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Abstract. Continuity of the input/output map for boundary control systems is shown through
the system transfer function. Our approach transforms the question of continuity of the input/output
map of a boundary control system to uniform boundedness of the solution to a related elliptic
problem. This is shown for a class of boundary control systems with Dirichlet, Neumann, or Robin
boundary control.
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1. Introduction. Boundary control systems are an important class of infinite-
dimensional control systems. Some important applications are control of annealing
processes, control of structural vibrations, and active noise control.

Key questions are whether the mappings from input to state, input to output,
initial state to input, and initial state to final state are well defined and bounded.
When all four mappings are well defined and bounded, the system is said to be well-
posed [19]. Salamon [20] showed that boundedness of the input/output map implies
well-posedness of the control system with respect to some state space. (An alternative
proof in [14] uses frequency domain analysis.) Since boundedness is equivalent to
continuity for linear systems, ill-posedness of the input/output map indicates that the
measured outputs are not continuously dependent on the inputs. This would lead to
difficulties in the practical implementation of any such control system. Often, however,
ill-posedness of the control system indicates modelling errors. An example illustrating
this point is given in this paper. Thus, showing boundedness of the input/output map
of a boundary control system is important. This problem is the focus of this paper.

Boundedness of the initial to final state map is equivalent to showing existence of
a semigroup and is fairly well understood. A number of authors have obtained results
on boundedness of the state/output map and input/state map. For more details see,
e.g., [3, 8, 9, 10, 11, 12, 15, 16]

The literature on showing boundedness of the input/output map is less exten-
sive. One technique for determining well-posedness is to use spectral expansion of
the underlying semigroup. This technique is applicable to showing boundedness of
the input/state and state/output maps as well as the input/output map. For exam-
ple, in [7] it was shown that several examples of boundary control systems with one
space dimension were well-posed. In [6], it was shown that the one-dimensional heat
equation with Dirichlet boundary control and point observation is well-posed under
a suitable choice of state space. In [18], well-posedness of an accelerometer control
system was shown. The spectral expansion method requires the availability of the
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eigenvalues and eigenvectors of the system (or at least estimates). Also, the eigen-
vectors must form a Riesz basis. For many multidimensional problems it is difficult
to calculate the eigenfunctions and eigenvalues of the underlying semigroup. Hence
there are difficulties in extending this method to more general problems.

Well-posedness of a structural acoustic control system has been considered in
[1, 2]. The authors use a state-space formulation of the control system. Partial
differential equation results lead to estimates of the regularity of the resolvant and
hence of the transfer function in state-space form.

Another method to determine boundedness of the input/output map uses the
system transfer function. The concept of the transfer function for finite-dimensional
systems extends to general well-posed systems. This is discussed in detail in the next
section. Curtain and Weiss [6] showed that the input/output map is bounded if and
only if the transfer function is uniformly bounded in a right half-plane. In several
papers [6, 18, e.g.] well-posedness is established by showing that the system transfer
function is bounded in some right-half-plane. The difficulty with this approach is that
the transfer function has been rigorously obtained for only a few systems.

In [3], boundedness of the input/output map was shown for a class of structural
control systems with point measurement of acceleration by showing that the system
transfer function is proper. However, unlike the examples given above, justification for
the transfer function was not computed directly. Instead, it was shown that the fact
that the infinitesimal generator generates an analytic semigroup implies properness
of the system transfer function.

In the next section systems theory for boundary control systems is discussed.
The nature of the input/output map and the transfer function for these systems is
explained. We give a representation for the system transfer function purely in terms
of the boundary control formulation.

In section 3 we present our approach. The question of boundedness of the in-
put/output map of a boundary control system is transformed to uniform boundedness
(in a sense defined later) of solutions to a related elliptic boundary value problem. We
use this approach to obtain well-posedness of several large classes of boundary control
systems. Section 4 contains some background on elliptic boundary value problems.
In sections 5 and 6 we show boundedness of the input/output map for a several large
classes of problems with Dirichlet, Neumann, or Robin boundary control.

Our approach has several advantages. It is not necessary to compute a state-
space realization. Also, the analysis of an elliptic problem is simpler than that of the
original problem, and the extensive literature available on boundary value problems
may be used. Our method is particularly useful for multidimensional systems with
variable coefficients where the state-space realization is tedious to obtain and the
system transfer function is even more difficult to obtain from the realization.

2. Transfer functions for boundary control systems. We will use the fol-
lowing formal definition of a boundary control system:

d
dtz(t) = Lz, z(0) = z0,
Γz(t) = u(t),
y(t) = Kz(t).


(2.1)

The operators L ∈ L(Z,H), Γ ∈ L(Z,U), and K ∈ L(Z,Y). The spaces (Z, ‖ ·
‖Z), (H, ‖ · ‖H), (U , ‖ · ‖U ), (Y, ‖ · ‖Y) are all Hilbert spaces, and Z is a dense sub-
space of H with continuous, injective embedding ιZ . The triple (L,Γ,K) refers to a
boundary control system with output operator K. We shall often refer to a boundary
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control system by the double (L,Γ). (The operator K is in this case understood to
be the identity operator.) We will assume throughout this paper that a boundary
control system (2.1) satisfies the following assumptions:
(A1) The operator Γ is onto, ker Γ is dense in H, and there exists µ ∈ R such that

ker(µI − L) ∩ kerΓ = 0 and µI − L is onto H.
(A2) For any z0 ∈ Z with Γz0 = 0, u(·) = 0, there exists a unique solution of (Γ, L)

in C1[0, T ;H] ∩ C[0, T ;Z] depending continuously on z0.
In this paper, we are solely interested in the boundedness of the input/output map
from u ∈ L2(0, T ;U) to y ∈ L2(0, T ;Y).

Definition 2.1. The input/output map is bounded if for all times T > 0 and
u ∈ H2(0, T ;U), z(0) = 0, the output y is well defined and there is a constant cT such
that ‖y‖L2(0,T ;Y) ≤ cT ‖u‖L2(0,T ;U).

This implies that the input/output map u → y can be extended to a bounded
map on all of L2(0, T ;U). Alternatively, one can describe the relationship between
the inputs and the outputs using the Laplace transform.

Definition 2.2. Let ŷ(s) indicate the Laplace transform of the output of a system
and indicate similarly the transform of the input by û(s). The system transfer function
is the operator G(s) such that

ŷ(s) = G(s)û(s)

for all s, Re s > σ for some real σ.
Implicit in this definition is that the input/output map is well defined and that

the output is Laplace transformable. Boundedness of the input/output map can be
determined using the system transfer function.

Theorem 2.3 (see [6]). Let (L,Γ,K) define a boundary control system. The
input/output map of the system is bounded if and only if there exists a real number σ
such that the transfer function G(s) associated with (L,Γ,K) satisfies

sup
Re s>σ

‖ G(s) ‖L(U,Y) <∞.

