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Abstract

The Event Horizon Telescope is capable of observing black holes on event-horizon scales
and we can use it to explore deviations from General Relativity. We replicate the results of
a previous study using a Newtonian prescription of gravity to set a suitable limit to justify
viscosity and radiation choices. We also create a framework to explore semi-analytic models
of Radiatively Inefficient Accretion Flows with a covariant prescription of gravity. We study
a Kerr-like metric not described by General Relativity, and find only small deviations from
Kerr solutions. We also find that the dynamics of the flow are sensitive to small General
Relativistic effects.
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Chapter 1

Introduction

Active galactic nuclei (AGN) are compact, highly-luminous regions found at centers of
galaxies, and due to their measurable luminosity in all electromagnetic bands, they are
excellent sources to explore gravity and accretion. The emission of AGN is expected to be
the result of accretion [16] onto a supermassive black hole (SMBH) with many millions or
billions of solar masses. Evidence for SMBHs comes primarily from measured star velocity
dispersions, which show massive dark compact objects at centers of virtually all AGN
[15]. Reverberation mapping, a technique that correlates time variability in an AGN, has
estimated the black hole mass of about 40 AGN SMBHs. Proposed mechanisms for feeding
this AGN accretion include stellar winds, galactic gas, and feedback. Some AGN have
bright relativistic jets produced near the black hole, as has been observed by [10]. Possible
mechanisms for generating these jets include high magnetic fields or frame dragging near
the black hole event horizon. As such, AGN observations are heavily influenced by strong
gravity effects near the black hole event horizon.

Our galaxy has a low-luminosity AGN, but due to its proximity and large angular size
compared to other AGN, we have much information about its enviroment and astrophysical
properties. Located at the center of our AGN is a radio-bright flat-spectrum source, which
we call Sagittarius A* (Sgr A*). From observation of stellar trajectories, we know Sgr
A* is the home of a 4.02 ± 0.16 ± 0.04 × 106M� black hole [4]. Further observations of
infrared flux and observed size place strong constraints on the existence of this SMBH
[6]. From simulations of stellar wind dynamics, we believe Sgr A* is primarily fed by
winds from stars in the central few parsecs of the galactic center [9]. The outer gas
temperature that feeds the accretion has been determined through an optically-thin model
and Chandra X-ray observations as 1.3 keV, with an electron number density of 100 cm−3

[2]. However, density measurements of the plasma a few Schwarzschild radii away from

1



Sgr A* from rotation measures are many orders of magnitude lower than we would expect
from luminosity measurements [17]. Furthermore, we do not see as much radiation as we
would expect for gas heated by gravitational accretion. We believe the energy is stored
into ions, which do not efficiently give it to electrons. This leads us to believe that Sgr A*
is characterized by a Radiatively Inefficient Accretion Flow (RIAF).

The Event Horizon Telescope (EHT) is a set of radio telescopes scattered across the
globe to create an interferometer with Earth-sized baselines. The EHT looks at 230 and 345
GHz. At these frequencies, the apparent size of Sgr A* is 50 microarcseconds, which the
EHT, capable of reaching resolutions of 10 microarcseconds, can resolve the event horizon
of Sgr A*. The other candidate for EHT observations is Messier 87, which has a jet and is
also expected to be surrounded by a RIAF. This emitting region is seemingly dominated
by gravitational effects on lensing, dynamics, and structure. To extrapolate meaningful
information about the gravity at play, we need to devise a model to map parameters
to an image. This process takes two steps. First, we model the gas accretion using
magnetohydrodamic and gravitational physical laws to get an accretion flow structure.
Then, we ray trace photon paths and integrate the radiative transfer equations to turn
that structure into a simulated image. We expect these images to look like Figure 1.1.
Gravity plays a key role in the features of these images, and comparison to results of the
EHT can provide meaningful information about gravity.

Accretion flows take the shape of spinning disks of ionized gas. The gas ionizes because
the ions are hot and have low density. As it falls in, it eventually reaches the Innermost
Stable Circular Orbit (ISCO), a key feature of black holes, and inside that radius, the gas
must accrete. RIAFs assume the gas is optically thin, and therefore feels no radiative force.
As the gas falls in, the ions get heated to upwards of 1011 K, but the electrons remain
cooler. Only in the final few Schwarzschild radii do the electrons emit much radiation,
making them excellent for viewing in the EHT observing bands. RIAFs are characterized
by a large disk height, low luminosity, and a low accretion rate. The study in [22] has had
success modeling the RIAF around Sgr A* with a mass accretion rate as a function of the
radius away from the black hole to better account for an expected wind.

For the gas to fall into the black hole, it must transport its angular momentum to
gas further out. From [3], we know the viscous effect is caused by the magnetorotational
instability (MRI). The MRI is caused by shearing magnetic fields, which, in a rotating
system, cause a destabilizing azimuthal force. Unlike gas collisional viscosity, this effect is
strong enough to transport angular momentum outward on orbital timescales. In a RIAF,
this effect heats the ions, which then transfer their energy to the electrons via Coulomb
collisions, which radiate it away. In accretion flows, electrons are highly relativistic and
have complicated radiation profiles that depend on the magnetic field. However, the mag-
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Figure 1.1: Model images of black hole for different quadrupole parameters
Simulated images showing the deviations to the image that would be seen by the EHT
caused by adding a nonzero quadrupole moment, ε, to the black hole metric. The effects
are strong enough to be detected by the EHT. Figure reprinted from [5].

netic fields are strong and the density low, so models usually restrict electrons to the most
prominent sources of radiation: synchotron, Bremesstrahlung, and Compton cooling.

1.1 Previous Work

We wish to understand the deviations from General Relativity and relate them to observ-
ables. Figure 1.1 shows the effects of a quasi-Kerr metric on the shape of the apparent
black hole shadow [5]. Subsequent tests [14] show that such metric perturbations could be
detected with the EHT with sub-percent precision. However, these tests only applied the
metric modifications while imaging. For the structure and dynamics of the accretion flow,
[5] uses models similar to that in Section 3, with a quasi-Newtonian gravity prescription,
without solving for the changes due to a modified metric. Therefore, in order to extrapo-
late meaningful conclusions about the effects of modified gravity on observation from the
EHT, it becomes imperative to remove this source of systematic uncertainty.

In this work, we develop a code that can properly generate the structure and dynamics
of an accretion flow for any metric.
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1.2 A Note on Conventions

Throughout this work, we will use a metric with a signature of −1. All results and cal-
culations will be done in cgs units, but the derivation in Chapter 4 will use c = G = 1
units. Note that unlike many texts, we use rg = 2GM/c2. For a description of concepts
used from General Relativity, see, for example, [18]. Greek indices run over cylindrical
Boyer-Lindquist coordinates. Matrices will be denoted as σ. In Chapters 3 and 4, the
subscript, m, will denote the midplane value of quantities, such as the pressure or density,
after height-integration, for example, ρm.
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Chapter 2

Bondi Accretion

To properly understand how general gravity affects the structure and dynamics of accretion
flows, it is useful to look at a model with minimal physics that still contains the charac-
teristics of RIAFs. Bondi accretion is steady-state spherical accretion onto a gravitating
object idealized as a point. There is a constant influx of gas at some far radius, which
leaves the system through the central object. The physical mechanisms governing the gas
flow are pressure, gravity, and radiation. For a further examination of Bondi accretion,
see, for example, [11].

