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Abstract

Viscous fluid behaviors are among the most complex yet familiar physical phenomena we
encounter in everyday life. Much attention and investigation has been paid to the creation
of visually realistic results, especially some unique effects such as folding and buckling,
in computer graphics. However, simulation of viscous fluids requires more computational
resources than its inviscid counterpart, since the viscous solve typically has lower sparsity
and more degrees of freedom than the Poisson problem used to compute pressure forces.
One interesting feature of viscous fluids is that the most important visual details happen
at free surfaces of the fluid, while the interior flow remains relatively smooth. Therefore,
a spatially adaptive grid with higher density of cells for fluid surfaces and lower density
for the interior can be very useful in reducing computational resources and maintaining
high-fidelity imagery at the same time.

The focus of this thesis is to provide a method for simulating a highly viscous liquid on
an adaptive quadtree grid, and generating visually plausible results. Aside from reviewing
the techniques for viscous fluid simulation in computer graphics, we propose a new finite
difference scheme to accurately compute the results at junctions where different levels of
the quadtree are adjacent to each other. In addition, we apply the variational approach
originally proposed by Batty and Bridson [2008] to this scheme, and generate a symmetric
positive definite system on which a preconditioned conjugate gradient solver works very
well. Thanks to the variational formulation, our method enforces the boundary condition
at viscous free surfaces without the need of extra efforts. Lastly, this thesis presents a
new scheme transferring velocities between an adaptive grid and a regular grid, which
makes it easy to embed our viscosity solver into any grid-based inviscid fluid solver. We
experimentally demonstrate that our method is first order accurate and achieves visual
results that are qualitatively consistent with those of dense uniform grids, while reducing
the number of degrees of freedom by a factor between 2 and 6, depending on the scenario.
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Chapter 1

Introduction

Fluids are an indispensable part of our life and we interact with them every day: from
syrup we put on pancakes in the morning to the coffee we drink in the afternoon. Due to
the familiarity we have with fluid behavior, minor inaccuracies in the animation can often
be spotted by our eyes. It is no wonder the animation of fluid motion is an important and
challenging topic in computer graphics.

Early fluid animation models were driven by visual appearance instead of physical ac-
curacy, and had difficulty in responding to manually added forces and in preserving finely
resolved surface details. To conquer these problems, the Navier-Stokes equations, which
describe common real-world fluids mathematically, have to be solved. Since aspects of this
problem have been studied in the field of computational fluid dynamics, some simulation
techniques are borrowed and applied directly to fluid animation in computer graphics.
However, these two fields have different objectives: the first focuses on engineering appli-
cations and requires high order accurate results of physical quantities such as stresses and
forces, while the second investigates the way to create realistic visualizations; numerical
accuracy is only important insofar as it supports the goal of apparent realism. There is
however one common objective shared by the two fields: minimizing computation resources
spent on simulation. This is also a key goal of the present work.

In this thesis, we consider animation of highly viscous (Newtonian) fluids such as honey,
molasses, and oils. The viscosity coefficients of such fluids do not need to be constant ev-
erywhere but should not depend on the flow velocity. In addition, we will focus on fluids
that are not fully surrounded by a solid but rather possess a deforming liquid-air bound-
ary or surface. We will treat this boundary using the so-called free surface assumption,
that assumes the fluid moves within a vacuum based on the fact that the air density is
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negligible compared to the density of common viscous fluids. The alternative would be
to additionally simulate the air volume as a second fluid (or phase), using a two-phase
fluid simulator. However, this has a much higher computational cost and generates sim-
ilar results with the single-phase model equipped with the free-surface boundary condi-
tion in most scenarios. This further justifies our usage of the free-surface approximation.

Figure 1.1: A straight stream of a
viscous fluid buckles when it falls.

For the purposes of animation, viscous forces
have little apparent impact on low-viscosity flows
such as smoke or water. As such, these can be rea-
sonably approximated by the incompressible Euler
equations which ignore both viscous and thermal ef-
fects on the flow. However, since we do want to
explicitly simulate highly viscous fluids, the incom-
pressible Navier-Stokes equations have to be used.
Specifically, the viscosity of the fluid is described by
the Stokes’ stress constitutive equation which relates
the deformation that the fluid is undergoing to the
resulting internal forces. The distinguishing char-
acteristic of the viscous fluid is its slow and damped
motion due to the presence of the shear stress, which
makes the interior of the fluid not extremely inter-
esting to watch. However, unique effects can arise
at free-surface boundaries. For example, when a vis-
cous fluid drops down on a solid surface, it will show folding and buckling effects on the
fluid surface as illustrated in Figure 1.1. This behavior can be qualitatively explained with
the fact that liquid prefers the path where it meets with the least resistance. The viscous
fluid below causes much higher force than that applied by the surrounding air (vacuum),
so that the fluid always falls in the opposite direction relative to the fluid segment below.
Many delicate details are captured by precisely simulating the behavior of the liquid’s free
surface.

However, as noted by Batty and Bridson [2008], we must pay careful attention to the
form of the equations describing viscous forces if we wish to produce the distinguishing
effects at free-surface boundaries (we will discuss the details in Chapter 3). The linear
system used in the viscosity solve has higher density (lower sparsity) than the Poisson
problem typically used to compute pressure forces since it normally requires more variables
to update a particular velocity sample. For example, a given matrix row in a standard
finite difference discretization of a 2D Poisson problem will involve at most 5 matrix entries;
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by contrast, the discretization of [Batty and Bridson, 2008] can involve up to 9 entries per
row. Furthermore, because the linear system for solving viscosity is written in terms of
the velocity vector (with 2 or 3 components, depending on the spatial dimension being
simulated), it is 2 or 3 times larger than the scalar pressure problem. Because of these
facts, we observed that the viscosity solve could take as much as 70% of the total simulation
time depending on the liquid configuration.

Figure 1.2: A generic graded quadtree
grid.

As noted before, we care more about the
surface of the viscous fluid where most visually
interesting behavior happens. In order to op-
timize the use of computational resources, we
would therefore like to use an adaptive quadtree
grid (as illustrated by Figure 1.2) which creates
refined cells by evenly dividing a coarse cell into
4 in 2D and places more cells on the fluid sur-
face. In fact, adaptive quadtree (octree) grid
strategies for the pressure forces in incompress-
ible fluid are quite common. Popinet [2003]
claimed to be the first to simulate incompress-
ible inviscid fluid on an octree grid. Losasso
et al. [2004] extended that work to free-surface
fluids (which is an indispensable step of intro-
ducing the octree simulation to computer graph-
ics) and proposed a way to generate a symmet-
ric linear system. Although the accuracy of their
results is reduced to first-order, the animation is
still visually realistic. Since the viscosity force
has a similar mathematical form to the pressure force, we naturally arrived at the idea of
simulating viscous fluids on a quadtree grid. Therefore, the main objective of the thesis
is efficient generation of visually realistic animation of viscous fluids on a quadtree grid.
Ideally, we would also prefer that our method yields a symmetric linear system and offers
at least first-order accurate results, as Losasso et al. [2004] did for the pressure solve.

1.1 Contributions

We present a novel method for simulating viscous fluids on a spatially adaptive grid (e.g.
quadtree in 2D), which also captures details on the fluid surfaces. The contributions of
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this thesis are listed as follows:

1. Proposing a new finite difference scheme for simulating viscous fluids on a spatially
adaptive grid, and applying a variational formulation to ensure that the method gen-
erates a symmetric positive definite (SPD) linear system on which a preconditioned
conjugate gradient solver works very well.

2. Proposing a scheme for transferring velocities between an adaptive grid and a regular
grid, so it is easy to embed our viscosity solver into any grid-based or hybrid fluid
simulator.

3. Evaluating the simulation results in terms of speed and accuracy.

1.2 Outline

The purpose of this chapter has been to briefly introduce the problem we address in this
project. The remaining chapters are ordered as follows: Chapter 2 discusses the Navier-
Stokes equations and the operator-splitting method, and reviews previous work related
to advection, pressure projection and fluid surface representation. The main contribution
of this thesis is described in Chapter 3, which first summarizes the related work specific
to viscous liquid animation. Then, it introduces the continuous viscosity equation and a
variational interpretation, and constructs a linear system by optimizing a discrete energy
functional. In addition, it explains how to create a SPD linear system on a quadtree grid.
Chapter 4 is dedicated to the detailed implementation of our algorithm and the presentation
of results. The thesis is concluded in Chapter 5 in which some potential extensions of the
work are also proposed.
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Chapter 2

Fluid Animation

In this chapter, we will summarize the governing equations and standard techniques for
Eulerian fluid simulation in computer graphics. A more thorough exploration of this subject
can be found in the textbook by Bridson [2015]. Since the viscosity solve is the main
contribution of this thesis, we will only mention its equation here and leave the detailed
explanations to the next few chapters.

2.1 Navier-Stokes equations

Based on the fact that an incompressible fluid material should follow the law of mass
conservation and the law of momentum conservation, its motion is given by the following
equations:

∇ · ~u = 0

ρ
D~u

Dt
=∇ · σ + ~f

σ = −pδ + τ

τ = µ(∇~u+∇~uT )

(2.1)

where ∇· is the divergence operator, ~u is the fluid velocity, ρ is the fluid density, D
Dt

is the

material derivative which is equal to ∂
∂t

+ ~u ·∇, σ is the Cauchy stress tensor, ~f is the
external forces, p is pressure, δ is the identity tensor, τ is the viscous shear stress tensor
and µ is the viscosity coefficient. These equations are called the Navier-Stokes equations
[Batchelor, 1967]. The first equation enforces incompressibility of the fluid, the second
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updates the velocity based on fluid motion, internal stresses, and external forces, and the
third and fourth determine the state of stress within the fluid.

Although it is not proven whether smooth, physically reasonable analytic solutions ex-
ist for the Navier-Stokes equations [Fefferman, 2006], they provide an effective description
of the observed physical behaviour of fluids, and researchers have proposed many different
ways to solve them numerically. There are two main methods to simulate 3D fluids in
computer graphics: Lagrangian particles and Eulerian grids. In a Lagrangian method our
reference point moves with the flow, whereas for Eulerian methods the reference frame
remains fixed as the fluid flows past. The most widely used particle-based method in
computer graphics is smoothed particle hydrodynamics (SPH) [Monaghan, 1992; Müller
et al., 2003], which treats the fluid as a particle system, in which each point of the fluid
is a particle. It has two main advantages. First, it handles advection with less numerical
dissipation than grid-based methods. Since moving a particle does not change its velocity,
we can simply simulate it with ordinary differential equation (ODE) solvers. Second, the
method preserves some interesting visual details such as splashes and drops without the
loss of mass that can occur with other methods. However, it requires a dense sampling
of particles to fill in the whole fluid volume. Besides, it has difficulties with interaction
forces such as pressure and viscosity leading to instabilities for a large time step size, and
some common variants do not strictly guarantee the incompressibility condition [Zhu and
Bridson, 2005]. By contrast, Eulerian grid methods offer a straightforward discretization
scheme, and relatively easy enforcement of the incompressibility condition. However, they
tend to have more difficulties with the advection terms that arise due to the fixed reference
frame. Traditionally the most common grid-based method, first order semi-Lagrangian
[Stam, 1999], suffers from excessive numerical dissipation due to accumulated interpo-
lation errors. Although better results for the velocity field can be achieved with more
sophisticated integration techniques such as high-order Runge-Kutta with higher order in-
terpolation, Eulerian methods for advecting the signed distance field, which is commonly
used to represent the fluid surface, have been demonstrated to struggle at maintaining thin
details, even with fifth-order accurate schemes [Enright et al., 2002a].

By listing the pros and cons of Eulerian vs. Lagrangian approaches, we can observe
that they seem to be complementary, and a better result might be achieved if we mix these
two methods together. Foster and Fedkiw [2001] used inertialess particles to enhance the
advection of level sets on top of a grid-based simulation. Losasso et al. [2004] extended this
particle level set method to a simulation on an adaptive octree. Zhu and Bridson [2005]
solved the advection part directly on particles while nevertheless enforcing incompressibility
on the grid. This is called the fluid implicit particle (FLIP) method and dramatically
reduces numerical diffusion. In this thesis, we use a method similar to [Losasso et al.,
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2004]. To be specific, we solve the equations of motion on a grid and reconstruct a level
set surface at each time step with the help of massless marker particles that passively
follow the velocity field. However, as previously mentioned in Section 1.1, it is also easy
to integrate our viscosity solver into a FLIP-like hybrid method. Since most components
of our simulator are implemented on the grid, we will focus on Eulerian approaches from
this point on.

