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Abstract

In this thesis, we examined a series of techniques for controlling the interaction of light with matter

that could be employed to optimize or to control physical phenomena in various potential applica-

tions. Some of these schemes are described with classical electrodynamic theory while others require

a semi-classical or full quantum framework.

In Ch.(2), we study numerically two implementations of stretchable photonic crystals (SPCs)

embedded in elastic polymers. Our analysis, which classifies the bandgaps in terms of two simply

determined parameters, indicates that such structures exhibit bandgaps that can be readily adjusted

by straining the polymer.

In Ch.(3), we considered a five-level atomic system in a dense gas interacting with two low-

intensity fields. By examining the influence of different parameters on the refraction index we found

that by adjusting the ratio of the two magnetic amplitudes associated with the fields the effects of

atomic coherence can be simply controlled. As well, a negative index of refraction can be achieved

and controlled over a wide wavelength range with minimal absorption.

In Ch.(4), we theoretically investigated the double Λ scheme inside a Fabry-Pérot cavity. By

introducing a weak probe beam and two strong driving fields and employing an incoherent pumping

mechanism we found that when the intensity of the two driving fields are equal, a single giant white

band was generated. However, when they are not equal, three white bands can be present in one

cavity. This procedure can also be employed to displace the center frequency of the white band.

In Ch.(5), we studied the interaction of a N-type four-level atom with a single field in the presence

of an intensity-dependent coupling in a nonlinear Kerr medium. The exact analytic solution is

obtained in the case that the atom and electromagnetic field are initially in a higher excited state

and a coherent state, respectively. It is then demonstrated that nonclassical properties such as the

degree of entanglement stabilization, Kerr medium nonclassical control, and squeezed light can be
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more efficiently realized and controlled within this four-level framework than in many competing

procedures.

Finally, in Ch.(6), we theoretically studied the superposition of two nearly identical coherent

states. This “near coherent” state exhibits numerous nonclassical properties such as sub-Poissonian

statistics, squeezing for certain relative phases of the superposition and a partially negative Wigner

function.
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Chapter 1

Introduction

Quantum optics combines quantum mechanics and electrodynamics by describing the interactions

of light and matter when the application requires that at least one of these be treated as quantized.

Applications of the theory include quantum information, quantum computing, lasers, masers and

accurate measurements.

The electromagnetic field can be described by different physical theories depending on the degree

of approximation. Generally, the quantum effects can be ignored when the number of detected

photons is large such as in a typical light beam, or when the details of the interaction of light with

matter are irrelevant. In this case, the light can be described classically as in a laser beam passing

through transparent materials, open slots, classical waveguides, photonic crystals, empty cavities,

and nonlinear materials.

On the other hand, for a large number of incident photons, if quantum effects are significant, a

semi-classical approach in which the light beam is treated classically, while the interaction of the

light with matter is instead considered quantum mechanically is generally employed. Examples of

these such interactions are the description of lasing, electromagnetically induced transparency (EIT),

optical white light cavities and nonlinear coefficient enhancement.

Finally, for a small number of photons, the electromagnetic field is generally treated as fully quan-

tized. Some phenomena which cannot be described by the previous theories, but can be explained

by this theory including entanglement, squeezed states, photon anti-bunching, spontaneous emission

and collapse and revival phenomenon. Such an approach, however, cannot generally predict inter-

actions of high-energy photons with matter such as pair production and Lamb shifts, which instead

1



requires the formalism of quantum electrodynamics and high energy physics. Fig.(1.1), compares

the capabilities of the different theories of the light-matter interactions.

Figure 1.1: Relationships between different theories of light-matter interactions

This thesis concerns quantum light-matter interactions applications at low energy, primarily in

quantum optics. Classical, semi-classical and full quantum descriptions are employed to generate

proposals for controlling or enhancing various physical phenomena. In particular, the chapters of

this thesis cover

1) Photonic crystals devices that reflect light completely within a band of frequencies termed the

optical band gap. Such materials can be employed in quantum optics to increase the strength of

certain optical interactions. In Ch.(2) a classical description of light is therefore applied to examine

the possibility of varying the optical band gap based in stretchable polymer devices.

2) Negative refractive index materials are usually fabricated from complex periodic structures termed

metamaterials, which however generally exhibit high absorption. In Ch.(3) a semi-classical study

is instead employed to analyze 5-level atomic scheme interacts with two fields in a dense gas that

yields a negative refractive index with near zero absorption.

3) White light cavities resonate within a band of frequencies but are generally restricted to a fixed

frequency region. In Ch.(4), we propose a double Λ scheme generated by a certain pumping mech-

anisms and coupling fields. From a semi-classical analysis, it is demonstrated that this procedure

2



generates three white light bands with controllable bandwidths and center positions.

4) A full quantum description is provided for the N-type interaction of a four-level atom a single

light mode in a nonlinear surrounding in Ch.(5). This analysis demonstrates that the resulting light

is squeezed, anti-bunched and entangled more effectively than in many other comparable systems.

5) Schrödinger cat light states in quantum optics are employed in quantum communications and

elsewhere. In Ch.(6), we consider an extension of these states which we term near coherent states.

We analyze the non-classical properties of these states and propose a method for creating them.

Thus the first three chapters Chs.(2-4) consider procedures for controlling classical optical prop-

erties such as the refractive index, wavelength spectrum and susceptibility while the following two

chapters (5, 6) are concerned with nonclassical properties such as squeezing, anti-bunching, and

entanglement. Thus the second chapter of the thesis employs the classical theory of light, while

chapters (3,4) and chapters (5,6) employ semiclassical and full quantized theories. Finally, in the

last of each chapter, we provided a summary which states our most important findings and suggested

future work.
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Chapter 2

Stretchable Photonic Crystals

Photonic crystals (PC) are materials containing 1D, 2D or 3D periodic structures with a lattice

period on the order of the light wavelength, c.f. Fig.(2.1) [6]. As a result of Bragg scattering, these

materials can exhibit a photonic band gap in the dispersion relation, analogous to the electronic band

gap in atomic crystals. In the same manner that an electronic band gap precludes the transport

of electrons with energies within the gap, the photonic band gap reflects light within the bandgap

frequencies.

Figure 2.1: Photonic crystals of different dimensionalities. The alternating colors represent different dielectric
constants.

Photonic crystals can be employed in a wide range of current or potential applications in both

classical and quantum optics. These include waveguiding light through engineered line defects in

2D PCs [7, 8], confining light to a resonant cavity formed by a point defect [9, 10] and altering the

spontaneous emission amplitude in appropriately designed cavities [10,11].

In this chapter, we calculate the band structure of 2D elastic photonic crystals. In the first
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section, we provide a theoretical background to PCs followed by 1D PC example. After that, we

introduce stretchable photonic crystals (SPC) and consider two possible designs. The conclusion

proposes several potential applications of SPCs.

2.1 Background

To introduce the topic of photonic crystals, we recall that Maxwell’s equations in the absence of free

charge and electric currents take the form

∇ ·B(r, t) = 0, ∇ ·D(r, t) = 0,

∇×E(r, t) = −∂B(r,t)
∂t , ∇×H(r, t) = ∂D(r,t)

∂t ,
(2.1)

where E(r, t) is the electric field, B(r, t) is the magnetic induction, and D(r, t) and H(r, t) are the

electric displacement and magnetic fields respectively. In this chapter, the relative permittivity or

the dielectric constant ε of the material is a wavelength-independent function of spatial coordinates

ε = ε(r) and is assumed to be independent of the electric field amplitude while the material, is further

assumed nonmagnetic so that µ = µ0 everywhere. Further, ε(r) is assumed real corresponding to a

transparent medium.

Based on these assumptions the electric displacement can be written as D(r, t) = ε0ε(r)E(r, t)

while the magnetic field is H(r, t) = µ0B(r, t), where ε0 (µ0) is the vacuum permittivity (permeabil-

ity). If the fields are monochromatic,

E(r, t) = E(r)e−iωt, H(r, t) = H(r)e−iωt, (2.2)

where ω is the angular frequency of the fields, the two curl equations of Eqs.(2.1) become

∇×E(r) = iµ0ωH(r), ∇×H(r) = −iε0ωε(r)E(r). (2.3)

Hence taking the curl of H(r) from Eqs.(2.3), dividing both sides by ε(r) and taking the curl of both

sides yields

∇×
(

1

ε(r)
∇×H(r)

)
= −iε0ω∇×E(r). (2.4)

After substituting ∇ × E(r) from Eq.(2.3) and applying c2 = (µ0ε0)−1, we arrive at the master
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equation

∇×
(

1

ε(r)
∇×H(r)

)
=
(ω
c

)2

H(r). (2.5)

For a given set of boundary conditions, this equation generates an eigenvalue problem, where H(r)

are the eigenfunctions and ω2/c2 are the eigenvalues. Once H(r) is determined, the electric field is

given by the Eqs.(2.3) as

E(r) =
i

ωε0ε(r)
∇×H(r). (2.6)

Another important feature of the master equation is its scalability. That is, if vector r is scaled

by s as r → r/s, where s is any real value so that ∇ becomes s∇, the master equation is replaced

by

s∇×
(

1

ε(r/s)
s∇×H(r/s)

)
=
(ω
c

)2

H(r/s). (2.7)

which can be rewritten as

∇×
(

1

ε(r/s)
∇×H(r/s)

)
=
( ω
sc

)2

H(r/s). (2.8)

which reproduces Eq.(2.5) scaled by 1/s. Accordingly results for a given structure can be applied

to a scaled structure by if the wavelength is also appropriately scaled.

2.1.1 Photonic crystals

We now specialize to periodic photonic crystals. Approximating a finite crystal by an infinite or

possibly semi-infinite structure, we can define a unit cell as the smallest rectangular repeating unit

in the lattice. These cells can be described by their basis vectors a = (a1,a2,a3) such that the

origin of any unit cell in the lattice can be expressed as R = la1 + ma2 + na3, where (n, l,m) are

integers. A unit cell, a unit lattice vector, and R vector are illustrated in Fig.(2.2).

The reciprocal vectors b = (b1,b2,b3) are then defined by a · b = 2πδij , where δij represents

the Kronecker delta function. After some algebra, these vectors can be expressed as

b1 = 2π
a2 × a3

a1 · a2 × a3
, b2 = 2π

a3 × a1
a1 · a2 × a3

, b3 = 2π
a1 × a2

a1 · a2 × a3
. (2.9)

The Brillouin zone is then defined as the unit cell of the reciprocal lattice. The Bloch waves of the
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Figure 2.2: An 2D lattice for which the unit vectors are a1 and a2, a unit cell is colored red at the position
(2,2) and a position vector R points to the cell at (3, 1).

crystal are then defined by

H(r) = u(r)eik·r, (2.10)

where u(r) is a periodic function with the same periodicity of the lattice, so u(r) = u(r + R), and

k is the Bloch wave vector which is a combination of the primitive reciprocal vectors. Applying

the Bloch theorem of Eq.(2.10) to the master equation with a Bloch wave vector given by k =

k1b1 + k2b2 + k3b3, where ki can take any real value inside the Brillouin zone then yields

∇×
[

1
ε(r)∇×

[
u(r)eik·r

]]
=

(
ω(k)
c

)2

u(r)eik·r,

(ik +∇)× 1
ε(r) (ik +∇)× u(r) =

(
ω(k)
c

)2

u(r),
(2.11)

where the explicit dependence of ω on k is introduced. While this equation is restricted to a single

Brillouin zone PC, if additional symmetries are present, it is only necessary to solve the equation

within a smaller region termed the irreducible Brillouin zone as detailed in e.g. [6, 12].

Since in general the master equation cannot be solved analytically, numerical methods such as

the imaginary distance beam propagation method (BPM), the finite-difference time domain (FDTD)

and the plane wave expansion (PWE) can be applied to obtain the dispersion relation. [13–15]. In

the next section, we consider for illustration a 1D PC example.

2.1.2 One dimensional PC example

One of the simplest 1D PC structures, which is periodic only in the z direction, so that ε(r)→ ε(z)

is illustrated in Fig.(2.3). The primitive lattice vector here is a = az while the primitive reciprocal

vector is then b = (2π/a)z. Consequently, the Brillouin zone extends between −π/a ≤ kz ≤ π/a.
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For an electromagnetic wave incident in the z direction, H(r) → H(z). If we further assume x

polarization, the master equation, Eq.(2.11), simplifies to the scalar wave equation

(
ikz +

d

dz

)
1

ε(z)

(
ikz +

d

dz

)
ux(z) =

(
ω(kz)

c

)2

ux(z), (2.12)

where kz = k is the component of the z axis of k.

Figure 2.3: A 1D PC with two alternately repeating layers in the z direction, where a is the length of the
unit cell. The colors indicate different materials.

At this point the dispersion relation ω(kz) or the field Hx(z) can be determined. If the length

of each of the first material layers equals c1, while the second is c2 and the corresponding dielectric

constants are ε = 9 and ε = 1, the PWE method yields the band structure of Fig.(2.4). Here the

left figure displays the band structure of a single material with ε = 9 given by

ω(k) =
ck√
ε
. (2.13)

while the middle figure is the 1D PC band structure with c1 = c2 = 0.5a and ε altering between

9 and 1 while the right figure pertains to c1 = 0.2a and c2 = 0.8a for the same values of ε. The

value of (a) is not physically meaningful since the master equation and its solution can be scaled

according to Eq.(2.8).

The left figure of Fig.(2.4) indicates that when only one material is present the band gap is absent,

where the folded Brillouin zone of Eq.(2.13) is displayed for comparison. In the middle and right

figures a band gap is however evident. Thus in the middle figure, the first band gap is positioned

between 0.1811(2πc)/a < ω < 0.2999(2πc)/a, incident light with frequencies inside this bandgap is

completely Bragg reflected. In the right figure, the gap between the second and third bands occurs

for 0.6431 < ωa/(2πc) < 0.7043, which is the smallest gap between the two bands. An additional
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Figure 2.4: The first 5 bands of the 1D PC band structure for the material parameters presented in the text.

feature evident from Fig.(2.4) is that the lowest band becomes nearly linear as ω → 0. This feature

is expected since for small frequencies and therefore large wavelengths the electromagnetic wave is

only influenced by the average refractive indices of the layers. Finally, it should be noted that the

size of a band gap is a function of the dielectric constant values and the spacing of the materials

lengths c1, c2.

2.2 Stretchable photonic crystal (SPC)

In higher dimensional systems such as slab waveguides [16–19], cylindrical fibers [20–23], and ge-

ometries as well as three dimensional cavities [24,25] the optical band structure is far more complex

than that of 1D PCs and therefore generally must be determined numerically. Accordingly, in the

remainder of this chapter the band structure and resultant band gaps were calculated with the PWE

tool of the commerical OptiFDTD package. After results were obtained for numerous material and

geometric parameters the most significant findings were collected and presented below.

Standard 2D PC structures are generally fabricated by drilling triangular lattices of air holes

into slab waveguides or by etching square lattices of rods, which respectively results in bandgaps for

TM and TE polarizations. Light can then be guided by Bragg reflection from the surrounding PC

along one or more straight, curved or intersecting line defects generated, for example by omitting
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cells of the periodic structure, changing the refractive index or deforming the unit cell geometry

[26–28]. In a similar fashion, surrounding a point defect with a PC creates a resonator [29, 30].

In dynamic structures the wavelength range of the bandgaps can further be altered by changing

external parameters such as heat [31], electric current [32], and magnetic fields [33] or general

physical forces [34].

Photonic crystals formed from elastic polymer material that can be distorted by mechanical

stress. In view of the low polymer refractive index compared to that of e.g. semiconductors, rather

than inserting air holes into the polymer a Stretchable Photonic Crystal (SPC) can be more effec-

tively implemented by surrounding a lattice of dielectric rods, here assumed to be formed from a

semiconductor with n =
√
ε = 3.6, and with a polymer material with n =

√
ε = 1.4 as in Fig.(2.5).

Figure 2.5: The proposed stretchable photonic crystal (SPC) structure, where orange and grey indicate
polymer and semiconductor materials.

The upper and lower sections of the figure represent the SPC device without and with an applied

force in the longitudinal, z, direction, where the lateral direction is denoted by x and the rods are

separated by polymer regions. While a similar structure was fabricated in [35], we will examine both

triangular and rectangular patterns of rods for both small and large deformations. By examining

the full band structure, we further propose applications that utilize several simultaneous bandgap

regions. Our analysis generalizes the work of previous authors in that it compares two types of pho-
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tonic crystal structures in terms of two simply expressed parameters and suggests several potential

applications.

2.3 Designs of SPC

2.3.1 Rectangular lattice

Following previous studies of square lattices [6, 36, 37], we first consider a rectangular lattice of

dielectric rods of radius r = fX0 with f a dimensionless constant and X0 the spacing between

adjacent rods in the lateral, x direction in the absence of applied forces, c.f. the left diagram of

Fig.(2.6) which shows the rods in the absence of strain. Similarly denoting by Z0 the zero strain

spacing between the rods in z direction and s0 = Z0/X0, the PC can be parametrized by the two

values (f, s0).

Since the volume of an SPC remains invariant in the presence of an applied strain, if the photonic

crystal is transformed into a waveguiding structure by, for example, removing one line of rods, the

strained material will possess a smaller lateral dimension. Further, if instead two photonic crystal

regions are situated on both sides of a rib waveguide, unless a lateral compression force is applied

to the side of each elastic region, the cladding regions would separate from the sides of waveguide.

Additionally, under sufficiently large strain, the pillars could separate from the polymer generating

additional air regions. Since however such effects can presumably be controlled through proper

design, they are not considered further here. Quantitatively, if in response to an applied force the

distance between adjacent pillars increases to Z = gZ0 in the z-direction, the associated strain is

given by

ε =
z′ − z
z

=
gz − z
z

= g − 1 (2.14)

while from conservation of volume and the ratio between y and x, the spacing between the rods

varies as

X = X0/
√
g, (2.15)

resulting in the configuration at the right of Fig.(2.6). Note that when

gsquare = s
−2/3
0 (2.16)
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X = Z yielding a square arrangement of rods. The strain dependence of the photonic crystal

bandgap can again be parametrized solely by (f, s0) values once the frequency ω is scaled according

to ωX0/2πc, effectively replacing X0 as the third parameter. That is, each f and s0 yield a differ-

ent band gap (and associated band structure diagram), where the quasi-two dimensional unit cell

contains a single rod and possesses an area ZX (see Figure(2.6) ).

Figure 2.6: The configuration of rods in a rectangular lattice in the absence (left diagram) and presence
(right diagram) of stress.

A rectangular lattice of dielectric rods typically yields a TM mode bandgap. To obtain a bandgap

of maximum width, s0 is often held fixed while f is varied [6]. Since, however the geometry of the

unit cell depends on strain, the SPC profile must be optimized separately for each application.

To illustrate the procedure, Fig.(2.7) displays two sets of values, (0.2, 0.5) and (1/7, 0.3644), that

generate markedly different band gaps.

In the case of the (0.2, 0.5) structure, which becomes a square lattice at ε = 0.587401 the position

and width of the largest bandgap decreases with strain nearly linearly from an initial normalized

central frequency of 0.4 to 0.3. A second large bandgap occurs for strains between 0.8 and 1.6

at normalized frequencies of approximately twice the first major bandgap. In contrast, for the

(1/7, 0.3644) structure, which forms a square lattice at ε = 0.96011 the dominant bandgap is initially

narrow but increases in width until ε = 0.5 only to subsequently decrease and vanish at 1.5. These

varied behaviors indicate that the band gap properties can be in general adapted to numerous device

requirements.

2.3.2 Triangular lattice

In contrast to a rectangular lattice, triangular lattices exhibit significant TE mode bandgaps. If the

parameters r and s0 are defined as r = fX0, with X0 defined in Fig.(2.8) and s0 = Z0/X0, Eq.(2.15)

is preserved. At the strain value Eq.(2.16), the triangular lattice of Fig.(2.8) coincides with a square
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Figure 2.7: The bandgaps in normalized units for TM polarization for rectangular SPC:s specified by the
parameter pairs (0.2, 0.5) and (0.1428, 0.3644).

lattice while for

ghex =

(
1

s0 tan 60

)2/3

. (2.17)

the pattern of rods form equilateral triangles or equivalently, hexagons.

For the unit cell of Fig.(2.8), the vertical length ax coincides with X, while the length in the

direction of the strain az is denoted Z. The length, t, in the figure between two adjacent rods is

then

t =

√
Z2 +X2

2
=
X0

2

√
g2s2

0 +
1

g
. (2.18)
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Figure 2.8: Triangular lattice in the absence (left figure) and presence (right figure) of strain. Far right: a
unit cell of the lattice

while the angle θ equals

tan θ =
1

s0g3/2
. (2.19)

and q = t/2.

The bandgap as a function of strain for the two illustrative parameter sets (0.1, 0.25), and

(0.15, 6/9) is displayed in Fig.(2.9). Note that for the (0.1, 0.25) structure, a TM bandgap is present

for strain values greater than 0.2 at a normalized frequency of ≈ 0.65 while a second bandgap ap-

pears for ε > 0.5 at a normalized frequency of 1.1. A TE mode bandgap is present from 0.6 to 1.7

that varies slowly in position and width. This structure coincides with a square and a hexagonal

lattice at strain values of ε = 1.5198 and ε = 0.747161, respectively. For the parameters (0.15, 6/9)

a wide TM bandgap is present for ε < 1.7 while numerous additional smaller bandgaps of various

widths are also present. Note as well that a complete (simultaneous TE and TM) bandgap appears

for 0.8 < ε < 1 with a maximum size of ≈ 0.03 while a large TE bandgap is present in the figure

centered at a nearly constant normalized frequency but with a strain-dependent width.

2.4 Potential applications and conclusions

While the calculations of this paper are only intended to illustrate the degree to which the bandgap

can be mechanically adjusted in representative SPC structures, the results suggest numerous poten-

tial applications which vary depending on the details of the structure and geometry of the super-

lattice material. For example, a slab waveguide composed of a line of defects within an SPC will

exhibit adjustable geometrical and optical properties. The feasibility of such a waveguide is evident

from the nearly stress-invariant TM bandgaps present in both (0.1, 0.25) and (0.15, 6/9) triangu-
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Figure 2.9: The strain dependence of the band gap in normalized frequency units for triangular SPC struc-
tures with parameter values (0.1, 0.25) and (0.15, 6/9) for strains ε < 1.9.

lar lattice structures in Fig.(2.9). Since the bandgap widths vary only moderately with frequency,

the waveguide can further be appreciably curved (or tapered) without incurring losses by applying

non-uniform stresses. That is the wavguide segment at the left of Fig.(2.10) with initial width W0,

length, L0 and slope angle φ0 when stressed in the W0 direction distorts to the waveguide at the

right of the figure where the corresponding variables are related through the value of g according to

W = gW0, L =
L0√
g
, tanφ =

tanφ0

g3/2
(2.20)
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Figure 2.10: A slab SPC waveguide with a width W0, length L0, and angle φ0 before (left figure) and after
(right figure) stretching.

Numerous waveguiding structures can accordingly be generated in this manner.

Our results further extend previously reported work by implying that a tuneable resonator formed

from a point defect in a 2D SPC can possess Q factors at a spectrum of wavelengths that can be

varied by applying stress to effect both small and large deformations of the material (for either

triangular or square lattices). Additionally, the behavior of the two large bandgaps in the diagram

for the square lattice parameters (0.2, 0.5) in Fig.(2.7) suggests a two wavelength switch that reflects

one wavelength reflects and transmits the second at one strain value while transmitting the first and

reflecting the second at a different value. The large number of bandgaps evident for the parameter

values (0.15, 6/9) in Fig.(2.9) again indicate that this behavior could possibly be extended to a larger

number or even a limited continuum range of frequencies.

Similarly, numerous potential applications could be envisioned for multiwavelength 3D flexible

PC:s. Such SPC materials could provide a platform for a variety of innovative devices.
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Chapter 3

Enhanced Negative Refractive

Index Control

In the semi-classical treatment of the interaction of the electromagnetic field with matter, the field

is modelled classically through Maxwell’s equations while the atomic interaction is treated quantum

mechanically. For example, electromagnetically induced transparency (EIT), laser properties, and

electromagnetically induced absorption (EIA) are typically modelled in this manner.

The semiclassical theory can also be applied to negative refractive indices materials, which were

first proposed by Victor Veselago in 1967 [38]. Such materials, which result when both the electric

permittivity and magnetic permeability are negative, have significant potential applications such

as Doppler shift and Cerenkov radiation reversals [38], evanescent wave amplification [39], sub-

wavelength focusing [40], and perfect lenses [41].

As negative refractive index materials do not occur in nature, they must be artificially designed.

