Li [29]. Such conditions are required for validation of cell thermal and electrochemical 

models, as will be discussed in the following section. 

 

2.3 Battery Models 
 

Efforts to model the thermal and electrochemical behaviour of single cells and pack 

arrangements originated with the thermodynamic energy balance of a complete cell as developed 

by Bernardi et al. [32]. The full energy balance accounts for reversible (entropic) and irreversible 

(resistive losses) heating, as well as for the heat of mixing generated when current is interrupted 

and concentration gradients are permitted to relax [7]. 

Doyle et al. [40] subsequently proposed a 1D electrochemical model for a single cell based 

on concentrated solution theory, which treats gradients in electrochemical potential as the driving 

force for mass transport. Species and charge balances govern diffusion processes, while Butler-

Volmer expressions model charge transfer kinetics at the SEI [41, 42]. 

Pals and Newman [11, 12] introduced a combined 1D electrochemical and thermal model 

based upon the fundamental work of Bernardi et al. [32] and Doyle et al. [40]. The model 

represents a thermally coupled approach to cell performance modeling, as cell temperature signals 

a feedback response in temperature-dependent electrochemical parameters (specifically, in 

electrolyte ionic conductivity and diffusion). These electrochemical changes alter the 

instantaneous voltage, resulting in changes to heat generation. The model assumes a constant 

current discharge, and simulations were performed only for isothermal and adiabatic cell 

conditions, limiting the applicability of results in investigations of EV battery performance 

involving complex drive cycles and thermal management systems. 

 More sophisticated electrochemical and thermal models based upon the work of Pals and 

Newman have been proposed. A large body of these mathematical models assumes one 

dimensional electrochemical gradients and provide only global values of cell characteristics such 

as current density, SOC, heat generation rate, and temperature [35, 39, 43, 44]. However, multi-
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dimensional models have been developed to examine the development and effects of spatial 

inhomogeneities in cell performance.  

Song and Evans [45] developed a thermally coupled model composed of Doyle et al.’s [40] 

1D electrochemical model and the 2D heat transfer equation. Kwon et al. [46] proposed an 

electrochemical model to evaluate potential and current density in two dimensions; this approach 

was adapted by Kim et al. [15, 16] for a fully 2D electrochemical-thermal model specifically for 

large prismatic cells that accounts for potential drop along the length of the current collectors and 

the significant Joule heating that occurs in such cells. The model is thermally coupled in one 

direction, as local volumetric heat generation is treated as a function of local current production 

while electrochemical behaviour is temperature-independent. 

Recently, Fan et al. [47] proposed a 2D electrochemical-thermal model for a cell 

undergoing relatively high rates of discharge (up to 2C) at temperatures as low as -10oC to 

represent cold-condition EV operation. Their electrochemical model accounts for the temperature-

dependence of mass transport, as earlier described in part by Pals and Newman [11, 12], and of 

OCV. The model emphasizes the influence of large concentration gradients in the electrolyte that 

form during rapid discharge at low temperatures, and considers that electrolyte diffusion properties 

are concentration- and temperature-dependent and therefore change throughout the course of 

discharge. 

A 2D thermal model by Chen and Evans [18] examined the significant effect that a model’s 

heat transfer coefficient has on cell temperature both spatially and temporally. Their work 

highlights the importance of accurate determination of the heat transfer coefficient between a cell 

and its surroundings during experimental studies in order to enable validation of any thermal-

electrochemical model. However, as mentioned in Section 2.2 above, it is not common practice to 

quantify the heat transfer conditions in experimental studies of cell thermal behaviour.  

A notable limitation of 2D thermal-electrochemical models is that two dimensional 

approximations of three dimensional electrode geometries becomes less valid at the electrode 

corners, resulting in poor predictions of heat generation and temperature in these regions [16]. 

When a high degree of accuracy is required for spatially-resolved investigations, 3D approaches 

can be employed. 
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Gu and Wang [14] described a 3D fully coupled electrochemical-thermal model to 

simultaneously solve for the thermal energy balance and a number of temperature-dependent 

electrochemical and physicochemical properties, such as diffusion coefficients, ionic conductivity, 

and exchange current density. Its applicability can be extended to large prismatic cells with the 

inclusion of a Joule heating term in the solution for heat generation, in similar fashion to the 2D 

model by Kim et al. [16]. An extension of Gu and Wang’s model is described in detail in Section 

4.1. 

Ji et al. [2] applied Gu and Wang’s approach, albeit in simplified 1D form, in a study of 

low-temperature (-20oC) cell performance. The results closely matched experimental temperature 

and voltage measurements at low discharge rates (≤ 2C), suggesting effective thermal-

electrochemical coupling, but exhibited significant overestimates in voltage and capacity at 

discharge rates exceeding 2C. As discussed in Section 2.2 above, high discharge current at low 

temperatures can induce substantial thermal inhomogeneities which in turn degrade cell 

performance. It is therefore likely that this 1D approach is insufficient to capture cell behaviour at 

low temperatures and realistic discharge rates for EVs. It remains to be seen whether a thermally 

coupled 3D model can successfully represent the inhomogeneous behaviour of prismatic cells at 

low temperatures. 

A three dimensional, fully coupled model may be a valuable tool in evaluating and 

improving the low-temperature performance of large prismatic cells. Such a model should be 

validated experimentally to assess its applicability in research and development within the energy 

storage and EV sectors.  
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3 Experimental Setup 
 

All discharge and thermal characterization tests are performed using commercially available 

lithium iron phosphate (LiFePO4 or LFP) prismatic cells obtained from A123 Systems 

(AMP20M1HD-A).  The cells have a nominal capacity of 19.5 Ah. Because new Li-ion cells may 

experience irreversible capacity fade during their initial discharge cycles, all cells have been 

subjected to an initial conditioning process of five C/3 discharge-charge cycles at an ambient 

temperature of 35oC [48]. 

Due to the inherent difficulty of measuring the internal temperature of a cell, and because 

the thickness of the cells used in the present study is two orders of magnitude less than their width 

and height, surface temperature is considered an acceptable measure of cell temperature [16]. This 

approach has the additional benefit of reducing all analysis of spatial thermal behaviour to two 

dimensions. 

18 T-type thermocouples (±0.5oC) are mounted to the cell surface on each side with an 

epoxy. The thermocouple type and mounting method are consistent with the methods used by Chen 

and Li [29] in their study of prismatic Li-ion cell temperature control.  The spatial arrangement of 

the thermocouples, illustrated in Figure 3.1, is a modification of that employed by Awarke et al. 

[31] in a previous study of temperature distributions in prismatic Li-ion cells. The arrangement 

used in this thesis includes additional thermocouples near the middle of the cell surface and near 

the terminals, as strong temperature gradients are anticipated in these areas. Additional 

thermocouples are also added to the perimeter of the cell to allow interpolation of the temperature 

distribution across the entire cell surface. 

Charging and discharging are controlled by a battery test station from Greenlight 

Innovation (G12-200).  Control and measurement accuracies for the test station are given in Table 

3.1. 

Characterization of cell discharge performance and thermal behaviour is conducted under 

two distinct heat transfer scenarios. The first promotes the formation of temperature gradients by 

sheathing the cell inside an insulated case, and the second minimizes temperature gradients by 
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submerging the cell in a circulating liquid bath with high heat capacity. Both scenarios are 

described in detail in the following subsections. 

 

 

Figure 3.1: Thermocouple arrangement on Li-ion cell surface. All measurements are in cm. 
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Table 3.1: G12-200 battery test station accuracy. 