The function G(s) is said to be proper if the above inequality holds.
We now consider the definition of a transfer function for a boundary control

system in detail. First, consider a control system in state-space form:

ż(t) = Az(t) +Bu(t), z(0) = z0,(2.2)

y(t) = Cz(t),(2.3)

where A is an infinitesimal generator of a C0-semigroup T (t) on state space H. Also,
B and C are bounded operators: B ∈ L(U ,H), C ∈ L(H,Y). The input/output map
is

y(t) = C

∫ t

0

T (t− σ)Bu(σ) dσ.(2.4)

Defining g(t) = CT (t)B, the output is simply the convolution of g(t) and u(t). Taking
the Laplace transform on both sides of (2.4) gives

ŷ(s) = G(s)û(s).(2.5)

Here G(s) = C(sI−A)−1B is the system transfer function. Note that it is the Laplace
transform of the function g(t) that defines the input/output map. This is a direct
generalization of the theory for finite-dimensional systems.
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Any boundary control system can be written in state-space form (A,B,C) [19].
The operator A that generates the semigroup T (t) in the state-space formulation is
defined from the boundary control system as follows. Define

W = { z ∈ Z | Γz = 0 },(2.6)

and let ι denote the canonical injection from W to Z. Then A = Lι and W = [D(A)],
the completion of D(A) in the graph norm of A. Assumptions (A1) and (A2) imply
that A generates a C0-semigroup on H. Techniques to define B and C also exist [19],
but the input and output operators are generally unbounded on the state space. The
linear operator C ∈ L(W,Y) is defined by C = Kι and C ∈ L(W,Y). The definition
of B is more complicated and not needed here, but B ∈ L(U ,V) where V = [D(A∗]′,
the dual space of [D(A∗)]. The operator A extends to an operator that generates a
C0-semigroup on V with domain H. However, (2.3) is no longer well defined since
z(t) may not be in the domain of C.

In the following theorem we show that the output of a boundary control system
is well defined, and that this output can be defined via the convolution of a Laplace-
transformable distribution with the input. The following results will be required.

Lemma 2.4 (see [19, Cor. 2.9]). Let (A1) and (A2) be satisfied. Then for
every zo ∈ Z and every u ∈ H2(0, T ;U), with Γzo = u(0), there is a unique solution
z(·) ∈ C(0, T ;Z)

⋂
C1(0, T ;H) of (2.1).

Theorem 2.5 (see [23, Theorem 6.5-1]). Necessary and sufficient conditions for
a function G(s) ∈ L(U ,Y) to be the Laplace transform of a distribution whose support
is bounded on the left at t = 0 are that (1) there exists some half-plane Re s > σ on
which G(s) is analytic and (2) that there is a polynomial P such that for Re s > σ

‖G(s)‖L(U,Y) ≤ P (|s|).

Theorem 2.6. The input/output map of any boundary control system (2.1) is
well defined for all inputs u ∈ H2(0, T ;U), u(0) = 0. This output can be written as

y(t) = g(t) ∗ u(t),

where g(t) is a distribution with Laplace transform G(s). Let A = Lι with domain
as in (2.6). The operator G(s) ∈ L(U ,Y) for each s ∈ ρ(A) and G(s) is the system
transfer function.

Proof. First, as mentioned above, construct the state-space realization (A,B,C)
using the procedure in [19]. Equation (2.2) is valid if we consider it as a differential
equation on V = [D(A∗)]′. Rewriting, we obtain, for any µ ∈ ρ(A),

z(t) = (µI −A)−1(µI −A)z(t)
= (µI −A)−1(µz(t)− ż(t)) + (µI −A)−1Bu(t).(2.7)

For all initial conditions z(0) = 0 and smooth controls u ∈ H2(0, T ;U) with u(0) = 0,
the first term in (2.7) is in W ⊂ Z for each time t (Lemma 2.4). Regarding A as a
generator on V with domain H, we obtain that (µI−A)−1B ∈ L(U ,H). Furthermore,
for any µ ∈ ρ(A), Range(µI −A)−1B ⊂ Z and so (µI −A)−1B ∈ L(U ,Z) [19, Prop.
2.8]. Thus we may apply the operator K to the solution z(t) to obtain the output
y(t):

y(t) = K(µI −A)−1(µz(t)− ż(t)) +K(µI −A)−1Bu(t).(2.8)
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Since W ⊂ Z, K(µI − A)−1 ∈ L(H,Y) and K(µI − A)−1B ∈ L(U ,Y). Since both u
and z are Laplace transformable, we now take the Laplace transform of both sides of
(2.8) to obtain

ŷ(s) = K(µI −A)−1(µ− s)(sI −A)−1Bû(s) +K(µI −A)−1Bû(s).

The system transfer function is thus

G(s) = K(µI −A)−1(µ− s)(sI −A)−1B +K(µI −A)−1B.

Setting µ = s, we obtain that

G(s) = K(sI −A)−1B(2.9)

for any s ∈ ρ(A). (This is formula (2.18) for the generalized transfer function in [19].)
For s ∈ ρ(A), G(s) is analytic and so condition (1) in Theorem 2.5 is satisfied.

Since the norm on H is equivalent to the graph norm of A (as a generator on V)
on V, ‖(s − A)−1B‖L(U,H) ≤ M for some constant M and all Re s > σ for some σ.
Thus, there is a polynomial P (s) such that G satisfies condition (2) in Theorem 2.5.
It follows from Theorem 2.5 that G(s) is the Laplace transform of a distribution g(t);
hence the output y(t) is the convolution of this distribution and the input.

This representation of the input/output map is valid for any boundary control
system and for u ∈ H2(0, T ;U) with u(0) = 0. In order to extend the input/output
map to all u ∈ L2(0, T ;U) we need to show that the map is bounded or, equivalently,
that the transfer function is proper.

We now obtain a representation of the transfer function of a boundary control
system. This representation is based entirely on the boundary control description (2.1)
and does not require construction of a state-space realization. The transfer function is
defined in terms of an elliptic problem associated with the boundary control system.

Definition 2.7. The abstract elliptic problem (L,Γ)e corresponding to the
boundary control system (L,Γ), as defined in (2.1), is

Lz = sz, s ∈ C,
Γz = u.

}
(2.10)

We denote the solution z ∈ Z by z(s).
Definition 2.8. Let T (t) be a C0-semigroup on H. The constant α defined by

α = inf
t>0

1

t
log ‖T (t)‖

is called the growth bound of the semigroup T (t).
Let α indicate the growth bound of the semigroup associated with (L,Γ). The

elliptic problem (2.13) has a unique solution z(s) for all u and Re s > α. The
system transfer function may be described through the solutions to the abstract elliptic
problem (2.13).

Theorem 2.9. Let (L,Γ,K) define a boundary control system. Define W, A,
and D(A) be as above. Then there exists an α ∈ � such that the transfer function,
G(s), of the boundary control system (L,Γ,K) is given by

G(s)u = Kz(s) for all s ∈ C, with Re s > α,(2.11)

where z(s) is the solution to the abstract elliptic problem (2.10) with input u.
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Proof. Let α denote the growth bound of the C0-semigroup generated by A. Then
for all s ∈ C with Re s > α, s ∈ ρ(A).

The transfer function G(s) is given by (2.9). However, (sI−A)−1B is the solution
operator of abstract elliptic problem (2.10) with input u [19, Prop. 2.8, eqn. 2.20].

Alternatively, for any given u ∈ U , choose z ∈ Z so that Γz = u. Then G ∈
L(U ,Y) is defined by [19, Rem. 2.7]

G(s)Γz = Kz − C(sI −A)−1(sz − Lz).(2.12)

For any u ∈ U and any s ∈ C, with Re s > α, let z solve the associated elliptic
problem. From (2.12) we have

G(s)u = Kz(s).

This is precisely (2.11).
Thus, the solution to (2.11) gives a representation of the transfer function of

a boundary control system. The representation of G(s) obtained above is not as
surprising as the abstract elliptic problem (2.10) is the formal Laplace transform
(with respect to t) of the boundary control system. Theorem 2.9 is a justification
of such a process. Thus the abstract elliptic problem (L,Γ)e corresponding to the
boundary control system (L,Γ) can be written as

Lẑ = sẑ, s ∈ C,
Γẑ = û.

}
(2.13)

As a simple example, we compute the transfer function for a heat transfer problem
on a unit interval using (2.11).

