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Abstract

Lipid bilayers are key components of biomembranes; they are self-assembled two-

dimensional structures, primarily serving as barriers to the leakage of cell’s contents.

Lipid bilayers are typically charged in aqueous solution and may electrostatically interact

with each other and with their environment. In this work, we investigate electrostatics

of charged lipid bilayers with the main focus on the binding and bending of the bilayers.

We first present a theoretical approach to charge-correlation attractions between like-

charged lipid bilayers with neutralizing counterions assumed to be localized to the bilayer

surface. In particular, we study the effect of nonzero ionic sizes on the attraction by

treating the bilayer charges (both backbone charges and localized counterions) as forming

a two-dimensional ionic fluid of hard spheres of the same diameter D. Using a two-

dimensional Debye-Hückel approach to this system, we examine how ion sizes influence

the attraction. We find that the attraction gets stronger as surface charge densities or

counterion valency increase, consistent with long-standing observations. Our results also

indicate non-trivial dependence of the attraction on separations h: The attraction is

enhanced by ion sizes for h ranges of physical interest, while it crosses over to the known

D-independent universal behavior as h → ∞; it remains finite as h → 0, as expected for

a system of finite-sized ions.

We also study the preferred curvature of an asymmetrically charged bilayer, in which

the inner leaflet is negatively charged, while the outer one is neutral. In particular, we

calculate the relaxed area difference ∆A0 and the spontaneous curvature C0 of the bilayer.

We find ∆A0 and C0 are determined by the balance of a few distinct contributions: net

charge repulsions, charge correlations, and the entropy associated with counterion release

from the bilayer. The entropic effect is dominant for weakly charged surfaces in the

presence of monovalent counterions only and tends to expand the inner leaflet, leading
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to negative ∆A0 and C0. In the presence of even a small concentration of divalent

counterions, however, charge correlations counterbalance the entropic effect and shrink

the inner leaflet, leading to positive ∆A0 and C0. We outline biological implications of

our results.
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Chapter 1

Introduction

Electrostatic interactions play an important role in many biological processes since biomo-

lecules are typically charged in solution. It was shown that like-charged macromolecules

(e.g., DNA and membranes) can attract each other in solutions containing multivalent

counterions [1–3]. For example, multivalent polyamines, known to exist in the host bacte-

ria, can facilitate DNA packaging when added to an in vitro DNA solution [1,2]. Adding

multivalent counterions, such as Mg2+ or Ca2+, can also promote the adhesion of biomem-

branes [3]. The major components of biomembranes are lipid bilayers, which usually

contain a negative net charge, attracting positive ions in solution. It is known that

multivalency is required for the attraction [4].

Electrostatic interactions can also be important in membrane bending. One example

is the budding of charged vesicles, i.e., closed spherical bilayers. When subject to change

in some external conditions, a vesicle buds off from an existing biomembrane, while

connected to the biomembrane through a narrow neck [5]. The formation and size of the

vesicle is determined by the curvature of the membrane from which it buds. It is known

that membrane curvature can be induced by asymmetrical surface charges [6]. Thus the
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study of the underlying electrostatic mechanism of bilayer bending is crucial to better

understanding of the budding transition.

Another example that involves electrostatics induced bending is the diversity of red

blood cell (RBC) shapes. It has been known for many years [7] that the shape of RBC

can be transformed into various other shapes depending upon solution conditions such

as salt concentration, pH, and the presence of cholesterol [8, 9, 11]. The various RBC

shapes can be related to electrostatic interactions, since the charge asymmetry of RBC

membranes induces curvature: The inner leaflets of RBC membranes are rich in anionic

lipids while the outer ones are neutral. Such charge asymmetry can induce membrane

bending in a solvent-dependent way, resulting in shape changes.

1.1 Structure of a biomembrane

Amphiphilic molecules such as phospholipids can self-assemble into a variety of structures

in aqueous solutions. A typical lipid comprises a polar head group and a nonpolar tail of

hydrocarbon chains. At a water-oil interface, lipid molecules tend to form a monolayer

with the hydrophilic head group immersed in water and the hydrophobic tail in oil. In

a single solvent (e.g., water), these molecules can form a (closed) bilayer consisting of

two opposing monolayers. Note not all kinds of lipids tend to form bilayers. Lipids with

double chains are more likely to do so. The hydrophobic chains tend to stay inside the

bilayer to avoid contact with water, leaving head groups exposed to water.

A key component of a biomembrane is a lipid bilayer. Most lipids found in biomem-

branes are phospholipids, including phosphatidylserine (PS), phosphatidylglycerol(PG),

phosphatidylcholine (PC) and phosphatidylethanolamine (PE), characterized by their

chains and head groups. Some of them are charged (PS) at neutral pH, while others are

electrically neutral (PC). Biomembranes are usually immersed in salty solution containing
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mobile counterions (i.e., ions carrying opposite charges to the biomembranes), ions from

dissolved salts and other chemical components. The biomembrane and its environment

are electrically overall neutral.

In addition to phospholipids, a biomembrane also contains glycolipids, cholesterols,

embedded proteins, and glycocalyx, a sugary coat attached to glycolipids and proteins.

Due to the complexity of biomembranes, both experiments and theories find it useful to

consider pure lipid bilayers. Theoretically, such pure lipid bilayers are further simplified:

the molecular details of lipid head groups are ignored; the layer of head groups is con-

sidered as forming a two-dimensional surface. This surface has a planar charge density

if the bilayer contains charged lipids. The thickness of the bilayer is determined by the

hydrocarbon chain length (about 2 nm). Crude as it is, this simplification can be used to

study important features of electrostatics of the system, as will be seen in the remainder

of the thesis.

1.2 Distribution of counterions between two like-charged

plates

Two like-charged plates usually repel each other electrostatically in solution. However,

they can attract each other under special conditions [2]. In this case, counterions are

expected to play a key role. For negatively charged plates, they are cations such as [Na+]

and [Ca2+]. Being mobile, counterions may stay close to the bilayer at low temperatures,

or move away from it at high temperatures. To get some hint about the nature of such

attraction, we find it useful to study the spatial distribution of counterions between two

charged plates in solution.

The fundamental equation used to calculate the distribution of counterions is the

Poisson-Boltzmann equation. The Poisson equation relates charge density to the electrical
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potential:

∇2ψ(r) = −
4πZe

ǫ
ρ(r), (1.1)

where Z is the counterion valency, e is the elementary unit of charge, ǫ is the dielectric

constant of water, and ψ(r) and ρ(r) are the electrical potential and the number density

of counterions at position r, respectively. The chemical potential of counterions can be

written as

µ(r) = Zeψ(r) + kBT ln ρ(r), (1.2)

where kB is the Boltzmann constant and T is the temperature. In equilibrium, the

chemical potential is uniform everywhere. If we choose ψ(r0) = 0 and ρ(r0) = ρ0, the

number density of counterions follows the Boltzmann distribution:

ρ(r) = ρ0e
−

Zeψ(r)
kBT , (1.3)

This, when combined with Eq. 1.1, becomes the Poisson-Boltzmann equation,

∇2ψ(r) = −
4πZe

ǫ
ρ0e

−
Zeψ(r)
kBT . (1.4)

We now consider two parallel plates perpendicular to z-axis, separated by a distance

h, immersed in solution where only counterions are present. Each plate is negatively

charged with surface charge density σ = −eσ0. If we choose z = 0 in the middle of the

two plate, and ρ(0) = ρ0, the Poisson-Boltzmann equation can be solved and ρ(z) is given

by [10]

ρ(z) =
ρ0

cos2(Kz)
, (1.5)

where

K2 =
(Ze)2ρ0ℓB

2
, (1.6)

where ℓB = e2/ǫkBT is the Bjerrum length, a length scale at which the electrostatic

energy and the thermal energy become comparable, and ρ0 is given by the boundary
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condition

dψ(z)

dz

∣

∣

∣

∣

z=h/2

=
σ

ǫ
. (1.7)

The distribution reflects the competition between entropy and energy. Entropy favors a

uniform distribution, while energy drives counterions to the plates. When the two plates

are brought together, the counterions tend to be pulled back to the plates, in effect against

entropy. Thus entropy results in repulsion between two plates. To understand how the

two plates attract each other, we need to consider two processes: counterion condensation

and charge correlation.

1.3 Counterion condensation and charge correlation

For a highly charged plate, electrostatic energy will dominate entropy so that a majority

of counterions are located within a thin layer near the plates. The thickness of this

layer is typically on the order of the Gouy-Chapman length λ = (2πℓBσ0)
−1, the length

scale beyond which most of surface charges are neutralized. In the limit of high charge

densities, λ is much smaller than h, the separation of the two plates. Thus this layer

can be considered essentially two-dimensional and counterions are localized to the plates.

This is referred to as counterion condensation [12].

Condensed counterions not only neutralize surface charges but also make charge dis-

tributions heterogeneous, which become correlated from one plate to the other. On each

of the two plates, a positive charge tends to be surrounded by a negative ionic cloud,

while a negative charge prefers to be surrounded by a positive ionic cloud. When the

two plates get close, a positive rich part on one plate attracts a negative rich part on the

other plate, leading to attraction.
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1.4 Bending of a bilayer membrane

Lipid bilayers are self-assembled structures. They are soft and flexible, thus exhibiting a

rich set of conformational behavior (shapes, undulation, budding). The driving forces for

lipid aggregation are weak van der Waals, hydrophobic and screened electrostatic inter-

actions, i.e., non-covalent bonds. Change in solution conditions such as ion concentration

or valency will not only influence interactions between bilayers but also affect forces be-

tween lipids and thus modify the area and shape of the bilayer. Therefore, we shall study

these weak interactions in order to understand the conformational properties of bilayers.

In particular, we focus on the effect of electrostatic interactions on bilayer bending. To

this end, we treat a bilayer as a fluid-like structure, composed of two monolayers. Sub-

ject to forces, it can undergo two types of deformations: in-plane deformation, such as

compression or stretching, and out-of-plane deformation, i.e., bending. Normally, the two

types of deformation are coupled to each other due to the finite thickness of the bilayer:

bending makes one leaflet compressed and the other stretched out.

Bending of a bilayer is described by its preferred curvature, which has two different

physical origins: first, the intrinsic spontaneous curvatures of two monolayers determine

the spontaneous curvature of the bilayer; second, the relaxed area difference between

the inner and the outer monolayers give rise to a unique contribution to the preferred

curvature. These two effects combine into an effective curvature (preferred curvature) [13].

This quantity can be measured experimentally [14,15].

1.5 About this thesis

In Chapter 2, we will present a theoretical approach to attractions between like-charged

bilayers with neutralizing counterions. Counterions are assumed to be localized to the
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bilayer surfaces. The attractions arise from charge correlations between surface charge

and counterions. In particular, we study the effect of nonzero ionic sizes on the attraction.

The relaxed area difference between two leaflets of an asymmetrically charged bilayer

is calculated in Chapter 3. The relaxed area difference is determined by interactions

on the lipid-water interface and can be modified by electrostatic forces between surface

charges and counterions.

Based on a microscopic model that describes the spontaneous curvature of a mono-

layer, we develop in Chapter 4 a formalism to calculate the spontaneous curvature of

an asymmetrically charged bilayer. In particular, we focus on the interplay between

charge asymmetry and counterion valency. We briefly discuss biological implications of

our result.

7



Chapter 2

Nonzero ionic size and

charge-correlation forces between

bilayers

2.1 Introduction

Counterion-induced attractions between like charges are ubiquitous in biology, as a large

class of biological processes rely on these attractions [1, 2, 16–18]. Some viruses use mul-

tivalent counterions in their host cells to package their DNA, which carries a negative

charge in aqueous solution [1, 2]. These attractions are also responsible for the forma-

tion of bundles of other kinds of stiff polyelectrolytes such as microtubules and actin

filaments [16], which are crucial to the mechanical properties of living cells. Membrane

adhesion can also be promoted by multivalent counterions such as Mg2+ and Ca2+ [3].

