
Strategic Trip Planning: Striking a
Balance Between Competition and

Cooperation

by

Haitham Masaud Amar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2018

c© Haitham Masaud Amar 2018



Examining Committee Membership
The following served on the Examining Committee for this thesis. The decision of
the Examining Committee is by majority vote.

External Examiner
Dr. Baher Abdulhai
Professor, University of Toronto

Supervisor(s)
Otman Basir
Professor, University of Waterloo

Internal Member
Catherine Gebotys
Professor, University of Waterloo

Internal Member
Mohamed Oussama Damen
Professor, University of Waterloo

Internal-external Member
Carl Haas
Professor, University of Waterloo

ii



I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

In intelligent transportation systems, cooperative mobility planning is considered to

be one of the challenging problems. Mobility planning as it stands today is an in-

dividual decision-making effort that takes place in an environment governed by the

collective actions of various competing travellers. Despite the extensive research on

mobility planning, a situation in which multiple behavioural-driven travellers partic-

ipate in a cooperative endeavour to help each other optimize their objectives has not

been investigated. Furthermore, due to the inherent multi-participant nature of the

mobility problem, the existing solutions fail to produce ground truth optimal mobil-

ity plans in the practical sense - despite their claimed and well proven theoretical

optimality.

This thesis proposes a multi-module team mobility planning framework to address

the team trip planning problem with a particular emphasis on modelling the inter-

action between behaviour-driven rational travellers. The framework accommodates

the travellers’ individual behaviours, preferences, and goals in cooperative and com-

petitive scenarios. The individual behaviours of the travellers and their interaction

processes are viewed as a team trip planning game. For this game, a theoretical anal-

ysis is presented, which includes an analysis of the existence and the balancedness of

the final solution.

The proposed framework is composed of three principal modules: cooperative trip

planning, team formation, and traveller-centric trip planning (TCTP). The cooper-

ative trip planning module deploys a bargaining model to manage conflicts between

the travellers that could occur in their endeavour to discover a general, satisfactory

solution. The number of players and their interaction process is controlled by the

team formation module. The TCTP module adopts an alternative perspective to the
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individualized trip-planning problem in the sense that it is being behavioural driven

problem. This allows for multitudes of traveler centric objectives and constraints, as

well as aspects of the environment as they pertain to the traveller’s preferences, to be

incorporated in the process. Within the scope of the team mobility planning frame-

work, the TCTP is utilized to supply the travellers with personalized strategies that

are incorporated in the cooperative game. The concentration problem is used in this

thesis to demonstrate the effectiveness of the TCTP module as a behavioural-driven

trip planner.

Finally, to validate the theoretical set-up of the team trip planning game, we

introduce the territory sharing problem for social taxis. We use the team mobility

framework as a basis to solve the problem. Furthermore, we present an argument

for the convergence and the efficiency of a coarse correlated equilibrium. In addition

to the validation of a variety of theoretical concepts, the territory sharing problem

is used to demonstrate the applicability of the proposed framework in dealing with

cooperative mobility planning problems.
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Chapter 1

Introduction

The trip planning problem has become a pivotal consideration of modern daily ac-

tivities. The process of mobility planning often includes mobility resource selection

and cost estimation. Factors such as temporal budgets and anticipated arrival times

are examined to determine whether the trip is successful. In this sense, trip planning

can be perceived as an individual endeavour. Nevertheless, due to its nature, the trip

planning problem is a competitive process in which multiple individuals compete for

the same resources. Each decision made by a traveller has an impact on the system

and affects other travellers. Hence, there is a need to simultaneously address both

facets of this problem.

This chapter presents an overview of the trip planning problems and discusses

the motivation and objectives of this research work. The chapter concludes with the

outline of this thesis.

1.1 Overview and Motivation

Various solutions have been proposed to approach the problem of mobility planning,

ranging from Personal Navigation Devices (PNDs) to the various navigation appli-
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CHAPTER 1. INTRODUCTION

cations now available for smart devices [1, 2]. These solutions approach the mobility

planning problem from a single traveller’s perspective. They plan trips independent

of the mobility actions and the decisions of other travellers. Thus, they fail to produce

an optimal solution in a practical sense.

The main shortcoming of existing mobility planning solutions, with few exceptions

such as the work in [3], is that they do not consider the trip planning decisions

made by other travellers. To a large extent, this is caused by their perception of

mobility planning as an individual behaviour-driven and time-constrained process;

for example, this can be observed in the work presented in [4–7]. This view has arisen

due to certain technological limitations pertaining to areas such as communications

between travellers, data exchange protocols, and the scarcity of the computational

power. Although many of these constraints have been reduced or even eliminated,

the perception of mobility planning as an individual effort has persisted. Based

on this view of planning, it is natural for conflicts to arise among the various trip

plans produced by different travellers. These conflicts are best demonstrated by

examples of road congestions, intensive road traffic, inefficient parking facilitation,

among others. There are numerous situations in which the relationship between

travellers is reduced to a competitive process. This competitive process has the

potential to be counterproductive to the overall objective of efficient mobility.

Even though the trip planning problem is viewed as an individualized problem,

the awareness of its multi-participant nature is practically evident and observed.

Regular changes in network conditions often occur due to the decisions made by other

travellers. For instance, in dangerous weather conditions, safety becomes a significant

concern. Certain routes are closed and others have warnings advising travellers to

seek alternatives. As a consequence, many travellers may arrive at the same decision

regarding the safest path given their perceived knowledge of the impact of weather

2



CHAPTER 1. INTRODUCTION

on their commuting options. This unawareness of others’ decisions may transform

what initially would have been considered a safe path into one with increased risk

due to congestion. In other words, due to the fact that roads are inherently shared

resources, the individualized choice of alternatives has the potential to worsen the

situation for all network users.

The above-mentioned scenario of traffic management during weather anomalies

signifies the need for a group-centric method in which drivers/travellers coordinate

among themselves to obtain a robust optimal decision. Crowd coordination and coop-

eration is one of the next logical steps of informed trip planning. Modern vehicles are

equipped with various means of communication. With applications such as collision

avoidance, vehicles can communicate to facilitate cooperation. Furthermore, once a

communication channel is established, travellers can share their intentions, desires

and future plans in real time.

The technological advancements in fields of communication, localization, and com-

putational processes have allowed the travellers to engage in a cooperative trip plan-

ning. For example, social based navigation solutions, such as WAZE, in which trav-

ellers communicate among themselves to enhance a multitude of performance factors,

have gained adoption due to their better informed trip navigation guidance [8]. These

technological improvements and social changes have enabled improvements in trip

planning. Crowdsourced data is another example of the transition from traditional

trip planning to a more dynamic and personalized approach, as can be seen in the

study presented in [4].

Moreover, in the various intelligent transportation systems, there are several ex-

amples of team trip planning. The vehicle routing problem for a group of taxis

exemplifies a case in which the number of taxis or moving vehicles are optimized

to match the required demand and the available routes. Nevertheless, much of the

3



CHAPTER 1. INTRODUCTION

conducted work on this problem has regarded the vehicles as a part of a fleet that

is managed ultimately as a single body, and therefore the individual decisions of the

drivers are not considered. Another example is that of traditional taxi companies, in

which the dispatcher makes the routing decisions for all drivers [9]. Furthermore, in

reality, the majority of the taxis are in fact free agents who are executing their own

agendas and do not necessarily abide by the commands received from their dispatcher.

The best example of a situation in which car drivers are behaving as free agents is

that of online transportation network companies. Other applications can be observed

in the field of ad-hoc commercial advertisements, election campaign volunteers, and

snowplough contractors, among others. The common factor among all these appli-

cations is the issue of coordinating between different agents who are aiming to solve

different problems such that their independent actions do not negatively impact each

other. Therefore, regardless of the application, there is a fundamental need to devise

a framework to solve the team trip planning problem.

The primary challenging aspect of solving the team trip planning problem is the

lack of a comprehensive platform that captures the needs of the travellers while facil-

itating a team approach to the problem. Satisfying the needs of the many competing

agents in any process is a complex task. Furthermore, for travellers to cooperate,

they must be first motivated. For example, the knowledge that their individual gains

would be greater through cooperation than if they were to act selfishly can be an

effective motivational factor.

The main goal of this thesis is to develop a multi-traveller framework that can

facilitate cooperation between travellers so that all travellers can achieve their mo-

bility objectives, subject to individual constraints and strategies. This mobility goal

attainment recognizes the potential for conflict between the mobility demands of

the different travellers and as such, attempts to strike a balance between these de-

4



CHAPTER 1. INTRODUCTION

mands to ensure optimal resource utilization. In order to realise this goal, I develop

a multi-traveller Team Mobility Planning (TMP) framework that approaches the trip

planning problem in the form of a game. A game theoretic approach is developed

to manage the problem of cooperation between conflicting travellers. This planning

problem is referred to as the team trip planning game.

Game theory is chosen due to its ability to capture the complex dynamics of the

team trip planning problem. The individual travellers can be viewed as players, their

chosen plans can be formulated as strategies, and the problem can be formulated as

a non-cooperative trip planning problem that revolves around the attainment of an

equilibrium. The game-theoretic model can be used to improve the personal out-

comes for the travellers and the overall state of the system. Furthermore, under

appropriate conditions, these travellers are provided with the necessary tools for co-

operation. The outcome of such cooperation may be similar to or even better than

their non-cooperative outcomes. Hence, to solve the team trip planning problem, it

is imperative that it is addressed through both disciplines of game theory: the co-

operative and the non-cooperative. In this thesis, travellers are assumed to be able

to engage in a collaborative problem solving discourse in which they compete for

resources and collaborate to accomplish their individual goals.

1.2 Research Objectives

The research reported in this thesis has three goals: 1) to consider the trip planning

problem as a cooperative game for which a solution model must be designed, 2) to

consider the trip planning problem as an individualized problem that is approached

as a non-cooperative game, and 3) to merge both concepts of cooperation and com-

petition into the solution. These three goals can be achieved by meeting the following

5



CHAPTER 1. INTRODUCTION

objectives:

1. Perform an extensive background survey and literature review on trip planning.

The survey should cover the various game theory-based trip planning problems

and solutions attempts .

2. Develop a game formulation for the team trip planning problem that encom-

passes the individual and team aspects of the problem. The mathematical

formulation of the problem should facilitate the development of framework for

solving the problem.

3. Develop a multi-module team mobility framework to solve the team trip plan-

ning problem. To address the aspects of cooperation and competition, this

framework should include a traveller-centric trip planning module as well as a

cooperative trip planning module.

4. Study the balancedness of the trip planning game and develop an argument

regarding the existence of a solution for this game.

5. Develop a bargaining model to solve the game theoretic part of the cooperative

trip planning problem. Conduct experimental scenarios that demonstrate the

performance of the developed bargaining model and demonstrate its efficiency.

6. Develop a traveller centric-trip planning (TCTP) system that can be used to

produce personalized strategies for the team trip planning game.

7. Use the TCTP system as a method to analyze and solve the concentration

problem as a non-cooperative trip planning game.

8. Formulate a territory-sharing trip-planning game that can be used to demon-

strate the cooperative and competitive aspects of the game.

6
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9. Use the proposed framework to demonstrate that by using the team mobility

framework, a solution for the cooperative and the non-cooperative team plan-

ning game exists and can be found.

1.3 Thesis Organization

This thesis is composed of the following chapters:

Chapter 1 presents the motivation behind the research work as well as its objectives.

Chapter 2 provides a literature review of various topics related to the research.

Chapter 3 presents a formulation for the team trip planning problem. It presents a

model formulation and guidelines for the developed solution. A multi-module frame-

work named Team Mobility Planning (TMP) is introduced in this chapter.

Chapter 4 discusses the balancedness of the trip planning game and develops an

argument regarding the existence of a solution for this game. It also presents the

bargaining based solution model for the team trip planning game. Experimental sce-

narios are presented to demonstrate the performance of the proposed solution model.

Chapter 5 presents a traveller-centric trip planning module and discusses the effect

of its deployment on the concentration problem and the welfare of the traffic system.

Chapter 6 presents the territory sharing game as a case study to demonstrate the

effectiveness of the team mobility planning framework. The notion of regret-models

and coarse correlated equilibrium is also discussed in this chapter.

Chapter 7 provides a summary of the contributions of this research work and dis-

cusses area for future research.

7



Chapter 2

Background and Literature Review

2.1 Introduction

Trip planning is a multifaceted research topic and many of its variants found in the

literature remain challenging problems. The Travelling Salesman Problem (TSP) and

the Vehicle Routing Problem (VRP) are good examples. Moreover, trip planning is

inherently concerned with routing and path finding. Routing and path finding are

presented in various fields, such as transportation, communication, and networking.

Thus, to better understand the trip planning problem, there is a need to study its

variants along with the various solutions and algorithms developed over the past

decades.

Predominantly, different trip planning problems have been regarded as pure opti-

mization problems, for which various solution algorithms have been developed. Ad-

ditionally, game theory, as a method of problem modelling, was successfully deployed

to solve the trip planning problems. This chapter discusses trip planning in terms of

both disciplines of operational research and game theory, with particular emphasis

on the latter.

In order to deduce the method of finding a solution, pure optimization approaches

8
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develop the (Multi) objective(s) function and problem constraints. In the game the-

oretic approach, the analysis process is more complicated. In addition to the need

to define the objective function and constraints, it is necessary to define the game as

cooperative or non-cooperative. Once a game is defined, many issues and challenges,

such as the existence and the stability of the solutions, need to be addressed. Further-

more, the different problem formulations, whether pure optimization or game theory,

share similarities even if the problem formulations appear to be different. Because of

these similarities, the chapter covers many trip planning problems in terms of formu-

lation, solution model development, existence, stability, and convergence analysis. A

comprehensive review and understanding of the recent research activities in this area

is presented. The following topics are covered in this chapter:

• A brief review of the trip planning problem and some of its variants as combi-

natorial problems.

• Game theory: a background study on game theory is provided in order to

properly understand the theory and introduce relevant terminologies that are

particular to this field of study.

• A description of cooperative and non-cooperative trip planning games is pre-

sented. Several examples of such games are also discussed.

• Two prominent examples of cooperative and competitive planning games are

reviewed: bargaining games and congestion games.

• The challenging issues of trip planning that have motivated the research of this

thesis are presented.

The literature work related to the various aspects of this research work can extend

9
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beyond the scope of this chapter. Therefore, in situations when the need arises, the

appropriate related research will be covered in the other chapters.

2.2 Trip Planning as Optimization Problem

Due to its inherent importance in the daily activity of individuals and organization,

trip planning has become an active area of research, particularly in recent years. Trip

planning is largely discussed in the literature as an optimization problem in which

objective functions and constraints are formulated and utilized in the search for an

optimal solution. In other words, trip planning can be viewed as an optimal routing

problem.

The most well-known trip planning problem is the shortest route problem. In this

problem, a single traveller aims to minimize his/her trip cost as the trip starts from

a known pre-determined starting point to a known pre-determined ending point. For

a directed graph G(V,E), the shortest path problem can be formulated using linear

programming as the following:

minimize
∑
i,j∈E

Ci,jxi,j (2.1)

subject to:

xi,j > 0 (2.2)∑
i,j∈E

xi,j −
∑
i,j∈E

xj,i =


1, if i = S;
−1, if i = D;
0, otherwise.

(2.3)

where Ci,j is the cost of using link i → j, S,D are the source and destination, and

xi,j is the decision variable.

One of the most widely-known techniques to solve this problem is Dijkstra’s algo-
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rithm [10]. Dijkstra’s algorithm searches for the shortest path in a graph-modulated

map. In general, a cost is associated with each link in the graph, and the route with

the minimum cost is chosen. The parameters based on which the cost is calculated

differ depending on the nature of the problem.

Another trip planning problem is the vehicle routing problem (VRP). In VRP,

the objective is to coordinate a fleet of vehicles in order to determine an optimal

route. The VRP can be modified to accommodate a number of constraints, one

of which is a time window (VRPTW). Much of the research work on this problem

has been directed at developing the best algorithm for solving this problem in a

reasonable time [11–14]. The VRPTW is a multi-objective problem that can be used

for formulating and solving the trip-planning problem. Many techniques have been

proposed in the literature for solving the VRPTW, such as the ant colony technique,

in which the use of pheromones enables a fleet of vehicles to cooperate in order to

determine the optimal route. In the implementation of the ant colony approach, an

ant represents a vehicle. The goal is that through the use of pheromones, the fleet of

vehicles will learn which routes effectively minimize the number of required vehicles

and the total cost of the trip [15]. Genetic algorithms (GAs) provide a heuristic

approach for solving the VRPTW. With GAs the solution space is represented as

chromosomes, and at each generation, two parents mate based on specific criteria

such as fitness-based selection [16]. For example, in [16] a two-phase GA approach

was proposed, in which each chromosome represents a cluster of routes, and the first

gene in the chromosome represents the first customer to be served. In the VRPTW,

there are multiple participants with multiple objectives.

The Travelling Salesman Problem (TSP) is also considered to be one of the most

famous optimization trip planning problems [17]. The most interesting aspect of the

TSP as a trip planning problem is that there are numerous problems that can be
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described similarly to the TSP and can thus be approached in a similar manner. For

instance, in [18], Vansteenwegen et al. describe a tourist trip planning problem as

one in which tourists attempt to travel from a starting point to an end point while

crossing specific points of interest within a certain time window. The optimization

solution described in [18] can be used to solve this tourist trip planning problem. This

problem, which shares similarities with the TSP, is called the Orienteering Problem

(OP); however, the traveller is not required to traverse all points of interest.

Another well-known routing problems is the max flow problem, first described

in [19]. This problem discusses the issue of maximizing the flows in networks given

their capacity. The problem can be stated as the following: given a graph G(V,E),

flow f , and link capacity Lc, what is the greatest achievable flow in the network given

its capacity?

In the context of vehicle routing, trip planning has received significant attention.

A vast proportion of the research focused on routing decisions is concentrated on

trip planning based on trip times that are fixed [10] or variant [20]. When other

parameters are considered, such as safety, comfortability, or monetary budgets, most

of the existing research has been directed towards the consideration of each of these

requirements as a separate objective. Hence, for all of these parameters, the routing

problem is solved as a multi-objective problem. In [21], Blue et al. proposed the use

of a bi-objective path search approach for in-vehicle routing. The first objective was

to minimize the trip time, while the second objective was to minimize the complexity.

Complexity is viewed with regard to lane change, merge and weaving movements such

that driving straight ahead has 0 complexity index and performing a U-turn has a

complexity index of 0.5. The final decision with regard to the best route is made by

performing trade-offs between trip time and trip complexity. Similar work for cyclist

routing with a bi-objective function is found in [22], in which monetary and time
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based objective functions are considered separately for cyclist route choice. In [23],

Raith et al. viewed trip times and toll costs as separate route choice objectives and

aimed to develop heuristic algorithms to obtain a solution for the Multi-Objective

Traffic Assignment (MTA) problem. Trip times and toll cost values are considered

as cost functions. Iteratively, the shortest and the longest link with positive flow are

found for every route and are equilibrated by shifting some of the flow from the longest

link to the shortest link until their travel times are equal and the solution is found.

Even though the main concept in the aforementioned research was to formulate the

routing problem as a multi-objective problem, the actual research only involved the

use of a bi-objective problem. Similarly, in [24] Duque et al. propose a bi-objective

exact algorithm that aggressively prune dominated solutions while at the same time

minimizing the trip cost and trip time objectives.

The research studies discussed thus far have the drawback of formulating each cost

function, or demand that might arise, as a separate objective function. For a multi-

tude of demands, the optimization problem could become computationally infeasible.

A sensible approach is to find a generalized cost function that accommodates many

primary cost functions, such as toll cost and trip complexity, and then the optimiza-

tion function will have to manage single or a limited number of objective function(s).

Such an approach is called multi-criteria based vehicle routing. For example, in [25]

Chen et al. have presented a generalized cost function in which a weighted sum of

time and toll cost functions across possible road segments is computed.

An additional problem found in the reviewed literature is that travellers make their

decisions to incur a change in the state of the network. This change does not consider

the decisions made by others that will also change the state of the environment (i.e.,

it is entirely possible that the factors on which basis a decision is made are changing

as well, which could lead to results that are not optimal). To resolve this problem
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of conflicting interests and actions, trip planning and its variants have been studied

using game theory.

2.3 Game Theoretical Representation of Trip Plan-

ning

In the pure optimization approach, multiple-planning decisions are made without con-

sideration for their effects on each other. Game theory can be employed to represent

the individual traveller’s decision based on pure optimization as well as the consider-

ation of other travellers. In other words, game theory provides mathematical tools to

analyze situations in which there are several decision-makers with conflicting interests

that lead them to compete, or mutual benefits that causes them to cooperate [26]. If

these decision-makers were to compete among themselves to gain access to resources,

the non-cooperative game theory assists a decision-maker in establishing the optimal

system design in terms of individual planning (i.e., choosing strategies), as well as in

terms of infrastructure design.

In terms of infrastructure design, it could be argued that constructing more roads

and bridges will improve the overall travelling performance. Nevertheless, an ap-

proach that guarantees effective planning is needed. Game theory provides the nec-

essary analytical tools to monitor and assist with the upgrading process [27]. These

tools and functionalities not necessarily as available or as powerful when used with

traditional pure optimization approaches. Furthermore, in an environment that per-

mits the communication between travellers, cooperation in planning is an intuitive

approach that can be observed in the day-to-day practices. The notion of team work-

ing is an integral part of the cooperative game theory formulation. For travellers,

depending on their geographical location and their previous experiences, knowledge
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sharing can enhance the overall trip planning process. Game theoretical representa-

tion provides the necessary tools to formulate and manifest a cooperative trip planning

approach.

Additionally, game theory provides a variety of methods through which trip gains

or costs can be distributed among travellers within the same team in a rational and

efficient manner. Travellers, through the utilization of game theory, improve their

chances of paying less or gaining more by joining a group than by acting alone. The

next section provides a background review on game theory.

2.4 Background on Game Theory

Modern game theory studies can be traced back to the early years of the twentieth

century in Zermelo’s work in [28] (translated in [29]), Von Neumann’s work in [30], and

most notably in Von Neumann and Morgenstern’s seminal work in [31]. A number

of definitions have subsequently been proposed on the matter of games and game

theory. Osborn and Rubinstein define a game in [32] as “a description of strategic

interaction that includes the constraints on the actions that the players can take

and the players’ interests, but does not specify the actions that the players do take.”

In [26], Myerson defines game theory as “the study of mathematical models of conflict

and cooperation between intelligent rational decision-makers.” These definitions serve

the purpose of this chapter, as the majority of the work presented hereafter is based

on these concepts.

Games are generally categorized into two types: non-cooperative and cooperative

[32]. Non-cooperative games are those that involve the analysis of one player’s best

response given the other players’ anticipated actions. The situation in which no

player wishes to unilaterally change his/her decision is called a state of equilibrium.
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In non-cooperative games, various equilibria can be used to represent the solution.

The best-known equilibrium is Nash’s equilibrium. Nash’s equilibrium exists in a

game when each player has a correct expectation of the other players’ behaviours and

acts rationally. Player are behaving rationally, as indicated in [31], when they make

decisions in order to maximize their gains and satisfy their preferences.

A Nash equilibrium always exists whenever there is a game that is convex and has

continuous and semi-concave set of utility values [32]. However, in strictly competi-

tive games, such as the zero sum games, a pure Nash equilibrium is non existent. In

games with pure strategies, all strategies, and associated utilities, are deterministic,

(i.e., a player knows which strategy to use for any particular situation). When play-

ers are permitted to have mixed strategies, which are defined through a probabilistic

distribution over pure strategies and their associated utilities instead of finding a

deterministic payoff in the game, the expected payoff is statistically computed. In

general, for n-players in a game, a mixed Nash equilibrium always exists [31]. Never-

theless, even if the existence of an equilibrium is established, the challenge truly lies

in how to find this equilibrium.