Example 2.10 (one-dimensional heat equation with Neumann boundary control).
One of the simplest examples of a well-posed boundary control system is the problem
of temperature control in a one-dimensional rod of length 1 with a controlled heat
flow at one end. The output is the temperature measured at x1, 0 ≤ x1 ≤ 1. The
system equations are

∂z
∂t = ∂2z

∂x2 , x ∈ [0, 1],
z(x, 0) = 0, x ∈ [0, 1],
∂z
∂x (0, t) = 0, t > 0,
∂z
∂x (1, t) = u(t), t > 0,
y(t) = z(x1, t).




(2.14)

In this example,

Z = {z ∈ H2(0, 1); z′(0) = 0},
with the norm inherited from H2(0, 1), U = Y = �, and H = L2(0, 1). It is easy to
verify that (A1) and (A2) are satisfied. The elliptic problem corresponding to (2.14)
is

d2ẑ
dx2 = sẑ,
ẑ′(0) = 0,
ẑ′(1) = û,


(2.15)

with output equation

ŷ = ẑ(x1).
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The solution to the abstract elliptic problem is

ẑ(x, s) =
û cosh(

√
s x)√

s sinh
√
s
.

For this problem, the growth bound α = 0. By Theorem 2.9 we have for all s ∈ C

with Re s > 0 that the transfer function of the system is given by

G(s)û = K

(
û cosh(

√
s x)√

s sinh
√
s

)

=
û cosh(

√
s x1)√

s sinh
√
s
.

This is exactly the transfer function one would obtain by formally taking the Laplace
transform of (2.14). Moreover, the transfer function is proper; hence the input/output
map is bounded.

The following example shows that if the boundary condition is not chosen cor-
rectly, it leads to an improper system transfer function. Hence examining the nature
of the input/output map is useful in determining whether the mathematical model
of the system is sensible. Some choices of sensing or control operations also lead to
improper transfer functions.

Example 2.11 (Euler–Bernoulli beam with Kelvin–Voigt damping). Consider the
Euler–Bernoulli beam with Kelvin–Voigt damping. The beam is assumed to be fixed
at x = 0 and free at x = 1. Then the equation governing the motion of the transverse
displacement is

∂2w
∂t2 + ∂2

∂x2

[
EI ∂2w

∂x2 + cdI
∂3w
∂x2t

]
= 0, x ∈ (0, 1),

w(0, t) = 0, t ≥ 0,
∂w
∂x (0, t) = 0, t ≥ 0,

∂2w
∂x2 (1, t) = 0, t ≥ 0,
∂3w
∂x3 (1, t) = u(t), t ≥ 0,

y(t) = ∂w
∂t (1, t),




(2.16)

where E, I, and cd are positive constants. We shall compute the system transfer
function via Theorem 2.9. First, we will rewrite the problem in the standard form
(2.1). Define

z(x, t) =

[
z1(x, t)
z2(x, t)

]
=

[
w(x, t)
dw(x,t)

dt

]
,

d

dt

[
z1
z2

]
=

[
0 I

−EI d4

dx4 −cdI d4

dx4

] [
z1
z2

]
,

z′′′1 (1, t) = u(t),

y(t) = z2(1, t).

For this problem,

Z = {(z1, z2) ∈ H4(0, 1)×H4(0, 1); z1(0) = z′1(0) = z′′1 (1) = 0}.
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The space H = H̄2(0, 1)× L2(0, 1), where

H̄2(0, 1) = {H2(0, 1); z(0) = z′1(0) = 0}

and U = Y = R. It can be verified that assumptions (A1) and (A2) are satisfied. The
elliptic problem associated with (2.16) is, writing w = z1 and noting that ẑ2 = sẑ1,

(EI + scdI)
∂4ŵ
∂x4 = −s2ŵ,

ŵ′′′(1) = û.

}
(2.17)

This is to be solved for (ŵ, sŵ) ∈ Z. The output equation ŷ = sŵ(1, s). The solution
to the abstract elliptic problem is

ŵ(s, x) = A(s) cosh(m(s)x) +B(s) sinh(m(s)x)−A(s) cos(m(s)x)−B(s) sin(m(s)x),

where, letting i =
√−1,

m(s) =
√
i

(
s2

EI + scdI

) 1
4

,

A(s) =
−û(sinh(m(s)) + sin(m(s)))

2m3(s)(1 + cosh(m(s)) cos(m(s)))
,

B(s) =
−A(s)(cosh(m(s)) + cos(m(s)))

sinh(m(s)) + sin(m(s))
.

Thus the system transfer function is

G(s) =
s(sinh(m(s)) cos(m(s))− cosh(m(s)) sin(m(s)))

m3(s)(1 + cosh(m(s)) cos(m(s)))
.

One can show that for Re s > 0,

lim
|s|→∞

4 exp

(√
2

i
m(s)

)
(sinh(m(s)) cos(m(s))− cosh(m(s)) sin(m(s))) = 1− i,

lim
|s|→∞

4 exp

(√
2

i
m(s)

)
(1 + cosh(m(s)) cos(m(s))) = 1.

Thus, for Re s > 0,

lim
|s|→∞

(sinh(m(s)) cos(m(s))− cosh(m(s)) sin(m(s)))

(1 + cosh(m(s)) cos(m(s)))
= 1− i.

Thus G(s) is improper since | s
m3(s) | is unbounded as |s| → ∞.

The appropriate boundary conditions should be on the bending moments and
shear forces in the beam:

EI
∂2w

∂x2
+ cdI

∂3w

∂x2t
(1, t) = 0, t ≥ 0,

EI
∂3w

∂x3
+ cdI

∂4w

∂x3t
(1, t) = u(t), t ≥ 0.
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The original set of boundary conditions is incorrect since the moment M is equal to
∂w2

∂x2 only when there is no damping in the system. With these boundary conditions,
the resulting transfer function is

G(s) =
s
(
sinh(m(s)) cos(m(s))− cosh(m(s)) sin(m(s))

)
m3(s)

(
EI + scdI

)(
1 + cosh(m(s)) cos(m(s))

) .
Now G(s) is proper since

lim
|s|→∞

s

m3(s)(EI + scdI)
= 0.

3. Boundedness of the input/output map. Theorem 2.3 implies that the
boundedness of the input/output map of a boundary control system can be determined
from the properness of the system transfer function. For a given observation operator
K, the properness of the transfer function depends entirely on the behavior of the
solution to (L,Γ)e as the parameter s varies.

Since we will henceforth be working entirely with the Laplace transform, we shall
drop the “ ˆ ”notation in the interest of clarity. The following theorem provides a
sufficient condition for the properness of the transfer function of a boundary control
system.

Definition 3.1. Let (V, ‖ · ‖V) be a normed linear space with V ⊂ H. We say
that the solution, ẑ(s), to the abstract elliptic problem (2.13) is uniformly bounded
with respect to the V norm if there exist constants µ1 ∈ � and M ∈ �+ such that

‖z(s)‖V ≤M‖u‖U(3.1)

for all u ∈ U and for all s ∈ C with Re s > µ1.
The following sufficient condition for properness of the system transfer function

is now immediate.
Theorem 3.2. Let (L,Γ,K) define a boundary control system. Let V be a normed

linear space satisfying Z ⊂ V ⊂ H. If the solution to (L,Γ)e is uniformly bounded with
respect to the V norm, then for all observation operators K ∈ L(V,Y), the transfer
function associated with the boundary control system (L,Γ,K) is proper.

Proof. By assumption there exist constants µ1 and M such that inequality (3.1)
holds. Let A be as defined in Theorem 2.9 with growth bound ω0. Choose µ =
max{µ1, ω0} and the result follows.