Although it is possible to numerically solve the Navier-Stokes equations as a whole in
one step (e.g., Taylor and Hood [1973] and Ghia et al. [1982] accomplished that with a
standard finite element method and an implicit multigrid method, respectively), researchers
in computer graphics tend to use an operator-splitting method due to its simplicity and
efficiency. Equation 2.1 is split up into several components, such that the output of one
component becomes the input of another. By arranging these components in a proper
sequence, this method produces reasonable results.

Typically, the equations are separated into the pressure part (“pressure projection”),
the advection part, the external force part, and the viscosity part. These components are
given as follows:

∂~u

∂t
+

1

ρ
∇p = 0

s.t. ∇ · ~u = 0

(2.2)

D~u

Dt
= 0 (2.3)

∂~u

∂t
= ~f (2.4)

∂~u

∂t
=

1

ρ
∇ · τ

s.t. τ = µ(∇~u+∇~uT )

(2.5)

To conserve the fluid volume, we must only advect data using a divergence-free (i.e.,
incompressible) velocity field; otherwise sources and sinks in the velocity field will cause
volume to be created or destroyed. Therefore, the pressure projection (2.2) should be solved
just before advection (2.3), since it projects out divergent components of the velocity field.
Some authors have advocated for the pressure projection to be performed twice, once before
and once after the viscosity solve, so that the input ~u to (2.5) is also divergence-free, which
can further reduce error [Losasso et al., 2006b; Batty and Bridson, 2008]. Our experience
indicates that in practice this yields little difference in the visual results, so we do not pursue
it. We would like to emphasize that the operator-splitting method is simply one way to
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achieve reasonable results, and is by no means a perfectly accurate one. Actually, recent
research has revealed some important visual effects can be erroneously eliminated by this
method. For example, Zhang et al. [2015] showed that the advection step transferred some
part of the velocity field from divergence-free modes into divergent modes and thus violated
the vorticity equation. Larionov et al. [2017] also demonstrated that naively separating
the pressure and viscosity solves reduced accuracy in results and produced incorrect free-
surface behavior. Nevertheless, we will adopt the standard operator-splitting approach
outlined above because it is effective in many relevant scenarios.

2.2 Simulation Grid

Equations 2.2-2.5 involve both time and spatial derivatives. Since the time derivative can be
easily discretized with backward Euler, most research focuses on the spatial discretization
which normally involves variables in two or three dimensions and thus, partial derivatives.
The three most widely used numerical methods to solve partial differential equations (PDE)
are the finite element methods (FEM), finite volume methods (FVM) and finite difference
methods (FDM). Although all of them have been utilized in computer graphics, such as
a viscoelastic fluid simulation with FEM([Bargteil et al., 2007]), a smoke simulation with
FVM ([Fedkiw et al., 2001]) and a general fluid simulation with FDM([Stam, 1999]), FDM
is inarguably the most popular one due to its simplicity.

Before talking about the fluid simulation routines, we need to discuss the grid used
for space discretization. The marker-and-cell (MAC) grid proposed by Harlow and Welch
[1965] in computational fluid dynamics (CFD) has become one of the most widely used
grid structures in computer graphics. It is also called a staggered grid since the different
variables are stored at different locations.

Figure 2.1 shows a typical MAC grid where we use a thick dash to denote a velocity
component, a circle to denote a diagonal stress component and a square to denote an
off-diagonal stress component. We will use the same symbols in subsequent grids. As an
aside, the pressure variable also locates at the grid cell centre since we use the central
difference between two neighbouring pressure values to update the velocity in the middle
when performing pressure projection.
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Figure 2.1: The standard staggered grid layout in 2D.

The main reason for using the MAC grid (as opposed to a collocated grid in which
all variables are stored at the same positions) is to get rid of a problem caused by the
presence of null spaces. For example, the central difference equation calculating the partial
derivative with respect to x at [i, j] on a collocated grid is(

∂f

∂x

)
i,j

≈ fi+1,j − fi−1,j

2∆x
, (2.6)

where fi+1,j and fi−1,j are values of f sampled at [i + 1, j] and [i − 1, j]. Assuming fi−1,j

and fi+1,j are equal, (2.6) will always report the derivative as zero no matter which value
fi,j takes on. We can also view the problem from the perspective of fluid simulation. In
the case of 2D, the central difference approximation of the divergence operator ∇ · ~u at
[i, j] on a collocated grid is

(∇ · ~u)i,j ≈
ũi+1,j − ũi−1,j

2∆x
+
ṽi,j+1 − ṽi,j−1

2∆x
= 0, (2.7)
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where ũ and ṽ are x-axis and y-axis components of discrete velocities. Suppose both ũi,j and
ṽi,j have the form ((−1)i, (−1)j); then (2.7) does not depend on the velocities at [i, j] and
is satisfied, despite the fact that such an oscillatory ũi,j/ṽi,j is clearly divergent. In other
words, (2.7) cannot detect any high-frequency divergence in ũi,j, and the velocity remains
highly divergent. As we discussed in Section 2.1, the divergence-free velocity is required
for the step of advection to conserve the fluid volume. Therefore, it is not possible to
use the central difference method on a collocated grid unless the high-frequency divergent
mode is filtered out in advance or explicitly treated in some other fashion. Adopting the
staggered grid configuration neatly sidesteps this issue and simplifies the implementation,
because the variable placement ensures no null space issues arise with central differencing.
Since we use the staggered grid discretization for pressure projection, we also keep this
same variable layout for the remaining steps of the simulation, including advection and
viscosity. We will further discuss pressure projection in Section 2.5.

2.3 Velocity Advection

Stam first introduced the semi-Lagrangian scheme to computer graphics [Stam, 1999],
which has been popular in atmospheric science for a long time [Staniforth and Côté, 1991].
Although the word Lagrangian appears in its name, the method is actually grid-based
(Eulerian).

B

C D

P

P’

A

Figure 2.2: A semi-Lagrangian update of data at position P is based on tracing the velocity
field backwards to point P ′ and interpolating from the surrounding nodes.
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As we discussed before, the reason why particle-based advection can be solved with an
ODE solver is that in the absence of source terms the change rate of the particle value is
zero. We can apply the same principle to grid-based advection. In order to figure out the
new value at the grid point P , we assume there will be a particle arriving at P at the time
tn + ∆t. Since the particle value doesn’t change with time according to (2.3), we just need
to find the particle’s location P ′ at the time tn and assign its value to the location P . If
the point P ′ does not fall on any grid point (as illustrated in Figure 2.2), we use simple
bilinear interpolation, separately for each component of the velocity. Since a hypothetical
Lagrangian particle is used to figure out how to advect on an Eulerian grid, this is called
a semi-Lagrangian method.

The remaining problem is to determine how we can find the location P ′ by following
the velocity field. We know that the particle’s motion follows a simple ODE:

d~x

dt
= ~u(~x).

By discretizing the derivative d~x
dt

with forward Euler and integrating backwards in time,
we get

~xP ′ = ~xP −∆t~u(~x). (2.8)

The result is sometimes adequate, but we can only trace along a straight trajectory with
(2.8). For particles around swirls or other rotational flow elements, we have to adopt a
higher order integration technique such as second- or third-order Runge-Kutta methods to
obtain better results.

Another issue we need to pay attention to is the size of ∆t. Most numerical methods
have the stability concern of whether the numerical error will aggregate and finally blow
up. However, this is not a problem for the semi-Lagrangian method because all new values
are simply (bi)linearly interpolated results of old values, which means it’s impossible to
create any value larger or smaller than existing ones. This conclusion holds no matter how
large the time step is and that is why the method is unconditionally stable. In practice, an
aggressive time step brings extra numerical dissipation not to mention reduced accuracy.
Foster and Fedkiw [2001] suggested a good rule of thumb would be to limit the time step
such that we don’t allow data to traverse more than 5 grid cells in one time step, where
the value 5 in this case is referred to as the CFL (Courant-Friedrichs-Lewy) number. In
other words, the time step must satisfy the following condition:

∆t ≤ 5∆x

|~u|max
. (2.9)

Some researchers tend to use even smaller time steps, such as a CFL number of 1, to get
more accurate results.
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2.4 Fluid Surface Representation

Before discussing the pressure and viscosity solves, we need a technique to tell which cells
are on the fluid boundaries (partially covered by a fluid), which cells are on the interior,
and which are in the (empty) air region. One of the most commonly used methods in
computer graphics is the level set method [Fedkiw and Osher, 2003]. The formal definition
of the level set in Rn is given below:

Γ = {~x|φ(~x) = c}, (2.10)

where ~x is an n-dimensional position vector, φ is the level set function, c is a constant, and
Γ represents the set of points in Rn where the level set function φ(x1, . . . , xn) takes on the
given value c.

To define a fluid surface, we just need to choose a threshold value of φ(~x) for all surface
points. Suppose we select zero as the threshold for the 2D simulation; then,

• φ(~x) = 0 if the point ~x is on the surface,

• φ(~x) > 0 if the point ~x is outside the fluid (solid or air), and

• φ(~x) < 0 if the point ~x is inside the fluid.

Note that (1) it is not necessary to set the fluid surface threshold to zero, although this
is normally the way it is set up in fluid simulation [Bridson, 2015]; (2) the negative and
positive regions can be reversed (φ(~x) > 0 for the inside fluid points) since this choice
is arbitrary. In this project, we use the signed distance function to describe the implicit
surface because the form of the function is very simple and we can later use the signed
distance at each grid point to aid us in constructing an adaptive grid. Suppose S is the
set of all points ~s on the fluid surface. Then the signed distance function is defined as

φ(~x) =

 min
~s∈S
‖~x− ~s‖ : ~x is outside;

−min
~s∈S
‖~x− ~s‖ : ~x is inside.

(2.11)

We are discretizing the level set onto a grid, and thus the surface is the set of all points
whose interpolated value is zero.

Now a simple way to make use of a level set in simulation is to define φ(~x) at each
cell centre at t0 as an initial state, and advect the level set with the semi-Lagrangian

12



method described in Section 2.3. However, this method can cause some issues even with a
high-order advection scheme on a grid [Enright et al., 2002b]. As we know from our daily
experience, it is normal for a fluid to develop many thin structures such as droplets and
splashes. But a level set on the grid cannot correctly address any structure thinner than two
cells [Bridson, 2015], and these details will soon disappear as the simulation proceeds. An
intuitive way to solve the problem is to use Lagrangian advection which introduces much
less numerical diffusion. Here we introduce two widely adopted approaches in computer
graphics.

The first one is called the marker particle method, used originally in [Harlow and
Welch, 1965] which also proposed the MAC grid discussed in Section 2.2. In this method,
we first generate water particles to fill the volume of water in a random jittered pattern.
Specifically, we ensure there are always two particles within each cell but their locations are
sampled from a uniform distribution. This is recommended when emitting marker particles
because sampling on a regular lattice may lead to anisotropically biased stripe-like particle
distributions in certain situations [Bridson, 2015]. Then, we move the particles according
to the grid velocity field and use them to determine which grid cells should be included in
the simulation in the next time-step. A problem with this approach is the question of how
to render a smooth surface from a group of particles. Blinn [1982] introduced the “blobby”
method where a user can adjust the “blobbiness” of the object. The level set function can
be defined from a collection of particles using

φ(~x) =
∑
i

k

(
‖~x− ~xi‖

h

)
, (2.12)

where ~xi is the location of particle i, k is a suitable smooth kernel function and h is the
spatial extent (i.e., essentially its radius of influence) of each particle. An intuitive choice
for k is a Gaussian distribution. A simpler alternative would be a spline like

k(s) =

{
(1− s2)3 : s < 1;

0 : s ≥ 1.
(2.13)

Here s = ‖~x− ~xi‖/h, and the extent h is normally several times the average inner particle
spacing r. The threshold value of the level set is set to k(r/h) instead of zero in their
method, and the surface looks like many spheres smoothly connecting together. An issue
with this approach is the surface looks, as its name suggests, too blobby. It is possible
to smooth out the artifacts by increasing the size of h (spheres around particles will look
larger), but this may also cancel out some small scale features. Selecting an appropriate
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value of h turns out to be a key issue in making the “blobby” method work well for liquids.
Zhu and Bridson [2005] improved this method by using a distance-based surface model

φ(~x) =
∥∥~x− X̄∥∥− r̄, (2.14)

where X̄ and r̄ are a weighted average of nearby particle locations and radii, respectively:

X̄ =

∑
i k
(
‖~x−~xi‖

h

)
~xi∑

i k
(
‖~x−~xi‖

h

)
r̄ =

∑
i k
(
‖~x−~xi‖

h

)
ri∑

i k
(
‖~x−~xi‖

h

) .