Non-cooperative games are mostly concerned with choosing the best strategy in

a game in order to find an equilibrium state. Although information about the other

players’ previous actions, preferences, and expected payoffs are largely known, not

every equilibrium correspond to the optimum outcome. In non-cooperative games,

due to various “bad” strategic choices, players may ultimately arrive at a bad equi-

librium. On the other hand, in cooperative games, players can review their possible

strategies and outcomes. Once a situation is found in which everybody benefits, an

enforced binding agreement between players is established.

The principal challenge in cooperative games is to find a fair allocation for the

joint cost or profit. The set of all feasible allocations is called the core. The core
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was first defined for n-players participating in non zero-sum games by Gillies in [33].

The process of core formulation needs to satisfy aspects of efficiency and rationality

for all players. Furthermore, issues such as core balancedness require attention in the

process of finding and establishing the final agreement between players. Players, for

whom a fair allocation is sought, are grouped in teams named coalitions. Coalitions

can be a set of one or more players. The set with all player is called the grand

coalition.

2.5 Non-Cooperative Trip Planning

Non-cooperative trip planning games provide a powerful analysis tool, through which

an understanding is gained of not only the direct trip planning decision in terms of

goal achievement, but also the effect these decisions might have on the surrounding en-

vironment as well as the other involved travellers. One of the earliest non-cooperative

trip planning theoretic formulations is the Wardrop equilibrium [34]. In this game, no

traveller can obtain a better journey time by changing routes. In his work, Wardrop

addressed the issue of redistributing the flow of traffic among alternative routes, which

led to two criteria. The first criterion, (i.e., the Wardrop equilibrium), states that

“The journey times on all the routes actually used are equal, and less than those

which would be experienced by a single vehicle on any unused route.” The second

criterion states that the average journey time for all journeys is minimum.

The problem addressed by the Wardrop equilibrium is stated as follows: given the

flow value Q and the constants b1, b2,....,bD, p1, p2,....,pD for route i, where pD and bD

are constants related to the road attributes which routes should be taken to obtain

the same similar average journey time, t, on all routes and what the value of t.
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The journey time, ti, for the route i is computed as the follows:

ti =
bi

1− qi
pi

(2.4)

where qi is a part of the flow Q such that

D∑
1

qi = Q (2.5)

For b1 < b2 < b3.... < bD, for route i, bi is the journey time if the additional flow on

that route, qi, is 0. For j routes in which t > bj and t ≥ bj+1, if all these routes are

in use, t is always greater than bi. Thus, for route i

qi = pi(1−
bi
t

) where i = 1, 2, 3, ..., j (2.6)

For an appropriate t, Q can be computed for j routes as the following:

Q =

j∑
i=1

pi −
1

t

j∑
i=1

pibi (2.7)

In order to solve for several values of t, we can compare the different Q values against

the various t values. The value that corresponds to the given Q is the solution of the

problem.

The Wardrop equilibrium is based on the assumption that travellers are not co-

operating among themselves to find the solution. In this sense, the Wardrop equi-

librium can be considered as a special case of Nash equilibrium. Fisk, in [35], noted

that Wardrop equilibrium is identical to Nash equilibrium, such that it considers the

traveller as a player in a routing game. In [36], Smith altered Wardrop equilibrium

by stating that “A traffic distribution is a Wardrop equilibrium when no driver has

a less costly alternative route.”
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2.5.1 Non-Cooperative Networks: Selfish Routing

Road networks in which travellers are sharing resources and selfishly attempting to

improve their trip times are referred to as non-cooperative networks. Selfish routing

games provide a valuable insight into non-cooperative games. In the next section,

non-cooperative networks and selfish routing are discussed in detail.

2.5.1.1 Non-Cooperative Networks

In [37], Feldmann et al. studied a non-cooperative network with parallel links con-

necting one source to one destination. Each traveller has a strategy that, based on

certain probabilistic distribution, chooses the route that minimizes their cost. The

cost in this network is the maximum latency of the feasible links. The routing prob-

lem in [37] is treated as a scheduling problem that does not initially seek an equilib-

rium. Nonetheless, the authors present an algorithm for Nashification- the process

of converting a non-equilibrium solution into a Nash equilibrium. The Nashification

algorithm suggests that the user should perform selfish greedy routing in every link

until an equilibrium is found. This algorithm comes with the cost of having an expo-

nential execution time. Once the Nashification process is implemented, the research

in [38], which discussed the same game setup, can be used to establish the uniqueness

and the complexity of the resulted equilibrium. In [38], Fotakis et al. provide a proof

of existence for pure Nash equilibria for routing games and provide an algorithm to

compute the equilibria in polynomial time.

In [39], a measure of performance labelled as the social cost is defined as the ex-

pectation of maximum latency caused by the traffic. This measure is considered as a

distinguishing factor between the various selfish routing models proposed in the liter-

ature. (i.e., the value of this measure indicates the goodness of any non-cooperative
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trip planning game). In [40], a hybrid model is proposed in which Wardrop equilib-

rium and the model presented in [39] are used. Their hybrid model is similar to the

one in [39] except for the social cost, which corresponds to the sum of the expected

individual costs. The equilibrium that has the highest social cost is considered as the

worst Nash equilibrium in the game. The ratio of the highest and lowest social cost

is denoted as the price of anarchy [41,42].

There are several issues that are usually investigated when analyzing non-cooperative

networks. The intuitive approach to reducing the journey times might lie in expand-

ing the infrastructure, such as constructing roads, bridges. Regardless of the financial

feasibility of this solution, it is not a guaranteed strategy. Braess paradox describes a

situation in which adding resources to a network may in fact cause the travel times to

increase. In [43], Steinberg and Zangwill have shown that the Braess paradox is a well

likely phenomenon and it might happen under certain conditions. Non-cooperative

networks are discussed as methods of analysis of the different possible situations in

the attempt to find the system’s equilibrium. The decision-maker could exploit this

knowledge to produce a policy guaranteeing a successful planning. For instance, by

examining the Braess paradox and the price of anarchy, a better network infrastruc-

ture design can be made in a form of educated decisions regarding the overall network

layout such that the overall traffic is optimized. Furthermore, a dispatcher who is

tasked with sending a flow of traffic can make a better decision of how to split the

traffic among different paths throughout the understanding of the existing equilibria.

2.5.1.2 Selfish Routing

The research work on selfish routing has been motivated by several practical net-

working problems such as the Braess paradox. Feldmann et al. have noted in [44]

that despite the existence of Braess paradox, there are strict sub-networks that have
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improved performance. Nevertheless, the lack of regularization for large networks in

the sense of the availability of an established centralized decision-making system has

made it difficult for the improved performance in the sub-network to converge into

overall improved performance. For large networks with a dynamic flow of large num-

ber of travellers, it is practically impossible to form a central unit for decision making

to control the flow of traffic. Hence, the travellers resort to their selfish strategies

to maximize their gains and minimize their trip costs. Selfish games are used to

characterize and investigate the impact of these selfish strategies.

Selfish routing games were first introduced by Koutsoupias and Papadimitriou in

their seminal work on non-cooperative games in [39]. These games were introduced

to investigate the consequences of the absence of coordination between the users in

a network, even when their information and computational resources are unlimited.

In non-cooperative networks, travellers attempt to send their traffic through shared

links from a source to a destination while attempting to satisfy personal objective

functions. Travellers do not consider the global performance of the network when

they make their decisions. They will attempt to selfishly devise their own strategies

to minimize their cost by using as many pure strategies as the number of available

links [45]. In [46], Roughgarden categorizes selfish routing games into two main

categories: 1) non-atomic selfish routing games in which users contribute a negligible

amount of traffic to the network, and 2) atomic selfish routing games in which users

contribute a non-negligible amount of traffic. The non-atomic equilibrium flow can

be described as the following: for pairs of paths between sources and destinations

(S1, D1), ......, (Sk, Dk), these pairs are called commodities. For commodity i, the set

of all paths is ρi from Si to Di and the feasible path between Si to Di is P such that

P ∈ ρi. There exists an edge cost ce and edge flow fe such that fe =
∑

P :e∈P fP where

fe is the summation of the traffic from all paths that has the edge e. Furthermore,
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there exists an inelastic traffic Tr such that
∑

P∈ρi fP = Tri . The flow f for all feasible

paths ρi where i ∈ {1, 2, 3, , , , , k} such that P , P̃ ∈ ρi. The optimum flow is the flow

that satisfy the following:

cP (f) ≤ cP̃ (f) (2.8)

Non-atomic selfish routing games are concerned with traffic flow according to the

network structures rather than the players. However, since players affect the flow

in the network in the atomic selfish routing games, the equilibrium flow for these

games is presented differently. The commodities in this type of game correspond to

the players rather than to the network. For the feasible flow f for the atomic selfish

routing game, f is traffic flow in equilibrium if, for every player i and every path

P, P̃ ∈ ρi of Si and Di paths, and f
(i)
P > 0:

cP (f) ≤ cP̃ (f̃) (2.9)

The term f̃ is the same as f . However, when f̃
(i)
P = 0, we have f̃

(i)

P̃
= ri. Extensive

survey on atomic selfish routing games is found in [47].

2.5.2 Applicability of Non-Cooperative Routing Games

In the process of implementing non-cooperative routing games in real applications,

several issues need to be addressed; this includes issues such as who the players are,

what are the payoffs, and what are the available actions. According to these issues,

a game can be appropriately defined [48]. In this section, a variety of examples

describing non-cooperative routing games is reported.

In [49], Levinson introduces a two-player congestion game. In this game, the

available strategies consist of the departure times. Each player has the choice to

either leave early or on time. Strategies in this game describe the action taken by
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both players to depart earlier, on time or late. The actions are made independently

such that if one player decides to leave earlier, the other player still has the option

to leave earlier, late, or on time. For different journey times, different equilibria are

reported in [49]. A different type of routing game reported in the literature describes

a situation in which a traveller plays against the environment. In such games, the

environment is viewed as an evil entity - a demon - whose aim is to cause the traveller

to lose. At the same time, the traveller attempts to minimize his/her loss according

to the available strategies. An example of these types of game representation of trip

planning is the work of Colony in [50]. In this work, a traveller is playing against the

nature, represented by traffic flow, which has an effect on the driver’s tension. When

the flow increases, the tension also increases along with the traveller’s losses. The

outcome of this game is expected to be in the form of Nash equilibrium. In [51], Bell

describes a zero-sum game in which the traveller is playing against an evil entity. The

game involves using certain routes as strategies. The travellers attempt at achieving

his/her goal by choosing the best routes, while the evil entity is intent on maximizing

the trip cost by maximizing the cost of some of these routes. The player and the

evil entity can only guess each other’s actions and behave accordingly. The goal is

to find a mixed Nash equilibrium; a point at which neither the evil entity nor the

traveller is able to maximize/minimize the total trip cost. The solution for this game

is formulated as the following: for the probability of link i to be chosen, pi, and the

probability of scenario j in which qj and hk represent the probability of path k to

be chosen, link i has the cost value of cij, and path k has the cost value of gkj. In

addition, we have

C =
∑
ij

pi ∗ cij ∗ qj (2.10)

where C is the expected trip cost.

If C∗ is the solution for the traveller and D is the solution for the evil entity, they
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can be found using linear programming as the following:

min
hk

C∗ (2.11)∑
k

gkj ∗ hk − C ≤ 0 (2.12)∑
k

hk = 1 (2.13)

hk ≥ 0, ∀, k (2.14)

and

max
qi

D (2.15)∑
j

gkj ∗ qj −D ≤ 0 (2.16)∑
j

qj = 1 (2.17)

qj ≥ 0, ∀, j (2.18)

The next section investigates parts of the literature regarding cooperative trip

planning.

2.6 Cooperative Trip Planning

In cooperative trip planning games, it is possible for the players to negotiate their

policies and strategies and to ultimately establish an enforceable agreement. The key

issue is the distribution of the rewards/cost among the players. Other issues include

the formulation of the game and definition the players. For example, if the game is

represented by a graph, players might be assumed to be situated along the vertices or

the edges to denote their ownership of these vertices or edges. The ownership of these

resources should limit, the problem of competitiveness between players. Certainly,
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players may share the ownership of some resources. Through the addressing of these

two issues, another problem related to mechanism of creating a group of players can

be addressed. These issues are discussed in this section a particular focus on concepts

such as the balancedness of a game and its convexity. A game is balanced if its core

is a non empty one; and a game is totally balanced if every sub game has a non

empty core. The core of a trip planning game is also investigated in this section.

Furthermore, several examples of known trip planning games are reviewed in this

section in order to stress the aforementioned concepts of balancedness and revenue

sharing. The following section commences by reviewing examples of shortest path

games.

2.6.1 Shortest Path Games

The shortest path problem as reviewed earlier is a 5-tuple problem Σ = (E,V ,L,s,t).

It has five main elements: 1) the starting point s; 2) the ending point t; 3) the set

of nodes V ; 4) the set of edges E; and 5) the link cost or simply its length L. The

network is represented by a directed graph G(E, V ).

In [52], Fragnelli et al. presented a class of shortest path games as the following:

in this game, edges in the set E are owned by a finite set of players N according to

the following mapping: o : E → N such that o(e) = i (i.e., player i owns the edge

e). Now, for a path P , a set of players owning nodes in this path is denoted by o(P ).

Players can send goods on their owned paths to generate a gain value of g. If there

is a coalition, S ⊂ N , that owns a path, such that o(P ) ⊂ S transfers goods along

its own paths to generate a gain, g, then the shortest path cooperative situation, σ,

can be defined as a 4-tuple game, (E,N, o, g). The gain of a coalition is represented
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by the following characteristic function:

vσ(S) =

{
g − LS Ls < g

0 otherwise
(2.19)

where LS is the distance, which can be viewed as the cost of the paths owned by the

coalition S, and vσ(S) is the characteristic function of the Transferable Utility (TU)

game.

The above described game is shown to coincide with a class of monotonic games

in which larger coalitions have larger gains. This outcome will lead to a situation in

which the core is found to be empty- the game is deemed to be imbalanced. Fur-

thermore, since monotonic games are not guaranteed to be balanced, two restrictions

were imposed to prove the balancedness of the shortest path game: 1) For σ and

(N, vσ) to be non-trivial, σ has to have profitable paths, vσ > 0. . In other words, for

all games, g ∈ [0,+∞). 2) Let σ be a non-trivial set in which a shortest-veto (s-veto)

player is a player ∈ N who owns at least a node in every shortest path in Σ. In other

words, for player i, v(N/i) = 0. V is a set of s-veto players. A game is balanced if

V is not empty and every profitable path of σ has a node owned by an s-veto player.

These two strong restrictions have to be imposed in order to have a balanced shortest

path game. In this game, the gain is not associated with the players but rather with

the coalitions.

In [53], Voorneveld and Grahn have presented a shortest path game in which

each player has a reward. The shortest path problem can be described as a 5-tuple

game (N, V, (Ai)i∈N , w, (ri)i∈N) where for a player, i, Ai ⊆ V × V is a directed arc

in the network, and V is a set representing all nodes in the network including s and

t. (wi)i∈N denotes the cost of using a link in the network by player i. (ri)i∈N is a

reward assigned for a player i where ri ∈ R+. Many differences are found between

this definition of the shortest path game and the one in [52]. In [53], players own
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vertices vs edges in [52]. Furthermore, an edge in [53] can have more than one owner.

The shortest path game (N, v) is defined as:

∀S ∈ 2N \ {∅} : v(S) = max {r(S)− c(S), 0} (2.20)

This game is monotonic. Thus, to achieve the non-triviality, the following assumption

is made:

0 < c(N) < r(N) (2.21)

This assumption implies that the reward of the grand coalition is greater than the

cost incurred by the coalition’s trip, S ∈ 2N \ {∅}. The cost of the coalition S that

uses path P can be computed as the following:

cost(p) =
m−1∑
k=1

w(ik, (vk, vk+1)). (2.22)

c(S) =

{
minp∈P (S) cost(P ) ifP (S) 6= ∅

∞ otherwise
(2.23)

The core is defined in this work as:

C(N, v) =

{
x ∈ RN |

∑
i∈N

xi(N) = v(N) and
∑
i∈S

xi(S) ≥ v(S), ∀S ∈ 2N \∅

}
(2.24)

2.6.2 Travelling Salesman Games

Travelling salesman games have received significant attention as a routing game due

to its popularity in the operational research studies. In [54], Potters et al. describe a

fixed route travelling salesman game in which a round trip from s to t is attempted

while dividing the total trip cost among the participating players. If this game has a

non empty core, then a solution for the traditional travelling salesman problem can
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be found. The core for this game is defined as

Ck(c) =

{
x ∈ RN |

∑
i∈N

xi(N) = ck(N) and
∑
i∈S

xi(S) ≤ ck(S), ∀S ∈ 2N \∅

}
(2.25)

If ck is the cyclic trip cost from the home city s and the city k, the core allocation

x = {x1, x2, , , , xk} has to satisfy the condition that xk ≤ ck and
∑

i∈N xi = ck(N).

This game has no apparent reward. Sponsors pay at most the cost for the trip from

the home to the destination city in a form of a reward. The routes in these games

are predefined which means that the players in the coalitions have no choice but

to leave their coalition in order to form a better one. In [55], Estevez-Fernandez

et al. proposed a similar game with a reward sharing scheme that has the core

as defined in Equation 2.24. An interesting theorem presented in this paper states

that all travelling salesman games with revenues have a non-empty core, given that

the conditions of rationality and efficiency exist. However, these conditions do not

guarantee the uniqueness of the solution.

Moreover, in nearly all these games, the number of players is an important factor

contributing positively or negatively to the balancedness of a game. For example,

the game in [54] is shown to be balanced for only 3 players. In [55], the number of

players for which the game is guaranteed not to have an empty core is not explicitly

indicated. Nevertheless, numerical examples show that a non-empty core exists for

3-player and 4-player games. Furthermore, in [56], Borm et al. demonstrated the

example of a travelling salesman game in which the game might have an empty core

for 6 players.

One of the most important issues in cooperative games with distributed costs/revenues

is the question of how to assign the revenue/cost among players in the grand coalition

N . Shapley value is an approach that allows for the distribution of the costs among
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players in certain coalitions while satisfying the following conditions: 1) efficiency,

2) symmetry, 3) additivity, and 4) the irrelevant player property [52]. The Shapley

value is computed for player, i, as follows:

Φi(N, v) =
1

N !

∑
S⊆N\{i}

|S|!(|N | − |S| − 1)![v(S ∪ {i})− v(S)] (2.26)

Shapley value is computed such that when a player i participates in a game, his/her

average contribution is [v(S ∪ {i}) − v(S)]. This value is multiplied by the possible

ways in which a coalition can be sorted without having the player as a part of it. This

value is multiplied by the possible ways in which a coalition can be sorted without

having player i being as a member. The result is then multiplied by the possible ways

of creating a coalition excluding i and S ((|N | − |S| − 1)!). The Shapley value is

the average of all collations’ contributions. For every convex game, a Shapley value

always exists in the core.

2.6.3 Bargaining Games

The discussion thus far has focused on the solutions for cooperative games with side

payments (i.e., transferable utilities). However, it remains to be determined how these

solutions can be found. An applicable model that will be used in this thesis to solve

the team mobility game is the bargaining game model.

The bargaining model is one of the earliest solution models in cooperative games

described by Nash in [57] and later extended by extended by the same author in [58].

In this model, rational players will present their sets of anticipations and attempts

to reach a satisfactory agreement. Nash described a threat model by which, in 2-

person games, each player has an anticipation that he/she wishes to satisfy, while

weighing the threat posed by the other player. Both players will exchange their
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threats in the form of mixed strategies. The players then cease all communications

and act independently. If the players find themselves in a situation in which they

can retaliate against the opposing party’s threat and satisfy their anticipation, then

a point of agreement is found. The threat is used to enforce an agreement. Nash’s

model was extended to an n-person bargaining game by Harsanyi in [59]. In his

work, Harsanyi suggested that players could be grouped in syndicates (commonly

referred to as coalitions). Each syndicate accommodates a group of players who

agree to maximize the syndicate’s overall interest. This model uses mixed strategies

as threats which the players use against any player who might jeopardize the gain

of the syndicate. Various extensions of Nash’s bargaining model can be found in the

literature in order to resolve the scenario where there is incomplete information [60] or

to alter some of Nash’s axioms. For instance, In [61], Kali and Smorodinsky replaced

the axiom of independence and irrelevant alternatives with the monotonicity axiom.

Recently, in [62], Hart and Mas-Colell proposed a commitment procedure for

the bargaining game. They argued that in Non Transferable Utility (NTU) games,

coalitions might be difficult to construct due to the possibility that each player cannot

gain more rewards or pay less cost in comparison to other players. This argument

can be refuted if on the basis that solution in bargaining games “does not exclude

cases where, in the end, only one individual could have benefited because the ‘fair

bargain’ might consist of an agreement to use a probability method to decide who

is to gain in the end. Any probability combination of available anticipations is an

available anticipation.” [57]. Furthermore, contrary to the theorem presented by

Estevez-Fernandez et al. in [55] concerning side payments, the effect of side payments

on the final outcomes is another possible action in the bargaining game. Thus, the

lack of a side payment in a game should not diminish the possibility of forming a

coalition or finding a solution for the game.
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2.6.4 Congestion Games

Congestion games, first described by Rosenathal in [63], are potential games in which

players’ payoffs are affected by the resources they own and the sharing status of these

resources. As more players share the same resources, the efficiency of these resources

decreases. For instance, routes between two points are shared by the travellers. As

more travellers use the same routes, the delay times increase accordingly.

Congestion games in this sense are usually viewed as non-cooperative games and

used in the analysis of the price of anarchy and the price of stability for the network.

However, recently, a cooperative approach to solve this problem started to gain atten-

tion in the literature. In [64], Hayrapetyan described a model in which players who

share the resources, i.e., the routes, start forming coalitions. Various coalitions are

formed on this basis start to selfishly compete to maximize their objective functions.

The aim is that if coalitions were able to maximize the welfare of their participants,

the over all gains will outweigh the individual losses. In [65], Fotakis discusses the

similarity of cooperative congestion games with their non-cooperative counterparts

while demonstrating important issues such as the existence of perfect Nash equilib-

rium (PNE) and the convergence of the final solution. Cooperative congestion games

share similarities with Harsanyi’s bargaining models, and the only difference is the

method by which a coalition (syndicate) is created.

2.7 Behavioural Driven Trip Planning

The analysis of the human behavioural impact on the process of trip planning can not

be extricated from the analysis of team trip planning and selfish planning. Therefore,

understanding the various underlying factors affecting the behaviours involved in trip

planning and their influence on the entire process is of paramount importance.
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A number of researchers have outlined the effect of travellers’ experience and

behaviour on trip planning and the available planning alternatives. Ben-Akiva et al.

describe in [66] a model that conceptualizes the dynamic behaviour of the drivers. In

this model, travellers identify their trip goals in the form of trip times, trip destination,

and budgetary constraints. These goals are processed based on decision rules in

order to produce a single suggestion. This model would assist in predicting the

traveller’s behaviour-driven impact on traffic according to the available information.

In [67], Adler et al. presented a methodological model based on conflict arousal and

motivation to analyze the en-route driver’s behaviour, and its subsequent impact on

traffic. In [68], Feng and Mingzhe described a traveller-behaviour analysis model

that utilizes the Bayesian theory and the decision field theory to predict and explain

the traveller’s behaviour based on his/her routing preferences. The preferences are

limited to one criterion per route such as speed and distance.

