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ABSTRACT 
 
Duchenne muscular dystrophy (DMD) and the murine model, mdx, are recessive X-linked 

myopathies characterized by aberrant Ca2+-handling resulting in muscle atrophy and weakness. 

Phospholamban (PLN) is a protein inhibitor of sarco(endo)plasmic reticulum Ca2+-ATPases 

(SERCAs) that physically interacts with SERCA to regulate Ca2+-handling. Targeted therapy to 

improve SERCA function is a proven strategy to alleviate DMD in mdx mice.  In this study, Pln-

/- mice were crossed with mdx mice to generate mdx/Pln-/- double knockout mutant mice.  Since 

PLN inhibits SERCAs, it was hypothesized that PLN ablation would mitigate Ca2+ dysregulation 

and rescue the dystrophic phenotype. Soleus and diaphragm muscles 

from WT, mdx/Pln+/+ and mdx/Pln-/- mice were excised to determine differences in the muscle 

morphology and functionality. Histological analysis revealed stark increases in the proportion of 

centralized nuclei and collagen invasion in mdx/Pln-/- and mdx mice compared to WT, however, 

there were no differences in these markers between mdx groups. Immunofluorescence 

staining demonstrated that both soleus and diaphragm from mdx/Pln-/- mice shifted towards type 

IIB and type IIX fibre types, as the proportion of these fibres were significantly greater 

than mdx/Pln+/+ and WT. This shift was accompanied by increased cross sectional area of type 

IIB fibres in mdx/Pln-/- compared to mdx/Pln+/+. Western blotting analysis of soleus and 

diaphragm muscle homogenate showed an increase inexpression of the SERCA regulator, 

sarcolipin (SLN), in both mdx groups relative to WT, however, there was a significant decline in 

SLN content in mdx/Pln-/- compared to mdx/Pln+/+. Additionally, there was a significant 

elevation in PLN content in mdx/Pln+/+ relative to WT in the soleus muscle. The solei 

of mdx/Pln+/+ and mdx/Pln-/- mice exhibited a significant reduction in force production compared 

to their WT counterparts at all frequencies when normalized to cross sectional 
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area.  Unexpectedly, the force generated by mdx/Pln-/- soleus was significantly decreased at all 

stimulation frequencies when compared to mdx/Pln+/+. Furthermore, there was a significant 

reduction in soleus and diaphragm Ca2+ uptake in both the mdx/Pln+/+ and mdx/Pln-/- groups 

compared to WT, and surprisingly the rate of Ca2+ uptake was significantly lower in mdx/Pln-

/- muscles compared with mdx/Pln+/+. Interestingly, while there were differences in SERCA 

mediated Ca2+ uptake between experimental groups, there were no significant differences in 

Ca2+- ATPase activity between WT, mdx/Pln+/+ and mdx/Pln-/- groups in the soleus and 

diaphragm muscles. Overall, these results demonstrate that PLN ablation in the mdx mouse 

model resulted in a worsening of the disease phenotype, as evident by elevations in centralized 

nucleation, a reduction in the ability to generate force and impairments in SERCA mediated 

Ca2+ uptake. These results suggest that PLN could potentially provide stabilization of the 

SERCA structure and function during oxidative stress. 
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Introduction 
 

Phospholamban (PLN) is a critical regulator of muscular Ca2+ homeostasis, as it 

modulates the activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), a crucial 

Ca2+-handling protein situated on the sarcoplasmic reticulum (SR). The interaction between these 

two proteins and the biological function of PLN have been characterized comprehensively in 

mammalian cardiac muscle. In studies examining cardiac tissue, ablation of PLN or adrenergic 

stimulation of PLN phosphorylation (see details below), acts to increase SERCA activity and 

enhance myocyte relaxation rates and contractility [1, 2]. Conversely, overexpression of PLN in 

cardiac muscle can cause superinhibition of SERCA, and induce congenital heart failure due to a 

lethal depression in SR Ca2+- handling [3-6]. Investigations into the role of PLN in a dystrophic 

environment have been primarily limited to cardiomyopathies. These investigations have 

highlighted the crucial role of Ca2+ dysregulation in myocyte contractile dysfunction and 

dystrophic disease progression [7]. Furthermore, these studies have yielded promising results in 

the murine model, as PLN ablation improved Ca2+- handling and consequently alleviated 

symptoms of the myopathy while impeding disease progression [8, 9]. However, the role of PLN 

in healthy and diseased mammalian skeletal muscle is much less clear. It has been shown 

conclusively that PLN is expressed in the mouse soleus, where it regulates SERCA activity [10]. 

Based on the knowledge that PLN is a critical Ca2+-handling protein in healthy and diseased 

cardiac tissue, PLN and its interaction with SERCA in skeletal muscle warrants further 

investigation to gain a fuller understanding of Ca2+ homeostasis in skeletal muscle health and 

disease.   
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Ca2+ Homeostasis in Skeletal Muscle 
 
 Calcium (Ca2+) is regarded as a universal intracellular messenger that is essential for 

nearly all aspects of cell life [11-13]. Conceptually, its action is relatively simple: at basal levels, 

the intracellular Ca2+ concentration ([Ca2+]i) is maintained below 100 nM, however, a rise in this 

concentration to 1000 nM (or greater) triggers cellular activation through the induction of 

numerous second messenger pathways [11, 12]. The maintenance of a low resting [Ca2+] is 

critical to normal cell function, and as such, Ca2+ levels are tightly controlled [13]. In skeletal 

muscle specifically, this regulation is achieved primarily by the SR, as well as, by key 

contributions from sarcolemmal proteins, cytoplasmic buffers and mitochondria [14-16]. The SR 

is an intracellular tubular network, that while analogous to the endoplasmic reticulum, functions 

as the dynamic Ca2+ regulator in muscle and serves to provide automatic feedback control for 

altering and maintaining both cytosolic and luminal [Ca2+] [14-16]. It accomplishes this through 

the collective effort of three major classes of Ca2+ - regulating proteins: luminal calcium binding 

proteins (calsequestrin), Ca2+ - release channels (ryanodine receptor; RyR), and the SERCA Ca2+ 

- reuptake pumps [14-16].  

 With the SR being so intrinsically tied to Ca2+ homeostasis, it comes as no surprise that it 

is pivotal in the induction of both muscle contraction, otherwise known as excitation-contraction 

coupling (ECC), and muscle relaxation [17]. The sequence of events that initiate skeletal muscle 

contraction begin with an action potential propagating along the plasma membrane, and 

depolarizing the transverse-tubule system, where the electrical stimulus is detected by the 

dihydropyridine receptors (DHPRs) and converted to a chemical one through an allosteric 

interaction with RyR, that triggers the release of Ca2+ [18].  The transient elevation in [Ca2+]i 

binds to troponin C, causing a conformational change that removes the inhibitory action of 
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tropomyosin and enables the formation of cross bridges between actin and myosin in order to 

generate force [18]. Subsequently, muscle relaxation is elicited by the active transport of Ca2+ 

from the cytosol to the SR lumen by SERCA, in order to restore the luminal SR Ca2+ stores for 

ensuing contractions and to return cytosolic [Ca2+]i to basal levels [18]. SERCA activity is not 

limited to SR re-filling. The SERCA pumps are additionally vital in maintaining resting [Ca2+]i 

under basal conditions by counteracting passive Ca2+ leak either through RyR or the pumps 

themselves, thus keeping a tight control of Ca2+ levels.  

 The molecular diversity of these Ca2+ - regulatory proteins govern basal [Ca2+]i, as well 

as, contraction and relaxation properties of different muscle fibre types [19, 20]. Slow twitch 

muscle fibres (fibres expressing slow or type I myosin) exhibit higher resting [Ca2+]i compared to 

fast twitch fibres (fibres expressing fast or type II myosin) [21-23]. Additionally, this is 

accompanied by complete saturation of the luminal SR Ca2+ store, whereas, fast twitch fibre SR 

content is only 35% of its capacity at basal levels [21]. This is directly related to the variable 

density of protein expression between fibre types. Fast twitch muscle fibres express 3-5-fold 

greater DHPR and RyR content, thus facilitating an accelerated Ca2+ release [19, 21, 24]. 

Moreover, these fibres exhibit a 5-7-fold greater density of SERCA, which ensures faster and 

more efficient Ca2+ clearance [21, 25]. Lastly, fast twitch fibres express increased calsequestrin 

content that enables a greater luminal SR Ca2+ capacity [21, 25, 26]. Consequentially, the Ca2+ 

transient in fast twitch muscle fibres is greater and shorter compared to slow twitch fibres and 

this results in faster contraction kinetics and greater force production [21]. These characteristics 

not only highlight the differences in muscle fibre composition, but the diverse effects that could 

be imposed by the dysregulation of Ca2+ - handling proteins. While it is the concerted action of 

multiple Ca2+ - regulating proteins that maintains skeletal muscle Ca2+ homeostasis, this thesis 
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will focus on the interaction between SERCA and one of its regulatory proteins, PLN, in both 

healthy and diseased states. 

SERCA Structure and Function 
 

SERCAs are 110-kDa integral membrane transporter proteins embedded within the SR 

that consist of a single polypeptide chain which arranges into the transmembrane and cytosolic 

regions [27]. The transmembrane region is composed of 10 a-helices (M1-M10) of differing 

lengths and properties, in which SERCA’s two Ca2+ binding sites reside within helices M2, M4, 

M6 and M9 [27, 28]. Crystal structure analysis has demonstrated that these two Ca2+ binding 

sites are located adjacent to each other and near the cytoplasmic surface of the lipid layer. In fact, 

the Ca2+ binding sites are only accessible from the cytoplasmic side of the SR, thus prohibiting 

the binding of luminal Ca2+ [15, 29]. The transmembrane region is connected to the large 

cytosolic headpiece, consisting of three domains: the ATP or nucleotide binding domain; the 

phosphorylation domain which is phosphorylated by the g-phosphate of ATP at a conserved 

aspartate residue; and the actuator domain which is integral to the de-phosphorylation event, as 

assisted by a conserved glutamate [27, 28]. Phosphorylation of the SERCA protein, due to 

binding of ATP, induces a conformational change of the transmembrane helices that transfers 

bound Ca2+ from the cytoplasm to the SR lumen [15]. SERCA belongs to the P-type ATPase (P-

ATPase) superfamily of ion transporters due to its a-helical structure, its ability to catalyze ATP 

and its ability to undergo a reversible conformational shift between two states, denoted E1 and E2 

[15, 30]. The SERCA family itself is encoded by the ATP2A1-3 genes which are located on 3 

different chromosomes and code for the expression of SERCA1, SERCA2 and SERCA3 

isoforms respectively, with further isoform diversity occurring through alternative splicing [30]. 

These isoforms are highly conserved, retaining 75% structural homology despite differences in 
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species-specific and muscle-specific expression [30]. The SERCA isoform variants of particular 

interest in muscle health and disease are SERCA1a and SERCA2a. SERCA1a is the primary 

isoform in adult fast-twitch skeletal muscle and has been demonstrated to have a vital role in 

skeletal muscle development [30]. In contrast, SERCA2a is predominantly expressed in cardiac 

muscle and slow-twitch skeletal muscle [30]. Additional SERCA isoform variants include 

SERCA2b, which is expressed at low levels in all tissues, and SERCA3, which is expressed in 

numerous non-muscle tissues [15].   

SERCAs use the free energy released from the hydrolysis of ATP to transport Ca2+ ions 

from the cytosol into the lumen of the SR; and as such, are major regulators of [Ca2+]i  [31]. 