(2.15)

We can simply set all the particles’ radii to the average inter-particle spacing r, and r̄ will
also be equal to r. A better result on flat surfaces can be achieved by using the actual
particle-to-surface distance as the particle’s radius. Finally, the fluid surface is defined as a
set of points ~x where φ(~x) given in (2.14) is equal to zero. Although this method removes
most blobby artifacts, it could potentially introduce some small-scale artifacts at concave
regions where the x̄ may sit outside the surface and an extra smoothing on the level set
may be required.

Another common method of appropriately advecting the level set is called the particle
level set [Enright et al., 2002b], which advects a band of massless marker particles around
the fluid surface along with the implicit function on the grid, and uses the local level
set created from the particles to correct errors in the surface represented by the implicit
function. An advantage of this method is that we just need to modify the existing level
set instead of creating a new one from particles so it doesn’t have the “blobby” issues with
the marker particle method.

In this project, we use the marker particle method similar to the one in [Zhu and
Bridson, 2005] but with a different level set function. Suppose A is a set of particles near
the grid point ~x; the level set function would be

φ(~x) = min
~xi∈A
‖~x− ~xi‖ − r, (2.16)

which is just the distance field for a union-of-spheres approximation of the surface and is
selected for its simplicity. Both (2.14) and (2.16) give the exact signed distance for the
region outside the fluid but produce no meaningful results for the interior. Therefore, we
have to apply the fast marching method [Tsai, 2002] to propagate the signed distance from
the surface to the interior.
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2.5 Pressure Projection

In this section, we will briefly discuss an essential part of a fluid simulation, the pressure
projection step making the fluid incompressible and satisfying boundary conditions. By
applying time discretization to (2.2), we have

~u = ~uold − ∆t

ρ
∇p (2.17)

which subtracts the pressure gradient from an intermediate velocity and generates a diver-
gence free result such that

∇ · ~u = 0. (2.18)

At the same time, the pressure should satisfy the free surface boundary condition

p = 0 (2.19)

at the liquid-air surface and the velocity should satisfy the solid wall boundary condition

~u · ~n = ~usolid · ~n (2.20)

along any solid boundaries. The free surface boundary condition ensures there is no pres-
sure force pushing from the air onto the liquid (consistent with the assumption of negligible
density air), and the solid wall boundary condition prevents fluid from flowing into or out of
the walls. At typical human scales in the physical world, we can readily observe that fluid
does not quite stick to walls as the above simple condition would dictate. Instead, liquid
easily separates from walls, though it may leave behind a thin film or small droplets. Some
researchers intentionally modified (2.20) to simulate this wall-separation phenomenon. For
example, Batty et al. [2007] proposed the condition:

0 ≤ p ⊥ (~u− ~usolid) · ~n ≥ 0. (2.21)

It states that either both p > 0 and (~u − ~usolid) · ~n = 0 are true or both p = 0 and
(~u− ~usolid) · ~n ≥ 0 are true which ensures that pressure prevents fluid from entering walls,
while allowing it to freely separate. We just use (2.19) in this project since it is easy
to implement and the wall-separation phenomenon does not typically happen for highly
viscous fluids.

As we discussed before, spatial discretization (e.g., via finite differences) is often fairly
straightforward for Eulerian grid methods, as compared to particle methods. By substi-
tuting (2.17) in (2.18), we reach the equation to determine the pressure

∆t

ρ
∇2p = −∇ · ~uold. (2.22)
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The central finite difference approximation of (2.22) for one cell on a 2D MAC grid is given
as follows:

∆t

ρ

(
4p̃i,j − p̃i+1,j − p̃i−1,j − p̃i,j+1 − p̃i,j−1

∆x2

)
=

−

(
ũoldi+1/2,j − ũoldi−1/2,j + ṽoldi,j+1/2 − ṽoldi,j−1/2

∆x

) (2.23)

where p̃ represents the discrete pressure. We can build a linear system based on (2.23) and
solve it with a standard linear system solver such as preconditioned conjugate gradient.
Then, we use (2.17) to update the velocities:

ũi+1/2,j = ũoldi+1/2,j −
∆t

ρ

p̃i+1,j − p̃i,j
∆x

,

ṽi,j+1/2 = ṽoldi,j+1/2 −
∆t

ρ

p̃i,j+1 − p̃i,j
∆x

.

(2.24)

To address the free surface boundary condition p = 0, we use the standard ghost fluid
method proposed by Gibou et al. [2002]. Suppose the cell [i+1, j] is in the fluid (φ(~xi+1,j) < 0)
and the cell [i, j] is in the air (φ(~xi,j) > 0). Instead of setting the pressure at [i, j] to 0, we
use linear interpolation to find the surface at [i+ θ, j] where the θ is defined as

θ =
φ(~xi,j)

φ(~xi,j)− φ(~xi+1,j)
, (2.25)

and set the pressure at this location to 0:

p̃i+θ,j = (1− θ)p̃i,j + θp̃i+1,j = 0. (2.26)

Based on (2.25) and (2.26), we can easily express p̃i+1,j with p̃i,j

p̃i+1,j = −1− θ
θ

p̃i,j. (2.27)

Since the cell [i+1, j] can be imagined as a virtual fluid cell with a pressure value designed
to enforce the desired boundary condition, the method is called the ghost fluid method.

By substituting p̃i+1,j with (2.27) in (2.24), we have a new equation to update ũ samples
that are close to the free surface:

ũi+1/2,j = ũoldi+1/2,j −
∆t

ρ

φ(~xi+1,j)− φ(~xi,j)

φ(~xi,j)

p̃i,j
∆x

. (2.28)
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We can update ṽ in the same way. As an aside, we will later apply a similar method to
the solid wall boundary condition for viscosity, i.e., ~u = ~usolid.

The solid wall boundary condition (2.20) is more difficult to enforce since it actually
specifies the normal derivative of pressure, ∂p

∂~n
=∇p · ~n, rather than the value of pressure.

Foster and Metaxas [1996] first explored this topic in computer graphics by voxelizing
solid objects onto the grid. However, it only worked well when all object boundaries are
perfectly aligned with the grid, and otherwise would introduce stair-step artifacts. Foster
and Fedkiw [2001]; Houston et al. [2003]; Rasmussen et al. [2004] attempted to mitigate
this issue with different methods, but were only successful in simulating some scenarios
because they still used the voxelized pressure solve. Roble et al. [2005] first derived a
high quality solid interaction on a standard MAC grid by adding face area weights to
the finite difference stencil, which actually turns it into a finite volume approximation.
Batty et al. [2007] proposed a variational interpretation of pressure which handled the
solid wall boundary condition implicitly. When the solid objects are static, their approach
yields the same discretization as [Roble et al., 2005] except for using the mass fraction of
the fluid as the weights. Ng et al. [2009] pointed out that the face area weights should
be preferred since this yielded second-order accuracy in pressure whereas the cell volume
weights (mass fraction) yielded only first-order accuracy. Therefore, we use the same finite
volume method as presented in [Roble et al., 2005]. Roble et al. [2005] didn’t treat moving
objects, so really our implementation is more like [Ng et al., 2009].

We just need to add the face area weights to the original finite difference discretization
(2.23) to produce the finite volume stencil which looks like

∆t

ρ

(
Fi−1/2,j + Fi+1/2,j + Fi,j−1/2 + Fi,j+1/2

∆x
p̃i,j

−
Fi−1/2,j

∆x
p̃i−1,j −

Fi+1/2,j

∆x
p̃i+1,j −

Fi,j−1/2

∆x
p̃i,j−1 −

Fi,j+1/2

∆x
p̃i,j+1

)
= Fi−1/2,jũ

old
i−1/2,j − Fi+1/2,jũ

old
i+1/2,j + Fi,j−1/2ṽ

old
i,j−1/2 − Fi,j+1/2ṽ

old
i,j+1/2

+ (1− Fi−1/2,j)ũ
old
i−1/2,j|s − (1− Fi+1/2,j)ũ

old
i+1/2,j|s

+ (1− Fi,j−1/2)ṽoldi,j−1/2|s − (1− Fi,j+1/2)ṽoldi,j+1/2|s

(2.29)

where ũ|s and ṽ|s are the velocities of solid objects, and F is the fluid face area fraction in
the range [0, 1] so F∆x is equal to the boundary length of a cell covered by the fluid in 2D.
We can simply use linear interpolation to find the F in 2D in the same way we retrieved
the location of the free surface in (2.25). Bridson [2015] suggested a similar method to
compute F in 3D in which a square face was divided into 4 sub-triangles and the fluid area
in each triangle was calculated with linear interpolation.
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Up to now, we have briefly discussed the Navier-Stokes equations, reviewed several
common techniques for the fluid advection, the pressure projection, and the free-surface
representation in computer graphics, and emphasized on the methods used in the project.
Later in Chapter 4, we will present how to combine all these components together along
with the innovative viscosity solve introduced by Chapter 3.
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Chapter 3

Viscous Fluid

3.1 Related Work

We have already discussed most components of a fluid simulation such as advection, pres-
sure projection and surface representation, and in this chapter we will focus on the remain-
ing routine, viscosity integration. Unlike the other steps in our solver which have used a
regular grid, we will consider solving viscosity on an adaptive quadtree grid, which is the
central contribution of this work. We will first review previous research on viscous liquid
animation and fluid simulation on an adaptive grid. Then, we will discuss the continu-
ous Laplacian and full forms of viscosity and introduce a variational interpretation of the
full form of viscosity. We will emphasize the discretization of the variational form on a
staggered grid, and illustrate the required control volumes on a graded quadtree grid in
different scenarios. Finally, we will show how we can incorporate our proposed adaptive
grid viscosity routine into a standard regular grid fluid simulator.

3.1.1 Viscous Liquid Animation

Although researchers in CFD have used the Navier-Stokes equations to investigate viscous
fluid for a long time [Harlow and Welch, 1965], it was not introduced to the field of
computer graphics until the work of Foster and Metaxas [1996]. Before that, all approaches
in computer graphics were driven more by ad hoc models focused on visual appearance. For
example, Miller and Pearce [1989] proposed a particle-based system where viscous springs
between particles were modelled to achieve dynamic motions of viscous fluid, and Platt and
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Fleischer [1989] used a molecular dynamics approach to simulate melting deformable solids.
A main issue with Foster and Metaxas’ approach was that each time step was restricted
by the local fluid velocity due to the use of explicit integration. This is inconvenient in an
animation context, since for simplicity and efficiency we would prefer to be able to choose
the time step without fearing loss of stability. Stam proposed an implicit viscosity solve
in [Stam, 1999] which enabled larger time steps and which was much more stable than
previous work. However, it assumed the viscosity coefficient was constant and thereby
decoupled equation (2.5) into three (independent) heat equations, one for each component
of velocity. Moreover, it did not consider the role of liquid surfaces, so only gases or
completely enclosed liquids could be handled. Foster and Fedkiw [2001] introduced the
use of the level set method to Stam’s approach, which enabled accurate tracking of the
liquid surface. Carlson et al. [2002] further expanded this model by considering heat
diffusion, and produced impressive animations of some viscous materials such as melting
wax and sand drip castles. While this decoupled (Laplacian) form for viscosity was very
commonly used, it unfortunately simplified the proper variable viscosity term and the free
surface boundary condition, and thus, introduced nonphysical damping of ballistic motion.
Fält and Roble [2003] pointed out that a Neumann boundary condition ∂~u