2.1 Eddington Limit

Consider a case of Bondi accretion with radiation pressure fully balancing gravity. The
radial balance equation is

Lκ

c

1

4πr2
=
GM

r2
(2.1)

where L is the luminosity, κ is the opacity, and M is the mass of the central object. For
ionized hydrogen, the opacity is given by Thomson scattering as κ = σT/mi, where σT is
the Thomson scattering cross section, and mi is the ion mass. Equation (2.1) yields the
Eddington luminosity

LEdd =
4πGMcmi

σT
(2.2)
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If the gas radiated any stronger, any gas fed in at the outer radius would immediately be
pushed back out of the system. The corresponding maximum accretion rate is

ṀEdd =
4πGMmi

εcσT
(2.3)

where ε = 0.1 is a typical value for the efficiency of transferring rest mass energy into radi-
ation. Sgr A* accretes many orders of magnitude less than the Eddington mass accretion
rate [2]. We can therefore assume that Sgr A* is indeed characterized by a RIAF, and that,
for accretion flow models, radiation should not have a noticeable effect on the momentum
conservation.

2.2 Critical Point

We now study the structure of the accretion flow. Since electromagnetic interactions yield
an effective mean free path much smaller than the event horizon, the gas dynamics can
be modeled with large-scale conservation equations rather than micro-physics. Spherical
symmetry imposes all physical quantities are a function solely of the radius, and the steady-
state condition imposes that at a given radius, the gas can only be described by one density,
pressure, velocity, etc.

The gravitational potential is described by Newtonian theory as

Φ = −GM
r
. (2.4)

Mass conservation is governed by the continuity equation in spherical coordinates

Ṁ = −4πr2ρv (2.5)

where ρ and v are the density and outward radial velocity of the gas, respectively. Ṁ is
the mass accretion rate supplied at some outer radius, and is constant. We will consider
an ideal gas with a relativistic adiabatic coefficient, so the equation of state is

p = Cρ4/3 (2.6)

for some proportionality constant, C. All gas dynamics is captured by the Euler equation

∂~v

∂t
+ ~v · ~∇~v = −1

ρ
~∇p− ~∇Φ. (2.7)
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Since the flow is steady state, all the time derivatives are zero. We can impose spherical
symmetry and take only the radial component

v
dv

dr
= −1

ρ

dp

dr
− GM

r2
(2.8)

From 2.5 and 2.6, we can write

dp

dr
=

4

3
Cρ1/3

Ṁ

4π

(
2

r3v
− 1

r2v2
dv

dr

)
= −c2sρ

(
2

r
− 1

v

dv

dr

)
(2.9)

where the gas sound speed,

cs =

√
4

3

p

ρ
(2.10)

is chosen as cs = dp/dρ to make the critical point at v = cs. Combining equation (2.9) with
equation (2.8), with aid from a computer algebra program, the conservation of momentum
equation can be written as(

1− c2s
v2

)
v
∂v

∂r
= −GM

r2

(
1− 2c2sr

GM

)
. (2.11)

Note that at v = cs, and r = rs = GM/2c2s, the sonic radius, the solution becomes ill-
defined. This corresponds to a critical saddle point dividing the set of solutions. The
solution we are interested in is one passing through that critical point.

This model is now a boundary value problem that we can numerically integrate. Upon
writing equation (2.11) in terms of the normalized quantities v/cs and r/rs, all dependence
on the parameters, Ṁ , M , and C, cancels. A phase plot of the velocity of the gas as
a function of radius is shown in Figure 2.1. Each curve plotted represents a solution to
our differential equation for some initial gas position and velocity. There are six types of
solutions, but not all are physical. We have assumed that at any radius, the gas can have
one velocity, so solutions of type III or IV are only valid until they turn around in radius.
In a physical case, turbulence from gas flowing in different directions would shift the initial
conditions down to a curve passing through the critical point. Type I solutions occur
when the gas is entering our system supersonically, and cannot stabilize into a flow. Any
perturbation would remain, as no information can travel through the gas, thus violating the
steady-state condition. Type II solutions correspond to gas pressure overcoming gravity.
These solutions can be stable, but develop into critical flows [12].

There are two stable solutions: indicated in Figure 2.1 by curves (a) and (b), which
are an accretion flow and wind solution, respectively. We assume our flow begins close to
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Figure 2.1: Bondi accretion phase plot
Plot of velocity versus radius. There are six different types of solutions. With the steady-
state condition, only two solutions are valid. Curve (a) corresponds to an accretion flow,
and curve (b) is a wind solution.
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rest far away, and enters the black hole supersonically, represented in Figure 2.1 by a low
velocity at large radius. Note that, in an accretion flow with shocks allowed, parts of a
stable gas solution could jump to a black curve, and exhibit non-flow behavior. However,
the steady state condition allows us to ignore all flow solutions except (a). We expect more
intricate models to still exhibit this critical point behavior, and contain only one accretion
flow solution.
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Chapter 3

Newtonian Model

The Bondi accretion flow model in Section 2.2 is highly idealized, and we will attempt to
add faithfullness by introducing electromagnetic fields, viscosity, rotation and gravity more
closely resembling a black hole.

We expect any electrostatic imbalance to be corrected in a short timescale, so we will
neglect such effects. Accretion flows are, however, expected to be heavily impacted by
magnetic fields. As the gas rotates inward, magnetic fields will become twisted and highly
sheared. The steady-state condition allows us to only consider local effects of the magnetic
field. It will be responsible for radiation and for viscous heating and angular momentum
transport through the MRI.

We are dealing with a RIAF, so we must model the gas ions and electrons separately, to
allow an energetic gas to radiate inefficiently. We will add mechanisms for the gas to heat,
transfer energy, and radiate. Heating will be determined by our choice for magnetic shear,
and energy transport between ions and electrons will be dominated by Coulomb collisions.

The following analysis closely follows Yuan et al. [21].

3.1 Derivation of Governing Equations

Motivated by angular momentum conservation coupled with the steady-state condition,
the spherical flow will be replaced with an axisymmetric flow, and the variable r will now
refer to the cylindrical radius. The flow will resemble a disk, where at a given radius, the
gas will have some vertical height. Although this will be a geometrically thick disk, we
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will impose z2 � r2 and vz � vr for simplicity. More commentary on the consequences of
this choice is available in Section 5.3. While we will still use a Newtonian-like prescription
of gravity, we wish to make use of a modified potential that captures some of the physical
effects associated with black holes in general relativity. A key effect is the existence of an
Innermost Stable Circular Orbit, inside of which the gas will accrete even without angular
momentum transport. To that end, we will introduce the Paczyński-Wiita potential

Φ = − GM

r − rg
(3.1)

where rg = 2GM/c2 is the black hole Schwarzschild radius. This potential contains an
event horizon, and an ISCO.

We consider a randomly oriented magnetic field everywhere, such that the magnetic
pressure is proportional to the gas pressure with a constant ratio. That is,

p = ptot = pgas + pmag = pgas +
1− β
β

pgas =
pgas
β
. (3.2)

Assuming an optically-thin two-temperature ideal gas, we can write the gas pressure as

pgas =
ρ

µi

kB
mµ

Ti +
ρ

µe

kB
mµ

Te (3.3)

in which ρ is the density of the gas, Ti and Te are the ion and electron temperatures,
respectively, and kB is the Boltzmann constant. For ionized hydrogen, we can set the
effective molecular mass to the ion mass, mµ = mi. The mean molecular weights are

µi = 1.23 µe = 1.13. (3.4)

For simplicity, we assume the gas density and pressure can be characterized by a
midplane value and a scale height. Further equations can be height-integrated to create
one-dimensional equations of midplane values. More specifically, we will apply a height-
integration operator,

OHI(f) =
1

2H

∫ H

−H
fdz (3.5)

to all equations, sometimes implicitly.

We can solve for the scale height from the vertical balance equation

dp

dz
= −ρΩ2

Kz (3.6)
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where ΩK =
√
GM/(r − rg)2r is the Keplerian angular velocity. Assuming some vertical

distribution
H =

cs
ΩK

(3.7)

where cs =
√
p/ρ is the gas soundspeed, defined differently than before to agree with the

literature.