Parameter Accuracy 

Current source control ± 0.2A 

Current sink control ± 0.03A 

Current measurement ± 0.06A 

Voltage source control ± 0.05V 

 

3.1 Cell Testing Setup 1 
 

As pictured in Figure 3.2, the cell is surrounded on all sides (total surface area, including terminals, 

of 831 cm2) by 5 cm thick of fiberglass insulation with a thermal resistance of 2.11 K·m2/W, and 

then placed in an aluminum case with a thermal conductivity of 205 W/m∙K. The fiberglass 

insulation layer serves two purposes: to inhibit the local dissipation of heat from the cell surface, 

reinforcing the formation of temperature gradients and clearly highlighting regions of higher-than-

average and lower-than-average heat generation; and to create an immediate environment around 

the cell with known heat-transfer properties. The aluminum case serves to contain the insulation 

layer and provide a quiescent environment while rapidly conducting heat from the exterior of the 

insulation layer to the ambient. Two holes in the terminal end of the case allow the cell terminals 

and mounted thermocouples to be connected to the battery test station. The cell is supported at all 

four corners by PC-ABS plastic stands to avoid compressing the insulation underneath the cell. 

To control the ambient temperature, the insulated cell assembly is placed inside an air 

convection temperature chamber (Cincinnati Sub-Zero MC-3, ±0.5oC). Discharge is performed at 

-10oC and charging at 20oC. 
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Figure 3.2: Isometric section view of insulated cell assembly. 

 

3.2 Cell Testing Setup 2 
 

To achieve an experimental approximation of thermally uniform discharge, this thesis uses 

the water/ethylene glycol bath method of temperature control developed by Chen and Li [29]. The 

cell is submerged in a forced convection thermal bath (ThermoFisher Haake AC200, ±0.1oC). The 

cell body, excluding the terminals, is immersed in a 50/50 water/ethylene glycol solution and fitted 

with an insulating cover (22.5×24.5×2.5cm) with a thermal resistance of 0.87 K·m2/W.  The cell 

terminals are exposed above the cover and connected to the battery test station. Discharge is 

performed at a variety of temperatures between -10 – 12oC for the purposes of model validation 

(see Table 3.2 for specific temperatures tested).  At temperatures below -10oC, the cells are 

observed to reach the lower cutoff voltage of 2.6V too rapidly to allow for meaningful temperature 

gradients to develop, and therefore -10oC is selected as the lower limit temperature for the purposes 

of this thesis. Charging is performed at 20oC. 

The entire experimental setup, including thermal bath, environmental chamber, and battery 

test station, is illustrated in Figure 3.3. 
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Table 3.2: Ambient temperature maintained during discharge. All tests in the environmental 

chamber are performed at -10oC, whereas the temperature of thermal bath depends on discharge 

rate as discussed in Section 5.1. 

 Discharge rate 

Ambient 

Temperature(s) 

(oC) 

Environmental 

Chamber 
2C, 2.5C, 3C -10 

Thermal Bath 

2C -10, 0, 7 

2.5C -10, 1.8, 10 

3C -10, 2.6, 12 

 

 

 

Figure 3.3: Experimental setup consisting of environmental chamber with insulated cell, battery 

test station, and thermal bath. 
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3.3 Cell Cycling 
 

To facilitate comparison between the results of this and other studies, charge and discharge 

rates are reported as non-dimensionalized C-rates which are normalized to the cell’s rated capacity. 

1C discharge corresponds to the rate at which 100% of the cell’s rated capacity will be depleted in 

one hour under nominal conditions (in the case of a 19.5Ah cell, 1C is 19.5A); 2C is twice the rate 

of 1C discharge; etc. 

All discharge tests begin with a fully charged cell. A constant current is drawn from the 

cell at one of three rates (2C, 2.5C, 3C) at a given ambient temperature (see Table 3.2) until a 

lower cutoff voltage of 2.6V is reached. Tests are performed in semi-random order such that no 

two subsequent tests have the same set of rate and temperature conditions. 

The upper and lower discharge rates of 2C and 3C, respectively, are selected for two 

reasons: 1) numerical investigations of EV energy consumption suggest that highway driving 

predominantly involves discharge rates between 2C – 3C [31]; and 2) lower and higher discharge 

rates do not produce meaningful temperature gradients for the purposes of this study. 

Following discharge, the ambient temperature is brought to 20oC by the environmental 

chamber or thermal bath, and the cell is allowed to equilibrate to this temperature for four hours 

[2] before being charged at C/4. Charging follows the standard constant current, constant voltage 

(CCCV) method and ends at an upper cutoff voltage of 3.65V. The cell is then brought to the next 

discharge temperature for four hours before the next discharge commences. This cycling profile is 

plotted in Figure 3.4. 
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Figure 3.4: Cycling profile for cell testing at various discharge rates and ambient temperature 

setpoints. For illustrative purposes, a discharge rate of 2C is shown. 
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4 Coupled Electrochemical-Thermal Model 
 

In the present study, an electrochemical-thermal model of a Li-ion cell, developed by EC 

Power [49] and distributed as the software product AutoLion, is validated and then used to 

investigate the effects of spatial thermal non-uniformities on cell performance under otherwise 

identical operating conditions. The model is largely premised on the work of Gu and Wang [14] 

and simultaneously solves for a cell’s transient thermal energy balance and various 

electrochemical and physicochemical properties in three dimensions in order to provide spatially-

resolved values of such properties as temperature, current, potential, and SOC. Coupling between 

the thermal and electrochemical solutions accounts for the strong influence of temperature on 

electrochemical activity, and of electrochemical activity on heat generation. 

 

4.1 Model Description 
 

 The model accounts for the following phenomena: Li particle intercalation and de-

intercalation at the electrode-electrolyte interface; transport of charge in solid materials and 

electrolyte; transport of Li/Li+ species; solid-phase Li diffusion in active materials; and thermal 

behaviours [49]. It makes the following assumptions: 1) no gas phase is present; 2) concentrated 

binary electrolyte is assumed; 3) side reactions are negligible (though an SEI layer resistance is 

assumed); 4) charge transfer kinetics are described by the Butler-Volmer equation; 5) ionic species 

transport in the electrolyte occurs only by diffusion and migration; 6) active material in the 

electrode is composed of spherical particles of uniform size; 7) volume change during cell 

operation is negligible; 8) electrode porosity is constant; 9) Li transport in active material particles 

occurs by diffusion with a constant diffusion coefficient 𝐷𝑠; 10) interfacial chemical equilibrium 

exists in the electrolyte phase due to high mass diffusivity; 11) interfacial chemical equilibrium 

exists in both electrolyte and solid phases due to high electronic conductivity and small radius of 

active material particles, respectively [49, 50]. 

 The electrochemical component of the model considers the cell as composed of the two 

electrodes plus current collectors, the separator, and the electrolyte, as represented in Figure 4.1. 
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Figure 4.1: Schematic of model Li-ion cell showing current collectors, electrodes with spherical 

active material particles of radial geometry, and separator. Modified from [50]. 

 

 Electrode kinetics are described by the Butler-Volmer equation, which governs the reaction 

rate at each electrode: 

 
𝑖�̅�𝑗 = 𝑖𝑜𝑗 [exp (

𝛼𝑎𝑗𝐹

𝑅𝑇
𝜂𝑗) − exp (−

𝛼𝑐𝑗𝐹

𝑅𝑇
𝜂𝑗)] (4.1) 

where 𝑖�̅�𝑗 (A/cm2) is the transfer current density, 𝑖𝑜𝑗 (A/cm2) is the exchange or equilibrium current 

density when no net current is applied across the cell, 𝛼𝑎𝑗 and 𝛼𝑐𝑗 are the charge transfer 

coefficients at the anode and cathode, respectively, and 𝜂𝑗 (V) is the surface overpotential on the 

electrodes. The equation relates cell current discharge to the equilibrium current, the reaction rates 

at the electrodes, and the cell overpotential or total internal resistance. Overpotential is expressed 

as, 

 𝜂𝑗 = 𝜙𝑠 − 𝜙𝑒 − 𝑈𝑗 − 𝑖�̅�𝑗𝑅𝑓 (4.2) 

where 𝜙𝑠 and 𝜙𝑒 (V) are the electric potential of the solid and electrolyte phases, respectively, 𝑈𝑗 

(V) is the open-circuit potential when no net current is applied and is itself a function of 

temperature and SOC, and 𝑅𝑓 (Ω/m2) is the SEI layer resistance. 
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 The model assumes the only reactions occurring in the cell are the oxidation and reduction 

of lithium at the electrodes, and that no side reactions occur. 