Thus, continuity of the input/output map of a boundary control system can be
established by determining uniform boundedness of the solution z(s) to a family of
elliptic problems. Continuity of the input/output map can be established without
an explicit representation of the transfer function. Also, Theorem 3.2 states that
uniform boundedness of the solution to the elliptic problem (L,Γ)e in the V norm im-
plies boundedness of the input/output map for the class of boundary control systems
{(L,Γ,K) | K ∈ L(V,Y)} . This is advantageous since there exist a large literature of
results on solutions to elliptic partial differential equations, although not on uniform
boundedness of the solution. A major advantage of this approach is that it is not
required to compute the linear operators (A,B,C) of a state-space realization.

Example 3.3 (one-dimensional heat equation with Neumann boundary control
continued). The solution to the corresponding elliptic problem is

z(x, s) =
u cosh(

√
s x)√

s sinh
√
s
.
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Let V = H1(0, 1), U = �, and µ1 = 1. Then for all s ∈ C with Re s > 1 we have

∥∥z∥∥2

L2(0,1)
≤ |u|2 cosh 2

16 sinh 2
+

|u|2
8 sinh2 2

,∥∥∥∥dzdx
∥∥∥∥

2

L2(0,1)

≤ |u|2 cosh 2
2 sinh 2

+
|u|2

2 sinh2 2.

Hence
∥∥z∥∥

H1(0,1)
≤
√

2 cosh 2
sinh 2 |u|. Thus by Theorem 3.2, the input/output map is

bounded for all K ∈ L(H1(0, 1),�). In particular, this holds for Kz = z(x1, t).
We now provide some conditions for uniform boundedness of the solution to

(L,Γ)e with respect to V by rewriting (L,Γ)e as two subproblems.
Proposition 3.4. Let (L,Γ) define a boundary control system as in (2.1) and

let V be a normed linear space satisfying Z ⊂ V ⊂ H. Let µ ∈ �+ and µ �∈ σ(L)
(spectrum of L), and define the problems (L,Γ)e1 and (L,Γ)e2 by

(L,Γ)e1 :=

{
Lf = µf,
Γf = u.

(3.2)

(L,Γ)e2 :=

{
Lw = sw + (s− µ)f, s ∈ C,
Γw = 0.

(3.3)

The solution to (L,Γ)e is uniformly bounded with respect to the V norm if the
following two conditions hold:

1. There exists f ∈ Z such that f solves (L,Γ)e1 and

‖f‖V ≤ C1‖u‖U(3.4)

for some positive constant C1.
2. Let f ∈ Z denote the solution to (L,Γ)e1. There exists w ∈ Z such that w
solves (L,Γ)e2 and

‖w‖V ≤ C2‖f‖V(3.5)

for some positive constant C2, independent of s.
Proof. The result is immediate by noting that w + f solves the original elliptic

problem (L,Γ)e.

4. Uniformly elliptic boundary value problems. In the remaining sections,
we shall look at boundedness of solutions to uniformly elliptic boundary value prob-
lems. We concentrate on linear second order differential operators. Unfortunately, the
traditional estimates on solutions to elliptic problems of the form (2.10) are dependent
on the argument s. Our focus lies in obtaining estimates that are independent of s.
We begin with some background theory and then show that under certain standard
assumptions, solutions to uniformly elliptic boundary value problems of order 2 with
either Dirichlet, Neumann, or Robin boundary control are uniformly bounded. The
results generalize to higher order uniformly elliptic operators [5].

Let Ω be an open set in �n. A linear second order differential operator in Ω is
defined by

L(x,D) =
n∑

i=1

n∑
j=1

aij(x)Dij +

n∑
j=1

cj(x)Dj + d(x).(4.1)

We assume that the coefficients are sufficiently smooth and that the operator L is
uniformly elliptic in Ω. More precisely,
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[H1a] (smoothness condition 1) The coefficients aij(x) are bounded and absolutely
continuous in Ω̄, and the remaining coefficients are bounded and measurable
in Ω.

[H1b] (uniform ellipticity) Define the principal part of L by

L0(x,D) =

n∑
i=1

n∑
j=1

aij(x)Dij = D′A(x)D,

where A(x) is an n× n positive definite matrix with components aij(x). We
assume that L is uniformly elliptic in Ω. That is, there exists a positive
constant cL such that for all x ∈ Ω, ξ ∈ �n,

L0(x, ξ) ≥ cL|ξ|2.

Our analysis is based on the boundary control system formulation. We shall no longer
refer to the state-space realization. The boundary operator Γ is defined by

Γ(x,D) = b0(x) +

n∑
i=1

b1i(x)Di = b0(x) +B
′
1(x)D,(4.2)

where B′
1(x) =

(
b11(x), . . . , b1n(x)

)
and D′ = (D1, . . . , Dn). So B

′
1(x) = 0 for Dirich-

let boundary control and b0(x) = 0 for Neumann boundary control. We impose the
following condition on the operator Γ:

[H2] (smoothness condition 2) The coefficients of Γ are real. Also, b0(x) ∈ C2(∂Ω)
and b1i(x) ∈ C1(∂Ω) for i = 1, . . . , n.

Estimates of the solution to a uniformly elliptic boundary value problem depend
on regularity of the region Ω.

Definition 4.1 (see [4]). Let Ω be an open set in �n with boundary ∂Ω. Then
Ω is said to be uniformly regular of class Cm if there exists a family of open sets {Oi}
of �n and of homeomorphisms {Φi} of Oi onto the unit ball {y : ‖y‖ < 1} in �n and
an integer N such that the following conditions are satisfied:
[UR1] For each i,

Φi (Oi ∩ Ω) = {y : ‖y‖ < 1, y1 > 0},
Φi (Oi ∩ ∂Ω) = {y : ‖y‖ < 1, y1 = 0}.

[UR2] Let O′
i = Φ−1

i ({y ∈ �n : ‖y‖ < 1/2}) . Then ⋃∞
i=1O

′
i contains the 1/N neigh-

borhood of ∂Ω.
[UR3] Any (N + 1) distinct sets of {Oi} have an empty intersection.
[UR4] Let Ψi = Φ−1

i . Then Ψi,Φi are mappings of class C
m. Let Φik,Ψik be the

kth components of Φi,Ψi, respectively. Then

|DαΦik(x)| ≤M, |DαΨik(y)| ≤M, |Φi1(x)| ≤Mdist(x, ∂Ω)

for |α| ≤ m, x ∈ Oi, ‖y‖ < 1, k = 1, . . . , n, and i = 1, 2, . . . .
In general, it is nontrivial to show that a region is uniformly regular of class Cm.

For our work, we are concerned only with bounded sets Ω in �n and cylinders of the
form Ω × � in �n+1. It was stated without details in [22, p. 237] that for bounded
sets with sufficiently smooth boundary, there exist mappings {Φi} such that [UR2]
holds. We give a more complete discussion of this point. If Ω is bounded, then there
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is a finite open cover for the boundary. If the boundary is sufficiently smooth, then
it is possible to choose a covering such that [UR1] and [UR2] hold. Conditions [UR3]
and [UR4] then hold trivially since the covering is finite. Thus we have the following
result.

Theorem 4.2. If Ω is bounded with sufficiently smooth boundary, then Ω×� is
also uniformly regular.

In addition to [H1a], [H1b], and [H2], we assume, unless stated otherwise, that
Ω, L, and Γ also satisfy the following:

[H3] Ω is bounded and uniformly regular of class C2.
[H4] (root condition) Let L0(x,D) denote the principal part of L(x,D). For every

pair of linearly independent real vectors ξ and η, the polynomial L0(x, ξ+τη)
in τ has an equal number of roots with positive and negative imaginary parts.

