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Abstract 

This paper presents the surface temperature and voltage distributions on a prismatic lithium-ion battery 

pack at 1C, 2C, 3C, and 4C discharge rates and 5°C, 15°C, 25°C, and 35°C boundary conditions (BCs) 

for water cooling and ~22°C for an air cooling method to provide quantitative data regarding thermal 

behaviour of lithium-ion batteries for designing thermal management systems and developing reliable 

thermal models. In this regard, three large, LiFePO4 20 Ah capacity, prismatic batteries are connected in 

series with four cold plates used between cells and eighteen thermocouples are placed at distributed 

locations on the principle surface of all three cells: the first six for the first cell, the second six for the 

second cell, and the third six for the third cell, and the average and peak surface temperatures as well as 

voltage distributions are measured and presented in this study. In addition, using MATLAB Simulink, the 

simulated heat generation rate, temperature and voltage distributions are validated with an experimental 

data for the above mentioned C-rates and BCs. The present study shows that increasing discharge rates 

and BCs results in increase the maximum and average surface temperature at the three locations (first near 

the anode, the second near the cathode, and the third near the mid surface of the body). The highest value 

of the average surface temperature is obtained for 4C and 35°C BC (36.36°C) and the lowest value is 

obtained for 1C and 5°C BC (7.22°C) for water cooling method. 

Keywords:  Lithium-ion battery cells, temperature distribution, thermal management. 

1. Introduction

In the automotive sector, powertrain electrification, which consists Electric vehicles (EVs), Hybrid 

Electric Vehicles (HEVs), and Plug-In Hybrid Electric Vehicles (PHEVs) has recently achieved more 

attention for reducing the CO2 emissions [1, 2]. Consensus in the automotive sector is that lithium-ion 
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batteries are the most likely candidate for overcoming this challenge [1]. Also, the lithium-ion battery is 

the most advanced battery technology for EVs, HEVs, and PHEVs due to: 1) high specific energy and 

power densities [3, 4]; 2) high nominal voltage and low self-discharge rate [5]; and 3) long cycle-life and 

no memory effect [6, 7]. A lithium-ion battery cells usually has five different layers, namely: the negative 

current collector, negative electrode (anode), separator, positive electrode (cathode), and positive current 

collector. The positive electrode materials [8, 9] are typically four types: 1) a metal oxide with layered 

structure, such as lithium cobalt oxide (LiCoO2 / LCO) [10]; 2) a metal with a three dimensional spinal 

structure, such as lithium manganese oxide (LiMn2O4) [11]; 3) lithium nickel manganese cobalt oxide 

(LiNiMnCoO2/NMC); and 4) a metal with a olivine structure, such as lithium iron phosphate 

(LiFePO4/LFP) [12]. The anode is usually made of graphite or a metal oxide. The electrolyte can be 

liquid, polymer or solid.  

The operating temperature has a great effect on the discharging and charging performances such as 

voltage window, discharge capacity and life, etc. At lower operating temperature (˂ 200C) leads into 

significant reduction in power capability and driving range, and even freezing phenomenon with 

electrolyte, while operating at higher temperature range (˃ 450C) results in battery degradation [13, 14, 

15, 16]. Therefore, during discharging and charging, precautions must be taken since, for example 

exceeding voltage, current or power limits may result in battery cell damage. The possibility of thermal 

runaways also occurs if care is not taken [17, 18, 19]. Moreover, lithium-ion polymer batteries must be 

carefully monitored and managed (electrically and thermally) to avoid safety (inflammability) and 

performance related issues [20, 21, 22].  Hence, the battery thermal management system (BTMS) is 

required in order to maintain the temperature of the cells in a battery pack at required levels. Usually, the 

typical operating range of temperature for lithium-ion batteries is 200C and 450C, which gives the 

maximum power capability as well as the cycle life, and an extended range is between –100C and +500C 

for the tolerable operation [23, 24, 13].  

Battery modeling is considered extremely important since it provides information on battery 

charging/discharging, transient behavior and health status of the battery (battery degradation) as a 

function of different stress factors (temperature, discharge rate, etc.). The battery models are also used for 

on-line self-learning performance and SOC estimation in BTMS [25, 26, 27]. There are various papers in 

the open literature available for battery thermal modeling, using different approaches such as artificial 

neural network [28, 29], finite element model (FEM) [30] or lumped parameter model (LPM) [31], linear 

parameter varying (LPV) model [32], or partial differential equation (PDE) model [33] and CFD models 

[34, 35, 36, 37, 38, 8]. 
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In this paper, the research conducted on the lithium-ion battery pack performance under different constant 

current discharge rates of 1C, 2C, 3C, and 4C and 5°C, 15°C, 25°C, and 35°C BCs is presented. For the 

present study, we designed and developed an experimental facility which tests different batteries with 

different kind of chemistries. To the best of the authors’ knowledge no similar studies have been reported 

in the literature. This study has the following objectives: 

 Design and development of battery pack with three series connected lithium-ion batteries and 

four cold plates.  