 Conservation of lithium in the solid and electrolyte phases assumes that transport is by 

diffusion only; that electrolyte diffusivity is very high such that lithium concentration at the solid-

electrolyte interface is equal to that in the bulk electrolyte; that the cell has a constant porosity with 

no volume change; and that the electrodes are composed of uniform spherical particles clustered 

into agglomerates. The model holds that the rate of diffusion through an agglomerate is much 

slower that the rate of diffusion through the pore spaces between agglomerate clusters, and 

therefore diffusion within the agglomerate clusters dominates diffusion in the electrode, and 

diffusion in the pore spaces is neglected. 

 Conservation of Li+ in the electrolyte phase is expressed as, 

 𝜕

𝜕𝑡
[𝜀𝐶𝑒] = ∇ ∙ (𝐷𝑒

eff∇𝐶𝑒) +
1 − 𝑡+

0

𝐹
𝑗Li (4.3) 

where 𝜀 is porosity expressed as a volume fraction, 𝐶𝑒 (mol/cm3) is Li+ concentration, 𝑡+
0  is the 

transference number of Li+, 𝑗Li (A/cm3) is the reaction current to produce/consume Li/Li+, and 

𝐷𝑒
𝑒𝑓𝑓

 (cm2/s) is the effective diffusion coefficient in the electrolyte, corrected for the effect of 

porosity and expressed by the Bruggeman relationship: 

 𝐷𝑒
𝑒𝑓𝑓

= 𝐷𝑒𝜀 (4.4) 

where 𝐷𝑒 is the electrolyte-phase diffusion coefficient. 

 Equation 4.3 describes the change in Li+ concentration in the electrolyte as a result of 

transport by diffusion due to concentration gradients and the electrical field effect between two 

electrodes of different potentials, as well as a source term in the form of the reaction current that 

drives lithium oxidation and reduction. It assumes a constant transference number and neglects 

any transference gradient.  

 Conservation of active material Li species in the solid phase assumes a representative 

active material particle of spherical geometry and thus is discretized in the radial direction. The 

spherical geometry is consistent with the porous electrode theory and uniformly-sized spherical 
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active material particles assumed by Doyle et al. [11, 40] and carried forward in subsequent models 

[2, 11, 12, 14, 34, 44, 51]. Li species material conservation in solid phase is expressed as, 

 𝜕𝐶𝑠

𝜕𝑡
=

1

𝑟2

𝜕

𝜕𝑟
(𝐷𝑠𝑟2

𝜕𝐶𝑠

𝜕𝑟
) (4.5) 

where 𝐶𝑠 is the concentration of lithium in a particle, 𝐷𝑠 is the diffusion coefficient of Li in the 

solid phase, and with boundary condition on particle surface: 

 
−𝐷𝑠,𝑖

𝜕𝐶𝑠,𝑖

𝜕𝑟
|

𝑟=𝑅𝑖

=
𝑖

𝐹
 (4.6) 

where 𝑖 (A/cm2) is the local current density on the particle surface. Similar to equation 4.3, 

equation 4.5 consists of a flux term, transport term, and source term. 

 Conservation of charge in the electrolyte assumes a concentrated binary electrolyte that 

enables the transfer of charge by ions undergoing diffusion, described by the electrochemical 

potential form of Ohm’s law: 

 𝛻 ∙ (𝑘eff𝛻𝜙𝑒) + 𝛻 ∙ (𝑘𝐷
eff𝛻 ln 𝐶𝑒) = −𝑗Li (4.7) 

where 𝑘eff (S/cm) is the effective ionic conductivity of the electrolyte, corrected for the actual path 

length of species transfer through porous electrodes, and is determined by the Bruggeman 

relationship [52]: 

 𝑘eff = 𝑘𝜀 ∙ 𝑘𝐷
eff (4.8) 

where 𝑘 (S/cm) is the ionic conductivity. 𝑘𝐷
eff (A/cm) is the effective diffusional conductivity, and 

is defined as, 

 
𝑘𝐷

eff =
2𝑅𝑇𝑘eff

𝐹
(𝑡+

0 − 1) (1 +
𝑑 ln 𝑓+

𝑑 ln 𝐶𝑒
) (4.9) 

where 𝑑 ln 𝑓+ / 𝑑 ln 𝐶𝑒 represents short range ion-solvent interactions and is negligible for dilute 

solutions (< 2.5 mol/L). 

Equation 4.7 therefore describes charge transfer as made up of transport due to the 

electrical field effect of a potential gradient between electrodes as well as transport due to diffusion 
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along a concentration gradient, and a source term. The model assumes a stationary electrolyte, 

with no transport due to convection. 

Conservation of charge in the solid phase, meanwhile, is driven by the flow of electrons 

along a potential gradient and is described simply by Ohm’s law: 

 𝛻 ∙ (𝜎eff𝛻𝜙𝑠) = 𝑗Li (4.10) 

where 𝜎eff (S/cm) is the effective electrical conductivity of the porous solid electrode. 

The model’s thermal component, meanwhile, is premised on a thermal energy balance: 

 𝜕(𝜌𝑐𝑝𝑇)

𝜕𝑡
+ ∇ ∙ (𝐯𝑇) = ∇ ∙ λ∇𝑇 + 𝑞 (4.11) 

where 𝜌 (g/cm3) is volume-averaged density, 𝑐𝑝 (J/kg∙K) is volume-averaged specific heat, 𝐯 

(cm/s) is the velocity vector of the electrolyte, λ (W/cm∙K) is volume-averaged thermal 

conductivity, and 𝑞 (J/cm3∙s) is the volumetric heat generation rate.  The LHS of the equation 

describes heat storage and convection, and the RHS describes conduction and generation. For cells 

with stationary electrolytes, including the LiFePO4 cells used in this study, the convection term is 

neglected [53]. 

Heat generation 𝑞 is expressed as, 

𝑞 = 𝐴𝑒 ∫ 𝑗Li (𝑇
𝑑𝑈

𝑑𝑇
) +

𝐿

0

𝑗Li(𝜙𝑠 − 𝜙𝑒 − 𝑈𝑗) + 𝜎𝑒𝑓𝑓𝛻𝜙𝑠 ∙ 𝛻𝜙𝑠 

+ 𝑘eff𝛻𝜙𝑒 ∙ 𝛻𝜙𝑒 + 𝑘𝐷
eff𝛻 ln 𝐶𝑒 ∙ 𝛻 𝜙𝑒𝑑𝑥 

(4.12) 

where 𝐴𝑒 (cm2) is the electrode area and 𝐿 (cm) is the cell thickness excluding the current 

collectors. The first term on the RHS represents reversible heat due to entropy. The remaining 

terms on the RHS clearly illustrate the manner in which the above-described electrochemical 

processes are tightly coupled to heat generation and therefore to temperature, and represent heat 

generation due to charge transfer resistance, ohmic resistance, ionic conduction resistance, and 

concentration overpotential. 

Heat transfer is solved in three dimensions by CFD software (ANSYS Fluent v15.0.7). 

Local cell temperature, in turn, influences a number of temperature-dependent physicochemical 
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parameters and phenomena identified in equations 4.1-4.10, such as diffusion coefficients, ionic 

conductivity, and exchange current density.  The temperature-dependence of such parameters can 

be generally described by Arrhenius’ equation: 

 
Φ = Φref exp [

𝐸act,Φ

𝑅
(

1

𝑇ref
−

1

𝑇
)] (4.13) 

where Φ is the temperature-dependent physicochemical parameter, Φ𝑟𝑒𝑓 is the known value of 

that parameter at a given reference temperature, and 𝐸𝑎𝑐𝑡,Φ is the activation energy of the evolution 

process of Φ (the greater the activation energy, the more sensitive the parameter is to temperature). 