SERCA – mediated Ca2+ transport necessitates multiple steps and conformational changes to the 

pump [15]. Transport begins with the SERCA pump in its E1 conformational state and the 

binding of Ca2+ to its high-affinity sites on the cytoplasmic face of the transmembrane domain 

[32]. Occupation of these sites induces ATP hydrolysis and this triggers SERCA phosphorylation 

and a change in conformation to the E2 state [32]. This state exhibits reduced Ca2+ affinity and 

thus Ca2+ dissociates from the pump and enters the SR lumen [32]. Under optimal conditions, the 

pump can transport two molecules of Ca2+ at the expense of one ATP molecule [15, 31]. 

However, this ratio is subject to change depending on a number of factors including: [Ca2+]i, 

ATP level, pH, ADP and inorganic phosphate level. These factors can have an influence on 

SERCA Ca2+ affinity, ATP binding and subsequent hydrolysis, phosphorylation of the pump, 

and the return of the pump to the E1 conformation. Additionally, SERCA activity is modulated 

by numerous protein regulators, including myoregulin (MLN) and DWORF, however, the two 

best understood are the functionally homologous SR integral membrane proteins: PLN and 

sarcolipin (SLN) [33]. 
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Phospholamban  
 

 PLN is a 52-amino acid monomeric protein composed of a long hydrophilic, NH2-

terminal, cytoplasmic domain and a short hydrophobic, transmembrane, COOH-terminal domain 

[33-35]. Its quaternary structure is organized into three domains: cytosolic domain Ia (amino 

acids 1-20) that houses the phosphorylation sites Ser16 and Thr17; cytosolic domain Ib (amino 

acids 21-30); and transmembrane domain II (amino acids 31-52) [36]. In its unphosphorylated 

state, PLN physically interacts with SERCA to reduce its apparent Ca2+ affinity, while exhibiting 

little to no effect on the Vmax measured at saturating [Ca2+] [35, 37]. The inhibitory effect of PLN 

on SERCA function can be observed as a rightward shift in the Ca2+ curve of enzyme activation 

and has been documented in SR vesicles prepared from all mammalian species examined to date, 

including murine, canine and human samples [33-35, 37]. PLN monomers have been observed to 

oligomerize into noninhibitory homopentamers, however, the function of these homopentamers 

is not yet understood [35, 37]. Conditions of high [Ca2+]i or adrenergic stimulation will induce 

phosphorylation of PLN, as cAMP-dependent protein kinase A will target Ser16 and 

Ca2+/calmodulin-dependent kinase II will target Thr17 to relieve the inhibition [35, 37, 38]. 

The interaction between SERCA and PLN has been shown to occur at three sites:  

i) a cytoplasmic interaction site produced by charged and hydrophobic amino acids 

in PLN cytosolic domain Ia and by amino acids Lys-Asp-Asp-Lys-Pro-Val402 in 

SERCA2a [39-41] 

ii) a cytoplasmic interaction site, formed by the PLN cytosolic domain Ib [39-41] 

iii) the SERCA transmembrane domain; and the PLN transmembrane domain 

II/SERCA transmembrane helix M6 interaction site [39-41] 
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These interaction sites are highly conserved between SERCA1 and SERCA2 isoforms, and as 

such, SERCA1 and SERCA2 co-expression with PLN in COS-1 cells has demonstrated an 

identical reduction in Ca2+ affinity in the presence of PLN [35].  

Studies examining how PLN exerts its inhibitory effect on SERCA have been conflicting. 

It has been suggested that the binding of PLN to SERCA renders the pump catalytically inactive 

and that PLN dissociation is required for activation [37, 39, 42-44]. Conversely, other studies 

suggest that PLN is a subunit of SERCA and as such remains bound to the pump throughout the 

catalytic cycle [37, 45-47]. Recently, Akin & Jones (2012) have confirmed that PLN exclusively 

binds to the E2 SERCA conformation (specifically, residues Gln23 to Leu52 interact with the 

groove formed between transmembrane helices M2, M4, M6 and M9 of the pump) and that PLN 

competes with Ca2+ for binding to the pump by stabilizing SERCA in the E2 state and thus 

inhibiting the formation of the E1 conformation [37, 42]. Due to this, at low [Ca2+], SERCA is 

essentially catalytically inactive, however, increases in the [Ca2+] completely inhibit the 

interaction between PLN and SERCA (as the binding of Ca2+ to SERCA closes the groove with 

which PLN interacts) and induces a conformational change to the E1 state [37, 42]. This seems to 

suggest that PLN dissociation from the pump is required for catalytic activation and subsequent 

Ca2+ transport. Indeed, this is corroborated by increases in Ca2+-ATPase activity and Ca2+ uptake 

in the absence of PLN interaction with SERCA [37]. However, this does not explain the effects 

of PLN phosphorylation on this interaction. MacLennan and his team have been instrumental in 

advancing our understanding of this and have demonstrated that while the physical interaction 

between PLN and SERCA is dissociated by elevations in [Ca2+], PLN phosphorylation relieves 

the inhibitory interaction without physical dissociation of the two proteins [39-42]. According to 

their model, the transmembrane domain remains tethered to SERCA, while the cytoplasmic 
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domain exists in an equilibrium between three different conformational states: a stable inhibitory 

T state, an intermediate excited R state, and an uninhibitory B state [39-42]. PLN 

phosphorylation shifts the equilibrium towards the B state, thus relieving inhibition, while 

maintaining physical interaction between the pump and its regulatory protein [39-42]. NMR 

spectroscopy in combination with mutant PLN studies have corroborated this model and have 

illustrated that the phosphorylation of PLN disrupts only the functional interaction while leaving 

the physical interaction intact [39-42].  

 In human cardiac muscle, PLN is predominately expressed in the ventricle where it 

regulates the activity of SERCA2a, whereas, in human skeletal muscle, PLN has been shown to 

regulate both SERCA1a and SERCA2a, with a preference for SERCA2a [10, 48]. In murine 

muscle, PLN content is significantly reduced when compared to human levels, however, the 

expression pattern is similar, as PLN has been found in both the left ventricle and slow twitch 

muscles, such as the soleus [1]. The regulatory role of PLN in cardiac tissue has been extensively 

investigated. In the heart, the physiological role of SERCA2a is to modulate the rate of clearance 

of cytosolic Ca2+ and the capacity of the luminal SR Ca2+ load, and as such, is crucial in cardiac 

relaxation and contraction [36, 49, 50]. PLN acts as the intersection point between two signal 

transduction pathways: the b - adrenergic signalling pathway (that allows for protein 

phosphorylation) and the Ca2+ - signalling pathway (that initiates contraction), through which it 

can modulate SERCA2a activity, therefore regulating cardiac relaxation and contraction [36]. In 

murine models, the absence of PLN in cardiac tissue resulted in a linear increase in SERCA 

affinity for Ca2+, as well as, linear increases in contractile properties (such as myocyte cell 

shortening, contraction rate and re-lengthening) and improved relaxation rates [36]. In fact, PLN 

ablation mimicked the maximal stimulation contraction and relaxation rates of wild-type hearts 
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[36]. Conversely, overexpression of PLN in murine cardiac tissue resulted in reduced rates of 

contraction and relaxation, as well as, decreases in the amplitude of the Ca2+ signal and an 

extended decay of the Ca2+ transient [36]. 

It comes as no surprise that the relationship between PLN and SERCA is a key 

component of mammalian heart failure [36, 51-53]. Under this pathophysiological condition, the 

expression of SERCA2a is reduced while PLN content remains unaffected, thus altering the 

PLN:SERCA2a ratio. In addition, the phosphorylation of PLN declines [36]. Consequently, 

PLN’s inhibitory role is enhanced, thus mimicking the results observed with PLN 

overexpression, with impairments in Ca2+ uptake and contractile dysregulation [36]. 

Interestingly, ablation of PLN in murine heart failure models improves myocardial inotropy and 

lusitropy, hence rescuing the phenotype and alleviating the disorder [36]. However, the same 

cannot be said for human heart failure, as PLN is a crucial factor in human cardiac health and its 

absence induces lethal heart failure [36, 51]. PLN mutant studies have revealed that reductions in 

expression or loss of function mutations in the PLN gene lead to either severe or delayed 

cardiomyopathy in humans, depending on the extent of the mutation [51]. For example, in 

hereditary instances of cardiomyopathy, a T116G point mutation has been identified in the PLN 

cDNA that causes a substitution of a termination codon for Leu-39 (L39stop) [51]. 

Consequentially, cardiac tissue of inflicted individuals can show over a 50% reduction in PLN 

mRNA, as well as, low-to-no detectable PLN protein [51]. Individuals that are homozygous for 

this mutation develop severe dilated cardiomyopathy and heart failure that can only be rescued 

by cardiac transplantation [51]. Heterozygous individuals exhibit delayed cardiomyopathy, 

characterized by hypertrophy and prolonged impairments in contractile properties [51]. A 

possible explanation for the discrepancy between murine and human models of heart failure 
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could be attributed to differences in cardiac use and in the mechanisms regulating cardiac 

function [51, 54-57]. The mouse heart beats approximately 10 times faster than the human heart, 

beating approximately 600 times per minute. Therefore, the mechanisms regulating the 

contractile and relaxation properties differ between species [51, 54-57]. In the mouse heart, the 

clearance of Ca2+ is solely dependent upon SERCA2a, whereas, in the human heart, SERCA2a 

accounts for only two thirds of this clearance, as the Na+/Ca2+ exchanger removes the remainder. 

Additionally, there are differences in the ventricular motor proteins [51, 54-57]. In adult mouse 

heart tissue, α-myosin heavy chain predominates, whereas, in adult human cardiac tissue the β-

myosin heavy chain predominates [51, 54-57]. It has been suggested that due to the demand 

placed on mouse cardiac muscle (and the subsequent mechanistic changes incurred) that the 

mouse heart is operating near its theoretical maximum and as such PLN deletion is not as 

deleterious when compared to the slower beating human heart [51]. 	

While there have been efforts to understand the role of PLN in cardiac muscle, a 

characterization of PLN in both healthy skeletal muscle and in skeletal muscle disease 

progression has been lacking. Our lab has explicitly demonstrated that PLN is expressed in 

mouse soleus muscle, where it exerts an inhibitory effect on both SERCA1a and SERCA2a [10]. 

Therefore, it is reasonable to expect that PLN’s physiological role in cardiac tissue can be 

inferred in skeletal muscle as well. Furthermore, this implies that PLN could be a potential target 

in skeletal muscle diseases that stem from abnormal Ca2+ - handling, such as Duchenne Muscular 

Dystrophy (DMD) (see below), as PLN may play a vital component of skeletal muscle Ca2+ 

homeostasis as is seen in cardiac muscle.  
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Duchenne Muscular Dystrophy and Dystrophin 
 

Muscular dystrophies are a heterogeneous population of inherited disorders which present 

a variety of clinical, genetic and biochemical features [58]. These disorders are characterized by 

elevated levels of muscle turnover which manifest in the progressive atrophy of axial, limb and 

facial muscles [58, 59]. Within this population, DMD presents as the most common and severe 

form and thus has garnered the most attention. DMD is inherited as a recessive X-linked 

disorder, affecting predominately males and resulting in fatal weakening and wasting of skeletal, 

respiratory and cardiac muscles [58]. It is caused by a lack of the dystrophin protein, primarily 

due to out-of-frame deletions within the large dystrophin gene, or less commonly due to 

nonsense mutations [59]. Affected individuals appear healthy at birth with the onset of clinical 

signs (muscle weakness and impaired mobility) occurring between the ages of two to four. The 

aggressive nature of this myopathy leaves individuals wheelchair bound before adolescence and 

the development of respiratory and cardiac complications arise shortly thereafter. Despite 

extensive investigation into the genetic and cellular characteristics of this disorder, an effective 

treatment remains elusive, such that those affected do not survive past the age of twenty [58, 60, 

61].    