Arentaze presented in [69] an adaptive personalized travel information system that

models an Advanced Traveller Information System (ATIS) system to respond to the

traveller’s preference. The model uses Bayesian based method to approximate the in-

dividual preferences of each driver based on repetitive sampling. The estimation unit

is central and is tasked to deal with multiple inquiries simultaneously. Further efforts

were made to model the ATISs according to the behaviour of travellers. For instance,

in [70], Jufen and Guiyan presented a navigation model that identifies possible routes

based on their expected travel times as well as possible changes in the journey times.

User behaviour is defined by their tolerance to the changeability of journey times,

with the assumption that travellers are not pre-informed about these changes and

can only respond based on their predictions of these changes. However, this study

does not consider the fact that modern ATISs have access to online information, and

if there is a change in traffic flow, travellers will have knowledge instead of the predic-
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tion regarding the changes. Furthermore, by defining the behaviour of the travellers

in the context of their tolerance towards possible changes in the trip times, they over-

look other travel factors such as monetary budgets, comfortability, the availability

of transportation modes, safety, and route familiarity, among others. Ben-Elia and

Sheftan maintained in [71] that, in addition to the attitude towards taking risks in

trip planning, the amount, nature, and completeness of the provided information to

the travellers all play a pivotal role in the trip planning process. Travellers are more

inclined to react quickly in a rational way to the changes in the planning factors that

might affect their plans, if the correct information is provided. Rationality in [71] is

only seen as the compliance of the travellers with the best provided plan. Various

simulation studies can be found in [72], which evaluate the travellers’ decision making

process under various risk assumptions. When travellers are faced with certain risks,

their response in terms of aversion is observed. Risk is modelled in their work in terms

of information uncertainty such as the uncertainty of the arrival time. Nonetheless,

the travellers’ personal behaviour regarding the trip planning is not proactively in-

cluded in the implementation of the trip planning solution. Alternatively, most of

the available ATISs process traffic in the same manner for all travellers regardless of

their personal preferences. Subsequently, travellers who share the source and desti-

nation areas are often presented with the same advice, which generates a number of

problems [73].

The term “behaviour” in this research refers to the travellers’ personal preferences

towards routing. The satisfaction of these preferences can ultimately determine the

success of a trip. Furthermore, since travellers’ rationality should only be viewed in

terms of goal achievement, their preferences (i.e., goals), and travelling behaviours

should play a key role in deciding their routing alternatives. This behaviour-driven

planning vision is not a substitute for the existing ATISs, but it is complementary.
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The behaviour-driven planning can be seen as an additional layer between the ATIS

and the travellers, which acts as a proxy for the travellers in terms of processing the

available information.

2.8 Outstanding Issues and Motivation

There are many issues that usually arise in trip planning systems. These issues

have influenced the proposed trip planning framework. Regardless of the nature of

the trip planning approach, whether good or bad, certain issues persist. One of

these issues is the over saturation problem. This problem arises from the travellers’

mismanagement of the information regarding their trips [66]. The problem is a man-

machine interaction problem. The cognition ability and the travelling experience of

the user would affect the trip planning decision [74]. Mitigating this issue is difficult

since it is related to the amount of control the trip planning system designer needs

to give to the user. Furthermore, even with effective trip planning, some problems

are deemed to be intrinsically related to the process. Intelligent systems often make

similar decisions under similar circumstances. For instance, in a situation where

travellers are receiving accurate information about traffic in real-time, the majority

of travellers will make the accurate decision of using an alternative route with the

least amount of traffic, which will eventually cause traffic oscillation. This problem

is called the overreaction problem. There are many solutions that have been devised

to resolve this problem, one of which is to utilise the non-cooperative game trip

planning model. In this solution model, through their navigation systems, travellers

can anticipate the possible action(s) of other travellers and act accordingly [75].

Trip planning is largely dependent on real-time information and individual pref-

erences among the travellers. Thus, it is relatively acceptable to assume that most
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travellers will choose the best possible paths for their journeys. Departure times are

chosen based on their path choices and expected trip times. However, travellers with

similar preferences and who have access to the same travelling information will tend

to choose similar paths. This situation often results in congestion [66] and is generally

referred to in the literature as the concentration problem. While commenting on the

Comprehensive Automobile Traffic Control System (CACS) implemented in Japan

during 1970s, Kawashima noted in [76] that as the number of vehicles equipped with

navigation system increases, the overall traffic management efficiency decreases. The

reported navigation systems provided route suggestions based on the shortest route

approach. This observation can be extended to the more recent and advanced trip

planning systems. Ben-Akiva suggested in [66] that some form of directive planning

could be beneficial in reducing this problem. Directive routing can be achieved most

effectively through central systems. Nevertheless, this solution has been shown to be

impractical and virtually infeasible. In [77], Chang et al. suggested that the travelling

options should be diversified so that drivers can choose from alternative paths from

the same source to the same destination.

The overreaction problem and the concentration problem may seem similar, al-

though this is far from the reality. The overreaction problem is a situation-pertinent

event. Once a triggering condition is established, such as congestion or safety haz-

ards, the rationality of the system will create the overreaction problem. On the other

hand, the concentration problem is the natural outcome of using a rational intelli-

gent system. Intelligent systems are one of the reasons that congestion exists, where

the overreaction is caused by events such as congestion. The resolution of these three

problems exemplifies the goal of the research in this thesis. In order to avoid the over-

saturation problem, the trip planning system must be able to incorporate cognitional

ability and human expertise to influence the trip planning decision. Furthermore, to
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avoid the problems of both overreaction and concentration, the trip planning system

should be capable of correctly anticipating the actions of other travellers or allowing

them to coordinate among themselves in order to appropriately direct the traffic and

avoid congestion. Furthermore, to deal with the various team mobility problems, any

solution has to view the problem as a resource sharing problem. The developed frame-

work in this research is designed to achieve a cooperative trip planning system that is

both rational and influenced by the travellers’ preferences and demands. Moreover,

the framework is designed to address the problem as a resource sharing problem that

can be solved through competition between travellers or cooperation between groups

of travellers, when applicable.

2.9 Summary

This chapter covered a wide range of topics related to trip planning. Two areas

of research were discussed, namely pure optimization-based trip planning and game

theoretic-based trip planning. For each area, a background survey was conducted and

a variety of trip planning problems were reviewed in terms of problem formulation,

solution modelling, as well as the existence and the stability of the final solution.

There are several similarities between some of the reviewed trip planning games

and the problem investigated in this thesis. These similarities have assisted in the de-

velopment of the mathematical formulation of the team trip planning game. However,

to the best of the author’s knowledge, there is no existing research on cooperative

trip planning that suggests a functional framework that addresses the problem of

team trip planning from the stage of trip inquiry through to the stage of trip decision

making; a framework that handles tasks such as trip information gathering, initial

trip planning, and conflict identification and resolution. The work in this thesis aims
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to construct a fully workable solution that resolves these issues using a unified frame-

work that consists of multiple modules, while also addressing the theoretical issues

covered in this literature review.
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Chapter 3

Team Mobility Planning: A Game
Theoretic Approach1

3.1 Introduction

Trip planning games have, to a large extent, been regarded in the literature as non-

cooperative games. In nearly all instances of such a representation, the travellers are

treated as a passive component of the game: the aim is only to analyze and optimize

the environment’s resources. This does not mean that using the cooperative approach

is a futile endeavour. It is indeed more challenging and exceedingly more complicated

to implement. However, with efficient planning, this approach can yield positive

results. The rationale is that cooperation is an integral part of the evolution of nearly

all aspects of technology and problem solving. The team-trip planning problem is no

exception to this rule.

In this chapter, I view the team trip planning game as a cooperative game of

competing travellers. I describe a team trip planning game in which travellers ini-

tially, selfishly, aim to plan a trip that matches their needs considering the state of

1The research work in this chapter has appeared in part in [78]
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the existing environment. I demonstrate that the selfish but rational choices of var-

ious travellers could be detrimental to the other travellers’ optimality. I argue that,

through negotiation, each traveller may eventually profit either by improving upon

his/her individual optimum gain or, at a minimum, by retaining his/her individual

optimum gain. A multi-module framework named Team Mobility Planning (TMP)

is described in this chapter.

3.2 Team Trip Planning: Problem and Model De-

scription

3.2.1 Problem Formulation

Consider a group of N travellers, TR = {tr1, tr2, ., tri, ., trN}, in which a traveler tri

is contemplating a trip from an initial location stri to a final destination f tri . Traveler

tri can make the trip by following path ptri ∈ P tri . P tri denotes the feasible paths

between stri to f tri that are available to tri. There is a certain cost value ctri associated

with each path ptri . ctri is a function of several factors including transportation modals

used to complete the trip (e.g, public vs private), environmental conditions along the

path, as well as traffic conditions. The notion of cost in this work is multi-aspect,

in the sense that it explicitly quantifies monetary costs, temporal costs, safety costs,

and comfort costs, to the extent that a multi-criteria cost formulation is employed to

facilitate the trip route optimization process. The concept of doctrine is introduced to

capture travellers’ preferences, demands, and constraints. For each path ptri , we use

γtri to denote traveler tri’s doctrine for this path. Γtri denotes the set of all doctrines

associated with tri’s feasible paths P tri . The traveler tri’s desirable route can then

be stated as

ptriOpt = Min
∀ptrik ∈P

tri

Υ(stri , f tri ,Γtri) (3.1)
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where Υ represents a selfish selection process by which an optimum path is chosen.

ptrik represents a possible path, and P tri represents the set of all paths. A selfish

selection process is a process in which the drivers attempt to maximize their benefits

regardless of the impact of their chosen actions on the system- negatively or positively.

For N travellers, their interaction process and their travelling decisions must be

formulated such that optimizing traveller tri’s plan does not negatively impact other

travellers’, tr−i, chosen routes. To deal with these kinds of interactions, we define a

team trip planning game. The team trip planning game, Σ, is a 4-tuple (G, Γtri , stri ,

f tri) such that:

• G is a directed acyclic graph that includes all possible routes, P tri . For each

traveller tri, s
tri and f tri are defined.

• Γtri is a traveller selfish assessment process which assigns a non-negative value

to each road segment, lpkj , denoting the cost of this segment.

A solution set of paths P tri is defined for the game Σ such that each path, ptrik

connecting stri and f tri , is composed of connected links l
p
tri
k
j | lp

tri
k
j ∈ Lp

tri
k . The cost of

these paths is ctripk = Σ
|Lp

tri
k |

j=1 l
p
tri
k
j ∗ξr, where ξr is a weight value that reflects the degree of

preference that each traveller has for a certain path. For the mobility planning game

Σ, traveller tri has an ordered set of strategies:
{
P tri : P tri =

{
ptri1 , ptri2 , , , , ptrin

}}
in

which
{
ptrik � ptri−k : ptrik = ptriOpt for tri

}
. Travellers own road segments, lpkj s, according

to a mapping function o : Lpk → TR such that o(lpkj ) = tri (i.e., road segment lpkj is

chosen by traveler tri as a possible path). For any path, pk, o(L
pk
S ) is a set of connected

segments satisfying certain travelling criteria and owned by a group of travellers.

Suppose that for each traveller tri there is a travelling cost ctripk and mobility plan-

ning reward Dtri
Rpk

. Both cost and reward values are non-negative,
{
ctripk , D

tri
Rpk
∈ R+

}
,
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and they belong to the same currency domain. For example, if the reward is monetary,

the cost should be also monetary. For Dtri
Rpk

> ctripk , traveller tri is able to generate

profit. Furthermore, assume that a group of travellers, i.e., coalition S ⊂ N , through

certain agreements, can generate a profit using only paths P S owned by the coalition

through certain agreements; for example, the set of paths P is owned by a coalition S

if o(P ) ⊂ S. A situation in which there exists a successful team trip plan is called a

team trip planning game (N, vσ). vσ is a characteristic function for this game, which

is computed as follows:

vσ(S) =

{
ζ(cSP , DRS

) if S owns P S ∈ Σ, and ζ(cSP , DRS
) > 0

0 otherwise
(3.2)

Where ζ is the mapping function which associates every coalition S with a non-

negative value according to cSP and DRS
.

The cost of each path, ctripk , for traveller tri, is not independent from its reward

value, Dtri
Rpk

. Thus, it is necessary to define a positive function, for the coalition S,

that defines the relationship between cSP and DPRS
. Furthermore, assume that the

ctriP 6= c
tr(−i)

P and Dtri
Rpk
6= D

tr(−i)

Rpk
. This game should be considered a game with Non-

Transferable Utility (N-TU). In this cooperative game, the solution, i.e., the core, is

described as follows:

core =

{
x ∈ RN |

∑
i∈N

xi(N) = v(N) and
∑
i∈S

xi(S) ≥ v(S) ∀S ∈ 2N \∅

}
(3.3)

where
∑

i∈N xi(N) = v(N) guarantees the efficiency of the outcome, and
∑

i∈S xi(S) ≥

v(S) ∀S ∈ 2N \∅ guarantees the stability of the game.

Furthermore, each traveller, tri, has a set of strategies based on which the decision

of the best path, ptrik , can be obtained. For each traveller, tri, there is a finite non-

empty set of actions, paths, P tri . For each path, there is a payoff or a utility function
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u, such that u: P tri → R. Paths in P tri are associated with preference relation %

such that u(ptrii ) ≥ u(ptrij ) if ptrii % ptrij . Cost functions and rewards can correspond to

utility values, and the ordering of P tri is conducted through the knowledge of %(tri).

Moreover, P tri can be expanded to include a non-route related actions. The chosen

departure and the expected arrival times for a trip can be considered as strategic

actions, which might change the outcome of the game. For traveller, tri, P
tri can

be ordered according to %(tri) such that ptrik is better than ptrik+1 iff u(ptrik ) ≥ u(ptrik+1).

This game is described as (N,P, u) game.

3.2.2 Team Trip Planning Model Formulation

For each traveller, tri, the problem of finding the best route can now be stated as

follows: Given a graph G = (V,E), where V is the set of all nodes (vertices) in the

graph, and E denotes all edges in the graph. The graph represents an area of interest

P (stri , f tri) that includes the starting point stri and the destination point f ti . This

area of interest is defined prior to the commencement of the team trip planning game

in order to limit the search space, as shown in Figure 3.1 .

The goal is to find the best path, ptrxOpt for traveller trx with minimum cost value, ξr,

for n travelling options such that ptrxOpt ∈
{
ptrx1 , ptrx2 , , , ptrxn

}
. Based on the preferences-

based ordering, ptrxOpt = ptrx1 . The multi criteria team trip planning problem is formu-

lated to reflect Equation 3.1 such that

ptrxk = min
∑
∀i,j∈E

ξrij xij (3.4)

which can be described as a minimum cost optimization problem. The paths with

the minimum cost can be ranked in order of the incurred cost. The cost values can

be subjective and vary from one traveller to another.
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(a) Road network map covers the area of interest taken from Google Maps.
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(b) A schematic graph corresponding to the road network of interest.

Figure 3.1: Mapping a satellite map to graph based on the area of interest.

For a team of travellers, {tr1, tr2, , , , , trN}, an indication of common interest is

the utility function U = ω(η, ptr1i , ptr2j , , , , ptrNn ) where ω is a concave function that

is differentiable over ptrij s such that ptrij ∈ P tri . η is the state of the environment

and corresponds to a value computed based on trip attributes such that ω(η, ptrij ) =

utri(pj). In the best case scenario, the actions of each traveller are independent
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from the actions of other travellers and do not affect the state of the world (i.e.,

ηtr1(tr2, tr3, , , trN) = ηtr1) such that

U =
∑
i,j

ω(ηtri , ptrij ) (3.5)

The formulation in Equation 3.5 corresponds with v(N) = v(s) : s = SGND in

Equation 3.3. Where SGND is the grand coalition that includes all travellers.

The optimization problem should be defined as being user-centric with user-

specific constraints. Therefore, there is no guarantee that a conflict-free outcome

will emerge. Furthermore, conflicts can sometimes occur regardless of the abundance

of existing paths. For example, if one path is more attractive than the other paths,

most drivers will choose this path, thus resulting in conflicts. Nevertheless, it is im-

portant to note that the drivers make their decisions independently from each other,

such that the rationality of these decisions is not compromised. Once the drivers

arrive at their own personal decisions, the developed cooperative solution offers a

procedure by which their conflicts are mitigated. The developed framework is capa-

ble of solving each traveller’s mobility problem, according to the objective function

defined in Equation 3.4, and of the determining of the proper team arrangement such

that U is maximized or minimized depending on the application. Additionally, this

process, includes an appropriate definition of the relationship between the travellers

and the impact of each traveller on the others’ expected outcomes.

Example

To illustrate the trip planning problem, consider the following scenario in which only

two travellers are driving within the same area and heading to the same destination. In

this scenario, according to our problem formulation, these two drivers have different
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concerns, preferences, and understandings regarding their preferred routes. Thus,

the cost of using each road segment is dependent on the driver, as seen in Figure 3.2.

Assume that the factors, other than the traffic, contributing to the cost are fixed for

this trip and do not change throughout the duration of the trip. Furthermore, if the

traffic increases by 1 vehicle, the cost increases by 3 points for both drivers.

For traveller tr1, P
(tr1) =

{
p
(tr1)
1 , p

(tr1)
2 , , , , p

(tr1)
n

}
such that
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Figure 3.2: Example of two competing travellers.

p
(tr1)
1 = s→ A→ C → B → t (3.6)

p
(tr1)
2 = s→ A→ C → t (3.7)

.

.

p
(tr1)
n−1 = s→ C → D → E → t (3.8)

p(tr1)n = s→ D → E → t (3.9)
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and for tr2, P
(tr2) =

{
p
(tr2)
1 , p

(tr2)
2 , , , , p

(tr2)
n

}
such that:

p
(tr2)
1 = s→ D → C → B → t (3.10)

p
(tr2)
2 = s→ D → C → t (3.11)

.

.

p
(tr2)
n−1 = s→ A→ C → E → t (3.12)

p(tr2)n = s→ D → E → C → t (3.13)

The price model for this example consists of two components: the individual price

as per user and the price incurred due to the conflict. Therefore, implicitly for this

example, the order of preference is established according to the cost. Rationally, both

travellers would choose a preferred path ptrkOpt = ptrk1 , for k = 1, 2. However, if they

meet at point C at the same time, the cost of the next segment will increase by 3

points if it is selected by both. If one of them used the segment prior to the other

traveller, the cost for the other traveller would increase. Hence, one of them at least

will have his/her plan de-optimized. In the worst case scenario, with no agreement or

negotiation, both travellers will choose C → B → t and the overall cost will increase

by 6 points. For both travellers, many of the less desirable paths would be cheaper.

This example is relatively simple, and the cost increase might not be significant.

Nonetheless, scaling this example up to N travellers and to many other types of cost

factors will result in a significantly more negative scenario. A solution for this example

may lead to the necessity to find an agreement such that one traveller will transfer the
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ownership of p1 to the other traveller in exchange of some form of compensation. In

this case, tr1 and tr2 have formed a coalition based on mutual interest. Furthermore,

the set Atrk can include possible starting trip times. A change in one of the traveller’s

starting times may avert the possibility of both travellers using the same segment

at the same time. If this choice is to be made independently by each traveller, this

would be a non-cooperative game.

3.3 Team Mobility Planning (TMP) Framework

To address the team trip planning game and its variety of potential classes, a multi-

module framework is developed along the lines of the defined team trip planning

game, as depicted in Figure 3.3. This framework is a conceptual description of how

the team trip planning game will be handled, while addressing various game theoretic

issues. Some of these issues are as follows:

• One of the most important conditions of game theory is the assumption that all

players are rational. Rational players aim to optimize their objective function(s)

based on pre-defined criteria.

• Effective trip planning that is influenced by the traveller’s personal preferences

is a challenging process to model. In the developed framework, trip planning is

a traveller-centric process. Human expertise and understanding is incorporated

into the process.

• The developed framework should have a mechanism that can be used for the

identification of potential participants in the trip planning game.

To address these challenges, among others, the following description of the developed

multi-module framework is presented:
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x� Source (S)
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Trip Environment
 Observational Attributes

Figure 3.3: Schematic of the Team Mobility Planning (TMP) Framework.

3.3.1 Cooperative Trip Planning Module

In this module, the final trip planning decisions are made. The route assignment,

the resource allocation, and the final cooperative operations are also performed. This

module deploys the bargaining game as a cooperative approach to resolve the conflicts

between the travellers. The cooperation notion is held under the strong assumption

that there is always a binding agreement between the travellers and the coalition (i.e.,

once a final decision is made, all travellers affected by that decision will, with no ex-

ception, follow through with their agreed upon actions). Furthermore, in conjunction

with the team formation module, the process of coalition creation is implemented.

The creation of coalitions is achieved primarily by means of negotiation between the

travellers.
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3.3.2 Team Formation Module

This module represents the existence of a medium through which the drivers are

identified as travellers and as such, can be grouped into coalitions. Their preferences,

interests, geographical proximity, and their threats against each other are moderated

through the medium. The team consisting of all travellers defined in this module is

named the Grand Coalition. The other smaller coalitions are defined in the coopera-

tive trip planning module.

In this developed work, the travellers are using vehicles for the purposes of their

commutes. Maps are represented by graphs G in which the optimum route is found.

Within the process of finding the optimum route, there may be the necessity to form

team(s) to broaden the search space. For instance, in Figure 3.1(b) travellers in the

road segments denoted by link j and link k might want to cooperate to discuss their

strategies as they could share the same intersection and thus cause congestion.

3.3.3 Traveller-Centric Trip Planning Module

In this module, a Traveller-Centric Trip Planning (TCTP) system is deployed to

provide the traveller tri with a set of feasible solutions P tri . As indicated in the

Equation 3.1, each path has its own payoff function ui. These paths are ordered

based on their payoff values. These strategies are formulated and ordered in the

TCTP module as doctrines, Γtri . For each chosen path p(Γtri), there exists a doctrine

satisfaction index DSr , which is used with the cost of the chosen path to define the

utility function ui.

The TCTP module is the first stage of the trip planning process. It is designed

such that the travellers are rationally making decision and prioritizing alternatives

for existing plans based on the forecast profits or losses. The rationality condition
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is handled/guaranteed by this module. By adjusting the monetary and temporal

constraints, this module will produce multiple paths and multiple utility values which

can be used later in the cooperative game.

3.4 Summary

This chapter presented a problem formulation for the team trip planning problem.

The problem formulation describes the problem from a single traveller’s perspective,

as well as the interaction between multiple travellers. The team trip planning problem

is described as a cooperative game. A mathematical formulation for the solution

model was also developed in this chapter. According to the solution formulation, a

Team Mobility Planning (TMP) framework was developed. This framework consists

of three modules to cover the aspects of cooperative decision making, team formation,

and the traveller’s rational planning.
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Chapter 4

Cooperative Trip Planning:
Bargaining Based Approach1

4.1 Introduction

In Chapter 3, the trip planning game is formulated as a cooperative game. In this

chapter, I emphasize the notion of cooperation and provide analytical propositions to

discuss the balancedness and stability of the described game. The balancedness of a

game reflects the existence of a solution for that game. A solution model is presented

in this chapter and is further demonstrated using experimental scenarios.

4.2 Balancedness of Team Trip Planning Game

An integral part of developing a solution for any game is the understanding of the

characteristics of the game. The most important aspect of any game is its balanced-

ness and stability. In cooperative games, balancedness refers to the existence of at

least one coalition of travellers for which the individual outcomes are more than or

equal to the gains outside of the coalition. In other words, a game is balanced if it

1The research work in this chapter has appeared in part in [78]
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has a non-empty core. For non-cooperative games, stability is usually used to refer to

the existence of at least one equilibrium. This difference between these two concepts

is simple and can facilitate general understanding of the research related to them.

Certainly, the term stability can be also extended to the cooperative games [79].