These modified parameters serve to couple the thermal model with a multiphase mass-transport 

and electrochemical kinetic model which solves for equations 4.1-4.10.  

 The model assumes uniform initial conditions, i.e., 

 𝐶𝑒 = 𝐶𝑒
0,  𝐶𝑠 = 𝐶𝑠

0 and 𝑇 = 𝑇0 (4.14) 

 No reaction occurs at the current collectors, giving the boundary conditions, 

 𝜕𝐶𝐿𝑖

𝜕𝑛
= 0 and  

𝜕𝜙𝑒

𝜕𝑛
= 0 (4.15) 

 At the tops of the current collectors (i.e. the terminals), current is applied and heat 

dissipates, such that at y = H and x <  𝐿𝑐𝑎 or x >  𝐿𝑐𝑐 (refer to Figure 4.1), 

 
−𝜎𝑒𝑓𝑓

𝜕𝜙𝑠

𝜕𝑦
= 𝐼 and − 𝜆

𝜕𝑇

𝜕𝑦
= h(𝑇 − 𝑇𝑎) (4.16) 

where 𝐼 (A/cm2) is the applied current density, λ (W/m∙K) is thermal conductivity, h (W/cm2∙K) 

is the convective heat transfer coefficient, and 𝑇𝑎 (K) is the ambient temperature. 

 At all other boundaries, 

 𝜕𝜙𝑠

𝜕𝑛
= 0 and − 𝜆

𝜕𝑇

𝜕𝑛
= h(𝑇 − 𝑇𝑎) (4.16) 

Numerical solutions and material properties are provided in the commercial software 

package AutoLion, developed by EC Power [49]. 
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 The model discretizes the cell using a finite control volume approach with a three-grid 

mesh (see Figure 4.2). The thermal energy balance (equation 4.11) is solved on the macro-grid, 

conservation of charge (equations 4.7 and 4.10) and of electrolyte-phase Li+ species (4.3) are 

solved on the meso-grid, and solid-state diffusion inside active material particles (4.5) are solved 

on the micro-grid. There is one representative active material particle within each electrode meso-

grid control volume. The model can be converted to a 0D thermal model by removing 

discretization on the macro-grid and instead solving for a single global cell temperature. 

 

Figure 4.2: Schematic diagram of three-grid mesh utilized for model cell discretization. The 

simulation domain is divided into three domains: thermal macro-grid, electrochemical meso-grid, 

and spherical micro-grid for solid state diffusion. Modified from [49]. 

 

4.2 Three-Dimensional Model Setup 
 

 The 3D electrochemical-thermal coupled model employed for this study is provided by the 

AutoLion software package version 3.2.4 [49]. Material property values for a prismatic LiFePO4 

cell are provided within the software. A full list of model cell design parameters is provided in 

Section 8 (Appendix I).  

The cell type is a stacked electrode design (SED) with dimensions 160x227x7.25mm, and 

reversible capacity of 19,500 mAh per the manufacturer’s specifications. The upper and lower 
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cutoff voltage are 3.65 and 2.6 V, respectively, and open circuit voltage (OCV) at 100% state of 

charge (SOC) is 3.55 V. Simulations were run at 2C, 2.5C, and 3C discharge. All simulations were 

set to initial conditions of 100% SOC and a uniform cell temperature of 263.15 K. Boundary 

conditions were set at 263.15 K and a heat transfer coefficient of h = 0.47 Wm-2K-1 to match 

experimental conditions. A full list of simulation parameters, including cell mesh construction, is 

provided in Section 9 (Appendix II). 

 

4.3 Lumped Thermal Model Setup 
 

The cell design parameters described in Section 4.1 and parameterized in Sections 8 and 9 

were also carried for the 0D lumped capacitance model. Simulations were carried out under 0D 

heat transfer conditions using a lumped thermal model by building a cell “pack” of a single cell 

within the simulation parameters. All simulations were set to initial conditions of 100% SOC and 

a uniform cell temperature of 263.15 K. Simulations carried identical boundary conditions as 

assigned to the 3D model to represent the behaviour of a thermally uniform cell. Simulations were 

also carried out under constant-temperature conditions at various near- and sub-zero temperatures 

where cell temperature was not permitted to change, to allow validation of cell behaviour when 

temperature rise is negligible. 
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5 Results and Discussion 
 

In this study, a thermally coupled electrochemical model is validated and then used to 

evaluate the effects of temperature distributions on Li-ion cell performance at low temperatures. 

First, an experimental characterization of electrical and thermal behaviour is performed under 

different heat transfer conditions at near- and sub-zero temperatures. Next, model agreement with 

these experimental results is examined. Finally, a series of simulations is employed to investigate 

the effects of thermal non-uniformity on cell capacity and voltage behaviour. 

 

5.1 Experimental Characterization of Low-Temperature Discharge 
 

Characterization of LiFePO4 cells is performed according to the methods described in 

Section 3. All results presented in this section represent the average measurements of three 

separate, identical tests for three cells each, for a total of nine repeated tests. The standard error of 

voltage and temperature measurements for each set of repeated tests is well within the bounds of 

voltage measurement accuracy (± 0.05 V) and thermocouple accuracy (± 0.5 oC), indicating good 

repeatability of the obtained results.  

The mean temperature rise of an insulated cell (ℎ = 0.47 Wm-2K-1, see Section 3.1) 

operating at an initial temperature of -10 oC is illustrated in Figure 5.1 for 2C, 2.5C, and 3C 

discharge. Mean temperature rise is calculated as the arithmetic mean of temperature rise at the 

measured thermocouple locations. 

Figure 5.1 shows that mean cell temperature increases during the course of discharge, 

reaching a maximum at the end of discharge. The rate of temperature rise changes, however, over 

the course of discharge, corresponding to changes in the magnitude of three fundamental internal 

resistances: charge transfer resistance, ohmic resistance, and mass transport resistance. 

Temperature rise is most rapid at the onset (energy discharged < 6 Ah) and end (> 13 Ah) of 

discharge, corresponding to high charge transfer resistance and high cathode-side mass transport 

resistance, respectively. At the cell’s initial low temperature, charge transfer kinetics are sluggish, 

generating internal resistance, and as discharge nears completion, the high concentration of lithium 
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at the cathode impedes further intercalation, resulting in mass transport resistance. Between 6 Ah 

and 13 Ah of discharge, ohmic resistance dominates, and temperature rise is approximately linear. 

Discharge rate also has a clear effect on temperature rise, with higher C-rates resulting in greater 

cell impedance and therefore greater temperature rise. The total temperature rise at each discharge 

rate is given in Table 5.1. 
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Figure 5.1: Mean temperature rise of an insulated cell operating at an initial temperature of -10oC 

for 2C, 2.5C, and 3C discharge. 
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Table 5.1: Maximum mean temperature and temperature rise at the end of discharge for an 

insulated cell at an initial temperature of -10oC. 

Discharge Rate 
Maximum Mean 

Temperature (oC) 

Mean Temperature 

Rise (oC) 

2C 21.3 31.3 

2.5C 24.6 34.6 

3C 27.8 37.8 

 

 

Cell voltage behaviour is plotted in Figure 5.2 for the same set of insulated cell conditions 

above. Voltage drop is significant at the onset of discharge due to high impedance, and high charge 

transfer resistance in particular, and reaches as low as 2.74 V at 3C discharge. As discharge 

proceeds, heat generation within the cell lessens impedance, which in turn enables higher operating 

voltage, and voltage recovery is observed. It can be seen that very similar discharge capacity is 

achieved regardless of discharge rate, demonstrating the feedback relationship between 

electrochemical and thermal behaviour. Cell impedance, and therefore temperature rise, is 

proportional to discharge rate. As discharge rate increases, additional irreversible heat is generated, 

reducing impedance and encouraging voltage recovery. This self-heating tendency of cells 

operating at low temperatures thus creates a negative feedback loop wherein cell impedance is 

diminished over the course of discharge, countering the otherwise high impedance caused by rapid 

discharge. 
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Figure 5.2: Discharge voltage behaviour of an insulated cell operating at an initial temperature of 

-10 oC for 2C, 2.5C, and 3C discharge. 