∂~n
= 0 produced

correct translational motion. Instead of dropping the viscosity terms that should couple
the components of velocity together (as done by Carlson et al. [2002] and earlier authors),
Rasmussen et al. [2004] eliminated the coupling in the linear system by first integrating the
dimensionally coupled components explicitly, and then implicitly integrated the remaining
decoupled, symmetric components. In regions of the flow with constant viscosity coefficient,
the explicit integration terms cancel, such that the model reduces to three separate linear
systems as before. This is an example of an implicit-explicit (IMEX) integration scheme.
Hong and Kim [2005] successfully simulated two-phase fluids with discontinuous jumps in
viscosity coefficient by enforcing the no-slip condition on the interface between two viscous
materials with the ghost fluid method on an octree grid. In contrast to our proposed
method, however, this scheme requires velocities to be averaged to cell centres to compute
viscous forces, and it does not handle viscosity coefficients that vary smoothly in space.
Losasso et al. [2006b] extended this work to multiple immiscible viscous fluids by simulating
region-wise constant viscosity with the IMEX scheme and using a separate particle level
set method for each region, although on a regular grid. The first fully implicit viscosity
solver without dropping the coupling term was introduced to computer graphics by Batty
and Bridson [2008]. They created a variational formulation of the viscosity, which treated
the complex boundary conditions naturally via simple control volumes. Larionov et al.
[2017] applied the same idea to Stokes flows to produce more realistic coiling effects.
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3.1.2 Fluid Simulation on Adaptive Grids

Although research on quad/octree-based discretization for compressible fluids was con-
ducted early in CFD [Coirier, 1994; Khokhlov, 1998], the extension to incompressible flu-
ids was first considered by Popinet [2003]. He modified the previously developed adaptive
mesh refinement (AMR) schemes [Sussman et al., 1999] for Poisson problems and gener-
ated second-order accurate results in space. Losasso et al. [2004] added the support for
free surfaces to this approach, and simplified it by calculating the pressure projection with
unaligned pressure samples at T-junctions (i.e., locations where changes in grid resolution
occur). This sacrificed accuracy in exchange for a simpler SPD system which could be
easily solved with the conjugate gradient method. Their method was widely included in
applications such as bubbles [Hong and Kim, 2005], solid-fluid coupling [Guendelman et al.,
2005], and lightning [Kim and Lin, 2007]. In particular, Hong and Kim [2005] simulated
the viscosity term on the octree data structure which was the first attempt in computer
graphics. However, they did not discuss the details of the octree viscosity discretization ex-
plicitly in the paper. Since the decoupled model was adopted, the numerical stencil for the
viscosity was exactly the same as that for the pressure and they used the same discretiza-
tion as the pressure projection. Losasso et al. [2006a] later improved the discretization of
the pressure projection to second-order accuracy by carefully modifying the pressure gra-
dient stencil used at T-junctions while preserving positive-definiteness. Ferstl et al. [2014]
and Nielsen and Bridson [2016] used FEM on octree and tile-tree grids, respectively, with
extra attention paid to the boundary conditions, because the previously developed finite
volume octree scheme had difficulty in providing matrix symmetry, second-order accuracy
and support for non-axis aligned boundary condition at the same time. Batty [2017] ap-
plied a novel quadratic interpolation to get the value of the missing degree-of-freedom at
the T-junction and generated second-order accurate solutions and gradients for Poisson
problems, at the cost of losing matrix symmetry. Aanjaneya et al. [2017] utilized power
diagrams on parallelism-optimized data structures (the Sparse Paged Grid or ”SPGrid”)
[Setaluri et al., 2014] and a multigrid-preconditioner for conjugate gradient to efficiently
perform a second-order accurate pressure projection.

Despite the fact that the simulation of viscosity on an adaptive quadtree/octree grid
has not been thoroughly explored in computer graphics (to the best of the author’s knowl-
edge, [Hong and Kim, 2005] is the only paper mentioning this topic), researchers from the
computational physics community have proposed several different methods. For example,
Guittet et al. [2015] explicitly computed a Voronoi diagram from all the u-faces and solved
the viscosity on it to get a second-order accurate result. Since the decoupled model was
used, they were able to update the v-face results separately in the same way. Gerya et al.
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[2013] created some extra “slave” nodes at the T-junction following two principles: (1) the
volume flux across resolution levels should be conserved; (2) the stress-based interpolation
of velocity gradients should be consistent. With the help of these virtual nodes, they could
finally achieve a second-order accurate result for the full viscosity model (i.e. incorporating
dimensionally-coupled terms and supporting spatially varying viscosity). However, neither
work treated the free surface boundary condition. In addition, variable viscosity could not
be addressed by [Guittet et al., 2015] while the system built by [Gerya et al., 2013] was
not SPD.

Since more attention is normally paid to realistic visual effects and simulation speed
than physical accuracy in computer graphics, we will not concern ourselves with achieving
second-order accuracy. However, we would like to have a SPD system which offers:

• Support for spatially varying viscosity;

• Correct free surface behavior;

• Support for spatial adaptivity using a quadtree grid structure;

• First order accuracy across jumps in grid resolution (T-junctions).

3.2 Continuous Viscous Fluid

Any motion of Newtonian incompressible fluids can be mathematically described by equa-
tions (2.1). By introducing another physical quantity called the deformation rate tensor,

ε̇ =
(∇~u+∇~uT )

2
, (3.1)

we can rewrite the shear stress tensor as:

τ = 2µε̇. (3.2)

As its name suggests, ε̇ measures how fast the total deformation of the continuum is chang-
ing [Bridson, 2015]. The overdot notation implies time derivative, since the deformation
rate (or strain rate) is essentially the time derivative of the strain tensor ε.

If µ in equation (3.2) is not a function of the magnitude of the strain rate tensor
(however, it can be a function of time or space), τ is proportional to 1

2
(∇~u+∇~uT ) and this

22



linear relationship is called Newtonian. Fluids with this characteristic are called Newtonian
fluids, and all others are categorized as non-Newtonian fluids. This thesis only discusses
Newtonian fluids.

By separating the pressure and viscosity solves through operator splitting, as discussed
in Section 2.1, the second equation of (2.1) is simplified to the following form:

∂~u

∂t
=

1

ρ
∇ ·

(
µ(∇~u+∇~uT )

)
. (3.3)

This describes the rate of change of the fluid velocity due to viscous forces alone, as
measured by the divergence of the deformation rate. In essence, the faster the fluid is
locally deforming, the more the viscous forces act to counter this deformation and damp
the flow.

3.2.1 Constant Viscosity

If µ is constant, then the right side of (3.3) can be expanded as µ
ρ
(∇ · ∇~u +∇ · ∇~uT ).

The second term in a 3D Cartesian coordinate system is

∇ ·∇~uT =

 ∂
∂x

∂u
∂x

+ ∂
∂y

∂v
∂x

+ ∂
∂z

∂w
∂x

∂
∂x

∂u
∂y

+ ∂
∂y

∂v
∂y

+ ∂
∂z

∂w
∂y

∂
∂x

∂u
∂z

+ ∂
∂y

∂v
∂z

+ ∂
∂z

∂w
∂z

 ,

where u, v and w are continuous velocity components in the x-, y- and z- directions, re-
spectively. By changing the order of partial derivatives, it becomes

∇ ·∇~uT =

 ∂
∂x

(∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
∂
∂y

(∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
∂
∂z

(∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)

 =∇(∇ · ~u). (3.4)

Since we only investigate incompressible fluid, i.e., ∇ · ~u = 0, the second term of the right
side of (3.3) vanishes and it turns into

∂~u

∂t
=
µ

ρ
∇ · (∇~u) =

µ

ρ
∇2~u. (3.5)

We will refer to (3.5) as the Laplacian form of viscosity, to distinguish it from the
full form given by (3.3). The Laplacian form is straightforward to solve, since it can be
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discretized in a manner similar to the pressure projection. It is effectively a simple heat
equation applied to each component of velocity independently and that is why it is also
referred to as the decoupled form in our discussion of related work [Stam, 1999; Carlson
et al., 2002]. However, it is only valid when both the viscosity is constant and the velocity
field is incompressible [Bridson, 2015].

Although we have proved the Laplacian formulation is adequate to depict constant
viscosity fluids, Limache et al. [2007] observe that imposing the natural boundary condition
of the Laplacian form on free surfaces causes a violation of the principle of objectivity in
continuum mechanics. We will cover more about this topic in the next section.

3.2.2 Boundary Conditions

At solid surfaces, the fluid velocities should be set equal to the solid velocities explicitly
according to the no-slip condition. Since this step is straightforward and has been suc-
cessfully implemented in previous work [Rasmussen et al., 2004; Batty and Bridson, 2008;
Larionov et al., 2017], we mainly focus on the free surface boundary condition here.

The correct free surface boundary condition ensures there is no traction ~t applied to the
plane of the surface if no surface tension is present [Batty and Bridson, 2008]. Therefore,
based on the definition of stress,

~t = σ~n = 0 on Γf

where ~n is the outward unit normal of the free surface and σ is the Cauchy stress tensor.
By replacing σ with −pδ + τ as in (2.1), we have

(−pδ + τ)~n = 0, (3.6)

where p is the pressure on the free surface, δ is the identity tensor and τ is the shear stress
tensor.

The first correct implementation of the condition (3.6) in the context of regular grid
methods for computer graphics had not happened until a recent paper [Larionov et al.,
2017] was published. They replace the standard viscosity and pressure steps with a novel
Stokes step and accurately calculate the free-surface boundary condition with the help of a
variational principle. Before that, most research on Eulerian fluid animation was based on
decoupled pressure and viscosity solves and the assumption that the free surface pressure
is zero [Batty and Bridson, 2008; Batty and Houston, 2011], which reduces (3.6) to the
following form:

τ~n = 0 on Γf . (3.7)
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While this cannot precisely recover the coiling effects shown by Larionov et al. [2017],
it does capture visually plausible viscous flow and buckling behavior in most scenarios
of interest to computer animation. It is also the most common approach in industrial
fluid animation tools, such as Houdini [SideFX, 2017]. We therefore adopt this boundary
condition in this thesis.

3.2.3 Variational Interpretation

The problem we are trying to solve is the PDE (3.3) with the boundary conditions given
by (3.7). By discretizing ~u in time with backward Euler, we end up with the following
PDE with only space derivatives remaining:

~u = ~uold +
∆t

ρ
∇ ·

(
µ(∇~u+∇~uT )

)
. (3.8)

Batchelor [1967] discusses the minimum dissipation theorem that a correct steady state
Stokes flow corresponds to the flow field with the same boundary conditions having the
minimum rate of viscous energy dissipation. Batty and Bridson [2008] use this idea to
motivate their formulation. Recalling that ε̇ is the deformation rate tensor defined in
(3.1), we can define the rate of viscous dissipation Φ as

Φ = 2µε̇ : ε̇ = 2µ‖ε̇‖2
F , (3.9)

where the : operator represents a tensor double dot product and ‖·‖F refers to the Frobenius
norm of a matrix that is simply the square root of the sum of squares of each element. Batty
and Bridson [2008] showed that an equivalent optimization formulation for (3.8) is given
as a balance between minimizing this rate of dissipation and minimizing the change in the
velocity field. Combining the two conditions together, we reach the following functional:

E[~u] =

∫∫∫
Ω

ρ
∥∥~u− ~uold∥∥2

+ 2∆t

∫∫∫
Ω

µ

∥∥∥∥∇~u+∇~uT

2

∥∥∥∥2

F

. (3.10)

Since (3.10) is convex and quadratic in terms of the velocity u, finding the minimizer (of
its discretized form) will naturally require solving only a single, symmetric positive definite
linear system.

Batty and Bridson [2008] provide an analytic proof that the velocity field minimizing
E[~u] is exactly the solution to equations (3.3 and 3.7). We will therefore proceed to
discretize the functional 3.10, which will allow us to easily handle both the free surface
conditions and the T-junctions introduced by the quadtree structure.
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3.3 Discretization

3.3.1 Discretization of the Stress Tensor

In this section, we will discuss the discretization of the shear stress tensors τ of the Lapla-
cian form (3.5) for completeness and the full form (3.3) on a uniform-resolution MAC
grid. In two dimensions, τ is a 2× 2 tensor whose components are τxx, τyy, τxy, and τyx(
τ =

[
τxx τxy
τyx τyy

])
. The diagonal stress components τxx and τyy are sampled at cell centres,

and the off-diagonal ones τxy and τyx are sampled at cell corners as illustrated in Figure
3.1.

i+1/2, j+1

i+1/2,j

i, j+1/2 i+1, j+1/2

i+3/2, ji-1/2, j

i, j-1/2 i+1, j-1/2

i+1/2, j-1

Figure 3.1: The 2D stencil for updating the velocity sample ui+1/2,j . Circles indicate cell
centred (diagonal) stress component, small squares indicate node centred (off-diagonal) stress
components, and dashes indicate velocity components.