Dystrophin itself is a 110 nm long, rod-shaped cytoskeletal protein that is predominately 

expressed in muscle. It is located at the inner surface of muscle fibres where it serves as a vital 

component of the dystroglycan complex (DGC), which functions to form a critical link between 

the submembrane cytoskeleton and components of the extracellular matrix. This link requires 

dystrophin to bind to g -actin and b -dystroglycan, which in turn, binds to laminin via a -

dystroglycan [62]. This critical link confers structural stability to the sarcolemmal membrane, as 

well as offers the sarcolemma protection during times of muscle contraction and relaxation. 
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Moreover, as depicted in Table 1 below, the DGC, and specifically dystrophin, have significant 

roles in the regulation of numerous signaling pathways in skeletal muscle. This highlights the 

breadth of signalling pathways and signalling molecules confirmed to associate with the DGC, 

including: nNOS, ion and water channels, protein and lipid kinases, transporters and G protein 

receptors [62]. However, perhaps most important, is the fact that the DGC, in association with 

caveolin, regulates signaling pathways that initiate nitric oxide production, Ca2+ influx and 

reactive oxygen species (ROS) production. These pathways are of particular relevance to the 

pathophysiology of DMD, as they underlie the onset and progression of this myopathy [62]. 

 

Table 1: Signaling Proteins Associated with the Dystroglycan Complex in Skeletal Muscle 
 

Protein Function  DGC Binding Site  
nNOS/NOS1 Ca2+/calmodulin-dependent NO synthesis a-Syntrophin, 

Dystrophin 
 

ARMS EphA4 receptor-associated protein and a substrate 
for ephrin receptors 

a-Syntrophin 

Mixed-lineage leukemia 5, 
MLL5 

Regulator of myogenin expression 
 

a-Syntrophin 

PTEN Phosphatase and tensin homolog; 
dephosphorylates PIP3 to PIP2 

a-Syntrophin 

Nav 1.4, Nav 1.5 Skeletal and cardiac muscle sodium 
channels 

a-Syntrophin 

Kir2.1, Kir4.1 Inward rectifier potassium channels Syntrophins 
(multiple) 

TRPC1, TRPC4 Non-voltage-gated cation channels a-Syntrophin 
Diacylglycerol kinase zeta Metabolizes diacylglycerol to phosphatidic 

acid 
g1- and a-Syntrophin 

Stress-activated kinase 3, 
ERK6, p38g 

Mitogen-activated protein kinase a-Syntrophin 

MAST205 Microtubule-associated serine/threonine 
kinase 

b2-Syntrophin 
 

Src kinase Non-receptor tyrosine kinase b-Dystroglycan 
 

Myocilin 
 

Modulator of muscle hypertrophy pathway a-Syntrophin 

 
Adapted from: Allen, D.G., Whitehead, N.P. & Froehner, S.C. (2016) Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, 
Reactive Oxygen Species and Nitric Oxide in the Development of Muscular Dystrophy. Physiological Reviews, 96: 253–305 

 

mdx Murine Model of DMD 
 

In order to understand disease progression and the corresponding mechanisms, the most 

accepted animal model of DMD is the mdx mouse [63, 64]. This mouse line arose from a 
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spontaneous mutation in an inbred line of C57BL/10 mice and these mice possess a nonsense 

mutation in exon 23 of the dystrophin gene which abolishes dystrophin expression in all tissues 

[63-65]. mdx mice show minimal indications of the myopathy until approximately three – four 

weeks of age, at which point they undergo extensive myofibre degeneration that targets 

essentially all fibres [63, 66]. Subsequently, mdx muscle sustains continuous cycles of muscle 

turnover (muscle degeneration and regeneration) that is accompanied by elevations in 

inflammation and fibrosis [63, 67, 68]. In general, at the age of ten weeks, muscle turnover and 

inflammation subside in the limb muscles but remain high in the diaphragm [63, 68]. The 

incurred muscle turnover can be histopathologically represented by the appearance of 

regenerated myofibers which exhibit centrally localized nuclei, as well as, by a rise in 

heterogeneity in myofiber cross-sectional area [63].  

As a compensatory mechanism, affected mdx muscles have been observed to undergo a 

fast-to-slow fibre type shift; a transition that is necessitated because this myopathy preferentially 

targets fast twitch fibres (type IIB and IIX) [69-71].  Type IIB fibres have been shown to be the 

first to suffer degeneration, and in fact, the majority of these fibres experience numerous cycles 

of muscle fibre turnover prior to the onset of slow twitch fibre necrosis [69]. This pattern is not 

specific to DMD, but has additionally been observed in disorders including central core disease, 

nemaline myopathy and congenital fibre type disproportion [69]. Increasing the proportion of 

slow twitch fibres is considered adaptive because these fibres exhibit a three to four-fold increase 

in expression of the dystrophin-related protein, utrophin, compared to fast twitch fibres [71, 72]. 

Utrophin is a cytoskeletal protein that shares a high degree of resemblance to dystrophin, 

including the actin and glycoprotein binding domains as well as hinge regions and spectrin-like 

repeats. In mature skeletal muscle fibers, utrophin is preferentially expressed at the 
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neuromuscular junction, however, utrophin is not only limited to junctional regions and its 

expression levels can be altered depending on the state of the muscle fibre: myogenic 

differentiation, muscle denervation and muscle degeneration have been shown to modulate 

utrophin expression [70-72].  Over-expression of utrophin has been demonstrated to ameliorate 

the dystrophic phenotype in both murine and canine models of the disease [71, 73-76]. 

Moreover, over-expressing the upstream regulators of utrophin, such as PGC-1a, has proven to 

rescue the dystrophic phenotype by inducing the transition from type IIB and IIX fibres to type I 

and IIA fibres [71].  

The published literature on the structural and functional properties of mdx muscle has 

illustrated that the dystrophic environment hinders muscle contractile properties [77-79]. In 

examining the extensor digitors longus (EDL) and SOL muscles of mdx and healthy 

counterparts, Lynch et al. (2001) have demonstrated that these mdx muscles are pseudo-

hypertrophic, in that the isometric force of the twitch and the tetanus are elevated relative to 

healthy muscle, but, upon normalization to muscle mass or cross sectional area, force is 

significantly reduced [78, 79]. This is further exacerbated in EDL, due to the higher proportion 

of type IIB fibres and their increased susceptibility to damage, as both damaged and regenerating 

fibres have been shown to develop less force per unit of cross-sectional area and less force per 

unit mass [78, 79]. The pseudo-hypertrophy of dystrophic muscle has been associated with an 

increase in non-contractile tissue, such as connective and fibrotic tissue, which acts to preserve 

muscle structure at the expense of functional properties, including force production [78, 79]. 

In comparison to the human form of DMD, the mdx model appears relatively benign, as 

these mice evade the end – stage lethal histopathologic symptoms and the functional disability 

observed in the human pathology [63, 67]. Additionally, these mice share the lifespan of normal 
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C57BL/10 mice and appear to behave normally [63, 67]. Other murine models of DMD have 

been studied, including the mdx:utr -/- and mdx:utr -/+ models. The mdx:utr -/- mice lack utrophin, 

in addition to dystrophin, and as such represent a much more severe form of the myopathy that 

more closely resembles the severity of the human version, however, these mice show a very 

limited lifespan of approximately two – three months, and thus are inappropriate models for 

examining longevity and prolonged disease progression [63, 73]. The mdx:utr -/+ model has 

recently garnered much attention, as these mice exhibit a prolonged lifespan while maintaining 

an intermediate dystrophic pathology [63, 80, 81]. Utrophin expression in these mice is reduced, 

which facilitates a more severe pathology as compared to the mdx model. Despite the 

shortcomings of the mdx model, it remains the most widely used and has facilitated much insight 

into the underlying mechanisms and progression of the myopathy. 

Duchenne Muscular Dystrophy and Ca2+ Dysregulation 

It is not yet fully understood how the absence of dystrophin renders muscle susceptible to 

damage and degradation, however, two main theories have been proposed: 

1. Dystrophin acts to maintain the integrity of the sarcolemmal membrane during 

contractions, especially contractions that induce stretch, and without dystrophin, these 

contractions can result in membrane tears [60, 61, 82]. 

2. Dystrophin may have an important protein scaffolding role and aid in the localization and 

regulation of membrane ion channels. The absence of dystrophin may impair channel 

formation and/or function [60, 61, 82]. 

These theories are not mutually exclusive and both suggest that the absence of dystrophin would 

cause an elevation in intracellular Ca2+ concentration ([Ca2+]i), leading to a dysregulation of Ca2+ 

homeostasis and the induction of numerous degradative pathways that lead to successive cycles 
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of muscle fibre degeneration and regeneration, chronic inflammation, fibrosis and eventual 

muscle cell necrosis [60, 62]. In the absence of dystrophin, the formation of the DGC is 

impaired, such that the critical link between the cytoskeleton and the extracellular matrix is lost. 

Furthermore, an additional consequence of the loss of dystrophin is the 80-90% reduction in 

expression of dystrophin-associated proteins, all of which are constituents of the DGC [60-62, 

83].  As a result, the architecture of the sarcolemmal membrane is functionally altered and this 

could allow for the development of “transient membrane tears” during muscle contraction [60, 

82]. The induction of these tears is corroborated by the appearance of localized cell damage in 

association with localized membrane damage; leakage of soluble proteins, such as creatine 

kinase, from the cell into the plasma; and increases in [Ca2+]i as a result of Ca2+ influx through 

damaged membranes [61]. However, as Allen et al. (2010) noted, the above support for the 

presence of membrane tears can also be accounted for by increased stretch induced membrane 

permeability [61]. In order to distinguish between membrane tears and other causes of membrane 

permeability, researchers have artificially induced “holes” in the membrane and examined the 

properties and repairs of defects. Bansal et al. (2003) have illustrated that in both healthy tissue 

and in murine models which exhibit a mild DMD phenotype (mdx), repair of such defects 

occurred in less than one minute [84]. What was not considered in this previous study was the 

frequency by which these membrane tears occur in mdx tissue compared with healthy tissue. 

Evidence shows that mdx tissue is at least six times more likely to exhibit transient membrane 

tears than healthy tissue [85]. Thus while repair may occur in a similar timely fashion after single 

injury, membrane damage is considerably more persistent in dystrophic muscle and this could 

affect the ability of the cell to repair continual damage and could alter the aggregation of 

membrane ion channels [85].  
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The incurred membrane instability has been reported to contribute to the increased 

sarcolemmal permeability to extracellular Ca2+. A secondary feature to the induction of 

membrane tears is the presence of transient and highly localized influxes of Ca2+, deemed Ca2+ 

entry “hot spots” [60, 85]. The persistent influx of Ca2+ through these hot spots promotes 

membrane insertion of Ca2+ leak channels through an exocytotic pathway, as well as, activates 

the Ca2+ dependent proteases needed to stimulate these channels, thus resulting in a self-

perpetuating damage pathway [60, 85].  In addition to the greater open probability of Ca2+ leak 

channels in dystrophic tissue, stretch activated channels (SACs) have been implicated in the 

aberrant Ca2+ signaling observed in this myopathy. Muscle fibres of young mdx mice have 

shown increases in activity and density of these channels in the sarcolemma which precede the 

initial markers of muscle damage and necrosis, potentially indicating a role of these channels in 

the onset of the pathology [60]. While the identity of the channel(s) has not been determined, 

experimental findings have proposed the canonical transient receptor potential channel (TRPC) 

to be a potential candidate. TRPC1, TRPC4 and TRPC6 have been identified as components of 

the sarcolemma in vertebrate skeletal muscle and the inhibition of TRPC1 and TRPC4 in mdx 

muscle reduced Ca2+ influx [60, 61, 86, 87]. Dysregulation of these channels stems from the 

absence of dystrophin. As mentioned previously, dystrophin binds to b-dystroglycan, which 

among other proteins, can bind to caveolin-3, the scaffolding protein of the caveolae [61, 62, 86]. 