 

Spatial thermal behaviour is illustrated in Figure 5.3, which shows temperature 

distributions formed under insulated cell conditions at an initial temperature of -10oC. These 

distributions are obtained at the end of discharge, when temperature non-uniformity is greatest. 

Local temperature rise is estimated by plotting temperature rise at each of the 18 thermocouple 

locations, and interpolating those values across a 76 × 101 node grid. Linear interpolation is used. 

Detailed information on the MATLAB function used to generate these plots is available through 

Mathworks [54]. The temperature distributions plotted in Figure 5.3 are therefore approximations 

only; temperature is known only at the 18 thermocouple locations, and only these known values 

are used in model validation. However, for descriptive purposes, these plots aid in the visualization 

of local temperature patterns, and the known temperature values at each thermocouple are 

indicated. It is observed that at 2C discharge, temperature rise is greatest near the centre of the cell 

and towards the positive terminal. As discharge rate increases, temperature rise at the positive 

terminal becomes increasingly dominant, with strong gradients forming in that region during 3C 
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discharge. This observation is consistent with previous studies of the thermal behaviour of 

prismatic Li-ion cells, and can be attributed to local current density. The edge current collection 

design of these cells results in high local current density near the terminals which increases with 

discharge rate. The positive terminal in particular undergoes significant temperature rise because 

the terminal’s aluminum current collector plate has greater electrical resistivity than the negative 

terminal’s copper plate, resulting in substantial Joule heating near the positive terminal. It can also 

be seen that the magnitude of local temperature variations increases with discharge rate. Local 

maxima and minima in temperature rise at the end of discharge are given in Table 5.2 for each 

discharge rate. 

 

 

 

Figure 5.3: Temperature distributions formed under insulated cell conditions at an initial 

temperature of -10 oC, as measured at the end of discharge. 
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Table 5.2: Minimum and maximum local temperature rise, and maximum difference in local 

temperature, at the end of discharge for an insulated cell at an initial temperature of  10 oC. 

Discharge 

Rate 

Minimum Local 

Temperature 

Rise (oC) 

Maximum Local 

Temperature 

Rise (oC) 

Maximum Spatial 

Temperature 

Difference (oC) 

2C 30.5 33.4 2.9 

2.5C 33.7 38.0 4.3 

3C 36.1 43.3 7.2 

 

 

This dependence of thermal non-uniformity on discharge rate is further illustrated in Figure 

5.4 and Figure 5.5. In Figure 5.4, temperature rise at each thermocouple is plotted against energy 

discharged for 2C, 2.5C, and 3C discharge, respectively. The increase in both absolute cell 

temperature and in temperature variation with discharge rate is clearly evident. These results are 

summarized in Figure 5.5, which plots the standard deviations of temperature rise across all 18 

thermocouple locations against energy discharged for the same discharge rates. The standard 

deviation values reflect the magnitude of thermal non-uniformity, with greater standard deviation 

signifying greater local temperature deviations from the spatial mean. It is evident in Figure 5.4 

and Figure 5.5 that as discharge progresses, thermal non-uniformity increases, with higher 

discharge rates producing greater non-uniformity.  

The above characterization represents thermal and voltage behaviour for a cell exhibiting 

a non-uniform temperature distribution, under conditions that promote temperature rise. Next, 

characterization is performed for a cell exhibiting nearly uniform thermal behaviour, under 

conditions that inhibit temperature rise, using a temperature-controlled thermal bath (see Section 

3.2). 
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(a) 2C discharge 
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(b) 2.5C discharge 
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(c) 3C discharge 

Figure 5.4: Temperature rise at each thermocouple against energy discharged for (a) 2C, (b) 

2.5C, and (c) 3C discharge. 
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Figure 5.5: Standard deviation of local cell temperature rise at 18 thermocouple locations during 

2C, 2.5C, and 3C discharge. 
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Whereas temporal variations in temperature were large under insulated cell conditions, 

such variations are minimal under thermal bath conditions, and so to obtain characterization results 

across a meaningful temperature range, multiple ambient temperatures are used. Appropriate 

ambient temperatures were determined by first discharging a cell at an initial temperature of -10oC 

in a quiescent environment at an ambient temperature of -10oC and with natural air convection as 

the dominant mechanism of heat transfer in order to observe mean temperature rise. This procedure 

was repeated for 2C, 2.5C, and 3C discharge. Next, thermal bath setpoint values were chosen as 

the minimum and maximum mean temperature rise for each discharge rate. Finally, cell 

temperature was averaged, both spatially and temporally, for the entire duration of discharge to 

provide a spatial-temporal mean temperature value for each discharge rate. This value represents 

the overall average operating temperature for a cell discharging at a given rate under natural air 

convection conditions, and is used as an additional setpoint temperature for testing under thermal 

bath conditions. These three setpoint values and their relation to temperature rise under natural 

convection are illustrated for 3C discharge in Figure 5.6. By using these three setpoint values for 

each discharge rate, cell behaviour can be observed across a meaningful range of temperature 

conditions that the cell might realistically be exposed to during normal sub-zero operation. 

Because temperature rise is dependent on discharge rate, a different set of three bath setpoint values 

is obtained for each discharge rate. These temperatures are given in Table 5.3. 

The above-described bath temperatures were chosen to achieve cell characterization over 

a realistic operating temperature range, and thereby to enable model validation at various 

temperatures representative of cold-start conditions. Furthermore, characterization at the spatial-

temporal mean temperature allows for comparison of cell performance under identical average 

temperature conditions but differing spatial temperature conditions: in one case, the spatial non-

uniformity and temperature rise representative of cold-start operation and natural convection; and 

in the other case, the spatial uniformity and constant temperature representative of effective 

thermal management. Comparisons are made for 2C and 3C discharge in Figure 5.7. Note that 

under natural convection conditions, voltage recovery supports a higher discharge capacity than 

under nearly constant mean-temperature conditions. This can be attributed at least in part to the 

nonlinear relationship between temperature and internal resistance at subzero temperatures; as 

temperature decreases, internal resistance increases exponentially and heat generation 

correspondingly increases. 
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Figure 5.6: The method used to select thermal bath setpoint values is exemplified for 3C 

discharge. First, the cell is discharged under natural convection conditions at an ambient 

temperature of -10 oC in order to obtain a spatially-averaged temperature profile. Second, 

minimum and maximum setpoint values are selected based on the minimum and maximum 

values of the temperature profile (-10oC and 9.6oC). Third, the arithmetic mean of all points 

along the temperature profile is taken in order to obtain the spatial-temporal mean (2.6oC). This 

spatial-temporal mean is selected as the third setpoint value for 3C discharge tests in the thermal 

bath. 

 

Table 5.3: Thermal bath setpoint values. 

Discharge 

Rate 
Setpoint 1 (oC) Setpoint 2 (oC) Setpoint 3 (oC) 

2C -10 -0.1 7 

2.5C -10 1.8 10 

3C -10 2.6 12 
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(b) 3C Discharge 

Figure 5.7: Discharge voltage under natural convection, and the corresponding spatial-temporal 

mean under nearly isothermal conditions, shown for (a) 2C and (b) 3C discharge. The dotted line 

represents natural convection in the environmental chamber at -10 oC, while the solid line 

represents nearly isothermal conditions at the spatial-temporal mean temperature recorded for the 

preceding natural convection discharge. 
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Representative thermal characterization results are shown in Figure 5.8 and Table 5.4. 