While they can be created from metamaterials [42–47] and photonic crystals [48–50], these are

difficult to manufacture, function in a limited wavelength range and exhibit high absorption as

a result of electrical and magnetic resonances. Alternatively, in dense atomic gases in which both

electric and magnetic transitions are present the magnetic susceptibility can be enhanced significantly

in comparison to common gases for which the electric susceptibility typically exceeds the magnetic

susceptibility by approximately four orders of magnitude. Accordingly, in this chapter, we propose

a 5-level scheme in a dense gas with electric and magnetic dipole interactions. This enables the

magnitude of the negative refractive index value to be varied without significantly increasing the
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absorption from its minimum value.

This chapter is organized as follows: After a short description of the semiclassical model light-

atom interactions we summarize previous work on generating negative refractive indices in dense

gases. The new scheme is then introduced and analyzed theoretically. After the dependence of the

refractive index on different physical parameters is examined, the chapter concludes with a summary

and suggestions for future research.

3.1 Background

To introduce the semiclassical approach light-atom interactions, consider first the Hamiltonian of an

electron in the absence of EM field interactions

Ĥ0 =
P̂2

2m
+ V (r), (3.1)

where Ĥ0 is the unperturbed Hamiltonian of the electron, m is the mass of the electron, P is the

quantum momentum operator of the electron, and V (r) is a radial atomic potential. The time-

independent Schrödinger equation (TISE) then yields for the bound states of the potential

Ĥ0ψ
0
k(r) = Ekψ

0
k(r), (3.2)

where ψ0
k(r) are the eigenfunctions of the unperturbed Hamiltonian H0 in the spatial representation

and Ek with k = 0, 1, 2, 3, · · · are the energy eigenvalues. The spatial representation follows from

r̂|r〉 = r|r〉, so ψ0
k(r) = 〈r|k〉. |ψ〉 is the full wave function of the system which can be expanded

as |ψ〉 =
∑∞
k=0 Ck|k〉, where |k〉 is the wave function of the k state, and Ck are some probability

amplitudes. The wave functions of a given state also satisfy the eigensystem equation which is

Ĥ0|k〉 = Ek|k〉.

Assuming that all the functions |k〉 are known, in the presence of an external field interacting

with the electron, the Hamiltonian H0 of Eq.(3.1) becomes

Ĥ(r, t) =
1

2m

[
P̂− eA(r, t)

]2
+ eΦ(r, t) + V (r), (3.3)

where A(r, t) and Φ(r, t) are the vector and scalar potentials of the external field respectively and
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e is the absolute charge of the electron. The electric and magnetic fields are defined as

E(r, t) = −∇Φ(r, t)− ∂A(r, t)

∂t
, B(r, t) = ∇×A(r, t), (3.4)

and they are invariant under the following transformation

Φ(r, t)→ Φ(r, t)− ∂χ(r, t)

∂t
, A(r, t)→ A(r, t) +∇χ(r, t). (3.5)

The solution of the classical wave equation for the field A(r, t) of an atom at a position r0, takes

the following form

A(r0 + r, t) = A(t)eik·(r0+r) ≈ A(t)eik·r0(1 + ik · r + · · · ), (3.6)

where k = 2π/λ is the wave vector of the radiated wave. As r is of the order of the atomic radius

while |k−1| is comparable to the optical wavelength ( in order of 10−7), the product k · r can be

neglected. Hence the atom is point-like with respect to a light field, which is termed the dipole

approximation. The A(r, t) then takes the form

A(r, t) = A(t)eik·r0 = A(t), (3.7)

where the atomic origin is set to r0 = 0.

The time-dependent Schrödinger equation is now written as

Ĥ(r, t)ψ(r, t) = i~
∂ψ(r, t)

∂t
(3.8)

Now, let us use the Coulomb (or radiation) gauge which is defined to satisfy Φ(r, t) = 0 and

∇ ·A(t) = 0. If we apply this gauge to the Hamiltonian of Eq.(3.3), it will be

Ĥ(r, t) =
1

2m

[
P̂− eA(t)

]2
+ V (r). (3.9)

Let us now apply another arbitrary gauge χ(r, t), so

Φ(r, t)→ 0− ∂χ(r, t)

∂t
, A(t)→ A(t) +∇χ(r, t). (3.10)

19



Eq.(3.9) then becomes

Ĥ(r, t) =
1

2m

[
P̂− eA(t) + e∇χ(r, t)

]2
+ e

∂χ(r, t)

∂t
+ V (r). (3.11)

In the gauge χ(r, t) = −A(t) · r,

∇χ(r, t) = −A(t),
∂χ(r, t)

∂t
= −r · ∂A(t)

∂t
= −r ·E(t), (3.12)

the Hamiltonian of Eq.(3.11) becomes

Ĥ(r, t) =
P̂2

2m
+ V (r)− er ·E(t) = Ĥ0 + ĤI , (3.13)

where HI is the dipole interaction Hamiltonian ĤI = −er ·E(t) = d̂ ·E(t), where the dipole moment

d̂ = −er. For transitions between two states of identical parity the interaction instead equals

ĤI = µ̂ · B(t) and is associated with magnetic transitions. Further discussions of these topics can

be found in [51–53].

3.1.1 Density operator

Density operator solutions of the time-dependent SE incorporate statistical averaging and therefore

provide information about the population and coherence of a given quantum system as well as many

other statistical properties. In particular, consider a statistical mixture of pure states |k〉. The

density operator is defined as

ρ̂ =

∞∑
k=0

Pk|k〉〈k|, (3.14)

where Pk is the probability for the system to be at the state |k〉, and ρ̂ is the density operator.

Clearly
∞∑
k=0

Pk = 1. (3.15)

while the expectation value of a given operator Ô, is

〈Ô〉 =

∞∑
k=0

Pk〈k|Ô|k〉 = Tr(Ôρ̂). (3.16)
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For a quantum state |ψ〉 =
∑∞
k=0 Ck|k〉 the density matrix acquires off-diagonal elements

ρ̂ = |ψ〉〈ψ| =
∞∑
k=0

∞∑
k′=0

C∗k′Ck|k〉〈k′|, (3.17)

which are associated with the coherence of the system. The expectation value expression of Eq.(3.16)

holds for this density operator as well.

The dynamic equation of the density operator for a Hermitian Hamiltonian can be derived from

the time-dependent SE and its complex conjugate

∂|ψ〉
∂t

= − i
~
Ĥ|ψ〉, ∂〈ψ|

∂t
=
i

~
〈ψ|Ĥ, (3.18)

From the definition of |ψ〉,

∞∑
k=0

∂Ck
∂t
|k〉 = − i

~

∞∑
k=0

CkĤ|k〉,
∞∑
k=0

∂C∗k
∂t
〈k| = i

~

∞∑
k=0

C∗k〈k|Ĥ. (3.19)

while the derivative of Eq.(3.17) with respect to time is

∂ρ̂

∂t
=

∞∑
k=0

∞∑
k′=0

(
∂C∗k′

∂t
Ck + C∗k′

∂Ck
∂t

)
|k〉〈k′|. (3.20)

Inserting Eq.(3.19), yields

∂ρ̂

∂t
= − i

~

∞∑
k=0

∞∑
k′=0

CkC
∗
k′

(
−|k〉〈k′|Ĥ + Ĥ|k〉〈k′|

)
= − i

~

[
Ĥ, ρ̂

]
. (3.21)

which describes the evolution of the density operator and is termed the quantum Liouville equation

or the Von Neumann equation of motion. Almost any quantum particle or any statistical ensemble

can be studied using this equation. Various physical effects can be incorporated directly into this

equation, for example state decay which can be modelled by writing

˙̂ρ =
∂ρ̂

∂t
= − i

~

[
Ĥ, ρ̂

]
− Ŝρ̂Ŝ† − 1

2
{Ŝ†Ŝ, ρ̂}, (3.22)

where {a, b} = ab + ba, and the operator Ŝ describes physical effects such as pumping or state

decay [54]. The elements of Ŝ must be specified such that the trace of the right-hand side of

Eq.(3.22) vanishes. When the equation describes different physical processes it is often termed the
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master equation (this is a separate terminology than the EM master equation of Eq.(2.5)). In the

following section, we will apply the master equation formalism to a two-level system.

3.1.2 Two-level scheme

We first consider the simplest interaction of light with the two level system of Fig.(3.1). This scheme

consists of two levels |a〉 (the excited state) and |b〉 (the ground state) and an interacting field E(t).

The unperturbed Hamiltonian of the system Ĥ0 satisfies Ĥ0|a〉 = Ea|a〉 and Ĥ0|b〉 = Eb|b〉. To

describe Ĥ0 in terms of |a〉 and |b〉 states, first equation of Ĥ0 can be multiplied by 〈a| and the

second equation by 〈b|, and the resulting equations summed to yield

Ĥ0(|a〉〈a|+ |b〉〈b|) = Ea|a〉〈a|+ Eb|b〉〈b|. (3.23)

Since only two states are present in this system, the operator |a〉〈a| + |b〉〈b| must equal the unity

operator Î, so that Eq.(3.23) simplifies to

Ĥ0 = Ea|a〉〈a|+ Eb|b〉〈b|. (3.24)

Figure 3.1: A two-level system interacting with an electromagnetic field.

If the interaction Hamiltonian ĤI is multiplied by the unity operator on both sides, we obtain

ĤI = ÎĤI Î = (|a〉〈a|+ |b〉〈b|)(−er ·E(t))(|a〉〈a|+ |b〉〈b|). (3.25)

Expanding E(t) as E(t) = Ex(t)i + Ey(t)j + Ez(t)k, ĤI becomes

ĤI = − (dab|a〉〈b|+ dba|b〉〈a|) ·E(t), (3.26)
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in which dab = d∗ba = 〈a|ex|b〉i+ 〈a|ey|b〉j+ 〈a|ez|b〉k, which assumes that 〈a|ei|a〉 = 〈b|ei|b〉 = 0,

where i is x, y or z. This symmetry applies to atomic gases, in which the potential is symmetric

upon inversion but does not necessarily hold for more complex molecular systems. If the field is

further taken for simplicity to be x polarized, Eq.(3.26) becomes

ĤI = − (dab|a〉〈b|+ dba|b〉〈a|)Ex(t) = −d̂Ex(t), (3.27)

with dab = d∗ba = 〈a|ex|b〉. For a monochromatic plane wave electric field Ex(t) = E0 cos(ωt), the

full Hamiltonian in the matrix representation takes the form

Ĥ = Ĥ0 + ĤI =

 Ea −dabE0 cos(ωt)

−d∗abE0 cos(ωt) Eb

 (3.28)

and the decay matrix in the master equation, Eq.(3.22), can be replaced by

− Ŝρ̂Ŝ† − 1

2
{Ŝ†Ŝ, ρ̂} →

−γρaa −γ2ρab

−γ2ρba γρaa

 , (3.29)

in which γ is the decay rate from the state |a〉. Hence

ρ̇aa ρ̇ab

ρ̇ba ρ̇bb

 =

 −γρaa − i cos(ωt)(Ω∗ρab − Ωρba) (−γ2 − iW )ρab − i cos(ωt)Ω(ρaa − ρbb)

(−γ2 + iW )ρba + i cos(ωt)Ω∗(ρaa − ρbb) γρaa − i cos(ωt)(Ωρba − Ω∗ρab)

 ,

(3.30)

where W = (Ea − Eb)/~ and the Rabi frequency Ω equals Ω = dabE0/~.

After the transformations ρ̃ab = ρabe
iωt and ρ̃ba = ρbae

−iωt Eq.(3.30) becomes

ρ̇aa ˙̃ρab

˙̃ρba ρ̇bb

 =

 −γρaa − i cos(ωt)(Ω∗ρ̃abe
−iωt − Ωρ̃bae

iωt) (−γ2 + i∆)ρ̃ab − i cos(ωt)eiωtΩ(ρaa − ρbb)

(−γ2 − i∆)ρ̃ba + i cos(ωt)e−iωtΩ∗(ρaa − ρbb) γρaa − i cos(ωt)(Ωρ̃bae
iωt − Ω∗ρ̃abe

−iωt)

 ,

(3.31)

where ∆ = ω − W is termed the detuning parameter. Inserting cos(ωt) = (e−iωt + eiωt)/2 into

Eq.(3.31) and neglecting the rapidly oscillating terms with frequency 2ω (e±2iωt) in the rotating
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wave approximation (RWA) yields

ρ̇aa ˙̃ρab

˙̃ρba ρ̇bb

 =

 −γρaa − i
2 (Ω∗ρ̃ab − Ωρ̃ba) (−γ2 + i∆)ρ̃ab − i

2Ω(ρaa − ρbb)

(−γ2 − i∆)ρ̃ba + i
2Ω∗(ρaa − ρbb) γρaa − i

2 (Ωρ̃ba − Ω∗ρ̃ab)

 , (3.32)

This system of first-order linear differential equations can be solved exactly to find the dynamics

of the density operator elements and the Rabi oscillations from which the properties of the dressed

states and the AC Stark effect can be explored. However, in the analysis below only the steady

state with ρ̇ij = 0, which determines quantities such as the susceptibility, is of interest. Imposing

the normalization condition ρaa + ρbb = 1 the density operator elements are

ρaa =
|Ω|2

4∆2 + γ2 + 2|Ω|2
,

ρbb = 1− |Ω|2

4∆2 + γ2 + 2|Ω|2
,

ρ̃ab =
2iΩ(γ2 + i∆)

4∆2 + γ2 + 2|Ω|2
, ρ̃ba = ρ̃∗ab. (3.33)

The electric field E(t) induces a dipole moment between the two levels yielding for the polarization

of a single atom

〈d̂〉 = Tr(d̂ρ̂) = dabρba + d∗abρab = dabρ̃bae
iωt + d∗abρ̃abe

−iωt. (3.34)

Multiplying by the atomic density yields for the induced polarization

P (t) = N〈d̂〉 = N(dabρ̃bae
iωt + d∗abρ̃abe

−iωt), (3.35)

Classically, the polarization induced by an electric field with frequency ω is

P (t) =
1

2
ε0E0(χe−iωt + χ∗eiωt), (3.36)

where χ is the electric susceptibility so that

χ =
2Nd∗abρ̃ab
ε0E0

. (3.37)
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Substituting ρ̃ab from Eq.(3.33) and employing Ω = dabE0/~, yields for the susceptibility of the

two-level system

χ =
4iN |dab|2

ε0~

γ
2 + i∆

4∆2 + γ2 + 2|Ω|2
. (3.38)

which, however is only valid for Ω << 1 since the linear approximation was employed. The suscep-

tibility is plotted in Fig.(3.2) with 4N |dab|2/(ε0~) = γ and Ω = 0.1γ where γ is an arbitrary scaling

constant.
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Figure 3.2: The real (blue) and imaginary (red) part of the two-level susceptibility, χ, of Eq.(3.38)

This figure resembles the classical Lorentz model of dielectrics. As we can see, the real part of

χ′ = Re(χ) is mostly increasing for all values of ∆, which is expected for the two-level systems given

the absence of magnetic and other interactions. Additionally, the susceptibility generally increases

with the detuning ∆ which is termed normal dispersion except in the anomalous dispersion region

near ∆ = 0, which is mostly associated with slow light and other phenomena. However, in this

region the absorption, χ′′ = Im(χ) is large. To suppress this absorption in the anomalous region

requires more complicated systems such as those presented in this and the following chapter.

3.2 Negative refraction index of dense gases

Dense gases can exhibit negative refraction if the magnetic susceptibility is enhanced such that

it becomes comparable to the electric susceptibility. This can be achieved by various techniques

including electromagnetically induced transparency (left- or right-handedness) [55–62] and chirality

[63–67]. In such cases, dense atomic gases can exhibit a negative refractive index accompanied by
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minimal absorption [68].

The concept of employing atomic coherence to modify the refractive index of a gas while main-

taining near-zero absorption was first advanced by Scully [69], who observed that atomic coherence

can be employed in different atomic systems to suppress the absorption through quantum destructive

interference, a procedure which clearly lacks a classical counterpart. This and related techniques

have subsequently been advanced by many researchers [63, 68, 70] to manipulate the electric and

magnetic properties of atomic systems while suppressing absorption. For example in 2016 Zubairy

et. al. obtained a negative refractive index over a large frequency range with zero absorption in a

4 level atomic cascade interacting with the electric and magnetic components of a probe field in a

dense gas [71]. Here this procedure is extended to a system in which the probe field and a second

low-intensity field induce a negative refraction with a large magnitude through coherent superposi-

tion. We find further, rather unexpectedly, that by changing either the ratio of the two magnetic

amplitudes of the two fields or the phase of the atomic coherence, the magnitude of the negative

refractive index can be easily controlled while simultaneously suppressing absorption.

3.3 Analytic formulation of the 5-level scheme

We consider the 5 level atomic system represented by Fig.(3.3). The levels |5〉, |4〉, |3〉, and |1〉

possess identical parities that are the opposite of the parity of |2〉. Consequently, electric-dipole

transition between |5〉 − |3〉 and |4〉 − |3〉 are forbidden, but magnetic-dipole transitions are allowed.

The level energies are denoted Ei = ~ωi, i = 1, 2, . . . 5, with decay rates γi. The electric component

of the probe field ΩEP couples |3〉 − |2〉, while the magnetic component ΩBP couples |5〉 − |3〉.
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Figure 3.3: The five level system

A second low-intensity auxiliary field further couples |2〉 − |1〉 through its electric component ΩEW

and |4〉 − |3〉 through its magnetic component ΩBW . Such a system could possibly occur in, for

example, neon gas, in which |1〉 to |4〉 are present in an isolated system while |5〉 could be generated

in the presence of an applied magnetic field by the anomalous Zeeman effect, which splits |4〉 into

two levels by an amount proportional to the applied field.

If |4〉 and |5〉 are coherently excited, the initial density operator can be expressed as

ρ̂(0) =

5∑
i=1

ρ
(0)
ii |i〉〈i|+ ρ

(0)
45 |4〉〈5|+ ρ

(0)
54 |5〉〈4|, (3.39)

where the coefficients ρ
(0)
ii represent the initial atomic population of each level, while ρ

(0)
45 and ρ

(0)
54

parametrize the coherence between the levels |4〉 and |5〉. This atomic coherence can be generated

with many techniques including coherent pulse excitation [72], Raman- induced coherence [73],

and adiabatic population conversion [74]. The atomic coherence in Eq.(3.39) leads to quantum

destructive interference [69] between the two paths of our scheme (|5〉 − |3〉) and (|4〉 − |3〉) that

cancels or reduces the probe field absorption. Consequently, the initial atomic populations in the

exited states are assumed to be sufficiently large that both ρ
(0)
55 + ρ

(0)
44 > ρ

(0)
11 and ρ

(0)
45 ≈ ρ

(0)
44 ≈ ρ

(0)
55 ,

so that the atom is at the start of the calculation with high probability in the excited states |4〉 and

|5〉.

The system Hamiltonian in the interaction picture after applying the rotating wave approxima-

tion (RWA) and the dipole approximation adopts the form

27



Ĥ = ~

[
5∑
i=0

ωi|i〉〈i| −
ΩEW

2
ei∆1t|2〉〈1| − ΩEP

2
ei∆2t|3〉〈2| − ΩBW

2
ei∆3t|4〉〈3| − ΩBP

2
ei∆4t|5〉〈3|+H.C.

]
,

(3.40)

in which ∆1 = ω2 − ω1 − ωW , ∆2 = ω3 − ω2 − ωP , ∆3 = ω4 − ω3 − ωW , and ∆4 = ω5 − ω3 − ωP .

Additionally, ωP and ωW represent the probe and auxiliary field frequencies. The Ω variables

represent the Rabi frequencies, terms of the electric and magnetic amplitudes of the probe field ξEP

and ξBP , and the auxiliary field, ξEW and ξBW are given by ΩEW = |d21|ξEW
~ , ΩEP = |d32|ξEP

~ ,

ΩBW = |µ43|ξBW
~ , and ΩBP = |µ53|ξBP

~ . The electric and magnetic dipole moments of each transition

are then defined as d21 = |〈2|d̂1|1〉|, d32 = |〈3|d̂2|2〉|, µ43 = |〈4|µ̂1|3〉|, and µ53 = |〈5|µ̂2|3〉|. The first

term of Eq.(3.40) describes the atomic energy levels in the absence of an incident field while the

remaining terms model the interactions between the atom and different components of the probe

and auxiliary fields present in Fig.(3.3).

The Master equation Eq.(3.22) of the five level system can be written in the form

˙̂ρ = − i
~

[Ĥ, ρ̂]− 1

2
{Γ̂, ρ̂}+ rP ρ̂

(0). (3.41)

Here Γ̂ is the decay matrix defined as 〈i|Γ̂|j〉 = δijγi and rP represents the rate at which the atoms are

pumped by the coherent excitation between the levels |4〉 and |5〉. The steady state atomic response

to the incident fields is then obtained as the solution of the Master equation. An approximation to

this time-independent solution for the Hamiltonian of Eq.(3.41) is given in the following section.

3.4 Approximate solution

While the Master equation, Eq.(3.41) represents 25 equations since, however ρij = ρ∗ji, only the

equations associated with the upper off-diagonal elements of the matrix must be considered. Further,

the zeroth-order values of all Ω variables are employed to construct the diagonal components of the

density matrix ρii, as Ω magnitudes are far smaller than those of both γi and rP . Accordingly, the

diagonal elements in the master equation can be approximated as

ρii =
rP ρ

(0)
ii

γi
. i = 1, · · · 5 (3.42)
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Thus we left with 10 equations of the upper off-diagonal elements. After applying the rotating frame

transformation these equations adopt the form

˙̃ρ12 = [−γ12 + i(ω21 −∆1)]ρ̃12 +
i

2
[ΩEW (ρ22 − ρ11)− Ω∗EP ρ̃13]. (3.43)

˙̃ρ13 = [−γ13 + i(ω31 −∆1 −∆2)]ρ̃13 +
i

2
[ΩEW ρ̃23 − ΩEP ρ̃12 − Ω∗BW ρ̃14 − Ω∗BP ρ̃15]. (3.44)

˙̃ρ14 = [−γ14 + i(ω41 −∆1 −∆2 −∆3)]ρ̃14 +
i

2
[ΩEW ρ̃24 − ΩBW ρ̃13]. (3.45)

˙̃ρ15 = [−γ15 + i(ω51 −∆1 −∆2 −∆4)]ρ̃15 +
i

2
[ΩEW ρ̃25 − ΩBP ρ̃13]. (3.46)

˙̃ρ23 = [−γ23 + i(ω32 −∆2)]ρ̃23 +
i

2
[Ω∗EW ρ̃13 + ΩEP (ρ33 − ρ22)− Ω∗BW ρ̃24 − Ω∗BP ρ̃25]. (3.47)

˙̃ρ24 = [−γ24 + i(ω42 −∆2 −∆3)]ρ̃23 +
i

2
[Ω∗EW ρ̃14 − ΩBW ρ̃23 + ΩEP ρ̃34]. (3.48)

˙̃ρ25 = [−γ25 + i(ω52 −∆2 − δ4)]ρ̃25 +
i

2
[Ω∗EW ρ̃15 − ΩBP ρ̃23 + ΩEP ρ̃35]. (3.49)

˙̃ρ34 = [−γ34 + i(ω43 −∆3)]ρ̃34 +
i

2
[Ω∗BW (ρ44 − ρ33) + Ω∗EP ρ̃24 + ΩBP ρ̃54]. (3.50)

˙̃ρ35 = [−γ35 + i(ω53 −∆4)]ρ̃35 +
i

2
[ΩBP (ρ55 − ρ33) + ΩBW ρ̃45 + Ω∗EP ρ̃25]. (3.51)

˙̃ρ45 = [−γ45 + i(ω54 −∆4 + ∆3)]ρ̃45 +
i

2
[Ω∗BW ρ̃35 − ΩBP ρ̃43] + rP ρ̃

(0)
45 . (3.52)

In the above equation, ωji ≡ ωj−ωi, γij = (γi+γj)/2, and ρ̃ij represents the ijth density matrix

element in the rotating frame. Since in the present model ΩEW , ΩBW , ΩEP , and ΩBP are taken

to be far smaller than � γi, while the pumping rate rP and ωi’s are further assumed to greatly

exceed the Rabi frequencies of the two fields, the above equations are solved only to first order for

all Ω variables while the diagonal elements are independent of these variables as in Eq.(3.42). In

the steady state the time derivatives vanish so that ˙̃ρij = 0. Additionally, only the behavior of the

probe field is of interest which is described by the two density matrix elements ρ35 and ρ23. With

these approximations, Eq.(3.43-3.52) yields

ρ̃35 =
irP

2(−γ35 + i(∆P + ω53))

[
ρ̃

(0)
45 ΩBW

−γ45 + i(∆P −∆W + ω54)
− ΩBP

(
ρ

(0)
55

γ5
− ρ

(0)
33

γ3

)]
, (3.53)
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and

ρ̃23 = − irPΩEP
2(−γ23 + i(∆P + ω53))

(
ρ

(0)
33

γ3
− ρ

(0)
22

γ2

)
, (3.54)

in which ∆P ≡ ωP − ω53, and ∆W ≡ ωW − ω43.