The discrete x-direction velocity components ũ and the y-direction velocity components
ṽ of the Laplacian form can be updated separately. Suppose the vector of discrete shear
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stress tensors for updating ũ is ordered in the form:

τx =

[
τ̃xx
τ̃xy

]
, (3.11)

where τ̃xx and τ̃xy are vectors of discrete stress components and the over tilde notation is
used to indicate the vectors of discrete samples corresponding to their continuous fields.
The central finite difference approximations of the τ̃xx at [i, j] (left grid cell centre in Figure
3.1), and the τ̃xy at [i+ 1/2, j + 1/2] (top node shared by two grid cells in Figure 3.1) are

(τ̃xx)i,j = µi,j
ũi+1/2,j − ũi−1/2,j

∆x
,

(τ̃xy)i+1/2,j+1/2 = µi+1/2,j+1/2

ũi+1/2,j+1 − ũi+1/2,j

∆x
.

(3.12)

According to (3.2) (by replacing the deformation rate operator with the gradient oper-
ator for the Laplacian form), we have the expression for the discrete shear stress tensors:

τx = MτxGũũ, (3.13)

where Mτx is a diagonal matrix of viscosity coefficients per τx sample and Gũ is the
discrete gradient operator for the x-direction velocity components (i.e., Gũ ≈∇u). Since
the Laplacian form only works properly when the viscosity of the fluid is constant, we can
use a constant µ to replace Mτx . Equation 3.13 is thus simplified to

τx = µGũũ. (3.14)

If we move one step further and check the velocity component update as described in (3.8)
(by replacing the deformation rate operator with the gradient operator again), we obtain
the linear system for ũ given by the Laplacian form:

(Pũ + ∆tµGT
ũGũ)ũ = Pũũ

old, (3.15)

where Pũ is a diagonal matrix of fluid densities per ũ sample and GT
ũ is the transpose of

the discrete gradient operator. This is the discrete version of (3.5). It’s obvious that this
system is SPD since Pũ is diagonal and GT

ũGũ is SPD. One trick we apply here is using the
negative transpose of the discrete (scalar) gradient operator to substitute for the discrete
(vector) divergence operator

Vũ = −GT
ũ . (3.16)
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This convenient relationship between the finite difference gradient and divergence operators
on the MAC grid mirrors an integration-by-parts relationship possessed by their continu-
ous counterparts, and is what ensures the system is SPD. This property has been used in
various methods, such as the low-order discrete calculus method [Perot and Subramanian,
2007]. It is also similar to the way of generating the gradient operator in the mimetic finite
difference method [Lipnikov et al., 2014], which defines a discrete finite-volume-style di-
vergence operator, constructs a discrete inner product satisfying certain requirements, and
gets a gradient operator as the negative adjoint of the divergence one. It is straightforward
to derive the corresponding linear system for ṽ by replacing all symbols with ṽ-related ones
in (3.15).

The discretization of the shear stress tensor of the full form is different than that of the
Laplacian form since they involve terms that couple the different components of velocity.
The expressions for τ̃xx, τ̃yy at [i, j], and τ̃xy, τ̃yx at [i+ 1/2, j + 1/2] become

(τ̃xx)i,j = 2µi,j
ũi+1/2,j − ũi−1/2,j

∆x
,

(τ̃yy)i,j = 2µi,j
ṽi,j+1/2 − ṽi,j−1/2

∆x
,

(τ̃xy)i+1/2,j+1/2 = (τ̃yx)i+1/2,j+1/2

= µi+1/2,j+1/2

(
ũi+1/2,j+1 − ũi+1/2,j

∆x
+
ṽi+1,j+1/2 − ṽi,j+1/2

∆x

)
.

(3.17)

Since both ũ and ṽ samples are used to update τ̃xy, we can no longer solve ũ and ṽ in two
separate systems. Therefore, the vector of velocity samples of the full form is arranged as

u =

[
ũ
ṽ

]
. (3.18)

where all the x-direction velocity components are ordered ahead of the y-direction ones
in u. Similarly, the vector of shear stress tensors is arranged as:

τ =

τ̃xxτ̃yy
τ̃xy

. (3.19)

Note that the off-diagonal stress tensor τ̃yx is not included in τ since it has the same
expression as τ̃xy (i.e., the stress tensor is symmetric). According to (3.2), τ can be
calculated by

τ = 2MDu, (3.20)
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where M is a diagonal matrix of viscosity coefficients per stress sample and D is the

discrete deformation rate operator for velocity (i.e., Du ≈ (∇~u+∇~uT )
2

), which is determined
by the finite difference stencils given in (3.17). If the numbers of degrees of freedom for the
discrete velocity and stress tensor fields are nu and nτ , respectively, then D is a nu × nτ
matrix.

The Laplacian form we described above relied on the relationship between the scalar
gradient operator and the vector divergence operator to ensure symmetry, since only one
velocity component is used. By contrast, symmetry in the case of the full form will depend
on the existence of a relationship between the (vector) deformation rate operator and the
tensor divergence operator. At first glance, it is not necessarily obvious that the negative
adjoint relationship still holds. However, if we can prove the tensor divergence operator is
equal to the negative transpose of D (possibly scaled by a constant or diagonal matrix),
the linear system will still be SPD (which will be further discussed in Section 3.3.2) and
the computation time spent on solving the system will typically be much less than it would
be for a comparable non-symmetric system. This can be shown as follows:

Suppose we write the discrete gradient operators for the x- and y-direction velocity
components used in the Laplacian form as

Gũ =

[
A1

A2

]
,Gṽ =

[
A3

A4

]
, (3.21)

where A1 and A2 are discrete partial derivative operators on ũ such that A1ũ ≈ ∂u
∂x

and
A2ũ ≈ ∂u

∂y
, and A3 and A4 are discrete partial derivative operators on ṽ such that A3ṽ ≈ ∂v

∂y

and A4ṽ ≈ ∂v
∂x

. Then, we write the corresponding discrete divergence operators as

Vũ =
[
B1 B2

]
,Vṽ =

[
B3 B4

]
(3.22)

such that B1τ̃xx ≈ ∂τxx
∂x
, B2τ̃xy ≈ ∂τxy

∂y
, B3τ̃yy ≈ ∂τyy

∂y
and B4τ̃yx ≈ ∂τyx

∂x
. Because of (3.16),

A1 = −BT
1 , A2 = −BT

2 ,

A3 = −BT
3 , A4 = −BT

4 .
(3.23)

Although the discrete stress tensors of the full form have different expressions, they sit at
the same positions as their Laplacian counterparts. Hence, we can use the blocks A1, A2, A3

and A4 to construct the discrete deformation rate operator:

D =

 A1 0
0 A3

0.5A2 0.5A4

 (3.24)
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and create the discrete divergence operator with the blocks B1, B2, B3 and B4:

V =

[
B1 0 B2

0 B3 B4

]
. (3.25)

Because of (3.23), the discrete divergence operator can be expressed as

V = −DTK (3.26)

where K is a diagonal matrix in the form of

Inτ̃xx Inτ̃yy
2Inτ̃xy

. This factoring diagonal

only arises in the full form of viscosity because the off-diagonal stress tensor τ̃yx is ignored
in (3.19) since τ is symmetric. Suppose we include τ̃yx in the system; the vector of the
stress tensors becomes

τ ′ =


τ̃xx
τ̃yy
τ̃xy
τ̃yx

.
The discrete deformation rate operator and the discrete divergence operator turn into

D′ =


A1 0
0 A3

0.5A2 0.5A4

0.5A2 0.5A4


and

V′ =

[
B1 0 0.5B2 0.5B2

0 B3 0.5B4 0.5B4

]
,

respectively. It is obvious that V′ = −(D′)T.

Then the full form variant of (3.15) can be written as

(P + 2∆tDTKMD)u = Puold. (3.27)

where P is a diagonal matrix of densities per velocity sample, M is a diagonal matrix
of viscosity coefficients per stress sample, D and K are the discrete deformation rate
operator and the factoring matrix discussed before. Note that this simple finite difference
form doesn’t yet incorporate free surface boundaries. Hence, we move on to adopting the
variational form in Section 3.3.2.

From now on, we simply use the symbol −DTK to represent the discrete divergence
operator because (1) we do use (3.26) to compute the divergence operator in the system;
and (2) this form makes it more obvious that the linear system is SPD.
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3.3.2 Discretization of the Variational Form

We have introduced the energy functional 3.10 and discussed the fact that optimizing it
leads to a valid solution to our original PDE. Here we discretize it in space by approximating
E[~u] with sums and finite differences on a staggered grid, scaling the contributions of each
cell by the volume of cell and the fraction of the cell that represents liquid. Although this
simple discretization strategy provides only first order accuracy, it is nevertheless sufficient
to preserve all the interesting visual behavior of viscous flow. For example, the first integral
of (3.10) becomes (we consider only the 2D case in this thesis)∫∫

Ω

ρ
∥∥~u− ~uold∥∥2

=

∫∫
Ω

ρ(u− uold)2 +

∫∫
Ω

ρ(v − vold)2

≈
∑

(i+1/2,j)∈Ω

ki+1/2,jρi+1/2,j(ui+1/2,j − uoldi+1/2,j)
2∆x2

+
∑

(i,j+1/2)∈Ω

ki,j+1/2ρi,j+1/2(vi,j+1/2 − voldi,j+1/2)2∆x2 ,

(3.28)

where k is a factor indicating the fraction of a cell covered by fluid and has a value of 1 for
velocity samples whose control volumes are entirely inside the fluid domain. The subscript
of k is the index of the corresponding control volume. A detailed explanation of the control
volume calculation for cells near the liquid surface is provided in Section 3.4.3. At this
stage, we just need to know k is piecewise constant within each cell and can vary across
the grid.

Similarly, we can break down the second integral into several components by expanding
the Frobenius norm:

2∆t

∫∫
Ω

µ

∥∥∥∥∇~u+∇~uT

2

∥∥∥∥2

F

= 2∆t

∫∫
Ω

µ

(
u2
x +

1

2
(uy + vx)

2 + v2
y

)
. (3.29)

Each partial derivative can be approximated by a central finite difference. For example,

2∆t

∫∫
Ω

µu2
x ≈ 2∆t

∑
i,j

ki,jµi,j

(
ũi+1/2,j − ũi−1/2,j

∆x

)2

∆x2,

2∆t

∫∫
Ω

µ
1

2
(uy + vx)

2

≈ ∆t
∑
i,j

ki+1/2,j+1/2µi+1/2,j+1/2

(
ũi+1/2,j+1 − ũi+1/2,j + ṽi+1,j+1/2 − ṽi,j+1/2

∆x

)2

∆x2.

(3.30)
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Therefore, the discrete energy functional has the following form:

E[u] =
∑
i,j

ki+1/2,jρi+1/2,j(ũi+1/2,j − ũoldi+1/2,j)
2∆x2

+
∑
i,j

ki,j+1/2ρi,j+1/2(ṽi,j+1/2 − ṽoldi,j+1/2)2∆x2

+ 2∆t
∑
i,j

ki,jµi,j(ũi+1/2,j − ũi−1/2,j)
2 + (ṽi,j+1/2 − ṽi,j−1/2)2

+ ∆t
∑
i,j

ki+1/2,j+1/2µi+1/2,j+1/2(ũi+1/2,j+1 − ũi+1/2,j + ṽi+1,j+1/2 − ṽi,j+1/2)2

(3.31)

By differentiating the above equation with respect to each unknown velocity, setting the
gradient to zero and combining all resultant equations together, we get a linear system to
solve for the new velocities. Here we give an example of differentiating E[u] with respect
to ũi+1/2,j which corresponds to one row of the final linear system.

ki+1/2,jρi+1/2,j(ũi+1/2,j − ũoldi+1/2,j)∆x
2

+ 2∆tki,jµi,j

(
ũi+1/2,j − ũi−1/2,j

∆x2

)
∆x2

− 2∆tki+1,jµi+1,j

(
ũi+3/2,j − ũi+1/2,j

∆x2

)
∆x2

+ ∆tki+1/2,j−1/2µi+1/2,j−1/2

(
ũi+1/2,j − ũi+1/2,j−1 + ṽi+1,j−1/2 − ṽi,j−1/2

∆x2

)
∆x2

−∆tki+1/2,j+1/2µi+1/2,j+1/2

(
ũi+1/2,j+1 − ũi+1/2,j + ṽi+1,j+1/2 − ṽi,j+1/2

∆x2

)
∆x2 = 0.