While most of the proteins comprising the DGC are reduced in expression in DMD, caveolin-3 

shows increased expression and the caveolae themselves are increased in frequency but 

disordered in location [86, 88]. Caveolae are critical in the aggregation of key proteins to allow 

for interaction and regulation of membrane protein channels including: L-type Ca2+ channels, 

Na+ channels, K+ channels, the Na/Ca exchanger, SRC kinase, PLC, nNOS, and TRPC1 [86, 89, 
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90]. It is thought that the absence of dystrophin results in improper structure and function of the 

caveolae which consequently alters the formation and behavior of the membrane channels with 

which it interacts [86]. 

Studies conducted on muscles from the mdx mouse, have demonstrated the extent of 

[Ca2+]i overload and its corresponding influence on the progression of necrosis and muscle 

degeneration [61, 91-94]. Most significantly, work conducted by Goonasekara et al. (2011) has 

demonstrated that increased Ca2+ influx into the sarcoplasm alone is sufficient to induce a DMD-

like phenotype [95]. The implication of [Ca2+]i overload is primarily the induction of numerous 

detrimental process which further exacerbate the disease. Elevated [Ca2+]i has been demonstrated 

to activate both proteolytic calpains and caspases, increase ROS production, promote 

mitochondrial apoptosis, increase inflammation and stimulate fibrosis [96-100].  Dystrophic 

skeletal muscle exhibits increases in caspase and calpain activity during times of both muscle 

degeneration and regeneration [60]. As a result, these muscles show elevated rates of protein 

degradation, upwards of 80% greater, compared to healthy counterparts, leading to progressive 

atrophy and muscle weakness. Reducing the abnormal [Ca2+]i in mdx tissue to levels resembling 

that of healthy tissue, reverts the rate of proteolysis back to normal levels and improves the 

myopathy [60, 97, 101].  

Additionally, mitochondria isolated from dystrophic tissue exhibit greater swelling as a 

response to sustained elevations in [Ca2+]i. Consequently, these mitochondria are more prone to 

rupturing and causing necrotic and/or apoptotic cell death. Genetically altering mitochondria to 

be insensitive to Ca2+ overload, and thus preventing Ca2+-induced swelling, in a dystrophic 

environment has been shown to provide protection from cell death and a reduction in myofibre 

necrosis [98]. Mitochondrial Ca2+ overload has also been implicated in impairments in oxidative 
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phosphorylation which contributes to greater ROS production [60]. This elevation in production, 

coupled with increased vulnerability of mdx tissue to ROS damage, results in greater lipid 

peroxidation and oxidation of proteins [60, 102]. ROS-mediated lipid peroxidation has been 

shown to increase membrane permeability and to precede the onset of necrosis in dystrophic 

tissue, thus suggesting that ROS may have a primary role in the induction of muscle 

degeneration [60, 102]. ROS have been additionally implicated in the activation of NF-kB, a 

transcription factor that is essential in the regulation of inflammation and immunity [60, 96]. NF-

kB gene targets, including the pro-inflammatory cytokines TNF-a , IL-1b, IL-6, and iNOS have 

been reported to be up-regulated in dystrophic tissue [96, 103]. TNF-a further perpetuates ROS 

damage as it can act on the mitochondria to stimulate ROS production, thus creating a 

detrimental positive feedback loop, in which increased ROS induces further cell damage and 

activation of NF-kB [60, 96]. In addition to membrane instability, there is evidence that these 

Ca2+ damage pathways can also be attributed to impediments in the removal of Ca2+ from the 

sarcoplasm, possibly due to reduced expression or abnormal function of the SERCA pumps 

[104-106].   

SERCA and Ca2+ Dysregulation in Duchenne Muscular Dystrophy 
 

SERCAs are redox-sensitive proteins that exhibit a high vulnerability to oxidative 

damage and inactivation, so much so, that the modification of a single cysteine residue is 

sufficient for the alteration of activity [15, 107-109]. It has been well documented that SERCAs 

undergo considerable oxidative stress in the dystrophic environment and as such are functionally 

altered through post-translational modifications, particularly nitrosylation [110] . These 

modifications reduce maximal SERCA activity due to modifications in the Ca2+-binding and 

ATP-binding domains which consequently change SERCA enzyme kinetics. As such, the 
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regulatory role of SERCA has been demonstrated to be impaired in the DMD myopathy [105, 

106, 111]. Kargacin & Kargacin (1996) have established the extent of this SERCA dysregulation, 

in which Ca2+ sensitivity of SERCA is maintained while the maximum velocity of SR Ca2+ 

uptake is reduced [106]. This finding has been corroborated in murine models which exhibit a 

mild DMD phenotype (mdx) as well as a more severe, lethal phenotype (mdx:utr -/-) [112]. 

Research conducted by Schneider et al. (2013) has elaborated on the differences in expression of 

SERCA isoforms and their corresponding functional alterations in both the mdx and mdx:utr -/- 

models. This group has determined that there is muscle specific variability in protein levels: 

SERCA1a expression is significantly reduced in the diaphragm but remains unaltered in the 

soleus and quadriceps; whereas, SERCA2a expression is significantly increased in the 

quadriceps but is unaltered in the soleus and diaphragm muscles [112]. However, despite the 

variation in protein levels, both SERCA isoforms exhibited significant reductions in Ca2+ uptake 

[112]. This highlights the degree of SERCA dysregulation in a dystrophic environment, both in 

terms of expression and functional impairments and the abnormal Ca2+- handling that is incurred 

as a consequence.  

A popular method of ameliorating the aberrant Ca2+signaling observed in DMD is 

through SERCA overexpression, which has been applied to different SERCA isoforms, as well 

as to different muscles, including the soleus and diaphragm [95, 104]. SERCA overexpression 

acts to mitigate Ca2+ dysregulation and, consequently, has been shown to diminish the dystrophic 

phenotype [95, 104]. In multiple studies, the overexpression of SERCA1 served to reduce Ca2+ 

influx and inhibit [Ca2+]i overload. As a result of this, there were significant reductions in disease 

markers, including centrally localized nuclei, muscle fibrosis, serum creatine kinase levels, 

mitochondrial swelling and calpain activation [95, 104]. A different approach aimed at 



	 21 

stabilizing SERCA function has also proven to be an effective therapeutic strategy for 

normalizing levels of [Ca]i and improving the DMD phenotype. Through the use of Hsp70, a 

molecular chaperone protein which possesses the ability to physically interact with SERCA and 

preserve its function Gehrig et al. (2012) have demonstrated that preventing SERCA damage 

acts to improve Ca2+-handling and mitigate the dystrophic phenotype [107, 110]. This speaks to 

the importance of targeting Ca2+ dysregulation to alleviate symptoms of the myopathy and 

impede disease progression, and shows that SERCA has a central role in this approach. 

Sarcolipin 
 

SERCA activity is modulated by numerous protein regulators, however, the two best 

understood are the functionally homologous SR integral membrane proteins: PLN (as previously 

discussed) and sarcolipin (SLN) [33]. PLN and SLN share common patterns of expression, as 

both proteins are expressed in the heart, with PLN regulating SERCA2a in the ventricle and SLN 

regulating SERCA2a in the atria [48]. Furthermore, both proteins are present in skeletal muscle 

and are both capable of regulating both SERCA1 and SERCA2 activity [33,10]. SLN is 

composed of 31 amino acids and expresses transmembrane, cytoplasmic and luminal domains 

[112,48]. SLN physically binds to SERCA and acts to reduce the apparent affinity of SERCA for 

Ca2+ and to inhibit SERCA Ca2+ uptake [33,10,38]. Additionally, SLN possesses the ability to 

uncouple ATP hydrolysis from SERCA Ca2+ transport, which enables it to mediate skeletal 

muscle adaptive thermogenesis [28]. Recently, the emerging role of SLN in Ca2+ homeostasis 

and disease progression in the dystrophic environment has been comprehensively examined. 

Schneider et al. have reported increases in SLN expression in dystrophic muscle which may 

contribute to the development of SERCA dysfunction [112]. Whereas, Voit et al. (2017) have 

corroborated the increase in SLN protein density in the myopathy and furthermore, have 
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demonstrated that the elevation in protein expression is detrimental to SERCA function and 

further propagates the disease phenotype [113]. It was shown that the reduction or ablation of 

SLN expression in the mdx:utr -/- model served to improve SERCA function, as evident by a 

restoration of Ca2+ uptake and Vmax to rates similar to the wild type control [113]. Subsequently, 

the improvement in Ca2+ handling in the dystrophic environment resulted in decreases in 

necrosis and fibrosis, prevention of the maladaptive fibre type transition to type IIB fibres, and 

improvements in force generation and grip strength [113]. Overall, these results clearly 

demonstrate that restoring SERCA function in this myopathy is critical to alleviating the aberrant 

Ca2+ homeostasis and mitigating the disease. With the structural and functional homology shared 

by PLN and SLN, it would be appropriate to investigate the role of PLN in the dystrophic 

environment in order to gain a fuller understanding of the importance of SERCA and its 

associated regulatory proteins in skeletal muscle disease.  
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Research Purpose 
  
 The objective of this study was to characterize the role of PLN in DMD. Specifically, this 

study aimed to assess the differences in the morphology and functionality of SOL and DIA 

muscles in mdx/Pln-/-, mdx/Pln+/+ and Pln+/+ (WT) mice to establish the role of PLN in the 

myopathy and evaluate whether the absence of PLN will improve SERCA activity and mitigate 

the aberrant Ca2+ handling associated with this pathology. 

 

Objectives 
 

i) To investigate if the ablation of PLN will improve SERCA function in the mdx/Pln+/+ 

phenotype to that of WT mice as evidenced by improvements in Ca2+ uptake and a 

leftward shift in the ATPase assay 

ii) To examine if the absence of PLN will reduce the proportion of centralized nuclei 

and amount of fibrosis in mdx/Pln+/+ muscle to levels resembling to that of WT mice, 

as this would be indicative of improved muscle morphology  

iii) To determine if the generation of force produced by the SOL muscle is improved in 

mdx/Pln+/+ mice lacking PLN and if it is comparable to the force production of WT 

mice, which would be suggestive of improved muscle function 
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Hypotheses 
 

i) In the absence of PLN, SERCA function will be enhanced in mdx/Pln-/- mice 

compared to mdx/Pln+/+ mice, and will resemble that of WT mice, such that there will 

be faster rates of Ca2+ uptake (at both maximum and physiologically relevant Ca2+ 

concentrations) and ATPase activity will be improved. 

ii) The mdx/Pln-/- mice will have improved muscle morphology compared to the 

mdx/Pln+/+ mice. This will be evident through the reductions in disease markers, 

including centralized nuclei and fibrosis, to levels that are comparable to WT and are 

indicative of decreased levels of muscle degeneration and regeneration.  

iii) Muscle function in the mdx/Pln-/- mice will be improved compared to the mdx/Pln+/+ 

mice. This will be exhibited by increases in twitch and tetanic force and faster rates of 

force development and relaxation. These contractile properties will be similar to the 

force production and rates of contraction and relaxation of WT mice. 
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Methods 
 
Animals 
 
 Refer to Appendix A for greater detail regarding the breeding strategy. In short, the Pln-/- 

mice used to establish the mdx/Pln-/- colony were generated from heterozygous breeding pairs 

(Pln+/-) previously purchased from Mutant Mouse Regional Resource Centers. Homozygous Pln-

/- males from this colony were crossed with homozygous mdx females (XmdxXmdx) purchased 

from the Jackson Laboratory. The resultant F1 progeny consisted of heterozygous mdx females 

(XmdxX) and hemizygous mdx males (XmdxY), all of which were heterozygous for Pln (Pln+/-). 