Figure 5.8 compares the change in average cell temperature temporally over the course of 

discharge between the thermal bath conditions and the insulated cell conditions. It can be seen that 

for the thermal bath conditions, the average cell temperature is nearly constant throughout 

discharge. Maximum mean temperature rise is observed to be 1.8oC, corresponding to 2.5C 

discharge. Table 5.4, meanwhile, illustrates the extent of spatial thermal uniformity for a cell under 

thermal bath conditions by plotting the local minima and maxima, as well as the standard deviation, 

of temperature rise across all thermocouple locations. It is observed that a cell in the thermal bath 

remains nearly thermally uniform, with a standard deviation across thermocouple locations of 0.2 

– 0.3 oC, which is within the bounds of thermocouple accuracy (± 0.5 oC). For the purposes of this 

study, therefore, characterization results obtained using thermal bath conditions are considered 

representative of an isothermal cell discharged at a constant temperature. 
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Figure 5.8: Mean cell temperature rise under thermal bath conditions as compared to insulated 

conditions. 
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Table 5.4: Local temperature rise and standard deviation across all thermocouple locations at the 

end of discharge for a cell operating under thermal bath conditions at a setpoint of -10oC. 

Discharge 

Rate 

Minimum Local 

Temperature 

Rise (oC) 

Maximum Local 

Temperature 

Rise (oC) 

Standard Deviation 

Across All T/C 

Locations (oC) 

2C 1.2 1.7 0.2 

2.5C 1.4 2.4 0.3 

3C 1.3 1.9 0.2 

 

 

5.2 Model Validation 
 

In this subsection, the characterization data described above are used to validate two 

models of cell thermal and electrical behaviour: a one-dimensional isothermal model and a fully 

three-dimensional model. 

 

5.2.1 0D Model Validation 
 

Characterization data obtained under thermal bath conditions as described above in Section 

5.1 are used to validate a 0D lumped capacitance thermal model. Model setup and parameterization 

are described above in Section 4.2. Simulations are performed under isothermal, constant-

temperature conditions, with temperature held at the same setpoints as those used for experimental 

characterization and summarized in Table 5.3. Validated voltage curves are shown below in Figure 

5.9.  
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(i) 

Figure 5.9: 0D model validation at various temperatures and discharge rates. 

 

It is observed that the 0D model predicts higher voltage in the ohmic region of discharge 

than is observed experimentally, particularly at higher ambient temperatures. These results suggest 

the model under-emphasizes ohmic resistance at these ambient temperatures and discharge rates. 

However, there is good agreement during initial voltage drop and in the total energy discharged. 

These results suggest successful validation of 0D simulations under isothermal or near-

isothermal operating conditions for the purposes of this study. The notable exception is 3C 

discharge at subzero to near-freezing temperatures, which shows significantly higher discharge 

capacity than the experimental results suggest. 

 

5.2.2 3D Model Validation 
 

A 3D thermally-coupled electrochemical model is validated using characterization data 

obtained under environmental chamber conditions as described above in Section 5.1. Model setup 

and parameterization are described in Section 4.1. Thermal and electrochemical properties are 
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modeled in three dimensions as a coupled thermal-electrochemical system as described in Section 

4. Simulations are run at 2C, 2.5C, and 3C, with an initial cell temperature of -10 oC and a constant 

ambient temperature of -10 oC, for consistency with the experimental characterization described 

in Section 5.1. 

Validated voltage curves are shown below in Figure 5.10. It can be seen that, similar to 0D 

validation, the simulations predict higher voltage in the ohmic region of the discharge curves. 

However, reasonably similar discharge behaviour is observed between simulation and 

experimental results. Significant voltage drop, attributable to charge transfer resistance, occurs at 

the onset of discharge, followed by voltage recovery due to cell temperature rise. The cutoff 

voltage is reached after approximately 16.4 Ah of discharge in all cases. Table 5.5 gives the initial 

voltage drop and discharge capacity for both simulation and experimental results at all three C-

rates, and suggests good experimental-model agreement. 

The overestimation of voltage by both 0D and 3D simulation may be due in part to the 

model’s treatment of active material diffusion in the solid and electrolyte phases. The model 

employs effective diffusion coefficients in solving for conservation of Li/Li+ in each phase 

(equations 4.3 and 4.5). The coefficients are provided by the AutoLion software database and are 

therefore proprietary; it is not indicated how the coefficients are determined, other than that they 

are empirically determined for various materials. The conditions, such as temperature and lithium 

concentration, under which these coefficients are determined, and the range of such variables over 

which a given value of the coefficient is considered by the software to be assumed constant, may 

have significant effects on the model’s output. Low temperature and strong concentration gradients 

for lithium in the solid and electrolyte phases reduce diffusivity. Assuming constant diffusion 

coefficients under such conditions has been shown to produce errors in voltage predictions of over 

20% [47]. Both conditions exist for the validations performed in this thesis. Experimental cells are 

operating at low temperature, particularly at the onset of discharge, and for the higher C-rates used, 

strong concentration gradients can be expected. Such conditions, therefore, can be expected to 

lower diffusivity, increase concentration polarization, and reduce voltage. This may explain, in 

part, why initial voltage drop is lower for experimental cells, as operating temperature is at its 

lowest; and why model cell voltage is particularly high near the end of discharge, when cathode-

side lithium concentration is significant. 
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Additionally, the model assumes a constant SEI layer resistance of 0.33 mΩ/m2. However, 

SEI resistance has been shown to decrease with increasing temperature, while resistance values 

are typically determined at or near 25oC [55]. Because SEI layer resistance is known to be one of 

the dominant sources of overall cell resistance at subzero temperatures [3], an underestimation of 

SEI layer resistance at the low temperatures examined in this thesis can be expected in turn to 

underestimate polarization and produce higher-than-accurate voltage curves, as is seen in the 

above validation figures. 

Thermal validation is examined both in terms of mean cell temperature rise and in terms 

of the development of spatial temperature distributions. Mean cell temperature rise is plotted in 

Figure 5.11. It can be seen at all discharge rates that the model appears to under-predict mass 

transport resistance, as characterized by rates of temperature rise along the corresponding region 

of the temperature-discharge curve. However, the overall agreement with experimental results is 

acceptable, with simulated and experimental mean temperature rise varying by a maximum of 

10%. 

Local temperature rise at the end of discharge is illustrated in Figure 5.12. The resulting 

temperature distribution is validated by comparing experimental local temperature rise at each 

thermocouple location with simulated temperature rise at the same locations. It is seen that for 

both model and experimental results, cell temperature rise is greatest nearest to the positive 

terminal, and forms a gradient of progressively lower temperature rise with distance from the 

positive terminal. Because the model cell assumes spatially consistent material properties, it can 

be inferred that, as with the experimental cell, the model cell’s thermal nonuniformity is a result 

of spatial variations in cell resistances and the resulting feedback mechanisms between 

electrochemical behaviour and heat generation. 

The level of agreement, however, between model and experimental results varies across 

the cell. Agreement is closest in the coolest regions of the cell, and increasingly diverges towards 

the warmest areas, with the weakest agreement near the positive terminal. This is most likely due 

to an underestimation by the model in joule heating by ohmic resistances. That agreement is 

reasonably good away from the terminals suggests that, in the absence of large ohmic losses, the 

model’s heat generation predictions are reasonably accurate. However, at the positive terminal, 

where ohmic resistance is known to dominate, experimental results show significantly higher 
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temperature rise than the model suggests. Furthermore, in Figure 5.10, model voltage is seen to be 

consistently higher than experimental voltage over the ohmic polarization region of the discharge 

curve, again where ohmic losses are known to dominate. The thermal and voltage behaviour of the 

experimental cell, therefore, suggest that ohmic losses play a greater role in cell behaviour than 

the model represents. As ohmic losses at given location are proportional to the local current 

density, it is believed that the model’s volume-averaged current density may be inaccurately 

distributed. This is identified in Section 6.2 as an area for future investigation. 