3.1.1 Viscosity

The disk will be allowed to rotate, and magnetic viscosity between successive cylindrical
shells of gas will heat the ions. From the MRI, we know that the viscosity should go as〈
BrBφ

〉
. However, the magnetic field is heavily twisted and sheared such that Br ∝ Bφ.

From 〈
BrBφ

〉
∝ 〈BrBr〉 ∝ pmag (3.8)

we are motivated to try a choice of viscosity proportional to pressure known as the α-
viscosity prescription. This approximation of the MRI has had success in previous models of
accretions flows [20]. This argument allows us to approximate the shear tensor component

σrφ = ρνr2
∂Ω

∂r
(3.9)

as
σrφ = −αrp (3.10)

where α is constant. Note that this definition of σrφ differs from the one employed in

[11] due to different definitions of φ̂. We will ignore all other shear tensor components.
Accretion theory commonly uses the α-disk prescription of

ν = αcsH =
α

ΩK

p

ρ
(3.11)

as in [11] and [20], which we will not be studying to agree with [21], although the two
different viscosity prescriptions can be subtly similar for thick disks [1]. Our choice for
the stress tensor imposes σrφ vanish at the event horizon. Thus, the inability of the event
horizon to torque the gas in a steady-steady flow is explicit in our viscosity prescription.
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3.1.2 Conservation Equations

The equations that govern the gas dynamics arise from conservation of mass, momentum,
and energy. Similar to equation (2.5), the mass conservation equation is

Ṁ = −4πrHρv. (3.12)

The momentum conservation equations use a modified Euler equation

ρ
∂~v

∂t
+ ρ(~v · ∇)~v = −∇p− ρ∇Φ +∇ · σ (3.13)

in which the stress tensor, σ, has only one nonzero component, σrφ as defined in Sec-
tion 3.1.1. Using axisymmetry, the steady-state condition, and our vertical prescription,
we can write the radial momentum equation as

ρv
dv

dr
− ρrΩ2 = −dp

dr
− ρdΦ

dr
(3.14)

in which v now refers to the outward radial velocity. We wish to height-integrate this
equation, but we must consider the change in gravity away from the midplane, as we know
the vertical dependence of the gravitational potential, and cannot approximate it with a
scale height. We can write the gravitational potential as

Φ = Φ(z = 0) +
Ω2
Kz

2

2
. (3.15)

Upon height-averaging of equation (3.14), we encounter∫ (
ρ
d

dr

(
Ω2
Kz

2

2

))
dz =

dΩK

dr

∫ (
ρΩKz

2
)
dz =

− 1

ΩK

dΩK

dr

∫
dp

dz
zdz =

1

ΩK

dΩK

dr

∫
pdz (3.16)

where we have used the vertical balance equation, equation (3.6). Therefore, we can write
equation (3.14) as

ρmv
dv

dr
− ρmrΩ2 = − 1

H

d(pmH)

dr
− ρmrΩ2

K +
1

ΩK

dΩK

dr
pm (3.17)

in which the subscript m denotes the midplane value. Combining this with equation (3.7),
we get

v
dv

dr
+ cs

dcs
dr

= −Ω2
Kr + Ω2r − 1

ρm

dpm
dr

. (3.18)
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From equation (3.13) in the azimuthal direction, we have

ρv
d (rΩ)

dr
+ ρΩv =

1

r2
d

dr
(rσrφ) (3.19)

ρvr
d (r2Ω)

dr
= − d

dr
(αr2p) (3.20)

where we have used the viscosity prescription in equation (3.10). We can, again, height-
integrate

ρmHvr
d (r2Ω)

dr
= − d

dr
(αr2pmH) (3.21)

The term ρmHvr is proportional to Ṁ , which we assume is constant, so this equation can
be integrated analytically.

v
(
Ωr2 − j

)
= −αrpm

ρm
. (3.22)

j is an angular momentum eigenvalue, but because our viscosity prescription imposes
the torque vanish at the event horizon, it is equal to the angular momentum at the event
horizon. By integrating analytically, we have replaced a boundary condition on the angular
momentum with a condition of the flow passing through the critical point.

From thermodynamic laws, we can write the ion and electron energy equations as

ρv

(
dεi
dr

+ pi
d

dr

(
1

ρ

))
= −αprdΩ

dr
− qie (3.23)

ρv

(
dεe
dr

+ pe
d

dr

(
1

ρ

))
= qie − q− (3.24)

where terms on the left are the adiabatic evolution of the gas, and the right hand side
contains heating, cooling, and energy exchanges. To height-integrate, we will make the
transformation ρ→ ρm, and p→ pm. By doing this instead of properly integrating, we are
essentially claiming we can use

pm
∂

∂r

(
1

ρm

)
(3.25)

instead of

pmH
∂

∂r

(
1

ρmH

)
= pm

∂

∂r

(
1

ρm

)
− pm
ρm

1

H

∂H

∂r
(3.26)
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and removing a term that will make a significant impact. However, we will neglect it to
remain a replica of [21]. The energies of the ions and electrons are

εi =
3

2

kBTi
µimµ

(3.27)

εe = ae
kBTe
µemµ

. (3.28)

Because the electrons will become relativistic, we introduce the relativistic adiabatic coef-
ficient,

ae =
1

θe

3K3

(
1
θe

)
+K1

(
1
θe

)
4K2

(
1
θe

) − 1

 (3.29)

where K3, K1, K2 are modified Bessel functions of the second kind of order 3, 1, and 2,
respectively, and θe = kBTe/mec

2[8].

The energy flux from the ions to the electrons via Coulomb collisions is given by [21]

qie =
3

2

me

mi

neniσT c ln Λ (kBTi − kBTe)

√
2
π

+
√
θi + θe

(θi + θe)
3/2

(3.30)

where θi = kBTi/mic
2, n is the number density, and ln Λ = 20 is the Coulomb logarithm.

The gas has low density, strong magnetic fields, and the electrons are highly relativistic.
Therefore, we assume our radiative cooling occurs only by synchotron radiation. To derive
the energy lost, begin with the power emitted from one electron [19]

P =
4

3
σT c

B2

8π
γ2 (3.31)

where γ is the relativistic Lorentz factor. We choose the distribution of electrons to be
thermal

f(γ) =
ne
2θ2e

e−γ/θeγ2 (3.32)

where the distribution has been normalized to ne = ρ/mi, as the number densities of both
electrons and ions are assumed to be the same with the steady-state condition. We now
have the energy lost due to radiation as

q− =

∫
Pf(γ)dγ =

∫ ∞
0

(
4

3
σT c

B2

8π
γ2
ne
2θ2e

e−γ/θeγ2
)
dγ =

2σT cρB
2θ2e

πme

(3.33)
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Since the magnetic pressure is related to the total pressure by a factor of 1− β, we have

q− =
16σT cθ

2
e(1− β)pρ

me

(3.34)

Analytically, this term has a small effect on electron temperature, which in turn has a small
affect on other quantities of the flow. We argue that the different choice for the cooling
prescription should not have an effect on the structure deviations for a perturbed metric.
Similarly, qie is subleading in equation (3.23) and any effects on the ion temperature will
be insignificant. This idea is reinforced by running tests with cooling removed, so that
electrons do not lose energy, and finding only small deviations only to Te. Therefore, while
our model does yield a convincing velocity and ion temperature profile, a study of radiative
flux or a spectrum would require more precise energy transfer expressions.

