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Abstract 

Lake ice, as one of the most important component of the cryosphere, is a valuable indicator of climate 

change and variability. The Laurentian Great Lakes are the world’s largest supply of freshwater and 

their ice cover has a major impact on regional weather and climate, ship navigation, and public safety. 

Monitoring detailed ice conditions on large lakes requires the use of satellite-borne synthetic aperture 

radar (SAR) data that provide all-weather sensing capabilities, high resolution, and large spatial 

coverage. Ice experts at the Canadian Ice Service (CIS) have been manually producing operational 

Great Lakes image analysis charts based on visual interpretation of the SAR images. Ice services such 

as the CIS would greatly benefit from the availability of an automated or semi-automated SAR ice 

classification algorithm.  

We investigated the performance of the unsupervised segmentation algorithm “glocal” iterative 

region growing with semantics (IRGS) for lake ice classification using dual polarized RADARSAT-2 

imagery. Here, the segmented classes with arbitrary labels are manually labelled based on visual 

interpretation. IRGS was tested on 26 RADARSAT-2 scenes acquired over Lake Erie during winter 

2014, and the results were validated against the manually produced CIS image analysis charts. 

Analysis of various case studies indicated that the “glocal” IRGS algorithm can provide a reliable ice-

water classification using dual polarized images with a high overall accuracy of 90.2%. The 

improvement of using dual-pol as opposed to single-pol images for ice-water discrimination was also 

demonstrated. For lake ice type classification, most thin ice types were effectively identified but thick 

and very thick lake ice were often confused due to the ambiguous relation between backscatter and 

ice types. Texture features could be included for further improvement. Overall, our “glocal” IRGS 

classification results are close to visual interpretation by ice analysts and would have expected to be 

closer if they could draw ice charts at a more detailed level.  
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Chapter 1 

General Introduction  

 Introduction 

Lakes cover around 2% of the Earth’s surface, with most of them located in the Northern Hemisphere 

and covering a total area of 790,000 km2 (Brown & Duguay, 2010). According to Duguay et al. 

(2003), 15-40% of the arctic and sub-arctic tundra areas of the Northern Hemisphere are covered by 

lakes. Therefore, lake ice is one of the most important components of cryosphere due to its large 

spatial coverage in high-latitude regions (Brown & Duguay, 2010). The presence, thickness, and 

timing of lake ice cover formation and decay can affect the functioning of lake ecosystems 

(Bernhardt, Engelhardt, Kirillin, & Matschullat, 2012). Lake ice cover isolates water from the 

atmosphere, restricts energy exchange, reduces light penetration, and limits wave mixing and 

evaporation (Choiński, Ptak, Skowron, & Strzelczak, 2015). As a result, lake ice can influence the 

chemical and biological processes in the lake such as algal blooms and aquatic organisms (Adrian, 

Walz, Hintze, Hoeg, & Rusche, 1999; Dibike, Prowse, Bonsal, Rham, & Saloranta, 2012). Lake ice is 

also a valuable indicator of climate change and variability since it is sensitive to changing climatic 

conditions, especially air temperature (Brown & Duguay, 2010; Duguay et al., 2006; Livingstone & 

Adrian, 2009; Soja, Kutics, & Maracek, 2014).  

Compared to the expensive ground-based observations, satellite remote sensing can provide large 

spatial coverage and frequent temporal resolution for lake monitoring. Optical and infrared sensors 

such as NASA’s Moderate-Resolution Imaging Spectroradiometer (MODIS), Landsat Thematic 

Mapper and Multispectral Scanner, and the National Ocean and Atmospheric Administration’s 

(NOAA) Advanced Very High Resolution Radiometer (AVHRR) can provide satisfactory 

observations over lakes under daytime clear-sky conditions. During winter months, however, these 

optical and infrared sensors are limited by reduced daylight hours and persistent cloud cover over 

northern lakes. Passive microwave sensors such as the Scanning Multichannel Microwave 

Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), and the Advanced Microwave 

Scanning Radiometer (AMSR) can monitor lakes regardless of clouds and darkness with high 

temporal resolution, but their relatively coarse spatial resolution is not enough for detailed analysis of 

lake ice. With high spatial resolution and all-weather sensing capabilities, satellite synthetic aperture 

radar (SAR) sensors such as TerraSAR-X, Canadian Space Agency’s (CSA) RADARSAT-1/2, and 
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European Space Agency’s (ESA) ERS-1/2, ENVISAT, and Sentinel-1 are well suited for lake ice 

monitoring. 