Note that the atomic coherence ρ̃
(0)
45 can change the sign of ρ̃35 while for zero coherence ρ̃

(0)
45 = 0,

implying that negative refraction cannot be achieved in the absence of absorption. As well, the

model effectively describes the interaction of 3 level system composed of |3〉, |4〉 and |5〉 with the two

subsystems |3〉 − |2〉 and |2〉 − |1〉, hence the parameters associated with the level |1〉 as well as the

Rabi frequency ΩEW are absent. The small magnitude of the auxiliary and probe fields together with

the restriction of the calculation to the properties of the probe field is responsible for the absence of

interaction between the levels |2〉 and |1〉 in Eq.(3.53) and Eq.(3.54). The electric polarization and

the magnetization of an atom generated by the probe field can be written as p = d32ρ23e
−iωP t + c.c.

and m = µ35ρ53e
−iωP t + c.c., respectively, identifying the positive part of the probe field with the

classical expressions for the electric and magnetic response yields

d32ρ̃23 = χeε0ξEP /2, (3.55)

and

µ0µ35ρ̃53 = χmε0ξBP /2, (3.56)

in which χe and χm represent the electric and magnetic susceptibilities. Accordingly, since dij = d∗ji,

µij = µ∗ji, and introducing the ratio of the two magnetic amplitudes S = ξBW /ξBP

χe = − i|d32|2rP
ε0~(−γ23 + i(∆P + ω53))

(
ρ

(0)
33

γ3
− ρ

(0)
22

γ2

)
, (3.57)

χm =
iµ0rP

~(−γ35 + i(∆P + ω53))

[
Sρ̃

(0)
45 |µ43||µ53|

−γ45 + i(∆P −∆W + ω54)
− |µ53|2

(
ρ

(0)
55

γ5
− ρ

(0)
33

γ3

)]
, (3.58)

The parameter S, which multiplies by the atomic coherence, can equal any positive value resulting

in either an amplification or a reduction of atomic coherence effects. Hence under the condition that

the auxiliary field possesses a sufficiently small amplitude, the atomic coherence can be easily be

adjusted experimentally by varying S without affecting the atomic system.

Since we have a dense atomic gas, we cannot just multiply the dipole elements directly by N as

we did in the two-level scheme. Therefore, the electric permittivity and the magnetic permittivity
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of atomic dense gases can be calculated from the Clausius and Mossotti relations [75]

ε = εr + iεi =
1 + 2

3Nχe

1− 1
3Nχe

, (3.59)

µ = µr + iµi =
1 + 2

3Nχm

1− 1
3Nχm

, (3.60)

in which N is the density of the atoms in the dense gas. This relation is derived by considering the

local fields of the dense atomic gases. Negative values of χm and χe accordingly can yield negative

permittivities and/or permeabilities. The refractive index is obtained from the (typically complex)

values of ε and µ through [76]

nr = − 1√
2

√
|ε||µ|+ µrεr − µiεi, (3.61)

ni = − 1√
2

µiεr + µrεi√
|ε||µ|+ µrεr − µiεi

. (3.62)

which require

εr|µ|+ µr|ε| < 0 (3.63)

This last relation must accordingly be verified before applying Eqs.(3.61,3.62). If it does not hold, we

need to replace the negative front sign of Eqs.(3.61, 3.62) to positive. In general, if this inequality is

correct for a system, then that system will possess negative refractive index. Also, note that Eq.(3.63)

is always greater than or equal to zero for a nonmagnetic material, in which µr = p, µi = 0, where p

is any positive value. This fact indicates that the negative refractive index requires a material with

both electric and magnetic responses.

3.5 Results

Having developed the underlying equations, Eqs.(3.59,3.60,3.61,3.62), in this section the functional

dependence of the refractive index and absorption on the amplification parameter S will be deter-

mined. The atomic parameters employed are similar to those suggested by previous authors [56,71].

Namely, the atomic decay rates are set to γ2 = 2γ, γ3 = γ, and γ4 = γ5 = 2γ, with γ = 107 Hz, the

atomic density N = 8 ∗ 1023m−3, and the dipole moments are calculated for the infrared spectrum

with |µ53| = 1.457 ∗ 10−21, |µ43| = 7.572 ∗ 10−21 and |d32| = 6.659 ∗ 10−28. The interlevel spacings
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(a) The real part of µ. (b) The imaginary part of µ.

Figure 3.4: The real and imaginary parts of µ for different values of S, where the (red) curve for S = 6, the
(black) curve for S = 15, the (blue) curve for S = 30, the (green) curve for S = 60, and the (magenta) curve
for S = 300.

between |5〉 and |4〉 and between |5〉 and |3〉 are further taken as ω54 = 2γ and ω53 = 0.001γ2 while

rP = 2γ. The atomic system is assumed to be initially in a combination of exited states, with

populations ρ
(0)
55 = ρ

(0)
44 = 0.25, ρ

(0)
33 = 0.1, ρ

(0)
22 = 0.05, and ρ

(0)
11 = 1 − ρ(0)

22 − ρ
(0)
33 − 2ρ

(0)
44 = 0.35

together with a maximum value of the atomic coherence ρ
(0)
45 = (ρ

(0)
44 + ρ

(0)
55 )/2 = 0.25.

Considering first the variation of the real and imaginary parts of the electric permittivity with the

probe field detuning, ∆P , indicates that εr ≈ −2 and εi ≈ 0 for −8γ < ∆P < 8γ. This indicates that

the local field of the dense gas gives the principal contribution to the total electric field. Fig.(3.4)

next displays the dependence of µ on S for ∆W = 0. Evidently the real and imaginary parts of µ

become nearly independent of ∆P as the coherence amplification factor S increases. Further, from

Fig.(3.4a) the real parts of both µ and ε are negative over a wide range of ∆P , which is in fact the

principal source of the observed negative refraction.

Fig.(3.5) plots the variation of the real and imaginary values of the refractive index with S and

∆P for ∆W = 0. Clearly this figure demonstrates that, as a result of the amplification of the atomic

coherence for large values of S, when S ≈ 300, the real component of the refractive index is effectively

independent of ∆P and approaches −2 while its imaginary component approaches 0. Indeed for large

S, the real and imaginary refractive indices are not only largely unaffected by the value of ∆P , but

are also nearly independent of γ5 and most of the other parameters in the calculation. That the

negative refraction is largely unaffected by the field and the atomic parameters could prove highly

significant in applications that require both a stable n value and negligible absorption.

Figs.(3.5a,3.5b) illustrate the dependence of the real and imaginary values of the refraction
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(a) Re(n), γ5 = 2γ (b) Im(n), γ5 = 2γ

(c) Re(n), γ5 = γ (d) Im(n), γ5 = γ

(e) Re(n), ρ
(0)
45 = |ρ(0)

45 |eiπ/4 (f) Im(n), ρ
(0)
45 = |ρ(0)

45 |eiπ/4

Figure 3.5: The real and imaginary parts of n for different values of S,γ5, and ρ
(0)
45 , where the (red) curves

for S = 6, the (black) curves for S = 15, the (blue) curves for S = 30, the (green) curves for S = 60, and
the (magenta) curve for S = 300. The (red) curve in the last two figures (e) and (f) with S = 8.1.
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Re(n) Im(n)

Figure 3.6: The real and imaginary parts of n for different values of S and ρ
(0)
45 = |ρ(0)

45 |eiπ. The (red) curves
for S = 15, the (black) curves for S = 30, the (blue) curves for S = 60, and the (green) curves for S = 300.

index n for γ5 = 2γ for different values of S on the detuning ∆P while Figs.(3.5c,3.5d) employ

identical parameters but with γ5 = γ. Evidently in Figs.(3.5a, 3.5b, 3.5c, 3.5d) for ∆P ≈ −γ,

the absorption is close to zero and independent of S, suggesting a simple procedure for modulating

the negative refraction index without inducing an appreciable degree of absorption. Figs.(3.5e,3.5f)

further quantify the influence of the atomic coherence on the refractive index by the initial value of

ρ
(0)
45 to |ρ(0)

45 |eiπ/4, with γ5 = 2γ. An interesting feature around the similarly for a probe detuning of

≈ −3γ, as apparent from Figs.(3.5e,3.5f), the negative refractive index can be modulated by varying

S without inducing absorption as discussed in the context of the previous figures.

To quantify the effect of the coherent phase for phases larger than or equal π, Fig.(3.6) displays

n for different S values with an atomic coherence set to |ρ(0)
45 |eiπ. For S = 15 the refractive index

is close to −4.8 for ∆P ≈ −γ which corresponds to the minimum refractive index for which the

absorption is nearly zero. The refractive index for n > −2 is dependent on S when the phase of

the atomic coherence equals zero while the refractive index for large negative values n < −2 can be

modulated by varying the phase of ρ
(0)
45 and S. This effect can also be observed in Fig.(3.7) which

plots n and the absorption for S = 15 as a function of the phase of the atomic coherence, φ, where

ρ
(0)
45 = |ρ(0)

45 |eiφ. Evidently the magnitude of the negative refractive index increases as φ approaches

1.25π while the absorption vanishes. Conversely, as n becomes more negative the absorption rapidly

increases. Accordingly, a wide range of negative n values can clearly be realized for which the

absorption is negligible.
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Re(n) Im(n)

Figure 3.7: The real and imaginary parts of n for different values of φ, the phase of the atomic coherence
ρ

(0)
45 = |ρ(0)

45 |eiφ. The value of S here is fixed to 15. The (red) curve is for φ = π, the (black) curve is for
φ = 1.1π, the (blue) curve is for φ = 1.15π, the (green) curve is for φ = 1.2π, and the (magenta) curve for
φ = 1.5π.

3.6 Conclusion

Varying S in our procedure provides a simpler procedure for controlling the negative refractive index

than competing techniques. For example, in [64], the negative refraction index is altered by varying

some of the parameters present in a 5-level scheme. This however requires four fields of which two

or more require high intensity. Additionally, the detuning does not cover the entire range from −2

to near zero in most cases unlike the procedure of this paper, c.f Figs.(3.5a and 3.5e)). In contrast

the method proposed here requires only two weak fields, and for sufficiently large S stablizes the

negative refractive index to a value close to −2 while insuring near zero absorption over a wide range

of ∆P .

Thus in this chapter we have demonstrated that in a 5 level atomic system interacting with

two incoming fields in a dense gas the influence of the atomic coherence on the real and imagi-

nary parts of the refractive index can be amplified by appropriately specifying the ratio S of the

magnetic amplitudes of the incoming fields. Hence the negative refractive index can be modulated

while maintaining a small value of the absorption. Accordingly, this procedure or an appropriate

modification could be relevant to practical implementations of negative refractive index materials.

In the future this work could be extended into the nonlinear, strong field regime. Further, although

the results here assume a large initial atomic excitation, a smaller excitation population could also

yield identical behavior if the atomic coherence is suitably amplified through a larger value of S.
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Chapter 4

Double Λ Scheme in a White Light

Cavity

Optical switches have replaced electronic switches in numerous applications, including optical com-

munications, internet traffic, quantum information processing and quantum networking. Switches

have been designed to detect gravitational-waves through a signal recycling mirror (SRM) [77, 78]

and to Q switch lasers through electro and acousto optic switches [79, 80] as well as rotating mir-

rors [81]. In quantum mechanics, optical switches can to control entanglement in trapped qubits [82],

in quantum circuits and quantum networks [83–85].

In the previous chapter, the semi-classical theory of light-matter interactions was employed to

to calculate the refractive index. In this chapter, we realize optical switching by applying the same

approach to a different atomic system. In particular, placing a material inside an optical cavity

alters its transmission, and reflection spectrum near the cavity resonant frequencies. Hence by prop-

erly specifying the material and cavity properties the transmission spectrum can be appropriately

engineered, resulting in an optical switch.

Here we exclusively study the double Λ scheme. If this system is applied in a cavity with two

applied light fields, more than one white light region can be generated and modulated or switched.

The chapter first reviews the Fabry-Pérot cavities, and presents the details of the double Λ scheme

which is subsequently analyzed semi-classically. After presenting several possible techniques for

modulating the transmission spectrum possible avenues for future research are suggested.
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4.1 Background

This chapter concerns the evaluation of the transmission and reflection spectrum of a Fabry-Pérot

cavity in the presence of the fields and atomic states shown in Fig.(4.1). Both sides of the cavity

are assumed to be terminated with mirrors with zero absorption and amplitude transmission and

reflection coefficients denoted by t and r that satisfy r2 + t2 = 1. For the electromagnetic fields we

assume monochromatic plane waves

Ein = E0e
−iωt+ikz, (4.1)

and employ the scalar approximation. The lossless medium within the cavity is described by a real

refractive index n while the cavity is assumed surrounded by vacuum.

Figure 4.1: The interacting fields within the Fabry-Pérot cavity.

Referring to Fig.(4.1), the field E1 upon reflecting from mirror 2 generates a reflected field

E2 = rE1e
2ikL. (4.2)

and the transmitted amplitude Et

Et = tE1e
ikL. (4.3)

Hence

E1 = t′Ein + rE2. (4.4)

while the reflected amplitude Er can similarly be described as

Er = r′Ein + tE2, (4.5)
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where r′ and t′ are the coefficients of the mirrors when the incident field is outside the cavity. The

relations between these different coefficients are

tt′ + r2 = 1, r = −r′. (4.6)

which can easily be verified from the dielectric interference equations (Fresnel equations). Eqs.(4.2)

and (4.4) yield

E1

Ein
=

t′

1− r2e2ikL
. (4.7)

while Eq.(4.3) and Eq.(4.7) imply

Et
Ein

=
tt′eikL

1− r2e2ikL
=

TeikL

1− r2e2ikL
, (4.8)

where T represents the power transmission coefficient T = tt′ = t2 and the field intensity is given by

I =
1

2
εonc|E|2. (4.9)

The light transmitted through and measured in the vacuum outside the cavity is then Tcav(ω)

obtained by multiplying Eq.(4.8) with its conjugate part

Tcav(ω) =
It
Iin

=

∣∣∣∣ EtEin

∣∣∣∣2 =

∣∣∣∣ TeikL

1− r2e2ikL

∣∣∣∣2 =
T 2

T 2 + 4R sin(kL)2
, (4.10)

where R = r2. The cavity reflection, Rcav(ω) is then obtained from Eqs.(4.5, 4.2) and Eq.(4.7). The

result finally reads

Rcav(ω) =
Ir
Iin

=

∣∣∣∣ ErEin
∣∣∣∣2 =

∣∣∣∣r(1− e2ikL)

1− r2e2ikL

∣∣∣∣2 =
4R sin(kL)2

T 2 + 4R sin(kL)2
. (4.11)

Note that Tcav(ω) and Rcav(ω) satisfy the energy conservation law Rcav(ω) + Tcav(ω) = 1 since

the mirrors and the medium are lossless. For medium with absorption or gain the wave vector is

complex k = kr + iki and the cavity transmission and reflection coefficients are instead

Tcav(ω) =

∣∣∣∣ TeikL

1−Re2ikL

∣∣∣∣2 , Rcav(ω) =

∣∣∣∣∣
√
R(1− e2ikL)

1−Re2ikL

∣∣∣∣∣
2

. (4.12)
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Fig.(4.2) displays the cavity transmission spectrum Tcav(ω) as a function of R where T are

calculated from T = 1−R.

0 2 4 6 8 10 12 kL

0.2

0.4

0.6

0.8

1.0

TcavHΩL

R=0.01

R=0.25

R=0.5

R=0.7

R=0.99

Figure 4.2: The cavity transmission coefficient Tcav(ω) of the Fabry-Pérot cavity as a function of R.

From the figure, we can see that for all values of R, the cavity transmission reach 1 for some certain

values of kL. These values are called the resonant wave vectors (frequencies) which equal

kmL = mπ, m = 0,±1,±2,±3, · · · (4.13)

We also can see for small values of R, the spectrum tends to be closer to 1 in all values of kL.

This behavior is expected because in this limit the cavity cannot save the light for a long time, but

instead, the light shortly escapes from the cavity, so the cavity appears to be closer to the vacuum.

In the opposite limit when R becomes close to unity, the line shapes become very narrow. In this

limit, the cavity is highly resonant, and almost for all values of kL, the destructive interference

occurs. Except in the resonant values where constructive interference occurs.

If a material of a refractive index n is present inside the cavity so that k = ωn/c the resonant

frequencies become

ωmRe(n) =
mπc

L
, m = 0,±1,±2,±3, · · · (4.14)

which indicates that while the resonant wave vectors in Eq.(4.13) are unaltered the resonant fre-

quencies ωm differ.

Accordingly, a cavity can alter the transmission and reflection spectrum of a given medium, which

is clear even for an empty cavity for which the transmission spectrum is described by Fig.(4.2). In

the next section, we therefore examine the transmission spectrum of a cavity filled with two-level

atoms.
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4.1.1 Two-level system

While in the previous chapter the susceptibility of the two-level system was evaluated in Eq.(3.38),

to obtain the cavity transmission coefficient, the refractive index must additionally be obtained as a

function of χ. Recalling that the electric displacement field is given by D = ε0E+P = ε0(1+χ)E =

ε0εE, where ε is the relative dielectric constant. Comparing the two expressions yields

1 + χ = ε. (4.15)

Let us now specify the real and imaginary parts of ε and χ as ε = εr+ iεi and χ = χr+χi. Matching

the real parts and the imaginary parts of Eq.(4.15) yields

εr = 1 + χr, εi = χi. (4.16)

Since for nonmagnetic materials n2 = ε,

n2 = (nr + ini)
2 = (n2

r − n2
i ) + i(2nrni) = εr + iεi, (4.17)

where nr and ni are the real and imaginary parts of n. Equating the real parts and imaginary parts

of Eq.(4.17) yields

n2
r − n2

i = εr, 2nrni = εi. (4.18)

from which

nr =

√
|ε|+ εr

2
, ni =

√
|ε| − εr

2
. (4.19)

Eq.(4.16) then implies

nr =

√√
(1 + χr)2 + χ2

i + 1 + χr
2

, ni =

√√
(1 + χr)2 + χ2

i − 1− χr
2

. (4.20)

corresponding to the real and imaginary expressions of the refractive index. In Fig.(4.3), we plotted

the real and imaginary parts of n as a function of ω for the two-level using Eqs.(3.38) and (4.20).

Evidently the real part nr(∆) is positive and its value is around 1, while the imaginary part ni(∆)

is peaked at ∆ = 0.
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Figure 4.3: The refractive index of the two-level scheme. The blue and red curves correspond to the real
and imaginary parts of the refractive index respectively.

The effect of the cavity on the two-level system can now be determined. Since the refractive

index of the system is complex, Eq.(4.12) must be employed to calculate the cavity transmission.

Expressing the wave vector in terms of ∆ = ω −W as

k(∆)L = ω[nr(∆) + ini(∆)]L/c, (4.21)

and assuming that a resonant frequency is located at ∆ = 0, we have

k(∆)L = (∆ +W )nr(∆)
L

c
|∆=0 =

WL

c
nr(0) = mπ. (4.22)

Setting the length of the cavity to L = Mπc/W , yields

k(0)L = Mnr(0) = m. (4.23)

Approximating nr(0) by unity implies that k(0)L ≈M = m in order for the cavity to be in resonance

at ∆ = 0. Thus for example if M = 80 and W = 105γ,

k(∆)L = [nr(∆) + ini(∆)]80π

(
∆

105γ
+ 1

)
. (4.24)

Selecting a different set of values for these variables below leads to the same qualitative behavior.

The results of Tcav(ω) for different values of R are shown in Fig(4.4). All the values yield

zero transmission in the center of the graph where the absorption is maximized, and therefore the
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resonance cannot increase the transmission. Further the transmission increases as R approaches zero

as the light is then not confined and can exit the cavity with a minimum loss. Hence a two-level

system, in general, cannot function as an optical switch as the transmission spectrum cannot be

easily shifted while the absorption is large.
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Figure 4.4: The transmission coefficient Tcav(ω) of a two-level atomic Fabry-Pérot cavity for different values
of R.

4.2 Optical switches

Optical switching can be achieved via atom-light interactions in a cavity by controlling the trans-

mission/reflection of light. Many methods have been proposed to realize this goal; among these are

a two level atomic gas adding a driving field [86], a Λ three level atomic gas along with two coupling

fields [87, 88], and a low light output confocal cavity containing a double Λ four-level atom system

utilizing a rubidium atomic vapor cell [89]. Other suggestions include application of a microtoroid

resonator coupled to an optical fiber [90] and an electromagnetically induced grating (EIG) [91–93].

However, most of these methods suffer from instability due to mechanical effects or from narrow

frequency band. Additionally, only one switched transmission band is present.

In a recent article, the authors of [94] theoretically proposed generating controllable wide fre-

quency band via using Λ gas atoms in an optically pumped white light Fabry-Pérot cavity [95–98].

In particular, by changing the intensity of the driving field and the atomic density, the width of

the reflectivity can be reduced to zero; hence the optical signal can be switched by modulating the

driving field.

All the above methods for controlling the transmission of a frequency band are limited to a

single band with a center frequency that is typically determined by the system parameters. This
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center frequency is further effectively determined by the atomic spacing, decay rates and associated

constants of the scheme which cannot easily be controlled in a fixed physical system.

Broad spectrum white light results if certain phase conditions are satisfied and the cavity is

therefore in resonance with a continuous band of frequencies [95–100]. In this project, we accord-

ingly propose three independent procedures, each of which possesses certain unique advantages, for

generating up to three broad frequency bands with tunable center frequencies in place of a single

band. To accomplish this, a four level double Λ atomic gas within a Fabry-Pérot cavity together

with a pumping mechanism and two driving fields with adjustable amplitudes are considered.

4.3 Model description

As mentioned in the previous chapter, by controlling optical parameters such as the susceptibility

and the refractive index in an atomic gas, applications such as electromagnetic induced transparency

(EIT) [101,102], negative refractive index [2,67], and reflective index enhancement without absorp-

tion [103] can be achieved. However we demonstrate below that by altering the susceptibility, the

transmission bands emitted by an atomic gas confined inside a Fabry-Pérot cavity can be shifted,

broadened and increased in number. Several fields are employed inside the cavity to modify the

susceptibility of the atomic gas which interacts with electromagnetic radiation according to the four

level double Λ scheme of Fig.(4.5).

Figure 4.5: The level structures, decay rates and external fields of the double Λ scheme.

The scheme has four levels |a〉,|b〉,|c〉 and |d〉 where |a〉 denotes the upper level. Two weak probe

fields couple three levels; level |a〉 and |d〉 characterized by the Rabi frequency Ω−p , and levels |b〉

to |d〉 with Rabi frequency Ω+
p . One strong driving field additionally couples |a〉 and |c〉 with Rabi

frequency Ω−µ while a second applies |b〉 and |c〉 with Rabi frequency Ω+
µ . Two incoherent pumping
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mechanisms additionally couple levels |a〉 and |d〉 and |b〉 and |d〉 with a pumping rate denoted by

r. The decay rates from the exited states equal γa from |a〉 to |d〉, γb from |b〉 to |d〉, γA from |a〉 to

|c〉 and finally γB from |b〉 to |c〉. The decay rates from |c〉 and |d〉 are assumed to be zero.

Various experimental implementations of the above double Λ scheme exist [104–106]. For exam-

ple, in the rubidium [107] or sodium [108] gas two hyperfine ground levels with F = 1 and F = 2

are present and the states |d〉 and |c〉 then correspond to the MF = −1 and MF = 1 magnetic

sublevels of the F = 1 hyperfine ground level while the upper states |a〉 and |b〉 in our notation

are the MF = 0, F = 1 and MF = 0, F = 2 excited states. In this case, two oppositely circularly

polarized counter propagating fields σ± must be employed for the drive and probe fields.

4.4 Analytic formulation

After applying the dipole approximation and the rotating wave approximation (RWA) the Hamilto-

nian of the double Λ scheme becomes

Ĥ = ~

[
a,b,c,d∑
i

ωi|i〉〈i| −
Ω−p
2
ei∆1t|a〉〈d| −

Ω+
p

2
ei∆2t|b〉〈d| −

Ω+
µ

2
ei∆3t|b〉〈c| −

Ω−µ
2
ei∆4t|a〉〈c|+H.c.