Overall, however, the results suggest reasonable validation of 3D simulations for the 

purposes of this study, though areas for improvement are identified. The subsequent section applies 

both the 0D and 3D models to assess the applicability of each model to real cell behaviour, and to 

examine the impacts of thermal uniformity on cell performance more generally. 
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(c) 

Figure 5.10: Experimental validation of 3D simulation results for cell voltage behaviour. 

Ambient temperature and initial cell temperature are -10 oC. 
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Table 5.5: Initial voltage drop and discharge capacity for simulation and experimental results. 

 Discharge 

Rate 
Experimental Simulation 

Percent 

Difference (%) 

Initial Voltage Drop (V) 

2C 0.65 0.60 8.0 

2.5C 0.71 0.68 4.3 

3C 0.78 0.76 2.6 

Discharge Capacity (Ah) 

2C 16.27 16.51 1.5 

2.5C 16.40 16.31 0.6 

3C 16.48 16.22 1.6 
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(c) 

Figure 5.11: Experimental validation of 3D simulation results for mean cell temperature rise. 
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Figure 5.12: Experimental validation of 3D simulation results for local temperature rise. Contour 

plot shows temperature rise for 3D model at 3C discharge. Experimental temperature rise is 

shown for select locations. At each location, the first number shown is model temperature rise; 

the second is experimental. All units are in oC. 
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5.3 Influence of Temperature Distribution on Discharge Performance 
 

 In this section, a validated 0D isothermal model and a validated 3D thermal-

electrochemical coupled model are compared in discharge performance to that of an actual battery 

operating at cold-start temperatures.. 

The 0D model represents a cell operating under thermally uniform conditions. Cell 

temperature rises during discharge as a result of irreversible heat generation; however, that heat is 

uniformly distributed throughout the cell. In other words, the cell operates at a uniform temperature 

at all times. 

The 3D model represents a cell operating under thermally nonuniform conditions, wherein 

heat generation and distribution varies spatially throughout the cell. All other operating conditions 

are identical to the 0D model. By holding all other conditions constant and varying only the spatial 

resolution of heat generation and resulting temperature change, the models can be compared, and 

the influence of thermal uniformity on the cell’s electrical performance can be observed. 

 Figure 5.13 compares the voltage behaviour of 0D and 3D models when operating at an 

ambient temperature of -10 oC for various discharge rates. It is clearly evident that the 0D model 

is insufficient to describe cell voltage behaviour when discharging under cold-start conditions. It 

is observed that at all discharge rates, the 3D model shows greater discharge capacity; these values 

are compared in Table 5.6. 

Additionally, voltage behaviour is notably different throughout discharge. The 0D, or 

thermally uniform, case shows significantly less initial voltage drop than the 3D, or thermally 

nonuniform, case. It can be posited that a spatially uniform temperature, and correspondingly 

uniform charge transfer kinetics throughout the cell, prevents the formation of areas of relatively 

high local charge transfer resistance which would otherwise impede the cell’s overall 

electrochemical kinetics and induce greater voltage drop. However, this lack of localized high 

resistance evidently lessens internal heat generation to a sufficient extent that voltage recovery is 

not observed, and the cell’s cutoff voltage is rapidly reached as mass transfer resistance dominates 

at the cathode. 
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(c) 

Figure 5.13: Voltage behaviour of 0D and 3D thermally coupled models when operating at an 

ambient temperature and initial temperature of -10 oC and a heat transfer coefficient of ℎ = 0.47 

Wm-2K-1, for various discharge rates. Experimental curves derived under identical conditions are 

shown for comparison. 

 

 

 

Table 5.6: Discharge capacity predicted by 0D and 3D models under identical operating 

conditions. 

 Discharge 

Rate 
0D Model 3D Model 

Percent 

Difference (%) 

Discharge Capacity (Ah) 

2C 13.25 16.51 24.6 

2.5C 12.14 16.31 34.3 

3C 12.02 16.22 34.9 
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6 Conclusions and Recommendations 
 

6.1 Conclusions 
 

 In this thesis, an electrochemical cell model coupled to either a 0D or 3D thermal model is 

validated to assess the suitability of each thermal model to describe the performance of prismatic 

LiFePO4 Li-ion batteries under cold-start conditions. The investigation is composed of three parts. 

First, the electrical and thermal behaviour of the cell is characterized under different heat transfer 

conditions and at various discharge rates and ambient temperatures. It is shown that under 

conditions where rates of heat removal and mixing in the environment around the cell are low, 

temperature rise is rapid at the onset and end of discharge, voltage recovery provides greater 

discharge capacity, and changes in temperature are nonuniform throughout the cell.  Under 

conditions where the cell temperature is held effectively constant and uniform at low temperatures, 

conversely, electrical performance deteriorates. 

 The second part of the investigation applies the results of the first to a validation of a 0D 

lumped capacitance thermal model and a fully 3D thermal model. It is shown that good agreement 

is achieved for global temperature and voltage under the 3D model at all discharge rates, with a 

maximum variance in discharge capacity of 1.6% and a maximum mean temperature variance of 

10%. Similarly good agreement is achieved for the 0D model at 2C and 2.5C discharge. In general, 

however, the model over-predicts discharge voltage during mid- to late-discharge. This 

disagreement is attributed to three main factors. First, the assumption of a constant solid-state 

diffusion coefficient, 𝐷𝑠, neglects the sensitivity of solid-state diffusion to low temperature and to 

the presence of strong Li concentration gradients, both of which are significant during the high-

rate discharge and subzero temperatures characteristic of cold-start EV driving. Second, the 

model’s assumption of a constant SEI layer resistance, 𝑅𝑓, implies that the empirically-determined 

SEI layer resistance value holds across a wide temperature range; however, it is known that SEI 

layer resistance increases at low temperature. Third, disagreement in the region of the voltage 

curve where ohmic resistance is known to dominate, as well as in local temperature near the 

terminals where ohmic resistance again dominates, suggests inaccuracies in the model’s 

predictions of current density distribution. 
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The third part of the investigation directly compares the results of the 0D and 3D models 

under identical discharge scenarios. It is observed that the 0D lumped thermal capacitance model 

is insufficient for describing the discharge behaviour of prismatic batteries under cold-start 

conditions. These results suggest that for thermally nonuniform cells operating at subzero ambient 

temperatures, the formation of temperature gradients, and therefore of areas of high and low local 

resistance, cannot be neglected for its influence on overall cell voltage. Moreover, these results are 

in contrast to commonly held assumptions in the literature that a more thermally uniform cell 

should perform better and provide greater discharge capacity as a product of evenly distributed 

reactions across the electrode, consistent charge density, and uniform SOC. Instead, the results of 

this thesis suggest that, under subzero conditions, cells that experience local temperature minima 

experience sufficiently high local internal resistance so as to significantly affect the temperature-

resistance-voltage feedback cycle for the cell overall, reducing internal resistance in the late stages 

of discharge and ultimately increasing discharge capacity. The results provide insight into the 

significance of temperature gradients and their effects on prismatic battery performance under 

cold-start conditions, and illustrate the need to further refine models that are capable of describing 

the effects of these gradients under such conditions. 

 

6.2 Recommendations 
 

 Based on the above conclusions, the following recommendations are made:  

1. The design, modeling, and application of large prismatic cells and batteries should not 

neglect the formation of, and effect of, strong temperature gradients during cold-start 

operation. 

2. Models of large prismatic cells and batteries during cold-start operation should employ a 

3D thermally-coupled electrochemical approach that discretizes temperature throughout 

the cell, capturing the spatial thermal behaviour and its effects on local and global 

electrochemical feedback loops. 