The Laurentian Great Lakes are the world’s largest supply of freshwater covering an area of 

245,000 km2. Monitoring ice conditions on the Great Lakes is important for the shipping industry and 

marine resource management (Leshkevich & Nghiem, 2013). The Canadian Ice Service (CIS) has 

been generating weekly Great Lakes ice cover products since 1973. As a common operational area of 

interest to Canada and the U.S., the CIS and the U.S. National Ice Center (NIC) have shared 

responsibility for ice charting of the Great Lakes (Bertoia et al., 2004). Operational ice analysis charts 

are manually produced by experienced ice analysts based on visual interpretation of satellite images, 

supported by meteorological data and visual observations from ship and aircraft (CIS, 2005). Satellite 

SAR imagery with wide spatial coverage is the prime data source for operational ice charting. 

Although ice analysis charts can provide reliable qualitative ice conditions, the manual production is 

subjective, time-consuming, and expensive. Furthermore, these charts only provide regional 

information of ice conditions so that users cannot pinpoint the exact locations of each ice type 

(Ochilov & Clausi, 2012). Since a large volume of data will be available with the future RADARSAT 

Constellation Mission (RCM), which will provide better spatial and temporal coverage, it will be 

increasingly challenging for ice analysts to visually interpret many images for operational purposes. 

Therefore, an effective automated or semi-automated pixel-level ice classification algorithm is of 

great interest to operational ice services. 

Numerous efforts have been made to automate the ice charting process. However, most of them 

have not achieved the timeliness and accuracy of operational requirements. An unsupervised 

segmentation algorithm called iterative region growing with semantics (IRGS) was proposed by Yu 

and Clausi (2008) for SAR sea ice classification. IRGS has been integrated into the MAp-Guided Ice 

Classification (MAGIC) System (Clausi, Qin, Chowdhury, Yu, & Maillard, 2010). Among other 

unsupervised approaches, IRGS has shown robust performance for operational SAR sea-ice 

classification and has been validated by CIS ice analysts (Ochilov & Clausi, 2012). IRGS has also 

been successfully tested by Surdu et al. (2014) for grounded and floating ice classification on shallow 

lakes of the North Slope of Alaska. Recently, a hierarchical approach based on the IRGS algorithm 

named “glocal” IRGS was proposed for ice-water classification (Leigh, Wang, & Clausi, 2014). By 

performing segmentation individually on smaller polygons, sea ice and open water were well 
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separated. This promising algorithm is worth testing for lake ice classification using dual-polarization 

SAR imagery.  

 Research Objectives 

The main goal of this research is to evaluate the performance of the semi-automated “glocal” IRGS 

algorithm for lake ice classification using dual polarized RADARSAT-2 imagery. The classification 

results are evaluated against the Great Lakes image analysis charts provided by the CIS. To achieve 

the research goal, the study is divided into three objectives: 1) to evaluate the performance of the 

“glocal” IRGS algorithm for ice-water discrimination; 2) to examine the capability of the “glocal” 

IRGS algorithm to separate thickness-based ice types identified by the CIS; and 3) to test the 

advantages of using dual-pol (HH and HV) images as opposed to single-pol (HH) images for lake ice 

classification. 

 Thesis Outline 

Chapter 2 provides detailed background information about lake ice formation and decay process, 

introduction to SAR, factors that affect radar backscatter, SAR signatures of the Great Lakes, 

challenges for SAR ice classification, operational ice charting at the CIS, previous studies on SAR ice 

mapping, and a brief introduction to IRGS. Chapter 3 evaluates the “glocal” IRGS ice classification 

algorithm over Lake Erie using dual polarization RADARSAT-2 imagery. Chapter 4 summarizes the 

main findings of the study, identifies the limitations of the algorithm, and provides suggestions for 

future work. 
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Chapter 2 

Background 

This chapter provides background knowledge on SAR ice mapping. Firstly, the physical processes 

involved in lake ice formation and decay as well as how climatic and non-climatic factors affect lake 

ice cover at each stage of ice development are presented. An introduction to the factors affecting SAR 

backscatter and scattering mechanisms are provided, followed by a description of SAR signatures of 

the Great Lakes and challenges for SAR ice classification. A detailed description of operational ice 

observation and the analysis process leading to the generation of ice charts at the CIS are then 

presented. Finally, a review of previous SAR ice mapping studies is provided, followed by a brief 

description of the IRGS algorithm used in this thesis. 

 Lake Ice Formation and Decay 

The “energy surplus or deficit in the energy balance” determines the formation, growth, and decay of 

lake ice cover (Brown & Duguay, 2010, p. 672). The transfer of energy between water, ice, snow, and 

the atmosphere is governed by the first law of the thermodynamics (Brown & Duguay, 2010). The 

first law of thermodynamics is the law of conservation of energy discovered around 1850, which 

states that the total energy of an isolated system is constant, it can neither be created nor destroyed 

(Truesdell, 1971). Williams (1965) proposes that the energy transfer for ice growth and decay is 

mainly controlled by heat exchange with the atmosphere, heat storage in the water, and heat from 

inflows of water. With a decrease in air temperature, the surface water loses heat to the atmosphere. 