3.2 Accretion Flow Solutions

We have improved upon the model in Section 2.2, but we still only have a set of differential
equations to solve. Three of the boundary conditions - the mach number, and ion and
electron temperature - were set at some outer radius defined at 1000 rg. This radius was
chosen to be sufficiently far away from gravitational effects, to better model the ambient
gas in the galactic center. The condition for j was found by integrating inward and using
bisection to approximate the value necessary for the solution to go through the critical
point. Figure 3.2 shows data from [21] for structure solutions with certain boundary
conditions and parameters. Figure 3.1 is our figure that demonstrates our code can reliably
reproduce the solutions of [21]. There is a discrepancy with the electron temperature at
low radii. However running the simulation with q− = 0 returns a nearly identical solution
with the electron temperature slightly above that of [21]. This reaffirms our assumption
that the cooling prescription has little impact on the flow, and we conclude that we can
reproduce the solutions of [21] up to different choices for cooling.
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Figure 3.1: Effects of varying outer boundary conditions on accretion flow solutions.
This plot is a replication of the accretion flow structure from Yuan et al. The initial
conditions are exactly as in Figure 3.2. The Mach number is defined as −v/cs/

√
(3 + α2)/2

to make the critical point at a Mach number of 1. The surface density, Σ = 2Hρm, and
the angular momentum, l = Ωr2c/GM . With the exception of the electron energy, these
quantities agree with those of [21]. From the electron temperature, we can see that the
cooling differences are only evident in Te.
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Figure 3.2: Replicated plot of accretion flow solutions
Data was taken manually from [21] and fit with a polynomial curve. All initial conditions
and parameters used are the same as in Figure 1 of [21]. All solutions have M = 109M�,
Ṁ = 10−4ṀEdd, α = 0.1, and β = 0.9. The boundary conditions are set at r = 103rg
as vout/cs,out = 0.2 and Te,out = 1.2 × 108K. In increasing alphabetic order, the outer ion
temperature is set at 2× 108K, 6× 108K, 2× 109K, and 3.2× 109K.
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Chapter 4

Covariant Model

Recall that the ultimate goal of this project is to test the influence of modified gravity
on the semi-analytic accretion flow solutions. We assume gravity modifications can be
described by extensions to General Relativity and captured by perturbations to the metric
tensor. In particular, we implement a covariant prescription of gravity into the model, so
that we can model the accretion flow with a general metric tensor. We can also apply
this model’s fully general relativistic description to more appropriately study black hole
accretion flows.

4.1 Derivation

We will introduce the analog of the gas density as the rest mass density plus some energy
density counterpart, that is

ρ = ρ0 + εi + εe (4.1)

where

εi = ai
ρ0kBTi
µimµ

(4.2)

εe = ae
ρ0kBTe
µemµ

. (4.3)

Unlike the model in Chapter 3, both the ions and electrons will be allowed to be relativistic.
ae takes the form of equation (3.29), and a similar definition is used for ai. The magnetic
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contribution to the pressure will be defined as in equation (3.2), and the gas pressure will
be proportional to the rest mass density

pgas =
ρ0
µi

kB
mµ

Ti +
ρ0
µe

kB
mµ

Te. (4.4)

We perform the following derivation in cylindrical Boyer-Lindquist coordinates. The local
gas 4-velocity, uα must obey uαuα = −1, and by vertical symmetry, uz = 0 in the midplane.
The temporal and azimuthal symmetries give rise to Killing vectors in t and z.

4.1.1 The Energy Momentum Tensor

Each of the conservation equations in the previous model have covariant counterparts. The
continuity equation is

∇α (ρ0u
α) = 0 (4.5)

and for energy-momentum conservation, we have

∇αT
αβ = 0 (4.6)

where Tαβ is the energy-momentum tensor. For an ideal gas, the energy-momentum tensor
is

Tαβideal = (ρ+ p)uαuβ + pgαβ. (4.7)

However, we want to encompass viscosity and radiation, so we will add linearly independent
first order terms in ∇u:

{gαβ∇µu
µ, uαuµ∇µuβ, uαuβ∇µu

µ,∇αuβ, uαuµ∇βuµ} (4.8)

where α and β are symmetrized. Note the last term is zero, since uµ∇βuµ = 0. We can
choose any linear combination of these and of the terms in the ideal energy-momentum
tensor so long as we are adding four new distinct terms to the ideal energy-momentum
tensor. We rewrite them as

{hαβ∇µu
µ, uαqβ, uαuβ∇µu

µ, σαβ} (4.9)

where
hαβ = gαβ + uαuβ (4.10)
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is the projection tensor orthogonal to uα. The first term is orthogonal to uα, and goes
as the divergence of the velocity. It is the bulk viscosity, and we will assume our gas has
none. In the second term, we have defined the radiation flux as

qβ ∝ uµ∇µu
β (4.11)

so that qβuβ = 0. The third term is not orthogonal to uα. The definition of ρ is

ρ = Tαβuαuβ. (4.12)

The third term changes ρ to include ∇µu
µ. We have already used the idea of augmenting

the density for a non-ideal gas in equation (4.1), using physical reasoning to determine its
exact form. The last term is the shear viscosity. The definition is

σαβ =
1

2

(
hµα∇µuβ + hµβ∇µuα

)
− 1

3
hαβ∇µu

µ. (4.13)

It is the traceless and symmetric part of ∇αuβ projected orthogonal to uµ in both indices.
This shear tensor may have causality issues, but we can remove them by constructing tαβ
using the α viscosity prescription in Section 4.1.2. Combining these ideas, we can construct
the energy momentum tensor

Tαβ = (ρ+ p)uαuβ + pgαβ + tαβ + qαuβ + uαqβ (4.14)

with
tαβ = −2ρ0νσαβ (4.15)

where ν is a viscosity coefficient.

For the physical cases considered, the gas accretes far lower than the Eddington rate, so
radiation pressure should not contribute to the gas momentum. Therefore, we will ignore
any contribution of terms involving qα in the momentum balance equations.

4.1.2 Viscosity Prescription

We have to construct the tensor, tαβ using physical arguments. For numerical simplicity, we
will only consider leading components of σαβ. The majority of the flow can be approximated
by using the flat space metric, and is relativistic, but slow. We have ut → 1 + v2, ur → v,
and ruφ → uφ/r → v. The leading component is

σrφ =
1

2

(
hµr∇µuφ + hµφ∇µur

)
=

1

2

(
∂ruφ − Γφrφuφ − Γφrφuφ

)
(4.16)

=
1

2

(
∂ruφ −

2uφ
r

)
=

1

2
r2∂r

(uφ
r2

)
=

1

2
r2∂rΩ (4.17)
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This is precisely the shear term in the Newtonian limit. All other shear terms have leading
terms of ur, ∂ru

r, or ∂ru
t, and are subleading to σrφ. For this flow, the angular velocity will

dominate, so we will set all other shear components to zero. As well, tαβ must converge to
its Newtonian counterpart and we will satisfy this condition by setting

trφ = αrp. (4.18)

4.1.3 Mass Conservation

The gas will be fed at some outer radius uniformly spread out over a cylinder. The
continuity equation, equation (4.5), can be rewritten as

1√
−g

∂α
(√
−gρ0uα

)
= 0. (4.19)

We can integrate this over our outer cylinder, so we define the normal vector to this
boundary as orthogonal to the t and φ Killing vectors and to a z unit vector:

ξαnα = 0 (4.20)

and since ξα = (1, 0, 0, 0) and ξα = (0, 0, 1, 0), nα = (0,−1, 0, 0). Applying the divergence
theorem to equation (4.19),

Ṁ =

∫
∂t
(√
−gρ0ut

)
dV =

∫
ρ0u

αnα
√
−gdφdz (4.21)

= −4πρ0,mHu
r
√
−g (4.22)

where the subscript, m, refers to the midplane value, and Ṁ is the mass accretion rate.
Note that there is no equation that constrains Ṁ to be constant. Due to an expected wind,
we can approximate the mass accretion rate with a power law [22]

Ṁ = Ṁout

(
r

rout

)s
. (4.23)

We have chosen a power law for simplicity, but more comprehensive models can easily be
implemented.