Since the mean field approach of Poisson-Boltzmann theory always predicts repul-

sion between like charges, the electrostatic mechanism behind these observations has
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been a subject of intensive research in the past few decades, producing a number of

seemingly-distinct theoretical approaches [12,19–30]. In all these approaches, the attrac-

tion arises from correlations between counterions, especially those in the close proxim-

ity of their co-ions. The major difference between them lies in the way they capture

ion correlations. For example, an integral-equation method has been used to account

for counterion-density correlations [19, 20]. This approach relies on an approximation

scheme, namely a closure for pair correlation functions, and often requires heavy numeri-

cal analysis. In more analytical treatment [23,28], charge fluctuations are captured at the

Gaussian level. For unscreened planar cases (e.g., charged bilayers in a low-salt limit), the

electrostatic pressure shows universal power-law behavior at large separations [20,21,23]:

Π(h/λ → ∞) ≡ Π∞ ∼ −kBT/h3, where λ is the Gouy-Chapmann length, a length scale

within which most counterions are localized (see the more precise definition of λ below

Eq. 2.5). This result is independent of surface charge densities and counterion valency. In

a low-temperature picture [27], the attraction is reminiscent of a strong charge correlation

that drives the system into an ionic crystal at zero temperature and decays exponentially

with h. There are some variations of this approach [29, 30], but they do not deviate in

spirit significantly from it. More recently, it’s been shown that a more complete theory

should incorporate both kinds of behavior [31,32]: the power-law pressure and the expo-

nential pressure. Depending on surface charge densities or temperature, the short-ranged,

exponentially-decaying pressure can be dominant at short separations, but it should cross

over to the power-law pressure as h increases. Finally, strong-coupling (SC) theory has

been proposed that becomes asymptotically exact in the strong coupling limit (i.e., low

temperatures, high surface charge densities, and large counterion valency) [33,34]. While

the SC approach is supported by simulations in the SC limit [33,34], the relation between

the low temperature picture and the SC approach has yet to be explored.

Despite all this effort, the problem of counterion-induced attraction still remains chal-
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lenging. Many existing (analytically tractable) theoretical approaches [12, 17, 20, 22–30]

rely on a common approximation for charges: point charges. While some aspects of

nonzero ionic sizes were discussed in a more numerical treatment in the literature (see,

for example, Ref. [20]), a more comprehensive picture is highly desirable. In this chapter,

we develop a more analytical approach that will provide a more direct picture of how

finite ionic sizes influence the electrostatic attraction. We discuss the effects of ionic sizes

on the electrostatic attraction between like-charged surfaces. We will use two-dimensional

Debye-Hückel (DH) theory (i.e., linearized Poisson-Boltzmann theory) for highly charged

surfaces with neutralizing counterions assumed to be localized to the surface—delocalized

counterions will not be taken into account. Here, both backbone charges and counteri-

ons are modeled by hard spheres of the same diameter D as in the restrict primitive

model [38]. The main advantage of our approach lies in that it provides a simple physi-

cal picture for the attraction without being complicated by other competing effects. We

find that the effect of finite D is dramatic: In contrast to Π∞, which is independent of

σ (planar charge densities) or Z (counterion valency), the DH pressure for D > 0 can

be sensitive to σ and gets stronger as σ or Z increases in magnitude (unless h is too

small). This is intriguing as it indicates that ionic sizes influence σ (or Z)-dependence

of the pressure. Our results are consistent with long-standing observations of stronger

attractions for higher σ0 or larger Z [20, 27, 35, 36]. Our results also indicate non-trivial

dependence of the attraction on h. While the attraction reduces to the limiting pressure

Π∞ in the limit h → ∞, it shows D dependence for h ranges of physical interest. The

attraction is enhanced by ionic sizes for moderately large h (h & 5Å), but it approaches

a finite value as h → 0. The ionic size enhances a charge polarity, leading to a stronger

attraction unless h is too small. On the other hand, the free energy (per area) for D > 0

is finite, leading to a finite attraction (per area) as h → 0. However, our approach may

leave out strong coupling between ions that becomes important at low temperatures and
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can be considered as complimentary to SC theory [33,34].

2.2 Model and interaction free energy

We consider two parallel surfaces perpendicular to z-axis, a distance h apart. Each surface

is assumed to be negatively charged with the same backbone charge density σ ≡ −eσ0.

For sufficiently large σ0 (> 0), the Gouy-Chapman length λ, a length scale beyond which

each surface is neutralized, is smaller than typical ion sizes. In this case, it is useful to

classify counterions into two subclasses [12,17]: “condensed” and “free”. In this simplified

picture, both backbone charges and condensed counterions are approximated to lie in the

same plane of the surface—they give rise to in-plane charge fluctuations that become

correlated from one surface to the other, leading to an attraction. For simplicity, we will

not include free (delocalized) counterions. As a result, we limit ourselves to unscreened

cases only, i.e., κ → 0, where κ−1 is the Debye screening length. Here, we adopt the

so called restricted primitive model [37, 38] of ions and treat both backbone charges and

condensed counterions as hard spheres of the same diameter D, carrying charge at the

center. As a result, the interaction between two charges q and q′ separated by a distance

r assumes the following form [38]:

U(r) =







∞, r < D

qq′

ǫr r > D
. (2.1)

Here the dielectric constant ǫ is assumed to be constant throughout the system (thus

suppressing dielectric discontinuity) and will be taken to be that of water. Furthermore,

we assume that condensed counterions have the same valency Z. This is reasonable, since

multivalent counterions are preferentially adsorbed onto a highly charged surface [10].

In order to treat condensed counterions and backbone charges on equal footing, we use

Zαe to denote the charge on the two different kinds of ions: Zα = Z for counterions and
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Zα = −1 for backbone charges. The overall electric neutrality then requires
∑

α Zασα =

0 [39] (Note Zαeσα is the surface charge density of the αth kind of ions). Most of crucial

properties of the resulting system can be studied by holding an ion on one of the surfaces

and examining how other ions respond to it [37,38]. To this end we put an ion of charge

Zα at the origin on surface 1, and calculate the electric potential created by this ion and

the surrounding ionic cloud of opposite charge, denoted by Ψj(r), where j(= 1, 2) runs

over surfaces at z = 0 and h, respectively. The electrostatic potential at position r is

then described by the Poisson-Boltzmann equation:

∇2Ψ(r) = −
4π

ǫ
ρ(r), (2.2)

and

ρ(r) =







Zαeδ(r) r < D

e [δ(z) + δ(z − h)]
∑

α σαZαe−βZαeΨ(r) r > D
, (2.3)

where β = 1/kBT and δ(z) is the Dirac δ function, which arises as counterions are

localized to the surfaces.

In Debye-Hückel theory, the above equation at r > D is linearized [38] as follows:

e−βZαeΨ(r) ≃ 1 − βZαeΨ(r), (2.4)

such that

ρ(r) = e [δ(z) + δ(z − h)]

[

∑

α

σαZα − βeΨ(r)
∑

α

σαZ2
α

]

= −
ǫ

2πλ
Ψ(r) [δ(z) + δ(z − h)] . (2.5)

where λ−1 = 2πℓB
∑

α Z2
ασα and ℓB = e2/ǫkBT . Note we have used the condition

∑

α Zασα = 0. The validity of this approach can be checked a posteriori–see the relevant

discussion below Fig. 2.4. The overall neutrality requires λ−1 = 2πℓB (Z + 1) σ0. The

electrostatic potential is then given by the following differential equation:

∇2Ψ(r) =







−4π
ǫ Zαeδ(r) r < D

2
λΨ(r) [δ(z) + δ(z − h)] r > D

, (2.6)
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Here we are particularly interested in the electric potential in the plane of the surface:

ψ1(r⊥) ≡ Ψ(r⊥, z = 0) and ψ2(r⊥) = Ψ(r⊥, z = h), where r⊥ = (x, y). By solving

Eq. 2.6, we find, for r > D,

ψ1(r⊥) = Av11 −
λ−1

2π

∫

dr′⊥

2
∑

j=1

ψj(r
′

⊥)v1j(r
′

⊥ − r⊥)

ψ2(r⊥) = Av12 −
λ−1

2π

∫

dr′⊥

2
∑

j=1

ψj(r
′

⊥)v2j(r
′

⊥ − r⊥), (2.7)

where vij = 1/
√

r2
⊥

+ h2
ij and hij = h if i 6= j and 0 otherwise. The first term of each

equation above, Avij , is the bare interaction between two ions on surface i and j re-

spectively; the second term is the screened interaction. Note here that the integration

constant A is not automatically set in the two-dimensional case, in contrast to the corre-

sponding three dimensional case where it is fixed by Gauss’ law [37]. If we apply Fourier

transform to Eq. 2.7, we can calculate ψ1(r⊥) and ψ2(r⊥). It proves useful to introduce

a matrix M defined by matrix elements:

Mij(k⊥) = δij +
e−hijk⊥

λk⊥
. (2.8)

Note e−hijk⊥/k⊥ is the Fourier transform of vij . In terms of this, ψ1(r⊥) and ψ2(r⊥) are

given as follows

ψ1(r⊥) = Aλ

∫

dk⊥

(2π)2
M11(k⊥) [M11(k⊥) − 1] − M2

12(k⊥)

det [M(k⊥)]
eik⊥·r⊥ ,

ψ2(r⊥) = Aλ

∫

dk⊥

(2π)2
M12(k⊥)

det [M(k⊥)]
eik⊥·r⊥ , (2.9)

The θ integral in the above equations can be carried out:

1

2π

∫

dθ eik⊥·r⊥ = J0(k⊥r⊥), (2.10)

where J0(x) is the zeroth-order Bessel function of the first kind. From this we obtain

ψ1(r⊥) = Aλ

∫

k⊥dk⊥
M11(k⊥) [M11(k⊥) − 1] − M2

12(k⊥)

det [M(k⊥)]
J0(k⊥r⊥),

ψ2(r⊥) = Aλ

∫

k⊥dk⊥
M12(k⊥)

det [M(k⊥)]
J0(k⊥r⊥). (2.11)
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The constant A can be determined by imposing the electric neutrality condition. Due to

this condition, an ion (with charge Zαe and diameter D) at the origin is neutralized by

its ionic cloud. Thus we have

−Zαe =

∫

r>D
dr ρ(r). (2.12)

Note the above integral runs from r = D to infinity. When combined with Eq. 2.5,

Eq. 2.12 becomes

Zαe =
ǫ

2πλ

[∫

r>D
drΨ(r)δ(z) +

∫

r>D
drΨ(r)δ(z − h)

]

=
ǫ

2πλ

[∫

r>D
dr⊥ ψ1(r⊥) +

∫

dr⊥ ψ2(r⊥)

]

=
ǫ

λ

[∫

∞

D
dr⊥r⊥ψ1(r⊥) +

∫

∞

0
dr⊥r⊥ψ2(r⊥)

]

. (2.13)

Note that the region r⊥ < D is included in the second integral. The explicit expression

for A is given by Eq. A9 in the Appendix.

Following the Debye charging process [37, 38], the charge fluctuation contribution

to the free energy can be obtained. If we consider ψ1 as a function of r⊥ and e, i.e.,

ψ1(r⊥, e), then the electrostatic free energy of each plate per unit area is given as the

following integral:

F

kBT
=

1

2π

(

ǫ

λZαe

∫ 1

0

dζ

ζ
ψ1(D, ζe) −

1

2Dλ

)

. (2.14)

Note that ψ1 incorporate both inter-plate and in-plane charge correlations and is h-

dependent (see Eq. A10 for explicit expression). The free energy in Eq. 2.14 enables us to

systematically study the effect of ionic sizes on the electrostatic attraction between the

two plates.

As D → 0, our approach reproduces the known result for point charges [23]. This can

be seen by requiring D = 0 in Eq. A10. Thus the expression for ψ1(r⊥) has a simpler
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form,

ψ1(r⊥) =
Zαeλ

ǫ

∫

∞

0
k⊥dk⊥

M11(k⊥) [M11(k⊥) − 1] − M2
12(k⊥)

det [M(k⊥)]
J0(k⊥r⊥). (2.15)

The free energy is

F

kBT
=

ǫ

2πλZαe

∫ 1

0

dζ

ζ
ψ1(D = 0, ζe)

=
1

2π

∫ 1

0

dζ

ζ

∫

∞

0
k⊥dk⊥

M11(k⊥) [M11(k⊥) − 1] − M2
12(k⊥)

det [M(k⊥)]

∣

∣

∣

∣

e→ζe

. (2.16)

The ζ-integral in the above equation can be carried out to yield

F

kBT
=

1

8π

∫

∞

0
k⊥dk⊥ ln {det [M(k⊥)]} , (2.17)

which is the same as in Ref [23].