Both terms, the balancedness and the stability of the game, correspond to the

possibility of having a solution for the game. Thus, if a game is balanced/stable,

there is at least one self-enforcing or externally enforced outcome for the game that

conforms to the rules of balancedness and stability. This section addresses the is-

sue of solution convergence at the end of the game. The challenge is to prove the

balancedness of the team trip planning game without defining the rules governing

the coalition interaction process or conceptualizing the game environment. However,

these issues will be intentionally left open at this juncture. Alternatively, to prove

the balancedness of the developed game, both the cooperative and non-cooperative

sides of this game will be approached.

In general, the non-cooperative game can be described as a general form of coop-

erative games. Many non-cooperative games have some form of interaction between

travellers and indeed, cooperation. In exchanging information prior to the game and

revealing their payoffs, travellers are cooperating to a certain extent. In fact, it was

proposed that the competitive non-cooperative equilibrium is a part of the coopera-

tive solution- the core [80]. Using this argument, the first proposition of this thesis

can be stated.

Proposition 4.2.1. If the non-cooperative version of a cooperative game has an equi-

librium, this equilibrium is a part of the core and the cooperative game is balanced. In

other words, the stability of a non-cooperative game is a proof of the balancedness of

its cooperative counterpart and
∑

i∈S xi(S) ≥ v(S) ∀S ∈ 2N \∅.
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Given that there is a solution for the trip planning optimization function, each

traveller will have an equilibrium. Their chosen actions are considered pure strategies,

and pure equilibria may exist. This equilibrium refers to an outcome where traveller

wishes to unilaterally change his/her optimized solution (A detailed proof is found

in [81]). This is true for non-strictly competitive games. As the game progresses,

travellers may compete to gain resources to the point that one traveller’s gain is

another traveller’s loss, (i.e., a zero-sum game). This can be overcome if trip re-

planning is allowed, which leads to the the following definition and the subsequent

proposition.

Definition 4.2.1. A traveller-centric mobility planning game is a game in which

each traveller performs trip re-planning every t time. There is a probability pk that

the traveller will proceed according to the previous plan or (1 − pk) that he/she will

move to a different plan (i.e., adopt different strategy). pk is distributed over the set

of all strategies used by each traveller in this game.

Proposition 4.2.2. The mobility planning game proposed in Definition 4.2.1 is a

mixed game for which at least one mixed equilibrium always exists.

Proposition 4.2.2 is made with accordance to Nash’s definition of mixed strat-

egy equilibria in [82]. Furthemore, based on Proposition 4.2.1, Definition 4.2.1, and

Proposition 4.2.2, it can be stated that the cooperative team planning game has at

least one solution set in its core, meaning that the game is balanced. That solution

set in the core corresponds to the solution of the mixed Nash equilibrium. Although

there are other factors that are often studied when analyzing a cooperative game

(such as the investigation of all possible sub-games to determine if a game is com-

pletely balanced as well as the investigation of the nucleus of a game), for the purpose

of the research in this thesis, the important issue is the existence of a solution. This
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has been established by proving the stability and the balancedness of the described

game.

Even if a solution for a game exists, the discovery of that solution could prove to

be challenging. The next section describes a bargaining model which is developed as

a solution platform for the team trip planning game.

4.3 Bargaining Based Trip Planning Game

Bargaining models are interesting in the sense that some parts of the literature work

view them as non-cooperative games [60], while other parts regard them as coop-

erative games [59, 83, 84]. Thus, the relationship between the cooperative and non-

cooperative solution, used for our proof of balancedness/stability, is clearly prominent

in this model.

Traveller-Based 
Trip Planning 

State of the 
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Traveller-Based 
Trip Planning

Traveller-Based 
Trip Planning 

Bargaining 
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Bargaining 
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Coalition Formation 
Through Pairwise 
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Bargaining 
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Bargaining Offer

Figure 4.1: Game theoretic framework using the bargaining model.
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As aforementioned, a solution for a cooperative game is represented by its core.

However, as noted in Chapter 2, there is the problem of finding the elements of the

core. In this research work, a bargaining model can be used as a tool for revenue-

sharing and cost-allocation (i.e., the bargaining model should provide us with elements

of the core). The bargaining model is described in Algorithm 1.

Algorithm 1 The Bargaining Model

1: procedure Coalition–Creation
2: Broadcast P tri to other travellers
3: for each traveller tri do
4: Compute (|(u(trinit(p))− u(trinit(p̂)))|)|tr−i
5: Identify a potential coalition partner
6: Compute the conflict factor (|(u(trinit(p)) − (u(trinit(p̂)))|trresp(trresp = tri, i 6=

1))|)
7: Compute the threat factor ϑinit

8: if presp responded with an offer then
9: Compute ϑrespond

10: if ϑinit < ϑresp then
11: trinit will choose pinit = pi, i 6= 1
12: else
13: trrespwill choose presp = pi, i 6= 1
14: end if
15: Call The Negotiation Procedure
16: else
17: trinit creates a singleton coalition
18: end if
19: Broadcast P si

20: end for
21: end procedure

For the proposed bargaining model, it is assumed that the set of strategies P

is compact and convex. P is determined through a traveller-centric trip planning

module, as seen in Figure 4.1. Furthermore, for each possible point in P , each traveller

has a satisfactory payoff. These assumptions are important to guarantee the existence

of a solution for the bargaining game. For our game, there is 2-tuple game Σ for N-
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travellers. Σ has many sub games, Σ∗. These sub games are part of the original game

and each of which is a 2-traveller bargaining game.

If the bargaining game is defined such that travellers can accept to pay more

than what they would have paid without bargaining, then the rationality condition

is violated, which might result in a non-equilibrium solution and hence, an unstable

game. To avoid that, a strong rationality assumption is proposed as follows:

Assumption 4.3.1. For a traveller, tri, there exists a set of strategies P tri in which

each point is less preferred than the solution ptri such that ptri ∈ P tri. During the

course of the game, Traveller tri is free to choose any strategy in P tri which might

yield less payoff, or higher cost, than that of ptri.

The previous assumption permits any volunteer choice made by any traveller to

give in some of his/her resources to other travellers for the benefit of the group rather

than the individual. Groups of travellers engaging in these bargaining games are

called coalitions. Hence, the coalition in our game is created based on power play

rather than fairness in resource allocation. As noted in [57] and [58], Assumption

4.3.1 does not violate the rationality axiom of cooperative game theory, but it allows

for the possibility of creating a beneficial solution for all travellers.

At the beginning of the game, the travellers will list their strategies and associated

payoffs. For the conflicting strategies, P̂ : P̂ ⊂ P , travellers will list the actual

payoffs, caused by a conflict of interest. The traveller who has less risk when changing

his/her strategy will swerve. In this game, every traveller makes his/her strategies

known to other travellers. If there are contradicting strategies, travellers with such

contradictions start to contact each other to resolve the conflict of interest. As such,

one party will initiate the bargaining game by proposing a deal. The initiator, trinit,

will suggest that the other traveller, trresp, should swerve. Furthermore, after making
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Algorithm 2 The Negotiation Procedure

1: procedure Negotiation–Rounds
2: for each traveller tri with new strategy pnew do
3: Compute the cost ((u(tri(p))|tr−i(p))
4: if u(tri(p

new) > u(tri(p
old) then

5: if u(tri(p
j : pj 6= pnew) < u(tri(p

new) then
6: if ΣN

k P
trk |(pi(trj)) ≤ ΣN

k P
trk |(tri(pnew)) then

7: Change strategy
8: end if
9: end if
10: else
11: Do nothing
12: end if
13: end for
14: end procedure

the strategies, the values of the payoff/cost shown will be recalculated. The deal

offered by the first party has a retaliation/threat factor ϑtrinit . ϑtrinit represents the

risk which trresp has to face when swerving. ϑtrinit can be any mixed strategy that

trinit might use in case the negotiation was not successful. ϑtrinit is computed as

follows:

ϑtrinit = min
P̂

(|(u(trinit(p))− u(trinit(p̂))|, |u(trresp(p))− u(trresp(p̂))|) (4.1)

The other party will check the offer and his/her available options for retaliation. If

there is another deal in which he/she has a ϑtrresp < ϑtrinit , then trinit will be the one

swerving. Each party will revisit their sets of available strategies as the negotiation

progresses until an agreement is made. If ϑtrresp = ϑtrinit , the deal offered by the

initiator will be the conclusion of the negotiation. Both parties will have a binding

agreement regarding their chosen strategies and they will update their sets of available

strategies accordingly. Communications between both parties are maintained at all

times. This negotiation process is presented as an iterative code in Algorithm 2.
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To further clarify the proposed bargaining model, the bargaining model is used to

solve the example described in Chapter 3.

4.3.1 Example 1:

In this example, two drivers working for the same company with different assigned

tasks are attempting a trip from the same source to the same destination. According

to their preferences, different paths will have different cost values. They need to

minimize both of their cost values such that the collateral cost for the company is

minimized. Obviously, both drivers need to cooperate to minimized their joint cost.

To simplify the analysis, both drivers will have only two strategies to choose from.

They start at the same time with no re-planning (i.e., they follow the path they chose

from the beginning).

s t

A

D E

B

C

4 1
1

7

1

7

2

3

1

3

1

s t

A

D E

B

C

1 1
1

7

1

7

1

3

1

3

5

Tr1 Tr2

10 10

Figure 4.2: Example of two travellers travelling in the same environment.

For traveller tr1, the chosen strategies are

p
(tr1)
1 = s→ A→ C → B → t (4.2)

p
(tr1)
2 = s→ A→ C → t (4.3)
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For traveller tr2 the chosen strategies are

p
(tr2)
1 = s→ D → C → B → t (4.4)

p
(tr2)
2 = s→ D → C → t (4.5)

When both drivers choose the same path, the price for each shared route increases

by 2 price units. In this case, traveller tr1 will communicate his/her strategies,{
p
(tr1)
1 , p

(tr1)
2

}
and the associated original costs of {−4,−5}. These prices may in-

crease to {−8,−7} if both drivers choose similar routes. tr1 offers a deal in which tr2

will choose p
(tr2)
2 , estimating ϑtrinit = −1. tr2 has no better offer, and since he/she

did not initiate the bargaining game, the deal offered by tr1 is approved. We can

verify the optimality of their agreement by analyzing this bargaining game as non-

cooperative. If an action and response table is constructed, as shown in 4.1, it can

be seen that in the case either tr1 or tr2 chooses the best strategy, while the other

chooses the second preferred strategy, we will have an outcome of Pareto optimality.

This result is in agreement with Nash’s axioms for the bargaining game [58].

Table 4.1: Action-response table for tr1 and tr2

Traveller p
(tr2)
1 p

(tr2)
2

p
(tr1)
1 {−8,−8} {−4,−5}
p
(tr1)
2 {−5,−4} {−7,−7}

With regards to the increase in the cost value, when analyzing the traffic impact

along a path, the path price is usually represented as a function of the traffic. There

are several suggestions in the literature with regard to the path cost functions rang-

ing from linear functions to M/G/1-based representations [85]. In this chapter, for

simplicity, the increase in the cost value is restricted to a linearly added value. For
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more details, the research work in [85–87] provide great insights into the topic.

The described bargaining model so far is a 2-travellers model. In the next section,

I present a generalization to this model to become an N-traveller mobility planning

model.

4.4 N-Traveller Bargaining Game: Creating Coali-

tions

For a game of N-travellers, the set of available strategies should be in full dimension

(i.e., the number of strategies is equal to the number of travellers) [59]. In other words,

for N-travellers, each one should have a set of possible strategies in a magnitude of n.

Pairwise bargaining with every traveller can be a complicated process, and probably

an intractable one. Therefore, for a large number of travellers, it is better to have

coalitions of travellers who have already agreed on joint strategies. Forming coalitions

in which travellers share certain agreements regarding a set of actions may ease the

process of finding a global bargaining agreement. Therefore, instead of having the

required strategies for each traveller to be n = N , n can be constrained to be equal

to |Si|.

In our model, the N-traveller bargaining process is composed of a series of a parallel

2-travellers bargaining sub-games. In each sub-game, only two travellers bargain and

find their acceptable joint strategies, P%. For instance, in Example 1, a plausible set

of strategies for a coalition of (tr1, tr2) would be:

P S
% =

{{
p
(tr1)
1 , p

(tr2)
2

}
,
{
p
(tr1)
2 , p

(tr2)
1

}}
(4.6)

In general, for a coalition, Si, we can define the set of available strategies for the

coalition, P Si
% , as the winning strategies in the bargaining process. Moreover, each
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traveller needs to be a part of a coalition either by joining another traveller and form-

ing a coalition, or by joining an already existing coalition. Travellers join coalitions

to increase their gains or minimize their losses. Therefore, if any traveller found that

the coalition he/she joined will devalue his/her utility function, he/she can secede

from the coalition. Moreover, if there is no coalition that improves a traveller’s utility

value, then the traveller can form a singleton coalition with his/her preferred strategy.

By the end of the game, the travellers who are in single coalitions will have to join

the grand coalition, SGND, based on a binding agreement.

The developed team trip planning game is an additive game. Thus, existing

coalitions will have a utility value representing their joint gain/loss, which is computed

as follows:

uSi
=

|S|∑
j

utrj . (4.7)

Each coalition will choose a representative to run the negotiation with other coalitions

or travellers. The representative is the one with the maximum risk incurred if he/she

deviates from the chosen strategies of the coalition. The bargaining is ran according

to the changes of the coalition utility value uSi
. The coalition with the least risk of

loss will swerve. The coalitions that, when merged, achieve the least deviation risk

will swerve and new uSi
will be computed. Furthermore, the bargaining model should

be able to accommodate a situation in which travellers do not have an action set of

a full dimension. Since our model is eventually reduced to a 2-person bargaining

game, each traveller should have at least a 2-D set of actions. The coalition-based

bargaining model is further explained in the following example.
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4.4.1 Example 2:

In this example, we have four travellers commuting along the routes shown in Figure

4.3. It is decided that no matter which path is chosen, if more than one traveller

choose the same subset of road segments, there is an extra cost of 1 price unit for

each traveller per each congested road segment. If the travellers were to choose the

least preferred path, this change of plan will incur a loss of 1 price unit. The paths

available for each traveller are indicated as the following:

ptr11 = b→ d→ f → j → p→ q (4.8)

ptr12 = a→ s→ c→ i→ l→ r (4.9)

ptr21 = b→ d→ f → j → p→ q (4.10)

ptr22 = a→ s→ c→ i→ k → p→ q → r (4.11)

ptr31 = b→ c→ i→ k → p→ q (4.12)

ptr32 = a→ s→ c→ i→ k → p→ q → r (4.13)

ptr41 = b→ c→ i→ k → p→ q (4.14)

ptr42 = a→ s→ c→ i→ k → p→ q → r (4.15)

The game progresses according to Algorithm 1 and 2. For tr1, the traveller who poses

the highest degree of conflict is tr2 since both travellers share the same path. tr2

also identifies tr1 as the source of the highest conflict, and therefore, both travellers

start to communicate. At the same time, tr3 views tr4 as the biggest threat and

communicates with him/her to initiate the bargaining process.

tr1 and tr2 share the same preferred path, which means that both traveller will

have to pay extra 6 price units for sharing a path. However, if tr2 changed his/her

strategy, both travellers will have to pay 2 price units plus an extra 1 price unit for tr2
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Figure 4.3: Graph representing possible paths.

as a penalty for changing his/her preferred route. Since this is tr1’s initiative, we will

consider the 3 price units as tr2’s own utility cost. According to this arrangement,

the first coalition is established:

S1 = {tr1, tr2} (4.16)

P S1
% =

{{
p
(tr1)
1 , p

(tr2)
2

}
,
{
p
(tr1)
2 , p

(tr2)
1

}}
(4.17)

For tr3 and tr4, the situation is different. Both travellers have the exact same

preferred path with conflict cost of 5 price units. If any of them swerved, the swerving

party will still have to pay the price of 6 units, and the other party will pay 5 price

units. Therefore, in accordance with the approach used for S1, while assuming that

tr3 is the initiator, the following coalition is established:

S2 = {tr3, tr4} (4.18)

P S2
% =

{{
p
(tr3)
1 , p

(tr4)
2

}
,
{
p
(tr4)
2 , p

(tr3)
1

}}
(4.19)

According to this arrangement, tr3 is gaining only 1 price unit while tr4 is gaining

nothing. However, by checking the strategy set of S1, it is clear that for tr3 and tr4
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to not have a conflict with tr1 and tr2, they have to choose p
(tr3)
1 and p

(tr4)
1 . Thus,

P S2
% =

{
p
(tr3)
1 , p

(tr4)
1

}
(4.20)

Furthermore, since forming the second coalition was based on the formation of S1,

the following grand coalition is established.

SGND = {tr1, tr2, tr3, tr4} (4.21)

P SGND
% =

{
p
(tr1)
1 , p

(tr2)
2 , p

(tr3)
1 , p

(tr4)
1

}
(4.22)

4.5 Simulation Work

In this experimental work, we consider the scenario of N travellers contemplating

travel plans from the same source to the same destination, as shown in Figure 4.3.

These travellers have limited sets of possible actions. They have to choose, according

to their own personal preferences, a set of two actions (i.e., paths). These paths are

ordered according to the travellers’ preferences. All travellers are departing at the

same time. Furthermore, since each option has its own utility cost, and instead of

including the actual route costs in the utility cost, it is assumed that each traveller has

a sponsor. The sponsor is willing to pay the cost of any available path. Although,

there is no additional cost for the travellers if they changed their strategies, they

have to pay the plan overlapping cost. In other words, if two travellers choose the

same segment, each traveller will pay 1 price unit. The team trip planning problem

becomes a cooperative game for which an appropriate cost distribution among all

travellers is needed. The final solution assignment is defined according to the following
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formulation:

C(c) =

{
x ∈ RN |

∑
i∈N

xi(N) = c(N) and
∑
i∈S

xi(S) ≤ c(S)for each S ∈ 2N \∅

}
(4.23)

This core function is used to describe the situation in which the cost value is dis-

tributed among the travellers within a game. We observe that
∑

i∈S xi(S) ≤ c(S)∀S ∈

2N \∅ to ensure game stability.

4.5.1 Simulation Environment

The simulated road network represents the highways between the city of London-

ON and Toronto-ON. Road segments are assigned with cost values reflecting each

traveller’s personal preferences and demands. These preferences in this simulation

work include travelling times, safety threats, and reported traffic speed values. Each

traveller has two preferences, and for each preference, there is a generalized cost

function. The paths are chosen based on temporal and monetary constraints.

4.5.2 Trip Planning for 10 Travellers

In this simulation scenario, 10-travellers are dispatched according to their personal

preferences such that each traveller has only two possible paths from the source to

the destination. Their chosen paths are as the following:

ptr11 = b→ c→ i→ k → p→ q (4.24)

ptr12 = a→ s→ c→ i→ k → p→ q (4.25)

ptr21 = b→ d→ f → j → p→ q (4.26)

ptr22 = a→ s→ c→ i→ k → p→ q (4.27)
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ptr31 = b→ d→ f → j → p→ q (4.28)

ptr32 = a→ s→ c→ i→ k → p→ q (4.29)

ptr41 = b→ c→ i→ l→ r (4.30)

ptr42 = a→ s→ c→ i→ k → p→ q (4.31)

ptr51 = b→ c→ i→ k → p→ q → r (4.32)

ptr52 = a→ s→ c→ i→ k → p→ q (4.33)

ptr61 =′ b′ → d→ f → j → p→ q → r (4.34)

ptr62 =′ a′ → s→ c→ i→ k → p→ q (4.35)

ptr71 = b→ c→ i→ l→ r (4.36)

ptr72 = b→ c→ i→ k → p→ q (4.37)

ptr81 = b→ c→ i→ k → p→ q → r (4.38)

ptr82 = a→ s→ c→ i→ k → p→ q (4.39)

ptr91 = b→ c→ i→ k → p→ q → r (4.40)

ptr92 = a→ s→ c→ i→ k → p→ q (4.41)

ptr101 = b→ c→ h→ r (4.42)

ptr102 = b→ c→ i→ k → p→ q (4.43)

If the travellers choose not to cooperate, each traveller will attempt to selfishly use

his/her preferred path. The outcome of the game, if each traveller acts selfishly, is

indicated in Table 4.2. Also depicted in Table 4.2 is the outcome when the travellers

act irrationally and chose their second preferred paths. An interesting outcome is

observed when one traveller acts differently from the other travellers, in which case

the final outcome may prove profitable for the traveller.

Through the use of the bargaining model, the team trip planning problem can be
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Figure 4.4: Utility values for members of potential coalitions.
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Table 4.2: The outcome of selfish mobility planning

Traveller P tri
1 vs P

tr−i

1 P tri
2 vs P

tr−i

1 P tri
1 vsP

tr−i

2 P tri
2 vs P

tr−i

2

tr1 35 47 47 59
tr2 27 20 20 59
tr3 27 20 20 59
tr4 27 20 20 59
tr5 41 47 47 59
tr6 33 20 20 59
tr7 27 19 19 46
tr8 41 47 47 59
tr9 41 47 47 59
tr10 21 10 47 46

U =
∑

i,j ω(ηtri , ptrij ) 320 NA NA 564

solved, and a fair cost allocation scheme can be found such that each traveller will pay

at most the same amount he/she would have paid if the game was non-cooperative.

The first step of bargaining is to identify the potential coalitions. According to the

utility values, as shown in Figure 4.4, seven coalitions are identified based on the con-

flict of interest as explained in Algorithm 2. Three coalitions have initially 2-travellers,

while the other coalitions are singletons. The utility value of coalition members is

important to identify a coalition as an actual coalition. If coalition members are

better off playing independently, then they can break away from their coalition. Fur-

thermore, if a traveller in a singleton coalition was negatively impacted due to the

agreement among other travellers, he/she should be able to change his/her chosen

strategy to improve upon his/her allocated cost value.

According to the chosen actions by the coalitions, as shown in Table 4.3, we have
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Table 4.3: Potential coalition and their designated strategies

Coalitions Members Strategy
S1 {tr2, tr3}

{
ptr21 , ptr32

}
S2 {tr4, tr7}

{
ptr41 , ptr72

}
S3 {tr5, tr8}

{
ptr52 , ptr81

}
S4 {tr1}

{
ptr11 , ptr12

}
S5 {tr6}

{
ptr61 , ptr62

}
S6 {tr9}

{
ptr91 , ptr92

}
S7 {tr10}

{
ptr101 , ptr102

}

the following cost distribution for the grand coalition SGND:

{ptr11 , ptr21 , ptr32 ptr41 , ptr52 , ptr61 , ptr72 , ptr81 , ptr91 , ptr101 } = {30, 24, 27, 26, 36, 30, 25, 48, 36, 26}

(4.44)

The total cost of the grand coalition under the new strategy arrangement is

U =
∑
i,j

ω(ηtri , ptrij ) = 308 < 320, (4.45)

which indicates that the new arrangement has improved the overall cost value. How-

ever, traveller tr8 and traveller tr10 are paying more than what they would have paid

if the game was non-cooperative. With regards to traveller tr8, he/she is a part of

coalition S3 with a binding agreement. Thus, unilateral actions are not permitted

until all other singleton coalitions have determined their final strategies. Traveller

tr10, on the other hand, is free to change his/her strategy to improve his/her utility

value. When tr10 changes his/her strategy to ptr102 , we will have the following strategy

allocation:

{ptr11 , ptr21 , ptr32 ptr41 , ptr52 , ptr61 , ptr72 , ptr81 , ptr91 , ptr102 } = {29, 28, 25, 24, 34, 29, 24, 47, 38, 22}

(4.46)
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U =
∑
i,j

ω(ηtri , ptrij ) = 300 < 320. (4.47)

This new arrangement has improved tr10’s cost value allocation. However, tr8’s

Table 4.4: The outcome of third round of negotiation

Traveller P tri
1 vsP

tr−i

1 P tri
2 vsP

tr−i

2 1st Round 2nd Round 3rd Round
tr1 35 59 30 29 31
tr2 27 59 24 28 27
tr3 27 59 27 25 20
tr4 27 59 26 24 23
tr5 41 59 36 34 36
tr6 33 59 30 29 28
tr7 27 46 25 24 21
tr8 41 59 48 47 38
tr9 41 59 36 38 40
tr10 21 59 26 22 18

U =
∑

i,j ω(ηtri , ptrij ) 320 564 308 300 282

utility value has not improved, and tr2 has an added cost. Furthermore, when tr2

attempts to change strategy, the cost value increases. The next possible action is for

tr5 and tr8 to withdraw from their potential coalition. The following cost arrangement

converges:

{ptr11 , ptr21 , ptr32 ptr41 , ptr51 , ptr61 , ptr72 , ptr81 , ptr91 , ptr102 } = {31, 27, 20, 23, 36, 28, 21, 38, 40, 18}

(4.48)

and the overall cost is

U =
∑
i,j

ω(ηtri , ptrij ) = 282 < 320. (4.49)

Therefore, the travellers will be paying less than or equal to what they would have paid

if the game was non-cooperative. According to these results, the game is concluded,

and an enforceable agreement is reached. It is worth noting that this outcome is a
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result of three rounds of negotiations. Other outcomes are possible if other members

of singleton coalitions are allowed to change their strategies. Furthermore, according

to Assumption 4.3.1, travellers can choose less favoured strategies within a coalition.