Next, we will split equation (4.6) into a components projected along uα, in the direction
of the φ Killing field, and projected along the r and z directions. The covariant conservation
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equations we must solve are

hrβ∇αT
αβ = 0 (4.24)

hzβ∇αT
αβ = 0 (4.25)

ξβ∇αT
αβ = 0→ ∇α

(
Tαβξβ

)
= 0 (4.26)

uβ∇αT
αβ = 0 (4.27)

where ξβ is the φ Killing vector.

4.1.4 Vertical Momentum

Similar to the Newtonian model, we want to have a one-dimensional problem in r. In the
vertical direction, we assume z � r. That is, we will implicitly expand every term in z to
second order until after height-integration. The Christoffel symbols will be notated as

Γαβγ = Γαβγ
(0) + Γαβγ

(1)z + Γαβγ
(2)z2... (4.28)

To properly calculate these symbols, we must keep second-order terms of z in the metric
in cylindrical coordinates. This leads to nonzero gzr and z derivatives of the metric.

We write the vertical balance equation

δzµh
µ
β∇α

[
(ρ+ p)uαuβ + pgαβ + tαβ + qαuβ + uαqβ

]
= 0 (4.29)

δzµ
[
−(ρ+ p)uαuβ∇αh

µ
β + hµα∇αp

]
+ δzβ∇α

(
tαβ + qαuβ + uαqβ

)
= 0 (4.30)

δzµ [(ρ+ p)uα∇αu
µ + hµα∂αp] = 0 (4.31)

(ρ+ p)uαΓzαµu
µ + gzz∂zp+ gzr∂rp = 0 (4.32)

where we have repeatedly used hαβuβ = 0 and uz = 0. We can disregard the gzr∂r term,
because it is of order (z/r)2gzz∂z. As such, we can write

∂zp = −(ρ+ p)
Γzαµ

(1)uαuµ

gzz
z. (4.33)

This looks similar to the Newtonian equation, equation (3.6), so we will assume the same
vertical prescription. The pressure and density will have a midplane value, and a scale
height defined by

H =

√
pgzz

(ρ+ p)Γzαµ
(1)uαuµ

. (4.34)

Height-integrating will be similarly performed, and equations that do not change under
height-integration will not be explicitly shown.
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4.1.5 Radial Momentum

The momentum conservation in the radial direction is:

δrµh
µ
β∇α

[
(ρ+ p)uαuβ + pgαβ + tαβ

]
= 0 (4.35)

δrµ
[
−(ρ+ p)uαuβ∇αh

µ
β + hµβ∇βp+ hµβ∇αt

αβ
]

= 0 (4.36)

δrµ(ρ+ p)uα∇αu
µ + hrβ∂βp+

δrµ

[
−uµtαβ∇αuβ + δµβ

1√
−g

∂α
(√
−gtαβ

)
+ Γµανt

αν

]
= 0 (4.37)

(ρ+ p)
(
ur∂ru

r + Γrαµu
αuµ
)

+ hrr∂rp− urtαβσαβ = 0 (4.38)

where we have used the property, uβ∇αuβ = 0. We only have a trφ component that is only

a function of the radius, so the term that goes as ∂φ
(√
−gtφr

)
is zero. For our choice of

metric, Γrrφ = 0. Furthermore, the indices of tαβ are symmetric, traceless, and orthogonal
to uα, so we can rewrite

tαβ∇αuβ = tαβσαβ. (4.39)

We have neglected all z indices, because of our condition to only go to first order in z/r.
However, we now wish to height-integrate this equation, and the change of radial gravity
with height has an impact. We will expand the Christoffel symbol in equation (4.38) to
second order in z/r and apply the height-integration operator

(ρm + pm)
(
ur∂ru

r + Γrαµ
(0)uαuµ

)
+

1

2H
Γrαµ

(2)uαuµ
∫ H

−H
(ρ+ p)z2dz +

hrr

H
∂r(pmH)− urtαβm σαβ = 0. (4.40)

Substituting in equation (4.33)∫ H

−H
(ρ+ p)z2dz =

∫ H

−H
− gzz∂zp

Γzβσ
(1)uβuσ

zdz =
gzz

Γzβσ
(1)uβuσ

∫ H

−H
pdz (4.41)

where we have integrated by parts and imposed the pressure go to zero outside of ±H.
The vertical series expansion of the Christoffel symbols is as in equation (4.28). The radial
balance equation is

(ρm+pm)
(
ur∂ru

r + Γrαµ
(0)uαuµ

)
+
gzzΓrαµ

(2)uαuµ

Γzβσ
(1)uβuσ

pm+
hrr

H
∂r(pmH)−urtαβm σαβ = 0. (4.42)
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4.1.6 Angular Momentum

For the angular momentum equation

∇α

(
Tαβξβ

)
= ∇α

[
(ρ+ p)uαuβξβ + tαβξβ

]
+∇α

(
pgαβξβ

)
= 0 (4.43)

∂r
[√
−g(ρ+ p)uruφ +

√
−gtrφ

]
= 0. (4.44)

This equation is trivial to integrate

√
−g(ρ+ p)uruφ − C = −

√
−gtrφ (4.45)

ρ0u
r

(
ρ+ p

ρ0
uφ −

C√
−gρ0ur

)
= −trφ (4.46)

where C is some constant of integration. From equation (4.19) we know

∂r(
√
−gρ0ur) = 0 (4.47)

which allows us to simplify the constant. After height-integrating, our angular momentum
equation becomes

ρ0,mu
r

(
ρm + pm
ρ0,m

uφ − j
)

= −trφ,m. (4.48)

4.1.7 Energy

The third equation simplification is:

uβ∇αT
αβ = uβ∇α

[
(ρ+ p)uαuβ + pgαβ + tαβ + Tαβrad

]
= 0 (4.49)

−ρ0uα∇α

(
ρ+ p

ρ0

)
+ uα∇αp− tαβ∇αuβ + uβ∇αT

αβ
rad = 0 (4.50)

−ρ0ur
[
∂r

(
ρ

ρ0

)
+ p∂r

(
1

ρ0

)]
− tαβσαβ + uβ∇αT

αβ
rad = 0 (4.51)

where we have used equation (4.5), and uβ∇αu
β = 0. Therefore, our energy equation

becomes

ρ0u
r

[
∂r

(
ε

ρ0

)
+ p∂r

(
1

ρ0

)]
= −tαβσαβ + uβ∇αT

αβ
rad. (4.52)

ε is independent of z, as is p/ρ0 = c2s. We will replace p→ pm and ρ0 → ρ0,m, rather than
height-integrating, to agree with the analysis in Chapter 3.
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4.1.8 Analytic Newtonian Limit

To prove these equations reduce to the Newtonian case, we assume ρm + pm → ρm → ρ0,m,
and that only derivatives in r are significant. Equation (4.48) becomes

ρmu
r
(
Ωr2 − j

)
= −trφ,m = −αrpm. (4.53)

The energy equation simplifies to

ρmu
r

(
∂r

(
εm
ρ0,m

)
+ pm∂r

(
1

ρm

))
= −αrpm∂rΩ + uβ∇αT

αβ
rad (4.54)

where we argue that, since radiation should be a local effect, we can make uβ∇αT
αβ
rad equal

to qie or q−, as needed. In the Newtonian limit, we take rg/r → 0 and (ur)2 → 0 and
(uφ)2 → 0, and equation (4.42) becomes

ρm

(
ur∂ru

r +
c2rg
2r2
− r(uφ)2

)
− 3

2r
pm +

1

H
∂r(pmH) = 0 (4.55)