]
,

(4.25)

in which ~ωi is the energy of the level |i〉 and the Rabi frequencies of the probe fields are Ω−p =

|dad|E/~ and Ω+
p = |dbd|E/~ in which E is the electric field of the probe field and the driving field

Rabi frequencies are Ω+
µ = |dbc|E+

µ /~, Ω−µ = |dac|E−µ /~. The detuning parameters ∆i are given by

∆1 = ωad − ω−p , ∆2 = ωbd − ω+
p , ∆3 = ωbc − ω+

µ and ∆4 = ωac − ω−µ . Here ωij = ωj − ωi while ω±p

and ω±µ denote the frequencies of the probe and driving fields, respectively.

A stable steady state only exists in the double Λ scheme if the frequencies of the interacting

beams satisfy the condition [109,110]

ω−p − ω+
p = ω−µ − ω+

µ , (4.26)

as is easily verified by applying Hamiltonian of Eq.(4.25) to the master equation below. In the

following analysis the frequencies of the probe and driving beams are set to ω−p = ω+
p = ω, and

ω+
µ = ω−µ = ωµ. Accordingly only one probe field with frequency ω is present while the frequency of

both driving fields equals ωµ. The detuning parameters ∆i are then ∆1 = ωad − ω, ∆2 = ωbd − ω,
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∆3 = ωbc − ωµ, and ∆4 = ωac − ωµ. The master equation then takes the form

˙̂ρ = − i
~

[Ĥ, ρ̂], (4.27)

in terms of the density matrix operator ρ̂. After applying the Hamiltonian of Eq.(4.25) to the master

equation, inserting the expressions for the decay rates and the pumping rates and transforming in

standard fashion one obtains,

ρ̇aa = −(γa + γA)ρaa + rρdd +
i

2
(ρ̃acΩ

−∗
µ − ρ̃adΩ−∗p +H.c.), (4.28)

ρ̇bb = −(γb + γB)ρbb + rρdd +
i

2
(ρ̃bdΩ

+∗
p − ρ̃bcΩ+∗

µ +H.c), (4.29)

ρ̇cc = γAρaa + γBρbb +
i

2
(ρ̃bcΩ

+∗
µ + ρ̃acΩ

−∗
µ +H.c.), (4.30)

ρ̇dd = −2rρdd + γaρaa + γbρbb +
i

2
(ρ̃adΩ

−∗
p + ρ̃bdΩ

+∗
p +H.c.), (4.31)

˙̃ρab = −γabρ̃ab − 2iωabρ̃ab +
i

2
(ρ̃cbΩ

−
µ + ρ̃dbΩ

−
p − ρ̃adΩ+∗

p − ρ̃acΩ+∗
µ ), (4.32)

˙̃ρac = −γacρ̃ac − i(∆µ + ωab)ρ̃ac +
i

2
(−ρ̃abΩ+

µ + (ρcc − ρaa)Ω−µ + ρ̃dcΩ
−
p ), (4.33)

˙̃ρad = −γadρ̃ad + i(∆− ωab)ρ̃ad +
i

2
(−ρ̃abΩ+

p + ρ̃cdΩ
−
µ − (ρaa − ρdd)Ω−p ), (4.34)

˙̃ρbc = −γbcρ̃bc − i(∆µ − ωab)ρ̃bc +
i

2
(ρ̃dcΩ

−
p − (ρbb − ρcc)Ω+

µ − ρ̃baΩ−µ ), (4.35)

˙̃ρbd = −γbdρ̃bd + i(∆ + ωab) +
i

2
(ρ̃cdΩ

+
µ − ρ̃baΩ−p − (ρbb − ρdd)Ω+

p ), (4.36)

˙̃ρcd = −γcdρ̃cd + i(∆µ + ∆)ρ̃cd +
i

2
(−ρ̃cbΩ+

p − ρ̃caΩ−p + ρ̃bdΩ
+∗
µ + ρ̃adΩ

−∗
µ ), (4.37)

where ρ̃ij is the density matrix element after the transformations and γij ≡ (γi + γj)/2. The

detuning parameters appearing in the above equation are defined by ∆ = ω −W = ω − ωad − ωbd

and ∆µ = Q − ωµ = ωac + ωbc − ωµ, where W is ωad + ωbd and Q = ωac + ωbc. In this manner,

the values of the energies ωad, ωbc, ωbc and ωbd, not need to be determine individually as only ωab

appears.

To find the steady state matrix elements, ˙̃ρij = 0, and the two associated elements of the probe

field, ρ̃ad and ρ̃bd, the above equations are solved algebraically. Since the probe field is weak, Ω±p is
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only retained to first order, while the strong driving fields Ω±µ are kept to the second order. Solving

Eqs.(4.32-4.37) then yields

ρ̃
(1)
bd =

i

Dbd +
|Ω+
µ |2

4Dcd

[
Ω+
p

(
|Ω+
µ |2

8DcdD∗bc
Pbc −

1

2
Pbd

)
− Ω−p

(
Ω+
µΩ−∗µ

8DcdD∗ac
Pca

)]
, (4.38)

ρ̃
(1)
ad =

i

Dad +
|Ω−µ |2
4Dcd

[
Ω+
p

(
Ω−µΩ+∗

µ

8DcdD∗bc
Pbc

)
− Ω−p

(
|Ω−µ |2

8DcdD∗ac
Pca +

1

2
Pad

)]
, (4.39)

where Pij = ρii− ρjj and ρ̃
(1)
ij denote the population difference and the first order approximation of

the probe field of element ρ̃ij while the different Dij parameters are defined by Dbd = γbd−i(∆+ωab),

Dad = γad−i(∆−ωab), Dcd = γcd−i(∆µ+∆), Dbc = γbc+i(∆µ−ωab) and Dac = γac+i(∆µ+ωab).

The electric susceptibility, χ, is the sum of the contributions, χad and χbd, from each of the

interactions of the probe field as

χε0E/2 = |dad|ρ̃(1)
ad + |dbd|ρ̃(1)

bd ,

χ = 2|dad|ρ̃(1)
ad /(ε0E) + 2|dbd|ρ̃(1)

bd /(ε0E),

χ = χad + χbd,

(4.40)

Substituting Eqs.(4.38,4.39) into Eq.(4.40) then yields

χbd =
i

Dbd +
|Ω+
µ |2

4Dcd

[
C

(
|Ω+
µ |2

4DcdD∗bc
Pbc − Pbd

)
− B

(
Ω+
µΩ−∗µ

4DcdD∗ac
Pca

)]
, (4.41)

χad =
i

Dad +
|Ω−µ |2
4Dcd

[
B
(

Ω−µΩ+∗
µ

4DcdD∗bc
Pbc

)
−A

(
|Ω−µ |2

4DcdD∗ac
Pca + Pad

)]
. (4.42)

Here the strength parameters are defined by

A =
N |dad|2

~ε0
, B =

N |dad||dbd|
~ε0

, C =
N |dbd|2

~ε0
. (4.43)

The contribution from all atoms is obtained by multiplying the atomic susceptibility by the number

of atoms per unit volume, N . The exact expressions for the atomic populations ρii are then derived

by solving Eqs.(4.28-4.31) together with the normalization condition ρaa + ρbb + ρcc + ρdd = 1 which

give

ρ(0)
aa = r

Ra(γb + γB) + γBRa + γbRb + 2RaRb
a1Ra + a2Rb + a3RaRb + a4

, (4.44)
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ρ
(0)
bb = r

Rb(γa + γA) + γaRa + γARb + 2RaRb
a1Ra + a2Rb + a3RaRb + a4

, (4.45)

ρ
(0)
dd =

γaρ
(0)
aa + γbρ

(0)
bb

2r
, (4.46)

ρ(0)
cc = 1− ρ(0)

aa − ρ
(0)
bb − ρ

(0)
cc , (4.47)

in which ρ
(0)
ii designates the zero order probe field, and

Ra =
γac|Ω−µ |2

2[γ2
ac + (∆µ + ωab)]

, Rb =
γbc|Ω+

µ |2

2[γ2
bc + (∆µ − ωab)]

, (4.48)

a1 = γa(γb + γB) + r(4γB + 2γb + γa), a2 = γb(γa + γA) + r(4γA + 2γa + γb), a3 = 6r+ γb + γa, and

a4 = r(2γAγB + γAγb + γBγa).

To illustrate the behavior of the susceptibility, the above equations are evaluated with standard

parameter values. With γ = 107 the decay parameters employed here are γa = γb = γ, γA = γB =

0.2γ, γab = γcd = 0 and γac = γbc = γad = γbd = (γa + γA)/2 = 0.6γ. The density parameters are

similarly given in terms of C by A = θC and B = ΦC, with θ and Φ set to 1.1 and 1.05 respectively.

The driving fields are expressed in terms of Ω−µ by Ω+
µ = Ω−µ /α where α corresponds to the ratio

between the two fields. These fields are assumed to be well detuned so that ∆µ = 0, while the level

spacing ωab = γ. A detuning parameter is additionally defined as ∆ = ω −W , where for typical

gases in the optical limit W = 106γ. Accordingly, the following sections examine the dependence of

the susceptibility on the free parameters r, Ω−µ , α and C.

4.5 Susceptibility

To evaluate the susceptibility, Eq.(4.40), it is convenient to set C = γ since the suceptibility scales

linearly with C. The following cases are then distinguished

4.5.1 Ω−µ = Ω+
µ , α = 1

Since all systems with r < γ possess the same inversion properties, they can be analyzed by setting

the pumping rate r to zero such that only the state |d〉 is populated and then increasing the pumping

rate up to a value of γ. This insures that the atomic population is primarily in the ground state
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Figure 4.6: The real and imaginary parts of χ for different r and Ω−
µ with α = 1. The real and imaginary

parts of χ are show as the black and red curves, respectively.

and therefore ρ
(0)
aa , ρ

(0)
bb − ρ

(0)
dd < 0. For the two driving fields with α = 1, a pumping rate r < γ,

the susceptibility exhibits EIT as evident from Fig.4.6(a) for which the driving field Ω−µ = 10γ and

the pumping rate r = 0.5γ. Evidently the absorption, which is proportional to Im(χ) ≈ 0 over an

interval given approximately by −4γ < ∆ < 4γ while Re(χ) displays a linear dispersion with positive

slope. In Fig.4.6(c), the driving field is set instead to Ω−µ = 20γ with the identical pumping rate as

Fig.4.6(a) leading to an increase in the width of the near zero absorption region to −9γ < ∆ < 9γ

but otherwise the same behavior as Fig.4.6(a). In fact if the near zero absorption width is denoted

by T for large driving fields in our system T ≈ Ω−µ over a region from ∆ ≈ −Ω−µ /2 and to ∆ ≈ Ω−µ /2.

That is, the width of the EIT can be manipulated by modulating the amplitude of the driving fields.

For r > γ, the population inversion becomes positive, with the result that both ρ
(0)
aa and ρ

(0)
bb

exceed ρ
(0)
dd . In this case, Figs.4.6(b), 4.6(d), indicate that EIT is again present but that the dispersion

slope reverses sign. As in the r < γ case, the width of the negative absorption region is given by

T ≈ Ω−µ . Note that in all of the figures in Figs.4.6 two peaks are present on each side of the

absorption line. Since these are associated with ωab, their positions can be altered by changing

the value of ωab. Finally, the width of the EIT and the sign of the dispersion slope can be easily

controlled by adjusting the amplitude of the driving fields.
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4.5.2 Ω−µ 6= Ω+
µ , α 6= 1

Next the case that α differs from unity (and α 6= 0,∞) so that the intensities of the driving fields differ

(note that systems with reciprocal values of α are nearly equivalent) is investigated. In Figs.4.7(a),

4.7(b) χ is plotted for α = 2, Ω−µ = 20γ and r = 0.5γ and r = 2γ, respectively. In both figures

three separate regions exist in which Im(χ) and hence the absorption is nearly zero. The width of

the middle region is ≈ 10γ, while the widths of the left and right regions are ≈ 5γ. However in

Fig.4.7(a) with r = 0.5γ, the three regions exhibit EIT behavior, while in Fig.4.7(b) the dispersion

slope is negative. In both cases, the width of the middle region is T ≈ Ω−µ /α, while that of the two

side regions is T ≈ Ω−µ (α− 1)/(2α).

If one of the driving fields is absent, α→ 0,∞, only two zero absorption regions exist as evident

from Figs.4.7(c), 4.7(d). Similarly whether the EIT or the negative dispersion behavior is present

depends on the value of r. Therefore, changing the ratio of the driving fields strongly influences the

widths of the low absorption regions. In the following we will focus on systems with finite values

of α and hence three EIT or negative dispersion regions. The two region α→∞, 0 case however is

entirely analogous.

To describe Figs.4.7(a), 4.7(b) and other cases with α > 1 we denote the left, middle and right

negative dispersion regions of ∆ with negligible absorption by (−1), (0) and (+1) respectively. The

point within each region at which Re(χ) = 0 is further termed the center point of the region and

are labeled as ∆− , ∆0, and ∆+ with ∆− ≈ −|Ω−µ |(α + 1)/(4α), 0 and ∆+ ≈ +|Ω−µ |(α + 1)/(4α),

respectively. In summary, by manipulating the relative amplitude of the driving fields one, two or

three regions exhibiting EIT or negative dispersion can be obtained. These regions will be employed

to generate three white bands in the following sections.

4.6 White cavity conditions

While a Fabry-Pérot cavity supports discrete resonant frequencies as Eq.(4.14) showed, for a white

light cavity (WLC) such as that generated by bifrequency Raman gain [95,97,100], a continuous band

of frequencies is resonant simultaneously inside the cavity. In a WLC the cavity condition Eq.(4.14)

must be satisfied for the center points together with a negative and roughly linear dispersion and

phase delay cancellation. As seen already in Figs.4.6(b),4.6(d), 4.7(b), 4.7(d), the negative dispersion

condition is realized within adjustable wavelength bands if the pumping r > γ.
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Figure 4.7: The real (black) and imaginary (red) parts of χ for different values of r and Ω−
µ for α > 1.

The phase delay condition is derived from Eq.(4.14) which, however, yields discrete frequencies

rather than the continuous band of a WLC. Accordingly Eq.(4.14) must first be differentiated with

respect to ω where

d{ωRe[n(ω)]}
dω

= ω
d{Re[n(ω)]}

dω
+ Re[n(ω)] = 0. (4.49)

In the presence of negative dispersion Re[n(ω)] can equal the negative of the first term. For the

cases when the two driving fields possess equal amplitudes, α = 1, the centre point of the negative

dispersion is ∆ = 0 corresponding to ω = W . Since χ(W ) ≈ 0 near this point the refractive index

n(ω) ≈ 1 and Eq.(4.49) implies

d{Re[n(ω)]}
dω

|ω=W = − 1

W
. (4.50)

The slope near the center point is roughly linear, hence the derivative can be approximated as

d{Re[n(ω)]}
dω

|ω=W ≈
Re[n(W + γ)]− Re[n(W − γ)]

2γ
. (4.51)

Next the refractive index can be approximately expanded as n(ω) =
√

1 + χ(ω) ≈ 1 +χ′(ω)/2 +

iχ′′(ω)/2, in which χ′(ω) and χ′′(ω) are the real and imaginary parts of the susceptibility, respec-

50



tively. The final form of the white light condition for equal driving fields is then

χ′(W + γ)− χ′(W − γ) = −4γ

W
. (4.52)

This equation can be employed to determine the required value of Ω−µ for the driving field that

satifies the WLC.

Repeating the above derivation for unequal driving field amplitudes, yields separate conditions

for each negative dispersion region. These can be expressed as

χ′(∆C +W + γ)− χ′(∆C +W − γ) = − 4γ

∆C +W
. (4.53)

Here ∆C = ωC −W denotes the centre point of each region or the point at which χ′(ωC) = 0 in

the case of a negative dispersion slope. For example, for each of the three near-zero absorption and

negative dispersion regions in Fig. 4.7(b), Eq.(4.53) yields a separate result for the driving fields

at each centre point to satisfy the WLC. These can then be employed to generate three different

resonant bands.

Observe next that when ωab � Ω±µ , the populations ρaa ≈ ρbb ≈ ρcc. Hence for simplicity both

Pbc and Pca can be set to zero in Eqs.(4.41, 4.42) so that only the second term of Eq.(4.41) and the

third term of Eq.(4.42) remain. The real and imaginary parts of the susceptibility, χ = χ′ + χ′′, are

then

χ′(ω) = −
θC
[
−∆ + ωab +

|Ω−µ |
2

4∆

]
Pad

γ2
ad +

[
−∆ + ωab +

|Ω−µ |2
4∆

]2 − C
[
−∆− ωab +

|Ω−µ |
2

4α2∆

]
Pbd

γ2
bd +

[
−∆− ωab +

|Ω−µ |2
4α2∆

]2 , (4.54)

χ′′(ω) = − θCγadPad

γ2
ad +

[
−∆ + ωab +

|Ω−µ |2
4∆

]2 − CγbdPbd

γ2
bd +

[
−∆− ωab +

|Ω−µ |2
4α2∆

]2 , (4.55)

where as usual ∆ is ω −W . In driving these equations we assumed that γcd = 0 and ∆µ = 0.

Replotting Figs.(4.6,4.7) using these expressions leads to almost the same set of curves.
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Figure 4.8: (a) The driving field ΩµW required to satisfy the WLC condition Eq.(4.52). (b) The dependence
of the cavity transmission on the driving field for r = 2γ (except for the inner curve).

4.7 Single white band

As noted above, for equal amplitudes of the driving fields Ω±µ , e.g. α = 1, a single giant resonant

frequency band is obtained when the driving field value satisfies a condition corresponding to the

WLC of Eq.(4.52). Fig.4.8(a), which plots this required field, Ω−µW , against C and r, demonstrates

that Ω−µW is nearly proportional to
√
CW . For example, for r = 2γ, a graph of Ω−µW = 0.774741

√
CW

almost coincides with the plot in Fig.4.8(a). As well, Ω−µW generally increases monotonically with

the pumping r; however the r = 16γ and r = 32γ curves are nearly identical since the population

saturates for large r values.

For r = 2γ, while previously our calculations employed C = γ as in a standard gas, the previous

plot indicates that Ω−µW = 774γ. Since this value is unacceptably large, the gas density is decreased

by setting C = 0.01γ which yields a more reasonable value of Ω−µW = 77.48γ. Hence this scheme for

generating a white driving field requires lower pressure compared to previous experiments.

The effect of the white driving field is apparent from the transmission Tcav of the Fabry-Perot

cavity of Eq.(4.12). The cavity length must equal L = mλ/2 = πcm/W , where m is any integer,

to satisfy Eq.(4.14). The upper exponent is then a function of ∆ as iπm(W + ∆)n(∆)/W where in

Fig.4.8(b) T = 0.001, R = 0.999, m = 100 and W = 106γ.

Evidently in Fig.4.8(b) for Ω−µW the transmission band is broadened significantly compared to

that of an empty cavity. The linewidth is additionally nearly 40γ, while additional calculations

indicate that the linewidth of the white driving fields are nearly proportional to Ω
2/3
µW . For compar-

ison, the transmission is also plotted for a second value of the driving field, namely Ω−µ = 70γ. The

linewidth for this value is less than for the white driving field. We further plot the transmission for
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Ω−µ = 70γ, but with pumping r = 0.5γ. The pumping clearly reduces the linewidth of the band

compared to the empty cavity band since for pumping strengths r < γ, EIT, which in our scheme

leads to a reduced linewidth, is the dominant physical effect in this case.

To summarize, the propagation of light though a cavity with a wide transmission band can be

controlled by adjusting the amplitudes of the two driving fields. To activate a white band, the

value of Ω−µ must be within a certain range that depends on the gas density and the pumping rate

according to Fig.4.8(a). The linewidth of the transmission band can further be controlled by varying

the pumping, gas density and the white driving field amplitude.

4.8 Generation of three white bands

4.8.1 Method A

When the two driving fields are unequal, three negative dispersion regions can be supported as

Figs.4.7(b), 4.7(d) demonstrate. While the procedure in the previous section can be employed to

create a white band in one of the regions, this is not as efficient as white light generation for α = 1.

Therefore, we here consider activating all three regions. However, each of these, in principle requires

a different length. This length must be a half integer multiple of the centre wavelength according to

Eq.(4.14) which, noting that χ′ equal to zero at the centre points (∆0 and ∆±) yields

Lωm = cmπ. (4.56)

for Re(n(ωC)) = 1.

Since the cavity length is the product of an integer k with a half wavelength at frequency ω = W ,

that is, L = kλ/2 = πck/W , where k is an integer, this yields the condition

ωm =
mW

k
. (4.57)

Since the center point of region (0) is found to be ∆0 = 0, ωm must equal W , and therefore

m = k. To insure that the centre points of the regions (±1) coincide with ωm±1, observe that the

centre point frequencies ∆± are W + ∆± and hence ωm±1 = W + ∆± leading to the conditions

ωm±1 = W + ∆± = W (m±1)
k = W (m±1)

m = W ± W
m and therefore
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Figure 4.9: Cavity transmission frequencies for different driving field values with α = 3. (a) All bands
together. (b) The band of region (0). (c) The band of region (−1). (d) The band of region (+1).

∆± = ±W
m
. (4.58)

Since W = 106γ, ∆± can be approximated by an integer m to satisfy the above equation, however

the condition that |∆+| = |∆−| still remains.

The above results for χ for a given α and Ω−µ yield |∆+| ≈ |∆−|, however, the WLC Eq.(4.53)

requires that the field amplitudes differ in order to generate the regions (±1), implying |∆+| 6= |∆−|.

For example, employing our current parameter values with ωab = γ and α = 3, we find that the

fields required to satisfy the WLC:s in Eq.(4.53) with χ′(ω) = 0 for the regions (±1) are given

by (ΩµW+ = 177.1385γ,ΩµW− = 183.7735γ), where ΩµW± are the Ω−µ values in the regions (±1).

These two values yield (∆+ = 64.71γ,∆− = −67.18γ). Hence Eq.(4.58) is not fulfilled and only the

regions ((0), (+1)) or ((0), (−1)) will satisfy the WLC.

To circumvent this difficulty we instead set ωab = 0.1γ, and solve the two equations (Eq.(4.53)

with χ′(ω) = 0). This gives for region (+1), Ω−µ = ΩµW+ = 180.1415γ and ∆+ = 65.8392γ while for

region (−1), Ω−µ = ΩµW− = 180.7945γ and ∆− = −66.0827γ. Here both |∆±| are nearly identical

indicating that in general for small ωab, the values of |∆±| are nearly identical so that Eq.(4.58) is
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approximately fulfilled.

Since the two values of |∆±| are not precisely identical, we impose Eq.(4.58) in region (+1)

while approximately satisfying this equation in region (−1). This yields for m in Eq.(4.58) k =

m = W/∆+ ≈ 15188. The WLC for the region (0) from Eq.(4.52) then gives ΩµW0 = 169.964γ.

Accordingly, the three regions (0), (±1) can be activated in the same cavity.

For simplicity, neglecting the small gain associated with regions (±1) yields the transmission Tcav

for the white bands in the three separate wavelength regions with Tcav ≈ 1 illustrated in Fig.4.9(a).

Of these, the band in region (0) is the widest with a linewidth of ≈ 6γ Hz, while the linewidth in the

(±1) regions is ≈ 3γ Hz. The three bands are shown indivdually in Figs.4.9(b, c, d). Evidently the

band of region (−1) in Fig.4.9(c) that is slightly less broad than that associated with region (+1),

since we have employed the driving field corresponding to the latter region. The small depressions

in Fig.4.9(a) occur in regions of high absorption and can therefore be neglected.

Accordingly the procedure of this section efficiently produces three different white light bands in

a single cavity. Additionally, the white light band of region (0) is activated though a driving field

of 169.96γ while to activate the (±1) regions the driving field is found to equal 180.1415γ. This

enables the optical switching of the bands.

4.8.2 Method B

In the last section 4.8.1, three white bands were generated subject to the condition ωab ≈ 0. This

and the following section instead outline two procedures for generating three bands in which the

value of ωab is not constrained. The first of these procedures assumes that the length of the cavity

can be altered. In this case, the cavity condition, Eq.(4.14), for region (0) reads

L0W = cmπ, L0 =
mπc

W
. (4.59)

while the condition for the other two regions (±1) with varying length can be written as

L±(W + ∆±) = cmπ, L± =
cmπ

W + ∆±

W

W
, (4.60)

and therefore

L± = L0

(
1

1 + ∆±
W

)
= L0X±, (4.61)
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Figure 4.10: Magnified plots of the transmission bands of the cavity for differing driving field amplitudes
with α = 3 for cavity lengths (a) L0 (b) L+ = L0X+ (c) L− = L0X−.

where X± are multiplicative factors that express the required length modifications. Setting ωab

to its previous value, γ and calculating the driving fields that satisfy the white cavity condition for

α = 3 yields (ΩµW0 = 169.94γ ΩµW+ = 177.13γ, ΩµW− = 183.77γ) for the [(0), (+1), (−1)] regions

respectively. If the length of region (0) is set to L0 = 100πc/W the required lengths of the (±1)

regions are L+ = 0.99993528L0 and L− = 1.00006719L0, which are sufficiently close to L0 to enable

the tuning of the cavity length.