As the surface water cools, it becomes denser and sinks to the deeper portion of the lake. This process 

continues until the whole lake body cools to 4°C, which is the temperature of maximum density of 

freshwater (Brown & Duguay, 2010). Further cooling allows the lower-density water layer to stay at 

the surface and when it cools to the freezing point, initial skim ice will first form on the lake surface ( 

Jeffries, Morris, & Duguay, 2012). 

Subsequent ice thickening can create congelation ice and snow ice on freshwater lakes. 

Congelation ice forms at the bottom of the ice cover where water freezes at the ice-water interface 

and loses heat through the ice to the atmosphere (Figure 2-1, 1 and 2) (Jeffries, Morris, & Duguay, 

2012). Congelation ice is also known as “black ice” because it has high optical depth allowing light to 

transmit to the subsurface water, which makes it visually transparent (Martin O Jeffries & Morris, 

2006). Snow ice typically forms at the top of the ice cover when slush freezes at the snow-ice 
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interface (Jeffries et al., 2012). As shown in Figure 2-1 (3 and 4), the bubble-filled slush forms at the 

top of ice cover when the accumulated snow presses the ice cover below the water level that 

underlying water flows up to the ice surface through ice fractures and soaks the bottom of snow cover 

(Jeffries & Morris, 2006). Snow ice can also form when snowfall occurs during initial freeze-up or 

liquid precipitation falls through snow cover to the ice surface (Brown & Duguay, 2010). Snow ice is 

often referred to as “white ice” because it contains a large amount of bubbles that causes a high 

albedo and strong light scattering (Jeffries et al., 2012). According to Bengtsson (1986), snow ice 

tends to form close to the shores as a result of wind redistribution while black ice tends to form in the 

center part of the lake. During winter, the formation of both snow ice and congelation ice determines 

the thermodynamic thickening of the lake ice cover. Jeffries and Morris (2006) showed that the 

growth of black ice at the bottom of the ice and the formation of snow ice on top of ice is due to “the 

negative temperature gradients in the ice and snow (black ice) and snow alone (snow ice)” which 

brings the conductive heat flow from the ice layer up to the atmosphere (p. 803). Therefore, the ice 

growth rate and ice thickness is controlled by the conductive heat flow in thermodynamic thickening 

(Jeffries & Morris, 2006).  

 

Figure 2-1: The formation of congelation ice and snow ice. (Source: Kheyrollah Pour, 2011) 
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The timing from initial ice cover formation to final melting, and ice cover duration is named ice 

phenology (Bernhardt et al., 2012). Ice phenology is generally divided into freeze-up and break-up 

processes. Freeze-up is defined as the time period between initial ice formation and complete ice 

coverage, and break-up refers to the time period between the beginning of ice melt and complete 

disappearance of ice (Jeffries et al., 2012). Ice phenology and ice thickness are affected by a number 

of climatic and non-climatic factors that control ice formation and decay (Brown & Duguay, 2010). 

Brown and Duguay (2010) provide a comprehensive review of the interactions between lake ice and 

climate. They indicate that ice phenology is primarily controlled by variations in air temperature, 

whereas ice thickness is more associated with the snow accumulation regime on ice cover. The 

following sections provide a review of how climatic and non-climatic factors affect lake ice cover at 

each stage of development. 

2.1.1 Climatic and Non-Climatic Factors  

 Climatic factors 

Climatic factors that determine ice phenology and ice thickness are typically the local weather 

conditions including air temperature, snow accumulation, wind, and cloud cover (Bernhardt et al., 

2012; Brown & Duguay, 2010; Duguay et al., 2006; George, 2013; Jeffries et al., 2012; Williams, 

1965).  

Air temperature has shown to be the dominant factor that affect ice phenology (Brown & Duguay, 

2010; Duguay et al., 2006; Soja, Kutics, & Maracek, 2014; Williams, 1965). Early studies have used 

accumulated degree days (freezing and thawing degree days) to predict the freeze-up and break-up 

dates (Burbidge & Lauder, 1957; Mackay, 1961; Williams, 1965). Williams (1965) found that the 

surface water temperature is almost linearly correlated with air temperature during the first stage of 

cooling and this relationship was used to determine the date at which a sheltered lake cools to 4°C. 