2.3 Results and discussions

To study the effect of ionic sizes, we have computed the free energy per unit area with

reference to h = ∞: ∆F = F(h) −F(h = ∞). Fig. 2.1 shows ∆F (in units of kBT ) as a

function of the separation h for different values of the diameter D. We have chosen the

parameters T = 300K, ǫ = 80 (hence ℓB = 7.1Å), and λ = 1Å (typical value for DNA

or fully charged bilayers). Ionic sizes have non-trivial effects on ∆F : For h & 5, ∆F

gets more negative as D increases. A plausible reason for this is that larger D results

in a larger charge polarity–the charge distribution is more heterogeneous–and hence an

enhanced attraction. To understand this more clearly, consider a backbone charge on

one of the plates (assumed to be at the origin) and its ionic cloud of thickness ∼ λ.

Beyond the length scale ∼ D + λ, this plate will appear to be overall neutral to charges

on the other plate. Accordingly, this charge (surrounded by the ionic cloud) can be more

sensitively felt by counterions on the other plate if D is larger. This may account for
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Figure 2.1: The electrostatic free energy of each plate per unit area, ∆F , as a function of

separations h for various choices of D. We have chosen T = 300K, ǫ = 80, and λ = 1Å.

For h & 5Å, the free energy gets more negative as the ion size D increases. For λ = 5Å

(see the inset), however, ∆F is less sensitive to D as long as h & 5Å. As h → 0, however,

∆F in both cases remains finite as long as D > 0 and is less attractive for larger D.

a stronger attraction between the plates for larger D. (Similar arguments based on a

zero-temperature picture can be found in Ref. [27].)

On the other hand, for smaller h, larger D implies a weaker attraction. At first

glance, this is somewhat puzzling. As it turns out, small-h behavior reflects single-plate

properties. As h → 0, the two plate system resembles a single plate with a surface charge

density twice that of each plate: ∆F(σ, h ≈ 0) ≈ F1(2σ) − 2F1(σ), where F1(σ) ≡

F(σ, h = ∞) is the corresponding free energy of each plate [37]. For point charges, F1

diverges (opposite charges can get arbitrarily close to each other). We find that, for

D ≪ λ, limh→0 ∆F → −(kBT/4πλ2) log( λ
D ). For D ≫ λ, however, limh→0 ∆F(h) →

−
(

kBT/4πD2
)

log(D
λ ). This analysis implies that |∆F(h ≈ 0)| decreases as D increases

and remains finite as long as D > 0, consistent with our results in Fig. 2.1.

For the more weakly charged case of λ = 5Å (see the inset), however, ∆F is almost

insensitive to D for large h, i.e. h & 5Å. On the other hand, for h . 5Å, the effect of
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Figure 2.2: Log-log plot of ∆F , i.e., the electrostatic free energy of each plate per unit

area as a function of separations h, for (a) λ = 1Å and (b) λ = 5Å. We have chosen

T = 300K and ǫ = 80. (a) The free energy curve for D = 0 (∆F0) is a straight line with

a slope 2, confirming the known universal result: ∆F∞ ∼ −kBT/h2. The free energy

curve for D = 5Å is no longer a straight line, indicating the existence of multiple scaling

regimes: The slope of δ∆F ≡ ∆F(D = 5Å) − ∆F0 approaches s ≈ 2.9 as h → ∞. Our

analysis suggests that the free energy is dominated by δ∆F ∼ 1/hs for h . hcr ≈ 40Å

and crosses over to ∆F∞ at h ≈ hcr. (b) For a larger λ = 5Å, the crossover takes place

at a smaller value of h: hcr ≈ 20Å. Note that the free energy for D = 0 in this case is

essentially the same as in the previous case (a) for h ≫ λ, as expected.

nonzero D becomes more pronounced; |∆F(h < 5Å; D > 0)| is smaller for larger D, as

in the case of λ = 1Å.

To study the h dependence of the free energy (per area-plate), i.e., ∆F , we have

displayed |∆F| in units of kBT as a function of h in a log-log plot, for two different

choices of D (see Fig. 2.2): D = 0 (dashed line) and D = 5Å (circles). We have chosen

T = 300K and ǫ = 80. Fig. 2.2 (a) and (b) correspond to λ = 1Å and λ = 5Å,

respectively. First consider the case λ = 1Å in (a). In this case, the free energy for D = 0,

∆F0 ≡ ∆F(D = 0), essentially follows the universal scaling behavior, ∆F∞ ∼ −1/h2.
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The D = 0 curve is essentially a straight line with a slope of about 2 throughout the

entire range of the plot (h ≥ 5Å). On the other hand, the h-dependence of ∆F for

D = 5Å is more complicated. The free energy is no longer a straight line in the log-log

plot, indicating the existence of multiple scaling regimes. To analyze this case, we plot

the difference δ∆F ≡ ∆F(D = 5Å) − ∆F0 (triangles). The 1/h2 dependence has been

subtracted and the resulting δ∆F should reflect ion sizes (and charge densities)—δ∆F

depends on D (and λ). The slope of this curve s becomes steeper as h increases and

thus does not assume a simple scaling form. It, however, eventually becomes a constant

s ≈ 2.9 as h → 1000Å. This implies that, for large h, ∆F ∼ ∆F∞ + a3/hs, where a3

is the coefficient of the 1/hs term. This large h behavior is consistent with Ref. [20] in

which it was shown that Π − Π∞ ∼ −A4/h4 in the limit of h → ∞, where λ and D

dependence is implicitly included through the coefficient A4. In this expansion or our

our free energy expansion, the term depending on D (and λ) decays faster than ∆F∞.

To understand this, first recall that long-wavelength fluctuations lead to a long-ranged

interaction; if ∆F∞ arises from k⊥ ≃ 0, then higher order terms come from higher k⊥.

In light of this, it is not surprising that ∆F∞ does not reflect λ or D dependence, which

should be washed out at large-length scales (see also Ref. [20]). A straight line tangent

to this curve at large h (h = 1000Å) intersects the D = 0 curve at h = hcr ≈ 40Å. This

implies that the crossover from 1/h2 to 1/hs takes place at h = hcr. For h < hcr, the free

energy decays as 1/hs. Beyond this separation, however, it is dominated by ∆F∞.

Fig. 2.2(b) shows the corresponding results for λ = 5Å. First note that, for h ≫ 5Å,

the D = 0 curve (∆F0) is essentially the same as in the case λ = 1Å; ∆F0 for h ≫ λ

follows a universal scaling law [20, 23]. The main difference between the cases (λ = 5Å

and λ = 1Å) is through the D-dependent term δ∆F ∼ 1/hs and is two fold: For the larger

λ, the free energy is less negative and the crossover takes place at a smaller separation

(hcr ≈ 20Å). Consequently, the effect of nonzero ionic sizes becomes more pronounced
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for more highly charged surface—the prefactor of δ∆F is larger in magnitude for smaller

λ.

In light of our results in Fig. 2.2, we have carried out an asymptotic analysis of the

free energy ∆F (per area-plate). In this limit h ≫ D ≫ λ, we find (in the Appendix)

∆F

kBT
∼ −

ζ(3)

32π

[

1

h2
+

D

h3
ln

h

λ

]

, (2.18)

where ζ(n) is zeta function with ζ(3) ≈ 1.202. The first term is the universal power law

∆F∞. On the other hand, the second term arises from finite ionic sizes and makes the

free energy more negative. Strictly speaking, this result is valid in the limit h ≫ D ≫ λ.

Nevertheless this illustrates the significance of finite ionic sizes: The main effect of finite

ionic sizes is to make charge distributions more heterogeneous, leading to a larger charge

polarity (hence a stronger attraction). It’s worth comparing this with the corresponding

expansion for D = 0: ∆F0 ∼ −
(

h−2 − 2λh−3
)

. The second term in this equation is

distinct from the D-dependent term in Eq. 2.18). If the former is repulsive, the latter

is attractive. Along this line, it should be emphasized that the latter is analogous to

δ∆F ∼ −1/hs in Fig. 2.2, in the sense that this makes the attraction stronger and is

dominant up to hcr, which is larger for larger σ0. On the other hand, the 1/h3 contribution

for D = 0 becomes negligible for highly charged cases. Finally our asymptotic result in

Eq. 2.18, especially the second term, is valid for h ≫ D ≫ λ; δ∆F approaches this

term in this limit. In intermediate regions, the D or λ-dependence of δ∆F can be more

complicated than this implies.

In Fig. 2.3, we present electrostatic pressures (per unit area) Π obtained from a few dif-

ferent approaches: the universal pressure, i.e., Π∞ ∼ −kBTζ(3)/8πh3 with ζ(3) = 1.202...

and ζ(n) being the Riemann zeta function (thin solid line), DH theory of point charges [23]

(dotted lines), our DH approach for D > 0 (thick solid lines), and the hypernetted chain

(HNC) approximations (diamonds) adopted from Figure 3 of Ref. [20]. Note that essen-
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Figure 2.3: Log-log plot of the electrostatic pressure Π per unit area as a function of

separations h, for (a) σ−1
0 = 500Å

2
, Z = 1, (b) σ−1

0 = 200Å
2
, Z = 1, and (c) σ−1

0 = 75Å
2
,

Z = 2. In all cases, T = 300K and ǫ = 80. Both our results (DH (D = 4Å)) and

the hypernetted chain (HNC) approximations for D = 4Å from Ref. [20] (diamonds) are

more attractive than the corresponding DH results for D = 0; the effect of nonzero ionic

sizes is more pronounced for larger σ0. As h → ∞, all these results tend to collapse onto

the limiting pressure Π∞ = Π(h → ∞) ∼ −kBT/h3. The agreement between the HNC

results and ours is excellent except for Π at h ≃ 5Å in (c).
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tially the same model was used in the HNC calculations: two overall neutral surfaces

carrying mobile cations and anions. In our convention Π = −∂ (2∆F) /∂h. (Recall ∆F

is the free energy per plate-area.) For our calculations, we have chosen the parameters

consistent with Ref. [20]: D = 4Å, T = 300K, ǫ = 80 (dielectric discontinuity is sup-

pressed in these cases), (a) σ−1
0 = 500Å

2
and Z = 1 (λ = 5.6Å), (b) σ−1

0 = 200Å
2

and

Z = 1 (λ = 2.24Å), and (c) σ−1
0 = 75Å

2
and Z = 2 (λ = 0.56Å). In all these cases,

both the HNC results and ours are more attractive than the D = 0 curves (by several

factors at most) for the range shown (h ≥ 5Å). This clearly suggests that finite ionic sizes

enhance the attraction (unless h is too small). For this reason, our results for D = 4Å

agree better with the HNC results than the D = 0 curves. The agreement is excellent for

h & 5Å in (a) and (b). The discrepancy between ours and the HNC result for σ−1
0 = 75Å

2

at small separations can be attributed to the appearance of a short-rage pressure in the

later, which our DH approach suppressed. But note that, in a bilayer system at room

temperature, this high density is only realized when the bilayer is fully charged. As h

increases, all these results tend to collapse onto the asymptotic pressure as they should.

The results in the figure also show how D = 0 curves approach the universal pressure Π∞

as σ0 increases. Also Π∞ appears to be favorably compared with both our result and the

HNC result for σ−1
0 = 200Å

2
. But this is a coincidence; if we chose larger values of D,

then both ours and the HNC results would predict more attractive pressures, while Π∞

remains the same.

To further study the consequence of finite ionic sizes, we plot, in Fig. 2.4, the free

energy per unit area ∆F (in units of kBT ) as a function of λ. We have chosen h = 10Å,

T = 300K, and ǫ = 80. As shown in the figure, ∆F is sensitive to λ and is more attractive

for small λ (corresponding to high σ0 or Z). These results are consistent with numerical

data [35, 36] but deviate from the corresponding results for point charges (the dotted

line), which is roughly independent of λ. The results for point charges are somewhat
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Figure 2.4: The electrostatic free energy per unit area (in units of kBT ) as a function

of λ. We have chosen h = 10Å, T = 300K, and ǫ = 80. As shown in the figure, ∆F is

sensitive to λ and is more attractive for small λ (corresponding to highly charged case).

different from λ-independent ∆F∞; the latter is simply the large h limit of the former.