Thus, if breaking a coalition did hurt other travellers, tr5 and tr8 would have had to

re-establish the initial coalition.

As demonstrated in this scenario, and as summarized in Table 4.4, some travellers

might have found themselves in a situation in which the choice to join a coalition is not

different from the choice to remain alone, if not worse. Furthermore, as the number of

travellers increases, the coalition quality as represented by the benefits provided to its

members decreases, and the chances of having an empty core increases. This happens

partially due to the lack of alternative strategies. Expanding and diversifying the set

of strategies will strengthen a traveller’s positions during the bargaining process.

4.5.3 Analysis of Team Trip Planning Games Parameters

There are many parameters involved in cooperative trip planning such as the number

of travellers (N) and potential coalitions. Next, we investigate the decision sensitivity

to these parameters.

Decision Sensitivity to Number of Travellers and Potential Coalitions:

In cooperative trip planning, the size of the team is an important factor that affects

the stability of the game. Finding the optimum number of travellers is not an easy

task. Ideally, there would be as many travellers as the number of unique strategies.

For our case, we have 6 unique paths from the source to the destination. Therefore, to

avoid the repeated use of the same path, an optimum number of travellers would be 6,

which is not practical. To investigate the issue of the solution stability, the previous
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Figure 4.5: Effect of N on the cost allocation process.

experimental scenario is re-examined for different values of N . It is important to

observe how the value of N affects the cost allocation process and the potential

coalition creation process. Table 4.5 shows that, for various values of N , there are

different average cost reduction values per traveller. As seen in Figure 4.5, as the

number of travellers increases, the cost reduction value increases until N reaches a

peak value (in this case 30); then, the cost reduction value starts to decrease. This

can be attributed to the available sets of unique strategies. For 4 unique strategies

(paths), we have 6 unique sets of strategies. It is possible that for N = 30, these

6 unique sets appear as strategy sets, and thus a better chance to avoid conflict

arises. As the value of N keeps increasing, this advantage diminishes due to the wide

adaptation of these strategies.

Furthermore, coalitions are created based on the conflict of interest and the added
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Table 4.5: Effect of N on the cost allocation process

size of N Average Cost Reduction
10 3.8
20 8.6
30 12
40 6.375
60 2.5

Table 4.6: Effect of N on the number of potential coalitions

size of N Potential Coalitions Formed Coalitions Average Cost Reduction
10 3 2 3.8
20 3 3 8.6
30 6 3 12
40 6 4 6.375
60 5 4 2.5

profit. As shown in Figure 4.6, as the number of travellers increases, the chances of

having more coalitions increase, which can lead to a better cost allocation. Table

4.6 presents the effect of N on potential and existing coalitions and its reflection on

the process of cost allocation. The number of created coalitions is different than the

number of actual existing coalitions, which had emerged according to the procedure

described in Algorithm 2. Without loss of generality, the more coalitions we are

able to create and keep, the better cost allocation process we will have. It can be

noted that for the highest cost reduction value, the number of formed coalitions is

substantially lower than its initial value. This shows that due to the method by which

a coalition is chosen and maintained, the solution gets closer to its best cost allocation

arrangement.
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Figure 4.6: Effect of N on the number of potential and established coalitions.

4.5.4 Solution Convergence Analysis

As previously discussed, it can be seen that the final outcome resulting from our

game-theoretic model is heuristic and might not be optimal. Therefore, to fully as-

sess the developed model, we need to compare the cost allocation outcomes with

the ground truth. In other words, we need to compare the heuristic strategy assign-

ment, and the subsequent cost of the grand coalition, with the optimum deterministic

overall cost. However, as the number of travellers increases, the number of possible

strategies increases. For example, for N travellers with only 2 possible strategies per

traveller, there are 2N possible solutions. For more than 20 travellers, the real-time

centralized-brute-force search for the best solution becomes computationally prohib-

ited. Therefore, validating the heuristic developed solution in comparison with the

ground truth is limited to 10− 20 travellers. In order to find the optimum strategic

assignment, we need to construct more than 1 million possible permutations for 20
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Table 4.7: Various study cases with 10 and 20 travellers

Selfish Game Outcome Bargaining Game Outcome Optimum outcome No. Rounds
For 10 Travellers

330 292 292 4
368 332 324 2
352 328 316 1
368 348 340 2
298 254 238 2
338 280 268 3
316 300 286 3
330 306 296 3
302 272 250 2
354 328 326 2

For 20 Travellers
2064 1446 1406 2
1544 1456 1456 2
1554 1468 1402 1
1338 1242 1202 2
1354 1230 1180 3
1610 1508 1470 2
1756 1704 1602 1
1628 1542 1482 2
1386 1252 1190 1
1512 1384 1298 2

travellers.

The final solution of the bargaining game is evaluated in terms of its computa-

tional complexity and its proximity to the optimum deterministic solution. For the

analysis of the computational complexity, it is important to understand how the final

decisions are reached. There are two stages needed to find the final solution. In the

first stage, travellers determine their preferred strategies through optimizing their

objective functions. In the second stage, the travellers will broadcast their strate-

gies so that each traveller can find other travellers with conflicting strategies. These

travellers will start the negotiation process in order to form coalitions. The first set

of agreed upon strategies is publicized. Then, if a traveller is not satisfied with the

final outcome, a second round of negotiation will commence. If we want to imple-

75



CHAPTER 4. COOPERATIVE TRIP PLANNING: BARGAINING BASED APPROACH

ment a centralized solution, the first stage will remain as is. Then, all travellers will

send their preferred sets of strategies and their conflict criteria to the central control

unit. It is due to the second stage that the exhaustive search approach is becoming

infeasible as the number of possibilities grows exponentially (|S|N). Therefore, the

superiority of the heuristic developed model in terms of computational complexity is

established.

As for the heuristic solution proximity to the exact solution(s), Table 4.7 was

established for 20 experimental instances, half of which are constructed with 10 trav-

ellers and the other half is constructed with 20 travellers. We can see that regardless

of the number of travellers in the game, the solution converges in less than 4 negoti-

ation rounds. At all times the solution was a great improvement over the worst case

scenario. However, despite the major improvement and the relative closeness that our

solution achieved, only in two instances out of the 20 tested study-cases the solution

were equal to the global optimum.

Personalization of Preferences

It is integral to our design that the strategies chosen by the travellers are person-

alized. Furthermore, to have a balanced cooperative team trip planning game, it is

also important for its non-cooperative counterpart to have at least one equilibrium.

Therefore, travellers must be able to choose, establish, or modify their strategies

based on their personal preferences such that they can engage in a selfish trip plan-

ning endeavour.

The traveller-centric trip planning module is responsible for providing each trav-

eller with his/her individualized strategies. The travellers, if left without being en-

rolled in the bargaining game, should be able to engage in a non-cooperative game

that has an equilibrium. The game with re-planning should have a solution that
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converges to Nash mixed equilibrium. Chapter 5 details the implementation of the

traveller-centric trip planning module.

4.6 Summary

This Chapter discussed the existence of a solution for the cooperative trip plan-

ning game. A link was made between the cooperative trip planning game and its

non-cooperative counterpart to establish the solution’s existence and the game’s bal-

ancedness.

This chapter presented a bargaining model as a solution for the trip planning

game. This bargaining model was used for 2-traveller game and for a coalition-based

game, for which cases a solution procedure was introduced. According to this solution

procedure, any n-person cooperative game can be reduced to a 2-person game.

Experimental scenarios were presented in this Chapter to demonstrate the im-

plementation of the bargaining model. The encouraging results produced by the

bargaining model demonstrate the efficiency of the developed cooperative module.
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Chapter 5

Traveller-Centric Trip Planning
Module 1

5.1 Introduction

In Chapter 3 and 4, it is indicated that, as a part of the rationality assumption, the

players are expected to develop their own strategies based on their own travelling

preferences and as such, their sets of strategies have to be ordered based on their

defined individualized gains. Additionally, the argument presented for the game’s

balancedness has been built based on the assumption that there is always an equilib-

rium for the non-cooperative game. The research in this chapter is concerned with

these two issues.

This chapter describes the process of designing and implementing a behavioural-

driven individualized trip planning module that enables the travellers to have their

own unique strategies. These strategies can be used later for the team trip planning

game. The developed module is designed to be a stand-alone behavioural-driven in-

vehicle guidance system, which can be used in non-cooperative games. Furthermore,

1The research work in this chapter has appeared in part in [88] and [89]
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the module, as a part of the TMP framework, is responsible for the rationality of the

cooperative planning game, as described in Chapter 3. The research in this chapter

focuses on the individualized aspect of the framework and investigates the concentra-

tion problem as a non-cooperative game to validate the module’s functionality and

efficiency.

5.2 Non-cooperative Team Trip Planning Game:

Individualized Trip Planning

In the team trip planning game, the travellers are assumed to have personal strategies

that have been chosen based on personal/selfish motives. Therefore, if the players

were to compete on a non-cooperative/competitive basis, the outcome will correspond

to an equilibrium such that Proposition 4.2.1 holds true.

In this thesis, the travellers’s strategies are defined as their chosen routing plans for

their trips. However, for the team trip planning game to achieve an acceptable stable

outcome (i.e., an equilibrium), the travellers should be capable of individualizing their

routes according to their preferences. Although the routes suggested by conventional

guidance systems can lead to a stable outcome, validating Proposition 4.2.1, the

travellers might end with an outcome that contradicts the notion of self-interest.

Therefore, in order to enable the travellers to choose the most appropriate strategies,

the team trip planning problem is viewed and treated as a non-cooperative game.

5.2.1 Non-Cooperative Team Trip Planning Game

The game Σ is a 3-tuple (S, P, U). In this game, S is the group of travellers involved

in the game; P is the set of available strategies for each traveller; and U is the set of

expected payoffs. For the game to be realistic, the following conditions are to be met
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• The players in S are driven by self-interest. Their ultimate goal is to maximize

their personal utility functions regardless of the overall state of the network.

• The set of available strategies for all travellers, P = p1 × p2 × p3 × ... × pN ,

is rich and diverse but, ultimately, a limited one. The individual sets, pns, are

asymmetric. In other words, travellers might have sets with different strategies

at their disposal.

• The utility function, U , may vary from one traveller to another according to

their best interests. For example, a traveller may consider the cost to be the

journey time while another traveller may consider the cost to be the incurred

financial cost.

The first condition is intuitive and plays into the notion that the players in any game

are assumed to be rational. The second condition might complicate the analysis.

For example, if two players, tr1 and tr2, have two sets of strategies such that P1 ∪

P2 = φ, the two players might not be considered to be playing the same game.

However, if we consider the case that there is a third player tr3 who has strategy

set P3 such that P1 ∪ P3 6= φ and P2 ∪ P3 6= φ, it is sufficient to say that tr1 and

tr2 are indirectly playing with each other in relation to tr3. The third condition

requires further discussion. System analyses become difficult when the utilities are

not of the same cost domain. If the travellers have different price assessment for

the same commodities, it is difficult to formulate an expectation about the final

state of the system (i.e., the equilibrium). For instance, travellers on highways are

sometimes presented with two choices: toll and toll-free highways. Some travellers

choose the toll-free highway according to their financial considerations while other

travellers choose the toll highway according to their journey time considerations. In

this example, the same commodity has two different utility values: monetary and
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temporal. Nonetheless, in real life, travellers do have different utilities for the same

commodities. While travellers on individual levels can reason their options based on

these utility values, it may prove difficult to perform system analysis. To deal with

this challenge, I propose the use of two independent utility functions. The first utility

function is the traveller’s utility function. The traveller may choose to keep his/her

function private or share it with others. The second utility function is the system’s

utility function for each road. The values of these functions are known to all travellers

and are used for system analysis to determine the expected best and worst social cost

values (i.e., best and worst equilibria).

The user’s utility values are of important due to their intrinsic relationship with the

personal choices of the traveller. Since the travellers would choose strategies according

to their utility-values, these utility-values affect the convergence of an equilibrium, the

stability of such an equilibrium, and the quality of the equilibrium. Therefore, there

is a need for an individualized trip planner that provides the traveller with rational

strategies and cost values associated with these strategies. Hence, the research in this

chapter can be divided into two parts:

1. The first part is concerned with the design of an individualized trip planner.

The goal is to have a personalized in-vehicle guidance system that allows the

travellers to selfishly plan their trips. Although the various game theoretic

notions will not be emphasized throughout this part, the travellers will plan

their trip according to their best understanding of the state of the environment.

In other words, their strategies will be to the best of their expectation, which

should allow for Nash equilibrium to converge. If replanning is allowed, a mixed

Nash equilibrium should converge.

2. The second part is an analytical one in which the state of the network is inves-
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tigated to validate the efficiency of the converging equilibrium. I will use the

traffic concentration problem discussed in Chapter 2 as a use-case to demon-

strate the (in)efficiency of the developed solution.

Therefore, as a part of the Team Mobility Planning (TMP) framework, I propose a

Traveller-Centric Trip Planning (TCTP) module: a novel approach for trip planning

that accommodates soft and hard routing criteria. I use the term Traveller-Centric

to describe the process through which the traveller’s personal planning preferences

influence the routing process. The routing choices will be used as strategies in the

cooperative game.

5.2.2 Traveller-Centric Trip Planning (TCTP) Module

The individualized trip planning process is executed over two stages. In the first

stage, feasible road segments are identified and assessed based on the travellers’ rout-

ing preferences. The feasible areas are determined through an Advanced Traveller

Information System (ATIS). ATIS service providers offer free/subscription-based ser-

vices to provide a trip planner with updated maps and online/offline traffic informa-

tion [90, 91]. Few examples of ATISs are TomTom, Google, HERE, INRIX, CoPilot,

WorldNavigator, and Ontario HighWays Maps. The road assessment criteria are as-

sumed to be stated by the traveller as linguistic negotiable concepts. For example,

a traveller could use a linguistic concept to represent demands such as “high speed”

and “congestion free roads”. Based on these demands, the system will evaluate the

various road segments. A hierarchical fuzzy inference engine is used to compute the

cost of each road segment. The cost of the feasible routes are then mapped into

linguistic concepts: “Recommended Route”, “Marginally Recommended Route”, and

“Not Recommended Route”. The traveller’s influence on the system’s interpretation
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of what constitutes an optimum route is represented using the “Traveller’s Doctrines”.

A traveller’s doctrine is a set of beliefs that captures the traveller’s perception of what

is important and significant while planning a trip.

The second stage of the TCTP module is an optimization process through which

the traveller’s hard demands (constraints) are brought into play in determining the

optimum route. There are several possible hard demands that can be used such as the

latest accepted arrival time and the temporal and the monetary constraints [92, 93].

Next, I formulate the individualized aspect of the team trip planning game.

5.3 Problem Formulation

We consider a traveller tri, contemplating a trip from an initial location stri to a final

destination location f tri . The trip from stri to f tri can be made along one of a set

of feasible routes R(stri , f tri), as shown Figure 5.1. For each route r ∈ R(stri ,f tri),

a set of attributes Ar(s
tri ,f tri) is defined. Ar captures the distance δr(s

tri ,f tri), be-

tween stri and f tri along route r, Trip-Time τr(s
tri ,f tri) along route r, safety index

σr(s
tri ,f tri), comfort index φr(s

tri ,f tri), and traffic consistency index κr. Each route r

is constructed as a set of linked road segments Lr = {l1, l2, ...., ln}, where the first road

segment l1 originates at stri , and the last road segment ln terminates at f tri . For each

road segment li ∈ Lr, we define Alir : a set of attributes similar to that of the route

r, vis-a-vis, δlir , the travel distance along road segment li on route r, Trip-Time τ lir ,

safety index σlir , comfort index φlir , and traffic consistency index κlir . The Trip-time

τ lir and safety index σlir are considered to be situation dependent. At traveller tri’s

disposal is a set of transportation modalities TM = { tm1, tm2, ...., tmm}. For each

transportation modality tmi and route r ∈ R, we define a cost function ξtmi
r = f(Lr).

The cost of the trip from stri to f tri , denoted by ξr, depends on the route taken,
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str

ftr

R

Figure 5.1: Depiction of a map from initial point stri and destination point f tri .

the chosen transportation modality, and the contextual information (i.e., traffic, and

weather, among others). The notion of cost is multi-aspect, in the sense that it ex-

plicitly quantifies monetary costs, temporal costs, and safety costs to the extent that

a multi-criteria cost formulation is employed to guide the optimization process. Since

the impact and the significance of each aspect of the cost function is traveller depen-

dent, I introduce the traveller’s preferences and constraints (i.e., the doctrines). This

doctrine is denoted by Γtri(stri ,f tri)={γ1, γ2, ....., γm} , where γi signifies the weight

that traveller tri assigns to a given attribute. Traveller tri’s desirable route can be

found as the following:

rtriOpt = Min
∀rtrik ∈R

tri

Υ(stri , f tri ,Γtri), (5.1)
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where Υ represents the process by which the optimal route rtriOpt is found.

The solution to the individualized trip planning problem should be in a form of a

guidance system that provides the traveller with individualized routing suggestions.

5.4 Conceptual Architecture: Traveller-Centric Trip

Planning (TCTP) Module

The objective of the TCTP is to find optimum routes from stri to f tri . However,

the optimality of any given route is traveller-centric. The assessment of these routes

depends on the travellers’ preferences and constraints. Preferences are regarded as

the travellers’ soft demands or objective(s), while the constraints are considered to

be the travellers’ hard demands. Figure 5.2 depicts a high level architecture of the

TCTP. A variety of sensing devices are deployed to probe traffic and gather the

contextual traffic information. This information is gathered, aggregated, and used

for future predictions using various ATISs. In the proposed design, it is assumed

that a designated ATIS is available for the TCTP which can be used for further

routing purposes. The ATIS is responsible for identifying the area of interest R as

well as various contextual information pertaining to R. Snow and rain precipitation,

black ice, as well as the traffic speed and road occupancy are few examples of the

information that can be obtained from an ATIS service provider.

The doctrine based recommendation unit is a key component of the developed

TCTP module. As seen in Figure 5.2 and described in Equation 5.1, this module will

obtain the source stri the destination f tri and the doctrine Γtri from the traveller.

It will also receive the traffic attributes, Ar, and the area of interest, R, from the

ATIS. This unit will compute the cost value ξr. ξr is a single value that represents

the conclusion of the doctrine assessment unit according to the chosen doctrine, Γtri .
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Figure 5.2: Schematic diagram of the TCTP module.

Hence, different doctrines can lead to different ξr values.

The traveller interacts with the TCTP module through the traveller decision aid

unit. The traveller presents his/her travel preferences and monetary and temporal

constraints to the TCTP through this unit. This unit will inform the doctrine-based

recommendation unit about the travellers’ chosen doctrine(s). Once the ξr values are

computed, this module will determine and suggest the best route according to the

travellers’ expressed constraints.

5.5 Road Recommendation Assessment Using Hi-

erarchical Fuzzy Inference Approach

Central to the road’s recommendation assessment are the preferences of the travellers.

These preferences may span various aspects such as safety, speed, or a weighted
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combination of both. By integrating the various pieces of contextual information and

routing preferences, the TCTP module will perform a traveller-centric assessment

to produce a recommendation value for each feasible route. This process can be

computationally intractable if traditional crisp computing approaches are employed.

Therefore, tools of soft computing are chosen, whereby the inputs to the doctrine-

based recommendation unit are represented as linguistic/fuzzy concepts.

The criteria that are used in this research to identify the feasible routes are

twofolds: 1) hard constraints such as monetary and temporal constraints, and 2)

personal preferences such as road safety, reported traffic speed, and road occupancy.

Road safety is defined as a function of weather conditions and road conditions. The

presence/absence of snow and black-ice as well as the traffic’s speed and congestion

are all considered when assessing the safety of any road segment. These factors are

chosen in an exemplary context, as more factors influencing trip planning can be

employed, as discussed in [94].

5.5.1 Fuzzy Inference Engine in TCTP Module

The fuzzy inference engine in the TCTP module, as depicted in Figure 5.3, receives

various traffic information from the ATIS. The received information is then fuzzified

so they belong to predefined fuzzy logic subsets. For instance, speed is fuzzified into

slow, moderate, or fast. These subsets are represented by generalized bell-shaped

membership functions. The membership functions are chosen for all doctrines through

a process of trial-and-error. For example, if the road segment has black ice and

snow, then we would adjust the membership functions and tune the rules to have the

segment assessed as unsafe. The membership functions used in the TCTP module

for speed, safety and congestion as well as the road recommendation level are shown

in Table 5.1.
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Figure 5.3: Inner schematic of the doctrine based recommendation module.

5.5.2 Concept of Doctrine in TCTP Module

Although most travellers would desire a short journey time, they also have other

preferences. For example, traveller may express interest in preferences such as safety,

comfortability, and scenery entertainment, among others. The TCTP module ad-

dresses these preferences with the concept of doctrine. Traveller’s doctrine, Γtri , is

a set of beliefs based on which the road recommendation unit perceives the environ-

ment. The doctrine determines the way in which the roads are assessed: negatively

or positively. Doctrines allow for travellers to prioritize their preferences, which ef-

fectively leads to a change in the road recommendation cost value. Based on this

change, each doctrine might produce a different preferred path for the same routing

problem.

Three doctrines are defined in this chapter as strategic options for the travellers.

The first doctrine is the speed doctrine: the roads that have high traffic speed are
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Table 5.1: Membership function used in the TCTP system.
Fuzzy Logic Sets Membership Functions
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recommended. In the speed doctrine, the highest weight, γi, is assigned to the average

speed attribute, Saverage, in each road segment. The second doctrine is named the

safety doctrine: if the road is safe, then it is recommended. In this doctrine the highest

weight, γi, is given to the safety index, σr(s
tri , f tri). Nevertheless, safety is a vague
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concept. For simplicity, safety is defined in terms of the weather conditions that may

complicate driving and compromise the travellers’ safety. The third doctrine is named

the compound doctrines and is concerned equally with safety and speed. If speed and

safety demands are relatively satisfied, then the road segment is recommended.