3. The model’s solid-state diffusion coefficient, 𝐷𝑠, should be treated as a function of 

temperature and discharge rate to reflect actual transport properties during cold-start 

discharge in a real cell. Currently, 𝐷𝑠 is treated by the model as a constant and does not 
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account for the lower rates of solid-state diffusion experienced in cells at subzero 

temperatures and at high discharge rates, where strong concentration gradients impede 

diffusion. Application of a function that calculates 𝐷𝑠 at each time step based on 

temperature and lithium concentration should improve the accuracy of discharge voltage 

prediction, particularly late in the discharge curve. 

4. The model’s SEI layer resistance, 𝑅𝑓, should be treated as a function of temperature. The 

empirically-determined SEI layer resistance value employed in the model is assumed 

constant, whereas SEI layer resistance in a real cell increases with decreasing temperature. 

Calculation of 𝑅𝑓 at each time step as a function of temperature, or use of a database of 

constant 𝑅𝑓 values, each of which pertains to a specific range of cell local cell temperature, 

should provide greater accuracy in predicting discharge voltage. 

5. Current density distributions should be validated for the 3D model. Validation of discharge 

voltage and local temperature rise suggests that local current density, and the resulting 

ohmic losses and associate heat generation, are not in good agreement with experimental 

results where ohmic losses dominate. Current density distributions should be 

experimentally validated to determine whether model inaccuracies in current density are at 

the root of weak agreement in local heat generation at the terminals and in voltage at 

moderate SOC. 

6. Future model validation should be broadened to include other cell materials. A cell’s 

composition, including but not limited to its electrode and electrolyte materials and 

physicochemical properties, affects the relative and absolute magnitude of its internal 

resistances and therefore the cell’s sensitivity to temperature. As existing cell chemistries 

are improved and new materials are introduced, the electrochemical-thermal feedback 

behaviour of new cells will differ from that observed here, and accurate characterization 

and validation will be required to adapt models accordingly. 
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Appendix I: Model Cell Design Parameters 

 

Property Value Units 

Dimensions 

Cell Width 160 mm 

Cell Height 227 mm 

Cell Thickness 7.25 mm 

Enclosure Weight 6.21 g 

Positive Electrode Assembly - Foil 

Material Al N/A 

Thickness 15 µm 

Width 160 mm 

Density 2.7 g/cm3 

Conductivity 3.538E+7 S/m 

Positive Electrode Assembly – Active Material 

Material LFPO N/A 

Molecular Weight 157.751 g/mol 

Density 3.6 g/cm3 

1st Charge Capacity 160 mAh/g 

1st Discharge Capacity 150 mAh/g 

Cutoff voltage for reversible specific capacity 3.8 V 
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Particle Diameter 0.104 µm 

Weight Percentage 94 % 

Positive Electrode Assembly – Conductive Agent 

Material Carbon N/A 

Density 1.95 g/cm3 

Weight Percentage 3 % 

Positive Electrode Assembly – Binder 

Material PVdF N/A 

Density 1.77 g/cm3 

Weight Percentage 3 % 

Positive Electrode Assembly – Additive 

Weight Percentage 0 % 

Positive Electrode Assembly – Coating 

Loading 1.6 mAh/cm2 

Electrode Thickness 170 µm 

Electrode Width 160 mm 

Electrode Height 227 mm 

# of Electrode Plates 18 N/A 

Positive Electrode Assembly - Summary 

Total Coated Area 13,075.2 cm2 

Porosity 0.6 N/A 

Mass Loading 10.6383 mg/cm2 
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Dry Electrode Density 1.37 g/cm3 

Active Material Used 130.752 g 

Negative Electrode Assembly - Foil 

Material Cu N/A 

Thickness 8 µm 

Width 160 mm 

Density 8.96 g/cm3 

Conductivity 5.8E+7 S/m 

Negative Electrode Assembly – Active Material 

Material Graphite N/A 

Molecular Weight 72.06 g/mol 

Density 2.24 g/cm3 

1st_Charge_Capacity 371.933 mAh/g 

1st_Discharge_Capacity 365 mAh/g 

Cutoff voltage for reversible specific capacity 2 V 

Particle Diameter 15 µm 

Weight Percentage 94 % 

Negative Electrode Assembly – Conductive Agent 

Material Carbon N/A 

Density 1.95 g/cm3 

Weight Percentage 3 % 

Negative Electrode Assembly – Binder 
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Material PVdF N/A 

Density 1.77 g/cm3 

Weight Percentage 3 % 

Negative Electrode Assembly – Additive 

Weight Percentage 0 % 

Negative Electrode Assembly – Coating 

N/P Ratio 115 % 

Loading 1.84 mAh/cm2 

Electrode Thickness 170 µm 

Electrode Width 160 mm 

Electrode Height 227 mm 

# of Electrode Plates 19 N/A 

Negative Electrode Assembly – Summary 

Total Coated Area 13,801.6 cm2 

Porosity 0.71 N/A 

Mass Loading 5.2629 mg/cm2 

Dry Electrode Density 0.65 g/cm3 

Active Material Used 68.278 g 

Separator 

Type Celgard N/A 

Thickness 20 um 

Density 1.2 g/cm3 
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Height 227 mm 

Porosity 0.8 N/A 

Electrolyte 

Lithium Salt LiPF6 N/A 

Solution EC-EMC-DMC N/A 

Concentration 1.2 mol/L 

Density 1.2 g/cm3 
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Appendix II: Simulation Parameters 
 

Property Value Units 

Control Parameters 

Time Step Size 1 s 

Output Frequency 50 s-1 

Mesh Number 

Negative Electrode 8 Control Volumes 

Separator 5 Control Volumes 

Positive Electrode 8 Control Volumes 

Operating Conditions 

Lower Cutoff Voltage 2.6 V 

Upper Cutoff Voltage 3.65 V 

Load Profiles C-rate N/A 

C-rate 2, 2.5, 3 C 

Initial Conditions 

OCV@100%SOC 3.55 V 

SOC 1 N/A 

Butler-Volmer Equation – Negative Electrode 

Open Circuit Potential database V 

Anodic Transfer Coefficient 0.5 N/A 

Cathodic Transfer Coefficient 0.5 N/A 
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Exchange Current Density database A/m2 

SEI Layer Resistance Reference Value 0.00033 Ohm m2 

SEI Layer Resistance Activation Energy 3.2E+4 J/mol 

dU/dT Entropic Heat database V/K 

Butler-Volmer Equation –Positive Electrode 

Open Circuit Potential database V 

Anodic Transfer Coefficient 0.5 N/A 

Cathodic Transfer Coefficient 0.5 N/A 

Exchange Current Density database A/m2 

Film Resistance Reference Value 0 Ohm m2 

Film Resistance Activation Energy 3.2E+4 J/mol 

dU/dT Entropic Heat database V/K 

Bruggeman Exponents 

Negative Electrode 1.5 N/A 

Separator 1.5 N/A 

Positive Electrode 1.5 N/A 

Electrolyte Concentration 

Average Concentration 1200 mol/m3 

Diffusion Coefficient database m2/s 

Transference Number 0.38 N/A 

Electrolyte Potential 

Ionic Conductivity database S/m 



79 
 

Diffusional Conductivity database A/m 

Solid Phase Potential – Negative Electrode 

Conductivity 100 S/m 

Contact Resistance 0.0002 Ohm m2 

Solid Phase Potential – Positive Electrode 

Conductivity 3.8 S/m 

Contact Resistance 0.0002 Ohm m2 

Mesh Generation 

Width Mesh 6 mm 

Height Mesh 9 mm 

Negative Tab Location 2 N/A 

Negative Htab Value 27 mm 

Negative Htab Mesh 3 mm 

Negative Wtab Value 45 mm 

Negative Dtab Value 18 mm 

Positive Tab Location 2 N/A 

Positive Htab Value 27 mm 

Positive Htab Mesh 3 mm 

Positive Wtab Value 45 mm 

Positive Dtab Value 97 mm 

 