Note here that the difference between the D = 0 pressure and the results for D 6= 0 in

Fig. 2.4 solely comes from nonzero ionic sizes, since the two are otherwise identical. This is

intriguing since it implies that short-length scale properties, i.e., ionic sizes, qualitatively

modify λ dependence of ∆F (unless h/λ is too large). For D = 0, the asymptotic limit,

characterized by Π∞, is realized if h ≫ λ. Our results in Fig. 2.2, however, indicate that

for D > 0 a new length scale comes: hcr, which is typically much larger than D (see

the relevant discussion around Fig. 2.2). In this case, the asymptotic region is reduced

down to h ≫ hcr. For h . hcr, the electrostatic pressure is sensitive to λ as evidenced in

Fig. 2.4; it is more sensitive to λ and larger in magnitude for larger D (for h = 10Å).

Our DH approach amounts to keeping charge fluctuations at the Gaussian level, leav-

ing out strong charge fluctuations at short length scales as implied by oscillatory charge

correlations at low temperatures [31]. In a linearized approach, some of this effect can

be, in principle, incorporated by allowing the formation of ion pairs between backbone

charges and counterions as much the same way as in the two state model for counteri-
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ons. Moreover, it has been shown that out-of-plane charge fluctuations are important

and thus the two-dimensional DH approach inevitably underestimates the negative pres-

sure [24,34]. In this regard, the spatial distribution of counterions will further complicate

Π. Hence further consideration is certainly warranted. Nevertheless our results can be

used to check the self-consistency of our DH approach within the two-state model of

counterions. In the case of physical interest i.e., h & D ≃ 5-10Å, the magnitude of the

h-dependent correlation energy is smaller than kBT . In that case, the DH approach ought

to be good. The agreement of our results with those adopted from Ref. [20] is hence not

accidental.

2.4 Conclusion

We have developed a theoretical formalism to account for the interplay between ionic

sizes and the electrostatic attraction between like charged bilayers. To this end, we have

modeled ions (both lipid charges and condensed counterions) as charged hard spheres of

diameter D as in the restricted primitive model of a simple ionic fluid. Using a (two-

dimensional) Debye-Hückel approach to this system, we have examined how nonzero ionic

sizes are intertwined with the attraction. The nonzero ionic size can qualitatively modify

the attraction. In the case of physical interest (h & 5Å), it enhances the attraction.

A plausible reason for this is that the in-plane charge distribution becomes more het-

erogeneous as D increases, resulting in a larger charge polarity and hence an enhanced

attraction. Also the attraction gets stronger as the surface charge density (in units of −e)

σ0 increases, consistent with known results [20,27,35]. This observation is interesting, as

it implies that the ionic size influences σ0 dependence of the attraction. In other words,

these two effects (ionic sizes and σ0-dependence of the attraction) are coupled to each

other—the attraction is more sensitive to σ0 for larger D. Our results are in accord with
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the long-standing observation of enhanced attractions for high charge densities or large

valency and also predicts more realistic results for the pressure that remains finite as

h → 0. The main advantage of our approach is that it allows us to systematically study

the correlation attraction, without relying on additional approximations/assumptions be-

sides linearization that might obscure the essential physics of correlation attractions.

2.5 Appendix

In this appendix, we present an asymptotic result for the free energy (per plate-area),

∆F = F(h) − F(h = ∞), in the limit of h ≫ D ≫ λ. To this end, we first write ψ1(r⊥)

explicitly as an integral with respect to k⊥; if we define

ψ1(r⊥) =

∫

k⊥dk⊥
M11(k⊥) [M11(k⊥) − 1] − M2

12(k⊥)

det [M(k⊥)]
J0(k⊥r⊥),

ψ2(r⊥) =

∫

k⊥dk⊥
M12(k⊥)

det [M(k⊥)]
J0(k⊥r⊥), (A1)

we have

ψ1(r⊥) = Aλψ1(r⊥),

ψ2(r⊥) = Aλψ2(r⊥). (A2)

The constant A, as determined by Eq. 2.13, is

A =
Zαe

ǫ

1
∫

∞

D dr⊥r⊥ψ1(r⊥) +
∫

∞

0 dr⊥r⊥ψ2(r⊥)
. (A3)

To carry out the r-integrals in the denominator, we note

∫

∞

D
dr⊥r⊥ψ1(r⊥) +

∫

∞

0
dr⊥r⊥ψ2(r⊥)

= −

∫ D

0
dr⊥r⊥ψ1(r⊥) +

∫

∞

0
dr⊥r⊥ψ1(r⊥) +

∫

∞

0
dr⊥r⊥ψ2(r⊥)

=

∫

∞

0
dr⊥r⊥

[

ψ1(r⊥) + ψ2(r⊥)
]

−

∫ D

0
dr⊥r⊥ψ1(r⊥). (A4)
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Using this relation [41]
∫

∞

0
J0(k⊥r⊥)r⊥dr⊥ =

δ(k⊥)

k⊥
, (A5)

where δ(x) is the Dirac δ function, we can simplify the first integral in Eq. A4 as

∫

∞

0
dr⊥r⊥

[

ψ1(r⊥) + ψ2(r⊥)
]

=

∫

∞

0
dk⊥δ(k⊥)

[

1 −
1

M11(k⊥) + M12(k⊥)

]

= 1. (A6)

If we note
∫ D

0
dr⊥r⊥k⊥J0(k⊥r⊥) = DJ1(k⊥D), (A7)

where J1(x) is the first-order Bessel function of the first kind, we can rewrite the second

integral in Eq. A4 as

∫ D

0
dr⊥r⊥ψ1(r⊥) = D

∫

∞

0
dk⊥

M11(k⊥) [M11(k⊥) − 1] − M2
12(k⊥)

det [M(k⊥)]
J1(k⊥D). (A8)

If we use Eqs. A6 and A8 in Eq. A3, we have

A =
Zαe

ǫ

1

1 − D
∫

∞

0 dk⊥
M11(k⊥)[M11(k⊥)−1]−M2

12(k⊥)
det[M(k⊥)] J1(k⊥D)

. (A9)

This, when combined with Eq. 5, leads to

ψ1(r⊥) =
Zαeλ

ǫ

∫

∞

0 k⊥dk⊥
M11(k⊥)[M11(k⊥)−1]−M2

12(k⊥)
det[M(k⊥)] J0(k⊥r⊥)

1 − D
∫

∞

0 dk⊥
M11(k⊥)[M11(k⊥)−1]−M2

12(k⊥)
det[M(k⊥)] J1(k⊥D)

. (A10)

Now ψ1(D, ζe) = ψ1(r = D, e)|e→eζ . Substituting ψ(D, ζe) obtained this way into

Eq. 2.14, we have

F

kBT
=

1

2π







∫ 1

0

dζ

ζ

∫

∞

0 k⊥dk⊥

[

M11(k⊥)(M11(k⊥)−1)−M2
12(k⊥)

det[M(k⊥)]

]

J0(k⊥D)

1 − D
∫

∞

0 dk⊥

[

M11(k⊥)(M11(k⊥)−1)−M2
12(k⊥)

det[M(k⊥)]

]

J1(k⊥D)

∣

∣

∣

∣

∣

e→eζ

−
1

2Dλ







.

(A11)
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For later convenience, we rewrite the term in [...] as

[

M11(k⊥) [M11(k⊥) − 1] − M2
12(k⊥)

det [M(k⊥)]

]

=
1

1 + λk⊥
−

M2
12(k⊥)

M11(k⊥) det [M(k⊥)]
. (A12)

Note that the first term is h-independent and that the coupling between the two plates

enters through M12(k⊥)—as expected, M12(k⊥) → 0 as h → ∞. Eq. A11 becomes

F

kBT
=

1

2π







∫ 1

0

dζ

ζ

∫

∞

0 k⊥dk⊥

[

1
1+λk⊥

−
M2

12(k⊥)
M11(k⊥) det[M(k⊥)]

]

J0(k⊥D)

1 − D
∫

∞

0 dk⊥

[

1
1+λk⊥

−
M2

12(k⊥)
M11(k⊥) det[M(k⊥)]

]

J1(k⊥D)

∣

∣

∣

∣

∣

e→eζ

−
1

2Dλ







.

(A13)

Following Ref. [37], we find

∫

∞

0
k⊥dk⊥

1

1 + λk⊥/ζ2
J0(k⊥D) =

ζ2

λD
τ0

(

D

λ
ζ2

)

, (A14)

1 − D

∫

∞

0
dk⊥

1

1 + λk⊥/ζ2
J1(k⊥D) = −

Dζ2

λ
τ1

(

D

λ
ζ2

)

, (A15)

where

τn(x) = 1 −
πx1−n

2
[Hn(x) − Yn(x)] , (A16)

Hn(x) is the Struve function, and Yn(x) is the Bessel function of the second kind. If we

substitute Eqs. A14 and A15 into Eq. A13, we obtain

F

kBT
=

1

2π







∫ 1

0

dζ

ζ

ζ2

λDτ0(
D
λ ζ2) −

∫

∞

0 k⊥dk⊥
M2

12(k⊥)
M11(k⊥) det[M(k⊥)]J0(k⊥D)

−Dζ2

λ τ1(
D
λ ζ2) + D

∫

∞

0 dk⊥
M2

12(k⊥)
M11(k⊥) det[M(k⊥)]J1(k⊥D)

−
1

2Dλ







.

(A17)

From this we obtain, ∆F = F(h) −F(h = ∞),

∆F

kBT
=

1

2π

∫ 1

0

dζ

ζ







ζ2

λDτ0(
D
λ ζ2) −

∫

∞

0 k⊥dk⊥
M2

12(k⊥)
M11(k⊥) det[M(k⊥)]J0(k⊥D)

−Dζ2

λ τ1(
D
λ ζ2) + D

∫

∞

0 dk⊥
M2

12(k⊥)
M11(k⊥) det[M(k⊥)]J1(k⊥D)

−
ζ2

λDτ0(
D
λ ζ2)

(

−Dζ2

λ

)

τ1(
D
λ ζ2)







. (A18)

We find that, if h ≫ λ,

∣

∣

∣

∣

D

∫

∞

0
dk⊥

M2
12(k⊥)

M11(k⊥) det [M(k⊥)]
J1(k⊥D)

∣

∣

∣

∣

≪

∣

∣

∣

∣

Dζ2

λ
τ1(

D

λ
ζ2)

∣

∣

∣

∣

.
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This allows us to expand the denominator of the first term in Eq. A18 in powers of the

ratio D
∫

∞

0 dk⊥
M2

12(k⊥)
M11(k⊥) det[M(k⊥)]J1(k⊥D)/[Dζ2

λ τ1(
D
λ ζ2)]. To second order in the ratio, we

find

∆F

kBT
=

1

2π

∫ 1

0

dζ

ζ







∫

∞

0 k⊥dk⊥
M2

12(k⊥)
M11(k⊥) det[M(k⊥)]J0(k⊥D)

Dζ2

λ τ1

(

D
λ ζ2

)

−

ζ2

λ τ0

(

D
λ ζ2

) ∫

∞

0 dk⊥
M2

12(k⊥)
M11(k⊥) det[M(k⊥)]J1(k⊥D)

[

Dζ2

λ τ1

(

D
λ ζ2

)

]2











. (A19)

In the limit of h ≫ D and h ≫ λ, the ζ-integral in Eq. A19 is mainly determined

by ζ ∼
√

λ/h, which is close to 0. In other words, the main contribution comes from

Dζ2/λ ∼ D/h ≪ 1. This allows us to use the small x expansions of the two functions,

τ0(x) and τ1(x):

τ0(x) ∼ 1

τ1(x) ∼ −
1

x
.