(3.32)
Substituting (3.17) in (3.32), we reach

wi+1/2,jρi+1/2,j(ũi+1/2,j − ũoldi+1/2,j)

+ ∆twi,jµi,j
(τ̃xx)i,j

∆x
−∆twi+1,jµi+1,j

(τ̃xx)i+1,j

∆x

+ ∆twi+1/2,j−1/2µi+1/2,j−1/2

(τ̃xy)i+1/2,j−1/2

∆x

−∆twi+1/2,j+1/2µi+1/2,j+1/2

(τ̃xy)i+1/2,j+1/2

∆x
= 0.

(3.33)

where wi,j is equal to ki,j∆x
2 and represents the amount of fluid in the cell [i, j]. We know
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the finite difference approximation of the divergence operator at [i+ 1/2, j] is

(V τ̃)i+1/2,j =
(τ̃xx)i+1,j − (τ̃xx)i,j + (τ̃xy)i+1/2,j+1/2 − (τ̃xy)i+1/2,j−1/2

∆x
,

where V is a local discrete divergence operator. Then, (3.33) can be written as

wi+1/2,jρi+1/2,j(ũi+1/2,j − ũoldi+1/2,j)−∆t(VMWτ̃)i+1/2,j = 0. (3.34)

Here M and W are both 2 by 2 diagonal matrices, and represent the viscosity coefficients
and the control volumes of local stress tensors, respectively. By assembling equations with
respect to all unknown velocities and substituting the discrete divergence operator with
(3.26), we have

(WuP + 2∆tDTKMWτD)u = WuPuold, (3.35)

where Wu and Wτ are the control volumes of the velocities and stress tensors, P is
a diagonal matrix of densities per velocity sample, M is a diagonal matrix of viscosity
coefficients per stress sample, D and K are the discrete deformation rate operator and
the factoring matrix discussed in Section 3.3.1. The linear system of (3.35) is SPD since
Wu,Wτ ,P,M,K are all diagonal matrices. Note that the way we construct the linear
system is very similar to the Rayleigh-Ritz method widely used in finite element analysis
[Bathe and Wilson, 1976].

Another way to get (3.35) is to rewrite E[u] as

E[u] = (u− uold)TWuP(u− uold) + 2∆tuTDTKMWτDu. (3.36)

The diagonal K is included due to the discrepancy between the continuous and discrete

Frobenius norm (i.e.,
∥∥∥∇~u+∇~uT

2

∥∥∥2

F
= τ 2

xx+2τ 2
xy+τ 2

yy whereas (Du)T(Du) = τ̃ 2
xx+ τ̃ 2

xy+ τ̃ 2
yy).

Differentiating E[u] with respect to u gives us (3.35). This approach does not require the
explicit use of the negative adjoint relationship between the discrete deformation rate and
divergence operators (as a matter of fact, it doesn’t require a divergence operator be defined
at all), and automatically yields a SPD system.

3.4 Adaptive Grids

We have reviewed and derived the regular grid viscosity solver of Batty and Bridson [2008].
In this section, we will discuss how to extend this discretization and control volume calcu-
lations to the quadtree grid, and emphasize the difference from the regular grid. Figure 3.2
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illustrates two different quadtree grids. The left one is categorized as a graded tree since
there is at most one level difference in resolution between neighbouring cells. Note that
the cells connected only by a grid node (i.e., diagonal to each other) are also considered
as neighbouring cells since each off-diagonal stress tensor sits at a grid node and the four
surrounding velocities are used to update it. The right grid in Figure 3.2 is a non-graded
quadtree because there is no restriction on the level difference between neighbouring cells.
Based on these definitions, we can consider the graded tree grid as a special case of the
non-graded tree grid. For simplicity, we only consider the graded quadtree in this thesis.
Handling the non-graded case may be an interesting direction for future work.

Figure 3.2: Graded (left) and non-graded (right) quadtree grids.

3.4.1 Discretization

Figure 3.3 shows an example in which cells at different levels are adjacent to each other,
where we once again indicate the locations of velocity and stress components in the same
manner as Figure 3.1. We call it a T-junction as its shape suggests, and only store a velocity
sample for the large face and ignore the small faces at these intersections. Another way
to look at it is assuming that the small faces both have the same velocity as the big
face as shown in Figure 3.3. We make this choice for simplicity and consistency with
the octree pressure projection method of [Losasso et al., 2006a]. With this assumption in
mind, we will develop a discretization of the deformation rate operator in the presence of
T-junctions, and as in the preceding section, the corresponding tensor divergence will be
defined (implicitly) by its transpose.
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Discrete diagonal stress components τ̃xx and τ̃yy next to a T-junction are calculated by

τ̃xx = 2µ
u1 − u2

h
,

τ̃yy = 2µ
v1 − v2

h
,

(3.37)

respectively, where u1, u2, v1, v2 and h are all illustrated in Figure 3.3. Note that the
stencil for the large cell’s cell-centred data does not have to change as shown in Figure 3.4,
since the big face velocity already exists.

u2

u1

{ h {h
v1

v2

Figure 3.3: Stencils for τ̃xx (left) and τ̃yy (right) at a T-junction of an adaptive grid. Arrows
indicate that (ghost) small faces take their velocity value from the neighbouring large face velocity
sample.
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{ 2h

2h

v1

v2
{

Figure 3.4: Stencils for τ̃xx (left) and τ̃yy (right) for the large cell at a T-junction of an adaptive
grid.

The off-diagonal stress component at the T-junction is much more difficult to compute. As
given in (3.38) and illustrated in Figure 3.5, an off-diagonal stress component on a regular
grid is calculated from the four velocities around it: two verticals and two horizontals.

τ̃xy = µ

(
u1 − u2

h
+
v1 − v2

h

)
(3.38)

u1

u2

v2 v1

{ h

Figure 3.5: Stencil for τ̃xy on a regular grid.
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In order to perform the corresponding calculation at a T-junction on an adaptive grid,
we have to bring in more velocity samples as illustrated in Figure 3.6.

v1

v2

v4

v3

u1

u2

{ h

Figure 3.6: Stencil for τ̃xy at a T-junction on an adaptive grid.

As compared to the regular grid case where the immediately neighbouring velocities are
used in the stencil, it is obvious that only the velocity v1 can be used in the discretization
directly. v4 does not exist on the grid and is introduced as an average of v2 and v3. In
addition, we have to bring in u1 and u2 which are above and below the cell, respectively,
because we assume a piecewise constant velocity on the entire T-junction face (which
implies there is no gradient within the face itself). The off-diagonal stress component for
this specific geometric scenario is calculated by

τ̃xy = µ

(
u1 − u2

3.5h
+
v1 − 0.5v2 − 0.5v3

1.5h

)
, (3.39)

where all symbols are illustrated in Figure 3.6. The coefficients given above for the v-
components will hold at all such (horizontal) T-junctions, since we only deal with a graded
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quadtree grid. But this is not the case for u-components: the actual coefficients are
dependent on the resolution of the cells above and below. Since this is no longer exactly a
central finite difference, the accuracy reduces to first-order.

Notice that since the variational form implicitly enforces the symmetry relationship
between deformation rate and divergence, we only need to describe and construct the
deformation rate stencil on the quadtree grid; the corresponding divergence stencil is given
automatically as in the regular grid case.

3.4.2 Control Volumes of Internal Fluid

So far we have discussed the viscosity coefficient and operators in (3.35); the only remaining
terms are control volumes Wu and Wτ . Since staggered grids are used in this thesis, ver-
tical velocity, horizontal velocity, diagonal and off-diagonal stress components are located
at different positions, as illustrated in Figure 3.7 for the uniform grid case.

Figure 3.7: Control volumes around each sample location in 2D. From left to right: vertical
velocity control volume, horizontal velocity control volume, diagonal stress control volume, off-
diagonal stress control volume.

The size of the control volumes for these variables on uniform staggered grids are equal
to one grid cell area inside the fluid. Because of that, we can get rid of the control volume
matrix on both sides of (3.35) and get the following equation for the inner body of a fluid:

(P + 2∆tDTKMD)u = Puold. (3.40)

This is simply the discrete version of (3.8). However, we cannot eliminate the control
volume matrix on an adaptive grid. We will discuss the control volumes for vertical and
horizontal velocities, diagonal stresses and off-diagonal stress components on an adaptive
grid separately.
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Figure 3.8: Vertical and horizontal velocity control volumes near a T-junction.

As mentioned before, we only store the large face velocity sample at a T-junction. From
now on, we denote the area of a small cell as ∆. Then, the velocity control volume, shown
in Figure 3.8, would have an area of 3∆.

Figure 3.9: Diagonal stress control volumes on large and small grid cells.

The control volume of a diagonal stress component is the same as that on a regular
grid, which is equal to the size of the grid cell that contains it. Two examples are given in
Figure 3.9.

The off-diagonal stress control volume is tricky since it has several different scenarios
and because we would prefer that the control volumes for a particular degree-of-freedom
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type not overlap. When it has only one fine cell around, the control volume area is 2.25∆
as depicted in Figure 3.10.

Figure 3.10: Off-diagonal stress component control volumes.

When it sits at a T-junction or has two refined cells on top as shown in Figure 3.11,
the control volume area is equal to 1.5∆.
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Figure 3.11: Off-diagonal stress component control volumes.

When the off-diagonal stress component has two fine cells sharing only a vertex or is
surrounded by three fine cells as in Figure 3.12, the control volume area is simply the fine
cell area ∆.

Figure 3.12: Off-diagonal stress control volumes.

One subtle case arises in which two control volumes can potentially overlap. For exam-
ple, Figure 3.13 presents one scenario. We have tried several different methods to address
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this problem, such as assigning the overlapped area to one tensor as shown in Figure 3.13,
evenly distributing the area to two tensors as shown in Figure 3.14 or simply ignoring it
and using 1.5∆ for both the stresses as shown in Figure 3.15. All three methods produce
similar and reasonable results and have the same convergence rate in our experiments. To
simplify the implementation, we choose the third method and don’t tackle the overlapped
area explicitly.

Figure 3.13: The overlapped area assigned to the top stress.

Figure 3.14: The overlapped area evenly assigned to two stresses.
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Figure 3.15: The overlapped area assigned to both stresses.

3.4.3 Control Volumes of Surface Fluid

The control volume of the variational formulation was originally brought in to correctly
address the free surface boundary condition [Batty and Bridson, 2008]. Since we only start
merging cells (to build the quadtree grid) when they are completely covered by the fluid,
the cells on the free surface are simply the regular grid cells and we never have to deal
with the free surface and the T-junction at the same time.

At the free surface, only a part of a cell is covered by the fluid and we need to approx-
imate its area. First, assuming we possess signed distance values for the surface geometry
stored on a regular grid, we evenly divide the cell into several sub-regions and compute the
signed distance at each sub-region centre using bi-linear interpolation in 2D or tri-linear
interpolation in 3D. We categorize the sub-regions into two groups based on the sign of
the signed distance: fluid region and air region, and assume the fluid region is completely
covered by fluid and the air region is filled in with air. For example, in Figure 3.16, the
regions 1, 2, 3, 4, 5 are air regions because their centres have negative signed distance,
and the regions 6, 7, 8, 9 are fluid regions since the signed distances at these centres are
positive. So the control volume area of this cell is 4

9
∆ where ∆ is the cell area. Although

this subsampling approach is a very simple approximation, we found that it generates rea-
sonable results. Another possible alternative would be to use marching squares [Lorensen
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and Cline, 1987] to construct a polygonal surface approximation from the distance field
within each cell, and compute the exact area of each polygon.