The cavity transmission is plotted in Fig.(4.10) demonstrating three bands with very large

linewidth (≈ 1.0Ghz) compared to that of the previous method since the cavity length is reduced.

Recall as well that for α = 1, the band of region (0) is nearly unchanged but requires a smaller

amplitude driving field as evident from Fig.4.8(b). Further, as in the previous section, the centre

frequency of the (±1) bands can be shifted by adjusting the C parameter. Hence here again both

the linewidth and the centre of the transmitted bands can be easily manipulated.
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Figure 4.11: The (a) driving fields Ω−
µ = ΩµW± and (b) center point positions ∆± resulting from the white

light condition for the (±1) regions plotted as a function of the ratio 1/α.

4.8.3 Method C

A third procedure for generating three white bands which employs α = 1 is to tune the spacing energy

ωab. We notice in Figs.4.7 that there are two peaks on either side of the transmission maximum.

These peaks are related to ωab as they vanish for ωab = 0. Increasing ωab therefore results in three

white bands similar to the α 6= 1 case. The width of both regions (±1) approximately equals ωab,

while the bandwidth of the middle region (0) is Ω−µ ≈ ωab. Therefore, when Ω−µ ≈ 2ωab, the three

regions will possess almost the same width. This method could be highly efficient if ωab is easily

tunable and illustrates that three bands can be generated even for equal amplitude driving fields.

4.9 One white band with adjustable center frequency

Finally, we propose a technique for generating a single large white band with a centre frequency

that can be displaced by adjusting the parameter α. We specialize here to method B, for which

ωab = γ. Solving for the white cavity condition Eq.(4.53) along with χ′ = 0, yields the value of

the field that satisfies the WLC condition ΩµW± as well as the centre point ∆± for each value of

α. These results are shown in Fig.(4.11), where the left figure Fig.4.11(a), plots ΩµW± against the

ratio 1/α while the right figure, Fig.4.11(b), displays the dependence of the centre point location on

of the same ratio. Fig.4.11(a) demonstrates that there is almost a constant spacing between ΩµW−

and ΩµW+, which is expected since ωab is not negligible, as discussed in Sec.(4.8.1). Further, both

ΩµW± increase rapidly as α approaches 1 as the widths of the (±1) regions decrease in this limit

and vanish when α = 1. The position of the center points in Fig.4.11(b) behaves similarly.
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The above figures can be employed as follows. To position the white light band around a given

centre point, e.g. ∆± = x the value of α can be determined from Fig.4.11(b) and the required driving

fields Ω−µ and Ω+
µ = Ω−µ /α are then obtained from Fig.4.11(a). Finally, the cavity length must be

adjusted to equal L = X±L0. A similar procedure for displacing the white band position can be

formulated for method A however the resulting curves differ since ωab is altered in this scenario.

The only positions which cannot be accessed fall in the interval ≈ −37.2γ to 35.5γ as evident from

Fig.4.11(b). The two edges of this range correspond to α→∞, which limits the two regions present

in Fig.4.7(d).

4.10 Conclusion

This chapter has demonstrated that one, two or three white bands can be generated in a single

cavity simply by adjusting the magnitude of the driving fields and the cavity length. Three separate

techniques were given for three white band production, each of which has certain relative advantages

and drawbacks. As well, the wavelength positions of the white light bands can be displaced through

optical or mechanical tuning. These results can be employed to manipulate and control such systems

in a more efficient fashion than previous techniques for single white light band systems in which the

centre frequency could not be easily adjusted.

Future extensions of this work could include the generation of three simultanous white bands

with only a single driving field amplitude. Additionally, for a larger set of interactions between the

probe beam and the atom, the number of white cavity bands could in principle be further increased.
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Chapter 5

N-Type Full Quantum Model

This chapter presents the full quantum theory of light-matter interactions from which quantum phe-

nomena such as negative values of the Wigner function, collapse and revival phenomenon, squeezed

states, entanglement and anti-bunching can be studied [111, 112]. Such nonclassical properties are

often exploited in quantum optics and other fields [51, 53, 113, 114] and will be examined in detail

in this and the following chapter. Here we first introduce quantized light (photons) and the quan-

tized version of the two-level system and then present our proposed scheme which consists of N-type

atom interacting with a single light mode. After examining the inversion dynamics, linear entropy,

Q-function and squeezing the chapter ends with a summary and conclusions.

5.1 Background

In this section, we are interested in deriving the quantum equations for single light mode confined

in a one-dimensional cavity with perfect mirrors at the boundaries, c.f. Fig.(5.1)

Figure 5.1: The one-dimensional cavity.

For an e.g. x-polarized electric field E(z, t) with perfect mirrors at the boundaries so that
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Ex(0, t) = Ex(L, t). A longitudinal modal is given from Maxwell’s equations as

Ex(z, t) = A0 sin(kmz)q(t), (5.1)

where A0 is the amplitude of the field , q(t) is the time-dependent function of the field which has

a unit of length with km = mπ/L (see Eq.(4.13)). The value of m can be zero or any positive or

negative integer. There is an infinite number of modes which can fit inside the cavity. However,

here we only consider one mode of these. The accompanying magnetic induction from Maxwell’s

equations is then

By(z, t) =
µ0ε0
km

A0 cos(kmz)q̇(t). (5.2)

Now, the classical Hamiltonian of the fields in our system can be written as

H =
1

2

∫
dV

[
ε0E

2
x(z, t) +

1

µ0
B2
y(z, t)

]
. (5.3)

Substituting our fields and considering the volume of the cavity to be V = L
∫
dxdy, Eq.(5.3)

becomes

H =
ε0V A

2
0

4ω2
[q̇(t)2 + ω2q(t)2]. (5.4)

Here
∫
dxdy represents the cross-sectional area of the mode, so that V is the total volume of the

mode inside the cavity. To transform this classical expression into a quantum mechanics formula,

consider q(t) = q as a canonical position, so that q̇(t) = p is the canonical momentum with unit mass.

Also, to simplify the analogy with quantum mechanics rewrite the amplitude A0 as
√

2ω2/(V ε0).

After the substitution, H will be

H =
1

2
(p2 + ω2q2). (5.5)

The Hamiltonian now is equivalent to that of a unit mass harmonic oscillator. The Hamiltonian in

this form is still classical, but to quantize it, we need to impose the canonical commutation relation

(first quantization)

[q̂, p̂] = q̂p̂− p̂q̂ = i~. (5.6)

Inserting this commutation relation to the Hamiltonian yields

Ĥ =
1

2
(p̂2 + ω2q̂2). (5.7)
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This differs from the classical Eq.(5.5) in that q̂ and p̂ are now Hermitian operators that satisfy

the commutation relations. It is more convenient however to write the Hamiltonian in terms of the

non-Hermitian annihilation (â) and creation (â†) operators defined as

â =
1√
2~ω

(ωq̂ + ip̂), â† =
1√
2~ω

(ωq̂ − ip̂). (5.8)

which from Eq.(5.6) satisfy the commutation relation

[â, â†] = 1. (5.9)

In terms of these non-Hermitian operators, the Hamiltonian reads

Ĥ = ~ω
(
â†â+

1

2

)
. (5.10)

Following the same procedure, the electric and magnetic fields become

Êx(z, t) = E0(â+ â†) sin(kz), B̂y(z, t) = −iB0(â− â†) cos(kz), (5.11)

in which E0 =
√
~ω/(ε0V ) and B0 = (µ0/k)

√
ε0~ω3/V with units of electric and magnetic field

respectively. These fields are now represented as operators implying that only their expectation

values can be measured.

The eigenvalue equation corresponding to the Hamiltonian Ĥ is then

Ĥ|n〉 = ~ω
(
â†â+

1

2

)
|n〉 = ~ω

(
n+

1

2

)
|n〉 = En|n〉, (5.12)

where the eigenfunctions, |n〉, they termed Fock states, and the eigenvalues En represent the energy

of the corresponding state. Here n varies from 0 to infinity, where 0 represents the vacuum state

|0〉 (no photons). Hence n photons can exist in a single frequency and polarization light mode with

energy En. In deriving Eq.(5.12) we employed that â†â is the number operator n̂ which satisfies

n̂|n〉 = â†â|n〉 = n|n〉. (5.13)

The Fock states will be discussed in the next section.
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Our previous derivations were mostly limited to a single mode inside a cavity. But for travelling

modes or multi-modes, additional expressions need to be introduced. Writing the quantized electric

field as [51,53,115],

Ê(r, t) =
∑
k,s

√
~ωk
2ε0V

ek,s

[
âk,se

i(k·r−ωkt) + â†k,se
−i(k·r−ωkt)

]
, (5.14)

where k is a wavevector, s denotes the electric field polarization and ek,s is a unit vector in the

direction of polarization of the mode. And âk,s (â†k,s) is the corresponding annihilation (creation)

operator. These non-Hermitian operators satisfy the following commutation relations

[âk,s, âk′,s′ ] = [â†k,s, â
†
k′,s′ ] = 0, [âk,s, â

†
k′,s′ ] = δkk′δss′ . (5.15)

which again result from the first quantization of the canonical variables q̂ and p̂. Similarly, the

magnetic field operator is

B̂(r, t) =
1

µ0

∑
k,s

√
~ωk
2ε0V

(
k× ek,s
ωk

)[
âk,se

i(k·r−ωkt) + â†k,se
−i(k·r−ωkt)

]
. (5.16)

To take into account a continuous distribution of travelling modes, the summation must be replaced

by an integral as ∑
k,s

→ 2
V

(2π)3

∫
dk3. (5.17)

5.1.1 Fock states

Examining next the Fock or number states, which are simultaneous eigenfunctions of the field Hamil-

tonian Ĥ and the number operator n̂ according to Eqs.(5.12) and (5.13), we can derive

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉, â|0〉 = 0. (5.18)

From the first two equations, we can see that operator â annihilates one photon, while â† creates

one photon. Further, applying the annihilation operator to the vacuum yields â|0〉 = 0 as expected.

Starting from the vacuum state |0〉 all Fock states can be obtained through the following relation

|n〉 =
(â†)n√
n
|0〉. (5.19)
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The Fock states further form a complete and orthogonal basis since

∞∑
n=0

|n〉〈n| = 1, 〈n|m〉 = δnm. (5.20)

Therefore, any state of a single mode can be expressed as a superposition of Fock states as |ψ〉 =∑∞
n=0 cn|n〉, where the coefficients cn obey the normalization condition, 〈ψ|ψ〉 =

∑∞
n=0 |cn|2 = 1.

Further, the quadrature operators X̂ and Ŷ defined as

X̂ =
â+ â†

2
, Ŷ =

â− â†

2i
. (5.21)

are directly related to the position (q̂) and momentum (p̂) operators which is evident if Eq.(5.8) is

solved for these operators. They are also directly related to the electric and magnetic fields according

to Eqs.(5.11). Although the expectation value of these two operators with respect to the number

states 〈n|X̂|n〉 = 〈n|Ŷ |n〉 = 0, yields zero. However, the expectation of their squares yields

〈X̂2〉 =
1

4
(2n+ 1), 〈Ŷ 2〉 =

1

4
(2n+ 1), (5.22)

where 〈Ô〉 = 〈n|Ô|n〉. Since the uncertainty of an operator is given by 〈(∆Ô)2〉 = 〈Ô2〉 − 〈Ô〉2, the

uncertainty of the quadrature operators of the number states equals

〈(∆X̂)2〉 = 〈(∆Ŷ )2〉 =
1

4
(2n+ 1). (5.23)

Hence the fluctuations of both X̂ and Ŷ are increaseing as the number of photons n is increased so

that the minimum uncertainty, 1/4, occurs when n = 0 (the vacuum state). Multiplying the uncer-

tainties 〈(∆X̂)2〉〈(∆Ŷ )2 of the vacuum state yields 1/16, which equals the minimum fluctuations of

the quadrature operators of any quantum state as the following inequality shows

〈(∆X̂)2〉〈(∆Ŷ )2〉 ≥ 1

16
. (5.24)

This inequality is a quantum mechanical property as it constitutes one form of the Heisenberg

uncertainty principle.
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5.1.2 Coherent states

Coherent states are the states that are most similar to classical coherent states. In contrast, the

expectation value of the quadrature operators, which related to electric and magnetic fields, for

the number states are always zero, which is far from classical since we classically expect that the

electric field increases with the number of photons. Therefore, the number state does not possess

the properties of classical states.

The coherent states can be calculated from the eigenvalue equation

â|α〉 = α|α〉, (5.25)

where |α〉 is the coherent state, and α is a parameter that can take any complex value. Solving this

equation together with the normalization condition yields

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉. (5.26)

This state, which is normalized such that 〈α|α〉 = 1, constitutes an infinite superposition of Fock

states. It first introduced by Glauber in 1963 and sometimes called the Glauber coherent state [116].

The average number of photons in the coherent state is 〈α|n̂|α〉 = 〈n̂〉 = |α|2, so the parameter α is

related to the number of photons.

The quadrature operators follow from Eq.(5.25) which yields for coherent states,

〈X̂〉 = Re(α), 〈Ŷ 〉 = Im(α). (5.27)

with fluctuations

〈(∆X̂)2〉 = 〈(∆Ŷ )2〉 =
1

4
. (5.28)

The equations (5.27) and (5.28) again are similar to the properties of the classical coherent state as

the averages are proportional to the real and imaginary value of α. Hence increasing the number

of photons increases the quadrature 〈X̂〉 or 〈Ŷ 〉 and thus the electric and magnetic fields consistent

with the properties of coherent classical fields. Further the fluctuations are a minimum as in classical

fields.

Since the coherent state consists of a superposition of an infinite number of states, the probability
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of finding n photons in the state is given by

Pn = |〈n|α〉|2 = e−|α|
2 |α|2n

n!
= e−〈n̂〉

〈n̂〉n

n!
. (5.29)

which is a Poisson distribution for which the mean number of photons equals 〈n̂〉. The fluctuations

of the number operator is found to be 〈(∆n̂)〉 =
√
〈n̂〉 = |α|. Since the Poisson distribution is

expected for a classical coherent state [117], this further confirms that the coherent state is the

quantum analogue of the classical coherent state and in fact coincides with the classical coherent

state in the α→∞ limit.

It should be noted that the coherent state can also be defined as

|α〉 = D̂(α)|0〉 = eαâ
†−α∗â|0〉, (5.30)

where D̂(α) is the displacement operator, which is is equivalent to Eq.(5.25). The displacement

operator is unitary since D̂(α)D̂†(α) = D̂†(α)D̂(α) = 1. While we have briefly illustrated above

the quantum states that are most relevant to this thesis, numerous other important quantum states

exist, such as those generated by thermal fields, single and two mode squeezed states, and so on.

5.1.3 Jaynes-Cummings model (JCM)

To introduce the quantized description of light-matter interactions we first describe the Jaynes-

Cummings model (JCM) [118] which relates to a single electromagnetic mode interacting with a

two-level atom in a cavity. The model, which applies the rotating wave approximation (RWA) and the

dipole approximation within a full quantum description is exactly solvable, and reproduces numerous

experimental observations [119]. The Hamiltonian of an atom interacting with electromagnetic fields

can be written as

Ĥ = Ĥatom + Ĥfield + Ĥinteraction. (5.31)

in which the first term Ĥatom is the atomic Hamiltonian. Considering only N levels the atom yields,

by extending the analysis of the two-level system, c.f. for example Eq.(3.24) in Ch.(3),

Ĥatom = ~
N∑
i=1

ωi|i〉〈i|, (5.32)
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where ~ωi is the energy of the state |i〉. The field Hamiltonian for K modes is

Ĥfield = ~
K∑
j=1

Ωj

(
â†j âj +

1

2

)
, (5.33)

where Ωj and âj are the frequency and creation operator of mode j. The interaction Hamiltonian,

as in Eq.(3.13), can then be written as Ĥinteraction = −er · E(t). Inserting the identity operator∑N
i=1 |i〉〈i| = 1, the operator er can be expressed as

er =

N∑
i=1

N∑
j=1

|i〉〈i|er|j〉〈j| =
N∑
i=1

N∑
j=1

dij |i〉〈j|, (5.34)

where dij are dipole moment elements e〈i|r|j〉. In the full quantum description, the electric field

E(t), analogous to Eq.(5.11) is given by

E =

K∑
i=0

Eiei(âi + â†i ), (5.35)

where ei and Ei are the polarization and electric amplitude of the ith field. We here assumed that

the atom is at the origin r0 = 0. Then, the interaction Hamiltonian reads

Ĥinteraction = −er ·E(t) = ~
N∑
i=1

N∑
j=1

K∑
s=1

gi,js (âs + â†s)|i〉〈j|, (5.36)

where gi,js are the coupling constants which equal

gi,js = −dij · es Es
~

. (5.37)

The Hamiltonian of the entire system is then

Ĥ = ~

 N∑
i=1

ωi|i〉〈i|+
K∑
j=1

Ωj â
†
j âj +

N∑
i=1

N∑
j=1

K∑
s=1

gi,js (âs + â†s)|i〉〈j|

 . (5.38)

The energy of the vacuum, Eq.(5.33), is not present in the Hamiltonian as it is simply an additive

constant.

We now specialize to the two-level scheme for which N = 2 and K = 1. Here we associate |2〉

with a single excited state, and |1〉 with the ground state. For simplicity, we assume the coupling
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constants are real as gi,js = gj,is = g. The Hamiltonian then simplifies to

Ĥ = ~
[
ω1|1〉〈1|+ ω2|2〉〈2|+ Ωâ†â+ g(â+ â†)(|1〉〈2|+ |2〉〈1|

]
. (5.39)

The interaction term (the term containing g) consists of four terms, â|1〉〈2|, a|2〉〈1|, â†|1〉〈2| and

â†|2〉〈1|. Here |2〉〈1| raises the ground state to the excited state, while |1〉〈2| instead lowers the

exited state. Therefore, to conserve energy, the energy nonconserving terms â†|2〉〈1| and â|1〉〈2|

which respectively create a photon while exciting the atom and destroy a photon while deexciting

the atom, are omitted. This corresponds in practice to applying the RWA to the full quantum

models. The Hamiltonian then adopts the form

Ĥ = ~
[
ω1|1〉〈1|+ ω2|2〉〈2|+ Ωâ†â+ g(â|2〉〈1|+ â†|1〉〈2|)

]
. (5.40)

which is termed the Jaynes-Cummings model (JCM).

The Hamiltonian of Eq.(5.40) can now be expressed as a sum of two terms

Ĥ = Ĥ0 + ĤI , Ĥ0 = ~(ω1|1〉〈1|+ ω2|2〉〈2|+ Ωâ†â), ĤI = g~(â|2〉〈1|+ â†|1〉〈2|). (5.41)

which we transform into the interaction picture according to eiĤ0t/~ĤIe
−iĤ0t/~. Employing the

identity

Ĥ = eiĤ0t/~ĤIe
−iĤ0t/~ = ĤI +

(
it

~

)
[Ĥ0, ĤI ] +

1

2!

(
it

~

)2

[Ĥ0, [Ĥ0, ĤI ]] + · · · . (5.42)

yields

Ĥ = g~(âe−i∆t|2〉〈1|+ â†ei∆t|1〉〈2|), (5.43)

where ∆ = ω2 − ω1 − Ω is the detuning parameter.

The SE then takes the form

∂|ψ〉
∂t

= −iĤ
~
|ψ〉, (5.44)

where |ψ〉 represents the wave function of the entire system which, from the form of the Hamiltonian

Ĥ, can be written as

|ψ〉 =

∞∑
n=0

qn[An+1(t)|1, n+ 1〉+Bn(t)|2, n〉], (5.45)
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in which qn is the probability amplitude of the incident light state. Inserting this wave function in

the SE and taking the inner product with 〈1, n+ 1| and 〈2, n| yields two equations

Ȧn+1(t) = −ig
√
n+ 1ei∆tBn(t), Ḃn(t) = −ig

√
n+ 1e−i∆tAn+1(t). (5.46)

Applying the transformation, An+1(t) = Ãn+1(t)ei∆t, yields

˙̃An+1(t) = −i∆Ãn+1(t)− ig
√
n+ 1Bn(t), Bn(t) = −ig

√
n+ 1Ãn+1(t). (5.47)

Which are coupled linear differential equations. To solve these, assume that Bn(t) varies with time

according to eµt. Inserting this into the differential equations leads to

µ1,2 =
i

2

[
−∆±

√
∆2 + 4g2(n+ 1)

]
. (5.48)

Then, setting Ãn+1(t) = a1e
µ1t + a2e

µ2t and Bn(t) = b1e
µ1t + b2e

µ2t, where a1, a2, b1 and b2 are

undetermined coefficients satisfying

a1 =
−ig
√
n+ 1

µ1 + i∆
b1, a2 =

−ig
√
n+ 1

µ2 + i∆
b2. (5.49)

If the atom is initially in the excited state |2〉, Bn(0) = 1 and Ãn+1(0) = 0 so that a1 + a2 = 0 and

b1 + b2 = 1 and the coefficients are

a1 = − g
√
n+ 1√

∆2 + 4g2(n+ 1)
, a2 =

g
√
n+ 1√

∆2 + 4g2(n+ 1)
,

b1 =
1

2

(
1− ∆√

∆2 + 4g2(n+ 1)

)
, b2 =

1

2

(
1 +

∆√
∆2 + 4g2(n+ 1)

)
. (5.50)

yielding finally

An+1(t) =
g
√
n+ 1√

∆2 + 4g2(n+ 1)

(
eµ2t − eµ1t

)
ei∆t. (5.51)

Bn(t) =
eµ2t + eµ1t

2
+

∆√
∆2 + 4g2(n+ 1)

(
eµ2t − eµ1t

2

)
. (5.52)

The dynamics of electrons within the two-level scheme can be illustrated through the inversion

dynamics, where the inversion for our system is defined by W (t) =
∑∞
n=0 Pn

[
|Bn(t)|2 − |An+1(t)|2

]
,
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Figure 5.2: The inversion dynamics plotted against scaled time gt for various values of ∆ and n.

in which Pn = |qn|2. If the initial state is the Fock state |n〉, Pn′ = δnn′ so

W (t) =
∆2 + 4g2(n+ 1) cos

(√
∆2 + 4g2(n+ 1)t

)
∆2 + 4g2(n+ 1)

. (5.53)

The inversion dynamics for different system parameters is displayed in Fig.(5.2). All the inversion

plots display ideal periodic oscillations termed Rabi oscillations at an angular frequency of Ωn =√
∆2 + 4g2(n+ 1). Although these oscillations are predicted by the semi-classical theory through the

solution of Eq.(3.32), the Rabi oscillations in the full quantum treatment include vacuum oscillations

with a frequency Ω0 =
√

∆2 + 4g2 as evident from Fig.(5.2a). This results from spontaneous

emission which, unlike the classical theory, is inherent in the quantum theory. In Figs.(5.2b, 5.2c)

we illustrate the effect of a non-zero photon number and a non-detuned field. In the later case, the

excited state is more populated than the ground state.

If the initial state is a coherent state with qn = e−|α|
2/2αn/

√
n!, the resultant inversion is

W (t) =

∞∑
n=0

(
e−|α|

2 α2n

n!

) ∆2 + 4g2(n+ 1) cos
(√

∆2 + 4g2(n+ 1)t
)

∆2 + 4g2(n+ 1)
. (5.54)

In Fig.(5.3), we plotted this expression for two values of α (α = 3 and 5) and for ∆ = 0. This

generates discrete packets that undergo collapse and revival as a result of the coherent interaction
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Figure 5.3: The inversion dynamics as a function of scaled time gt for a two-level system for an initial
coherent state. The field here is detuned with ∆ = 0.

between the different Rabi frequencies. This behavior cannot be reproduced classically as classical

packets can collapse but will not be subsequently revived. As the amplitude α increases the packets

become more pronounced as evident from the same figure. For all values of α, after a long scaled

time gt, the packets overlap and become indistinguishable. This phenomenon has been observed

experimentally [120, 121] and extensively analyzed theoretically. [122–125]. Additionally, effects

such as entanglement between the field and the atom [126,127] and quadrature squeezing [128] have

been studied and observed. Such phenomena will be discussed later in the context of our multi-level

scheme.