ρm

(
ur∂ru

r +
c2rg
2r2
− r(uφ)2

)
− pm∂r ln ΩK + pm∂r lnH + ∂rpm = 0 (4.56)

ur∂ru
r + cs∂rcs = −c

2rg
2r2

+ r(uφ)2 − ∂rpm
ρm

(4.57)

which is equivalent to equation (3.18) with a Newtonian definition of ΩK . We have now
shown each of these equations converges to their non-relativistic counterpart in the proper
limit. The set of equations we must solve are

Ṁ = −4πρ0,mHu
r
√
−g (4.58)

(ρm+pm)
(
ur∂ru

r + Γrαµ
(0)uαuµ

)
+
gzzΓrαµ

(2)uαuµ

Γzβσ
(1)uβuσ

pm+
hrr

H
∂r(pmH)−urtαβm σαβ = 0 (4.59)

ρ0,mu
r

(
ρm + pm
ρ0,m

uφ − j
)

= −αrpm (4.60)

ρ0,mu
r

(
∂r

(
εi,m
ρ0,m

)
+ pi,m∂r

(
1

ρ0,m

))
= −tαβm σαβ − qie,m (4.61)

ρ0,mu
r

(
∂r

(
εe,m
ρ0,m

)
+ pe,m∂r

(
1

ρ0,m

))
= qie,m − q−m. (4.62)
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4.2 Numerical Implementation

Equations (4.58) through (4.62) define a boundary value problem. Only three of them are
differential, and they are all linear and first order. Our choices for quantities to integrate
are the dimensionless

~y =

{
−u

r

c
,
kBTi
µimµc2

,
kBTe
µemµc2

}
(4.63)

with derivatives with respect to x = r/rg. We use ur as an integration variable instead of
the Mach number, because it is easier to analytically rewrite the equations. The metric used
is typically given in spherical coordinates, so it is converted into cylindrical, and taken to
second order in z/r to properly calculate certain Christoffel symbols (see equation (4.28)).
Combining the dynamic equations leads to the form

M · ∂x~y = ~A (4.64)

where the dimensionless M and ~A contain all of the equation information. At every step,
we calculate the matrix numerically, invert, and receive a value for each variable’s slope.

We numerically integrate inward from the outer radius using a adaptive fourth-order
Runge-Kutta method. Integrating outward from the critical point is numerically unstable,
so we must use a shooting method. We must integrate through many orders of magnitude
in r and through numerically sensitive regions, so we need a mechanism to change the step
size closer to the critical point and the event horizon. At each step, we integrate inward
two steps, and, separately, integrate one large step with twice the size. The large step will
have more error, but the smaller step will take more computing time. If both methods are
not within some percent tolerance of each other, the overall step size is halved and the test
is repeated. Once run to completion, this adaptive step algorithm guarantees that we are
minimizing computing time by using the largest step size such that the numerical error is
below the set threshold. We set the tolerance in the two temperatures and ur/cs, rather
than the radial velocity, as the Mach number is more sensitive to numerical problems near
critical point. The sum of absolute values of percent tolerances for all three variables used
was 10−10. Since integration typically requires about 105 steps, we should have error on
the order of one part in 105, so this tolerance is reasonable.

Three boundary conditions for ~y can be set at some radius far away from the black hole
where observations can estimate the temperature and density, and therefore the velocity,
of the infalling gas. The fourth boundary condition is j, which is found by forcing the
solution to pass smoothly through the critical point. We choose to find j by shooting
inward using the following algorithm.
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Upon integrating to the critical point, the solution curve for ur/cs would attempt the
behavior of Figure 2.1. For all cases considered, when j is too small, the flow never becomes
supersonic, while when j is too large, the flow turns around in r and becomes unphysi-
cal. This correlating behavior allows us to use bisection to find the angular momentum
eigenvalue. Numerically, if the slope became positive, and was decreasing for the previous
2 steps, the code would assume the solution tried to turn around in radius, and note its
location as an upper limit for the critical point. Finding when j was too low is more
difficult, as the flow can have many peaks before getting to the one near the critical point.
Therefore, the condition for j too low was set if the flow’s ur/cs came within some small
amount (our code used 0.01) of zero. To note the lower limit of the position of the critical
point, we chose the peak nearest to the event horizon. It is possible for the code to mislabel
which side of the critical point the solution is on if, for example, the solution jumps the
critical point, or never gets close to zero.

To find j, we used bisection, with limits of −2rgc and 2rgc, and stopped when the
distance between the upper and lower limits of the critical point position differed by a
percent of 10−10. The upper and lower limits on j are set to the largest that still maintain
solutions that make it to the critical point. Running this algorithm finds an approximate
location for the critical point. The last few numerical points curve away from the critical
point, so, to approximate a slope with which to jump the critical point, we search the latest
solution backward (forward in r) until the slope between successive steps changes by no
more than one part in 20, but no more than 100 steps away from the critical point. We
then jump the critical point with the slope at this location with twice the distance to the
approximate critical point, and continue integrating as before. Manual changing of these
numerical parameters was necessary for solutions that failed to integrate properly.

To validate that the code converges with the stated fourth-order, we ran set of conver-
gence tests at the outer radius, and inside the critical point. We integrated inward for a
constant step size representative of the initial conditions divided by 1, 2, 4, or 8. Figure 4.1
shows the normalized error in the constituent differential equations, equation (4.59), equa-
tion (4.61), and equation (4.62), for the 4 different step sizes. It successfully validates that
the code is converging to fourth order.

Figure 4.2 shows the normalized residuals in the five equations, equation (4.59) through
equation (4.62), using the adaptive step algorithm for a test that runs through the critical
point. The two algebraic equations serve simply to define ut and uφ, so their errors are
determined by machine precision. In the relevant region, the three differential equations
mostly remain under a limit even at the critical point. This limit is not the 10−10 adaptive
step limit we set, because these residuals are not of equation (4.64), but of the constituent
equations.
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Inputs to the model are the metric, the 3 outer boundary conditions and outer radius,
and the following parameters: α and β for the magnetic viscosity and pressure, and Ṁout

and s for the mass accretion rate power law. For the validation tests, the non-metric
parameters used were the same as for the tests in Section 5.1, but the metric parameters
were chosen at random.

4.3 Newtonian Limit

In the Newtonian limit, the equations we have set out to solve should behave like those
of Chapter 3 away from the black hole. Using the Schwarzschild metric (see, for example,
[18]) and analytically expanding equation (4.58) through equation (4.62) to first order in
r/rg, u

r/c, and ruφ/c yields the equations of Chapter 3.

Figure 4.3a shows the numerical deviation for the boundary conditions and parameters
of Figure 3.1 that has the largest discrepancy. The curves agree at large radius, and we
expect them to deviate around 10 rg, since we are essentially adding a few first order terms
in r/rg. However, the mach number visibly deviates around 250 rg.