[H5] (complementing condition) Let B0(x,D) denote the principal part of Γ(x,D).
Let x be an arbitrary point on ∂Ω and n be the outward normal unit vector
to ∂Ω at x. For each tangential vector ξ �= 0 to ∂Ω at x, let τ̂ be the root of
the polynomial L0(x, ξ + τn) with positive imaginary part. Then τ̂ is not a
root of B0(x, ξ + τn).

If n ≥ 3, then the root condition is satisfied for all uniformly elliptic operators [21,
p. 130]. If the coefficients of L are real, then the root condition is also satisfied when
n = 2.

5. Uniformly elliptic operators with Dirichlet boundary control. It is
well known that the one-dimensional heat equation on a unit interval with Dirich-
let boundary control and point observations is not well-posed with respect to the
usual choice of state space L2(0, 1) [6]. Thus, showing well-posedness of more general
Dirichlet control problems with state-space methods is hampered by the difficulty of
first obtaining an appropriate state space.

In this section we will show that a class of control problems with Dirichlet bound-
ary control do have a bounded input/output map by showing that the associated
elliptic problem is uniformly bounded and hence the transfer function is proper.

Let Ω ⊂ �n, n = 1, 2, 3, let L be a second order differential operator as defined
in (4.1) with d(x) ≤ 0, and define the boundary operator to be

Γ(x,D) = b0(x), b0(x) �= 0 for all x.

We shall show that if Ω, L,Γ satisfy hypotheses [H1]–[H5] and Ω satisfies an additional
assumption, then the solution to the abstract elliptic problem

Lz = sz in Ω,
Γz = u on ∂Ω

}
(5.1)

is uniformly bounded with respect to the supx∈Ω | · | norm. This will imply bound-
edness of the input/output map for the corresponding boundary control system. The
following definition is due to Browder [4].

Definition 5.1. Let Ω be an open set in �n. If for any a ∈ ∂Ω the part of Ω,
∂Ω in some neighborhood of a is expressed as

xi > ψ(x1, . . . , xi−1, xi+1, . . . , xn), xi = ψ(x1, . . . , xi−1, xi+1, . . . , xn),

respectively, for some i = 1, . . . , n and a C2m function ψ, then Ω is called locally
regular of class C2m.

In addition to uniformly regularity of class C2, we further assume the following:
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[H6] Ω is locally regular of class C4.
We will use Proposition 3.4 to show that the solution to the elliptic Dirichlet problem
is uniformly bounded in the C(Ω)-norm. The following result will be used to show that
the solution to the subproblem (L,Γ)e2 satisfies the second condition in Proposition
3.4.

Theorem 5.2 (see [21, p. 216]). Let F ∈ C(Ω̄) and consider

Lw = sw + F in Ω,
Γw = 0 on ∂Ω.

The solution w exists, and w ∈ C(Ω). Furthermore, we have

sup
x∈Ω

|w(x)| ≤ C

|s| supx∈Ω
|F (x)|.(5.2)

To prove boundedness of the input/output map we also require the maximum
principle and existence of a solution to Lf = 0 with a Dirichlet boundary condition.
This will be used to show that the first condition in Proposition 3.4 holds.

The following theorem is an immediate consequence of Theorems 8.6 and 8.12 in
[13]. (The assumptions imposed on L and Ω in [13] are weaker than [H1]–[H6].)

Theorem 5.3. Let L and Ω satisfy assumptions [H1]–[H6], µ ∈ �+, µ �∈ σ(L) be
fixed, and u ∈ H2(Ω); then there exists a unique f ∈ H2(Ω) that solves

Lf = µf in Ω,
f = u on ∂Ω.

(5.3)

Proof. For u ∈ H1(Ω), Theorem 8.6 in [13] guarantees that (5.3) has a unique
(weak) solution f ∈ H1(Ω). Since [H1]–[H3] hold and u ∈ H2(Ω), by Theorem 8.12
in [13] the solution is in H2(Ω).

The norm [·]q−1/2,∂Ω is defined by

[u]q−1/2,∂Ω = inf{‖z‖Hq(Ω); z ∈ Hq(Ω), z = u on ∂Ω}.(5.4)

The space Hq− 1
2 (∂Ω) is the space of functions defined on ∂Ω such that this norm is

finite. For u ∈ Hq− 1
2 (∂Ω), u may be extended to ũ ∈ Hq(Ω) such that ũ|∂Ω = u and

‖ũ‖Hq(Ω) = [u]q−1/2,∂Ω.
Corollary 5.4. Let L and Ω satisfy assumptions [H1]–[H6]. For any µ ∈ �+,

µ �∈ σ(L), and u ∈ H 3
2 (∂Ω), there exists a unique f ∈ H2(Ω) that solves

Lf = µf in Ω,
b0(x)f = u on ∂Ω.

(5.5)

Proof. Since b0(x) ∈ C2(∂Ω) and b0(x) �= 0 for all x ∈ ∂Ω, we have ũ = u
b̃0

∈
H

3
2 (∂Ω). Thus it can be extended to an element in H2(Ω) which we shall denote by

the same symbol. By Theorem 5.3 there exists a unique f ∈ H2(Ω) that solves

Lf = µf in Ω,
f = ũ on ∂Ω.

The following maximum principle is required. The stated assumptions are stron-
ger than those given in [13].
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Theorem 5.5 (see, e.g., [13, Thm. 8.1]). Let f ∈ H2(Ω) satisfy Lf − µf = 0 in
Ω. Then

sup
x∈Ω

f(x) ≤ sup
x∈∂Ω

max{f(x), 0}.

We can now state our main theorem for this section. It implies in particular that
Dirichlet boundary control with point observation is a well-posed control system.

Theorem 5.6. Consider the pair L,Γ with Dirichlet control Γ = b0(x). Assume
that assumptions [H1]–[H6] are satisfied on the region Ω. The operators L,Γ define

a boundary control system with U = H
3
2 (∂Ω), Z = H2(Ω), and H = L2(Ω). The

input/output map of the boundary control system (5.1) is bounded for all observation
operators K ∈ L(C(Ω),Y).

Proof. Let µ ∈ �+ and µ �∈ σ(L), and write (L,Γ) as (L,Γ)e1 and (L,Γ)e2 as in
Proposition 3.4. We will use V = C(Ω). Since Ω ⊂ Rn, n ≤ 3, Sobolev’s imbedding
theorem, e.g., [21, Thm. 3.20], implies that V ⊂ Z. Define C1 = supx∈∂Ω

1
|b0(x)| .

Using Theorem 5.5, we have

sup
x∈Ω

|f(x)| ≤ sup
x∈∂Ω

|f(x)|
≤ C1 sup

x∈∂Ω
|u(x)|

≤ C1‖u‖
H

3
2
.

The latter inequality also follows from Sobolev’s imbedding theorem. Thus, the solu-
tion to the subproblem (L,Γ)e1 satisfies inequality (3.4). Inequality (3.5) then follows
from inequality (5.2). Therefore, by Theorem 3.2 the system transfer function associ-
ated with (L,Γ,K) is proper for all observation operators K ∈ L(C(Ω),Y). That is,
the input/output map of the boundary control system (L,Γ,K) is bounded.

6. Uniformly elliptic operators with Neumann or Robin boundary
control. In this section we will show that a class of control problems with Neumann/
Robin boundary control have a bounded input/output map. In the interests of clar-
ity and brevity we will give only the proofs for second order elliptic operators. The
generalization to higher order operators is straightforward. Details are in [5].

In special cases results have been obtained to these problems by transforming
the boundary control system to state-space form and then using the analyticity of
the underlying semigroup to show well-posedness of the input/output map. The
transformation to state-space form is not necessary. As for Dirichlet problems, well-
posedness for general Neumann problems is shown by direct analysis of the boundary
control formulation.