5.5.2.1 The Speed Doctrine

These doctrines are implemented using the fuzzy inference engine. The speed doctrine

is represented as follows:

IF IsSpeedLow

Then NotRecommendedRoad

The speed index is given a weight that is higher than the weights assigned to the other

road attributes Alir s. This means that the road congestion and safety index are still

being considered in this doctrine. For example, in the case that speed is moderate

and there is heavy snow, the road is regarded as not recommended. The following

rule shows this relationship:

IF IsSpeedModerate & IsUnSafeRoad

& IsHeavyCongestion

Then NotRecommendedRoad

5.5.2.2 The Safety Doctrine

In the safety doctrine, the safety index, σr(s
tri , f tri), is given the highest weight among

the other attributes. The following rule shows this restriction:

IF IsUnSafe

Then NotRecommendedRoad
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In addition, speed and congestion attributes are not ignored in the safety doctrine.

For example, the following rule shows that for a road with a moderate safety index,

it is assessed as not recommended if speed is low and the congestion is high:

IF IsSpeedLow & IsSafeWithCaution

& IsHeavyCongestion

Then NotRecommendedRoad

On the other hand, under the same safety index, but with better speed/congestion

conditions, the road is considered to be recommended:

IF IsSpeedModerate & IsSafeWithCaution

& IsNoCongestion

Then RecommendTheRoad

5.5.2.3 The Compound Doctrine

For the compound doctrine, the following rules examine the safety index, σr(s
tri , f tri),

and the speed index, Saverage, to formulate a road segment assessment:

IF IsSafeRoad & IsSpeedSufficient

& IsNoCongestion

Then RecommendTheRoad

IF IsSpeedLow

Then NotRecommendedRoad

IF IsUnSafe

Then NotRecommendedRoad
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It can be seen that, in this doctrine, equal weights are assigned to the speed and

safety attributes, while lower weights are assigned to the other attributes.

The route recommendation assessment in all three doctrines requires a comprehen-

sive understanding of the road safety and the traffic congestion assessment process.

For the assessment process to be effective for all doctrines, a hierarchical approach is

devised. The safety index is inferred based on two road attributes: black ice and the

amount of accumulated snow. The following inference rules show an example of the

safety index assessment for inspected road segments:

IF IsNoBlackIce & IsNoSnow

Then IsSafeRoad

IF IsLightSnow & IsNoBlackIce

Then IsSafeWithCaution

IF &IsHeavySnow&IsBlackIce

Then IsUnsafe

Traffic congestion is another index that is inferred from known attributes: the road

segment’s width and occupancy. The following rules show the process of estimating

traffic congestions for road segments:

IF IsMediumWideness & IsLowOccupancy

Then IsNoCongestion

IF IsWideWideness & IsModerateOccupancy

Then IsModeratCongestion

IF IsExtrHighOccupancy

Then IsStpGoCongestion
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Road Recommendation Level 

Road Safety Traffic Speed Congesiton

Black IceSnow Road Occupancy Road Wideness

Figure 5.4: The hierarchical order in the situation assessment system.

As shown in Figure 5.4, safety and congestion as basic assessment criteria are

assessed based on the data provided by the ATIS. Since more sensory/historical data

can be added at the basic level, the process of producing the basic assessment values

can be expanded without increasing the complexity of the assessment process. The

two levels of assessment are detailed in Table 5.2, highlighting the different ranges of

the input values. The output value of the road recommendation level is the cost value,

ξr, of the assessed road segment. The hierarchical design allows for the integration of

more doctrines into the TCTP module.

While it is the responsibility of the doctrine-based recommendation unit to assess

each road segment, the optimum route is determined by the decision aid unit. In the

next section, the decision making procedure is discussed.
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Table 5.2: The TCTP Module’s Fuzzification Scheme.
Contextual Information Range Membership Function Hierarchical level

0 - 37% 1- Open
Road Occupancy 20 - 70% 2- Moderate First level

60 - 92% 3- High load
80 - 100% 4- Extremely high

0 - 4 m 1- Narrow
Road width 2.5 - 6.8 m 2- Medium First level

5 - 12 m 3- Wide
0 - 0.4 1- No snow

Snow degree 0.25 - 0.8 2- Light snow First level
0.6 - 1 3- Heavy snow

0 1- No black ice
Black ice 1 2- Black ice First level

0 - 39% 1- Wide Open Road
Congestion 15 - 80% 2- Moderate Congestion Second level

60 - 95% 3- Heavy Congestion
95 - 100% 4- Stop and Go
0 - 0.55 1- Safe

Safety 0.17 - 0.87 2- Safe with caution Second level
0.6 - 1 3- Unsafe
0 - 35 1- slow

Average speed 15 - 80 Km/hr 2-Medium Second level
50 - 120 3- Fast
0 - 0.31 1- Recommended

Road recommendation 0.15 - 0.75 2- Marginally Recommended Output level
0.58 - 1 3- Not Recommended

5.6 Decision-Making Procedure for Route Selec-

tion Problem

The final decision about the optimum route is approached as an optimization problem.

The optimum path is the one that takes the traveller from his/her initial location

to the target destination, subject to the traveller’s constraints. To determine the

optimum route, two factors are considered. The first is the monetary allowance for

the trip, which would include the cash to be spent on gas, toll roads, and parking,

among others. The other factor is the traveller’s desired journey time. The TCTP

module takes advantage of these factors to explore routing options that are optimum
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in a broad sense as they go beyond the shortest distance and the shortest time in

defining optimality. Due to the doctrine’s influence, the optimum route might not

prove to be the one with the shortest trip time or the shortest distance.
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Figure 5.5: Mapping a satellite map to graph based on the area of interest.

The decision aid unit in the TCTP module has two types of input: 1) The trav-

eller’s constraints (i.e., trip-time and trip-monetary constraints) and 2) the cost of
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each road segment, ξi. The decision is to find the optimum route, rOpt, that minimizes

the cost, ξr, subject to the traveller’s temporal, τr, and monetary, ψ, constraints. The

trip is formulated as a graph-based combinatorial problem. Road segments, Lr, are

previously specified by the ATIS. Each li ∈ Lr has a cost value, ξi, that is computed

by the doctrine-based recommendation unit.

The problem of finding the best route can now be stated as follows: given a graph

G = (V,E), where V is the set of nodes (vertices) in the graph, and E denotes the

edges in the graph, find the route with minimum cost. The graph represents an area of

interest, R(stri , f tri), that includes the starting point, stri , and the destination point,

f tri , of the trip. The ATIS defines the area of interest prior to the trip planning to

limit the search space, as shown Figure 5.5. The goal is to find the best route, rOpt,

with minimum cost value, ξr. Travellers are using vehicles for their commute from one

point to another. The trip-planning problem with preferences windows is formulated

as follows:

rOpt = min
∑
∀i,j∈E

ξrij xij (5.2)

Subject to:

∑
j

xij −
∑
j

xji =


1 if i is a starting node

−1 if i is a destination node

0 otherwise

,∀i (5.3)

∑
i,j∈A

tij xij 6 τ k (5.4)

∑
i,j∈A

mij xij 6 ψk (5.5)

xij ∈ {0, 1} (5.6)

where

ξr = Recommendation value,
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E = Set of nodes in the net,

τ = Temporal constraint,

ψ = Monetary constraint window,

tij = Travel time over the segment ij ,

mij = Cost of travel over the segment ij ,

k = Trip query index,

xij is the decision variable representing the road segments and is defined as

xij =

{
1 if the road segment is selected

0 otherwise
(5.7)

The Constraint in Equation 5.3 stipulates that the driver leaves the starting point

and eventually arrives at the end point and never uses the same road segment twice.

The inequality in Equation 5.4 states that the trip time is never more than τ , as

indicated at the query time k. The inequality in Equation 5.5 ensures that the total

cost of the road segment does not exceed ψ at query time k. The last constraint

in Equation 5.6 is the integrity constraint. Finally, this problem can be solved as a

binary integer problem.

The objective function in Equation 5.2 is a cost function that is computed based

on the chosen doctrine. Each doctrine can be viewed as an independent soft objec-

tive. In terms of hard objectives, the formulation will have to accommodate more

constraints corresponding to the desired hard demands. If the optimization function

was infeasible, the optimization problem becomes an unconstrained routing problem

that can be solved using Dijkstra’s algorithm. Next, two measures of assessment that

can be used to compare the module’s trip suggestions with the preferences of the

travellers are defined.

97



CHAPTER 5. TRAVELLER-CENTRIC TRIP PLANNING MODULE

Doctrine Satisfaction Index

The TCTP module provides travellers with individualized routes reflecting their pref-

erences. For the travellers to be able to understand the quality of the suggested route,

the TCTP module associate each route with a doctrine satisfaction index. Further-

more, the doctrine satisfaction index can be used within the TMP framework to order

the different routes according to their corresponding doctrine satisfaction index.

For traveler tri, the minimum trip cost value, ξr, for the optimal route, rOpt, is

used to compute the doctrine satisfaction index, DSi
. For each road segment li, li ∈

Lr, there is ξi, where ξr =
∑
∀li∈Lr

ξi. Furthermore, ∀ li ∈ Lr, there is a known trip

distance |li|. DSi
is defined as follows:

|Lr| =
∑
∀li∈Lr

|li| (5.8)

DSi
=
∑
∀li∈Lr

ξi ∗ |li|
|Lr|

. (5.9)

Correspondingly, road doctrine satisfaction index DSr can be categorized into four

levels:

DSr ∈ {Highly satisfied, Satisfied,Marginally satisfied,Unsatisfied} . (5.10)

An example of the computation of the route doctrine satisfaction index DSr is shown

in Figure 5.6. The satisfaction levels are mapped to the three membership functions

of the road recommendation unit. For instance, if DSi
is computed to be 0.2, then

the DSr is fuzzified as Highly satisfied.
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Satisfied
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Figure 5.6: Doctrine satisfaction index computation process.

Safety-Risk Exposure Index

Additionally, for the safety doctrine, a trip safety-risk exposure index is provided.

Travellers who choose to use this doctrine will be provided with figures and numbers

reflecting their safety-risk exposure during the trip. The safety-risk index is computed

cumulatively throughout the trip. It is possible that after a repetitive exposure to a

low-risk activity, the overall safety risk can be assessed as a medium cumulative risk.

5.7 Individualized Trip Planning Effects on The

Concentration Problem

The traffic concentration problem is an unavoidable side-effect of the wide-use of

smart routing systems. The problem, as discussed in length in Chapter 2, occurs

when multiple-travellers share the same advice regarding their routing plans. This

problem is one of the flow control problems affected by two factors: 1) the traffic
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information; the available information represents the reality and thus can’t be altered.

2) The method through which the trip planning system handles the information affects

the decision making process, which may subsequently exasperate the problem. In

addition, the current ATISs are planning their trips in a non-traveller-centric manner.

They aim to find the route with the minimum cost without considering the overall

impact of this decision on the other travellers or on the system. Therefore, the overall

system performance may degrade [45]. The concentration problem is a result of this

form of planning.

On the other hand, even though the TCTP module is a selfish trip planner that

aims to minimize the trip cost for the traveller, the TCTP module deals with the

provided information differently through the use of doctrines. The rationale is that,

if travellers are allowed to affect the trip planning directly through expressing their

preferences, their plans will have a better chance of diversifying the routing choices.

In other words, each traveller who employs the TCTP module will have an ATIS that

is tuned to his/her preferences.

5.8 Simulation Work

The TCTP module, as explained in Section 5.4, depends on various sources of infor-

mation. For our scenarios, the following assumptions are made:

1. The ATIS is available and can provide the travellers with areas of interest,

online traffic attributes Ar, and predictions regarding the traffic information.

2. Communications between the travellers and the ATIS are established and main-

tained at all times.
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For the ATIS, Ontario’s 511 interactive map, managed by the ministry of transporta-

tion in Ontario and shown in Figure 5.7, is used to provide us with traffic and road

conditions. In addition to various weather and traffic Application Program Interfaces

2015-09-30, 1:15 PMOntario 511 - Interactive Map

Page 1 of 3http://www.mto.gov.on.ca/english/traveller/trip/map.shtml

Skip to content FRANÇAIS

| Drivers & Vehicles | Highways | Road Safety | Trucks & Buses | Travel |

  HOME > Traveller's Info > Ontario 511 > Interactive Map

Help 

INTERACTIVE MAP

Road closure, condition and construction information is available through our hands free 511 automated service or on Twitter!
Simply dial 511 or follow us @511Ontario!

Select information to
display on map:

Closures & Restrictions
Incidents and Closures
Today's Roadwork
Planned Roadwork

Traffic & Road Info
Construction
Traffic Flow (GTA)
Google Traffic
HOV Lanes

Road Conditions

RWIS Cameras

Traffic Cameras

Select a Traffic Camera

Highway 7 [ Kitchener - Waterloo ]
Last Updated: 2015-04-23 13:20:49 Visibility:

ONTARIO 511

Home
About Ontario 511
Frequently Asked
Questions
Winter Maintenance
Winter Driving
Feedback

INTERACTIVE MAPS

Province of Ontario
Burlington/Mississauga
(QEW)
Greater Toronto Area
(400/401/403/410/427)
Kingston
London (401)
Niagara (QEW/405/58)
North Bay
Ottawa (417)
Sarnia (402)
Thousand Islands
Thunder Bay
Windsor

TEXT

Figure 5.7: Ontario’s 511 Interaction TIS map.

(APIs), Google Maps is used to obtain real-time information. The APIs provide us

with areas of interest containing various routes connecting the starting point and the

end point. Google Maps is known for its popularity as an ATIS, in form of web/mobile

API, and therefore it has been chosen in this work for the purpose of comparison [95].

To demonstrate the efficiency of the TCTP module, an experimental work of three

parts is carried out. In the first part, the functionality of the doctrine-based unit is

discussed. We demonstrate the use of all three doctrines in the recommendation

assessment for all road segments within an area of interest R. In the second part,

the TCTP module’s performance is validated by comparing it with Google Maps’

performance. Furthermore, the doctrines’ performance is examined under various

scenarios. In the third part, the TCTP module’s impact on the system’s overall effi-

ciency is investigated. For this purpose, through the investigation of various scenarios,
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in which the travellers are using either the TCTP’s doctrines or Google Maps, the

concentration problem is discussed.

Table 5.3: The implementation of the FIS for all road segments.
xij Road Width Snow Black Ice Occupancy Saverage Safety Road Recommendation Road Recommendation Road Recommendation

(km/hr) Assessment (Speed Doctrine) (Safety Doctrine) (Compound Doctrine)
a 6 low No med to high 20 0.17 0.73 0.47 0.73
x 9 low No med to low 86 0.17 0.14 0.08 0.145
b 6 low No low 70 0.17 0.224 0.13 0.224
c 9 low No med to high 47 0.17 0.45 0.4 0.45
z 9 high No med to low 100 0.86 0.43 0.9 0.819
e 3 medium Yes low 71 0.87 0.48 0.90 0.817
f 9 low No med to low 80 0.17 0.16 0.105 0.158
g 3 medium No med to low 91 0.55 0.15 0.465 0.181
h 9 low No high 35 0.17 0.82 0.7 0.787
i 9 low No low 95 0.17 0.138 0.07 0.135
j 9 low No med to low 100 0.17 0.135 0.07 0.133
k 9 low No low 80.1 0.17 0.158 0.07 0.158
l 9 low No med to low 82 0.17 0.165 0.12 0.175

m 9 low No med to high 30 0.17 0.658 0.313 0.465
n 12 low No high 30 0.17 0.665 0.47 0.465
o 12 low No high 15 0.17 0.82 0.47 0.791
p 9 low No low 110 0.17 0.13 0.07 0.13
q 9 low No high 20 0.17 0.829 0.471 0.738
r 9 low No high 40 0.17 0.6 0.465 0.47

5.8.1 Part I: Evaluation of The Doctrine Based Recommen-
dation Unit

An important part of the developed system is the Doctrine Based Recommendation

unit. As described so far, the unit utilizes a fuzzy inference system to produce road

recommendation values in the form of road segments’ costs. In this subsection, the

functionality of the doctrine based recommendation unit is discussed.

As shown in Table 5.3, for the same values of road’s safety index, average speed,

and congestion levels, the output varies from recommended to not recommended

according to the chosen doctrine. For example, according to the safety doctrine, road

segment “a” is recommended to a certain degree. The same road segment has a much

higher cost value according to the other two doctrines. This demonstrates that for

the safety doctrine, the safety assessment of the road has contributed the most to

the final road recommendation value. Conversely, road segment “e” has a high cost
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according to the safety doctrine as opposed to the speed doctrine. In both cases, the

compound doctrine was influenced by either the low reported speed value for “a” of

the low safety assessment for “e”. Furthermore, the safety and the speed doctrine

consider all attributes contributing to the routing process. For instance, according to

the speed doctrine, road segment “x” had an edge cost lower than segment “z” even

though the average speed in segment “z” was higher. This is due to the fact that

is the safety index is higher in “z” than in “x”. Moreover, even though the safety

index was almost the same for all road segments, these road segments had different

cost values according to the safety doctrine due to the various values of speed and

congestion indices.

5.8.2 Part II: Experimental Implementation and Results

The developed TCTP module is simulated using all three doctrines. The final sugges-

tions are compared with Google Maps’ suggestions for the same trips. Examples of

the attributes of the simulated roads, as shown in Figure 5.5(b), are detailed in Table

5.4. Various attributes, Ars, are used to simulate a dynamic environment. In the fol-

lowing subsections, the doctrines’ effect on the trip planning as well as the doctrine

satisfaction index DSr are investigated for a variety of preferences and constraints.

5.8.2.1 Doctrine Effect on Trip Planning and Doctrine Satisfaction Index

To test the optimality of the routes suggested by the TCTP module with respect to

the travellers’ doctrines, three travellers equipped with the TCTP module’s available

doctrines are simulated. The final routing suggestions as well as Google Maps’ sugges-

tions are depicted in Figure 5.8. The doctrine satisfaction indices are shown in Table

5.5. It can be seen that the TCTP module provides the travellers with the routes that

are influenced by their doctrine as much as possible. The doctrine-based optimum
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Trip Time = 185 Minutes

Max. Speed= 83km/hr

Min. Speed= 40km/hr

Trip Safety Index=0.4

Trip Distance= 192km

Dsr = Satisfied
Trip Time = 145 Minutes
Max. Speed= 87km/hr 
Min. Speed= 65.7km/hr
Avg. Speed= 75km/hr
Trip Safety Index=0.07 
Trip Distance= 192km

Toronto

(a) Traveller using TCTP module in the speed doctrine.

(b) Traveller using TCTP module in the compound doctrine.

Dsr = Satisfied
Trip Time = 190 Minutes
Max. Speed= 88km/hr 
Min. Speed= 25.7km/hr
Avg. Speed= 65km/hr
Trip Safety Index=0.03 
Trip Distance= 203km

Toronto

(c) Traveller using TCTP module in the safety doctrine.

(d) Traveller using Google Maps.

Figure 5.8: Comparison between TCTP module’s doctrines and Google Maps.
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Table 5.4: Examples of real-time traffic attributes Ar.

xij Slimit Price Snow Black Ice Occupancy Saverage
(km/hr) (km/hr)

a 60 0 low No med to high slow
x 100 0 low No med to low fast
b 80 0 low No low fast
c 100 0 low No med to high medium
z 100 0 high No med to low fast
m 100 0 low No med to high slow
p 100 12 low No low fast
q 100 0 low No high slow
r 100 0 low No high slow

routes are the ones that reflect the traveller’s preferences and constraints. Therefore,

in this particular scenario, it can be seen that all travellers were able to achieve an

acceptable level of satisfaction. Furthermore, the safety index for all travellers can

be mapped to the fuzzy set Safe as shown in Table 5.1 and Table 5.2. However, this

value is normalized throughout the trip. Hence, using the speed doctrine and the

compound doctrine, it is possible that the suggested routes have segments with high

safety-risk index as oppose to the suggestions according to the safety doctrine.

Table 5.5: Routing feedback using the TCTP module and Google Maps.

Trip planner Doctrine/mode DSr

The TCTP module Speed Satisfied
The TCTP module Compound Satisfied
The TCTP module Safety Satisfied

Google Maps Fastest route NA

Even though the TCTP module is not developed to compete with the existing

navigation solutions but rather to complement their shortcomings, it is found that
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Google Maps’ initial suggestion to be noteworthy. Google Maps suggested two routes

with 3 minutes’ difference between their estimated trip times. The second path is

actually the same path suggested according to the speed doctrine. However, the

TCTP module estimated the trip time to take 20 minutes more than Google Maps’

estimation. Interestingly, the trip time provided by Google Maps can be achieved if

the travellers were able to maintain the maximum speed throughout the trip whether

driving through downtown areas or on the highways. This assumption might not be

accurate; especially, with the presence of an accident on the highway as well as the

construction in and around the destination area, as shown in Figure 5.8(d). In the

following scenarios, the different suggestions of each doctrine under various monetary

and temporal constraints are investigated.

5.8.2.2 Comparing TCTP Module’s Different Doctrines with Open and
Limited Resources

In this section, we investigate the TCTP module’s performance when presented with

different monetary and temporal constraints. Three travellers are dispatched into the

Table 5.6: Doctrine satisfaction levels for the TCTP module’s doctrines.
Trip planner Doctrine/mode Safety Index DSr

The TCTP module Speed 0.4 Marginally Satisfied
The TCTP module Compound 0.315 Satisfied
The TCTP module Safety 0.17 Satisfied

simulation environment. All travellers have unlimited resources with respect to the

trip monetary allowance and desired journey time. Each traveller is assigned a unique

TCTP doctrine. All three travellers have to start from the same source, stri , and the

same destination, f tri . To clearly indicate the difference between the three doctrines,

speed and safety obstacles are presented in various roads in the form of heavy snow

as well as accidental delays. In this scenario, the criterion based on which a plan can
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Figure 5.9: Path-planning for preference-based trip.

be viewed as successful is the doctrine satisfaction index.

As can be seen in Figure 5.9 and Table 5.6, due to the variety of obstacles made

against the travellers, the trip times were noticeably longer than usual. Furthermore,

travellers using the compound and safety doctrines were satisfied with the outcome

since safety concerns were addressed. However, since speed is the main requirement

for the traveller with the speed doctrine, the result came with doctrine satisfaction

assessment of marginally satisfied. In general, the doctrine based navigation system

was able to process the information differently for each traveller. Hence, it was able

to produced unique suggestions matching the travellers’ preferences to a great degree.

In the second use-case, we compare the suggestions provide to three travellers,

all of which are using the speed doctrine. However, each traveller has his/her own
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set of monetary constraints. Our aim is to demonstrate the response of our system

according to the hard demands of each traveller.
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Figure 5.10: Route decision for travellers using TCTP system in speed doctrine with
different monetary constraints.

In the simulated environment, certain road segments were, as indicated in Table

5.4, assigned toll cost values: when a traveller crosses these road segment, he/she

pays a price for the use of that segment. Other road segments were toll-free, and no

monetary cost is incurred as the vehicle traverses them.

As shown in in Figure 5.10, when the monetary allowance is relatively high, the

TCTP module has a higher chance of choosing the best possible route. However,

when the monetary allowance decreases, the system is forced to choose a route that

is relatively slow. Since two travellers have monetary constraints of less than 12

price units, the travellers will have to avoid the toll segment ”p” and use the toll-

free segments ”n” → ”o”. The journey time difference between the traveller with an
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allowance of 25 cash units and the traveller with an allowance of 2 cash units is about

115 minutes.
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Figure 5.11: Comparison of route decisions for the TCTP module in safety doctrine
for different temporal constraints.

5.8.2.3 Comparing The Safety Doctrine for Different Time Windows

The third use-case involves three travellers who are using the safety doctrine under

limited constraints. The main constraint that can influence the decision of the TCTP

module under the safety doctrine is the desired journey time. As shown in Figure

5.11, the travellers who are using the TCTP module with the safety doctrine were

able to meet the journey time constraints. However, as shown in Figure 5.12, the

level of safety-risk exposure changes according to the different temporal constraints.