To see the source of the difference, let us find an expression for ∂ru
r. In the linear

momentum equation, equation (4.59), the only terms that contain a derivative of ur are

(ρ+ p)ur∂ru
r and hrr∂rp. (4.65)

Since the discrepancy happens at relatively large r, we can assume the Newtonian limit
and use equation (4.58) to write

hrr∂rp ∼ pv∂r
1

v
. (4.66)

The sum of the two terms in equation (4.59) with derivatives is

(ρ+ p) (ur∂ru
r) +

hrr

H
∂r(pH)→ ρ0

v

(
v2∂rv −

p

ρ0
∂rv

)
. (4.67)

This decomposition transforms equation (4.59) into(
v2 − c2s
v2

)
∂v

∂r
= f (4.68)
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Figure 4.1: Order validation test.
Validation test showing the residual in the constituent equation (not the quantities being
integrated) for modulated step sizes. The top graph begins at the outer radius and the
bottom plot begins inside the critical point for points on the solution in Figure 4.2. Both
are integrated inward for 100 steps at h = r/200rg through 800 steps at h = r/1600rg. The
base step size was chosen a factor of 200 lower than the value of the starting location, as the
residual for any smaller step size chosen would be dominated by machine precision, rather
than numerical integration error. Derivatives in the constituent equations were calculated
with a fourth-order implementation. The solid line has the slope for a fourth-order code
for comparison purposes.
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Figure 4.2: Residual test
The first five plots show the residuals in the constituent equations for a adaptive-step
solution running through the critical point. As expected, the algebraic equations have
an error due to machine precision, and the differential equations have an upper limit
on the residuals. The bottom-right plot show the step size adapting, and the critical
point at r = 3.36rg. The metric used was as in Section 5.2, for a = −0.4, α13 = 0.1,
α22 = 0.2, α52 = 0.3, and ε3 = 0.4. Other parameters and boundary conditions are set as
in Section 5.1.
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(a) Plot of quantities directly relating to the
three integrated variables. The effects of the
Schwarzschild metric are of order r/rg. The
ion and electron temperatures visibly devi-
ate around 10rg, but the Mach number de-
viates at 250rg. The red point corresponds
to the critical point for each solution. Ini-
tial conditions and parameters were chosen
as in Figure 3.1 for Ti = 3.2× 109K.

(b) The plotted quantity determines how
much the extra terms added into the model
due to General Relativity affect the Mach
number. Exactly when this quantity falls
by an order of magnitude, there is a shift in
the dynamics of the accretion flow.

Figure 4.3: Comparison of solutions for a Newtonian and Schwarzschild prescription of
gravity.
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where f is a function of r, velocity, temperatures, and derivatives of the temperatures. If
we take the Newtonian limit of f , we would have the linear momentum equation, equa-
tion (3.18). Let us not take the limit, but instead split it into a Newtonian and GR part.(

v2 − c2s
v2

)
∂v

∂r

∣∣∣
GR

=

(
v2 − c2s
v2

)
∂v

∂r

∣∣∣
Newtonian

+ εg (4.69)

∂v

∂r

∣∣∣
GR

=
∂v

∂r

∣∣∣
Newtonian

+
ε

(v2 − c2s) /v2
g (4.70)

where εg contains the extra terms added by General Relativity. ε depends on rg/r, (ur)2/c2,
and (ruφ)2/c2, and is small when the deviation from the Newtonian model occurs. As v
approaches cs, the Newtonian ∂v/∂r remains constant. This is the critical point smoothness
condition. Out at 250 rg, where the Schwarzschild curve departs, ε is around 10−2, but
that does not directly indicate a deviation in the mach number of 10−2. Figure 4.3b show
a plot of (v2 − c2s)/v2. We can see that the deviation from a Newtonian view occurs when
(v2 − c2s)/c2s falls by a factor of 10. This means that εv2/ (v2 − c2s) is dominating far more
than ε would suggest. In other words, while we are adding small perturbations, the Mach
number is highly sensitive to small changes in gravity.

There is a secondary effect that furthers this discrepancy. In equation (4.59), the
gravity and pressure terms dominate by order of magnitude around 250 rg, so the velocity
derivatives correspond to a residual of subtracting far larger quantities. Therefore, large
changes in the velocity lead to small changes in the linear momentum equation balance.

We can explain these effects qualitatively. The critical point is located well within
the region impacted by General Relativistic effects. The different prescription moves the
critical point to a lower radius and lower Mach number. By our assumptions, the flow
cannot become supersonic before the critical point. This constrains the Schwarzschild
solution to agree with the Newtonian solution only until the flow reaches the value of ur/cs
of the Schwarzschild critical point.

These effects have significant implications for other metrics, as differences in ur/cs
show up about 10 times further out than expected from measurements of rg/r. In turn,
the height and angular momentum profiles will be affected.
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Chapter 5

Exploring the Impact of Spacetime
on Structure

5.1 Kerr

We wish now to explore other spacetimes. In General Relativity, a spinning black hole is
described by the Kerr metric [18], and adds a parameter to the model: the spin, a, which
corresponds to the angular momentum of the black hole. The Kerr metric has a different
ISCO, and introduces many frame dragging effects near the black hole. Terms involving
the spin go as (rg/r)

2, so we only expect to see significant deviations around 3rg. However,
the effects in Section 4.3 extend the deviations to around 60 rg.

We can get the Mach number initial condition via the number density, but this boundary
condition of 100cm−3 [2], causes the solution to diverge before reaching the critical point.
For that reason, we take the mach number to be the lowest value that could integrate
fully inward, or 0.05 at 2 × 105rg, the outer bondi radius. We set s = 0.27 and Ṁout =
10−6M�yr−1 in the style of [22]. Note that in Figure 5.1 that the density and temperatures
jump around before settling to a solution with outer boundary conditions approximately
equal to the observed temperatures and density.

The temperature plots are generally unaffected. The overall effect is to lower or increase
the power law power of the mach number near the event horizon. For retrograde spins, we
expect gas to have lower angular momentum and, therefore, larger inward velocity. This
effect is demonstrated in Figure 5.1.

34



Figure 5.1: Effect of black hole spin on accretion flow solutions.
The effects of black hole spin are only noticeable in the mach number at r < 60rg. The
mach number causes changes in the height and angular momentum. There is an decreasing
correlation between the spin and mach number. The boundary conditions used are those
stated in the introduction and α = 0.1 and β = 0.9. The black dot is the critical point.
Note that the event horizon location depends on the spin. All units are in Kelvin or none.

35



5.2 Parametrized Non-Kerr Metric

To test deviations from General Relativity, we used the metric proposed in [13]. This metric
is not a solution to General Relativity, but rather a perturbation to the Kerr metric that
preserves the three constants of motion for a test particle: energy, angular momentum,
and the Carter constant [7]. As the author of [13] states, the metric is asymptotically
flat, has the proper Newtonian limit, and is consistent with parameterized post-Newtonian
constraints. In spherical coordinates, the metric is

gtt = −
Σ̃
[
∆− a2A2(r)

2 sin2 θ
][

(r2 + a2)A1(r)− a2A2(r) sin2 θ
]2 (5.1)

gtφ = −a [(r2 + a2)A1(r)A2(r)−∆] Σ̃ sin2 θ[
(r2 + a2)A1(r)− a2A2(r) sin2 θ

]2 (5.2)

grr =
Σ̃

∆A5(r)
(5.3)

gθθ = Σ̃ (5.4)

gφφ =
Σ̃ sin2 θ

[
(r2 + a2)2A1(r)

2 − a2∆ sin2 θ
][

(r2 + a2)A1(r)− a2A2(r) sin2 θ
]2 (5.5)

where, to lowest permitted order,

∆ = r2 − 2Mr + a2 (5.6)

Σ̃ = r2 + a2 cos2 θ + f(r) (5.7)

f(r) = ε3
M3

r
(5.8)

A1(r) = 1 + α13

(
M

r

)3

(5.9)

A2(r) = 1 + α22

(
M

r

)2

(5.10)

A5(r) = 1 + α52

(
M

r

)2

. (5.11)

We have 4 new parameters, α13, α22, α52, and ε3. If they are all zero, the metric reduces
to the Kerr metric. Furthermore, for a = 0, α22 completely drops out of the metric. For
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our purposes, we can define the event horizon as the infinite redshift surface, and as long
as |ε3| < 1, it is the same as for the Kerr metric.