Subsequently, from the F1 progeny, the hemizygous mdx females were crossed with 

heterozygous mdx males to yield the experimental mdx and mdx/Pln-/- mice. The experimental 

groups consisted of: mdx/Pln-/-, mdx/Pln+/+ and WT mice. From these groups, this study only 

examined homozygous male mice aged 4 to 6 months and biochemical analyses were restricted 

to the soleus, diaphragm and left ventricle tissues.	The experimental animals were housed in an 

environmentally controlled room, under a reverse light/dark cycle (12/12 hr) in group cages and 

had access to food and water ad libitum. All experiments were reviewed and approved by the 

University of Waterloo Animal Care Committee in accordance with the Canadian Council on 

Animal Care.	

Histology/Immunofluorescence  
 
 Mice aged 4 – 6 months were euthanized and immediately following, intact, whole 

diaphragm and soleus muscles were removed, mounted in O.C.T compound (Tissue-Tek) and 

then frozen in liquid nitrogen-cooled isopentane. Serial cross sections of tissue (10 µm thick) 

were then cut with the use of a cryostat (Thermo Electronic) maintained at -20°C and mounted 

onto slides. These slides were utilized to conduct either Hemotoxylin and Eosin (H&E) staining, 
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Van Geison staining or immunofluorescence. H&E staining was performed to visualize centrally 

localized nuclei. The Van Geison stain was used to determine the degree of fibrosis. A 

brightfield Nikon microscope linked to a PixeLink digital camera was used to acquire the images 

produced by the stains, and these images were quantified with ImageJ software. 

Immunofluorescence analysis was employed to assess muscle fibre type, satellite cell 

mobilization and inflammatory response. It was conducted according to the protocol established 

by Bloemberg et al. (2012) using primary antibodies from Developmental Studies Hybridoma 

Bank against the differing myosin heavy chain (MHC) isoforms: MHCI (BA-F8), MHCIIa (SC-

71) , MHCIIb (BF-F3), whereas, MHCIIx fibres were unstained and appeared black.  [114]. The 

secondary antibodies for immunofluorescence staining were Alexa Fluor 350 anti-mouse IgG2b, 

Alexa Fluor 488 anti-mouse IgG1, and Alexa Fluor 555 anti-mouse IgM, which were obtained 

from Molecular Probes.	The images were acquired with the use of the Axio Observer Z1 

fluorescent microscope equipped with red, green and blue filters, the AxioCam HRm camera and 

AxioVision Software (Carl Ziess). ImageJ software was used to quantify the images. 	

Western Blotting  
 
 The protein expression levels of PLN and SLN were assessed using standard western 

blotting techniques. Upon excision, the muscle samples were detendonized and weighed to 

determine muscle mass. These samples were then homogenized 1:10 (w/v) in ice-cold 

homogenizing buffer (250 mM sucrose, 5 mM HEPES, 0.2 mM PMSF and 0.2% [w/v] NaN3) 

using a glass homogenizer and stored at -80°C. Subsequently, these muscle homogenates were 

solubilized into a 1x solubilizing buffer (0.1% 2-Mercaptoethanol, 0.0005% Bromophenol blue, 

10% Glycerol, 2% SDS, and 63 mM Tris-HCl (pH 6.8)) and the proteins were 

electrophoretically separated with the use of a tricine based SDS-PAGE (13% total acrylamide 
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for PLN and SLN). Upon electrophoresis, the separated proteins were transferred onto 

polyvinylidene difluoride (PVDF) membrane (PLN) or nitrocellulose membrane (SLN) with 

transfer buffer (25 mM glycine, 192 mM Tris base, 20% methanol, 0.1% [w/v] SDS). The 

membranes were then incubated in blocking solution (TBST buffer: 20mM Tris base, 137 mM 

NaCl, and 0.1% (v/v) Tween 20, pH 7.5, with 5% [w/v] non-fat dry milk) to prevent non-specific 

binding. It is at this point that the proteins were immunoprobed with the corresponding primary 

antibodies for PLN ((MA3-922) monoclonal mouse antibody acquired from Pierce Antibodies) 

and SLN (polyclonal rabbit antibody acquired from Lampire Biological Laboratories). 

Subsequently, the proteins were immunoprobed with horseradish peroxidase-conjugated 

secondary antibodies: goat anti-mouse IgG (PLN) and goat anti-rabbit IgG (SLN), which were 

obtained from Santa Cruz Biotechnology. Luminata ForteTM was used to detect PLN and 

SuperSignal West FemtoTM substrate (Pierce, Thermo Fisher Scientific Inc) was used to detect 

SLN. GeneTools (Syngene) was utilized to quantify the resulting optical densities. All values 

were normalized to protein content as determined from ponceau staining. 

Muscle Contractility Analysis 
 
 Electrical stimulation and muscle contractility analysis was conducted on adult (6 month) 

mdx/Pln-/-, mdx and Pln+/+ mice. Intact, whole soleus muscles were excised and mounted in a 

bath composed of oxygenated Tyrode solution (95% O2, 5% CO2) containing 121 mM NaCl2, 5 

mM KCl, 24 mM NaHCO3, 1.8 mM CaCl2, 0.4 mM NaH2PO4, 5.5 mM glucose, 0.1 mM EDTA, 

and 0.5 mM MgCl2, pH 7, and maintained at 25°C. The muscles were positioned between two 

platinum electrodes driven by a biphasic stimulator (Model 710B, Aurora Scientific, Inc.) and 

electrically stimulated muscle force was measured across a variety of stimulation frequencies, 

ranging from 1 to 100 Hz. The collected data were analyzed using Dynamic Muscle Control Data 
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Acquisition software (Aurora Scientific, Inc). The specific parameters that were assessed are 

peak isometric force amplitude (mN) and maximal rates of force generation (+dF/dt) and 

relaxation (-dF/dt). Upon completion, muscle length was measured and the muscle was removed 

from the bath, detendonized, and weighed to normalize the measurements to muscle mass. 

SERCA Function Analysis 
  
 Assessment of SERCA function was conducted on soleus and diaphragm homogenates 

and was measured using Ca2+-ATPase assays as previously described [115]. Briefly, Ca2+ - 

dependent SERCA activity was measured at Ca2+ concentrations ranging from pCa 7.0 to 3.5 

using a plate reader assay on a spectrophotometer. GraphPad Prism was used to generate activity 

curves by non-linear regression curve fitting using a general sigmoidal model for substrate 

activity. SERCA activity was measured in the presence of Ca2+ ionophore A23187 (Sigma 

C7522) to mitigate any back inhibition as a result of SR vesicle filling [115]. Ca2+ uptake was 

determined in the presence of a precipitating anion, oxalate, with the use of the fluorescent dye 

Indo-1 in a spectrofluorometer that employs a monochromator to maintain the excitation 

wavelength at 355nm and two photomultiplier tubes to detect light emitted at 405 and 485nm. 

Rates of Ca2+ uptake were assessed at free [Ca2+] ranging from the physiologically relevant 

[Ca2+] of 100 nM to a [Ca2+] of 1000 nM. 

Statistics 
 
 The data are presented as means ± standard error. Unless otherwise stated, all statistical 

analyses were conducted using a one-way ANOVA to compare between groups (mdx/Pln-/-, 

mdx/Pln+/+
, WT). Statistical significance is set at p < 0.05. Trending statistical significance is 

defined as 0.05 < p < 0.1. Graph Pad Prism Statistical Software was used for all final image 

generation. Statistica4 Software was used for all statistical analysis.  
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Results 
 
Animal Physical Characteristics 
 
Adult WT, mdx/Pln+/+

, and mdx/Pln-/- mice were sacrificed at 4-6 months and weighed thereafter. 

The body weight of mdx/Pln-/- mice was significantly lower compared to mdx/Pln+/+ (p = 0.01) 

and WT (p = 0.05). SOL muscles were excised and de-tendonized prior to weighing. SOL weight 

was significantly higher in both mdx/Pln+/+ (p = 0.01) and mdx/Pln-/- (p = 0.009) relative to WT. 

SOL weight was not different between mdx groups.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Body weight and soleus weight in WT, mdx/Pln+/+ and mdx/Pln-/- mice. (A) Body weight and (B) 
soleus weight in WT (n = 12), mdx/Pln+/+ (n = 12) and mdx/Pln-/- (n = 12) mice. * indicates a significant difference 
from WT (p < 0.05) and # indicates a significant difference from mdx/Pln+/+ (p < 0.01). 
 
Histological and Immunofluorescent Properties  
 

Centralized nuclei data from H&E staining are shown in Fig. 2.  In SOL, the proportion 

of centralized nuclei in the mdx/Pln+/+ and mdx/Pln-/- mice was significantly greater (p < 0.0002) 

compared to their WT counterparts (Fig. 2B).  There was also a trend (p < 0.09) for higher 

centralized nuclei count in mdx/Pln-/- compared to mdx/Pln+/+ (Fig. 2B). Similarly, in DIA, the 

mdx/Pln+/+ and mdx/Pln-/- mice exhibit significantly greater (p < 0.0002) centralized nuclei than 

WT, however, there were no differences between the mdx groups (Fig. 2C).  
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Fibrosis data from Van Gieson staining are shown in Fig. 3. Fibrosis in the SOL was 

significantly elevated (p < 0.05) in both mdx/Pln+/+ and mdx/Pln-/- compared to WT mice, 

however, there were no differences between mdx groups (Fig. 3A).  In DIA, there was 

significantly greater fibrosis in the mdx/Pln+/+ (p < 0.003) and mdx/Pln-/- (p < 0.02) than WT, 

with no differences between mdx and mdx/Pln-/-
 (Fig. 3B).  