5.2 Beyond JCM

The JCM has more recently been extended to multi-level atoms [129,130], multimode incident fields

[131,132], multiple atoms [133,134] and intensity-dependent coupling [135]. Below we will investigate

a multi-level scheme. Multi-level atoms exhibiting various nonlinear interactions are applied in many

areas of quantum optics and quantum information science including electromagnetically induced

transparency (EIT) [101,136], quantum jumps [137] and coherent population trapping (CPT) [138].

Nonlinear effects are incorporated into the JCM by introducing an intensity-dependent coupling

between the atom and the electromagnetic field, [139, 140] which in turn experiences a nonlinear

Kerr interaction [141]. Nonlinear effects can also arise from the f-deformed field of the deformed

oscillations [135] or multi-photon processes with intensity-dependent coupling JCM [142]; however,

these sources are not considered below. In three-level atomic schemes, the configurations V and Λ

have been studied extensively for different nonlinear interactions including the interaction of two

fields through a multi-photon process [143, 144] and intensity-depending coupling in Kerr medium
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[145, 146]. Entanglement evolution has further been examined for Λ configurations with two fields

through the cross-Kerr interaction [147].

Recently, the interaction of a four-level atom with a single field has been simulated in a fully

quantized model [148–151]. Four level atoms can undergo numerous types of transitions including Y,

λ, N and♦ type and can exhibit nonclassical phenomena including collapse and revival, entanglement

and the generation of anti-bunched photons [152,153]. In particular, N-type systems were predicted

to exhibit photon switching [154], as was subsequently verified experimentally [155, 156] as well as

electromagnetically induced absorption (EIA) and electromagnetically induced transparency (EIT)

[157, 158]. Also, some of these phenomena have been previously examined in the context of a

fully quantized model of an atom interacting with a single mode of the electromagnetic field in

the absence of an intensity-dependent coupling [159–162]. Most previous work however employed a

superposition of two levels for the initial atomic state and did not investigate effects associated with

intensity-dependent coupling or an initial state consisting of a single excited level.

In contrast to most four-level configurations the N and ♦ types are superpositions of the most

common Λ and V three-level schemes. While the two schemes are mixed with effectively uncorre-

lated phases in the ♦-type configuration, they are instead superposed quasi-coherently in N-type,

enhancing the resulting nonclassical properties.

Previous quantized model studies of N-type configurations either did not consider the case of an

initial population in the most excited state, or assumed a specific excited state superposition that

differs from that assumed below. As well, the effect of the intensity-dependent coupling in a Kerr

medium has not been studied in the same manner as for e.g. Λ, V and♦ systems. Accordingly, in this

project the exact analytical solution of a N-type system interacting with a single-mode field in the

presence of intensity-dependent coupling in a Kerr medium is obtained for an initially excited atom

and a field in a coherent state. The nonclassicality of the system is characterized by computing the

atomic inversion, which is directly related to the collapse and revival behaviour, the linear entropy

which quantifies the degree of entanglement (DEM) between the field and the atom, the Q Mandel

parameter that indicates if the field is bunched or anti-bunched as well as the standard squeezing

parameter are subsequently analyzed.
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Figure 5.4: N -type configuration of a four-level atom

5.3 N-type four-level atom

Assume having a large Q cavity filled by N-type four-level atoms as illustrated by Fig.(5.4). In

this figure, the uppermost atomic level is denoted by |4〉 while the ground states are |1〉 and |2〉. A

single-mode field couples |2〉−|3〉, |1〉−|4〉, and |2〉−|4〉 with detunings ∆1, ∆2 and ∆3, respectively

while the |3〉−|1〉 transition is forbidden. The model therefore consists of two sub-coupled three-level

systems Λ and V , where |3〉, |2〉 and |4〉 constitute a V -type system, and |1〉, |4〉 and |2〉 a Λ-type

system. The field and atom coupling is intensity-dependent if the medium in the optical cavity

possesses a Kerr nonlinearity.

An N-type scheme can be prepared by many methods [150, 163], one of which employs the four

hyperfine levels of cesium (Cs) with D2 line. The two ground states |1〉 and |2〉 correspond to the

(62S1/2) with F = 3, 4 while the upper states |3〉 and |4〉 instead are (62P3/2) levels with F ′ = 3, 4.

Although most experiments have employed three rather than one optical modes, since the spacing

between the ground states and the upper states are nearly identical, the frequencies of the three

fields can be almost indistinguishable, enabling the single mode approximation employed below. In

this approximation, complicated measurements and higher order atom-photon interactions can be

described by a straightforward and easily accessible formalism that could potentially be applied to

numerous related research areas.

The full Hamiltonian which describes the system in the RWA is given by, with ~=1,

Ĥ =

4∑
i=1

ωiR̂ii+Ωâ†â+ga(Â†R̂23 +ÂR̂32)+g′a(Â†R̂14 +ÂR̂41)+gb(Â
†R̂24 +ÂR̂42)+χâ†2â2, (5.55)

in which ωi is the energy of the atomic level |i〉, R̂ij = |i〉〈j| is the lowering or raising operator of the
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atomic system, Ω is the frequency of the single-mode field. ga, g′a and gb are the atom-field coupling

constants, χ is the third-order nonlinearity of the Kerr medium, and Â, Â† are the deformation

operators of the field defined as

Â = âf(n̂) = f(n̂+ 1)â, Â† = f(n̂)â† = â†f(n̂+ 1). (5.56)

Here the deformation function f(n̂), which is a function of the number operator or equivalently the

light intensity, describes the nature of the intensity-dependent coupling.

The Hamiltonian in Eq.(5.55) is conveniently expressed in the interaction picture after first

writing Ĥ = Ĥ0 + ĤI , where

Ĥ0 =

4∑
i=1

ωiR̂ii + Ωâ†â, (5.57)

ĤI = ga(Â†R̂23 + ÂR̂32) + g′a(Â†R̂14 + ÂR̂41) + gb(Â
†R̂24 + ÂR̂42) + χâ†2â2. (5.58)

Then, the interaction Hamiltonian is found to be

Ĥ = ga(Â†R̂23e
i∆1t+ÂR̂32e

−i∆1t)+g′a(Â†R̂14e
i∆2t+ÂR̂41e

−i∆2t)+gb(Â
†R̂24e

i∆3t+ÂR̂42e
−i∆3t)+χâ†2â2,

(5.59)

where ∆1 = ω3 − ω2 − Ω ∆2 = ω4 − ω1 − Ω, and ∆3 = ω4 − ω2 − Ω are the detuning parameters.

The dynamics of the system follow from the time-dependent Schrödinger equation which in

the interaction picture adopts the form (∂/∂t)|ψ〉 = −iĤ|ψ〉 where |ψ〉 is assumed to possess the

following structure:

|ψ〉 =

∞∑
n=0

qn[An+1(t)|1;n+ 1〉+Bn+1(t)|2;n+ 1〉+ Cn(t)|3;n〉+Dn(t)|4;n〉], (5.60)

Here An+1(t), Bn+1(t), Cn(t) and Dn(t) are the probability amplitudes of the states |1〉, |2〉,

|3〉 and |4〉, respectively, and qn is the initial probability amplitude of the single mode field. The

equation of motion for the amplitudes is determined by substituting the state |ψ〉 into the Schrödinger

equation. In the rotating frame, this yields the following equations:

Ȧn+1(t) = −i[L1An+1(t) + F ′aDn(t)], (5.61)
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Ḃn+1(t) = −i[L2Bn+1(t) + FaCn(t) + FbDn(t)], (5.62)

Ċn(t) = −i[L3Cn(t) + FaBn+1(t)], (5.63)

Ḋn(t) = −i[L4Dn(t) + F ′aAn+1(t) + FbBn+1(t)], (5.64)

where

Fa =
√
n+ 1f(n+ 1)ga, F ′a =

√
n+ 1f(n+ 1)g′a, Fb =

√
n+ 1f(n+ 1)gb, (5.65)

and

L1 = A1 + ∆1 + ∆2 −∆3, L2 = A1 + ∆1, L3 = A2, L4 = A2 + ∆1 −∆3, (5.66)

where

A1 = χn(n− 1), A2 = χn(n+ 1). (5.67)

Assuming that the amplitude Cn(t) depends on time as eµt, substituting into Eqs.(5.61-5.64) yields

the fourth-order algebraic equation

µ4 + T1µ
3 + T2µ

2 + T3µ+ T4 = 0, (5.68)

where

T1 = i(L1 + L2 + L3 + L4),

T2 = F 2
a + F ′2a + F 2

b − L1L2 − L1L3 − L1L4 − L2L3 − L2L4 − L3L4,

T3 = i[F 2
a (L1 + L4) + F ′2a (L2 + L3) + F 2

b (L1 + L3)− L1L2L3 − L1L2L4 − L1L3L4 − L2L3L4],

T4 = F 2
aF
′2
a + L1L2L3L4 − F 2

aL1L4 − F ′2a L2L3 − F 2
b L1L3.

(5.69)

The four roots of Eq.(5.68) are given by [164,165]

µ1,2 =
1

2

(
−
√
λ±

√
λ− 2

(
p+ λ− q

λ

))
− T1

4
, (5.70)

µ3,4 =
1

2

(
+
√
λ±

√
λ− 2

(
p+ λ+

q

λ

))
− T1

4
, (5.71)

74



where

p = T2 − 3T 2
1

8 ,

q = T3 − T1T2

2 +
T 3

1

8 ,

r = T4 − T1T3

4 +
T 2

1 T2

16 −
3T 4

1

256 ,

λ = λm = −x1

3 + 2
3

√
x2

1 − 3x2 cos
(

1
3 cos−1

(
9x1x2−2x3

1−27x3

2(x2
1−3x2)3/2

)
+ 2π(m−1)

3

)
,

x1 = 2p,

x2 = p2 − 4r,

x3 = −q2.

(5.72)

In Eq.(5.72) m represents one of the values {1,2,3} with λ given by the corresponding λm although

m = 2, 3 is preferable. Since the Cn(t) are linear combinations of terms that evolve in time as eµit,

the four probability amplitudes can be written as

An+1(t) =

4∑
i=1

Ji
F ′a
FaFb

(iµi − L2)(iµi − L3)− F 2
a

(iµi − L1)
e(µi+i(∆1+∆2−∆3))t,

Bn+1(t) =

4∑
i=1

Ji
(iµi − L3)

Fa
e(µi+i∆1)t,

Cn(t) =

4∑
i=1

Jie
µit,

Dn(t) =

4∑
i=1

Ji
(iµi − L2)(iµi − L3)− F 2

a

FaFb
e(µi+i(∆1−∆3))t. (5.73)

These amplitudes are valid for any initial field qn, deformation function f(n), and initial atomic

population. If the atomic system is initially in the most exited state |4〉, Dn(0) = 1, Ji equals

Ji =
FaFb(iL1 + µi)

(µj − µi)(µk − µi)(µl − µi)
, i 6= j 6= k 6= l. (5.74)

5.4 Physical properties

From the exact analytical amplitudes of the previous section, which were verified both numeri-

cally and through a comparison with the limiting cases in [146, 147], the physical properties of the
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system can be obtained. In particular, in this section the atomic inversion, linear entropy, Man-

del Q-parameter and the normal squeezing are evaluated. Although several options exist for the

nonlinearity function f(n), the following three choices are employed

f1(n) = 1, f2(n) =
1√
n
, f3(n) =

√
n. (5.75)

The first function corresponds to the case of constant coupling (the standard generalization of

the JCM) while the second option corresponds to the harmonious state (the nonlinear coherent

state) which was first obtained in [166], and the third function is the root of n. As mentioned

earlier, although the treatment below is specialized to these choices of nonlinear functions, the

above equations are equally valid for arbitrary f(n).

Assuming next that the initial state is the coherent state in which the value of |α|2 is taken to

be 10 in the examples below. To simplify the analysis without affecting its generality, the remaining

coupling parameters are assumed to equal ga = g′a = gb = g, where the additional parameters

are scaled by a constant proportional to g. In fact, setting the strength parameters nearly equal

is physically justified since the energy differences between the ground state and each of the upper

states are nearly identical. To study the effect of detuning, two different detuning constants D1 and

D2 were examined, namely,

D1 : ∆1 = 0,∆2 = 0,∆3 = 0, D2 : ∆1 = 6g,∆2 = 6g,∆3 = 14g, (5.76)

where D1 corresponds to the field being in exact resonant with the system, while D2 is set to a

representative value of the detuning.

5.4.1 Population inversion

The evolution of the population of an atomic level system is governed by its degree of inversion.

In particular, the population inversion can result in collapse and revival effects leading to discrete

packets as we saw earlier in the two-level system. These packets, which are associated with the

nonclassicality of multiple quantum interference in phase space were experimentally observed in [121].

For our scheme, the atomic inversion is defined as the difference between the population of the
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exited state |4〉 and the remaining states

W (t) = ρ44 − (ρ33 + ρ22 + ρ11), (5.77)

In the above equation ρii represents the population of the state |i〉. Defining Pn = |qn|2, the ρii are

given by

ρ11 =

∞∑
n=0

Pn|An+1(t)|2,

ρ22 =

∞∑
n=0

Pn|Bn+1(t)|2,

ρ33 =
∞∑
n=0

Pn|Cn(t)|2,

ρ44 =

∞∑
n=0

Pn|Dn(t)|2, (5.78)

in which An+1(t), Bn+1(t), Cn(t), Dn(t) are defined in Eq.(5.60).

Fig.(5.5) then depicts the dependence of the atomic inversion dynamics on the scaled time τ = gt

for different values of the system parameters. In Figs.(5.5a,5.5b,5.5c,5.5d) the nonlinearity function

f(n) = 1, while in Figs.(5.5e, 5.5f, 5.5g, 5.5h) f(n) = 1/
√
n, and f(n) =

√
n in Figs.(5.5i, 5.5j, 5.5k,

5.5l).

Evidently from Fig.(5.5a), when the intensity-dependent coupling is not present, f(n) = 1,

the inversion forms discrete packets with fluctuations that increase with time. However, in the

presence of nonlinearity χ, the stability and periodicity of the packets in Fig.(5.5b) are enhanced

by nonclassical effects. Modifying the second detuning parameter D2, c.f. Fig.(5.5c) influences the

collapse and revival periods through the three N-type couplings. Further, Fig.(5.5d) demonstrates

that packet formation is suppressed at larger values of χ. In contrast for the intensity-dependent

f(n) = 1/
√
n, the inversion oscillates periodically but packet formation is absent as evident from

Fig.(5.5e) which covers the full range from −1 to 1 of the inversion. For small values of the Kerr

nonlinearity as in Fig.(5.5f), small packets with pronounced fluctuations are generated. Increasing

the second value of the detuning D2 in Fig.(5.5g) generates periodic fluctuations for which the fourth

state is heavily populated at all times. Introducing the Kerr nonlinearity in Fig.(5.5h) additionally

results in a number of large amplitude packets. Finally, for f(n) =
√
n, narrow, high-frequency

packets occur for a system detuning equal to D1 as evident from Figs.(5.5i, 5.5j). However, for a
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Figure 5.5: The inversion dynamics for various detuning parameters, Kerr coefficients and nonlinearity
functions for |α|2 = 10.
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detuning of D2, the collapse and revival phenomenon yields the broader packets of Figs.(5.5k, 5.5l).

Since changing the Kerr coefficient modifies the collapse and revival behaviour for f(n) = 1

and f(n) = 1/
√
n, modifications to this coefficient, in principle, can be employed to modulate or

extinguish this behaviour. While the same mechanism could also be applied to V-type and Λ-type

atomic transitions, repeating the above calculations with either ga = 0 or g′a = 0, which correspond

to Λ- and V- systems, respectively, indicated that the effect is far more enhanced in the N-type

configuration.

5.4.2 Linear entropy

Entanglement refers to the mutual coupling of two subsystems described by a single wavefunction

which can be composed of particles and/or fields. In the system considered here entanglement

can occur between the field and the atom such that the state of one of these subsystems can be

determined by measuring the state of the other subsystem. The degree of the entanglement (DEM)

between the atom and the field can be quantified by the linear entropy defined as

S(t) = 1− Tr(ρ̂2
A(t)). (5.79)

Here the full density matrix of the system is written ρ̂AF (t) = |ψ(t)〉〈ψ(t)|, while the density matrix

of the atom is obtained from the trace over the field

ρ̂A(t) = TrF (ρ̂AF (t)) =



ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44


. (5.80)

The diagonal elements of the density matrix are introduced in Eq.(5.78), while the off-diagonal

elements are

ρ12 =

∞∑
n=0

qnq
∗
nAn+1B

∗
n+1,

ρ13 =

∞∑
n=0

qnq
∗
n+1An+1C

∗
n+1,
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ρ14 =

∞∑
n=0

qnq
∗
n+1An+1D

∗
n+1,

ρ23 =

∞∑
n=0

qnq
∗
n+1Bn+1C

∗
n+1,

ρ24 =

∞∑
n=0

qnq
∗
n+1Bn+1D

∗
n+1,

ρ34 =

∞∑
n=0

qnq
∗
nCnD

∗
n, (5.81)

The remaining density matrix elements follow from the relation ρij = ρ∗ji. The linear entropy

Eq.(5.79) is therefore

S(t) = 1− [ρ2
11 + ρ2

22 + ρ2
33 + ρ2

44 + 2|ρ12|2 + 2|ρ13|2 + 2|ρ14|2 + 2|ρ23|2 + 2|ρ24|2 + 2|ρ34|2]. (5.82)

Fig.(5.6) plots the linear entropy, Eq.(5.82), against the scaled time τ = gt for both detunings

D1 and D2 and the parameters specified in Fig.(5.6). When the intensity-dependent coupling is

constant, e.g. f(n) = 1 in Figs.(5.6a, 5.6b), the entropy approaches a steady state value of 0.6− 0.7

at long times. However, for the detuning of D2 in Fig.(5.6c) the DEM instead increases with time

while introducing a Kerr medium in Fig.(5.6d) significantly increases the steady-state value of the

DEM to ≈ 0.5 − 0.7, and rapidly stabilizes the entanglement compared to the χ = 0 case for the

same detuning as in Fig.(5.6c).

If the intensity-dependent coupling is instead f(n) = 1/
√
n for χ = 0, c.f. Fig.(5.6e), the DEM

oscillates periodically in the range 0− 0.0125, while for a nonlinear coefficient χ = 0.4g the DEM in

Fig.(5.6f) approaches a larger steady-state value of 0.5. For a detuning of D2 and χ = 0 in Fig.(5.6g),

the DEM is small compared to 1, and attains a maximum of 0.0052. For χ = 0.4g, Fig.(5.6h), the

mean value, 0.4, of the DEM is however far greater than the mean value at χ = 0. This demonstrates

that the evolution of the DEM can be controlled or switched in a Kerr medium by modulating χ.

For the intensity-dependent coupling function f(n) =
√
n, the average value of the DEM ap-

proximates 0.6 for all cases. When the field is detuned with the atom D1 as in Fig.(5.6i), the DEM

exhibits numerous local minima. The addition of a non-zero Kerr coefficient in Fig.(5.6j) however

reduces the number of these minima. For a detuning of D2, the entropy instead adopts a nearly
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Figure 5.6: Linear entropy dynamics for selected values of the detuning, Kerr coefficients and nonlinearity
functions with |α|2 = 10.
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constant average value of 0.6 above τ ≈ 20 with superimposed fluctuations of magnitude 0.2. The

introduction of a non-zero Kerr coefficient increases the stabilization time significantly to τ ≈ 1.5

and as well generates more pronounced packets.

Evidently, the N-type system typically exhibits an enhanced DEM while the presence of a Kerr

medium stabilizes the entanglement for f(n) = 1 and f(n) =
√
n, while it can be employed to

switch the DEM between on and off states for f(n) = 1/
√
n. Further, in comparison to the ♦-

type interaction of [152], the N-type DEM is considerably less time-dependent than that of the

♦-type in the presence of a Kerr medium. Hence differing physical effects result when the V and

Λ types are added coherently to generate a N-type system as opposed to incoherently resulting in

♦-type. The time-independence of the DEM can presumably be exploited in long time experimental

measurements.

In summary, for the configuration examined above the DEM can often be increased or stabilized

in the presence of a Kerr medium. Also, in the absence of an intensity-dependent coupling, f(n) = 1

or f(n) =
√
n, the DEM is larger compared to the nonlinear case, f(n) = 1/

√
n. Furthermore , for

a deformation f(n) =
√
n the behavior DEM is generally more affected by the detuning than by

the other parameters investigated above. Collapse and revival also appear in all cases investigated

except for Figs.(5.6e, 5.6g) and therefore appear to be a salient feature of the N-type system.

5.4.3 Q Mandel parameter

The degree of super- or sub- Poissonian statistics of nonclassical light is generally quantified by the

Mandel parameter Q defined by [167]

Q =
〈n̂2〉 − 〈n̂〉2

〈n̂〉
− 1. (5.83)

If Q > 0 the field exhibits super-Poissonian statistics while for Q < 0 the field is sub-Poissonian.

Further, the field is described by a coherent and a number state when Q = 0 and Q = −1 respectively.

Sub-Poissonian statistics imply anti-bunching and thus the existence of a nonclassical field that has

recently found numerous applications in quantum information theory. The basic idea of photon

antibunching can be defined as follows. If a quantum light state is anti-bunched, then the photons

of this state are more equally spaced in time and position than the coherent state [51,115]. And one

of the best measurements to quantify this phenomenon is the Q Mandel parameter.
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To obtain Q, 〈n2〉 and 〈n〉 are first evaluated directly from |ψ(t)〉 as

〈n̂〉 =

∞∑
n=0

Pn
[
(n+ 1)(|An+1|2 + |Bn+1|2) + n(|Cn|2 + |Dn|2)

]
, (5.84)

〈n̂2〉 =

∞∑
n=0

Pn
[
(n+ 1)2(|An+1|2 + |Bn+1|2) + n2(|Cn|2 + |Dn|2)

]
, (5.85)

where Pn is qnq
∗
n.

Fig.(5.7) displays Q as a function of τ = gt for different values of χ and detuning parameters

for the three deformation functions f(n) of interest. While in most subplots Q < 0 indicating a

sub-Poissonian field, for f(n) = 1, c.f. Figs.(5.7a, 5.7b, 5.7c, 5.7d) and f(n) =
√
n (Figs.(5.7i, 5.7j,

5.7k, 5.7l), the Q-parameter varies between positive and negative values and hence sub- and super-

Poissonian statistics. However, for the intensity-dependent coupling f(n) = 1/
√
n in Fig.(5.7f),

or in the absence of a Kerr medium, Figs.(5.7e, 5.7g), Q < 0 indicating uniform sub-Poissonian

statistics. Thus, in general, media with f(n) = 1/
√
n generate an increased percentage of anti-

bunching photons compared to media with either f(n) = 1 or f(n) =
√
n. Full anti-bunching

dynamics is in particular expected in N-type materials when f(n) = 1/
√
n as is the case in the V,

Λ and ♦ schemes. [146,147,152].

The negative values of the Q-parameter in the above results (which are close to those of the Λ-

type system in [147]) are smaller than the typical values employed to characterize the V-type system

of [146], |QN−type| > |QV−type|. This indicaties that the N-type system generates sub-Poissonian

light more efficiently than V-type, especially when f(n) = 1/
√
n. Additionally, the Q parameter in

our scheme is generally less negative compared to the ♦-type [152], but our scheme generates sub-

Poissonian photons with fewer fluctuations in the presence of a Kerr medium. Therefore, the N-type

system provides an excellent platform for anti-bunched light generation that can be controlled by

adjusting the Kerr nonlinearity (for f(n) = 1/
√
n) or enhanced by letting the field at the resonant

detuning, D1 (for f(n) = 1 or f(n) =
√
n).

5.4.4 Linear squeezing

The multiplication of the uncertainties of the quadrature operators for the coherent state as in

Eq.(5.28) always take the minimum possible value which is 1/16. However, if one of the quadrature

uncertainties for any quantum state is lower than 1/4, then that state is said to be linearly squeezed.
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Figure 5.7: Q-parameter dynamics for different detuning, Kerr coefficients and nonlinearity functions for
|α|2 = 10.
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The squeezing is important for many future applications in quantum teleportation and accurate

measurements. To measure the squeezing, we can use the squeezing parameter which is defined

as [168,169]

Sθ = 4(〈X̂2
θ 〉 − 〈X̂θ〉2)− 1 = 4(∆X̂θ)

2 − 1, (5.86)

in which X̂θ is the quadrature operator of angle θ defined as

X̂θ =
e−iθâ+ eiθâ†

2
. (5.87)

If θ is zero (π/2), the quadrature operator is the space (momentum) operator. Here Sθ < 0 and

Sθ > 0 for squeezed and unsqueezed states respectively. Expanding the squeezing parameter yields

Sθ = e−2iθ〈â2〉+ e2iθ〈â†2〉+ 2〈â†â〉 − (e−iθ〈â〉+ eiθ〈â†〉)2, (5.88)

where the average number of photons 〈â†â〉 = 〈n̂〉 is given by Eq.(5.84). Inserting the system

wavefunction, Eq.(5.60) yields for the averaged annihilation operator

〈â〉 =

∞∑
n=0

q∗nqn+1

[√
n+ 1 (C∗nCn+1 +D∗nDn+1) +

√
n+ 2

(
A∗n+1An+2 +B∗n+1Bn+2

)]
, (5.89)

〈â2〉 =

∞∑
n=0

q∗nqn+2

[√
n+ 2

√
n+ 1 (C∗nCn+2 +D∗nDn+2) +

√
n+ 3

√
n+ 2

(
A∗n+1An+3 +B∗n+1Bn+3

)]
,

(5.90)

while the averaged creation operator is 〈â†s〉 = 〈âs〉∗, for integer s. The squeezing parameter

Eq.(5.86) then follows from the above relations.