Due to the nature of the integration code, the solution for the Kerr metric and this
perturbed metric with zero perturbation are exactly the same, so the limiting case test is
automatically satisfied. We have essentially added terms of order (rg/r)

3, so we expect
these perturbations to only have an effect within 2 rg even considering the effects of Sec-
tion 4.3. However, these effects can bring the critical point close to the event horizon,
thus greatly varying the flow, and invalidating our inside boundary condition. For that
reason, we only consider perturbations that maintain a physical critical point boundary
condition. Figure 5.3 through Figure 5.13 show the effects of varying α13, α22, α52, and
ε3 for extremal spins. The results are also summarized in Table 5.1. The condition for
choosing the metric parameters and spin was numerical stability within an overall range
of −0.9 to 0.9. We find that the parameters can have large effects on the location of the
critical point, which in turn, changes j. This has an overall effect of offsetting the angular
momentum. Therefore, the parameters can cause deviations in the critical point which
in turn affects the velocity, height, and angular momentum. In the constituent equations,
this corresponds to changes in the radial, azimuthal, and vertical momentum balance equa-
tions. Seemingly independently, parameters can cause changes in the temperatures which
transfer to the density and pressure. However these effects are limited to near the event
horizon and are small in magnitude. Variations in the parameters affect the plots similar
to small changes in the spin in Figure 5.1. The deviations could be further attributed to
changes in the mass accretion rate or magnetic parameters.

All perturbations increased in magnitude with the spin. At prograde spin, all changes
were dominated by the α13 and α22 parameters. At smaller or more retrograde spins, α22

switches its role to only affect the temperatures. The other two parameters, α52 and ε3
only have a small effect at highly retrograde spins and only on the temperature quantities.

5.3 Revisiting Assumptions

The shear tensor conditions were only valid for low velocities dominated by rotation. For
the test cases considered, these conditions were met outside of r = 5rg (see Figure 5.2).
Any effects nearer to the black hole, especially the critical point boundary condition, are
not valid. However, for the domain where these conditions were invalidated, the solutions
for the perturbed metric do not strongly deviate from those of the Kerr metric.

Furthermore, we assumed z � r. This allows there to be missing terms in the con-
stituent equation of order (H/r)2, which, from Figure 5.1, is around 0.25. From height-
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Figure 5.2: Radial and azimuthal velocities for a Kerr black hole accretion flow.
Plots of the same quantities in Figure 5.1 so that it highlights the dominating azimuthal
components. For the entire flow, the shear requires that ur is subleading to uφ/r and that
both are not close to c.

38



α13 α22 α52 ε3

0.9 -0.9 0.9 -0.9 0.9 -0.9 0.9 -0.9

a = 0 ur -0.802 0.564 0.000 0.000 1.371 -1.378 -0.713 0.648
Ti -6.198 7.871 0.000 0.000 0.286 -0.289 0.994 -0.999
Te -2.978 3.654 0.000 0.000 0.099 -0.100 0.460 -0.465

ISCO 3.19 2.79 3.00 3.00 3.00 3.00 2.96 3.04

0.9 -0.9 0.9 -0.9 0.9 -0.9 0.9 -0.9

a = −0.9 ur -0.751 0.796 -1.782 2.095 0.622 -0.624 -0.173 0.154
Ti -3.454 4.008 -2.832 3.284 0.158 -0.159 0.798 -0.783
Te -1.692 1.931 -1.329 1.520 0.058 -0.058 0.392 -0.386

ISCO 4.51 4.20 4.49 4.22 4.36 4.36 4.32 4.40

0.9 -0.8 0.8 -0.9 0.9 -0.9 0.9 -0.9

a = 0.8 ur 4.655 -30.188 -30.132 -2.750 7.253 -7.742 -5.736 5.758
Ti -21.501 42.147 54.212 -22.941 0.300 -0.136 -2.025 2.000
Te -10.583 16.340 21.097 -11.273 0.002 0.085 -1.343 1.337

ISCO 1.80 1.15 1.12 1.84 1.45 1.45 1.45 1.46

Table 5.1: Metric Perturbation Effects on Integrated Quantities
This table shows the percent deviations of ur, Ti, and Te at the ISCO for the perturbed
metric. Only one metric parameter is being varied in each test. Deviations are mostly
limited to a few percent, with the exception of the cases where the critical point condition
becomes ill-defined.

integrating the gravity term in the radial momentum equation, we know terms of order
z2/r2 can have a strong impact on the accretion flow solutions. Nonetheless, we ignored
such terms as vertical velocity or derivative terms, so that we agree with prescriptions set
forth in earlier literature. Proper height-integration or vertical prescription is an important
contributor to the physics of accretion flows and will need future work.
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Figure 5.3: Deviations of the accretion flow with a perturbation parameter α13 for a = −0.9
Plot of structure and dynamics of accretion flow for a perturbed Kerr metric with a black
hole spin of −0.9.
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Figure 5.4: Deviations of the accretion flow with a perturbation parameter α52 for a = −0.9
Plot of structure and dynamics of accretion flow for a perturbed Kerr metric with a black
hole spin of −0.9.
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Figure 5.5: Deviations of the accretion flow with a perturbation parameter ε3 for a = −0.9
Plot of structure and dynamics of accretion flow for a perturbed Kerr metric with a black
hole spin of −0.9.
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Figure 5.6: Deviations of the accretion flow with a perturbation parameter α13 for a = 0
Plot of structure and dynamics of accretion flow for a perturbed Kerr metric with a black
hole spin of 0.
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Figure 5.7: Deviations of the accretion flow with a perturbation parameter α22 for a = 0
Plot of structure and dynamics of accretion flow for a perturbed Kerr metric with a black
hole spin of 0.
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Figure 5.8: Deviations of the accretion flow with a perturbation parameter α52 for a = 0
Plot of structure and dynamics of accretion flow for a perturbed Kerr metric with a black
hole spin of 0.
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Figure 5.9: Deviations of the accretion flow with a perturbation parameter ε3 for a = 0
Plot of structure and dynamics of accretion flow for a perturbed Kerr metric with a black
hole spin of 0.
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Figure 5.10: Deviations of the accretion flow with a perturbation parameter α13 for a = 0.8
Plot of structure and dynamics of accretion flow for a perturbed Kerr metric with a black
hole spin of 0.8. The lower limit is set to α13 = −0.8 for stability reasons.

47



Figure 5.11: Deviations of the accretion flow with a perturbation parameter α22 for a = 0.8
Plot of structure and dynamics of accretion flow for a perturbed Kerr metric with a black
hole spin of 0.8. The upper limit is set to α22 = 0.8 for stability reasons.
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Figure 5.12: Deviations of the accretion flow with a perturbation parameter α52 for a = 0.8
Plot of structure and dynamics of accretion flow for a perturbed Kerr metric with a black
hole spin of 0.8.
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Figure 5.13: Deviations of the accretion flow with a perturbation parameter ε3 for a = 0.8
Plot of structure and dynamics of accretion flow for a perturbed Kerr metric with a black
hole spin of 0.8.
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Chapter 6

Conclusions

The most important product of this project is the creation of a fully covariant semi-analytic
accretion flow modeling code capable of using any axisymmetric steady-state metric. It
properly takes into account covariant viscosity and vertical momentum to produce profiles
of the accretion flow. It can be further applied to explore RIAFs and can be used as an
input for EHT imaging code.

We also showed that the impact of general relativity on the velocity, angular momentum,
and height of gas in accretion flows can be felt much further away from the black hole than
expected. This clearly indicates that including General Relativity in any accretion flow
model is not optional.

Furthermore, we performed a series of tests by modifying the underlying spacetime,
using a specific quasi-Kerr metric. We find that the changes are limited to a few percent,
and appear similar to changes in the black hole spin. These effects can be further masked
by different mass accretion rate prescriptions, boundary conditions, and viscosity models.
Therefore, the effects of modified metrics on the accretion flow structure would not be
easily observable. However, we have removed a systematic uncertainty from the previous
studies that did link modified metrics to observable effects through imaging techniques.
By limiting possible error, this project helps support claims that the EHT is capable
of measuring deviations from General Relativity. The studies in [14] and [5] can now
be revisited using proper accretion flow structure and dynamics, and then compared to
observational EHT data.
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