Fibre type analysis in SOL revealed no differences in the relative quantity of type I and 

type IIA fibres across the three experimental groups, however, there was a shift towards type IIB 

in the mdx/Pln-/- SOL, as the proportion of IIB fibres was significantly greater than mdx/Pln+/+ (p 

< 0.009) and WT (p < 0.02) (Fig. 4A and B). Additionally, there was an increase in type IIX in 

the mdx/Pln-/- SOL, as the proportion of these fibres was significantly greater than mdx/Pln+/+ and 

WT (p < 0.03) (Fig. 4A and B). In DIA, the percentage of type IIA fibres was not different 

between groups, however, the proportion of type I fibres in mdx/Pln+/+ (p < 0.02) and mdx/Pln-/- 

(p < 0.008) was significantly reduced compared to WT. Furthermore, the quantity of type IIB 

fibres was significantly greater in mdx/Pln-/- compared to both mdx/Pln+/+ (p < 0.03) and WT (p < 

0.007) and the proportion of type IIX fibres was significantly greater in mdx/Pln-/- compared to 

both mdx/Pln+/+ (p < 0.04) and WT (p < 0.01) (Fig. 4A and C) 

Cross sectional area (CSA) evaluation of SOL indicated no differences in type I and type 

IIA fibre size between the groups, however, the fibre size of type IIB fibres in mdx/Pln-/- was 

significantly greater compared to mdx/Pln+/+ (p < 0.03) (Fig. 4A and D). The amount of type IIB 

fibres in WT was too low to accurately determine CSA of those fibres. There were no differences 

in CSA for type I, IIA and IIB fibres between experimental groups in DIA (Fig. 4A and E).  
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Figure 2. Pln deletion had no effect on central nucleation in mdx mice. (A) Representative H&E stain of soleus 
and diaphragm cross sections from WT (n = 6), mdx/Pln+/+ (n = 6) and mdx/Pln-/- (n = 6) mice. Quantitation of the 
proportion of centralized nuclei in SOL (B) and DIA (C) revealing no differences in the quantities of centrally 
localized nuclei between mdx groups.  * indicates a significant difference compared with WT (p < 0.05).	
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Figure 3. Pln ablation did not improve fibrosis in mdx mice.  
(A) Representative Van Gieson stain showing fibrotic levels between WT (n = 6), mdx/Pln+/+ (n = 6) and mdx/Pln-/- 

(n = 6) mice in the soleus and diaphragm cross sections. Quantitation of the of the level of fibrosis in both in SOL 
(B) and DIA (C) revealing no differences in the level of fibrosis between mdx groups. * indicates a significant 
difference compared with WT (p < 0.05). 
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Figure 4. Pln deletion increased the percentage and the CSA of type IIB fibres in mdx mice.  
(A) Representative immunofluorescent staining of soleus and diaphragm cross sections from WT (n = 6), mdx/Pln+/+ 
(n = 6) and mdx/Pln-/-   (n = 7) mice. Quantitation of the fibre type proportions in (B) SOL and (C) DIA revealing a 
fibre type shift to type IIB in mdx/Pln-/- muscles; Quantitation of the fibre type cross sectional area in (D) SOL and 
(E) DIA highlighting the differences in size between fibre types; * indicates a significant difference from WT (p < 
0.05) and # indicates a significant difference from mdx/Pln+/+ (p < 0.03).  
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Ca2+ - Handling Protein Expression  
 
 Western blotting was conducted on SOL and DIA muscle homogenates from the three 

experimental groups (Fig. 5). Expectedly, the expression of SLN was elevated in both mdx 

groups relative to WT (p < 0.05), however, SLN content was lower in mdx/Pln-/- compared to 

mdx/Pln+/+ (p = 0.03) in DIA (Fig. 5B) and there was a similar trend (p = 0.07) in SOL (Fig. 5A). 

With regards to PLN expression, it was significantly higher in mdx/Pln+/+ relative to WT in SOL 

(Fig. 6C, p < 0.04) but it was not different between mdx/Pln+/+ and WT in DIA (Fig. 5D).  PLN 

protein was not detected in mdx/Pln-/- muscles.  
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Figure 5. SLN and PLN protein expression in SOL and DIA from WT, mdx/Pln+/+ and mdx/Pln-/- mice. 
Western blotting was performed on SOL and DIA homogenates from 4-6 month old WT, mdx/Pln+/+ and mdx/Pln-/- 
animals. (n = 8 for each genotype).  SLN content was increased in SOL (A) and DIA (B) in mdx groups relative to 
WT. PLN content in SOL (C) but not DIA (D) was higher in mdx/Pln+/+ mice compared with WT.  * indicates a 
significant difference from WT (p < 0.05) and # indicates a significant difference from mdx/Pln+/+ (p < 0.03).   
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Skeletal Muscle Functional Assessment  
 

Whole soleus muscles were excised from 4-6 month old WT, mdx/Pln+/+, and mdx/Pln-/- 

mice and stimulated ex-vivo to assess isometric contractile properties (Fig. 6). The solei of 

mdx/Pln+/+ and mdx/Pln-/- mice exhibited a significant reduction in force production compared to 

their WT counterparts at all frequencies, with p = 0.001 (Fig. 6A). Furthermore, the force 

generated by the mdx/Pln-/- mice was significantly decreased at all stimulation frequencies when 

compared to mdx/Pln+/+ mice, with significance occurring at twitch (p = 0.05) and 30 – 50 Hz (p 

< 0.05), and trending significance at stimulation frequencies from 60 – 100 Hz (p < 0.1) (Fig. 

6A).  The rate of relaxation at each stimulation frequency was depressed for mdx/Pln-/- compared 

to both mdx/Pln+/+ and WT groups. Significance was present at twitch, 5 and 10 Hz when 

comparing mdx/Pln-/- to WT (p < 0.05). Significance occurred at twitch, 5 and 30 Hz (p < 0.05) 

and trending significance was present at 10, 20, 40 – 70 and 90 Hz (p < 0.1) when comparing 

between mdx groups (Fig. 6B). The contraction rate across the three experimental groups 

mirrored the relaxation rate, with a significant decline that was statistically significant at all 

stimulation frequencies for mdx/Pln-/- compared to both mdx/Pln+/+ and WT groups (p < 0.05) 

(Fig. 6C). Interestingly, there was no significant difference in both the relaxation rate and 

contraction rate between mdx/Pln+/+ and WT. 
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Figure 6. Force Analysis demonstrating the effect of Pln ablation on the mdx phenotype.  
(A) Force frequency curves normalized to cross sectional area, demonstrating the decline in force generation 
observed in mdx/Pln-/- (n = 10) compared to WT (n = 11) and mdx/Pln+/+ (n = 13) mice. Relaxation rates (B) were 
elevated in mdx/Pln+/+ and WT compared to mdx/Pln-/-. Rates of contraction (C) were depressed in mdx/Pln-/- mice 
compared to WT and mdx/Pln+/+; * indicates a significant difference from WT (p < 0.05) and # indicates a 
significant difference from mdx/Pln+/+ (p < 0.05).	
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SERCA Functional Assessment  
 

SERCA functional assessment consisted of two assays: Ca2+ - Uptake and Ca2+ - ATPase 

activity, and was conducted on SOL and DIA homogenate. Compared with WT, Ca2+ uptake in 

SOL was lower (p < 0.02) in both the mdx/Pln+/+ and mdx/Pln-/- groups, with significance at 

[Ca2+] ranging from 150 nM to 1000 nM (Fig. 7). Additionally, the rate of Ca2+ uptake was 

significantly reduced for the mdx/Pln-/- group compared to mdx/Pln+/+, with statistical 

significance evident at [Ca2+] ranging from 200 nM to 1000 nM (Fig. 7, p < 0.04). An interesting 

qualitative observation is that the [Ca2+] at which the rate of Ca2+ uptake plateaued was higher in 

mdx/Pln-/- SOL: Ca2+ uptake was evident for WT and mdx/Pln+/+ homogenate at 100 nM, 

however, for the majority of mdx/Pln-/- tissue, Ca2+ uptake was undetectable below 200 nM.  

Ca2+-uptake assays in DIA revealed similar results as SOL. The rate of Ca2+-uptake was 

significantly higher (p < 0.01) in WT compared to the two mdx groups, with significance at 

[Ca2+] ranging from 100 nM to 1000 nM (Fig. 8).  Moreover, the rate of Ca2+ uptake for the 

mdx/Pln-/- group was significantly depressed compared to the mdx/Pln+/+ group, with significance 

at a [Ca2+] of 250 nM (p = 0.03) and trending significance at [Ca2+] ranging from 100 nM to 

200mnM (p < 0.1). Once again, this rate of Ca2+ uptake plateaued earlier for the mdx/Pln-/- tissue 

compared to mdx/Pln+/+ and WT.   

Interestingly, while the Ca2+ - uptake assay revealed differences between experimental 

groups, the ATPase assay indicated no significant differences in either Vmax or KCa between 

WT, mdx/Pln+/+ and mdx/Pln-/- in either the SOL (Fig. 9) or DIA (Fig. 10) muscles.  
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Figure 7. Pln deletion reduced the rate of Ca2+ uptake in soleus.  
Ca2+ - Uptake was assessed on homogenates isolated from 4 – 6 month old WT (n = 9), mdx/Pln+/+ (n = 7) and 
mdx/Pln-/- (n = 9) SOL muscles and was significantly depressed in mdx/Pln-/- compared to both WT and mdx/Pln+/+ 
across [Ca2+] ranging from 100 nM to 1000 nM; * indicates a significant difference from WT (p < 0.05) and # 
indicates a significant difference from mdx/Pln+/+ (p < 0.05).   
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Pln deletion reduced the rate of Ca2+ uptake in diaphragm.  
Ca2+ - Uptake was assessed on homogenates isolated from 4 – 6 month old WT (n = 9), mdx/Pln+/+ (n = 7) and 
mdx/Pln-/- (n = 9) DIA muscles and was significantly depressed in mdx/Pln-/- compared to both WT and mdx/Pln+/+ 
across [Ca2+] ranging from 50 nM to 1000 nM; * indicates a significant difference from WT (p < 0.05) and # 
indicates a significant difference from mdx/Pln+/+ (p < 0.05). 
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Figure 9. Ca2+ - ATPase activity is unaltered in soleus muscle 
Ca2+ - ATPase activity was assessed on homogenates isolated from 4 – 6 month old WT, mdx/Pln+/+ and mdx/Pln-/- 
mouse SOL muscles (n = 8 per genotype) over [Ca2+] ranging from pCa 7 to pCa 3.5 to obtain Vmax and KCa., and 
demonstrated no significant differences in these measures across the three experimental groups. 

 
Figure 10. Ca2+ - ATPase activity is unaltered in diaphragm muscle 
Ca2+ - ATPase activity was assessed on homogenates isolated from WT (n = 8), mdx/Pln+/+ (n = 10) and mdx/Pln-/- 
(n = 10) mouse DIA muscles over [Ca2+] ranging from pCa 7 to pCa 3.5 to obtain Vmax and KCa and demonstrated no 
significant differences in either of these measures across the three experimental groups.  
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Discussion 
 
 This study aimed to characterize the role of PLN in DMD.  Based on current literature 

and our understanding of the role of PLN in cardiac tissue, it was hypothesized that the ablation 

of PLN would restore SERCA activity and	thus alleviate DMD pathology in mdx mice. 

Unexpectedly, PLN ablation in the mdx mouse model resulted in: 1) elevations in centralized 

nucleation; 2) a reduction in the ability to generate force; and 3) impairments in SERCA Ca2+ 

uptake when compared to mdx/Pln+/+ mice. The fact that Ca2+ uptake was reduced in the absence 

of PLN is completely paradoxical to our current understanding of the role of PLN in healthy 

skeletal muscle and could suggest that in the context of skeletal muscle disease, the interaction 

between PLN and SERCA could provide protection during times of physiological stress.  	

 Histological analysis of centralized nuclei allows for quantitation of muscle turnover, as 

it is a hallmark indicator of muscle degeneration/regeneration cycling. In mdx mice, which are 

characterized by progressive muscle degeneration and elevated muscle turnover rates, the 

amount of central nucleation was significantly elevated in both muscles compared to WT.  It has 

been demonstrated that improved SERCA function, and thus improved Ca2+ - handling, 

ameliorates this histological marker of disease. SERCA1 overexpression profoundly reduced 

central nucleation in the quadriceps, SOL and DIA muscles of mdx mice [95]. The aim of 

targeting Pln in the mdx phenotype was to alleviate SERCA dysfunction, however, the opposite 

was observed, as mdx/Pln-/- mice exhibited the lowest rates of Ca2+ uptake, which was associated 

with a trending increase in central nucleation in SOL compared to mdx/Pln+/+ mice. This result 

indicates that in the SOL muscle, the absence of Pln contributed to greater muscle wasting. 