The calculated linear squeezing parameter as a function of scaled time τ = gt with θ = 0 is

plotted in Fig.(5.8) for different deformation functions and parameters. Squeezing is here evident

for all deformation functions but at different parameter values and times. For all deformation

functions and detuning parameter values, the squeezing in the presence of a Kerr medium becomes

significant during a brief time interval ∆τ = 0.1 becomes significant, approaching −0.55 for both

f(n) = 1 and f(n) = 1/
√
n and −0.4 for f(n) =

√
n, c.f. Figs.(5.8b, 5.8d, 5.8f, 5.8h, 5.8j, 5.8l)

. These values exceed those observed in many previously examined schemes such as the V, Λ, ♦-

types [146, 147, 152], which possess maximum squeezing of ≈ −0.25 and is as well larger than the

value ( −0.03) reported for a N-type system in which the atom is initially a superposition of two
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Figure 5.8: The squeezing parameter parameter dynamics for different detuning, Kerr coefficients and non-
linearity functions for |α|2 = 10 and θ = 0.
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atomic states [161]

For the deformation function f(n) = 1/
√
n in the absence of a Kerr medium S0 oscillates between

positive and negative values while −S0 is large when the field is detuned by D1 as apparent from

Figs.(5.8e, 5.8g). Thus the system oscillates between large and small values of the squeezing as

a function of time, which could presumably be exploited experimentally. Further, the squeezing

parameter appears to be insensitive to the detuning as for a given deformation function the squeezing

is nearly identical whether D1 or D2 is employed. In the absence of the Kerr effect, squeezing occurs

at different scaled times, namely τ ≈ 0.5 for f(n) = 1 in Figs.(5.8a, 5.8c) shows while τ ≈ 0.13 for

f(n) =
√
n in Figs.(5.8i, 5.8k). The squeezing parameters range from ≈ −0.1 to − 0.05 in the two

cases but are somewhat smaller in the presence of a Kerr medium. Note as well that while a ♦-type

source does not exhibit squeezing for an intensity-dependent coupling function f(n) = 1 [152], the

N-type system is highly squeezed for small τ . Thus in the N-type system squeezing can be realized

for all the parameter values considered here. As well, the system can exhibit periodic squeezing

over a long time interval or a larger squeezing amplitude over a short time. This should enable the

system to be easily controlled and therefore employed as a nonclassical light source.

5.5 Conclusions

In this project, an N-type four level atom interacting with a single-mode field in the presence of a Kerr

medium induced intensity-dependent coupling between the field and the atom was investigated for

three deformation functions, namely a constant f(n) = 1 and two nonlinear functions f(n) = 1/
√
n

and f(n) =
√
n. The initial field was set to a coherent state while the atom was prepared in its most

exited state. While only certain deformation functions and parameter values were examined, our

analytic technique can be applied to any set of deformation functions and atomic parameters as well

as initial states and atomic populations. From a practical perspective, the results indicate that the

nonclassical properties of the field can be controlled by altering the detuning or the surrounding Kerr

medium properties. The influence of the control parameter can presumably be further increased by

careful optimzation of the system parameters.

To summarize the principal conclusions:

• Nonclassical anti-bunched, entangled and squeezed photons can be generated with an N-type 4-

level system for both constant and non-constant deformation functions f(n).

87



• The collapse and revival behaviour of the system can be controlled by modulating the properties of

the Kerr medium. For a constant deformation function f(n) = 1, and a detuned field, collapse and

revival effects persist at long times in the presence of a Kerr medium while this does not occur when

the field is not detuned. Additionally for f(n) = 1/
√
n, the Kerr medium transforms the periodic

behaviour of the system into collapse and revival.

• Collapse and revival effects can be enhanced or suppressed by controlling the detuning for f(n) =

√
n.

• The linear entropy (entanglement DEM) increases dramatically and stabilizes around a large am-

plitude in the presence of a nonlinear Kerr medium that is not detuned for all deformation functions.

The Kerr nonlinearity can be employed to control or switch the entanglement for the deformation

function f(n) = 1/
√
n.

• An N-type system yields a more nearly time-independent entanglement than a ♦-type in the pres-

ence of a Kerr medium

• The field statistics of an N-type system are primarily sub-Poissonian.

• Detuning normally leads to super-Poissonian statistics.

• Squeezing is observed for all deformation functions studied.

• In a Kerr medium yields the squeezing is typically larger at small times. Further the amplitude is

larger than that predicted for Λ, V and ♦-type configurations.

• Larger values of squeezing result if only the most excited state rather than a superposition of

different states is initially populated.

• For a deformation function f(n) = 1/
√
n in the absence of a Kerr media, the squeezing is larger

when the field is detuned. Further, both the field and the squeezing are periodic in time.
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Chapter 6

Near Coherent state

In quantum mechanics, a particle can exist in a superposition of two states, a particular case of which

is the well-known Schrödinger cat state (SCS). Such states are encountered frequently in modern

physics, as in the superposition of two coherent states with maximum phase differences [170]. Such

states have applications in, for example, quantum information and quantum computing [171, 172]

and have been realized with both optical and electronic states [173,174].

In this chapter, we study a superposition of two nearly identical coherent states that we term

a near coherent state. We first briefly study the SCS of a single light mode, and then describe

some possible extensions. Then, we will define the near coherent state and examine its different

mathematical and nonclassical properties. After proposing a technique for generating these states

we conclude by suggesting some potential applications.

6.1 Background

SCSs in a single light mode can be defined as

|ψS〉 = C(|α〉+ eiφ| − α〉), (6.1)

in which φ is an arbitrary phase, |α〉 is the coherent state defined in Eq.(5.26), and C is the normal-

ization constant

C =
1√

2 + 2e−2|α|2 cos(φ)
. (6.2)
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The SCSs satisfy the following eigenequation

â2|ψS〉 = α2|ψS〉, (6.3)

where |ψS〉 here are the eigenfunctions and α2 are the eigenvalues.

In general the two coherent states differ maximally in phase in order to confirm the interpretation

of alive and dead states. However, three common implementations of SCS states which differ in their

statistical properties exist. These are the even cats with φ = 0, odd cats with φ = π, and the Yurke-

Stoler cats with φ = π/2.

The superposition of two coherent states is not like a classical mixture. To see this, the density

operator of the SCSs is given as

ρ̂S = |ψS〉〈ψS | = C2(|α〉〈α|+ | − α〉〈−α|+ e−iφ| − α〉〈α|+ eiφ|α〉〈−α|), (6.4)

while the density operator of a mixture of two opposite coherent states | ± α〉 equals

ρ̂mix =
1

2
(|α〉〈α|+ | − α〉〈−α|). (6.5)

From both expressions, we can see that there are two additional terms | − α〉〈α| and |α〉〈−α| which

are not present in the classical expression. Therefore, the SCSs exhibit interference phenomena, and

therefore cannot be represented classically. Furthermore, if we study the properties of the mixture

of Eq.(6.5), we will not find any nonclassical behaviors.

The photon statistics distribution of the SCSs can be found by evaluating |〈n|ψS〉|2 which yields

Pn =
|α|2n

n!

1 + (−1)n cos(φ)

e|α|2 + e−|α|2 cos(φ)
. (6.6)

If φ = π/2 (Yurke-Stoler cats), then, Pn coincides with the Poisson distribution of the coherent state

as in Eq.(5.29). while for φ = 0 and φ = π which correspond to even and odd cats respectively, then

Pn = 0 for all odd values of n when φ = 0 and even values when φ = π. Hence the even/odd cats

always contain even/odd numbers of photons in a given measurement.

The linear squeezing properties of a quantum state can be determined by calculating or measuring

the squeezing parameter as in Eq.(5.86) or the fluctuations of the quadrature operators Eq.(5.21).
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In the case examined here, a quantum state is said to be squeezed if any of the variations of the

quadrature operators has a value less than 1/4. The fluctuations of the quadrature operators of the

SCSs are [175]

〈(∆X̂)2〉 =
1

4
+

|α|2

1 + e−2|α|2 cos(φ)
, 〈(∆Ŷ )2〉 =

1

4
− |α|2e−2|α|2

(
e−2|α|2 + cos(φ)(

1 + e−2|α|2 cos(φ)
)2
)
, (6.7)

where here for simplicity we assume that α is real. Therefore even cats (φ = 0) can be squeezed as

〈(∆Ŷ )2〉 can be less than 1/4 while odd cats (φ = π) cannot since the fluctuations of both X̂ and Ŷ

always exceed 1/4. Finally, the Yurke-Stoler cats (φ = π/2) are squeezed as the fluctuations of Ŷ

are always less than 1/4. Again the squeezing of the SCS is associated with the quantum nature of

the state and cannot be reproduced classically.

Finally, the product of the fluctuations of both quadrature operators of the SCS is always greater

than the minimum value of 1/16, and increases with the coherence parameter α. This behavior is

the opposite of that of the coherent state, for which the product always equals the minimum value

as Eq.(5.28) shows.

The quadrature space of the Fock state is given by

ψn(X) = 〈X|n〉 =
Hn(X)e−X

2/2√
2nn!
√
π

, (6.8)

where X represents the position space, and Hn(X) is the Hermite polynomial, which fluctuates more

as the number of photons (n) is increased. The quadrature space of a coherent state is

ψα(X) = 〈X|α〉 =
1

π1/4
exp

(
−1

2
X2 − 1

2
α2 − 1

2
|α|2 +

√
2αX

)
, (6.9)

which describes a Gaussian distribution centered at
√

2 Re(α). From these two equations, the quadra-

ture space of the SCS is

ψS(X) = 〈X|ψS〉 =
C

π1/4
exp

(
−1

2
X2 − 1

2
α2 − 1

2
|α|2

)(
e
√

2αX + eiφe−
√

2αX
)
, (6.10)

where its probability distribution is plotted in Fig.(6.1). The two peaks in Fig.(6.1b) are centered

at ±
√

2Re(α). The significance of the imaginary part of α decreases as the real part of α becomes

larger. For small values of Re(α), the fluctuations between the two peaks are very clear as is evident
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a [α = 3i]. b [α = 1 + 3i].

Figure 6.1: The quadrature space probability function of the SCS as a function of X and φ.

in Fig.(6.1a), indicating the nonclassical signature of these states.

The Wigner distribution W (α) is a distribution over phase space that provides information on

whether a state can be described classically or not. In particular, a state with a Wigner function that

is negative at any point must be nonclassical, hence the function is often termed a quasi-probability

distribution. The Wigner function is defined as

W (α) =
1

π2

∫
d2γTr

[
ρ̂D̂(γ)

]
e−(γα∗−γ∗α), (6.11)

where ρ̂ is the density operator of the state, and D̂(γ) is the displacement operator defined in

Eq.(5.30) and the integration is taken over the entire physically accessible region.

The Wigner function for the even and odd SCSs is given by, with replacing α of Eq.(6.1) to

α→ β

We,o(α) =
e−2(αr−β)2−2α2

i + e−2(αr+β)2−2α2
i ± 2 cos(4αiβ)e−2α2

r−2α2
i

π(1 + e−2β2)
, (6.12)

where the + and - signs refers to the even and odd SCSs respectively while αr, αi are the real and

imaginary parts of the coherent coefficient α. Since this Wigner function is always negative within

some region near the origin, the SCS is nonclassical. The Wigner function of an even cat is depicted

in Fig.(6.2). The peaks correspond to the two coherent states | ± β〉 while quantum interference

yields oscillations between the peaks which are negative in some regions. While SCS possess many

additional properties, one that should be mentioned is that the even cats are always bunched while

the odd cats are always anti-bunched [176].
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Figure 6.2: The Wigner function W (α) of the even cat state for β = 2 + i. The oscillations between the two
peaks result from quantum interference.

6.1.1 Extensions

While SCSs have been extended by many authors, one state of particular interest results from

superposing two coherent states with α parameter but with opposite phases [177], e.g.

|ψ〉 = N(|αeiφ/2〉+ |αe−iφ/2〉). (6.13)

Another state was constructed with two different values of the coherent parameter but with a fixed

phase for each [178], while the superposition of two identical magnitude coherent states that are

π/2, π or 3π/2 out of phase was considered in [179–182]. In each case, nonclassical properties such

as squeezing, anti-bunching, Wigner function were examined. All these studies are however special

cases of the most general expression for the superposition of two arbitrary coherent states introduced

by Hari Prakash and Pankaj Kumarb in 2003 [183,184], namely

|ψ〉 = Z1|α〉+ Z2|β〉, (6.14)

where Z1, Z2, α and β can take any complex value. The normalization condition requires that

〈ψ|ψ〉 = |Z1|2 + |Z2|2 + 2Re
[
Z∗1Z2e

− 1
2 (|α|2+|β|2)+α∗β

]
= 1. (6.15)

They examined the linear squeezing of this state and found that the minimum possible value of

the uncertainties of the quadrature operators leading to maximum squeezing is 0.11077. This value
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occurs for an infinite number of parameter sets that satisfy α−β = i1.59912 and Z1/Z2 = eα
∗β−αβ∗

[185]. These and many other studies confirm that the superposition of two coherent states is clearly

nonclassical. The experimental realization of such states is presented in [170–172, 186–189] and

numerous applications have been proposed. Additionally, superpositions of states other than the

coherent state have also been studied [190–192]).

Despite the many previous extensions and generalizations of SCSs, one superposition has not

been examined to the best of our knowledge, namely the superposition of two almost identical

coherent states

|α,∆θ〉 = lim
|∆α|→0

Cα(|α+ ∆α〉 − |α〉). (6.16)

where Cα is a normalization constant, ∆α = |∆α|ei∆θ is here termed the source of the state and

∆θ is the phase of the source. While such a state would appear to vanish, the presence of the large

normalization constant insures that this state approaches the quantum mechanical analogue of the

derivative of a coherent state that we term here the near coherent state.

On the other hand, it is not immediately apparent from the definition of Eq.(6.16) if the near

coherent state exhibits nonclassical properties. In fact, however, the analysis of this chapter demon-

strates that the near state exhibits marked nonclassical properties that differ from those of the SCSs

and presumably from other similar quantum states. Below we investigate the quantum properties

of such a superposition.

6.2 The near coherent states

We can define the near coherent state by

|α,∆θ〉 = lim
|∆α|→0

Cα(|α+∆α〉−|α〉) = lim
|∆α|→0

Cα(|α̃〉−|α̃−∆α〉) = lim
|∆α→0

Cα(ᾱ+∆α/2〉−|ᾱ−∆α/2〉),

(6.17)

where α̃ = α + ∆α and ᾱ = α + ∆α/2. These formulas are equivalent even if α̃ and ᾱ are not

functions of ∆α. Note that in the limit

|ψ〉 = lim
φ→0

N(|α〉 − |αeiφ). (6.18)
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for which the source phase ∆θ equals θ−π/2, since for small φ, αeiφ ≈ α− |α|φei(θ−π/2) we recover

the second expression of Eq.(6.17) with ∆θ = θ − π/2, where θ is the phase of α = |α|eiθ.

The normalization constant Cα is obtained from 〈α,∆θ|α,∆θ〉 = 1 and therefore

Cα =
1√

2− 〈α+ ∆α|α〉 − 〈α|α+ ∆α〉
. (6.19)

Accordingly, the inner product of two general coherent states |α〉 and |β〉 is given by

〈β|α〉+ c.c. = e−
1
2 |α|

2− 1
2 |β|

2
(
eβ
∗α + eβα

∗
)
. (6.20)

Using this relation, we find the inner product of 〈α+ ∆α|α〉 and its complex conjugate as

〈α+ ∆α|α〉+ c.c. = 2e−
|∆α|2

2 cos(|∆α||α| sin(∆θ − θ)). (6.21)

This expression can be expanded around |∆α| ≈ 0 to give

〈α+ ∆α|α〉+ c.c. ≈ 2−
[
1 + |α|2 sin(∆θ − θ)2

]
|∆α|2 + · · · . (6.22)

Then, Cα is given as

Cα =
1

|∆α|
√

1 + |α|2 sin(∆θ − θ)2
. (6.23)

which diverges in the |∆α| → 0 limit. Accordingly, the state |α+∆α〉−|α〉 must first be determined

after which the limit is taken. Accordingly, the near coherent state can be expressed as

|α,∆θ〉 =
1√

1 + |α|2 sin(∆θ − θ)2
lim
|∆α|→0

|α+ ∆α〉 − |α〉
|∆α|

. (6.24)

Substituting |α〉 from Eq.(5.26) into Eq.(6.24) yields

|α,∆θ〉 =
1√

1 + |α|2 sin(∆θ − θ)2
lim
|∆α|→0

∞∑
n=0

1√
n!|∆α|

[
e−

1
2 |α+∆α|2(α+ ∆α)n − e− 1

2 |α|
2

αn
]
|n〉.

(6.25)

The expression inside the bracket inside the summation can be further written as

e−
1
2 |α|

2
[
e−

1
2 |∆α|

2−|α||∆α| cos(∆θ−θ) (|α|eiθ + |∆α|ei∆θ
)n − |α|neinθ] . (6.26)
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Expanding the above expression around |∆α| ≈ 0 then gives

e−
1
2 |α|

2

αn
[
ei(∆θ−θ)n

|α|
− |α| cos(∆θ − θ)

]
|∆α|+ · · · . (6.27)

Substituting this expression back into Eq.(6.25), the source amplitude |∆α| cancels between the

denominator and numerator resulting in

|α,∆θ〉 = e−
1
2 |α|

2
∞∑
n=0

αn
[
ei(∆θ−θ)n
|α| − |α| cos(∆θ − θ)

]
√
n!
√

1 + |α|2 sin(∆θ − θ)2
|n〉. (6.28)

This expression can be further simplified as follows

∂|α〉
∂|α|

= e−
1
2 |α|

2
∞∑
n=0

αn√
n!

[
n

|α|
− |α|

]
|n〉 =

e−
1
2 |α|

2

|α|

∞∑
n=0

nαn√
n!
|n〉 − |α||α〉, (6.29)

or equivalently

e−
1
2 |α|

2
∞∑
n=0

nαn√
n!
|n〉 = |α|∂|α〉

∂|α|
+ |α|2|α〉, (6.30)

where ∂α〉
∂|α| is referred to as the derivative state. The near coherent state can finally be written as

|α,∆θ〉 =
eiδθ ∂|α〉∂|α| + i|α| sin (δθ) |α〉√

1 + |α|2 sin(δθ)2
, (6.31)

where δθ = ∆θ − θ is the phase difference. This constitutes the complete expression for the near

coherent state. Evidently the near coherent state exists and takes the form of a superposition

of a coherent state and a derivative state. Also, the form of the near coherent state depends

on the phase differences δθ which in the δθ = 0 limit, where the the source and α possess the

same phase, simplifies to |α,∆θ〉 = ∂|α〉
∂|α| . When instead δθ = ±π/2, the state becomes |α,∆θ〉 =

±i(∂|α|〉∂|α + |α||α〉)/
√

1 + |α|2. Lastly if α = 0, the near coherent state becomes |1〉. Before we

examining the properties of near coherent states, in the next section we provide a general formulation

for constructing a near state starting with any state.

96



6.3 Generalizations of the near coherent state

Consider a single mode state |r〉 parametrized by a complex parameter r such as for example a qubit

state |r〉 = (r|0〉+ |1〉)/
√
|r|2 + 1. The near state corresponding to |r〉 is defined as

|r,∆θ〉 = lim
|∆r|→0

Cr(|r + ∆r〉 − |r〉) = lim
|∆r|→0

Cr(|r + |∆r|ei∆θ〉 − |r〉). (6.32)

with the normalization constant Cr

Cr =
1√

2− 〈r + ∆r|r〉 − 〈r|r + ∆r〉
. (6.33)

Expanding the inner product 〈r|r + ∆r〉 around |∆r| ≈ 0, gives

〈r|r + ∆r〉 ≈ 1 + g1(r) |∆r| − g2(r)

2
|∆r|2 + · · · , (6.34)

where g1(r) and g2(r) are expansion functions. Combining this expression with its conjugate

〈r + ∆r|r〉+ c.c. ≈ 2 + 2 Re(g1(r))|∆r| − Re(g2(r))|∆r|2 + · · · (6.35)

Substituting Eq.(6.35) into the normalization constant Cr then yields

Cr = lim
|∆r|→0

1√
−2 Re(g1(r))|∆r|+ Re(g2(r))|∆r|2

. (6.36)

Since the expansion of |r+∆r〉−|r〉 in Eq.(6.32) around |∆r| ≈ 0 is of the order of |∆r|, the expression

of Re(g1(r)) in Eq.(6.36) must be zero to obtain a finite near state. Therefore, if expanding Eq.(6.35)

for a given state yields a nonzero value of Re(g1(r)), this state cannot construct a near state. Thus

Re(g1(r)) = 0 is the necessary condition for constructing a nonvanishing near state. Assuming that

|r〉 satisfies this condition, the normalization constant Cr then becomes

Cr =

√
1

Re(g2(r))

1

|∆r|
. (6.37)
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Substituting this expression back into the near state |r,∆θ〉 yields

|r,∆θ〉 =

√
1

Re(g2(r))
lim
|∆r|→0

|r + ∆r〉 − |r〉
|∆r|

. (6.38)

After expanding the state |r + ∆r〉 around |∆r| ≈ 0 we have

|r + ∆r〉 ≈ |r〉+

(
∂|r + ∆r〉
∂|∆r|

) ∣∣∣∣
|∆r|=0

|∆r|+ · · · . (6.39)

which leads to, after combining with the near state expression Eq.(6.38)

|r,∆θ〉 =

√
1

Re(g2(r))

(
∂|r + ∆r〉
∂|∆r|

) ∣∣∣∣
|∆r|=0

. (6.40)

This final expression describes a near state dependent on a single parameter. Note that Eq.(6.40)

requires two inputs, the state |r + ∆r〉 and g2(r) which originated in the expansion of the inner

product 〈r|r + ∆r〉. If we assume that both r and ∆r are real, Eq.(6.40) or Eq.(6.38) simplify to

|r,∆θ〉 =

√
1

Re(g2(r))

(
d|r〉
dr

)
, (6.41)

which corresponds to a derivative state with respect to the real parameter r.

We next examine the question of whether the existence of near states is a purely quantum mechan-

ical phenomena or whether it also exists classically. Clearly if two classical waves are superimposed

according to

S1 = lim
|∆y|→0

[H(y + |∆y|ei∆θ)−H(y)], (6.42)

where H(y) is any vector field dependent on a variable y which could be, for example, the amplitude,

frequency, wave vector of the wave, the result is zero, S1 = 0.

On the other hand combining two classical distributions according to

S2 = lim
∆s→0

Cs[P (s+ ∆sei∆θ)− P (s)], (6.43)

where P (s) is any non-normalized distribution function, and s, ∆s both are real parameters 1 which

1 Note that ei∆θ is complex, but, in general, it can be replaced to any function ei∆θ → f(∆θ), and the final result
will be the same.
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characterizes the distribution. For example, P (s) could be a Gaussian distribution, P (s) = e−x
2/2s2 ,

and s could be the mean or the standard deviation. x is the real variable of the distribution. Cs is

the normalization constant, which after imposing the normalization condition
∫
S2dx = 1, can be

written as

Cs =
1∫

[P (s+ ∆sei∆θ)− P (s)]dx
. (6.44)

Expanding P (s+ ∆sei∆θ) around ∆s ≈ 0, yields

P (s+ ∆sei∆θ) ≈ P (s) + ei∆θ
∂P (s)

∂s
∆s+

1

2
e2i∆θ ∂

2P (s)

∂s2
∆s2 + · · · . (6.45)

Then, the superposition of Eq.(6.43) becomes

S2 = lim
∆s→0

ei∆θ ∂P (s)
∂s ∆s+ 1

2e
2i∆θ ∂

2P (s)
∂s2 ∆s2∫ [

ei∆θ ∂P (s)
∂s ∆s+ 1

2e
2i∆θ ∂

2P (s)
∂s2 ∆s2

]
dx
. (6.46)

Then, if ∂P (s)
∂s exists, S2 becomes

S2 =
∂P (s)
∂s∫ ∂P (s)
∂s dx

. (6.47)

Hence the near distribution of Eq.(6.43) exists, and is finite. However the source phase is no longer

present in S2, so that the resultant distribution is not a function of ∆θ. On the other hand, in

Eq.(6.35) or Eq.(6.22) the source’s phase did not factor out as in Eq.(6.45). This is accordingly

suggest that this is a pure quantum mechanical effect.