Research by Soja et al. (2014) also found that there is a significant correlation between surface water 

temperature and air temperature, and the surface water temperature is strongly associated with ice-on 

and ice-off dates. Their results showed that up to 54% (Lake Neusiedl) and 74% (Lake Balaton) of 

the variance of ice cover duration can be explained by winter air temperatures. They showed that air 

temperature is positively correlated with solar radiation. As identified by Soja et al. (2014), ice 

duration has a significant negative relationship with sunshine hours. The amount of solar radiation 

input on a lake is highly dependent on its geographical location (Bernhardt et al., 2012; Brown & 
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Duguay, 2010), but the relationship between air temperature and latitude has been found to be 

nonlinear (Weyhenmeyer, Meili, & Livingstone, 2004). Duguay et al. (2006) compared recent ice 

phenology trends across Canada with trends in air temperature from 1966 to 1995. They found that 

freeze-up/break-up dates were strongly correlated with 0 ºC isotherm dates at many lake locations in 

Canada. At Lake Mendota (Madison, Wisconsin), a 1 ºC mean air temperature change in November 

and December was found to correspond in a 4.3-day change in freeze-up date, and a 1 ºC mean air 

temperature change from January to March to a 3.3-day change in break-up dates (Robertson, 

Ragotzkie, & Magnuson, 1992).  

Snow accumulation can influence ice phenology especially during ice thickening and break-up 

processes (Brown & Duguay, 2010; Soja et al., 2014; Williams, 1965). A study by Adams (1976) 

demonstrated how snowfall events can advance the timing of initial ice formation on lakes. However, 

since snow has lower thermal conductivity (0.08-0.54 Wm-2 K-1) compared to ice (2.24 Wm-2 K-1) 

(Sturm, Holmgren, König, & Morris, 1997), snow accumulating on ice cover can slow down the 

growth rate of ice as a result of its insulating properties (Brown & Duguay, 2010). During spring 

melt, snow can act as an insulator and delay ice break-up. Additionally, since the presence of snow 

can initiate the growth of snow ice, the higher surface albedo of snow ice leads to lower solar 

radiation absorption which can also delay ice break-up (Brown & Duguay, 2010; Soja et al., 2014). 

The depth of snow primarily depends on occurrence and intensity of snowfall. Soja et al. (2014) 

found that snow depth and snow days are strongly correlated, with a correlation coefficient of 0.85 

and that snow conditions can highly influence break-up and ice cover duration (Duguay et al., 2003). 

Snow conditions can also be affected by wind redistribution, resulting in higher amounts of snow and 

snow ice appearing near the shores than the center of the lake (Bengtsson, 1986; Soja et al., 2014).  

Wind is another important climatic factor that affects both ice freeze-up and break-up processes 

(Brown & Duguay, 2010; Duguay et al., 2006). During the initial ice formation, wind can enhance the 

turbulent mixing of surface water with warmer sub-surface water which may delay the initial 

formation of skim ice (Soja et al., 2014; Williams, 1965). Although Yao et al. (2013) argue that the 

enhanced turbulent mixing induced by wind can accelerate water cooling and can thereby promote 

freeze-up, Soja et al. (2014) point out that this argument is only valid when considering “the total heat 

energy balance for the whole epilimnion” (p. 130). Wind is also a “frequent disturbance” affecting the 

formation of the first ice (Jeffries et al., 2012, p. 390). Wind stress can mechanically break the initial 

formed skim ice, resulting in ice fractures, and delay the thickening of ice cover (Brown & Duguay, 
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2010; Williams, 1965). Although the heat exchange with atmosphere is the dominant factor 

influencing ice break-up, under some circumstances the mechanical action of wind can be more 

important (Williams, 1965). Once ice cover forms on the lake surface, wind exposure can enhance ice 

growth by further increasing the heat loss of the ice surface (Brown & Duguay, 2010). The snow 

density and snow depth on the ice cover can also be altered by wind (Jeffries & Morris, 2006).  

The presence of cloud cover is another climatic control that affects ice growth and decay (Arp, 

Jones, & Grosse, 2013; Brown & Duguay, 2010; Maykut & Untersteiner, 1971). Clouds can reflect 

incoming shortwave radiation away from the Earth’s surface during the day, leading to lower air 

temperature than clear-sky conditions  (Wang, Liu, & Bao, 2016). However, clouds can also trap the 

emitted longwave radiation, resulting in warmer atmosphere especially at night (Brown & Duguay, 

2010). The overall cooling or warming effect of cloud cover is determined by which process 

dominates (Wang & Key, 2005). In high-latitudes regions where solar radiation is limited during the 

winter, the energy balance of ice growth and decay is mainly controlled by longwave radiation 

(Brown & Duguay, 2010). The presence of clouds reduces longwave radiation losses and can 

therefore slow down the ice growth and advance ice decay. The condition of the cloud cover has been 

considered in many lake ice models such as the FLake model (Freshwater Lake model) and the 

Canadian Lake Ice Model (CLIMo) (Duguay et al., 2003).  