 Testing of pack under different C-rates and various boundary conditions. 

 Experimental investigation of battery cells/pack in terms of surface temperature and voltage 

distributions. 

 Development of the Thevenin based equivalent circuit model and validation with the test data. 

2. Experimental Study 

The experimental set-up used for the experimental work is shown in Figure 1. This set-up consists mainly 

of five components: A & D cell/pack cycler, National Instrument (NI) temperature measurement device, 

battery pack, Computer 1, and Computer 2. A & D cell/pack cycler (Bitrode) having a maximum capacity 

to charge/discharge at 20V and 1200 A, has been used to charge and discharge the battery pack. The 

cell/pack cycler has been controlled by Computer 2 through Visual CN software. Computer 1 provides the 

charge and discharge data for pack, while computer 2 is used for the thermal data collection. Computer-1 

sets the current or voltage values on the load box and power supply, depending on the experiment. The 

current, measured internally of the load box and power supply, is transmitted back to Computer-1. 

Depending on the computer requests, the power supply or load box will provide power to or draw power 

from the battery pack, respectively. NI (National Instrument) 16 channel Field point is used in order to 

measure the surface temperature distributions, which transmits the thermal data to the test stand Computer 

2. Heavy duty copper cables have been used to connect battery pack to the cycler. 

The T-type thermocouples were installed on the principal surface of the battery to measure the surface 

temperatures at three discrete points. The thermocouple locations are shown in Figure 2 (a and b). All 

thermocouples were connected to NI temperature measurement device, which further connected to 

Computer 1. Out of three thermocouples, the first was placed near the cathode, the second was placed 

near the anode, and the third was placed at the mid surface of the cell. There were total eighteen 

thermocouples were used for this experimental set-up, out of eighteen, the six were used for first cell, the 

other six were used for the second cell, and the last six were used for the third cell and all cells are 

connected in series. Kapton-backed adhesive tape was used to adhere the thermocouples to the surface of 
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the battery and thermocouples are T-type 30 gauge, special limits of error (SLE) thermocouple wire with 

uncertainty of 1°C (according to manufacturer’s specifications). The circuit model parameters for A123 

AMP20 cells were found by hybrid pulse power characterization (HPPC) at 5°C, 10°C, 15°C, 20°C, 25°C, 

30°C, 35°C, 40°C, 45°C, 50°C, 55°C, and 60°C.  A BioLogic VMP3B-100 multi-channel potentiostat was 

used for cell cycling and a CSZ Micro Climate chamber for temperature control.  Circuit parameters were 

determined for SOC values from 10% to 90% at 10% intervals at each temperature. 

In EV applications, the battery system consists of a number of single cells connected either in series or in 

parallel in order to achieve the power and capacity requirements. The pack as shown in Figure 1, consists 

of three cells electrically connected in series. As explained in previous paragraph, the pack was 

instrumented with T-type thermocouples, as well as pack current and individual cell voltage sensors. In 

this series, each battery cell was experimentally characterized, in order to predict the cell voltage and 

capacity during discharging and charging operations at an ambient temperature (~22°C). In all the 

experiments conducted, the cells were initially charged, then utilized until completely discharged. The 

output voltage of series connected cells is given by Equation 1 and the discharge current is given by 

Equation 2. It is very well known that the temperature distribution is not uniform in a battery pack. 

Therefore, the operating temperatures of the cells are different from each other. 

 𝑉𝑜𝑢𝑡 =  𝑉𝑐𝑒𝑙𝑙 1 + 𝑉𝑐𝑒𝑙𝑙 2 + ⋯ + 𝑉𝑐𝑒𝑙𝑙 𝑛 (1) 

 𝐼𝑜𝑢𝑡 =  𝐼𝑐𝑒𝑙𝑙 1 = 𝐼𝑐𝑒𝑙𝑙 2 = ⋯ = 𝐼𝑐𝑒𝑙𝑙 𝑛 (2) 

A 20 Ah lithium-ion pouch cell was used for the test measurements and subsequent model validation.  