Accordingly, Eq. A19 becomes

∆F

kBT
=

1

2π

∫ 1

0

dζ

ζ

{

−

∫

∞

0
k⊥dk⊥

M2
12(k⊥)

M11(k⊥) det [M(k⊥)]
J0(k⊥D)

−
ζ2

λ

∫

∞

0
dk⊥

M2
12(k⊥)

M11(k⊥) det [M(k⊥)]
J1(k⊥D)

}

. (A20)

The ζ-integral in this equation can be carried out without further approximations:

∆F

kBT
=

1

8π

∫

∞

0
k⊥dk⊥ ln

[

1 −
e−2hk⊥

(1 + λk⊥)2

]

J0(k⊥D)

+
1

8π

∫

∞

0
dk⊥

k⊥J1(k⊥D)

1 − e2hk⊥

{

e2hk⊥ ln

[

1 −
e−2hk⊥

(1 + λk⊥)2

]

+ ehk⊥ ln

[

ehk⊥(1 + λk⊥) − 1

ehk⊥(1 + λk⊥) + 1

]

+ 2 ln

(

1 +
1

λk⊥

)}

. (A21)

The free energy can now be expanded in powers of 1/h. The lowest term scales as

1/h2 and the coefficient of this, a2, can be obtained by multiplying ∆F by h2 and taking
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the limit of h → ∞. To this end, we substitute k⊥ = t/h in Eq. A21; the first integral

can then be calculated as follows

lim
h→∞

h2

∫

∞

0
k⊥dk⊥ ln

[

1 −
e−2hk⊥

(1 + λk⊥)2

]

J0(k⊥D)

= lim
h→∞

∫

∞

0
tdt ln

[

1 −
e−2t

(1 + λt/h)2

]

J0

(

Dt

h

)

=

∫

∞

0
tdt ln(1 − e−2t)

= −
ζ(3)

4
. (A22)

Similarly, we can get a3, the coefficient of the next leading term, by taking h → ∞ in

h3(∆F − a2h
−2). We find, for h ≫ D and h ≫ λ,

∆F

kBT
∼ −

ζ(3)

32π

[

1

h2
−

2λ

h3
+

D

h3

(

ln
h

λ
− C

)]

, (A23)

where ζ(n) is zeta function with ζ(3) ≈ 1.202 and C = 1.707. The first term is the

universal power law, independent of surface charge densities and ionic sizes. The other

two terms are next leading correction to ∆F . The third term arises from finite ionic sizes.

It remains negative and thus makes the pressure more attractive as long as h/λ ≫ 1. For

D/λ ≫ 1, this term dominates the second term. In the limit h ≫ D ≫ λ, Eq. A23

reduces to Eq. 2.18 used in the main text.

28



Chapter 3

Bending of lipid bilayers: relaxed

area difference

3.1 Introduction

Bending of lipid bilayers involves two distinct types of deformations: in-plane deformation

(stretching or compression) and out-of-plane deformation (bending). We can study the

bending of a bilayer in terms of the free energy associated with the deformation. The

lowest energy state of the bilayer is characterized by its preferred curvature, which is

controlled by two parameters: the spontaneous curvature and the relaxed area difference.

A monolayer may have a non-zero spontaneous curvature depending upon head groups

and chain packing. The spontaneous curvatures of two monolayers determine that of a

bilayer, C0, a parameter that reflects the asymmetry between the two leaflets (monolayers)

of a bilayer. Deviation of the curvature from the spontaneous curvature increases the

bending energy. On the other hand, each leaflet of a bilayer has a preferred or relaxed

area (Ain
0 or Aout

0 ), determined by both the number of lipid molecules it contains and
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the optimal area each lipid occupies. During bending, however, each leaflet can actually

take an area (Ain or Aout) which is, in general, different from Ain
0 or Aout

0 . The difference

between Ain (Aout) and Ain
0 (Aout

0 ) gives rise to a stress in the bilayer and contributes to

the compression energy.

The total deformation free energy of the bilayer can be written as [13]

F =
kb

2

∫

dA[C1(r)+C2(r)−2C0(r)]
2+kG

∫

dAC1(r)C2(r)+
kb

2

π

AD2
(∆A−∆A0)

2, (3.1)

where C1 and C2 are two principal curvatures, i.e., the maximum and the minimum

values of curvatures at position r, C0 the spontaneous curvature, A the area of the

surface with respect to which C1 and C2 are defined, D the thickness of the bilayer,

∆A = Aout−Ain the area difference, and ∆A0 = Aout
0 −Ain

0 is the relaxed area difference.

The constants kb is the bending rigidity or bending modulus, the energy cost of deviating

from the spontaneous curvature, kG is the Gaussian bending modulus, and kb is the

area compression modulus. These moduli are properties of molecular composition of a

membrane and are determined by the interactions between head groups and between

tails. The first two terms in Eq. 3.1 are the bending energy. The third term is the area

compression energy.

Based on the basic hypothesis of the continuum mechanical approach to bilayer bend-

ing [43–45], the preferred curvature of a bilayer can be determined by minimizing the

free energy of a bilayer subject to given constraints on volume and area. The preferred

curvature is determined by the spontaneous curvature C0 and the relaxed area difference

∆A0.

One may ask what factors determine these parameters and how they change in re-

sponse to other factors. The current work is aimed at understanding electrostatic aspects

of bending. In our work, C0 and ∆A0 are related to salt concentrations or surface charge

densities. We will discuss factors that determine ∆A0 in this chapter and defer the
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discussion on C0 to next chapter.

Experiments have shown that the asymmetry in composition of a lipid bilayer can

induce bending and thus shape transformation [46–50]. For example, a bilayer vesicle

usually contains negatively charged lipids in its inner leaflet, while the outer one is neu-

tral. Raising ionic stregth in solution transforms such a vesicle from concave shapes

(corresponding to negative curvatures) toward convex shapes (positive curvatures) [47].

Adding a small concentration of multivalent ions, such as La3+ or Gd3+, efficiently shrinks

the charged inner leaflet and facilitates such shape transformation [48]. Cholesterol, on

the other hand, prefers the outer leaflet and tends to promote convex shapes [49]. Differ-

ent explanations [13, 50–52] to the observed phenomena are based on the bilayer-couple

hypothesis [53], which suggests that small changes in the relaxed area difference ∆A0

between the two leaflets of a bilayer have a noticeable effect on shapes. Any factor lead-

ing to expansion of the inner leaflet relative to the outer one (decreasing ∆A0) produces

a tendency to form concave shapes; on the other hand, any factor that expands the

outer leaflet relative to the inner one (increasing ∆A0) favors convex shapes. While it

is empirically known how ligand binding influences ∆A0, a quantitative picture is still

lacking.

In this chapter, we shall calculate the relaxed area difference ∆A0 of an asymmet-

rically charged bilayer. We study a model system, i.e., a pure bilayer consisting of two

mechanically equal monolayers. The area of each monolayer is the sum of the area occu-

pied by each lipid head group in that monolayer. The optimal head group area can be

determined by interactions between head groups at lipid-water interface. We find ∆A0

is controlled by the balance of a few distinct contributions: net charge repulsions, charge

correlations and the entropy of counterion release from the bilayer. The entropic effect is

dominant for weakly charged surface in the presence of monovalent counterions only and

tends to expand the charged inner leaflet, leading to negative ∆A0. Charge correlations,
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on the other hand, tend to shrink the inner leaflet and promote positive ∆A0. The sign

of ∆A0 is sensitive to counterion valency.

3.2 Interfacial free energy and optimal head group area of

a neutral bilayer

The free energy to remove molecules from the bulk and create interface between two

coexisting phases is known as the interfacial free energy. For a lipid bilayer, it is con-

tributed by two opposing forces [55]: attractive and repulsive interactions acting at the

interface formed by lipids and water. The area occupied by the head group of a lipid at

the lipid-water interface of a bilayer is governed by competition between the two forces.

The attractive contribution to the interfacial free energy can be written as γa, where

a is the head group area, and γ is the surface tension at water-lipid interface, which

ranges [56] from 20 to 50 mJ m−2 (i.e., 0.05 to 0.12 kBT Å
−2

, where kB is the Boltzmann

constant and T is the temperature). The repulsive contribution can be represented by

k/a, the leading term of any repulsive energy expansion in a−1, where k is a constant.

The interfacial free energy per lipid of a bilayer is given, to first order in a−1, as [10]

f1 = γa +
k

a
. (3.2)

The free energy is minimized when

∂f1

∂a

∣

∣

∣

∣

a=a0

= 0, (3.3)

where

a0 =

√

k

γ
(3.4)

is referred to as optimal head group area. Now we can combine Eqs. 3.2 and 3.4 to

eliminate k and obtain

f1 = 2γa0 +
γ

a
(a − a0)

2, (3.5)
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The interfacial free energy is now expressed in terms of two measurable parameters, γ

and a0.

3.3 Interfacial free energy and optimal head group area of

an asymmetrically charged bilayer

Now we consider an asymmetrically charged lipid bilayer immersed in salty solution.

In normal conditions, the outer leaflet of the bilayer is electrically neutral, while the

inner leaflet has a negative surface charge density −eσ0, attracting oppositely charged

counterions such as Na+ and Ca2+. Some of them are adsorbed onto the surface. They

will be referred to as condensed counterions. Others are free in bulk solution. We use

ni for concentrations of free counterions and eσi for the charge density of condensed

counterions (i = 1 for monovalent and i = 2 for Z-valent counterions). The effective

surface charge density of the inner leaflet is

−eσ∗ = −e(σ0 − σ1 − Zσ2). (3.6)

The interaction between surface charge and condensed counterions results in an additional

term, f2, in the interfacial free energy. The free energy per lipid of the inner leaflet, f , is

now the sum of f1 and f2.

f = f1 + f2 (3.7)

Accordingly, the optimal area per lipid that minimizes the free energy shifts to a new

value, a∗0. To find this value, we require

∂f

∂a

∣

∣

∣

∣

a=a∗

0

= 0. (3.8)

This is equivalent to

∂f1

∂a

∣

∣

∣

∣

a=a∗

0

+
∂f2

∂a

∣

∣

∣

∣

a=a∗

0

= 0. (3.9)

33



The optimal head group area a∗0 can be found by solving Eq. 3.9. To this end, we need

to express f1 and f2 in terms of a. Although f1 is given explicitly as a function of a in

Eq. 3.5, the expression for f2 is not so straightforward to obtain.

A previous result [57] gave f2 as a function of σ0,

f2 = f2(σ0), (3.10)

and

−
∂f2

∂a
= ∆Π

= Πent + Πrep + Πcorr, (3.11)

where ∆Π is the interfacial tension at the charged surface, and Πent, Πrep and Πcorr

are contributions to ∆Π from entropy, electrostatic repulsion, and charge correlations

respectively.

As the inner leaflet expands its area, its surface charge density is reduced and some

condensed counterions are released to the solution. This process is favored by entropy.

The entropy of counterion release tends to expand the area of the inner leaflet. This

contribution to ∆Π is given as

βΠent =
2

∑

i=1

[

σi +

(

a

∣

∣

∣

∣

∂σi

∂a

∣

∣

∣

∣

− σi

)

ln

(

σiac

nivc

)]

. (3.12)

where β = 1/kBT , vc = 4πr3
c/3, ac = 4πr2

c and rc is the size of counterions.

The repulsive contribution arise from screened repulsion between surface charges and

can be written as

βΠrep = −πℓBσ∗2κ−1 − 2πℓBκ−1σ∗a

(

∂σ∗

∂a

)

, (3.13)

where ℓB = e2/ǫkBT is the Bjerrum length, ǫ is the dielectric constant of water and κ−1

is the Debye screening length given by κ2 = 4πℓB [2n1 + Zn2(Z + 1)]. It can be positive

for weakly charged surfaces at low salt limit [57].
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The charge correlations between surface charges and counterions tend to shrink the

inner leaflet and is given as

βΠcorr =
1

4π

∫

∞

0
k⊥dk⊥

∂

∂a







a



ln



1 +
1

λ
√

k2
⊥

+ κ2



 −
1

λ
√

k2
⊥

+ κ2











, (3.14)

where λ−1 = 2πℓB(σ0+σ1+Z2σ2), and correlations are captured at the Gaussian level [23,

31].

The values of σi is found by equating the chemical potential of the free counterions,

µfree
i , and that of condensed counterions, µcond

i , where

βµfree
i ≃ ln(nivc), (3.15)

βµcond
i ≃ −2πZiℓBσ∗κ−1 + ln (σiac) + βµcorr

i . (3.16)

The first term in Eq. 3.16 arises from the electrostatic interaction between counterions

and surface charges, and the second term from the entropy of condensed counterions.

The last term, µcorr
i , is the contribution from charge correlations at the Gaussian level:

βµcorr
i =

1

4π

∫

∞

0
k⊥dk⊥

∂

∂σi



ln



1 +
1

λ
√

k2
⊥

+ κ2



 −
1

λ
√

k2
⊥

+ κ2



 . (3.17)

Since σ0 changes with a, it proves useful to express f2 for fixed charge fraction α, the

ratio of the number of charged lipids to the total number of lipid. We have

σ0 =
α

a
, (3.18)

and

f2 = f2(a), (3.19)

−
∂f2

∂a
= ∆Π(a). (3.20)

Hence Eq. 3.9 becomes

∆Π(a∗0) =
γ

a∗0
2 (a∗0

2 − a0
2). (3.21)
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Thus a∗0 can be obtained by solving Eq. 3.21 numerically for given α. The change of the

optimal head group area of the inner leaflet is

∆ain
0 = a∗0 − a0. (3.22)

3.4 A mean-field result for optimal head group area

While it is hard to solve Eq. 3.21 analytically, a simple expression for a∗0 is possible

if we treat the problem in a mean field level. In other words, we ignore correlation

contributions, Πcorr and µcorr
i .