However, the same cannot be inferred for DIA, as the proportion of central nucleation was not 

statistically different between mdx groups. These muscle differences indicate a dissociation 
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between impairments in SERCA and central nucleation since Pln ablation caused further 

impairments in SERCA function in both muscles but central nucleation wasn't affected equally in 

both muscles.	One possible explanation for these results relates to the variability in disease 

manifestation and progression in different affected mdx muscles [70, 116]. As previously 

mentioned, reports from numerous studies have demonstrated that not all affected muscles in 

mdx mice are equally susceptible to muscle degeneration. Hind limb muscles undergo extensive 

cycles of muscle turnover and are capable of prolonged successful regeneration, whereas, the 

mdx diaphragm exhibits a greater dystrophic pattern with a reduced regenerative capacity [68, 

70, 117]. The absence of Pln could have imposed a greater effect on SOL because of its ability to 

undergo successive cycles of muscle degeneration/regeneration, whereas, DIA may have reached 

its regenerative plateau.  	

It is well established that mdx mice undergo a fast-to-slow fibre type shift in order to 

delay disease progression, as slow twitch fibres show reduced susceptibility to damage due to 

increased utrophin expression [72]. Interestingly, Pln deletion in the mdx mouse caused an 

elevation in type IIB fibres in both SOL and DIA, suggesting a maladaptive response. The rise in 

the proportion of type IIB fibres in mdx/Pln-/- SOL relative to mdx/Pln+/+ was accompanied by no 

change in type I fibres and a slight decrease in type IIA fibres. This transition was more robust in 

mdx/Pln-/- DIA, with a significant decline of type I fibres concomitant to the increase of type IIB 

fibres compared to mdx/Pln+/+ and WT. A similar finding was reported by Fajardo et al. 

(unpublished) in a mdx/Sln-/- model, as the ablation of Sln in the mdx phenotype induced a slow-

to-fast fibre type shift in both SOL and DIA [118]. This transition was attributed to a decline in 

calcineurin activation as a result of the absence of Sln signalling [118]. Calcineurin, a Ca2+-

calmodulin–dependent serine/threonine protein phosphatase, has been implicated in numerous 
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signalling pathways, however, most pertinent to the dystrophic environment is its role in 

promoting type I/IIA fibres and stimulating utrophin expression [72, 119, 120]. Transgenic 

expression of an activated form of calcineurin has been shown to mitigate the myopathy in mdx 

mice through increases type I/IIA fibres and in utrophin content [119]. In contrast, the deletion of 

Sln resulted in reductions in calcineurin activation and utrophin content, as well as an increase in 

type IIB fibres [118]. Though calcineurin activation and utrophin content were not measured in 

this study, mdx/Pln-/- mice exhibited a significant decline in Sln expression in both SOL and 

DIA, and this could corroborate Sln’s role in activating calcineurin based on the slow to fast fibre 

type transition and an overall worsening of the myopathy, consistent with the mdx/Sln-/- model.  

On the other hand, the ablation of SLN improved SERCA Ca2+ - handling in mdx mice, thus 

potentially reducing the [Ca2+]i and calcineurin activation that corresponds with the fibre type 

transition, whereas in the mdx/Pln-/- model there was a reduction in SERCA function.  As such, it 

would be hypothesized that with decreased SERCA Ca2+ - uptake, there would be an increase in 

[Ca2+]i and this would be accompanied by greater calcineurin activation leading to greater 

utrophin expression and a shift to slow twitch fibres. Interestingly, the opposite was observed 

and it is unclear how this occurred.	It should be noted that in this study, it has been assumed that 

the reduction in SERCA Ca2+ - uptake induces greater [Ca2+]i, however, [Ca2+]i, and other factors 

affecting cytosolic Ca2+ (such as RyR Ca2+ release, parvalbumin or mitochondrial Ca2+ - uptake) 

were not measured. As such, before conclusions can be made on the effects of PLN ablation on 

calcineurin signalling and fibre type in the mdx model, it would be imperative to measure not 

only SERCA activity, but the [Ca2+]i, calcineurin signalling, and the additional factors 

contributing to intracellular Ca2+ homeostasis. Overall, these results really highlight the interplay 
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between the two SERCA regulators and calls for the need to expand the understanding of both 

PLN and SLN in a cellular signalling context. 

 The force analysis results of this study were comparable to the literature. While the 

increase in muscle mass of mdx/Pln+/+ SOL was not as pronounced compared with previous 

reports upon normalization of force to mass and fibre cross sectional area [79], force generation 

significantly declined across the range of stimulation frequencies compared with WT. The 

reduction in force generation in dystrophic muscle is further impaired by Pln deletion as 

mdx/Pln-/- SOL showed a significant decrease at all stimulation frequencies relative to 

mdx/Pln+/+. This could partly be due to the slow-to-fast fibre type transition previously discussed. 

This myopathy is not uniform in disease progression as there is an increased susceptibility of 

type IIB fibres to necrosis during contraction, which may be related to a heightened vulnerability 

to oxidative damage [69, 102]. Dystrophic muscle, particularly type IIB fibres, exhibit increases 

in lipid peroxidation, oxidation of proteins and the induction of antioxidant enzymes that precede 

the onset of necrosis [102]. It has been well documented that contracting skeletal muscle is a 

major source of oxidizing free radical species and this, coupled with the already elevated levels 

of free radical damage in dystrophic muscle could contribute to the greater susceptibility to 

muscle damage and reduced force production [102, 121, 122]. It is possible that during normal 

ambulation, mdx/Pln-/- muscle is more susceptible to contraction induced mechanical stress. 

Another factor that could contribute to depressed force generation is the reduced SERCA Ca2+ - 

uptake observed in mdx/Pln-/- SOL muscle. A consequence of reduced Ca2+ - uptake into the SR 

is a smaller SR Ca2+ load. With a lower Ca2+ reserve in the SR, there is less Ca2+ available to be 

released during subsequent contractions. As such, less Ca2+ will be available to bind to troponin 

C and promote the formation of cross bridges to generate force.	
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 Force analysis data additionally revealed impairments in the relaxation rate for mdx/Pln-/- 

SOL relative to WT and mdx/Pln+/+. Pln has been demonstrated to regulate rates of relaxation 

and contraction, and it was expected that in its absence SERCA activity, and thus the relaxation 

rate, would improve [1, 2]. Moreover, as mentioned previously, the fibre type transition to fast 

twitch fibres observed in the mdx/Pln-/- mice could facilitate enhanced calcium clearance, as 

these fibres exhibit a 5-7-fold greater density of SERCA [21, 25]. This could potentially be 

expected counteract the impairments in SERCA function and enable faster and more efficient 

Ca2+ clearance in mdx/Pln-/- compared to WT [21, 25]. Surprisingly, the opposite was observed, 

in that the relaxation rate was slower, additionally, mdx/Pln-/- twitch half relaxation time is 

trending to be slower, than that of the WT and mdx/Pln+/+ (p = 0.065). While unexpected, this is 

consistent with the overall worsening of myopathy observed in the mdx/Pln-/- mice in terms of 

greater centralized nuclei, slow-to-fast fibre type transition, reduced rates of Ca2+ uptake, and 

reductions in force production. The lack of a difference in the relaxation rate between WT and 

mdx/Pln+/+ is unexpected for the mdx/Pln+/+ phenotype due to the reduction in SERCA 

expression, as well as, the SERCA dysregulation observed in this myopathy, which would affect 

the clearance of Ca2+ from the cytosol to the SR and thus impede relaxation [112]. The drastic 

impairment in the contraction rate at all stimulation frequencies in mdx/Pln-/- SOL is consistent 

with the reduced rate of Ca2+ uptake and prolonged relaxation rate. As previously mentioned, a 

decline in Ca2+ - uptake into the SR results in a smaller SR Ca2+ load, as such, with a smaller 

Ca2+ reserve in the SR, there is less Ca2+ available to be released during subsequent contractions. 

Furthermore, though not assessed in this study, it has been reported in the literature that RyR 

undergoes oxidative damage in the dystrophic environment [95]. Therefore, the depression in SR 
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Ca2+ load coupled with impairments in RyR mediated Ca2+ release could contribute to the longer 

contraction rate in mdx/Pln-/- SOL.  

 The dissociation of Pln from SERCA, as mediated by conditions of high [Ca2+]i or 

adrenergic stimulation, has been shown to enhance SERCA mediated Ca2+ uptake. As such, it 

was hypothesized that the ablation of Pln would allow for improved Ca2+ handling and alleviate 

the dystrophic phenotype. However, the rate of Ca2+ uptake was depressed in both mdx groups 

relative to WT in both muscles examined.  Furthermore, ablation of Pln resulted in a pronounced 

reduction of Ca2+ uptake in the mdx/Pln-/- group compared to mdx/Pln+/+ in both SOL and DIA.  

Additionally, the [Ca2+] at which SERCA mediated uptake plateaued was consistently higher in 

mdx/Pln-/- relative to mdx/Pln+/+.  These results may be due either to a decline in SERCA 

expression and/or increased SERCA susceptibility to damage in the dystrophic environment. 

While the expression of SERCA isoforms and their susceptibility to damage were not assessed in 

this thesis, analyses are currently underway to determine the effect of PLN ablation on both the 

expression pattern and susceptibility to oxidation and nitrosylation. 

 Interestingly, both muscles exhibited an increase in PLN content in mdx/Pln+/+ relative to 

WT. The fact that PLN is upregulated in this mdx/Pln+/+ model and that there is a worsening of 

the overall myopathy, muscle weakness and SERCA impairment in the absence of PLN suggests 

that PLN is required in dystrophic muscle to protect SERCA from damage.  As indicated earlier, 

PLN interacts physically with the SERCA protein, possibly even in its phosphorylated form. 

Therefore, it is plausible that this interaction could provide structural and functional protection to 

SERCA during times of stress.  Indeed, our lab has examined the interaction between SERCA 

and PLN when faced with heat stress and demonstrated that PLN provided protection against 

SERCA nitrosylation and carbonyl formation (unpublished).  
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It has been shown that both SERCA1 and SERCA2 are highly susceptible to damage 

incurred by exposure to oxidative stress, due to the considerable number of cysteine residues (24 

and 26 Cys residues, respectively) which comprise the proteins [107-109]. Oxidative stress can 

include oxidation, nitrosylation, S –glutathiolation of protein thiols, and Tyr nitration and can 

structurally alter the pump to induce impairments that cannot be overcome and result in the loss 

of function [107-109]. Our lab and others have demonstrated that protein-protein interactions can 

stabilize SERCA and offer protection against the many forms of oxidative stress [107]. One such 

protein-protein interaction is that of the chaperone protein, heat shock protein 70 (HSP70) and 

SERCA [107, 110]. In examining the protective effects of HSP70 on both SERCA1a and 

SERCA2a isoforms, HEK – 293 cells were cotransfected with cDNA encoding human HSP70 

and either rabbit SERCA1a or SERCA2a, respectfully, and exposed to 37°C and 41°C for 

various incubation times [107]. Co- immunopreciptation revealed a physical interaction between 

HSP70 and both isoforms that protected against their thermal inactivation. The protein-protein 

interaction maintained maximal SERCA activity and prevented SERCA nitrosylation and 

carbonyl formation [107].		