The main technical parameters of the battery are listed in Table 1. 

In the experimental measurements, three different discharge rates were selected: 1C, 2C, 3C, and 4C. The 

charge rate is 1C. The experimental plan is shown in Table 2. The internal resistance is calculated based 

on the Ohm’s law (covering the voltage drop (difference between open circuit voltage and the actual or 

measured terminal voltage) is divided by current values) as follows:  

 
𝑟𝑖𝑛𝑡 =  

∆𝑉

𝐼
=

𝑉𝑜𝑐 − 𝑉𝑎𝑐𝑡

𝐼
 (3) 

3. Analysis 

The Thevenin equivalent circuit model shown in Figure 3 was used for voltage estimation.  The open-

circuit voltage (OCV) was modeled by an ideal voltage source, with was correlated with the battery state-

of-charge (SOC). The two resistors (𝑅1𝑎𝑛𝑑 𝑅2) and the capacitor (C) were used to represent battery 
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behaviour in response to current.  These three parameters were found from the HPPC data using a genetic 

algorithm in MATLAB.  This circuit model yields Equations 4-6, which were solved in the model to 

estimate the voltage of the battery. 

 𝑉 = 𝑂𝐶𝑉(𝑆𝑂𝐶) − 𝑉1 − 𝑉2 (4)  

 𝑉1 = 𝐼𝑅1 (5)  

 𝑑𝑉2

𝑑𝑡
=  −

𝑉2

𝑅2𝐶
+ 

𝐼

𝐶
 (6)  

Figure 4 is an upper-level view of the MATLAB Simulink model used to estimate voltage, heat 

generation and temperature.  Inputs to the voltage calculation subsystem were current and temperature.  

Current and the outputs of the voltage calculation subsystem were taken as inputs to the heat generation 

subsystem.  Figure 5 shows the Simulink block diagram for voltage calculation. SOC was estimated 

simply by coulomb integration.  OCV and 𝒅𝑽𝑶𝑪

𝒅𝑻
 lookup was based on SOC.  A lookup table based on the 

work by Forgez et al. [45] was used in this subsystem.  The parameter estimation subsystem took 

temperature and SOC as inputs to two-dimensional lookup tables for each circuit parameter.  The voltage 

estimation subsystem then solved the system of circuit equations.  Error! Reference source not found. 

shows the Simulink block diagram for heat generation. The inputs are used to solve the energy balance 

based on heat generation, cooling and ambient heat losses.  
 

4. Results and Discussion 

In this section, the experimental and simulated results for surface temperature and discharge voltage 

distributions are presented for a large size prismatic lithium-ion battery pack at different charge and 

discharge rates of 1C, 2C, 3C, and 4C and different boundary conditions of 5°C, 15°C, 25°C, and 35°C 

for water cooling and ~22°C for air cooling methods. 

4.1 Average Surface Temperature Results 

Figure 6 shows the average surface temperature distributions obtained for stack or cell 1, 2, and 3 at 

different constant current C-rates of 1C, 2C, 3C, and 4C and different boundary conditions of 5°C, 15°C, 

25°C, and 35°C for water cooling and ~22°C for air cooling method. Here, in this experimental work the 

cycle represents first 1C charge, then 1 hour rest, followed by 1C discharge, after that the same cycle is 

repeated but for discharging instead of 1C it is 2C, 3C, and 4C discharge and total time for all 

charge/discharge cycle was 18 hours.  Note that TC 1 is located near the positive electrode or cathode, TC 
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2 is located near the negative electrode or anode, and TC 3 is located at the middle of the cell along the 

height of the cell as shown in Fig. 7. The highest value of the average surface temperature is obtained for 

4C and 35°C BC (36.36°C) and the lowest value is obtained for 1C and 5°C BC (7.22°C). The trend 

observed is that the increased C-rates and increased boundary conditions result in increased in an average 

surface temperature for all cells 1, 2, and 3 (or stack). For the air cooling method, the values are higher at 

all discharge rates as compared to the water cooling method. The highest value of average surface 

temperature for the air cooling method obtained at 4C discharge rate is 41.38°C. Table 3 summarized the 

average surface temperatures all C-rates and all BCs for both water cooling as well as air cooling 

methods. 