It can be seen that when an open journey time is permitted, the safety-risk exposure

factor remains stable at a low level for the entire trip. This result shows that using
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Figure 5.12: The effect of changing the time window on the safety-risk exposure.

the safety doctrine, the TCTP module functions properly by keeping the safety-risk

exposure to low levels.

As shown in Figure 5.12, the first traveller with a journey time limit of 400 minutes

has sustained a constant low level of safety risk exposure at all times during the trip.

However, the other two travellers, who were not given an open time, had different

plans for their trips. The traveller with a journey time limit of 250 minutes was

exposed to constant medium safety-risk exposure for about 40 minutes. On the other

hand, the traveller with a journey time limit of 200 minutes was exposed to high

safety-risk exposure for 80 minutes and then low risk for another 10 minutes. The

trip times for the three travellers are shown in Figure 5.11.

A comparison between the plans of the speed doctrine and the safety doctrine

with a time window of 250 minutes reveals that the plans according to the safety
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Figure 5.13: Comparison of risk exposure in the safety mode and speed mode.

doctrine have less safety-risk exposure than those of the speed doctrine, as shown

in Figure 5.13. In conclusion, as can be seen in Figures 5.10 through 5.13, it can

be noted that the decision regarding the best route varies according to the chosen

doctrines and imposed constraints.

5.8.3 Part III: Individualized Trip Planning’s Effects on Traf-
fic Flow

In this part, we examine the effect of the TCTP module on the traffic flow of a

large number of vehicles. In the previous simulation parts, we have established that

the TCTP module is at least as good as any other routing system that uses online

information. This means that the TCTP module can be also prone to the traffic

concentration problem. The traffic concentration problem occurs when a large number

of vehicles attempt to travel within the same area at the same time window and receive

the same routing suggestions.

To investigate this issue, we have simulated 200 vehicles, equipped with the TCTP

module, to plan trips from London, ON to Toronto, ON. For comparison purposes,
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another 200 vehicles are simulated to use Google Maps as their in-vehicle guidance

solution. All vehicles equipped with the TCTP module are equally likely to have any

Table 5.7: System performance using Google Maps vs The TCTP module.
Road Segment Google Maps TCTP module’s Doctrines

a 0 152
b 200 152
x 0 48
z 0 62
c 200 138
r 200 131
e 0 3
g 0 6
f 0 59
q 200 131
p 0 69

of the three offered doctrines such that each traveller randomly and uniformly chooses

one of the three doctrines. As we can see in Table 5.7, when Google Maps is used,

during a window of 30 minutes, it consistently offers a single preferred path: “b”

→ “c” → “h” → “r” (the arc leading to the destination node is “r”). The problem

that can be observed is that regardless of the difference in the trip starting times,

all vehicles were sent along the road segment “b”. Furthermore, all of the vehicles

were sent across “c”, “r” and “q”. This is a clear example of the traffic concentration

problem. The guidance system consistently provides the same advice for all travellers

within the same area until the system’s traffic conditions are degraded. Additionally,

there is no self-correction mechanism in deployment thus far to prevent the traffic

conditions from worsening. In comparison, when giving more weight to factors such

as safety, we see that nearly 25% of the traffic was directed through “a” → “x”. As

shown in Table 5.7, it can be observed that some travellers chose the shorter route,

“b” → “c” → “h” → “r”, while other travellers chose the route “f” → “j”→ “p”
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→ “q”. Next, we discuss and compare the impact of the TCTP module and Google

Maps on the system’s efficiency.

5.8.3.1 System Efficiency Analysis

To analyze the efficiency of the TCTP module and Google Maps, the Price of Anarchy

(PoA) us used. The PoA is the ratio between the optimum system performance and

the worst system performance [86]:

PoA =
Worst Equilibrium

Optimum Outcome
(5.11)

The PoA ratio is referred to as the coordination ratio, which describes the system

degradation caused by the travellers’ selfish behaviour as well as the effect of the

provided information on the decision making process [87]. Therefore, its use as

a tool of analysis is deemed appropriate for our application. The analysis is per-

formed on the sub-graph Ĝ. This graph covers the following nodes in Figure 5.5:

V̂ = {2, 3, 4, 5, 6, 8, 9, 10, 11} and Ê = {z, f, j, p, c, h, r, q}. For Ĝ, we have limited the

investigated paths to two routes as shown in Figure 5.14. The 200 vehicles are dis-

tributed over these two routes from stri to f tri . To simplify the analysis, the transition

from one route to another is neglected.

The quadratic function of cli = ali · (x2 + x) has been chosen to represent the

congestion cost function. There are several suggestions in the literature with regard

to the possible cost functions, ranging from linear functions to M/G/1-based repre-

sentations [85]. In general, the cost functions for all paths in one network can be of

the same class or of different classes. Furthermore, the simulated network used to

identify the PoA can be a simple one or an elaborately complex one. Nevertheless,

with the proper reduction and approximation, the worst PoA can always be found.

For better insight into these topics, the subject can be reviewed in [85–87], in which
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it is covered in great lengths. For simplicity, we have chosen the quadratic function

to emphasize the traffic concentration problem and its impact on the system per-

formance. This function represents a cost value that can be interpreted in terms of

various factors such as congestion, CO2 emissions in a given area, and prevalence to

accidents, among others.

As shown in Figure 5.14, the two routes have different coefficient values for their

quadratic functions. These values represent the length ratio between the two routes.

s D

 

142 km 

126 km 

Route A

Route B

Figure 5.14: Alternative routes with quadratic latency function.

Since both routes have similar attributes except for their total distance, the decision

regarding the best route from a selfish perspective is simple: the shortest path. In-

cidentally, this selfish solution is the same one that was suggested by Google Maps.

Route A will be chosen most of the times over route B unless there is a noticeable

change in journey time for route A. According to this system, all travellers will have

the same advice regarding the route with the least cost, which might lead to the traffic

concentration problem. On the other hand, to achieve an ideal traffic distribution,
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Table 5.8: System performance analysis.
Chosen Route Optimum Performance Worst Performance Google Maps The TCTP Module

Route A 105 0 200 131
Route B 95 200 0 69

Overall cost 21,435 45,426 40,200 22,750
PoA 1 2.1 1.87 1.06

the traffic should be split among the alternative routes to minimize the overall cost.

However, this will require a central control system, which is virtually impossible to

implement. Even if it was possible to have a central control system, it will result in

some of the travellers being offered routes against their preferences.

Due to the simplicity of this scenario, we are able to find the cost values of the

optimum case scenario and worst case scenario of the traffic distribution. These

values are used to set upper and lower limits for Google Maps and the developed

TCTP module. As can be seen in Table 5.8, the optimum case scenario would be

splitting the traffic in nearly two halves between the two routes. Nevertheless, from

the travellers’ perspective, some of these plans are not desired since they offer the

longer route. The worst case scenario would be when all travellers use Route B,

which will result in a maximum overall cost. For Google Maps, it is observed that

for a period of more than 30 minutes the advice for all travellers was to use Route A,

seen as the optimum route from an individual’s point of view. On the other hand, the

travellers were split among the two routes when they use the TCTP module. Even

though most travellers chose route A, a significant number of them chose route B as

their preferred path according to their preferences. This shows the effect that the

doctrines might have on the traffic distribution and the overall system performance.

Due to this diversity in the routing suggestions, the TCTP shows a superior PoA

performance as compared to Google Maps.
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Figure 5.15: Routes with quadratic latency function for downtown areas.

5.8.3.2 The Concentration Problem in Downtown Areas

The concentration problem is often associated with traffic oscillation in downtown

areas. In the following scenario, we demonstrate using 4000 vehicles in real-time

simulation the differences in suggestions provided by the TCTP module and those

provided by Google Maps, Microsoft’s Bing Maps, and Nokia’s HERE Maps. The

routes and the suggested system cost function are shown in Figure 5.15.

Table 5.9: System performance analysis for downtown area.
Chosen
Routes

Optimum
Performance

Google
Maps

Bing
Maps

HERE
Maps

The
TCTP module

Route1 1333 1000 4000 4000 845
Route2 1334 3000 0 0 2180
Route3 1333 0 0 0 975
POA 1 2.04 2.91 2.91 1.28

As shown in Table 5.9, the ultimate strategy would be to split the traffic evenly

among all three routes. However, for travellers that are relying on Bing’s Maps or

HERE’s Maps, all traffic is directed along one path regardless of the changes that

occur to the network. These changes prompted Google Maps to adjust its plans to
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suggest faster alternative routes. That is, the traffic is sent along one route until

a congestion occurs; then, the traffic is sent to an alternative route until it is also

congested. The TCTP module, on the other hand, is less affected by the oscillation

problem since speed is a priority for only a portion of the population. Therefore,

there is more stability in the network. Furthermore, as shown in Table 5.9, the

TCTP-based PoA emerged is superior to the other trip planning solutions. Hence,

the results establish the efficiency and the superiority of the converging equilibrium.

5.9 Role of TCTP Module in The TMP Frame-

work

The TCTP Module is discussed thus far as an independent in-vehicle guidance sys-

tem. For each routing query, the module produces one optimum path per doctrine.

Each path has a doctrine satisfaction index associated with it. The travellers have the

option of choosing multiple doctrines and arranging the suggested routes according

to their DSr values. The route with the highest index is the preferred route. There-

fore, the travellers are to able order their doctrines according to their preferences to

preserve Nash’s axiom of rationality. In other words, for each doctrine, Γtrij , we have

rtriOpt(Γ
tri
j ) = pi. According to the number of available doctrines and their order of pri-

orities, we have P tri =
{
ptri1 , ptri2 , .., ptrin } where ptri1 = rtriOpt(Γ

tri
j ) such that j = 1, ..., n,

where n is the number of doctrines.

As shown through the experimental scenarios, the equilibrium resulted from the

TCTP is efficient in improving the overall social cost of the system. Therefore, the

TCTP module and the TMP Framework by extension are poised to deal with the non-

cooperative team trip planning game. Furthermore, the strategies created according

to the various doctrines can be used in the bargaining game in the cooperative trip
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planning module. In the next chapter, the TCTP is used to provide the travellers

with an ordered set of strategies that can be utilized in the cooperative game.

5.10 Conclusion

In this chapter, a traveller-centric trip planning (TCTP) module was introduced. A

full description of the module was presented with emphasis on the doctrine based

recommendation unit and the decision-aid unit. To implement the various doctrines,

a hierarchical fuzzy system was developed. An optimization based approach was used

to find the optimum route. Through the use of the TCTP module, travellers were

allowed to be proactive in choosing their routes. The rationale behind this design is to

diversify the trip planning process by invoking personal preferences into the routing

process at the early stages. Therefore, the concept of doctrines was highlighted as an

improvement to the existing trip planning techniques.

The traffic concentration problem was used as a prime example to demonstrate

the effectiveness of using a personalized trip planner to diversify and improve the net-

work’s performance. Hence, the quality of the emerged equilibrium was established.
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Chapter 6

Treatment of The Territory
Sharing Problem 1

6.1 Introduction

In this chapter, I develop a multi-travellers resource sharing game: the Territory

Sharing Game. This game is formulated such that the travellers can achieve through

cooperation a regret-free outcome that guarantees the welfare of the system. The

proposed cooperative model is extended to allow for the deployment of no-regret dy-

namics and as such, the final outcome will converge to a coarse correlated equilibrium.

Additionally, the previously introduced notions of solution existence and stability are

revisited. Several simulated scenarios are introduced to demonstrate the effectiveness

of the Team Mobility Planning framework.

6.2 Social Taxi Networks

Triggered by the ubiquitous use of information technology, a new economical business

model has emerged: the sharing economy. The sharing economy is a platform in which

1The research work in this chapter has appeared in part in [96] and [97]

119



CHAPTER 6. TREATMENT OF THE TERRITORY SHARING PROBLEM

people cooperate using technology to share what can be otherwise an un-utilized

inventory on fee/non-fee basis [98]. One application of interest is the social taxi

networks [99–102], known as the ride-sourcing platform and free-floating car sharing

systems. I coin the term social taxi networks to describe ride-sourcing applications

where the service is delivered to riders by utilizing a network of private vehicles. Taxi

drivers in these networks communicate with their customers through smartphone

applications (Apps). Lyft and Uber are prime examples of such social networks [103].

In this particular sense, the social taxi is similar to a traditional taxi since the provider

of the service does not share the destination with the service user, as opposed to ride-

sharing applications [104].

The treatment of the territory sharing problem can be observed in literature when

examining some of the relocation algorithms for traditional taxis [105] as well as the

ride-sharing applications [106]. The main goal of these algorithms is to (re)distribute

service providers, such as taxis, in a manner that guarantees that the maximum

number of customers is served.

With regards to traditional taxis, the operator has complete control over a fleet

of vehicles. Thus, the relocation of vehicles is subject to cost/benefit criteria. This

model is similar to the models proposed for some of the social ride-sharing platforms.

For example, in [107], Weikl and Bogenberger investigated the possible relocation

strategies of the so-called free-floating car sharing systems. They describe two possible

strategies: user-based and operator-based. According to the user-based strategy, the

users are incentivized by lower costs to use the system despite its long waiting times

and intermittent service availability. Nevertheless, not all customers can be influenced

by such incentives. According to the operator-based strategy, the number of service-

providers is increased to cover all areas. This case assumes that there is complete

control over the service providers. The problem with using these two models in
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social taxi networks is that they do not accommodate the autonomy of the service-

providers. For instance, a vehicle owner may prefer to operate in a low density

residential area due to its close proximity to their living/work place. On the other

hand, most traditional taxi companies might regard that area as a low priority area

due to its low population density. If social networks had the same relocation model,

the low density areas will be out of coverage.

In the current social taxi networks, service-providers and service-users are inde-

pendent from the operator. Thus, similar to the user-based strategy, the only manner

in which the operator can influence the process is by controlling the fare-prices ac-

cording to the state of supply and demand. This scheme is problematic since it creates

situations in which either the service-users have to pay an expensive fare due to the

lack of services, or the service-provider receives lower fare-prices due to high supply

of services.

The main concern with the traditional relocation systems is that they operate on

the basis of the optimization of the overall system performance, neglecting the welfare

of the system users: service-providers and service-users. In this thesis, the territory

sharing problem is developed to include the aforementioned concerns as an explicit

aspect of the problem.

6.3 Territory Sharing Problem

In social taxi-networks, an increasing number of commuters rely on smartphone apps

that allow them to find a transportation service based on their locations. Likewise,

service providers ( i.e., taxi drivers) are dependent on smartphone apps to connect

them with potential customers based on their geographical proximity. Since these

apps operate on a location basis, and the drivers choose their own territory, a distur-
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bance in the supply and demand chain is inevitable. The rational thinking of each taxi

driver is to choose an area with an elevated chance of having potential customers. For

example, downtown areas and shopping districts are areas that have high popularity

among customers. Many of these customers are in need for door-to-door transporta-

tion services. However, since this is common knowledge, most service providers will

target these areas. This will lead to a situation in which we have some areas oversat-

urated with service providers, and other areas that have low to no existence of service

providers. Furthermore, the majority of the smartphone apps governing the social

taxi networks have a dynamic fare-rate that changes based on the availability of the

service. For peak time periods, the fare-prices are increased and vice versa. This

phenomenon is known as the tragedy of the commons [108], and it is pertinent to the

situation in which the resources are common and the users are selfish decision makers.

I call the problem of managing the routes among drivers based on their preferences

the territory sharing game.

There are various issues that can render the territory sharing game a challenging

problem. First, there is the issue of formulating the game such that a solution model

can be designed. The game consists of three parties: the players, the smartphone app,

and the resources. The smart application can be a participant or a game moderator.

Depending on its intended role, the game set-up will be different. Furthermore, if

the players use the resources as strategies to play among themselves, then the game

can be either symmetric or asymmetric. In symmetric games, the players possess

the same sets of strategies. For example, if there are only three possible actions

and all players have these actions as possible strategies, then the game is symmetric.

However, asymmetric games are more general in the sense that the players may have

non-identical sets of strategies. Hence, it is important to determine whether the game

is symmetric or asymmetric.
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Furthermore, once a game’s nature is defined, an additional problem arises in

determining a solution algorithm that can yield a stable outcome. A stable outcome

is a self enforcing outcome that meets certain criteria. This is the second challenge

in defining the territory sharing game. In regards to game theory, a stable solution

constitutes a stable equilibrium. Identifying the equilibrium sought will assist in

designing the solution model. It will also guide the assessment process of the obtained

solution, which leads to the third challenge: the evaluation of the effect of the solution

model on the overall performance (i.e., the welfare of the system). As discussed thus

far, the territory sharing problem suffers from the tragedy of the commons; hence,

a stable outcome does not guarantee the efficiency of resource utilization. To assess

the (in)efficiency of the proposed solution, the Price of Anarchy (PoA) is used.

In this chapter, a game theoretic formulation for the territory sharing problem is

developed. The model describes the problem as a cooperative game in which players

with asymmetric sets of strategies cooperate to reach strategic agreements, despite

the competition over the resources. An extended version of the bargaining-based

solution model introduced in Chapter 4 is developed to allow for the competition

procedure to take place, while it facilitates the achievement of the final agreement.

The agreement can be enforced using the social taxi networks moderator (i.e., the

smartphone app). To ensure that the final solution corresponds to a stable equilib-

rium, the bargaining framework utilizes the no-regret approach which results in a

coarse correlated equilibrium.

6.3.1 Game Description

The ability to enforce the final agreement situates the smartphone app in a position

to monitor and moderate, to a certain degree, the territory sharing game. The app

will not force drivers to make certain decisions. However, it can incentivize the drivers
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to participate in the game on the promise that the benefits of this game will outweigh

any alternatives. Furthermore, the app can limit the number of participating drivers

according to the service demands in certain areas. Thus, the problem of finding the

right number of players can be solved.

The desired outcome of the game is for drivers to agree collectively on the use

of certain strategies. The drivers will make their agreement based on their best

interests. The smartphone app will combine the localization functionality with the

decisions committed by the drivers. The app will force the drivers to commit to

their announced decisions should they wish to remain in the game. Through this

arrangement, a binding agreement is established; and the role of the app ends here.

The solution model will balance the process of supply and demand such that the

services are available at optimal times for all customers.

6.3.2 Problem Formulation

We consider a group of drivers TR = {tr1, tr2, , , , , trN}, each of which is request-

ing to have ownership of specific territories As. Each driver chooses several areas

of interest such that Atri =
{
Atri1 , Atri2 , , Atrin

}
with the pre-assigned prices CAtri ={

cA
tri
1 , cA

tri
2 , , cA

tri
N

}
. These territories are in the form of paths in the same area such

that Atri = P tri , CAtri =CP tri , and P tri
{
ptri1 , ptri2 , , ptrin

}
. For each path, ptrij , a regu-

latory body Π assigns the usage-price cp
tri
j . This usage-price is equal for all drivers.

Let P tri be the set of strategies, represented by their actions, and Cp
tri
j be the utility

function for driver tri over ptrij . P tri is a compact, differentiable, convex set for which

the usage-cost set CP tri is computed via a positive non decreasing function. That is,

P tri is a bounded closed set that contains all of the desired strategies such that each

strategy will yield a positive utility value.

The game Σ is a 3-tuple (TR, P tri , CP tri ) cooperative territory sharing game. The

124



CHAPTER 6. TREATMENT OF THE TERRITORY SHARING PROBLEM

regulatory body, Π, receives requests to reserve areas from the drivers. The regulatory

body computes CP tri based on the drivers’ concentration in the areas of interest

and send this information to the drivers as well as the information about where the

drivers are situated. CP tri represent the drivers’ expected fare price deduction for

each territory, i.e., the “loss” for every driver due to the declining fare rate. Once

the drivers receive CP tri , they start the communication to reach an agreement with

regards to their chosen strategies (i.e., paths). Furthermore, Π defines a general cost

function C. C represents the overall system cost, given the action of the drivers,

whereas CP tri is a personalized cost function for each driver.

Since the drivers are impacted by their individual decisions, a cooperative scheme

is needed to achieve the following:

C(s) = min
∀pj

N∑
1

Cp
tri
j (6.1)

such that

C(s) ≤
N∑
i=1

C(ptrij∗ , p
tr−i

j ) (6.2)

Equation 6.1 describes the problem as a game in which the goal is to have a minimum

overall cost. Furthermore, in Equation 6.2 the game is expected to arrive at an

equilibrium as a competitive game such that if any player unilaterally changed his/her

strategy to another strategy, the overall outcome wouldn’t improve.

6.3.3 Solution Formulation

Similar to the discussion in Chapter 5, the game described so far has two aspects. The

first aspect is the cost that each driver has to pay. Drivers would like to choose strate-

gies that guarantee them the lowest possible conflict cost. The Travellers-Centric Trip

Planning (TCTP) module is used to handle the personal strategies such that each
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driver will have few strategies reflecting their preferences. The second aspect is the

overall cost value that results from using the system. An overall cost minimization

might require the drivers to cooperate. Drivers who are most interested in increasing

their gains or reducing their cost values should form coalitions (Ss). The purpose

of these coalitions is to provide their members with a platform through which they

can make strategic agreements with regards to the utilization of mutual resources.

The resource sharing game is faced usually with the problem of forming cooperating

groups that adhere to their agreements. For our targeted application, this is made

simple. Customers contact the smartphone app expressing their interest in having

a door-to-door transportation service. The drivers contact the app expressing their

availability to provide this service. Both parties have no direct interaction, and their

communications are managed by the app. Therefore, the smartphone app can force

the social taxi drivers to abide by their established agreements.

Nevertheless, the drivers have no interest in joining an agreement that will not

benefit them. Subsequently, the solution should guarantee two outcomes. The first

outcome is related to the drivers’ geographical distribution such that the smartphone

app will assign appropriate cost values for various areas based on customer concen-

tration levels. The second outcome is achieved when the drivers are guaranteed to

have their gains increase, when they join the cooperative game. These outcomes are

best described by the game’s core:

Core(c) =

{
x ∈ RN |

∑
i∈N

xi(N) = c(N) and
∑
i∈S

xi(s) ≤ c(s)∀s ∈ 2N \∅

}
(6.3)

As seen in Equation 6.3, the drivers are interested in joining a cooperative endeavour

if they are sure that they will individually benefit from cooperation. The core for-

mulation in Equation 6.3 corresponds to the requirements indicated in Equation 6.1

and Equation 6.2.
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6.3.4 Existence and (In)Efficiency of Game Theoretic Solu-
tions: No-regret Models

Before discussing the existence and efficiency of the proposed solution model, it is

important to discuss the various equilibria as they relate to the developed cooperative

game, as summarized in Figure 6.1. In literature, there is a wide range of problems

with a game theoretic presentation. A game theoretic set-up does not guarantee the

existence of a solution. A solution exists in a game when an equilibrium outcome

converges at the end of the game. Generally, there are three types of equilibria:

dominant equilibria, Nash equilibria, and correlated equilibria [109, 110], with each

type having its own variants. The dominant equilibria exist if players within a game

have strategies that can provide them with the best outcome regardless of the possible

strategies of other players. However, for the majority of resource sharing games such a

scenario is rare. Nash equilibrium has two main variants: pure equilibria and mixed

equilibria. Pure equilibria can be found and analyzed, but they don’t exist at all

times. On the other hand, the mixed equilibria always exist, but it is difficult to

be found. The correlated equilibrium can be seen as a general case of Nash’s mixed

equilibrium. The correlated equilibrium has two attractive features: first, it always

exists, and it can be found; second, the correlated equilibrium analysis is suitable for

games with subjective strategies. The correlated equilibrium is primarily described

as an outcome of a game in which a random device sends a signal to the players

describing/assessing a situation of interest. Therefore, through the signal, the device

can affect the players and correlate their choices [110]. In [111], Cigler and Faltings

have argued that the existence of a smart device is not needed to produce a correlated

equilibrium. Alternatively, for the equilibrium to be produced, it is sufficient to play

the game repeatedly and as such, the players will learn from previous rounds such

that they incorporate their knowledge in subsequent rounds [112].
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According to the team mobility planning framework, drivers view the environment

subjectively based on their chosen doctrines. Therefore, they have a fundamentally

different understanding and view of the same event. Hence, their negotiation process

is governed by their subjective views and subjective utility values. Furthermore, the

smartphone app is managing the communication between the drivers; thus, it permits

only the drivers within the same area to participate in the game according to certain

criteria defined by the app. Therefore, by virtue of having the app, the territory

sharing game can be defined as a correlated game with correlated equilibria. However,

this definition will pose a major concern of forcing the players to 1) have complete

information about other participants in the game, and 2) to have sets of available

strategies that are uniformed and symmetrical for all participants. The failure to

meet these conditions will limit the successful outcome of the territory sharing game.