Further supporting the notion that protein-protein interactions can offer protection, is the 

interaction between cardiac SERCA2a and the small ubiquitin-related modifier (SUMO) protein 

[123]. It has been shown that SERCA2a is SUMOylated at lysine residues 480 and 585 and that 

this post-translational modification is essential in maintaining SERCA2a stability and thus 

preserving function in both mouse and human cardiac cells [123, 124]. In fact, this interaction is 

of such importance that its absence has been implicated in diseased states. Heart failure is 

associated with a decline in both SUMO expression and SERCA SUMOylation, however, 

increases in SUMO expression mediated by adeno-associated-virus-mediated gene delivery, 
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improved SERCA2a activity and in doing so rescued cardiac function in mice with heart failure 

to a similar extent as SERCA2a gene delivery [123].  Considering the impairments in muscle 

health and function incurred in mdx/Pln-/- mice, it is reasonable to speculate that SERCA lacked 

the protection afforded by its interaction with PLN and thus was subjected to increased 

nitrosylation and dysregulation in its absence. In order to investigate this further, it would be 

pertinent to examine the oxidation and nitrosylation states of SERCA isoforms in this myopathy 

in the presence and absence of PLN.   

Broadening the scope outside of solely the protection offered to SERCA, it has been 

established that the Na+-K+-ATPase is modulated in a similar fashion by which PLN regulates 

SERCA activity. The Na+-K+ ATPase is an integral membrane enzyme that transports sodium 

ions in exchange for potassium ions at the expense of ATP hydrolysis [125, 126]. SERCA and 

the Na+-K+ ATPase share extensive structural homology, as both are members of the II class of P 

– type ATPases and share ~65% protein sequence similarity [126]. The γ subunit of this enzyme 

is a 7-kDa single-span membrane protein that physically interacts with the transmembrane region 

of the Na+-K+ ATPase in order to regulate its kinetic propertie [125, 126]. This regulatory role is 

carried out by direct or allosteric modification of the external cation-binding sites, thus altering 

the apparent affinity for Na+ and, to a lesser extent, for K+ [125]. Recently, it has been revealed 

that the absence of the γ subunit renders the Na+-K+ ATPase susceptible to thermal instability. 

Cells lacking the γ subunit demonstrated increased sensitivity to heat stress at both 41°C and 

37°C, as evident by Na+-K+ ATPase denaturation [125]. Additionally, it has been observed that 

several cell lines counteract stressful conditions, such as heat shock, by upregulating γ subunit 

expression in order to stabilize the enzyme complex and prolong cell vitality [125]. The 

resemblance between the two transport proteins and their associated regulators could potentially 
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offer support for the notion that PLN protects SERCA in a similar fashion by which the γ subunit 

affords the Na+-K+ ATPase protection.  

 Lastly, the Ca2+ - ATPase assay revealed no differences in maximal SERCA activity nor 

KCa (the [Ca2+] required to attain the half-maximal Ca2+-ATPase activity rate) between 

experimental groups in both muscles. This result is very intriguing, especially in view of the 

stark differences in Ca2+ uptake rates between groups. The fact that mdx/Pln-/- SOL and DIA 

experienced a drastic impairment in Ca2+ uptake without an accompanying change in ATPase 

activity, indicates that Ca2+ uptake and ATP hydrolysis of the pumps has become severely 

uncoupled. Based on the three sites of physical interaction between PLN and SERCA, it would 

be expected that the transmembrane domain, which houses the Ca2+ binding domain, but not the 

ATP binding domain, would be afforded protection by the presence of PLN. Therefore, with 

PLN ablation, the Ca2+ binding domain becomes vulnerable to damage resulting in impairments 

in Ca2+ uptake, whereas, the ATP binding domain, and thus ATP binding and hydrolysis by the 

pump, is unaffected.  

 

  



	 50 

Future Directions and Conclusions 
 

This study highlighted the complex interaction between PLN and SERCA. It was 

hypothesized that the removal of PLN and thus the removal of PLN’s inhibition of SERCA 

activity, would act to increase Ca2+ - uptake into the SR and remedy the aberrant Ca2+ signalling 

observed in the DMD myopathy. Unexpectedly, however, the removal of PLN further impeded 

SERCA mediated Ca2+ uptake, resulting in increases in centralized nuclei (a histological marker 

of muscle turnover) and reductions in force generation. One possibility that could explain these 

results is that the interaction between PLN and SERCA might afford the pump protection against 

oxidative damage. However, in order to conclusively establish the protective role of PLN, further 

investigations must be made. The extent of SERCA damage in the presence and absence of PLN 

must be determined, which can be accomplished with a co-immunopreciptation blot assessing 

SERCA nitrosylation in mdx/Pln+/+ and mdx/Pln-/- tissue. It would also be useful to assess the 

pentamer to monomer ratio in these tissues, to determine if the upregulation of PLN is occurring 

in a manner that can bind to SERCA and offer protection (the monomeric form) or if the 

monomers are oligomerizing into the pentameric form and exerting a role that has not yet been 

evaluated.  

Additionally, it would be of use to assess ROS – mediated SERCA damage in HEK – 293 

cells in order to supplement the previous research conducted on thermal inactivation of SERCA 

in the presence and absence of PLN and SLN. A potential research design would include 

transfecting HEK – 293 cells with cDNA encoding WT SERCA2a alone or co-transfection with 

with cDNAs encoding WT SERCA2a and rabbit WT PLN or the strong or weak SERCA binding 

PLN mutants (I40A and N34A, respectively) [107]. Furthermore, these proteins can be linked to 

fluorescent tags, for instance, SERCA2a can be tagged with green fluorescent protein (GFP) and 
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the different PLN mutants can be tagged with yellow fluorescent protein (YFP) or red 

fluorescent protein (RFP). It would then be possible to observe the co-localization of these 

proteins, as indicative of their interaction, and it the extent of this co-localization could be 

quantified depending on the conditions. These cells would then be exposed to the mitochondrial 

un-coupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a chemical inhibitor of 

oxidative phosphorylation which induces ROS production [127]. The extent of the interaction 

between PLN and SERCA could be determined based on the co-localization of the fluorescent 

tags. Additionally, the degree of ROS damage can then be confirmed based on carbonyl 

formation and tyrosine nitration in SERCA2a, respectively, via co-immunoprecipitation western 

blots, as well as, damage can be examined by Ca2+ - dependent SERCA2a activity. Based on the 

results from this thesis and on the experiments previously conducted regarding heat stress and 

PLN facilitated SERCA protection, it would be hypothesized that transfection of cDNA 

encoding WT PLN and the strong binding PLN mutant I40A would prevent oxidative damage. 

This protection would be expected to be accompanied by greater co-localization, reductions in 

carbonyl formation and tyrosine formation, and the maintenance of SERCA2a activity. However, 

SERCA2a transfection alone and the weak binding PLN mutant N34A would not be sufficient to 

counteract the damage.  

It has been well documented that PLN is a component of a multimeric complex in cardiac 

tissue, interacting with proteins including protein phosphatase 1 (PP1), HSP20 and HAX-1, and 

that this complex exerts an effect on both SERCA and Ca2+ homeostasis [36, 128]. It could very 

well be the case that PLN is involved in a similar complex in skeletal muscle as well, and that the 

absence of PLN is affecting the expression and function of the proteins it associates with. This 

highlights the fact that we need to expand our understanding of PLN and SLN beyond their role 
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as SERCA regulators. It would be imperative to investigate the factors regulating both PLN and 

SLN expression, as well as, the proteins and pathways that are influenced by said expression. As 

speculated by Fajardo et al (unpublished), regulation of SLN expression could be occurring via a 

Ca2+ dependent positive feedback mechanism which involves calcineurin, NFAT and the 

transcription factor myocyte enhancer factor 2 (MEF2) [118]. The proposed mechanism 

hypothesizes that an elevation in [Ca2+]i activates calcineurin and enables the dephosphorylation 

of NFAT (to induce translocation into the nucleus), as well as, dephosphorylation of nuclear 

MEF2 [118]. Activation of MEF2 and NFAT acts to promotes Sln transcription and consequently 

the SLN protein interacts with SERCA to inhibit its function and maintain the higher level of 

[Ca2+]i [118]. The mechanism regulating PLN expression is unknown, however, investigating the 

regulation of protein expression and the subsequent proteins and pathways of interaction 

represent crucial research questions that must be addressed. Future studies can focus on skeletal 

muscle tissue from Pln+/+ vs Pln-/- and Sln+/+ vs Sln-/- mice, primarily soleus muscle as it 

contains elevated levels of both proteins, can be removed and homogenized. From these 

homogenate samples, RNA can be extracted and used for a DNA microarray, in order to 

establish the expression pattern of a large number of transcription factors and to determine the 

transcription factors that are up or down regulated in the presence and absence of PLN or SLN. 

Identification of these transcription factors will allow for manipulation of their expression (either 

knock out or overexpression) to examine the subsequent effect on PLN or SLN gene expression. 

Moreover, future investigations can examine fluorescently tagged proteins with optical 

microscopes to monitor dynamic events and interactions in living cells, such as COS – 1 or HEK 

– 293 cells.	PLN or SLN, respectively, and the proteins they are hypothesized to interact with, 

can be associated with fluorescent tags and the potential interactions can be evaluated via 
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fluorescence resonance energy transfer (FRET) or single molecule tracking (SMT) [129]. FRET 

allows for a determination of the distance between two fluorophore-tagged proteins, therefore, 

enabling researchers to understand if and how these two proteins interact in living cells [129]. 

Similarly, SMT can be used to directly observe the molecular behavior of fluorophore-tagged 

proteins in living cells, including the way in which these proteins interact, with high temporal 

and spatial resolution [130]. Understanding the mechanisms regulating PLN and SLN 

expression, as well as the protein interactions and cell signalling pathways that these proteins 

contribute to under healthy conditions, will be imperative for discerning the role of these proteins 

in pathological conditions.  

 A crucial limitation to this study is that cytosolic [Ca2+]i levels were not evaluated, 

therefore, while there was an observed reduction in SERCA mediated Ca2+ uptake from the 

cytosol, it cannot be assumed that this resulted in an overall increase in [Ca2+]i. Contributions 

from other sarcolemmal proteins, cytoplasmic buffers and mitochondria in the maintenance Ca2+ 

homeostasis were not assessed and neither were the mediators of the Ca2+ dysregulation 

pathways, such as proteolytic calpains and caspases. While this thesis focused primarily on the 

role of PLN and its interaction with SERCA in Ca2+ - homeostasis, it would certainly be 

beneficial to examine other critical Ca2+ - handling proteins to provide a comprehensive 

investigation of the myopathy. However, given the scope, this thesis provided valuable insights 

into the dystrophic environment and the protein – protein interactions regulating Ca2+ - 

homeostasis.  
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Appendix A 
 

mdx/Pln-/- mice 
 
To generate the mdx/Pln+/+ and mdx/Pln-/- colonies, homozygous female mdx animals were 
crossed with male homozygous Pln-/- mice 
 
 
 
 
 
 
 
 
 
 
 
 
 
This cross yielded F1 offspring that were either female hemizgous mdx or male heterozygous 
mdx. All F1 offspring were heterozygous for Pln. Subsequently, F1offspring male and females 
were crossed together (from a separate breeding pair so that it is not inbred). 
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The resulting F2 offspring generated a variety of genotypes, including the experimental groups 
(mdx/Pln+/+ and mdx/Pln-/-). Two subset colonies that independently produced mdx/Pln+/+ mice 
and mdx/Pln-/- mice were created in order to increases the probability of producing these 
experimental animals. 
 
mdx/Pln-/-: For this subset colony dystrophin positive male mice from F2 were bred with 
heterozygous mdx females from F2, and both sires and dams were homozygous for Pln-/-. 
 

 
mdx/Pln+/+: For this subset colony dystrophin positive male mice from F2 were bred with 
heterozygous mdx females from F2, and both sires and dams were homozygous for Pln+/+. 
 
 

 
 

 