 Non-climatic Factors 

Non-climatic factors that control ice cover formation and decay include lake morphometry (lake 

depth, area, volume, and fetch), lake elevation, lake turbidity, and inflow from rivers and land runoff 

(Bernhardt et al., 2012; Brown & Duguay, 2010; Soja et al., 2014; Williams, 1965). 

Lake morphometry related factors such as lake depth, area, volume, and fetch are important 

determinants of ice phenology, especially during freeze-up (Brown & Duguay, 2010). Lake depth is 

the most important lake morphometry parameter because it determines the amount of heat storage in a 

lake (Williams, 1965). Deeper lakes have larger thermal inertia because they can accumulate higher 

amount of heat during the summer and fall (Choiński et al., 2015). The more heat stored in the lake, 

the longer it takes to cool the water and eventually freeze (Jeffries & Morris, 2007). Ice cover on the 

Laurentian Great Lakes provides a good example of the impact of lake depth and volume on ice 

formation. The deeper Lake Superior usually has a lower ice fraction compared to the shallower Lake 

Erie even though the air temperature is colder over Lake Superior. The effect of lake depth on freeze-

up has been found to be more important than break-up, which is primarily driven by air temperature 
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(Williams & Stefan, 2006). However, Duguay et al. (2003) found that for shallow, low volume lakes 

in the high-latitude areas, lake depth is a significant factor controlling break-up dates. Lake fetch (the 

longest distance over a lake surface that the wind is able to generate waves) can also indirectly affect 

the appearance of ice cover (Jeffries et al., 2012). An early study by Scott (1964) showed that as 

initial ice forms on the lake surface, the bulk temperature on small lakes is generally around 2 to 3 ºC, 

while the bulk temperature on most large lakes has to be lower than 1 ºC. In addition to heat storage 

capacity, lake morphometry also has an impact on wind fetch and water circulation (Jeffries & 

Morris, 2007).  

Several studies have found that lake elevation also affects ice phenology (Brown & Duguay, 2010; 

Jensen et al., 2007; Livingstone & Adrian, 2009). Jensen et al. (2007) demonstrated that in the 

Laurentian Great Lakes region, later freeze-up dates are experienced over large low elevation lakes. 

According to Livingstone and Adrian (2009), lakes located at lower elevation generally have shorter 

ice cover duration. The reason that elevation has an influence on the timing of ice growth and decay 

could be explained by the changing air temperature and atmospheric pressure with elevation. 

The water turbidity of lake is another non-climatic factor that has been identified to affect ice 

formation and decay, especially during freeze-up (Bernhardt et al., 2012). Bernhardt et al. (2012) 

report that clear lakes can store more heat because they allow deeper penetration of the radiation 

compared to more turbid lakes. They used “Secchi-depth” to measure the degree of turbidity and 

compared modelled ice phenology variables for 38 Berlin-Brandenburg lakes. Results showed that 

clear lakes (larger Secchi-depth) had more ice-free winters and experienced later freeze-onset dates 

than more turbid lakes. 

Inflow from rivers and land runoff can also influence ice phenology (Brown & Duguay, 2010; 

Howell, Brown, Kang, & Duguay, 2009; Williams, 1965). Inflow from streams can create currents 

and mechanically break the initially formed ice cover (Brown & Duguay, 2010). Inputs from warmer 

rivers and land runoff can also add additional heat into the lake and delay ice formation (Williams, 

1965). Howell, Brown, Kang, and Duguay (2009) demonstrate that the inflow from Slave River 

causes a fracture in Great Slave Lake ice cover which contributes to advancing the timing of break-up 

(Figure 2-2).  



 

 10 

 

Figure 2-2: MODIS imagery of Great Slave Lake during ice break-up. (Source: Howell et al., 

2009) 

2.1.2 Ice Phenology Trends 

Since lake ice is sensitive to a number of climatic factors, long-term changes in the timing of ice 

freeze-up and break-up can be used as an indicator of climate variability and change (Duguay et al., 

2006; Livingstone & Adrian, 2009; Magnuson et al., 2000). Lake phenology has been proven to be a 

good proxy for regional air temperature (Livingstone, 1997). Magnuson et al. (2000) indicated that 

there was a high consistency between lake ice duration and air temperature trends in the Northern 

Hemisphere from 1846 to 1995. The timescale for lake ice trend analysis is a crucial factor in 

assessing climate warming (Benson et al., 2012; Brown & Duguay, 2010). Long-term records of 

warming trends may be related to the end of Little Ice Age since 1800s (Brown & Duguay, 2010; 

Futter, 2003). Additionally, Benson et al. (2012) examined ice phenology trends for recent 30-year 

(1975-2005), 100-year (1905-2005), and 150-year (1855-2005) periods. Ice variables for the 30-year 

trends were steeper than the 100- and 150- year periods, and the 100-year trends were less apparent 

than for the 150-year period (Benson et al., 2012). Different rates of ice phenology trends were also 

found in the Laurentian Great Lakes region, with a shorter time period (1975-2004) showing steeper 
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trends in earlier break-up dates and later freeze-up dates (Jensen et al., 2007) than the trends over the 

longer period (1846-2000) investigated by Magnuson et al., (2000).  