1

4 5 6

987

2 3

Figure 3.16: A cell on the surface of the fluid, the bold curve represents the actual fluid surface,
the gray sub-regions are fluid regions and the white sub-regions are air regions.

3.5 Velocity Mapping

For the purpose of this thesis we are focused on adaptive discretization of viscosity alone.
Hence to simplify the implementation effort, we only solve the viscosity step on an adaptive
grid, and solve everything else on a standard regular grid. Therefore, we need to convert
the velocities on a regular grid to those on an adaptive grid before the viscosity solve, and
map the resultant velocities on the adaptive grid back to the regular grid. A FLIP-like
approach is utilized to transfer velocity data between the two grid structures. The approach
we adopt was first introduced by Schroeder et al. [2012] to convert between Eulerian and
Lagrangian velocities, and applied by Batty and Houston [2011]1 to map between node-
and face-velocities on tetrahedral meshes.

FLIP uses particles to advect velocities and efficiently computes all forces (pressure,
viscosity and external forces) on an auxiliary grid. It increments particle velocities with
the change in velocities that occurred on the grid. Compared to the earlier particle-in-cell

1[Schroeder et al., 2012] was published later than this paper due to the long review process of a journal
paper, and this paper did cite the original version of [Schroeder et al., 2012].
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(PIC) method [Harlow, 1962] which simply replaces particle velocities with interpolated
values of grid velocities, the FLIP method dramatically reduced the numerical dissipation
[Brackbill and Ruppel, 1986]. In any case, the similarity lies in the fact that we wish to
convert our velocity field and forces among two distinct representations.

If we denote the particle and grid velocities used in FLIP as u and û, respectively, then
the mapping from u to û can be expressed as:

û = Hu, (3.41)

where H is some linear interpolation operator. Schroeder et al. [2012] proved that a
corresponding force f on particles has the form:

f = HTf̂ , (3.42)

where f̂ is the force computed on the grid and HT is the transpose of H determined in
(3.41).

Schroeder et al. [2012] also stated that “in general, whenever H is an interpolation
operator from one set of degrees of freedom to another, the operator HT can be used to
distribute forces from the second set of degrees of freedom to the first”. Therefore, we can
use (3.41) and (3.42) directly to map between velocities on the regular and the adaptive
grid. The only difference is that u and f turn into the variables on the regular grid and û
and f̂ become variables on the adaptive grid.

Figure 3.17 illustrates a stencil for a single level mapping for x-axis velocities. The
velocities u1 to u6 are the values on a fine grid and u′ represents an unknown velocity on
a coarse grid. The way to compute u′ is given by

u′ = 0.125u1 + 0.25u2 + 0.125u3 + 0.125u4 + 0.25u5 + 0.125u6, (3.43)

where the interpolation coefficients are inversely proportional to the distance between the
fine and coarse velocity values. Note that (3.43) is corresponding to a row of the mapping
matrix H, so we can construct H by assembling equations with respect to all unknown
coarse velocities.
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u1 u2 u3

u4 u5 u6

u’

Figure 3.17: Mapping stencil for getting a coarse x-axis velocity with surrounding fine veloc-
ity values. The thick red and the thin black dashes represent the fine and coarse velocities,
respectively.

Since a quadtree may contain more than 2 levels, we need to calculate interpolation
operators between each two adjacent levels and multiply them together to obtain the H
matrix. Figures 3.18, 3.19 and 3.20 illustrate how we create a 3-layer quadtree grid from a
regular one, assuming that the finest refinement level is along the right boundary, and the
remainder of the domain is to be coarsened.

Figure 3.18: Regular grid.
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Figure 3.19: Intermediate grid after one level of coarsening.

Figure 3.20: Final quadtree grid after two levels of coarsening.

By substituting our new symbols in (3.35) and changing the order of the terms, we
have

WûPû = WûPûold − 2∆tDTKMWτ̂Dû. (3.44)

The second term on the right hand side of (3.44) is the integral of the viscous force over
a cell on the adaptive grid. By applying (3.42), we derive the method of mapping the
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velocity change back to the regular grid:

WuPu = WuPuold + 2∆tHTDTKMWτ̂Dû. (3.45)

Note that Wu represents the control volumes on the regular grid now.

Therefore, our algorithm can be divided into three steps. First, we interpolate the
velocities on the regular grid and get the corresponding ones on the adaptive grid using
(3.41). Then, we solve (3.44) with a linear equation solver such as incomplete Cholesky
preconditioned conjugate gradient method (ICPCG). At last, we transfer the resultant
velocities on the adaptive grid back to the regular grid with (3.45).
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Chapter 4

Implementation and Results

We have discussed each step of a fluid simulation and placed emphasis on our novel viscosity
solver, which is the main contribution of this thesis. In this chapter, we will present further
implementation details, evaluate our method’s accuracy, and provide a comparison against
standard fluid simulation on a regular grid (e.g., the work in [Batty and Bridson, 2008]).

4.1 Implementation

Our simulation steps are outlined in Algorithm 1. Since it is trivial to advect marker
particles and to integrate the force of gravity (both can be simulated with an ODE solver),
we will not dedicate a section to them. Our C++ implementation uses Eigen [Guennebaud
et al., 2010] to handle linear algebra operations, and solves the SPD systems during the
pressure projection and the viscosity solve with the conjugate gradient method assisted by
an incomplete Cholesky preconditioner. We create the quadtree data structure based on
a stack of dense uniform grids. Each grid represents a level of the quadtree and has an
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affiliated bit array which marks the cells actually used in the data structure.

Algorithm 1: Viscous Fluid Simulation

Input :
fluid density;
MAC grid solid face areas;
initial (divergence-free) MAC grid velocities;
maximum time step size ∆t;
simulation stop time tf .

Output:
MAC level set value at each time step.

1 set t = 0
2 while t < tf do
3 use CFL condition to determine the actual time step δt ;
4 advect marker particles ;
5 compute fluid’s signed distance field (Section 2.4);
6 advect MAC grid velocities (Section 2.3);
7 apply gravity force to the MAC grid velocities;
8 apply viscosity force to the MAC grid velocities (Chapter 3);
9 perform pressure projection (Section 2.5);

10 extrapolate fluid velocities to zero-area faces;
11 increment t by δt;

12 end

Algorithm 2 provides a detailed explanation of line 7 of Algorithm 1 and is the main
contribution of this thesis. Our refinement strategy is to keep the liquid surface at the finest
resolution, and aggressively coarsen the quadtree as we move further into the interior of
the liquid. We therefore begin with the fine regular grid, and determine the first set of
cells to coarsen by thresholding the distance field. As such, we merge leaf cells when

φ(~x) > 1.5l,

where l is the length of a fine regular grid cell. Theoretically, we only need φ(~x) > l to
ensure the free surface cells all locate at the leaf level of the quadtree. But since the level
set field is just an approximation of the exact signed distances, we conservatively increase
the threshold to 1.5l which we observed to work well under the various scenarios we tested.
After creating this second to last level of the quadtree, we proceed to recursively merge cells
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whenever possible to do so while satisfying the constraint that the tree remains graded.

Algorithm 2: Apply Viscosity Force

Input :
fluid density;
fluid viscosity;
time step size δt;
regular grid velocities;
fluid signed distance field;
solid signed distance field.

Output:
updated regular grid velocities.

1 generate quadtree data structure based on the fluid signed distance field;
2 compute the linear interpolation operator mapping the velocities on the regular grid

to the quadtree grid (Section 3.5);
3 compute the deformation rate operator on the quadtree grid (Section 3.4.1);
4 compute the control volumes (Sections 3.4.2 and 3.4.3);
5 build and solve the linear system (Section 3.3.2);
6 map the updated velocities on the quadtree grid to the regular grid (Section 3.5).

4.2 Comparison with Regular Grid Results

Since this algorithm is developed for fluid simulation in the context of computer graphics,
we need to show it can generate similar visual behavior to its counterpart on a regular
grid, but with fewer degrees of freedom. We use the variational finite difference method
presented by [Batty and Bridson, 2008] as a baseline, and construct a quadtree grid based
on the same regular grid. In other words, the size of the finest grid cells on the adaptive
grid is the same as that of the regular grid cells. Figures 4.1 and 4.2 illustrate the results
produced using the algorithm of Batty and Bridson [2008] and our own, respectively. The
viscosity coefficient of the fluid is 1 kg/m·s, the maximum simulation step is 2 ms, and the
domain size is 1m by 1m.
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Figure 4.1: Screenshots of the fluid simulation on a regular grid at 0 ms, 80 ms, 160 ms, 240
ms, 320 ms and 400 ms.

Figure 4.2: Screenshots of the fluid simulation on a graded quadtree grid at 0 ms, 80 ms, 160
ms, 240 ms, 320 ms and 400 ms. Coarser cells are used in the liquid interior.
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Although the two animations are not exactly the same, our method preserves finely
resolved details on the liquid’s surface and yields buckling and folding behavior that is
qualitatively consistent with that of the regular grid algorithm. Table 4.1 presents the
average time of a complete simulation step, a viscosity integration step by itself, and a
linear system solve within the viscosity integration step. We simulate 600 ms of fluid
motion on a computer with 2.2 GHz Intel Core i7 CPUs and 16 GB 1600 MHz memory.

No. of Time
Steps

Total
Step(ms)

Viscosity
Step (ms)

Linear Sys-
tem (ms)

DOF

Regular grid 336 43.5 25.1 6.17 26311.0
Adaptive grid 358 82.6 63.3 3.46 13376.1

Table 4.1: Total number of time steps executed; average time spent on each simulation step,
viscosity integration step, and linear system solve; the average number of velocity degrees-of-
freedom in each case. The simulation runs from 0 to 600 ms.

The numbers of steps are different for the regular grid and the adaptive grid simulations
because we set the time step size no larger than that dictated by the CFL condition and
because the viscosity step in each case yields slightly different results, the two simulations
diverge mildly over time. Our algorithm successfully decreases the DOFs by a half through
the use of spatial adaptivity, and as such the corresponding linear system takes only about
60% as much time as its regular grid counterpart.

However, the viscosity simulation as a whole takes a longer time to finish on an adaptive
grid. This is because we have focused on developing and evaluating the feasibility of an
adaptive numerical discretization of viscosity, but our prototype implementation has not
yet been highly optimized at the code level. Some operations, such as getting a leaf cell
and retrieving a neighbouring node, may not be optimally efficient. In addition, since only
the viscosity is solved on adaptive grids, we have to map the velocity fields between a
regular grid and an adaptive grid before and after the simulation as explained in Section
3.5. This process takes around 20% of the total time to solve the viscosity step based on
our tests. Therefore, there are two possible ways to reduce the simulation time. One is
to build or use a more efficient quadtree data structure, such as a hierarchical sparse grid
representation proposed by Setaluri et al. [2014]. The other is to get rid of the mapping
process and simulate all steps on one adaptive grid by combining our method with the
method of Losasso et al. [2006a].

We create a second example to further demonstrate the advantage of our algorithm,
where more than half of the simulation domain is covered by the fluid. Such a scenario is
ideal for our algorithm because it allows a much larger volume of liquid to be efficiently
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simulated at a coarser resolution. Figures 4.3 and 4.4 show the animations generated by
the baseline algorithm and our own. The viscosity coefficient of the fluid is still set to 1
kg/m·s. Once again the results are qualitatively consistent.

Figure 4.3: Screenshots of the fluid simulation on a regular grid at 0 ms, 100 ms, 200 ms, 300
ms.

Figure 4.4: Screenshots of the fluid simulation on a graded quadtree grid at 0 ms, 100 ms, 200
ms, 300 ms. Different levels of coarse cells are used in the liquid interior.
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Table 4.2 presents the average computation time of the two algorithms. Our method
reduces the degrees of freedom by more than 80% and demonstrates the same simulation
time as the regular grid method. Thus we can see that the advantages of the adaptive grid
will depend significantly on the particular scene to be simulated. We are optimistic that
by adopting the optimizations suggested above in future work, our approach will be able
to surpass the speed of the baseline regular grid method.

No. of Time
Steps

Total Step
(ms)

Viscosity
Step (ms)

Linear Sys-
tem (ms)

DOF

Regular grid 301 89.2 56.1 20.1 76289.6
Adaptive grid 301 89.4 56.6 2.7 13505.5

Table 4.2: Total number of time steps executed; average time spent on each simulation step,
viscosity integration step, and linear system solve; the average number of velocity degrees-of-
freedom in each case. The simulation runs from 0 to 600 ms.