In most cases, the players are private individuals who would not broadcast their

strategies and will not share their expected gains. Furthermore, the symmetry of the

game is difficult to achieve since the players have subjective doctrine-based strategies

that are personalized to their preferences. This asymmetry of the territory sharing

game, and the use of the TCTP module as a mean of strategizing for drivers, would

give rise to a problematic situation if the game is viewed as a non-cooperative pure or

mixed game. That is, the drivers are incapable of forming expectations of the other

drivers’ actions. The game’s incomplete information and asymmetry are challenging

intrinsic aspects of the territory sharing game.

The game’s incomplete information might give rise to regrets among players as the

game progresses. The need to have no-regret in the game should be addressed as a

part of the need to have a stable, self enforcing outcome. The correlated equilibrium

might not be sufficient to deal with the regret aspect of the game, where the outcome

will result in a poor equilibrium, hence the regret. It is possible to mitigate the regret
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by “sequentializing” the game such that the repetitive partaking in the game should

lead to the vanishing of regret. This outcome corresponds to a coarse correlated

equilibrium such that the process of game sequentialization will produce a regret-free

outcome through probabilistic strategizing.

The discussion thus far has progressed in a manner in which the different forms of

team trip planning will lead to 1) a pure or mixed-equilibrium as argued in Chapter

4 and shown in Chapter 5, 2) a correlated equilibrium as discussed earlier via either

the smartphone app or the repetitiveness of the game, or 3) a coarse correlated

equilibrium. These equilibria are inter-related such that each equilibrium encompasses

the previous ones as shown in Figure 6.1

PNE

MNE

CE

CCE

Achieved using Pure 
Strategies from the TCTP 

Module

Achieved using the TCTP 
Module with Probabilistic 

Replanning

Achieved using the 
Extended Bargaining model 

(Smartphone app)

Achieved using the Extended 
Bargaining model 

(Smartphone app+repetitive 
play over T)

Figure 6.1: The different equilibria in order of simplicity and existence. The original
concept of the Figure appears in [113]

The coarse correlated equilibrium is a correlated equilibrium that is smoothed.

Smooth games admit canonical bounds of the Price of Anarchy (PoA) such that the
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in(efficiency) of the outcome is mitigated/eliminated [113]. Furthermore, the PoA is

the most commonly used criteria in assessing the (in)efficiency of a solution. The

PoA, as defined in Chapter 4, is an index that measures the impact of the selfish

behaviour of the system’s users on the overall system performance by comparing the

worst equilibrium with the best possible outcome. For the resource sharing problems,

there are several assessments of the PoA values under various assumptions. For

example, Johari and Tsitsiklis argued in [114] that for players who have formulated

an estimation regarding the impact of their actions on the prices, the lower bound

for the aggregated utility is 75% of the best case scenario. The reason for the tight

lower bound is that the players are conscious of the consequences of their actions,

which subsequently affects their choices. For other scenarios that have less desirable

conditions, the PoA’s lower bounds decrease. In [115], Bachrach et al. proposed that

for a wide-range of coalitional games, in which the players expect their utilities to be

at least equal to their individual non-cooperative contribution/cost values, the strong

PoA is 50% of the optimum scenario. This variation of the lower and upper bounds

is attributed to the specific details of the games and the proposed solution methods.

Nonetheless, for various games, these bounds provide a general expectation of the

gains and losses due to the adoption of the cooperational approaches as opposed to

the non-cooperational approaches.

Next, we discuss the integration of the coarse correlated equilibria, the smoothness

of the game, and the PoA bounds into the bargaining model, initially described in

Chapter 4.
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6.4 Extended Bargaining Model

The previous discussion highlighted the fact that the team trip planning game has

mixed elements of cooperation and non-cooperation. The bargaining model, as de-

scribed in Chapter 4, is cooperative in the sense that the final outcome is not self-

enforced but enforced through a binding agreement. Furthermore, the cooperative

nature of the team trip planning game is a major aspect in the construction of the

territory sharing problem as a cooperative game. Nevertheless, the later analysis

has heavily deployed tools that have been conventionally used for non-cooperative

games. This is hardly a dichotomous employment of these tools and solution meth-

ods. The cooperative and non-cooperative aspects of game theory are not viewed as

opposing branches. They are rather viewed as two possible methods of approaching

team planning problems from two different perspectives and as such, depending on

the application, the analyses may overlap. To better highlight the relationship be-

tween cooperative and non-cooperative games we quote R. J. Aumann: “Formally,

cooperative games may be considered a special case of non-cooperative games, in the

sense that one may build the negotiation and enforcement procedure explicitly into the

extensive form of the game. Historically, however, this has not been the mainstream

approach. Rather, cooperative theory starts out with a formalization of games (the

coalitional form) that abstracts away altogether from procedures and form the ques-

tion of how each player can best manipulate them for his own benefits; it concentrates,

instead, on the possibilities for agreement” [116]. The solution model in this research

work follows the formal definition of cooperative games.

In contrast to the work in many of the recent publications, I have developed a

solution model that has a negotiation procedure between the players while the final

agreement is enforced through mutual threat or through the game moderator. Hence,
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similar to Proposition 4.2.1, in the territory sharing game, it is assumed that the

drivers will give up on a preferred strategy during the process of negotiation in the

pursuit of an agreement. This assumption might contradict Equation 6.2. Therefore,

we start by reformulating Equation 6.2 such that for a series of sequential negotiation

rounds and agreed upon sets of actions (P 1, P 2, P 3, , , P T ) over T time, Equation 6.2

becomes
1

T
C(s) ≤ 1

T

N∑
i=1

C(ptrij∗ , p
tr−i

j ) (6.4)

Proof
T∑
1

C(st) =
T∑
1

N∑
1

C(stri
t

) (6.5)

T∑
1

C(st) =
T∑
1

N∑
1

[C(ptrij∗ , p
tr−i

j ) + ∆tri,t] (6.6)

∆tri,t = C(st)− C(ptrij∗ , p
trt−i

j ) (6.7)

The dual use of the sequential playing and the smartphone app as a “referee” can

guarantee that we have a correlated equilibrium (CE). However, to guarantee that

the drivers will have regret-free outcomes, the smoothness assumption detailed in

[46,109,117] is used to formulate the following relationship:

N∑
i=1

C(ptrij∗ , p
tr−i

j ) ≤ λ · C(ptrij∗ ) + µ · C(ptrij ) (6.8)

Therefore,

T∑
1

C(st) ≤
T∑
1

λ · C(ptrij∗ ) +
T∑
1

µ · C(ptri
t

j ) +
T∑
1

N∑
1

∆Xi,t (6.9)

For each tri, the no-regret model is used to present the following assumption

T∑
1

∆tri,t ≤ 0 (6.10)
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Hence
1

T
C(st) ≤ 1

T
λ · C(ptrij∗ ) +

1

T
µ · C(ptri

t

j ) (6.11)

�

For the territory sharing game, Equation 6.9 and Equation 6.10 can be expressed

as follows:

T∑
1

C(st) ≤
T∑
1

λ · C(ptrij∗ ) +
T∑
1

µ · C(ptri
t

j )−
T∑
1

N∑
1

∆tri,t (6.12)

and
T∑
1

∆tri,t ≥ 0, (6.13)

where

ptrij∗ = The optimum strategy of player tri,

T = Time window and t ∈ T ,

λ, µ = Smoothness parameters such that λ > 0 and µ < 1,

∆tri,t = The gain/cost incurred by driver tri at instance t.

The game according to Equation 6.8-6.13 allows for the integration of “no regret”

dynamics resulting in a coarse correlated equilibrium (CCE).

The bargaining model operates similarly to the model described in Chapter 4. Ad-

ditionally, the smartphone app Π plays an integral role in assigning a cost function for

each area. These cost values (CP tri s) are communicated to the drivers. Furthermore,

the values can be unique to the drivers such that the cost value for CP tr1 can be dif-

ferent than CP tr2 . This method is not to centralize the game but to force the drivers

to withhold their agreements. Should a driver deviate from an agreement, Π can raise

the cost value to prevent the driver from profiting. Furthermore, by controlling the

prices, Π can control the number of competing drivers per area. Otherwise, the prices

are the same for all players. In all cases, the decisions regarding the strategies are
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made with correlation to CP tri .

Once the drivers receive their CP tri s, they start arranging their areas in order

of their preferences. According to their chosen doctrines, and using their TCTP

modules, they communicate their strategies to each other via Π. The identity and

the number of the drivers involved in the game are decided by Π. Therefore, a

case in which the supply and demand are out of balance is avoided. The pairwise

negotiation will proceed as discussed in Chapter 4. Once the drivers agree on their

chosen strategies, they communicate their agreement to the smartphone app Π. The

agreement will then be enforced, and no driver can change their strategy.

The drivers have the right to play the game once and then move on to a different

area, or they may join the game again. However, the CP tri can be different for each

round and not necessarily repeated. Therefore, the choices made by the drivers are

strictly correlated with the existence of the smartphone app Π. In the case that

Π should relinquish its control over the cost values of various areas, the choices of

the players in each round become correlated with their choices in previous rounds.

The number of rounds, players, and the cost prices are inferred from the smoothing

process of the game such that the outcome converges to a no-regret model.

Next, a simulation work that discusses the territory sharing game and its solutions

according to the developed no-regret-based bargaining model is presented.

6.5 Simulation Work

In this simulation work, N drivers who have access to two business areas are simulated.

Each area has two paths. Each driver is required to choose at least two non-identical

paths. The number of drivers (N) can vary from one experimental set up to another.

Through this simulation, we first demonstrate the territory sharing game with
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different number of players discussing the expected gains/losses. We will also examine

the validity of Equation 6.11 for our model. The simulation work will examine the

value of ∆tri for all players, if the game was to be played for a period of 30 days.

Furthermore, the efficiency of the game model is examined using the Price of Anarchy

(PoA). PoA is computed as the following:

PoA =
maxpj

∑N
1 C

p
tri
j

minpj
∑N

1 C
p
tri
j

(6.14)

Next, the behaviour of our model for 10 drivers is demonstrated.

6.5.1 Territory Sharing Beween 10 Drivers

In this scenario, 10 drivers randomly choose their sets of strategies. Their profits are

penalized by the smartphone app according to their chosen territories. If two drivers

chose the same path, the path price will be increased by 2 price units for each driver.

Therefore, their collective goal from playing this game is to minimize their overall

sharing incidents as well as their individual penalties.

Each player starts the game by broadcasting a set of strategies that has only

two alternatives
{
ptri1 , ptri2

}
. All drivers announce that their preferred strategy is

p1, and each driver will compute the overall sharing incidents, as shown in Table

6.1. According to Equation 6.12, and as shown in Table 6.2, various coalitions are

formed. After the coalitions are established, the first round of negotiation begins.

The coalition formation rounds are governed by the two conditions of rationality and

efficiency, as indicated in Equation 6.3. As seen in Table 6.1, for the first round, the

second condition is met. However, for tr4 and tr9, they see their price shares increasing

since they joined their respective coalitions. Therefore, over two rounds, the drivers

are allowed to examine independently their cost values outside of their coalition.
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Table 6.1: Negotiations for cooperative territory sharing game

Players Selfish Game
Cooperative Game Outcome

∆tri1st Round 2nd Round 3rd Round
tr1 15 12 9 6 0
tr2 15 6 3 3 6
tr3 9 9 9 9 9
tr4 9 18 9 9 9
tr5 15 12 9 6 0
tr6 9 3 6 9 11
tr7 15 10 7 5 4
tr8 15 12 9 6 4
tr9 9 17 20 9 11
tr10 15 5 5 2 7∑N=10

1 Ctri(ptrij ) 126 104 86 64 NA

Table 6.2: Coalition formation in the territory sharing game

Coalition No. Coalition Members Strategy Agreement
1 tr1, tr2

{
ptr11 , ptr22

}
2 tr3, tr4

{
ptr31 , ptr42

}
3 tr5, tr7

{
ptr51 , ptr72

}
4 tr6, tr9

{
ptr61 , ptr92

}
5 tr8, tr10

{
ptr81 , ptr102

}
After the third round, they confirm that their cost values outside of their coalition

are improved, and therefore they secede from their coalitions. In this scenario, the

final grand coalition is found as follows:

P SGnd

=
{
ptr11 , ptr22 , ptr31 , ptr42 , ptr51 , ptr61 , ptr72 , ptr81 , ptr92 , ptr102

}
(6.15)

6.5.2 Smoothness and Convergence of CCE

The previous scenario included 10 drivers for which a cooperative solution is found.

By examining ∆tri in the previous scenario, it can be confirmed that the cooperative
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solution corresponds to a Nash equilibrium for the drivers. However, the possibility of

this outcome being consistent for all possible cases can be challenged. If Assumption

4.3.1 is applied and Nash equilibrium did not converge, then the no-regret approach

should come into play such that in any case we should have
∑T

1 ∆tri,t ≤ 0, and the

final solution will converge to the CCE. To verify this hypothesis, more than a 1000

scenarios for various values of N were implemented, while simulating situations in

which the games are played repeatedly over a period of 30 days (T ≤ 30).
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Figure 6.2: Values of ∆tri,t computed over 30 days for N = 10, 15, 20, 25, 30.

As shown in Figure 6.2, for up to 30 drivers, the
∑T

1 ∆tri,t has a positive value

reflecting the gain achieved by cooperation between drivers. This result demonstrates

the ability of our model to provide drivers with an acceptable state of equilibrium.

However, it is important to keep in mind that this case is true for when N ≤ 30,

|P tri | = 2, and |P S| = 4. If the number of players is arbitrarily increased without

offering more options, the final result may not converge to a coarse correlated equi-

librium (CCE), even if a momentary gain is found. However, an argument can be

made that with the existence of the smartphone app, the outcome will converge to a
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CE.

As can be seen in Figure 6.3, when more drivers are allowed to compete for

customers, the overall results will not conform to Equation 6.11. Therefore, to deal

with this issue, there are two options: either to increase the value of T and observe∑T
1 ∆tri,t for a longer period of time, or to increase the number of offered strategies.

With the former option, a CCE may or may not converge. Whereas, with the latter

option, by diversifying and broadening the search space, we are assured to get a CCE.

With regards to our application, one of our goals is to distribute the drivers among

all possible areas which the customers frequent the most. Therefore, as more drivers

express their interest in playing the game, it is logical to increase the coverage areas.

The burden of dealing with this issue will fall on Π. For our scenario, we have added

two more paths such that |P S| = 6. For each driver, the value of |P tri | will remain

to be 2. However, each player will have a bigger “pool” of strategies to choose from.

As shown in Figure 6.4, we can see that for the same coalition formulation and over

the same period of time, a coarse correlated equilibrium has converged.
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Figure 6.3: Values of ∆tri,t computed over 30 days for N = (35, 40, 45, 50) with
|P S| = 4.
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Figure 6.4: Values of ∆tri,t computed over 30 days for N = (35, 40, 45, 50) with
|P S| = 6.

6.5.3 Overall System Performance

The simulation work presented has thus far shown the effectiveness of our model in

terms of the individual cost distribution and the converged equilibrium. Regardless,

since our bargaining model is a heuristic one, a stronger form of validation might

be required. For this purpose, we will use the PoA as a tool of assessment. For

N ≤= 20 we can compare the converged equilibrium with the best case scenario.

However, for N > 20 this might be difficult since the search space for |P tri | = 2 is

2 × 2N . Therefore, the assessment will include a comparison with the deterministic

best equilibrium as well as a comparison with the estimated “best” equilibrium.

6.5.3.1 Deterministic Equilibrium vs Achieved Equilibrium

We will use the case of N = 20 to compare the overall cost of our achieved equilibrium

with the deterministic best and worst equilibria which were determined through brute

search. As can be seen in Table 6.3, the calculated PoA for 10 days is consistently

high. In comparison, the PoA from our model is close to optimum (i.e., close to 1).
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Table 6.3: Converged equilibrium for 20 drivers over 10 days

Days Best Equilibrium Worst Equilibrium Achieved Equilibrium PoA Achieved PoA
1 370 984 390 2.66 1.05
2 382 1044 392 2.73 1.03
3 564 1120 592 1.99 1.05
4 418 1260 432 3.01 1.03
5 306 816 320 2.67 1.05
6 336 1212 402 3.61 1.20
7 382 1120 392 2.93 1.03
8 364 1022 396 2.81 1.09
9 348 1038 352 2.98 1.01
10 348 1038 388 2.98 1.11

6.5.3.2 Estimated Equilibrium vs Achieved Equilibrium

As mentioned before, as the number of drivers increases, it becomes impossible to

find the best and worst equilibria through brute force search. Alternatively, few

assumptions are made regarding the estimated best and worst equilibria. First, the

worst equilibrium is assumed to be the converging outcome when all drivers choose

their least favoured strategy. Therefore, this can be considered as a strong upper

bound. For the lower bound (i.e., the best equilibrium), it is rather difficult to make

any form of direct estimation of the best equilibrium. Hence, we assume that the

system’s PoA is
√
N =

√
30 = 5.4, which corresponds to the PoA ratio for a 3rd

degree polynomial cost function, and from this value it is possible to compute the

best possible outcome. Obviously, these are strong assumptions. However, as seen in

Table 6.4, even though the achieved PoA is slightly worse than the case for 10 drivers,

our model’s efficiency with regards to the overall performance is demonstrated.
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Table 6.4: Converged equilibrium for 30 drivers over 10 days

Days Best Equilibrium Estimated Worst Equilibrium Achieved Equilibrium PoA =
√
N Achieved PoA

1 502 2712 788 5.40 1.57
2 447 2414 628 5.40 1.40
3 453 2448 795 5.40 1.75
4 468 2526 576 5.40 1.23
5 502 2712 589 5.40 1.17
6 441 2380 556 5.40 1.26
7 488 2634 602 5.40 1.23
8 478 2580 685 5.40 1.43
9 468 2526 816 5.40 1.74
10 459 2480 582 5.40 1.27

6.6 Conclusion

In this chapter, we described a territory sharing game for social taxi networks. In this

game, a regulatory body in form of smartphone app allows for a group of drivers to

engage in a cooperative endeavour by which they earn the right to operate in certain

attraction areas. We have extended the previously developed bargaining model to

accommodate the app as a referee for the game. A no regret based approach was

developed to ensure that the final outcome of our game will converge to a coarse

correlated equilibrium.

To validate the developed model, we conducted an extensive experimental work.

Through this work, we demonstrate the implementation of our model, the effectiveness

of the no-regret model, and provide an analysis of the overall system efficiency by

examining the Price of Anarchy (PoA).

The developed model has been shown to be successful in handling the various

examined scenarios. The performance was robust, and the empirical results adhered

to the theoretical formulation.
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Chapter 7

Conclusions and Future Directions

7.1 Introduction

Team mobility planning has been a point of interest in a multitude of areas of re-

search. As an optimization problem, a variety of solutions were presented to deal with

trip planning for both individuals and groups of travellers. However, these solutions

are constrained by the nature of their applications. On the other hand, as a game

theoretic problem, multiple analyses were presented in the literature categorizing the

trip planning game as either cooperative or non-cooperative.

The main objective of the research work in this thesis is to develop a team mo-

bility planning framework. The framework is designed to approach the team trip

planning problem as a cooperative game. Furthermore, as a modularized framework,

the traveller-centric trip planner module has been developed to independently address

the non-cooperative team trip planning. In the following sections I summarize the

major contributions of this work, and I provide suggestions for future directions.
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7.2 Major Contributions

1. A game formulation of the team trip planning problem that encompasses the

individual and the team aspects of the problem has been developed. While the

mathematical formulation of the problem sets the foundation for the developed

solution work, its formulation has been maintained to be general and usable for

other possible solution models.

2. A novel team mobility planning framework has been presented. The framework

has been modularized such that each module in it can be considered an inde-

pendent solution model. For example, the framework in general can be used for

cooperative trip planning. On the other hand, the traveller-centric trip planning

module can be used as an independent system that deals with non-cooperative

team trip planning. Furthermore, the TCTP module has been used as a tool to

produce behavioural based strategies that reflect the personal planning beliefs

of the travellers.

3. A bargaining model has been formulated to deal with the team trip planning

game as a cooperative problem. The model in its original design has produced

a stable outcome under an enforced agreement. Furthermore, in the case that

an enforced agreement is not reached, the outcome will correspond with mixed

Nash equilibria.

4. A novel traveller-centric trip planning module has been presented. The module

deploys hard and soft objectives to produce a trip plan that is personalized for

each traveller. The use of this module has been shown to produce a better sys-

tem welfare as compared to existing solutions. Furthermore, the traveller-centric

trip planning module has been used to produce the personalized strategies for
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each traveller in the team trip planning game.

5. A novel game theoretic formulation of the territory sharing game for social taxi

networks has been developed. The formulation has taken into account the usage

of smartphone applications (Apps) as the medium of communication between

the travellers. Furthermore, the game formulation has situated the smartphone

app to be an external referee of the game. The unique position of the app

as part of the game, but not as a player, has been used to demonstrate the

existence of a correlated equilibrium and a coarse correlated equilibrium.

6. An extension of the bargaining model that deals with the competitive aspect of

the game has been presented. In conjunction with the external referee, the bar-

gaining model has produced an outcome that corresponds to a coarse correlated

equilibrium. The model has been extended to behave similarly to a no-regret

model.

7.3 Future Research Directions

The research work presented in this thesis has addressed the main goals declared

herein as research gaps, and has also demonstrated the capabilities of the developed

framework in achieving these goals. Additionally, this work has uncovered other issues

that deserve further research work.

1. With regards to the team mobility framework, the issue pertaining to the opti-

mum number of players is not addressed in detail. This is an important factor

which might lead to the instability of the final outcome as discussed in Chapter

2. Although the smartphone app is used in Chapter 6 to deal with this problem,

a more integrated solution might be needed in future. The Price of Anarchy
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can be used as a method of upper bounding the number of players based on

general assessment of various equilibria. The problem with this approach is that

it is localized to each game. Alternatively, dynamic bounding of the different

approaches should be investigated.

2. With regards to the traveller-centric trip planner, as shown by the experimental

work in this thesis, there are promising results from using the doctrines. How-

ever, to understand the exact impact of the doctrines on the traffic requires an

experimental work on a large scale under a wide range of scenarios. This should

be carried out in future research work.

3. The doctrines chosen in this thesis are limited to three main factors. In future

work, it is possible to expand the fuzzy sets to include more doctrines and

preferences. The safety doctrine, for example, can be expanded to include

other factors such as the rate of traffic accident, visibility, pavement quality,

travellers’ age and experience, and weather conditions such as fog, rain and

hail. Moreover, geographic models could be adopted to consider sand storms

instead of snow storms and the existence of sand on roads instead of snow and

black ice.

4. For the territory sharing problem, it is possible to add to the set of strategies

some form of time stamps. That is, the model will not only operate on location

basis, but it will be a locationally and temporally aware model. Furthermore,

the time window (T) in the no regret model can be dynamic to serve both short

and long term goals.
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