Now we consider the case of a highly charged surface with a low concentration of

monovalent ions (κλ ≪ 1). As surface charges are not effectively screened, the electro-

static interaction dominates the entropy of condensed counterions [58] such that

βµcond
1 ≃ −2πℓBσ∗κ−1. (3.23)

The equilibrium condition now requires

ln(n1vc) ≃ −2πℓBσ∗κ−1. (3.24)

One can easily find that the effective charge density is approximated by,

σ∗ ≃ −
κ ln(n1vc)

2πℓB
, (3.25)

which is roughly independent of σ0 and a. This results in a simpler expression for Πrep

and Πent:

βΠrep ≃ −πℓBσ∗2κ−1, (3.26)

βΠent ≃ −σ∗ ln(n1vc). (3.27)
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Note the repulsion contribution is negative and shrinks the inner leaflet. We can under-

stand this if we recognize that σ∗ is roughly independent of a. Decreasing a results in a

lower free energy and is favored by this contribution.

Combining Eqs. 3.25, 3.26, 3.27, we have

∆Π = Πrep + Πent

≃
kBTκ [ln(n1vc)]

2

4πℓB
, (3.28)

which is a-independent. From Eq. 3.21, we have

a∗0 = a0

√

1

1 − x
, (3.29)

where x = ∆Π/γ.

The magnitude of ∆Π is on the order of 10−3 kBT Å
−2

[57]. In contrast, γ lies

between 0.05 and 0.1 kBT Å
−2

. Thus we can expand Eq. 3.29 for small x = ∆Π/γ to

obtain

a∗0 = a0

[

1 +
x

2
+ O(x)

]

. (3.30)

The change in optimal head group area per lipid is

∆ain
0 = a∗0 − a0

= a0

[x

2
+ O(x)

]

. (3.31)

3.5 Area difference of a bilayer

In the above discussion, we have obtained the optimal head group area per lipid of an

asymmetrically charged bilayer. A typical experimental study of bilayer vesicles records

their shape as the surface area is changed. If Aout
0 is the relaxed area of the outer leaflet

of the bilayer and Ain
0 is that of the inner leaflet, the relaxed area difference due to ∆Π is

∆A0 = Aout
0 − Ain

0 . (3.32)
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Figure 3.1: Change in relaxed area per lipid in the inner leaflet, ∆ain
0 , as a function of the

sodium concentration in millimole, [Na+], and the surface charge fraction, α. (a) Three-

dimensional plot of ∆ain
0 in the absence of divalent counterions. (b) Three-dimensional

plot of ∆ain
0 in the presence of 0.1 mM divalent counterions. (c) Contour plot of ∆ain

0

in the absence of divalent counterions. (d) Contour plot of ∆ain
0 in the presence of 0.1

mM divalent counterions. The value of ∆ain
0 is positive for smaller α and [Na+] in the

monovalent case but turns negative as α or [Na+] increases. In the presence of divalent

counterions, ∆ain
0 is negative for a wide parameter range plotted.
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We first discuss how solution conditions modify the relaxed area difference ∆A0.

This can be demonstrated by considering the change in relaxed area per lipid in the

inner leaflet, ∆ain
0 = a∗0 − a0. Since the neutral outer leaflet has a constant relaxed

area per lipid, a0, and the two leaflets are identical except for the charge asymmetry,

∆A0 = N(aout − ain) = N(a0 − a∗0) = −N∆ain
0 , where N is the number of lipids on each

leaflet. We have solved Eq. 3.21 and plotted ∆ain
0 as a function of the concentration of

counterions, [Na+], and the charge fraction, α, in Fig. 3.1. We have chosen the parameters

T = 300K, ǫ = 80, rc = 2Å and γ = 50 mJ m−2 (∼ 0.12 kBT ). The optimal head group

area of a bilayer is usually 50 ∼ 100 Å
2
. We thus have chosen a0 = 80Å

2
. We find ∆a0

is more sensitive to α or counterion valency but less sensitive to [Na+]: In the absence

of divalent counterions, ∆ain
0 is negative except for weakly charged surfaces at low salt

concentrations; in contrast, when the solution contains 0.1 mM divalent counterions, ∆ain
0

decreases dramatically and remains negative for nearly all parameter range plotted. The

difference between two cases can be attributed to the competition of Πrep, Πent, and Πcorr.

For small α, Πent is dominant, leading to positive ∆ain
0 . For large α, ∆Π is dominated by

Πcorr, which shrinks the inner leaflet and leads to negative ∆ain
0 . Note that Πrep is not

always positive and can easily be dominated by the other two (see Ref. [57] for details).

In the presence of divalent counterions, Πcorr is greatly enhanced and counterbalances

Πent, leading to negative ∆ain
0 .

Besides, ∆ain
0 changes non-monotonically as a function of [Na+] for monovalent cases

but monotonically in the presence of divalent counterions. This can also be explained

in terms of Πrep, Πent, and Πcorr. For small α, Πent dominates ∆Π and changes non-

monotonically with [Na+] at small [Na+]. This effect is controlled both by [Na+] and by

σ∗. As [Na+] increases, the entropic effect of counterion release is less significant. On the

other hand, σ∗ → 0 as [Na+]→ 0, since more counterions are condensed (cf. Eq. 3.27).

This leads to Πent → 0. The interplay between condensation and counterion release
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Figure 3.2: Comparison between ∆ain
0 calculated for fixed charge fraction α and for fixed

surface charge density. Thick lines represent ∆ain
0 for fixed α; thin lines represent ∆ain

0

for fixed σ0. Three sets of lines from top to bottom are for σ0 = 0.2 nm−2 (monovalent

counterions), σ0 = 0.2 nm−2 (0, 1 mM divalent counterions) and σ0 = 0.38 nm−2 (0, 1

mM divalent counterions), respectively. The corresponding α are 16%, 16% and 30%,

respectively. In each of the first two sets, the curve calculated for fixed α overlaps that

for fixed σ0.

gives rise to the non-monotonical behavior of Πent and consequently that of ∆ain
0 . In

the absence of divalent counterions, the counterion release is more pronounced around

[Na+] ∼ 2 mM. When 0.1 mM divalent counterions such as Ca2+ are presented in the

solution, they preferentially bind to the inner leaflet as it reduces energy more efficiently

than [Na+] does. As a result, Πcorr is enhanced and dominant over Πent, making ∆ain
0

insensitive to [Na+].

Surface charge density σ0 is a function of optimal head group area a∗0 and is given

by σ0 = α/a∗0. As the inner leaflet with a fixed α expands or compresses its area to

relieve stress, σ0 and ∆Π changes accordingly. Our calculation have included this effect.
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However, sometimes we may want to avoid numerical solution to Eq. 3.21. We find it

helpful to assume σ0 is approximately fixed (i.e., σ0 ≃ α/a0), as ∆ain
0 is relatively small

compared to a0, especially for monovalent cases (Fig. 3.1 (a)) or for weakly charged

surfaces in the presence of divalent counterions (Fig. 3.1 (b)). In this case, Eq. 3.21 can

be solved analytically, and a∗0 is given by

a∗0 = a0

√

1

1 − x
. (3.33)

where x = ∆Π/γ. To test how good this approximation is, we plot the dependence of

∆ain
0 on [Na+] for fixed α and for fixed σ0 in Fig. 3.2. We choose σ0 = 0.2 nm−2 in the

presence of monovalent counterions only, σ0 = 0.2 nm−2 in the presence of 0.1 mM Ca2+,

and σ0 = 0.38 nm−2 in the presence of 0.1 mM Ca2+. For a0 = 80Å, the corresponding

α = 16%, 16% and 30%, respectively (according to σ0 = α/a0). The difference in the first

two cases is negligible, as ∆ain
0 is relatively small for small α. Thus this approximation

is valid. For α = 30% in the presence of divalent counterions, the difference cannot be

ignored and our numerical solution is more reliable.

3.6 Conclusion

To summarize, we have developed a formalism for calculating the relaxed area difference of

an asymmetrically charged bilayer immersed in salty solution. This relaxed area difference

is modified by interactions between surface charges and counterions.

We find the entropic contribution Πent is dominant for small α at low [Na+] and is

responsible for the positive value and the non-monotonic behavior of ∆ain
0 . However,

Πcorr counterbalances Πent in the presence of divalent counterions and shrinks the inner

leaflet, leading to negative ∆ain
0 roughly independent of [Na+]. Our results are consistent

with experiments that multivalent cations promote positive ∆A0 and positive curvatures.
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In addition to ∆A0, the preferred curvature of a bilayer is also determined by the

spontaneous curvature C0. In next chapter, we will develop a model to determine C0 of

a bilayer arising from charge asymmetry.
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Chapter 4

Bending of lipid bilayers:

spontaneous curvature

4.1 Introduction

Two parameters control the preferred curvature of a lipid bilayer: the relaxed area differ-

ence ∆A0 and the spontaneous curvature C0. In the previous chapter, we have determined

∆A0 of an asymmetrically charged bilayer. In this chapter, we shall discuss the spon-

taneous curvature C0. For an arbitrarily selected reference surface, the deformation free

energy of the bilayer generally contains the term (∼ (∆A − ∆A0)
2). If we want to focus

on the spontaneous curvature, we need to eliminate this term. To this end, we choose a

neutral surface, the area of which does not change during bending, for each leaflet of the

bilayer. (The existence of such a surface is shown in Chapter 6 of Ref. [59]). With refer-

ence to the neutral surface of the inner (outer) leaflet, Ain = Ain
0 (Aout = Aout

0 ), such that

∆A = ∆A0. The deformation free energy of the bilayer thus comes solely from bending

energy or curvature energy, i.e., the energy associated with the out-of-plane deformation.
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The phenomenological formula for the curvature energy per unit area, fc, up to

quadratic order in the two principal curvatures, c1 and c2, can be written as [44]

fc = 2kb(H − c0)
2 + kGK, (4.1)

or

fc =
1

2
kb(c1 + c2 − 2c0)

2 + kGc1c2, (4.2)

where H = (c1 + c2)/2 is the mean curvature, K = c1c2 is the Gaussian curvature, kb

is the bending rigidity or bending modulus and kG is the Gaussian bending modulus.

The parameter c0, first introduced by Helfrich [44], is the spontaneous curvature, the

mean curvature that minimizes the curvature free energy. It describes the tendency of a

membrane to bend either inward or outward. For a monolayer, it arises from the packing

ratio, a parameter that describes the geommetry of lipids. For example, cone-like lipids

can pack into a monolayer with a finite spontaneous curvature; cylindrical-shaped lipids

can form a monolayer with c0 = 0. A bilayer may have a spontaneous curvature if there

is an asymmetry in the packing ratios of the two constituent leaflets.

The concept of spontaneous curvature can be used to discuss the behavior of bilayers,

such as shapes or undulation. In the study of bilayer vesicle shapes, for example, bilayers

are treated as a two-dimensional fluid with a bending rigidity and a spontaneous curva-

ture. Vesicle shape is determined by minimizing the curvature free energy of the bilayer.

A series of possible axisymmetric vesicle shapes were predicted in this way [45,60,61].

The physical origin of the spontaneous curvature is a present interest. For exam-

ple, it may arise from charge asymmetry between the inner and outer leaflets of a bi-

layer. The charge properties of both the bilayer and the adjacent solutions may affect

the spontaneous curvature. Many theoretical papers on the spontaneous curvature focus

on electrostatics of the spontaneous curvature. The electrostatic contributions to the

spontaneous curvature was quantified within the Debye-Hückel (DH) approximation for
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weakly charged surfaces [6]. Further results for highly charged systems were calculated

by solving the nonlinear Poisson-Boltzmann (PB) equation to obtain electrical potentials

for cylindrical and spherical geometries. Although full analytical solutions to the nonlin-

ear PB equation are still unknown, the free energy was expanded to quadratic order in

curvatures for the aforementioned geometries [62, 63]. This approach has been used for

monolayers [63], then for bilayers [64] and for undulating membranes [65]. In a recent

paper, Chou et al. [66] calculated electrostatic contributions to spontaneous curvature

within both the DH and the PB theories under a variety of assumptions. In particu-

lar, they systematically explored the effect of different choices of neutral surface, i.e., the

mid-plane of the bilayer or the lipid-water interface. However, all these works on the elec-

trostatic contribution to the spontaneous curvature remain at the mean field level, where

charge correlations are suppressed. For a highly charged surface in the presence of mul-

tivalent salts, charge correlations can be strong [57] and may influence the spontaneous

curvature in a non-trivial way.