4.3 Rate of Convergence

In this section, we will present the results of our numerical experiments intended to evaluate
the convergence rate of our viscosity solver on quadtree grids. While the primary intended
application of our method is computer animation, where visuals may at times take priority
over strict numerical accuracy, it is nevertheless important to validate that our method
indeed correctly solves the PDE under consideration. To focus our analysis on the effects
of our proposed quadtree discretization (rather than the influence of irregular free surface
boundaries) and to allow for the straightforward derivation of analytical reference solutions,
we test the solver on several prescribed quadtree grids with different initial conditions on
closed square-shaped domains. Note that our numerical tests focus solely on our novel
viscosity step alone, and do not involve the remaining components of the regular grid fluid
solver.

Example 1: To derive our first test case, we first define the container where the simulation
is conducted as a π × π square box, and set the velocity field at t = ∆t to

u(x, y, t = ∆t) = sin(x) sin(y);

v(x, y, t = ∆t) = sin(x) sin(y).
(4.1)

Equation 4.1 satisfies a Dirichlet boundary condition that u = v = 0 on the boundary, Γf .
Since only the accuracy versus the grid cell size is investigated, we can calculate the ve-
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locity at t = 0 with the semi-discrete form of the viscosity equation (3.8) by analytically
integrating backwards in time by one step of length ∆t, to arrive at:

u(x, y, t = 0) =

(
1 +

3µ∆t

ρ

)
sin(x) sin(y)− µ∆t

ρ
cos(x) cos(y)

v(x, y, t = 0) =

(
1 +

3µ∆t

ρ

)
sin(x) sin(y)− µ∆t

ρ
cos(x) cos(y).

(4.2)

Then, we can use (4.2) as the input to our viscosity solver step, and compare its output
against the exact solution provided by (4.1). We measure the absolute value of the error
at each face position, and take the largest of these to find the L∞ error for a given grid
resolution. We test our algorithm on the following two quadtree grids.

Figure 4.5: Left: only a quarter of the grid is refined; Right: top half of the grid is refined.

The grids illustrated by Figure 4.5 are the base-level (coarsest) grids in the test, and we
evenly divide each grid cell into 4 sub-squares to generate the grid on each subsequent
level. If our method is first order accurate, we would expect that as we continually refine
the grid, the error observed at each refinement level will be approximately half that of the
preceding level. We set ∆t, ρ and µ to 1 in this example for simplicity. Tables 4.3 and 4.4
show the convergence results on the corner-refined and the top-half-refined grids. Since
the corner-refined grid is symmetric with respect to the diagonal line, the errors for u and
v are identical which explains why Table 4.3 only displays the results for u.
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Cells ‖ũ− u‖∞ order
7 1.23× 10−1 -
7× 41 5.86× 10−2 1.07
7× 42 3.17× 10−2 0.89
7× 43 1.64× 10−2 0.95
7× 44 8.33× 10−3 0.98
7× 45 4.19× 10−3 0.99
7× 46 2.10× 10−3 1.00

Table 4.3: L∞ error of velocities in viscosity solve on a corner refined quadtree grid.

Cells ‖ũ− u‖∞ order ‖ṽ − v‖∞ order
10 1.38× 10−1 - 1.42× 10−1 -
10× 41 5.05× 10−2 1.45 6.49× 10−2 1.13
10× 42 1.55× 10−2 1.70 3.25× 10−2 1.00
10× 43 4.24× 10−3 1.87 1.65× 10−2 0.98
10× 44 1.62× 10−3 1.39 8.33× 10−3 0.99
10× 45 8.12× 10−4 1.00 4.19× 10−3 0.99
10× 46 4.06× 10−4 1.00 2.10× 10−3 1.00

Table 4.4: L∞ error of velocities in viscosity solve on a top half refined quadtree grid.

To see the convergence behavior visually, we can draw a convergence graph in Figure
4.6 with the results in Table 4.3 and Table 4.4. On this loglog plot, we can see that under
refinement the slope of our error plot closely matches that of a first order method.
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Figure 4.6: Left: error of u or v on the corner-refined grid; Right: error of u and v on the
top-half-refined grid.

Example 2: For a slightly more complex case, we set u and v to different functions. At
t = ∆t,

u(x, y, t = ∆t) = sin(x) sin(y),

v(x, y, t = ∆t) = (x2 − πx)(y2 − πy).
(4.3)

Using the same approach to derive the corresponding analytical input function as in the
previous example, we can get u and v at t = 0:

u(x, y, t = 0) = sin(x) sin(y)− µ∆t

ρ
[(2x− π)(2y − π)− 3 sin(x) sin(y)] ,

v(x, y, t = 0) = (x2 − πx)(y2 − πy)− µ∆t

ρ

[
cos(x) cos(y) + 4(x2 − πx) + 2(y2 − πy)

]
.

(4.4)

The grids we used in Example 1 only contain two levels of cells. In order to demonstrate
that our algorithm works well on (graded) multi-level grids, we test it on the following grid.
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Figure 4.7: Corner-refined grid containing three levels of cells.

We still set ∆t, ρ and µ to 1 in this example and present the test results in Table 4.5.
Although the grid is still symmetric, our analytical u and v have different forms so the
convergence results are not identical. In any case, we once again observe first order con-
vergence behavior. Figure 4.8 shows the corresponding convergence graph.

Cells ‖ũ− u‖∞ order ‖ṽ − v‖∞ order
10 1.64× 10−1 - 9.54× 10−1 -
10× 41 9.17× 10−2 0.84 5.12× 10−1 0.90
10× 42 4.77× 10−2 0.94 2.59× 10−1 0.98
10× 43 2.40× 10−2 0.99 1.30× 10−1 0.99
10× 44 1.19× 10−2 1.01 6.51× 10−2 1.00
10× 45 5.93× 10−3 1.00 3.26× 10−2 1.00
10× 46 3.04× 10−3 0.96 1.63× 10−2 1.00

Table 4.5: L∞ error of velocities in viscosity solve on a three-level corner refined quadtree grid.
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Figure 4.8: Error of u and v on the three-level corner refined grid.

Example 3: As we mentioned in Section 3.2.1, an advantage of using the full form of the
viscosity equation over the Laplacian form is that it can simulate a fluid with spatially
varying viscosity. In this example, we want to demonstrate that fact on adaptive grids.
Suppose that the viscosity only changes along the x-axis and has the form:

µ(x) =
x

π
+ 0.5.

The analytical solution we set at t = ∆t is exactly the same as that in Example 1, which
is

u(x, y, t = ∆t) = sin(x) sin(y),

v(x, y, t = ∆t) = sin(x) sin(y).
(4.5)

However, since the viscosity is no longer constant, the values of u and v at t = 0 will be
different. We calculate the corresponding input functions via the semi-discrete equation
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again.

u(x, y, t = 0) = sin(x) sin(y)

− ∆t

ρ

[
2

π
cos(x) sin(y) + (cos(x+ y)− 2 sin(x) sin(y))

(x
π

+ 0.5
)]

,

v(x, y, t = 0) = sin(x) sin(y)

− ∆t

ρ

[
(cos(x) cos(y)− 3 sin(x) sin(y))

(x
π

+ 0.5
)

+
1

π
sin(x+ y)

]
.

(4.6)

Tables 4.6, 4.7 and 4.8 show the results on all three of the previously used base-level
grids, which again indicate first order accuracy.

Cells ‖ũ− u‖∞ order ‖ṽ − v‖∞ order
7 9.82× 10−2 - 1.22× 10−1 -
7× 41 6.13× 10−2 0.68 5.17× 10−2 1.24
7× 42 3.25× 10−2 0.92 3.12× 10−2 0.73
7× 43 1.66× 10−2 0.97 1.66× 10−2 0.91
7× 44 8.39× 10−3 0.98 8.45× 10−3 0.97
7× 45 4.21× 10−3 0.99 4.24× 10−3 0.99
7× 46 2.11× 10−3 1.00 2.12× 10−3 1.00

Table 4.6: L∞ error of velocities in viscosity solve on a corner refined quadtree grid.

Cells ‖ũ− u‖∞ order ‖ṽ − v‖∞ order
10 1.35× 10−1 - 1.53× 10−1 -
10× 41 4.64× 10−2 1.54 6.26× 10−2 1.29
10× 42 1.45× 10−2 1.68 3.24× 10−2 0.95
10× 43 3.87× 10−3 1.91 1.67× 10−2 0.96
10× 44 1.66× 10−3 1.22 8.45× 10−3 0.98
10× 45 8.20× 10−4 1.02 4.29× 10−3 0.98
10× 46 4.08× 10−4 1.01 2.17× 10−3 0.98

Table 4.7: L∞ error of velocities in viscosity solve on a top half refined quadtree grid.

The convergence graphs on different grids are given as follows. The matching slopes
illustrate that our algorithm can address problems involving varying viscosity without any
issue and still produce first order accurate results.
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Cells ‖ũ− u‖∞ order ‖ṽ − v‖∞ order
10 1.25× 10−1 - 1.22× 10−1 -
10× 41 6.33× 10−2 0.98 5.60× 10−2 1.12
10× 42 3.24× 10−2 0.97 3.12× 10−2 0.84
10× 43 1.66× 10−2 0.96 1.66× 10−2 0.91
10× 44 8.37× 10−3 0.99 8.44× 10−3 0.98
10× 45 4.20× 10−3 0.99 4.24× 10−3 0.99
10× 46 2.11× 10−3 0.99 2.12× 10−3 1.00

Table 4.8: L∞ error of velocities in viscosity solve on a three level corner refined quadtree grid.

Figure 4.9: Left: Error of u and v on the corner refined grid; Middle: Error of u and v on the
top refined grid; Right: Error of u and v on the three-level corner refined grid.
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Chapter 5

Conclusion

In this thesis, we have thoroughly reviewed the research on viscous fluid simulation in com-
puter graphics, and derived a symmetric positive-definite linear system from the variational
form of the viscosity equation to solve viscosity on an adaptive grid. Since our method
only refines the grid on the liquid interior and adopts the method of [Batty and Bridson,
2008] to treat the surface, it can naturally handle the complex free surface boundary con-
dition of viscous fluids. We have also demonstrated that our algorithm is able to generate
first-order accurate results and produce similar visual details compared to the regular grid
algorithm, while using far fewer degrees-of-freedom in the simulation. In addition, a novel
mapping method has been introduced to transfer the velocity fields between an adaptive
grid and a regular grid, which can be applied to embed our adaptive viscosity solver into
any standard Eulerian or FLIP/PIC inviscid fluid simulator on a regular grid.

5.1 Future Work

We have provided the mathematical expressions and a 2D implementation in this thesis, so
an intuitive extension would be a 3D implementation which is more useful in the context of
computer graphics. Since a 3D simulation normally involves more degrees-of-freedom than
a 2D one for a given grid resolution, we expect that our algorithm would further reduce
computation time spent in solving a linear system and thereby increase the simulation
speed. Additionally, we can combine our algorithm with the method of Losasso et al.
[2006a] that solves pressure and all the other fluid simulation steps on an adaptive grid.
This will entirely avoid the need to perform mappings between grids. As a matter of
fact, we have designed our method so that we don’t need to modify our existing tree
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structure to accommodate this change since Losasso et al. [2006a] stores velocity samples
at the same positions as ours. Another interesting research topic to investigate is how to
solve the pressure and viscosity together to achieve viscous coiling in 3D as explained in
[Larionov et al., 2017], but on an adaptive grid. Since the current method of [Larionov
et al., 2017] is a few times slower than the operator splitting method of [Batty and Bridson,
2008], the adoption of adaptive grids can hopefully minimize the difference. As mentioned
in Section 4.2, a better designed tree data structure and associated algorithms could be
utilized to accelerate the simulation speed and reduce memory usage, such as the SPGrid
[Setaluri et al., 2014]. Setaluri et al. [2014]’s work considered not only improving the
pointer-based representation of the tree, but also the development of an optimized parallel
implementation. Finally, our algorithm assumes that the adaptive grid it works on is
always graded which somewhat simplifies the implementation. We would like to explore if
it is possible to produce convergent results on a non-graded tree while ensuring the system
remains symmetric positive definite at the same time.
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