Let L and Γ be defined as in (4.1) and (4.2). In this section we will assumeB′
1(x) �=

0. Hence Γ represents a Neumann boundary control when b0(x) = 0 and a Robin
boundary control otherwise. We shall show that if Ω, L, and Γ satisfy hypotheses
[H1]–[H5], then the solution to the abstract elliptic problem is uniformly bounded
with respect to the H1(Ω) norm. This implies boundedness of the input/output map
for the corresponding boundary control system.

It is not enough to use regularity of the solution to elliptic problems. We must
show that the solution is uniformly bounded in the parameter s. We first state
two theorems concerning estimates of solutions to elliptic problems. These theorems
are key to showing uniform boundedness of solutions to Neumann/Robin boundary
control problems.
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Theorem 6.1 (see [21, Thm. 4.10]). Let Ω be uniformly regular of class C2 and
L(x,D), B(x,D) be defined as in (4.1) and (4.2). Assume that L(x,D) and Γ(x,D)
satisfy assumptions [H2]–[H5]. Then there exists a positive constant m1 such that for
all z ∈ H2(Ω) the following inequality holds:

‖z‖H2(Ω) ≤ m1

[
‖Lz‖L2(Ω) + [Γz]1/2,∂Ω + ‖z‖L2(Ω)

]
.(6.1)

Theorem 6.2 (see [21, Lem. 5.7]). Let L,Γ and Ω be as defined in (4.1) and
(4.2), and assume that they satisfy assumptions [H1]–[H5]. Let θ ∈ [−π, π) be fixed
but arbitrary and t be a new real variable. Set

Q = Ω×�,
Lθ(x,D) = Lθ(x,Dx, Dt) = L(x,Dx) + exp(iθ)D2

t ,

and define B(x,Dx) to be the extension of Γ(x,Dx) to ∂Q = ∂Ω × �. If Lθ,B, Q
also satisfy [H1]–[H5], then there exists a constant Mθ such that for any z ∈ H2(Ω),
u ∈ H2−mj (Ω)1 satisfying Γz = u on ∂Ω and any s satisfying arg s = θ, |s| > Mθ,
the following inequality holds:

|s|1/2‖z‖H1(Ω) + ‖z‖H2(Ω)≤Mθ

[
‖(L− s)z‖L2(Ω)+ |s|1−mj/2 ‖u‖L2(Ω)+ ‖u‖H2−mj (Ω)

]
.

(6.2)

The outline of the proof is as follows: For any θ ∈ [−π, π), define Q,Lθ, and B by

Q := Ω×�,
Lθ(x,D) = Lθ(x,Dx, Dt) := L(x,Dx) + exp(iθ)D2

t , and
B(x,Dx) := the extension of Γ(x,Dx) to ∂Q = ∂Ω×�.


(6.3)

From Theorem 6.2 we know that if {L,Γ,Ω} and {Lθ,B, Q} both satisfy [H1]–[H5],
then there exists a constant Mθ such that the following a priori estimate holds for
any z ∈ H2(Ω), u ∈ H1(Ω) satisfying Γz = u on ∂Ω and any s satisfying arg s = θ,
|s| > Mθ, θ ∈ [−π, π):

|s|1/2 ‖z‖H1(Ω) + ‖z‖H2(Ω) ≤Mθ

[
‖(L− s)z‖L2(Ω) + |s|1/2 ‖u‖L2(Ω) + ‖u‖H1(Ω)

]
.

If z solves Lz = sz, then

‖z‖H1(Ω) ≤Mθ

(
‖u‖L2(Ω) +

1

|s|1/2 ‖u‖H1(Ω)

)
.

If in addition |s| > 1, then

‖z‖H1(Ω) ≤ 2Mθ ‖u‖H1(Ω) .

We will show that for θ ∈ [−π/2, π/2],Mθ can be chosen independently of θ. This will
imply that the solution to the elliptic problem is uniformly bounded with respect to
the H1-norm and thus the input/output map is bounded for any observation operator
K ∈ L(H1(Ω),Y).

1mj=0 if Γ is the Dirichlet boundary condition, and mj = 1 if Γ is a Neumann or Robin boundary
condition.
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First we show that Q is uniformly regular of class C2 and for each θ ∈ [−π/2, π/2],
Lθ,B, Q satisfy assumptions [H1], [H2], [H4], and [H5]. This ensures the existence of
Mθ.

Lemma 6.3. Let L(x,Dx),Γ(x,Dx), and Ω satisfy assumptions [H1]–[H5]. For
any θ ∈ [−π/2, π/2], define Lθ,B, and Q be as in (6.3). Then Q is uniformly regular
of class C2 and {Lθ,B} satisfy assumptions [H1], [H2], [H4], and [H5] in Q.

Proof. Since Ω satisfies [H3], Q is uniformly regular. Next we show that Lθ

is uniformly elliptic. That is, there exists a positive constant c1 such that for all
(ξ, η) ∈ �n ×� and x ∈ Ω the following inequality holds:

|L0
θ(x, ξ, η)| ≥ c1

(|ξ|2 + η2
)
.

By assumption, there exists a positive constant cL such that for all x ∈ Ω, ξ ∈ �n

|L0(x, ξ)| ≥ cL|ξ|2.
Since the matrix A associated with L0 is positive definite, this means L0(x, ξ) ≥ 0 for
all x ∈ Ω and ξ ∈ �n. Let c = min{c2L, 1}. Then for any (x, t) ∈ Ω×�, (ξ, η) ∈ �n×�,
and θ ∈ [−π/2, π/2], we have∣∣L0

θ

(
(x, t), (ξ, η)

)∣∣2 = |L0(x, ξ) + exp(iθ)η2|2
= |L0(x, ξ)|2 + 2 cos(θ)L0(x, ξ)η2 + η4

≥ c2L|ξ|4 + η4

≥ c
(|ξ|4 + η4

)
≥ c

2

(|ξ|4 + 2|ξ|2η2 + η4
)

=
c

2

(|ξ|2 + η2
)2
.

This implies the inequality

|L0
θ(x, ξ, η)| ≥

√
c

2

(|ξ|2 + η2
)
,

which proves that L is uniformly elliptic in Q. Clearly [H2] holds. Also since n ≥ 2,
n + 1 ≥ 3, the root condition holds. It remains to show that [H5] is satisfied. Let
(x, t) be an arbitrary point on ∂Q, n1 be the unit outward normal vector to ∂Ω at x,
and ξ1 be any nonzero tangential vector to ∂Ω at x. The outward normal unit vector
to ∂Q at (x, t) is then n = (n′1, 0) and any nonzero tangential vector has the form
ξ = (ξ′1, 0). Let τ̂ be a root of B̄0(x, ξ + τn). Then τ̂ is a root of B0(x, ξ1 + τn1),
which by assumption is not a root of L0(x, ξ1 + τn1). This implies that

L(x, ξ + τ̂n) = L(x, ξ1 + τ̂n1) + exp(iθ)(ξ2 + τ̂n2)
2 = L(x, ξ1 + τ̂n1) �= 0.

Hence τ̂ is not a root of L(x, ξ + τ̂n). So {L,B} satisfies [H5].
For each θ ∈ [−π/2, π/2], L,B, Q satisfy [H1], [H2], [H4], and [H5]; thus the

hypotheses of Theorem 6.2 have been justified. It remains to show that Mθ may be
chosen independent of θ in this range. The following lemma is needed to prove this
claim.