In this chapter, we will develop a theory of electrostatics of the spontaneous curvature

that captures charge correlations at the Gaussian level. In contrast to the previous

Refs. [6, 62–66], our theory is based on a microscopic model for a lipid monolayer [59],

in which the spontaneous curvature is determined by the mechanical properties of lipids,

e.g., the optimal head group area and the equilibrium length of the hydrocarbon tail.

We use the optimal head group area, discussed in the previous chapter, to calculate the

spontaneous curvature of an asymmetrically charged bilayer. In this way, we are able

to describe the spontaneous curvature in terms of salt concentrations and surface charge

fractions of a bilayer. One advantage of our method is that it captures charge correlation

contribution to the spontaneous curvature, which can become dominant over entropy and

screened electrostatic repulsions under certain conditions; this has been ignored in the

previous models [6, 62–66]. As the spontaneous curvature is obtained in terms of local
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curvatures, our model is applicable to any geometry in addition to the usually discussed

symmetrical ones.

In what follows, we first review the microscopic model for a monolayer and extend it

to a bilayer composed of two monolayers. We shall use c0 for the spontaneous curvature of

a monolayer and C0 for that of a bilayer. We then apply this model to an asymmetrically

charged bilayer immersed in salty solution and obtain its spontaneous curvature. In

discussion we will compare our theory to the previous ones at the mean-field level.

4.2 Spontaneous curvature of a monolayer

The microscopic model [59] was introduced to describe the spontaneous curvature of a

monolayer in terms of a few molecular properties, such as the optimal head group area,

the equilibrium chain length, and the chain volume. The hydrocarbon chains in the

monolayer are modeled as springs with a spring constant ks and an equilibrium length ls.

In most systems, changing the volume of a membrane costs higher energy than bending

it. Thus a chain in the monolayer is assumed to occupy an incompressible volume v0 such

that this volume is fixed during curvature deformation. Also fixed is the optimal head

group area, a0, which is determined by the interactions between head groups. As these

interactions are much stronger than the chain stretching energy, a0 is not affected by the

curvature deformation. In other words, the neutral surface is chosen to be the lipid-water

interface.

The free energy per lipid is related to stretch or compression of chains,

f =
1

2
ks(l − ls)

2, (4.3)

where l is actual chain length. For a flat monolayer, the equilibrium chain length ls =

v0/a0. In general, v0/a0 is unequal to ls, implying the free energy of a monolayer does
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not have to be a minimum. The chains tend to reach their equilibrium length, ls, while

keeping v0 constant. As a result, the monolayer bends to minimize its free energy. The

volume of a chain, v0, is given in terms of curvatures for a curved monolayer:

v0 = a0l

(

1 + lH +
1

3
l2K

)

, (4.4)

where H and K are mean and Gaussian curvatures respectively . We can determine the

curvature free energy f by solving Eq. 4.4 for l in terms of H and K and substitute it

into Eq. 4.3. This can be done if we require

l = l0 + l1H + l2H
2 + l3K (4.5)

in Eq. 4.4. Thus we have

l0 =
v0

a0
, l1 = −l20,

l2 = 2l20, l3 = −
l30
3

. (4.6)

The curvature free energy per lipid for a monolayer, when c0ls ≪ 1, is obtained up to

second order in curvature as

f =
ksv

4
0

2a4
0

[

(H − c0)
2 −

2c0v0

3a0
K

]

. (4.7)

The spontaneous curvature c0 is determined by the optimal area per molecule a0, chain

volume v0, and equilibrium chain length ls:

c0 =
a0(v0 − a0ls)

v2
0

. (4.8)

If the optimal head group area, a0, determined by head group interactions, is smaller

than the preferred area which minimizes the curvature free energy, v0/ls, c0 is positive

and the monolayer has a tendency of bending toward head groups. If a0 > v0/ls, c0 is

negative and the monolayer tends to bend toward the chain.
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4.3 Spontaneous curvature of a bilayer

For a bilayer composed of two adjacent monolayers, we consider here a simple case. We

assume the two monolayers are identical except for their optimal head group area. Each

of the monolayers has the same chain volume v0 and an equilibrium chain length ls. The

bilayer thickness is D = 2ls. The optimal head group areas of the inner and the outer

layers are ain
0 and aout

0 , respectively. We also assume the chains of two layers do not

penetrate each other. As a result, there is no interaction between two monolayers that

contributes to curvature free energy other than the incompressibility condition: the chain

volume of each monolayer is constant. The neutral surface of each monolayer is taken to

be its lipid-water interface. Once ain
0 and aout

0 are given, the spontaneous curvature of

the bilayer can be determined.

It is convenient to choose a common reference surface for two leaflets forming a bilayer.

To this end, we choose the mid-plane, the interface between two leaflets, as the reference

surface throughout this chapter. The curvature free energy per unit area of a bilayer with

reference to the mid-plane, F , is simply a sum of the free energies per unit area of the

two monolayers:

F =
f in

am
i

+
fout

am
o

, (4.9)

where am
i (am

o ) is the area on the mid-plane occupied by a lipid on the inner (outer)

leaflet and f in (fout) is the curvature free energy per lipid of the inner (outer) leaflet:

f in(H in, Kin) =
ksv

4
0

2(ain
0 )4

[

(H in − cin
0 )2 −

2cin
0 v0

3ain
0

Kin

]

, (4.10)

fout(Hout, Kout) =
ksv

4
0

2(aout
0 )4

[

(Hout − cout
0 )2 −

2cout
0 v0

3aout
0

Kout

]

, (4.11)

where H in (Hout) and Kin (Kout) are the mean and the Gaussian curvatures of the inner

(outer) leaflet respectively and ain
0 (aout

0 ) is the optimal head group area of the inner

(outer) leaflet. As defined in Eq. 4.8, cin
0 (cout

0 ) is the spontaneous curvature of the inner
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(outer) monolayer with respect to its neutral surface.

In adding the two free energies, one has to be careful about two things. First, the

sign of curvatures of the two monolayers forming a bilayer are always opposite to each

other. The sign of curvature for a monolayer has been defined in the preceding discussion

such that a positive curvature corresponds to bending toward head groups. Second, the

curvatures of the two monolayers are defined with reference to two different surfaces due

to the finite thickness of a bilayer. They can be related to each other as the thickness of

the bilayer is fixed. If we shift a surface, with mean curvature H and Gaussian curvature

K along its normal direction, a distance d to obtain a surface parallel to the original one

with curvatures H ′ and K ′, we have [59]

H ′ =
H + Kd

1 + 2Hd + Kd2
, (4.12)

and

K ′ =
K

1 + 2Hd + Kd2
. (4.13)

If we assume Hd ≪ 1 and Kd2 ≪ 1, we can expand H ′ and K ′ in powers of Hd and Kd2

and keep terms up to second order in curvature:

H ′ ≈ (H + Kd)(1 − 2Hd − Kd2)

≈ H − 2H2d + Kd, (4.14)

and

K ′ ≈ K(1 − 2Hd − Kd2)

≈ K. (4.15)

Note higher order terms like H3, HK or K2 have been ignored. The relation between

the area elements of two surface, δa and δa′ is

δa′ = (1 + 2Hd + Kd2)δa. (4.16)
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It is more convenient to express curvatures of both the inner and the outer layers

in terms of Hm and Km, the mean and the Gaussian curvatures with reference to the

mid-plane. The sign of Hm is defined such that it is the same as the sign of H in. If we

choose

H ′ = H in, K ′ = Kin,

H = Hm, K = Km,

d = −
D

2
, (4.17)

in Eqs. 4.14 and 4.15, we find

H in ≈ D(Hm)2 + Hm −
D

2
Km, (4.18)

Kin ≈ Km. (4.19)

To express Hout and Kout in terms of Hm and Km, we choose

H ′ = −Hout, K ′ = Kout,

H = Hm, K = Km,

d =
D

2
. (4.20)

We find

Hout ≈ D(Hm)2 − Hm −
D

2
Km, (4.21)

Kout ≈ Km. (4.22)

Note that the sign of Hout is opposite to that of H in and Hm. Similarly, we can express

am
i (am

o ) in terms of ain (aout), Hm and Km,

am
i =

ain
0

(1 − HmD + KmD2/4)
, (4.23)

am
o =

aout
0

(1 + HmD + KmD2/4)
. (4.24)
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These relations can also be derived by considering symmetric shapes such as a sphere or

a cylinder.

Expressed in Hm and Km, the free energies per lipid for the inner and the outer

leaflets are

f in(Hm, Km) =
ksv

4
0

2(ain
0 )4

{

[

D(Hm)2 + Hm −
D

2
Km − cin

0

]2

−
2cin

0 v0

3ain
0

Km

}

(4.25)

fout(Hm, Km) =
ksv

4
0

2(aout
0 )4

{

[

D(Hm)2 − Hm −
D

2
Km − cout

0

]2

−
2cout

0 v0

3aout
0

Km

}

. (4.26)

Now we can get the curvature free energy of a bilayer as a function of Hm up to second

order in curvature:

F =
f in

am
i

+
fout

am
o

= f0 + f1H
m + f2(H

m)2 + f3K
m. (4.27)

The coefficients fi are

f0 =
ksv

4
0

2

[

cin
0

2

(ain
0 )5

+
cout
0

2

(aout
0 )5

]

, (4.28)

f1 =
ksv

4
0

2

[

cout
0 (2 + Dcout

0 )

(aout
0 )5

−
cin
0 (2 + Dcin

0 )

(ain
0 )5

]

, (4.29)

f2 =
ksv

4
0

2

[

1

(ain
0 )5

+
1

(aout
0 )5

]

, (4.30)

f3 =
ksv

4
0

2

[

cin
0

(ain
0 )5

(

D +
D2cin

0

4
−

2v0

3ain
0

)

+
cout
0

(aout
0 )5

(

D +
D2cout

0

4
−

2v0

3aout
0

)]

.(4.31)

We find that the mean curvature at which Ftotal is minimized,

C0 = −
f1

2f2
, (4.32)

is the spontaneous curvature with reference to the mid-plane of the bilayer.
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4.4 Spontaneous curvature of an asymmetrically charged

bilayer

In this section we study the spontaneous curvature of a bilayer containing charged lipids.

We consider the case of an asymmetrically charged bilayer in salty solution: The inner

leaflet of the bilayer has a surface charge density −eσ0, capable of adsorbing counterions,

while the outer leaflet is electrically neutral. The two leaflets are otherwise identical—the

lipids on each leaflet have the same chain length ls and volume v0. Counterions are either

condensed or free in solution. We assume that the neutral outer leaflet has an optimal

head group area aout
0 = a0 and a spontaneous curvature cout

0 . As ions will not influence

a0 and thus cout
0 , we choose cout

0 = 0 for simplicity. This implies v0/a0 = ls. However,

the free energy of the inner leaflet is modified by the interactions between surface charges

and counterions. The optimal head group area of the inner leaflet shifts to a new value,

ain
0 = a∗0, which is a function of salt concentrations and the surface charge densities and

has been discussed in the previous chapter. For the inner leaflet, the change in ain
0 results

in a nonzero spontaneous curvature

cin
0 =

a∗0(v0 − lsa
∗
0)

v2
0

. (4.33)

This, together with cout
0 = 0, will determine the spontaneous curvature of the bilayer.