Hence applying the definition of near states to classical waves yields zero, but when it applied

to classical distributions they exist but do not depend on the source phase, unlike quantum near

states.

6.4 Identities and mathematical properties

In this section, we derive several mathematical properties of the near coherent state. First, to

construct the generator of a state Âα. Observe that if a photon is added to a coherent state by

applying the operator â†, the resulting state is [193]

â†|α〉 =

(
∂

∂α
+
α∗

2

)
|α〉 =

e−
1
2 |α|

2

α

∞∑
n=0

αnn√
n!
|n〉. (6.48)
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where the derivative is taken with respect to α rather than |α| as in the near coherent state. The

relationship between the two derivatives is

∂|α〉
∂α

=
|α|
α

∂|α〉
∂|α|

+
|α|2

2α
|α〉. (6.49)

By applying Eq.(6.30), the derivative in Eq.(6.29) simplifies to

∂|α〉
∂|α|

=

(
α

|α|
â† − |α|

)
|α〉 =

(
α

|α|
â† − |α|

α
â

)
|α〉 (6.50)

from which Eq.(6.31) can be rewritten as

|α,∆θ〉 =

eiδθ α
|α| â

† − [1− i sin(δθ)] |α|α â√
1 + |α|2 sin(δθ)2

 |α〉 = Âα|α〉. (6.51)

where the expression inside the bracket is the generator operator Âα. When δθ = 0, this operator

becomes

Âα =
(
eiθâ† − e−iθâ

)
, (6.52)

where again θ is the complex phase of α. This operator is skew-Hermitian and commutes with its

Hermitian conjugate. The operator Âα is nonunitary, implying that the near coherent state cannot

be generated from the vacuum state. The commutation relation of Âα is then

[Âα, Âα
†
] =

sin(δθ)2

1 + |α|2 sin(δθ)2
[â, â†]. (6.53)

The near state can however be related to other known states as for example the Agarwal state or

the photon-added coherent state [194] by applying the annihilation operator according to

a†|α〉 =
√

1 + |α|2 |α, 1〉, (6.54)

where |α, 1〉 is the Agarwal state.

Acting with the annihilation operator on the derivative of Eq.(6.50) now gives

â

(
∂|α〉
∂|α|

)
= α

∂|α〉
∂|α|

+
α

|α|
|α〉. (6.55)
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while applying the annihilation operator to |α,∆θ〉 yields

â|α,∆θ〉 = α|α,∆θ〉+
eiδθα

|α|
√

1 + |α|2 sin(δθ)2
|α〉, (6.56)

which yields the initial state plus the coherent state. Note that if δθ equals zero, this identity

simplifies to

â|α,∆θ〉 = α|α,∆θ〉+
α

|α|
|α〉. (6.57)

Also, we can derive

â2|α,∆θ〉 = α2|α,∆θ〉+
2eiδθα2

|α|
√

1 + |α|2 sin(δθ)2
|α〉. (6.58)

Next we can find the eigenequation of the near coherent state from Eq.(6.56) and Eq.(6.58)

namely

Âα|α,∆θ〉 ≡
(

2â− â2

α

)
|α,∆θ〉 = α|α,∆θ〉, (6.59)

where Âα is
(

2â− â2

α

)
. The near coherent state is not the only possible eigenfunction of this

operator, the coherent state |α〉 itself is a possible solution as well. The operator Âα is, in fact, a

special case of the C.Brif operator [195].

To calculate inner products Eqs.(6.20, 6.48, 6.50) can be applied to the coherent state with the

derivative state 〈α|
(
∂|β〉
∂|β|

)
to yield

〈α|
(
∂|β〉
∂|β|

)
= e−

1
2 |α|

2− 1
2 |β|

2+βα∗
[
βα∗

|β|
− |β|

]
. (6.60)

Note that if the derivative is taken with respect to α instead of β, this inner product becomes zero,

implying 〈α|(∂|α〉/∂|α|) = 0. From Eq.(6.60) and Eq.(6.31), the inner product of the near coherent

state is then

〈α|β,∆θ〉 =
e−

1
2 |α|

2− 1
2 |β|

2+βα∗√
1 + |β|2 sin(δθ)2

[
eiδθ

(
βα∗

|β|
− |β|

)
+ i|β| sin(δθ)

]
. (6.61)

If both states are instead with respect to α,

〈α|α,∆θ〉 =
i|α| sin(δθ)√

1 + |α|2 sin(δθ)2
. (6.62)
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The inner product of two derivative states is found to be

(
∂〈α|
∂|α|

)(
∂|β〉
∂|β|

)
= e−

1
2 |α|

2− 1
2 |β|

2+βα∗
[
α∗β

|α||β|
+
α∗2β2

|α||β|
− |β|α

∗β

|α|
− |α|α

∗β

|β|
+ |α||β|

]
. (6.63)

which can also be employed to calculate the inner product of near coherent states. Observe that

this yields unity when β = α, indicating that the derivative state is normalized.

6.5 Propagation and quadrature properties

While during propagation the coherent state does not change its form or amplitude, its phase varies

with time as

eiHt/~|α〉 = e−iωt/2|αe−iωt〉, (6.64)

where H is the Hamiltonian for free propagation of a single mode H = ~ω(â†â+ 1/2). Applying the

evolution operator to the derivative state Eq.(6.29) yields

eiHt/~
∂|α〉
∂|α|

= e−iωt/2
∂|αe−iωt〉
∂|α|

. (6.65)

When the above equations are subsequently applied to the near coherent state we obtain

eiHt/~|α,∆θ〉 = e−iωt/2|αe−iωt,∆θ〉. (6.66)

Hence free propagation does not alter the amplitude of the near coherent state. Although the phase

of α is altered the source phase ∆θ and the phase differences δθ remain invariant. Therefore, a

coherent state prepared with a given value of δθ is not affected by free propagation.

The quadrature space of the near coherent state can now be evaluated with Eqs.(6.8,6.9) which

leads to

ψd(X) =

(√
2αX − α2

|α|
− |α|

)
ψα(X), (6.67)

where ψα(X) is the coherent quadrature function of Eq.(6.9). Applying the near coherent state

expression, Eq.(6.31), yields for the quadrature space

ψNC(X) =

[
|α|−1eiδθ(

√
2αX − α2) + |α|

(
i sin(δθ)− eiδθ

)√
1 + |α|2 sin(δθ)2

]
ψα(X), (6.68)
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a [α = 2] b [α = 1]

c [α = 1 + 3i]

Figure 6.3: The quadrature distribution of the near coherent state for different values of α.

which is proportional to the coherent quadrature function ψα(X). This implies that the value of

α does not affect, in general, the form of |ψNC(X)|2, which is similar to the behavior of coherent

states but contrasts with that of general SCSs. The quadrature distribution of the near coherent

state for different values of α is displayed in Fig.(6.3). The shape but not the location of the

distribution depends significantly on the imaginary component of α while the real component does

not significantly change the shape but does lead to an overall displacement. When δθ equals 0 and

π two peaks located at
√

2 Re(α)± 1 are evident in the distribution where the zero point is located

at
√

2 Re(α). These two peaks arise from the quantum interference resulting from the superposition

of the two near coherent states.
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6.6 Statistical properties

Examining next the statistical properties of the near coherent state, the photon probability distri-

bution, is obtained by multiplying Eq.(6.28) with 〈n| and squaring, which yields

Pn = |〈n|α,∆θ〉|2 =
e−|α|

2 |α|2n
[
n2

|α|2 + cos(δθ)2(|α|2 − 2n)
]

n! (1 + |α|2 sin(δθ)2)
. (6.69)

Thus even when α = 0 one photon is still present. The photon distribution is illustrated in Fig.(6.4).

When δθ = 0, the probability equals zero at n = |α|2, indicating the presence of a strong quantum

interference. Also, at the same angle, δθ = 0 as |α| becomes larger the two peaks of Fig.(6.4) become

identical. Similarly when δθ equals π/2, only one peak is present that is is similar in shape to the

Poisson distribution of the coherent state.

Figure 6.4: The photon probability distribution of the near coherent state for different values of the phase
differences δθ for |α| = 4.

The average number of photons of the near coherent state, 〈n̂〉, is evaluated from Eq.(6.56),

〈n̂〉 = |α|2 +
1 + 2|α|2 sin(δθ)2

1 + |α|2 sin(δθ)2
= |α|2 +M, (6.70)

where M is defined as

M =
1 + 2|α|2 sin(δθ)2

1 + |α|2 sin(δθ)2
. (6.71)

The maximum value of Eq.(6.70) attains a maximum equal to 2 + |α|2 when δθ equals π/2 and

|α|2 � 1, and a minimum of |α|2 + 1, at δθ = 0. Further, after applying the identity Eq.(6.58), we
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obtain for the square number operator

〈n̂2〉 = 〈â†ââ†â〉 = |α|4 + 5|α|2 +
1 + 2|α|2 sin(δθ)2

1 + |α|2 sin(δθ)2
= |α|4 + 5|α|2 +M. (6.72)

So the photon number fluctuation

〈∆n̂〉 =
√
〈n̂2〉 − 〈n̂〉2 =

√
|α|2(5− 2M) +M(1−M) =

√
〈n̂〉(5− 2M) +M(M − 4), (6.73)

which reaches a maximum equal to
√

3 |α| for a phase difference δθ = 0, and a minimum value at

δθ = π/2.

Next, we calculate the quantum phase distribution P(ϕ) of the near coherent state in the Pegg-

Barnett formulation [196,197], namely

P(ϕ) =
1

2π
|〈ϕ|r〉|2, (6.74)

where the state |ϕ〉 is defined as

|ϕ〉 =

∞∑
n=0

einϕ|n〉. (6.75)

Employing Eq.(6.28) then yields

P(ϕ) =
1

2π
|〈ϕ|α,∆θ〉|2 =

e−|α|
2

2π[1 + |α|2 sin(δθ)2]

∣∣∣∣∣
∞∑
n=0

e−i(nϕ−θ)|α|n√
n!

(
neiδθ

|α|
− |α| cos(δθ)

)∣∣∣∣∣
2

(6.76)

which approaches the single peaked phase distribution of the coherent state as δθ → π/2. In contrast,

when δθ → 0, the distribution exhibits two peaks.

6.7 Nonclassical properties

6.7.1 Squeezing properties

The nonclasicality of the near state also manifests itself in squeezing. To evaluate the expectation

values of the quadrature operators of Eq.(5.21) for the near coherent state certain mathematical
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relations derived from Eqs.(6.56,6.58,6.62) are useful, namely

〈â〉 = α
(
1− iK2 sin(δθ)eiδθ

)
,

〈â2〉 = α2
(
1− 2iK2 sin(δθ)eiδθ

)
,

〈ââ†〉 = 1 + |α|2 +K2(1 + 2|α|2 sin(δθ)2) = 1 + 〈n̂〉, (6.77)

where K is 1/
√

1 + |α|2 sin(δθ)2. Note that K is always bounded between 0 and 1. The expectation

value of the operators X̂ and Ŷ are accordingly given by

〈X̂〉 =
α+ α∗

2
+ |α|K2 sin(δθ) sin(∆θ), (6.78)

〈Ŷ 〉 =
α− α∗

2i
− |α|K2 sin(δθ) cos(∆θ). (6.79)

where δθ = ∆θ − θ. Therefore, both the phase difference δθ and the source phase ∆θ must be

determined. Note that when ∆θ = δθ, the above expressions yield the coherent state results, for

which the second term equals zero.

Next, the expectation value for the square of X̂ and Ŷ operators are

〈X̂2〉 =
1

4
+
α2 + α∗2

4
+
|α|2

2
+
K2

2

[
1 + 2|α|2S1

]
, (6.80)

where S1 is sin(δθ)[sin(δθ) + sin(2∆θ − δθ)],

〈Ŷ 2〉 =
1

4
− α2 + α∗2

4
+
|α|2

2
+
K2

2

[
1 + 2|α|2S2

]
, (6.81)

and S2 equals sin(δθ)[sin(δθ)− sin(2∆θ − δθ)]. The fluctuations of these operators are given by

〈(∆X̂)2〉 =
1

4
+K2

[
1

2
− |α|2K2 sin(δθ)2 sin(∆θ)2

]
, (6.82)

〈(∆Ŷ )2〉 =
1

4
+K2

[
1

2
− |α|2K2 sin(δθ)2 cos(∆θ)2

]
. (6.83)

From these relations, in general, a state is squeezed if one of the following conditions is satisfied
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Figure 6.5: The fluctuation of X̂ operator of the near coherent state for different values of ∆θ and δθ. Each
plot displays curves, from top to bottom, δθ = 0, π/8, π/4, π/2 where the straight line in both figures is the
δθ = 0 result.

1

2
< |α|2K2 sin(δθ)2 sin(∆θ)2,

1

2
< |α|2K2 sin(δθ)2 cos(∆θ)2. (6.84)

When δθ = 0, Eqs.(6.82, 6.83) yield 3/4, which corresponds to the minimum fluctuation of one

photon from Eq.(5.23). In Fig.(6.5) we display the fluctuations of the X̂ operator for δθ and ∆θ

phase differences. This figure indicates the presence of squeezing for certain values of ∆θ. The

maximum amount of squeezing occurs when δθ = π/2 and ∆θ = π/2 [0] for the X̂ [Ŷ ] operator, and

when |α| =
√

3 for which Eq.(6.82) [Eq.(6.83)] yield 3/16, and Eq.(6.83) [Eq.(6.82)] yield 6/16. In

contrast for a phase difference δθ = 0 squeezing is not present.

The product of Eq.(6.82) and Eq.(6.83) always satisfies the upper and lower bounds

1

16
≤ 〈(∆X̂)2〉〈(∆Ŷ )2〉 ≤ 9

16
. (6.85)

For example, if both δθ and ∆θ equal π/2, the product is

〈(∆X̂)2〉〈(∆Ŷ )2〉 =
1

16

(3 + |α|2)(3 + |α|4)

(1 + |α|2)3
, (6.86)

which equals 9/16 for |α| = 0 and decreases to 1/16 for |α| � 1. The product of Eq.(6.85) is

bounded by the fluctuations of the vacuum and the photon unlike the SCS for which fluctuations

are unbounded as α increases.
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6.7.2 Q Mandel parameter

The Mandel Q-parameter, which was introduced in Sec.(5.4.3) of the previous chapter quantifies the

photon number distribution and the anti-bunching properties. By substituting Eqs.(6.70,6.73) into

the formula for the Mandel Q-parameter Eq.(5.83), we find

Q =
2|α|2(2−M)−M2

|α|2 +M
(6.87)

which is plotted in Fig.(6.6) against |α|2 for different values of δθ. The Q parameter indicates that

the phase differences between π/4 < δθ < 3π/4 are uniformly negative implying anti-bunching while

phases less than δθ < π/4 are associated with bunching at large |α|. In all cases when α is near zero

the field is anti-bunched. The maximum anti-bunching for a given |α| occurs when δθ = π/2. The

anti-bunching of the near coherent state again confirms its nonclassicality.

Figure 6.6: The Mandel Q-parameter of the near coherent state for different values of δθ.
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6.7.3 Wigner function

Calculating the Wigner function defined by Eq.(6.11) for a near coherent state with density matrix

ρ̂ = |β,∆θ〉〈β,∆θ| gives

W (α) = −K
2

π e
−2|α−β|2

[
2− 8|α|2 − |β|2(5 + 3 cos(2δθ)) + (α∗β + αβ∗)(6 + 2 cos(2δθ))

+ 2i(α∗β − αβ∗) sin(2δθ)

]
,

(6.88)

which is plotted in Fig.(6.7) with α = αr + iαi for different values of δθ. While the Wigner function

appears to always possess negative regions for β < 1, as β increases the negative regions become

smaller in extent except when δθ = 0, for which the Wigner function always possesses large negative

values as it reduces to

W (α) =
2

π
(4|α− β|2 − 1)e−2|α−β|2 . (6.89)

This behavior again results from the nonclassical nature of the near coherent state.

To summarize, the nonclassical properties of the near coherent state are most evident for either

δθ = 0 or δθ = π/2. Squeezing and anti-bunching are maximized for δθ = π/2, the Wigner function

is most negative when δθ = 0. Indeed, at δθ = 0, the near coherent state becomes a pure derivative

state as Eq.(6.31) demonstrates while when δθ = π/2, the superposition between the derivative state

and the coherent state is maximized.

6.8 Production

Generating a near coherent state requires a nonunitary procedure as is evident from Eq.(6.51).

This also is true for SCSs which have nonunitary operators. Here we propose an extension to the

Gerry’s method for creating SCSs [198] depicted in Fig.(6.8). Here the Mach-Zehnder interferometer

possesses two modes b and c, with one photon in mode b and zero photons in c. Two coherent states

|α〉 and |β〉 are incident as indicated in the figure. The interferometer is coupled to a nonlinear

medium through the cross-Kerr interaction with mode a where the unitary operator of the nonlinear

medium is ÛKerr = e−itχâ
†âb̂†b̂. The coefficient χ is related to the third order nonlinear susceptibility

χ(3), and t is the interaction time inside the medium and we additionally assume below that χt can

be varied.
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Figure 6.7: The Wigner function W (α) of the near coherent state for different phase differences δθ and
β = 2 + i.

Denoting the phase shifter by ϕ, which its unitary operator is given by Ûshift = eiϕĉ
†ĉ. Also

assume that 50/50 splitters are employed in the two sides BS1,2 with the unitary operator ÛBS =

ei
π
4 (ĉ†b̂+ĉb̂†) while the final 50/50 beam splitter is represented by the unitary operator UBS3 =

ei
π
4 (â†d̂+âd̂†).

The entrance state in the system is then |α〉a|1〉b|0〉c. After the first beam splitter (BS1), it

becomes

|α〉a|1〉b|0〉c →
1√
2
|α〉a(|1〉b|0〉c + i|0〉b|1〉c). (6.90)

while after the phase shifter ϕ and the cross-Kerr interaction, the state is transformed to

1√
2
|α〉a(|1〉b|0〉c + i|0〉b|1〉c)→

1√
2

(|αe−iχt〉a|1〉b|0〉c + ieiϕ|α〉a|0〉b|1〉c). (6.91)

The third beam splitter (BS3), which acts on mode a, yields

→ 1√
2

(∣∣∣∣β + αe−iχt√
2

〉
a

|1〉b|0〉c + ieiϕ
∣∣∣∣β + α√

2

〉
a

|0〉b|1〉c
)
. (6.92)
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Figure 6.8: A procedure for generating the near coherent states.

while the second beam splitter (BS2) generates

|1〉b|0〉c →
1√
2

(|1〉b|0〉c + i|0〉b|1〉c), |0〉b|1〉c →
1√
2

(|0〉b|1〉c + i|1〉b|0〉c). (6.93)

After setting ϕ = 0 and rearranging terms, we obtain

|ψ(χt)〉 =
1

2
{|1〉b|0〉c [|γ + ∆γ〉a − |γ〉a] + i|0〉b|1〉c [|γ + ∆γ〉a + |γ〉a]} . (6.94)

Here γ ≡ (α+ β)/
√

2 and ∆γ ≡ α(e−iχt − 1)/
√

2.

If an event is registered in D1 , the state projected on mode a is |γ+∆γ〉−|γ〉, while if D2 detects

an event , the projected state is i|γ + ∆γ〉+ |γ〉. If χt→ 2π, ∆γ becomes ≈ |α|√
2
(χt− 2π)ei(θ+3π/2),

which approaches zero as χt→ 2π and can therefore function as the source of a near coherent state

with ∆θeffective = θ + 3π/2. This method can also be applied with χt→ 0, if the interaction time

is suitably small.

After performing the normalization, the projected state in a when D1 fires is a near coherent

state with

|γ,∆θeffective〉 = lim
|∆γ|→0

Cγ(|γ + ∆γ〉 − |γ〉). (6.95)
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To insure that the near coherent state is obtained, χt must be close to but not exactly 2π. If β and

α possess the same amplitude but different phases, we can write α = |α|eiθ, β = |α|eis. Then, the

amplitude of the near coherent state is |γ| = |α|
√

1+cos(θ−s)
2 , and its phase is θeffective = θ+s

2 so

that the phase difference is

δθeffective = ∆θeffective − θeffective =
θ − s

2
+

3π

2
. (6.96)

The value δθeffective can possess any value in the range 0−2π, so, at least in principle, by adjusting

the phases of the input coherent states |α〉 and |β〉, a near coherent state can be produced with any

phase difference and amplitude.

6.9 Conclusion

To conclude, in this chapter we investigated a particular superposition of two coherent states which

is characterized by a new parameter, the source phase. While the state is a particular superposition

of two coherent states, it can be expressed as a superposition of coherent state and a derivative state,

each weighted with a separate function of the phase difference. We demonstrated that this state is

nonclassical and provided a possible method for generating it experimentally.

While the near coherent state is a superposition of coherent states, its properties are different than

the standard SCSs. Instead, its properties resemble those of coherent states, but are nonclassical. For

example, when δθ = π/2, the photon probability distribution adopts a quasi-Poissonian distribution

and the quadrature space becomes a semi-Gaussian function.

This state can be applied to study the quantum interfaces from other perspectives. This is true

because of the fact that this state is nonvanishing and a function of the source phase. Also, the

nonclassical properties of this state can be applied in standard fashion to a variety of applications

in quantum optics and information.
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[191] J. Rëcamier, R. Jäuregui, Construction of even and odd combinations of Morse- like coherent

states, J. Opt. B: Quant. Semiclass. Opt. 5, S365 (2003).

[192] L. H. Ford, Thomas A. Roman, Negative energy density in superposition and entangled states

, Phys. Rev. D 77, 045018 (2008).

[193] Werner Vogel, Dirk-Gunnar Welsch, Quantum Optics, WILEY-VCH, Weinheim, (2006).

[194] G. S. Agarwal, K. Tara, Nonclassical properties of states generated by the excitations on a

coherent state, Phys. Rev. A 43, 492 (1991).

[195] C. Brif, Two-Photon Algebra Eigenstates: A Unified Approach to Squeezing, annals of physics,

251, 180 (1996).

[196] S. M. Barnett, D. T. Pegg, On the Hermitian optical phase operator, J. Mod. Opt. 36, 7

(1989).

[197] D. T. Pegg, S. M. Barnett, Phase properties of the quantized single-mode electro magnetic

field, Phys. Rev. A 39, 1665 (1989).

[198] C. Gerry, Generation of optical macroscopic quantum superposition states via state reduction

with a Mach-Zehnder interferometer containing a Kerr medium ,Phys. Rev. A 59, 4095 (1999).

128


	Examining Committee Membership
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	List of Figures
	List of Abbreviations
	Introduction
	Stretchable Photonic Crystals
	Background
	Photonic crystals
	 One dimensional PC example

	Stretchable photonic crystal (SPC)
	 Designs of SPC
	Rectangular lattice
	Triangular lattice

	Potential applications and conclusions

	Enhanced Negative Refractive Index Control
	Background
	Density operator
	Two-level scheme

	Negative refraction index of dense gases
	Analytic formulation of the 5-level scheme
	Approximate solution
	Results
	Conclusion

	 Double  Scheme in a White Light Cavity
	Background
	Two-level system

	Optical switches
	Model description
	Analytic formulation
	Susceptibility
	-=+, =1 
	-=+, =1 

	White cavity conditions
	Single white band
	Generation of three white bands 
	Method A
	Method B
	Method C

	One white band with adjustable center frequency
	Conclusion

	N-Type Full Quantum Model
	Background
	Fock states
	Coherent states
	Jaynes-Cummings model (JCM)

	Beyond JCM
	N-type four-level atom 
	Physical properties
	Population inversion
	Linear entropy
	Q Mandel parameter
	Linear squeezing

	Conclusions

	Near Coherent state
	Background
	Extensions

	The near coherent states
	Generalizations of the near coherent state
	Identities and mathematical properties 
	Propagation and quadrature properties
	Statistical properties
	Nonclassical properties
	 Squeezing properties
	 Q Mandel parameter
	 Wigner function

	Production
	Conclusion

	Bibliography