In many parts of the Northern Hemisphere, warming climate conditions have resulted in earlier 

occurrence of lake ice break-up dates in the past few decades (Benson et al., 2012; Duguay et al., 

2006; Magnuson et al., 2000). Research by Choiński et al. (2015) examined ice cover trends from 18 

polish lakes between 1961 and 2010. Results show later formation of complete ice cover by 1.2 days 

per decade and earlier disappearance of ice by 5.6 days per decade. Soja et al. (2014) observed ice 

phenology trends of two Central European steppe lakes from 1926 to 2012. Both lakes exhibited a 

significant trend towards earlier ice-off and shorter ice duration. Similar trends have been found by 

Benson et al. (2012) and Magnuson et al. (2000), who reported trends towards later freeze-up and 

earlier break-up in the past 60 decades for numerous lakes in the Northern Hemisphere. For lakes in 

the Southern Ontario, recent trends toward earlier break-up and shorter ice duration were also 

observed from 1853 to 2001 (Futter, 2003).  

Although trends towards later freeze-up and earlier break-up dates have been documented for many 

northern lakes, some studies have shown no significant ice phenology trends especially for freeze-up 

dates (Blenckner et al., 2004; Duguay et al., 2006). The response of freeze-up to climate is weaker 

because freeze-up is also dependent on lake morphometry (Jeffries & Morris, 2007). As Futter (2003) 

conclude, the timing of ice-off is probably a more useful indicator of climate change than ice-on. 

 Synthetic Aperture Radar 

2.2.1 SAR Basics 

SAR is a form of radar that transmits microwave signal and receives the energy backscattered from 

the terrain. For a real aperture radar system, the azimuth resolution is inversely correlated to the 

antenna length and therefore is limited by the size of the antenna that can be installed aboard an 

airplane or satellite. Synthetic aperture radar utilizes the motion of aircraft and the Doppler principle 

to synthesize a long antenna using a short antenna. The development of SAR is an evolutionary 

advancement in radar remote sensing providing relatively high spatial resolution. For example, 

RADARSAT-2 measurements provide a spatial resolution of up to 1 m in Spotlight mode.  

The amount of power received at the SAR sensor is a product of the power per unit area at target, 

effective scattering area of the target, spreading loss of reradiated signal, and the effective antenna 



 

 12 

receiving area (Moore, 1983). The mathematical radar equation combining all these factors is 

expressed as: 

𝑃𝑟 =
𝑃𝑡𝐺𝑡 ∙ 𝜎 ∙ 𝐴𝑟

(4𝜋)2 ∙ 𝑅4
                                                                   (2.1) 

where 𝑃𝑟 is the power received, 𝑃𝑡 is the transmitted power to the target, 𝐺𝑡 is the antenna gain, 𝜎 is 

the effective scattering area of the target (also called the radar cross-section), 𝐴𝑟 is the antenna 

receiving area, and 𝑅 is the range distance between the transmitter and the target (Jensen, 2007).  

It is the radar backscatter coefficient, also called sigma nought (𝜎0), which measures the scattering 

behavior of the terrain. It represents the amount the radar cross-section 𝜎 scattered back to the 

receiver per unit area (𝐴) and is expressed as: 

𝜎0 =
𝜎

𝐴
                                                                              (2.2) 

2.2.2 Factors that Affect Radar Backscatter 

The backscatter intensity is dependent on the surface roughness and dielectric properties of the 

medium. Surface roughness is a strong factor that influences the radar backscatter. A smooth surface 

acts like a specular reflector where most of the energy is reflected away and only a small amount of 

radar backscattered to the sensor. For a rougher surface, the incident wave interacts with the surface 

with diffuse scattering in all directions which will produce a brighter radar return. Another factor that 

affects radar return is the electrical characteristics of the medium, which can be measured by the 

complex dielectric constant (Jensen, 2007). It is a measure of the ability of a material to conduct 

electrical energy, which will influence its ability to absorb, transmit, and reflect microwave energy. 