If we apply Eq. 4.32 to the asymmetrically charged bilayer, we obtain the spontaneous

curvature with reference to the mid-plane,

C0 =
a5

0c
in
0 (2 + Dcin

0 )

2[a5
0 + (a∗0)

5]
, (4.34)

where D = 2ls is the thickness of the bilayer. The value of a∗0 as a function of salt

concentrations can be obtained by solving Eq. 3.21. Note this spontaneous curvature

comes solely from electrostatics. If both leaflets were neutral, we would have cin
0 = 0 and

C0 = 0. This means that there is no mechanical contribution to C0.
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4.5 Results and discussions

In this section we investigate the spontaneous curvature of an asymmetrically charged

bilayer. This charge asymmetry results in a difference in the optimal head group areas

of lipids on the two leaflet , which induces the spontaneous curvature of a bilayer. Since

the optimal head group area is influenced by variables such as surface charges or solution

conditions, the spontaneous curvature can be related to these variables. We find that Πent,

Πrep and Πcorr influence the spontaneous curvature simultaneously. Among them, Πcorr

can be dominant for certain range of variables. It efficiently modifies and even changes the

sign of the spontaneous curvature. As our microscopic model is different from previous

models using PB equations [63–66], a comparison between the spontaneous curvature

obtained in these two models will be discussed.

4.5.1 Effects of charge correlations

Fig. 4.1 shows C0 as a function of charge fraction on the inner leaflet, α, and sodium

concentration, [Na+]. We choose the parameters aout
0 = a0 = 80Å

2
, D = 2ls = 4 nm, and

v0 = a0ls = 1.6 nm3. Since σ0 is expressed in terms of charge fraction α: σ0 = α/ain
0 ,

the charge asymmetry of the bilayer, ∆σ = σ0, can be represented by α. In the presence

of monovalent counterions only (Fig. 4.1 (a) and (c)), the value of C0 changes non-

monotonically and is negative for weakly charged surface at low salt concentrations.

However, C0 turns positive for larger α and larger [Na+]. This can be attributed to the

behavior of ∆Π. For weakly charged surface at low salt concentration, the entropy of

counterion release, ∆Πent, dominates ∆Π and tends to expand the inner leaflet, leading

to a negative C0. As α or [Na+] increases, correlations between surface charges and

condensed counterions become important and tend to shrink the inner leaflet. Thus C0

turns positive.
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Figure 4.1: The spontaneous curvature C0 of the asymmetrically charged bilayer as a

function of sodium concentration in millimole, [Na+], and surface charge fraction α.

(a) Three-dimensional plot of C0 in the absence of divalent counterions. (b) Three-

dimensional plot of C0 in the presence of 0.1 mM divalent counterions. (c) Contour plot

of C0 in the absence of divalent counterions. (d) Contour plot of C0 in the presence of

0.1 mM divalent counterions. In (a) and (c), the spontaneous curvature C0 is negative

for smaller α and [Na+] but turns positive for larger α and [Na+]. In (b) and (d), C0

remains positive for a wider range of α and [Na+].
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The effect of adding multivalent salts is also shown in Fig. 4.1 (b) and (d). In the

presence of 0.1 mM divalent counterions such as Ca2+, the spontaneous curvature re-

mains positive for a wide range of parameters and is much larger in magnitude than the

monovalent case. This is because the correlation contribution, which favors positive C0,

is greatly enhanced and dominates the entropic effect in the presence of divalent coun-

terions unless α is too small. Thus we conclude that positive spontaneous curvature can

be induced by charge correlations, an effect that becomes important for large α or high

valency, and is more sensitive to counterion valency than to [Na+]. As our C0 arises from

∆A0, the discussion about them is parallel.

4.5.2 Comparison to PB results at the mean-field level

We have developed a model to describe the spontaneous curvature of an asymmetrically

charged bilayer. In that model, the spontaneous curvature is induced by the change in

the optimal head group area due to interactions between charged head groups and coun-

terions. Such interactions modify the spontaneous curvature in a bending-independent

way in the sense that they do not depend on curvature state of the bilayer. On the

other hand, the distance between two lipid head groups in a curved bilayer is shorter

than in a planar one. Therefore, the interaction between two head groups may be influ-

enced by curvature, leading to a contribution to the spontaneous curvature. Obviously,

this contribution, which will be referred to as bending-induced spontaneous curvature,

has not been captured in the our microscopic model. However, such contribution is cal-

culated in the previous models for spherical or cylindrical symmetry, either within the

Debye-Hückel (DH) approximation [6] or within the mean-field Possion-Boltzmann (PB)

approximation [62,63].

Which contribution to spontaneous curvature is dominant remains unknown so far.

To answer this question, we compare C0 obtained in our model to that in the PB approx-
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imation at the mean-field level. We apply the two models to a cylindrical lipid bilayer in

salty solution. This bilayer is the same as we considered in Section 4.4. In our microscopic

model, the optimal head group area of the inner leaflet, ain
0 = a∗0, can be modified by

electrostatics. In the PB model,

ain
0 = aout

0 = a0, (4.35)

and thus

cin
0 = cout

0 = 0, (4.36)

as bending does not change the optimal head group area. The curvature free energy per

unit area of such a bilayer in the PB model is

G = gm + gel, (4.37)

where gm is the nonelectrostatic (mechanical) contributions to the curvature free energy

and gel is the electrostatic contribution.

The mechanical curvature free energy per unit area can be written as

gm =
km

2R2
, (4.38)

where R is the radius of the mid-plane of the bilayer and km is the mechanical bend-

ing rigidity. Experimentally measured values of the mechanical bending rigidity km are

summarized in [5]. Their values lie between 2 and 100 kBT . The mechanical bending

rigidity can also be related to the microscopic parameters in our model. If we choose

ain
0 = aout

0 = a0 and Hm = 1/2R in Eq. 4.27 and compare it with Eq. 4.38, we find

km =
ksv

4
0

2a5
0

. (4.39)

In the limit of κR ≫ 1 (κ−1 is the Debye length), the electrostatic part of the curvature

free energy was derived analytically as an expansion in terms of 1/κR in the mean-field
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Poission-Boltzmann approach [62, 63]. For the bilayer in our case, the free energy per

unit area on the mid-plane is

gel = g0 +
g1

R
+

g2

R2
, (4.40)

where

g0 = kBTσ0

[

2 ln

(

s

2
+

√

1 +
s2

4

)

−
4

s

(
√

1 +
s2

4
− 1

)]

, (4.41)

g1 =
kBT

πlB
ln





1 +
√

1 + s2

4

2





−kBTσ0D

[

ln

(

s

2
+

√

1 +
s2

4

)

−
2

s

(
√

1 +
s2

4
− 1

)]

, (4.42)

g2 =
kBTσ0

κ2





1

s
−

8

s3
+

8

s3

√

1 + s2

4



 , (4.43)

where

s =
4πlBσ0

κ
. (4.44)

The total free energy per unit area, G, is

G = g0 +
g1

R
+

g2 + km

2

R2
(4.45)

The bending-induced spontaneous curvature is

CPB
0 = −

g1

2km + 4g2
. (4.46)

The spontaneous curvature C0 and CPB
0 , calculated in our microscopic model and in

the PB model respectively, are shown in Fig. 4.2 as a function of [Na+] in the presence

of monovalent counterions. Here we choose σ0 = 0.2 nm−2. The magnitude of σ0 will

change as the optimal head group area of the inner leaflet is modified by electrostatics.

But as we have shown in the earlier chapter, the change in σ0 can be ignored in the case of

monovalent counterions. We choose km = 20 kBT and km = 50 kBT . For km = 20 kBT ,
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Figure 4.2: Comparison between our microscopic C0 (solid line) and bending-induced

CPB
0 (dashed line) as a function of sodium concentration in millimole, [Na+], for different

mechanical bending rigidity km, in the presence of monovalent counterions only. We

choose σ0 = 0.2 nm−2. (a) For km = 20 kBT , CPB
0 is dominant over C0. (b) For

km = 50 kBT , CPB
0 and C0 become comparable to each other.

CPB
0 is much larger than C0. For km = 50 kBT , CPB

0 is reduced while C0 is roughly

independent of km. The two contributions become comparable. The difference between

C0 and CPB
0 can be attributed to the way km is treated in each model. In our model,

electrostatics modifies C0 as well as the mechanical properties of the bilayer, i.e., the

optimal head group area, and influence km through this. In the PB model, however, the

electrostatic contributions are independent of mechanical properties. In other words, km is

not affected by electrostatics but can be arbitrarily assigned. The PB model leaves behind

the question how km is determined by the microscopic properties. A better understanding

of these two contributions shall benefit from clarification of this question.

Our above discussion of the two contributions has been limited to the mean-field level.

Charge correlations, however, are expected to be important under certain conditions and

may even change the sign of the spontaneous curvature. We cannot obtain a full picture

of electrostatics of the spontaneous curvature unless charge correlations are considered.
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Unfortunately, charge correlations in the bending-induced electrostatic contribution have

not been fully explored, not even for spherical or cylindrical geometry. It is desirable to

develop theories that capture both contributions simultaneously. Investigation along this

line is warranted.
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Chapter 5

Conclusions

In this thesis, we have theoretically studied the binding and bending of

charged lipid bilayers. Lipid bilayers are typically charged in aqueous solution. They

can electrostatically interact with each other, with ions and with other charged molecules.

To understand the effect of ionic sizes and the electrostatic attraction between like

charged bilayers, we have developed a theoretical formalism in which ions are treated

as charged hard spheres as in the restricted primitive model of a simple ionic fluid.

We have used a two-dimensional Debye-Hückel approach to this system and found that

attraction between two charged bilayers can be dramatically modified and enhanced by

the nonzero ionic size in the case of physical interest (h & 5Å). A plausible reason for

this is that the in-plane charge distribution becomes more heterogeneous as the ionic size

increases, resulting in a larger charge polarity and hence an enhanced attraction. Also the

attraction gets stronger as the surface charge density σ0 increases, implying that the ionic

size influences the σ0 dependence of the attraction. In other words, the effects of ionic

sizes and the σ0-dependence of the attraction are coupled to each other—the attraction

is more sensitive to σ0 for larger D.
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Our results are consistent with the long-standing observation of enhanced attractions

for high charge densities or large valency and also predicts more realistic results for the

pressure that remains finite as h → 0. The main advantage of our approach is that

it allows us to systematically study the correlation attraction, without relying on addi-

tional approximations/assumptions besides linearization that might obscure the essential

physics of correlation attractions.

We have also studied the electrostatics that regulates the preferred curvature of an

asymmetrically charged bilayer: the relaxed area difference ∆A0 and the spontaneous

curvature C0.

Based on the idea that the optimal areas of head groups are governed by opposing

forces, we first have determined the optimal head group area a∗0 of an asymmetrically

charged bilayer in salty solution by minimizing interfacial free energy at the lipid-water

interface. In this way, we have mapped a∗0 onto experimentally measurable parameters

such as the sodium concentration [Na+] and the charge fraction α.

By solving for a∗0, we are able to analyse ∆ain
0 , the change in the area of the inner

leaflet, in a wider parameter range. We find the behavior of ∆ain
0 can be attributed to

the competition of three distinct contributions to ∆Π: the entropy of counterion release

from the bilayer, Πent, electrostatic repulsion Πrep, and charge correlations Πcorr. Among

them, Πent is dominant for small α at low [Na+] and is responsible for the positive value

and the non-monotonic behavior of ∆ain
0 . However, Πcorr counterbalances Πent in the

presence of divalent counterions and efficiently shrink the inner leaflet, leading to negative

∆ain
0 roughly independent of [Na+].

Inspired by a microscopic model for lipid monolayers, we have developed a formalism

to relate the spontaneous curvature of a bilayer to a few microscopic parameters such as

the optimal head group area, equilibrium chain length, and chain volume. Then we apply
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this model to an asymmetrically charged bilayer and describe the spontaneous curvature

C0 in terms of salt concentrations and charge fractions, and thus are able to discuss

electrostatics that governs the behavior of C0.

As we did with ∆A0, we have explained the behavior of C0 in different solution

conditions in terms of Πent, Πrep and Πcorr. Our calculation indicates that asymmetry

in surface charges or solution conditions can induce a nonzero spontaneous curvature,

consistent with previous calculations at the mean-field level. In addition, our model has

captured charge correlations that can have a significant effect on C0 in the presence of

multivalent counterions.

We have also compared our results with those in the PB approach at the mean field

level. We find the difference between these two can be attributed to the way electrostat-

ics influences the mechanical bending rigidity km: in our model, km can be modified by

electrostatics through a∗0; in the PB approach, km is independent of electrostatics, leav-

ing behind the question how km is determined by the microscopic properties. Another

unexplored problem is the contribution of charge correlations to the bending-induced

spontaneous curvature. Our analysis cannot be realistic unless this problem is fully ad-

dressed. It is desirable that our C0 could be combined with bending-induced C0 and be

applied to cell shape calculations.
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