4.2 Peak Surface Temperature Results 

In Table 4, the peak surface temperature measured by the thermocouples for all discharge rates of 1C, 2C, 

3C, and 4C and different boundary conditions of 5°C, 15°C, 25°C, and 35°C for the water cooling and 

~22°C for the air cooling methods are presented. It is observed that the highest peak surface temperatures 

were measured at TC 3 (near mid surface of the body). In general, for all tests the sensors nearest the 

middle of the battery surface measured greater values than the sensor located near electrodes. The trend 

observed is that increased discharge rates and increased boundary conditions (for both the water cooling 

and the air cooling) results in increased peak temperatures at the three locations measured. The highest 

value is obtained for 4C and 35°C BC (38.82°C) and the lowest value is obtained for 1C and 5°C BC 

(8.17°C) for the water cooling method. Also, as compared to the water cooling method, the air cooling 

method gives higher values for all C-rates. The highest value for the air cooling method was at 4C 

discharge rate is 56.49°C.  

4.3 Cell and Stack Voltage Results 

Figure 7 shows a stack voltage profile obtained during all discharge rates of 1C, 2C, 3C, and 4C and 

different boundary conditions of 5°C, 15°C, 25°C, and 35°C for the water cooling method. The voltage 

window for Cell 1, cell 2, and cell 3 are between 4.0 V and 2.0V while for the stack, as they are 

connected in series, the voltage is between 11.0 and 6V. Here, the all three cells are charged with constant 

current (CC) protocol until the voltage reaches 3.6V and discharged with the constant current (CC) until 

the voltage drops to 2.0V. Here, the discharging and charging were done at constant current (CC). There 

is a great impact of boundary conditions (5°C, 15°C, 25°C, and 35°C) on the discharge capacity of the 

cells. It was observed that as the BCs increases the discharge capacity of all cells decreases. 

4.4 Model Validation Results 
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Figure 8 shows a comparison between the experimental (red dotted lines and green solid line) and 

simulated (blue solid line) results for temperature distribution at 4C discharge rates versus the discharge 

time (s) for air cooling method. It shows a good agreement between the experimental and simulation data 

which is indicative of the accuracy of the present model. However, at the higher C-rates of 4C, some 

discrepancies are observed. The model predicts the lower value than the experimental values at higher 

discharge rates of 4C, while for the other discharge rate of 1C, 2C, and 3C the model predicts the higher 

values than the actual values. The reason behind this is that more accurate input data is required to get the 

exact output. In general, the trend observed is that as the C-rate increases the surface temperature also 

increases. Similarly, Figure 9 shows a comparison between experimental (blue solid line) and simulated 

(red dotted line) for the discharge voltage during 4C discharge rate for an air cooling method. Similarly, 

Figure 10 shows a comparison between experimental (blue solid line) and simulated (red dotted line) for 

the discharge voltage during 1C, 2C, and 3C discharge rate for an air cooling method. It was observed 

that for the air cooling method, the discharge capacity is closer to the manufacturer’s provided capacity 

(20Ah) for all C-rates. 

5. Conclusions 

This paper has presented a comparative study of the temperature distribution on a prismatic lithium-ion 

battery pack consisting of three cells in series connection using both experimental and simulation 

techniques. In the experimental study, the temperature distribution on lithium-ion battery cells at 1C, 2C, 

3C, and 4C constant current discharge rates and various BCs of  5°C, 15°C, 25°C, and 35°C boundary 

conditions (BCs) for a water cooling method and ~22°C for an air cooling method were studied. The 

average and peak surface temperature values are also obtained from the experimental data. 

Computationally, a high-fidelity curve fitting model was also developed, and the simulated data are then 

validated with the experimental data for the average temperature of all three cells and voltage profiles. 

The developed model successfully captured the charge/discharge behaviour over a wide range of C rates. 

Some concluding remarks are stated as follows: (i) the temperature distributions of all three cells increase 

as the C-rates increase. (ii) For the water cooling method, the highest value of average surface 

temperature is obtained for 4C and 35°C BC (38.82°C) and the lowest value is obtained for 1C and 5°C 

BC (8.17°C). (iii) For the air cooling method, the highest value of average surface temperature obtained at 

4C discharge rate is 41.38°C. (iv) The water cooling method is more effective than an air cooling method. 

These kinds of testing and results provide an insight into the design and optimization of battery systems. 