Lemma 6.4. Let Lθ(x,D) be defined as in (4.1). Then Lθ is continuous in
θ. That is, for any ε > 0, there exists δ > 0 such that whenever |θ1 − θ2| < δ,
θ1, θ2 ∈ [−π/2, π/2] we have

‖Lθ1v − Lθ2v‖L2(Q) < ε‖v‖H2(Q) for all v ∈ H2(Q).
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Proof. For any 0 < ε <
√
2, choose δ = arccos(1− ε2

2 ), where arccos denotes the
principal branch; then if |θ1 − θ2| < δ and θ1, θ2 ∈ [−π/2, π/2]), we have

‖Lθ1v − Lθ2v‖L2(Q) ≤ | exp(iθ1)− exp(iθ2)|‖v‖H2(Q)

=
√
(2− 2 cos(θ1 − θ2))‖v‖H2(Q)

=
√
(2− 2 cos(|θ1 − θ2|))‖v‖H2(Q).

Since ε <
√
2, δ < π/2; hence the function f(x) = 2 − 2 cos(x) is nonnegative and

monotone increasing on the interval [0, δ]. Thus

‖Lθ1v − Lθ2v‖L2(Q) <
√
(2− 2 cos(δ))‖v‖H2(Q)

= ε‖v‖H2(Q).

For any ε ≥ √
2, choose δ = π/2; then if |θ1 − θ2| < π/2 and θ1, θ2 ∈ [−π/2, π/2]) we

have

‖Lθ1v − Lθ2v‖L2(Q) ≤
√
(2− 2 cos(|θ1 − θ2|))‖v‖H2(Q)

<
√
2‖v‖H2(Q)

< ε‖v‖H2(Q).

Due to Theorem 6.1, for each θ ∈ [−π/2, π/2], there exists a constant mθ such
that for any v ∈ H2(Q),

‖v‖H2(Q) ≤ mθ

(‖Lθv‖L2(Q) + [Bv]0,∂Q + ‖v‖L2(Q)

)
.(6.4)

For each θ, define m(θ) = inf{mθ : inequality (6.4) holds}. The infimum exists since
clearly 1 is a lower bound for mθ. The next theorem proves that m(θ) is bounded
above.

Theorem 6.5. Let m(θ) be as defined above. Then {m(θ);−π/2 ≤ θ ≤ π/2}
is bounded above. Hence there exists a positive constant m̄ such that the following
inequality holds for all θ ∈ [−π/2, π/2]:

‖v‖H2(Q) ≤ m̄
(‖Lθv‖L2(Q) + [Bv]1/2,∂Q + ‖v‖L2(Q)

)
.(6.5)

Proof. Suppose not. Then for each n, there exists θn ∈ [−π/2, π/2] such that
m(θn) > n. The sequence {θn} is bounded; thus it contains a convergent subsequence
{θkn} which converges to θ̄ ∈ [−π/2, π/2]. Theorem 6.1 ensures that m(θ̄) is positive
and finite; thus there exists some n such that m(θ̄) < n. Let ε = 1

m(θ̄)
− 1

n > 0. By

Lemma 6.4, there exists N > n such that for all kn > N (kn are the indices of the
convergent subsequence),

‖Lθ̄v − Lθkn
v‖L2(Q) < ε‖v‖H2(Q) for all v ∈ H2(Q).

Pick a kn such that m(θkn) − 1 > n. By definition, m(θkn) is the smallest constant
such that for all v ∈ H2(Q), inequality (6.4) holds. Thus there exists some v0 ∈ H2(Q)
such that

‖v0‖H2(Q) > (mθkn
− 1)

(‖Lθkn
v0‖L2(Q) + [Bv0]1/2,∂Q + ‖v0‖L2(Q)

)
.
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But then

ε‖v0‖H2(Q) =

(
1

m(θ̄)
− 1

n

)
‖v0‖H2(Q)

<

(
1

m(θ̄)
− 1

m(θkn
)− 1

)
‖v0‖H2(Q)

<
(‖Lθ̄v0‖L2(Q) + [Bv0]1/2,∂Q + ‖v0‖L2(Q)

)
− (‖Lθkn

v0‖L2(Q) + [Bv0]1/2,∂Q + ‖v0‖L2(Q)

)
≤ ‖Lθ̄v0 − Lθkn

v0‖L2(Q)

< ε‖v0‖H2(Q),

a contradiction. Thus m(θ) is bounded above. Let m̄ = sup{m(θ),−π/2 ≤ θ ≤ π/2}.
Then for any θ ∈ [−π/2, π/2] and v ∈ H2(Q), inequality (6.5) holds.

We now state a modification of Theorem 6.2.
Theorem 6.6. Let Ω, L,Γ, (4.1), (4.2) define a boundary control system with

H = L2(Ω) and U = H
1
2 (∂Ω). Assume that [H1]–[H5] are satisfied. Then there exists

a positive constant R such that for any z ∈ H2(Ω), u ∈ U satisfying Γz = u on ∂Ω
and any complex number s on the open right half-plane CR2 := {s : Re s > R2}, the
following inequality holds:

|s|1/2 ‖z‖H1(Ω)+‖z‖H2(Ω) ≤ m
[
‖(L− s)z‖L2(Ω) + |s|1/2 ‖u‖L2(Ω) + ‖u‖H1(Ω)

]
,(6.6)

where m is a positive constant dependent only on L and Ω.
Proof. The proof is along the lines given in [21] except that we show that the

constant is independent of θ. Let ζ be a function in C∞(−∞,∞) such that ζ(t) = 0 for
|t| > 1, ζ(t) = 1 for |t| < 1/2. Let m1 be a constant chosen such that ‖ζ‖H2(�) ≤ m1.

Let m̄ = max{m(θ),−π/2 ≤ θ ≤ π/2} and m2 = max{m̄,m1}. Define

R := largest root of the quadratic r2 − 6m2
2r − 6m2

2.

We note that R is necessarily positive and real. In fact R =
6m2

2+m2

√
36m2

2+24

2 . More-
over, since m(θ) is bounded below by 1, m̄ and hence m2 is always greater than 1.
Thus R > 6. For any z ∈ H2(Ω) and any s ∈ CR2 , set θ = arg s, r = |s|1/2, and
v(x, t) = ζ(t) exp(irt)z(x). Clearly v ∈ H2(Q); hence (6.5) implies

‖v‖H2(Q) ≤ m̄
(‖Lθv‖L2(Q) + [Bv]1/2,∂Q + ‖v‖L2(Q)

)
≤ m2

(‖Lθv‖L2(Q) + [Bv]1/2,∂Q + ‖v‖L2(Q)

)
.(6.7)

Now a lower bound for ‖v‖H2(Q), an upper bound for [Bv]1/2,∂Q, and an upper bound

for ‖Lθv‖L2(Q) need to be computed. The final inequality is then obtained via simple
algebra. First we compute a lower bound for ‖v‖H2(Q). By definition of ‖·‖H2(Q) we
have

‖v‖2
H2(Q) =

∑
|α|+k≤2

∫ ∞

−∞

∫
Ω

∣∣Dα
xD

k
t v(x, t)

∣∣2 dxdt
≥

∑
|α|+k≤2

∫ 1
2

− 1
2

∫
Ω

∣∣Dα
xD

k
t exp(irt)z(x)

∣∣2 dxdt
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=

2∑
k=0

(r)2k
∑

|α|+k≤2

∫
Ω

∣∣Dα
x z(x)

∣∣2 dx
=

2∑
k=0

(r)2k ‖z‖2
H2−k(Ω)

≥ (r)2k ‖z‖2
H2−k(Ω)

for any k = 0, 1, 2. Hence

‖v‖H2(Q) ≥ (r)k ‖z‖H2−k(Ω)

for any k = 0, 1, 2. Thus

3 ‖v‖H2(Q) ≥
2∑

k=0

(r)k ‖z‖H2−k(Ω) .(6.8)