Water has a very high dielectric constant of approximately 80 and thus reflects most of the radar 

energy at the water surface. The dielectric constant of freshwater ice is around 2.2 to 4.5 depending 

on the bubble content (Drai, 2000; Duguay, Pultz, Lafleur, & Drai, 2002). For sea ice, the dielectric 

constant is higher than freshwater ice due to the salinity. The dielectric constant of sea ice has shown 

almost linear correlation with the brine volume (Vant, Ramseier, & Makios, 1978). Therefore, lake 

ice and multiyear sea ice tend to have higher backscatter because their near zero salinity allows the 

volume scattering within ice. First-year smooth sea ice appears dark in SAR imagery because the high 

near-surface salinity resulting in high dielectric constant that prevents radar signal from penetrating 

the surface and are reflected away.  
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The measured backscatter can be a result of surface scattering, volume scattering and to a more 

limited extent double-bounce scattering (Atwood et al., 2015). Surface scattering occurs at the surface 

of a homogeneous medium. Volume scattering occurs when the medium is inhomogeneous with 

varying dielectric constant that allows the incidence wave to penetrate through the surface. The 

backscatter of lake ice comes from both surface scattering at the air/ice and ice/water interfaces as 

well as volume scattering that interacts with bubbles within ice (Duguay et al., 2002). Snow cover 

accumulated on ice contributes some volume scattering, but very little for dry snow and barely 

influence the signal of ice (Ulaby, Moore, & Fung, 1986). Early research have attributed the high 

backscatter of floating ice in the shallow lakes to double-bounce scattering from the ice/water 

interface and the columnar bubbles (Jeffries, Wakabayashiz, & Weeks, 2001; Jeffries, Morris, Weeks, 

& Wakabayashi, 1994; Matsuoka et al., 1999). However, a recent study by Atwood et al. (2015) 

explored the scattering mechanism of ice in shallow Arctic lakes using polarimetric satellite and 

ground-based radar. They found that single bounce at the rough lake ice/water interface that has high 

dielectric contrast rather than double-bounce is the dominant scattering mechanism contributing to the 

strong backscatter of lake ice.  

2.2.3 SAR Signatures of the Great Lakes 

A comprehensive library of C-band backscatter signatures of lake ice together with in situ 

measurements was compiled by Nghiem and Leshkevich (2007) during cruises as part of 1997 Great 

LAkes Winter Experiment (GLAWEX’97) (February to March 1997) on Lake Superior. In this 

experiment, the Jet Propulsion Laboratory (JPL) C-band polarimetric scatterometer was mounted on 

two icebreaker vessels to measure the backscatter signatures of various ice types and calm open 

water. The measurements included multiple polarizations with incidence angle ranges from 0 to 60º 

applicable to ERS, RADARSAT, and ENVISAT satellites. Figure 2-3 shows the HH backscatter for 

various lake ice types and calm open water. Modeled backscatter of open water under different wind 

speeds are shown as cyan curves.  

Since open water can be treated as a homogeneous medium in the microwave region and that only 

surface scattering is present (Ulaby et al., 1982), the backscatter of open water is highly dependent on 

incidence angle and wind-induced surface roughness. Backscatter of open water increases as the 

incidence angle decreases and wind speed increases. For calm open water, specular reflection at the 

water surface reflects away most of the radar energy producing a low radar return (Figure 2-3). 

Backscatter of calm water at large incidence angles increases because wind effect is stronger for far 
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range measurements that are far away from the ship (Nghiem & Leshkevich, 2007). Under windy 

conditions, the rough water surface is able to reflect radar energy back to the receiver. As shown in 

Figure 2-3, higher HH backscatter is modeled with increasing wind speed.  

The backscatter signatures from GLAWEX’97 for ice types included brash ice, pancake ice, 

stratified ice, lake ice with crusted snow, consolidated ice floes, and new lake (black) ice (Figure 2-3). 

These are the common ice types observed on the Great Lakes during GLAWEX’97 with different 

thickness, snow cover, surface conditions or stratifications. The backscatter of brash ice is the highest 

among other ice types because brash ice is heavily rafted and ridged that can reach up to 5 m thick. 

Pancake ice, stratified ice, lake ice with crusted snow, and consolidated ice floes have very similar 

backscatter signatures. New lake ice has the lowest backscatter compared to other ice types and 

backscatter decreases steeply with increasing incidence angle. This can be explained by the dominant 

specular reflection at the smooth black ice surface that reflects away most of the signal. In general, all 

the ice types have a decreasing trend towards larger incidence angle but the slope is less steep than 

open water. 

 

Figure 2-3: HH backscatter signatures of Great Lakes ice and open water. The cyan curves 

represents backscatter of open water under wind speeds of 2 m/s, 4 m/s, 8 m/s, 12 m/s, 16 m/s, 

20 m/s, and 24 m/s (lower to upper). The ranges of incidence angles for RADARSAT and 
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ENVISAT is marked in red double arrows. The background grey and yellow bands denote non-

overlapping and overlapping ranges of incidence angles of ENVISAT SAR, respectively. 