Future work will focus on a more rigorous thermal testing under controlled BCs of 10°C, 20°C, 30°C and 

40°C. 
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Nomenclature 
I = current [A] 
R = resistance [Ω] 
C = capacitance 
T = temperature [°C or K] 
t =  time [s] 
V = cell voltage or cell potential [V] 

Subscripts 
act = actual 
int = internal 
oc = open-circuit 
out = output 

Acronyms  
BC Boundary condition 
BMS Battery management system 
BTMS Battery thermal management system 
C Capacity 
CC Constant-current 
CV Constant-voltage 
EV Electric vehicle 
HEV Hybrid electric vehicle 
HPPC Hybrid pulse power characterization 
GUI Graphical user interface 
I/O Input/output 
LiCoO2    Lithium cobalt oxide 
LiMn2O4 Lithium manganese oxide 
LiNiMnCoO2  Lithium manganese cobalt oxide 
LiFePO4 Lithium iron phosphate  
LCO     Lithium cobalt oxide 
LFP Lithium phosphate 
LPM Lumped parameter model 
LPV Linear parameter varying 
NI National Instrument 
NMC Lithium manganese cobalt oxide 
OCV  Open circuit voltage 
PHEV Plug-In hybrid electric vehicle 
PDE Partial differential equation 
TC Thermocouple 
SOC State of charge 
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Tables 

Table 1 : LiFePO4- 20Ah lithium-ion pouch cell specifications 

Specifications Value 
Cathode Material LiFePO4 
Anode Material Graphite 
Electrolyte Carbonate based 
Nominal Capacity 20.0 Ah 
Nominal Voltage 3.3 V 
Dimensions 7.25 mm x 160 mm x 227 mm 

Table 2 : Test conditions 

Cooling  
Type 

Ambient/Coolant/Bath 
Temperature [°C] 

Discharge  
Rate 

Air cooling ~22 1C, 2C, 3C, 4C 

Water cooling 

5 1C, 2C, 3C, 4C 
15 1C, 2C, 3C, 4C 
25 1C, 2C, 3C, 4C 
35 1C, 2C, 3C, 4C 

Table 3 :  Summary of average surface temperature at all discharge rates and different BCs 

Cooling 
Type 

Boundary 
Condition 

[°C] 

Average surface temperature [°C] 

1C 2C 3C 4C 

Water 
cooling 

5 7.22 8.49 10.43 11.58 
15 16.58 17.30 18.81 19.83 
25 25.30 26.15 27.44 28.25 
35 35.17 35.34 36.35 36.36 

Air ~22 27.86 34.18 36.86 41.38 

Table 4 :  Summary of peak surface temperature at all discharge rates and different BCs 

Cooling 
Type 

Boundary 
Condition [°C] 

Maximum surface temperature [°C] 
1C 2C 3C 4C 

Water 
cooling 

5 8.17 9.78 12.44 13.89 
15 17.30 18.51 20.05 21.35 
25 25.58 26.82 28.90 30.66 
35 35.34 36.24 38.01 38.82 

Air ~22 32.99 42.72 48.61 56.49 
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Figures 

 

Figure 1  : Experimental set-up 
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Figure 2  : Thermocouples locations; (a) drawing with dimensions, (b) actual cell with thermocouple. 
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Figure 3 : Thevenin equivalent circuit model 

 

Figure 4 : Main Simulink block diagram 

 

Figure 5 : Simulink block diagram for voltage 
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(a) Temperature at 1C,2C,3C,4C and 5 °C BC (b) Temperature at 1C,2C,3C,4C and 15 °C BC 

 
 

(c) Temperature at 1C,2C,3C,4C and 25 °C BC (d) Temperature at 1C,2C,3C,4C and 35 °C BC 

Figure 6  : Experimental surface temperature profiles during different discharge rates and various boundary 
conditions 

  
(a) Voltage at 1C,2C,3C,4C and 5 °C BC (b) Voltage at 1C,2C,3C,4C and 15 °C BC 

  
(c) Voltage at 1C,2C,3C,4C and 25 °C BC (d) Voltage at 1C,2C,3C,4C and 35 °C BC 

Figure 7  : Experimental voltage profiles during different discharge rates and various boundary conditions 
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Figure 8  : Comparison between the experimental (solid lines) and numerical (dotted lines) results for 
temperatures during 4C-rates without cooling 

 

Figure 9  : Comparison between the experimental (solid lines) and numerical (dotted lines) results for 
discharge voltage during 4C-rates without cooling 
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(a) 1C_Temperature_Nocooling BC (a) 1C_Voltage_Nocooling BC 

  
(b) 2C_Temperature_Nocooling BC (b) 2C_Voltage_Nocooling BC 

  
(c) 3C_Temperature BC (c) 3C_Voltage_Nocooling BC 

Figure 10  : Comparison between the experimental (solid lines) and numerical (dotted lines) results during 
different discharge rates without cooling 

 