Next we compute an upper bound for [Bv]1/2,∂Q. By definition of [·]1/2,∂Ω we have

for Γz ∈ H2(Ω) such that z = u on ∂Ω, and

[Bv]21/2,∂Q = [ζ(t) exp(irt)Bz(x)]
2
1/2,∂Q

= [ζ(t) exp(irt)u]
2
1/2,∂Q

≤ ‖ζ(t) exp(irt)u‖2
H1(Q)

=
∑

|α|+k≤1

∫ ∞

−∞

∫
Ω

∣∣Dα
xD

k
t ζ(t) exp(irt)u

∣∣2 dxdt
=

∫ ∞

−∞

∫
Ω

|ζ(t) exp(irt)u|2 dxdt+
∫ ∞

−∞

∫
Ω

|ζ(t) exp(irt)Du|2 dxdt

+

∫ ∞

−∞

∫
Ω

|ζ ′(t) exp(irt)u+ irζ(t) exp(irt)u|2 dxdt

≤ m2
1 ‖u‖2

L2(Ω) +m
2
1 ‖Du‖2

L2(Ω) +m
2
1 ‖u‖2

L2(Ω) + 2rm2
1 ‖u‖2

L2(Ω)

+ r2m2
1 ‖u‖2

L2(Ω)

= 2m2
1 ‖u‖2

L2(Ω) +m
2
1 ‖Du‖2

L2(Ω) + (2r + r2)m2
1 ‖u‖2

L2(Ω) .

Since r = |s|1/2 > R > 6, 2r < r2. Hence

[Bv]21/2,∂Q ≤ 2m2
1

(
‖u‖2

H1(Ω) + r
2 ‖u‖2

L2(Ω)

)
≤ 2m2

1

(
r ‖u‖L2(Ω) + ‖u‖H1(Ω)

)2

≤ 2m2
2

(
r ‖u‖L2(Ω) + ‖u‖H1(Ω)

)2

.

Thus

[Bv]1/2,∂Q ≤
√
2m2

(
r ‖u‖L2(Ω) + ‖u‖H1(Ω)

)
.(6.9)

This is the upper bound on [Bv]1/2,∂Q. Now we calculate an upper bound on Lθv.

Substituting the expression for v(x, t) into Lθv, we find

Lθv=ζ(t) exp(irt)(L−r2 exp(iθ))z+2ir exp(iθ)ζ ′(t) exp(irt)z+exp(iθ)ζ ′′(t) exp(irt)z.
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Therefore

‖Lθv‖L2(Q) ≤
∥∥ζ(t) exp(irt)(L−r2 exp(iθ))z∥∥

L2(Q)
+ 2 ‖r exp(iθ)ζ ′(t) exp(irt)z‖L2(Q)

+ ‖exp(iθ)ζ ′′(t) exp(irt)z‖L2(Q)

≤ m1

(∥∥(L− r2 exp(iθ))z∥∥
L2(Ω)

+ 2r ‖z‖L2(Ω) + ‖z‖L2(Ω)

)
≤ m2

(∥∥(L− r2 exp(iθ))z∥∥
L2(Ω)

+ 2r ‖z‖L2(Ω) + ‖z‖L2(Ω)

)
.(6.10)

Also,

‖v‖L2(Q) ≤ m2 ‖z‖L2(Ω) .(6.11)

Substituting inequality (6.8) into (6.7), we obtain

r2 ‖z‖L2(Ω)+r ‖z‖H1(Ω)+‖z‖H2(Ω) ≤ 3m2

(‖Lθv‖L2(Q) + [Bv]1/2,∂Q + ‖v‖L2(Q)

)
.

(6.12)
Next, substitute inequalities (6.9), (6.10), and (6.11) into inequality (6.12) to obtain

r2 ‖z‖L2(Ω) + r ‖z‖H1(Ω) + ‖z‖H2(Ω)

≤ 3m2
2

(∥∥(L− r2 exp(iθ))z∥∥
L2(Ω)

+ 2r ‖z‖L2(Ω) + ‖z‖L2(Ω)

+
√
2r ‖u‖L2(Ω) +

√
2 ‖u‖H1(Ω) + ‖z‖L2(Ω)

)
.(6.13)

After rearrangement we obtain

(r2 − 6m2
2r − 6m2

2) ‖z‖L2(Ω) + r ‖z‖H1(Ω) + ‖z‖H2(Ω)

≤ 3
√
2m2

2

(∥∥(L− r2 exp(iθ))z∥∥
L2(Ω)

+ r ‖u‖L2(Ω) + ‖u‖H1(Ω)

)
.(6.14)

By definition of R we have r2 − 6m2
2r − 6m2

2 ≥ 0. Hence (6.14) implies

r ‖z‖H1(Ω)+‖z‖H2(Ω) ≤ 3
√
2m2

2

(∥∥(L− r2 exp(iθ))z∥∥
L2(Ω)

+ r ‖u‖L2(Ω) + ‖u‖H1(Ω)

)
.

(6.15)
Substituting back s = r2 exp(iθ) above and defining m = 3

√
2m2

2, we have the desired
result.

The boundedness of the input/output map for Neumann boundary control with
observation now follows.

Corollary 6.7. The input/output map of the boundary control system is
bounded for all observation operators K ∈ L(H1(Ω),Y).

Proof. By Theorem 6.6, the solution to the abstract elliptic problem (L,Γ) is
uniformly bounded with respect to the H1(Ω) norm. Hence by Theorem 3.2, the sys-
tem transfer function associated with (L,Γ,K) is proper for all observation operators
K ∈ L(H1(Ω),Y). Thus by Theorem 2.3 the input/output map is bounded to the
boundary control system (L,Γ,K).

Remark 6.8. The main result above is stated for a control space U = H
1
2 (∂Ω).

This space can be regarded as the traces of functions in H1(Ω) (5.4). Consider the
following characterization of these functions.

Theorem 6.9 (see, e.g., [17, sect. 1.1.3]). If a function u defined on Ω is
absolutely continuous on almost all straight lines that are parallel to coordinate axes
and the first classical derivatives of u belong to L2(Ω), then u ∈ H1(Ω).
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Thus, H
1
2 (Ω) includes piecewise continuous functions, provided that Ω is such

that we can extend u into the interior so that it satisfies the above theorem. The
singularities on the boundary of Ω remain.

Remark 6.10. If Γ is Dirichlet boundary control, then mj = 0 in Theorem 6.2.
Using the same technique as Theorem 6.6 we can show that there exists a positive
constant R such that for any z ∈ H2(Ω), u ∈ H2(Ω) satisfying Γz = u on ∂Ω, and any
complex number s on the open right half-plane CR2 := {s : Re s > R2}, the following
inequality holds:

|s|1/2 ‖z‖H1(Ω) + ‖z‖H2(Ω) ≤ m
[
‖(L− s)z‖L2(Ω) + |s| ‖u‖L2(Ω) + ‖u‖H2(Ω)

]
,

wherem is a positive constant dependent only on L and Ω. Unfortunately this implies
the solution to Lz = sz in Ω and Γz = u on ∂Ω satisfies only

‖z‖H1(Ω) ≤ m|s|1/2 ‖u‖H2(Ω) .

So we cannot conclude that the solution is uniformly bounded in the H1-norm. In the
case of Dirichlet boundary control on a one-dimensional rod, it can easily be shown
that the solution to the elliptic problem is not uniformly bounded in the H1-norm.

7. Conclusions. The input/output map and the transfer function are well de-
fined for abstract boundary control systems. We showed that the question of conti-
nuity of the input/output map can be transformed to boundedness of solutions to a
related elliptic problem. It is not necessary to construct a state-space realization.

This approach enabled us to show boundedness of the input/output map for
general classes of boundary control systems involving uniformly elliptic operators
with Dirichlet, Neumann, or Robin boundary control.

We are currently working on extending our approach to problems that are second
order in time.
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