(Source: Nghiem & Leshkevich, 2007) 

 Challenges for SAR Ice Classification 

Incidence angle and wind effects over water are the main factors that complicate SAR ice 

classification. The co-polarized backscatter for ice and open water is incidence angle dependent 

(Geldsetzer et al., 2010). As incidence angle decreases, stronger radar return is observed especially 

for open water. On the other hand, the co-polarized backscatter of open water is highly dependent on 

wind speed and direction (Shokr, 2009). Wind-induced ripples over water can increase the surface 

roughness and thereafter result in higher backscatter that is close to that of ice, as shown in Figure 2-

3. This high backscatter variability makes it difficult to separate open water from lake ice robustly. 

Previous studies have shown that VV backscatter is more sensitive to wind effects on water surfaces 

than HH backscatter (Long, Collyer, & Arnold, 1996; Sobiech & Dierking, 2013). Cross-polarized 

backscatter over water varies with wind speed but is independent of wind direction (Vachon & Wolfe, 

2011). Thus, cross-polarized data is less sensitive to wind effects than co-polarized data and is well 

suited for separating old ice and open water (Arkett, Flett, De Abreu, & Gillespie, 2006; Duguay, 

Bernier, Gauthier, & Kouraev, 2015). Cross-polarization data can also provide more information 

about surface roughness structure and make it easier to delineate ice floes (Arkett et al., 2006; 

Ramsay et al., 2004). However, discriminating new ice from open water can be difficult with cross-

polarizated images because the signal-to-noise ratio is relatively low (Geldsetzer et al., 2010). In this 

case, small (steep) incidence angles in co-polarized images can be used to improve the separability 

between new ice and open water. Therefore, it is expected that dual-polarization data can largely 

improve SAR ice interpretation, particularly ice-water discrimination at small incidence angles.  

Classifying lake ice types is also a challenging task due to the overlapping backscatter signatures of 

different ice types. Although different naming conventions of lake ice have been used, the correlation 

between backscatter coefficient and ice types is still ambiguous. For operational ice mapping, ice 

thickness is the most important ice variable when classifying ice types. However, it is practically 

challenging to identify different thickness of ice based only on SAR images since surface (and 

subsurface) conditions of ice can largely influence the returned signal. Ice with the same thickness 

can have large radar return from heavily ridged surface or much lower backscatter from smooth ice 

surface.  
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Interpreting SAR images during ice decay is difficult because wet snow and melting ice on the ice 

surface will absorb most of the radar signal and obscure the signal from reaching the ice underneath. 

Melt conditions result in a dark tone for all ice types in the SAR images. Therefore, distinguishing 

decaying ice from open water and new ice from SAR imagery can be problematic.  

 Operational Ice Observation and Analysis at the Canadian Ice Service 

Operational ice services from numerous nations routinely issue ice analysis charts, iceberg conditions, 

warnings, and forecasts in support of safe maritime operations in ice-covered waters (Bertoia et al., 

2004). Various national ice centers have different geographic regions of interest but they work in 

similar ice charting manners. Their goal is to provide accurate and timely ice conditions mainly for 

safe ship navigation. Most centers produce ice analysis charts based primarily on visual interpretation 

of satellites imagery supplemented by aerial and shipboard visual observations as well as 

meteorological information.  

Optical and thermal satellites are suitable for ice monitoring, but are hampered by constant cloud 

cover. Passive microwave sensors provide near daily and all weather imagery, but are limited by 

coarse resolution. With all weather day-and-night sensing capabilities and high spatial resolution, 

radar remote sensing has been of strong interest to ice centers since the technology was developed 

(Bertoia & Ramsay, 1998). Back in early 1970s, airborne real aperture radars were used for ice pack 

mapping, and in the 1980s and 1990s, airborne synthetic aperture radar was used operationally 

(Bertoia et al., 2004). Since the launch of ESA’s ERS-1 (July 1991) and CSA’s RADARSAT-1 

(November 1995), SAR data has been quickly adopted by Canadian and U.S. ice services as well as a 

few European ice services as the primary data source for ice monitoring. More recent multi-

polarization SAR systems such as ENVISAT, RADARSAT-2, and Sentinel-1 have also been 

included at ice services to improve ice-water and ice type discrimination. Among other data sources, 

SAR imagery is considered the principle and most suitable data for operational ice mapping to 

support navigation safety (Bertoia et al., 2004). However, analyzing SAR imagery during melt season 

can be difficult due to the absorption of signal by surface melt water on ice. 

The CIS produces three types of ice charts: image analysis charts, daily ice charts, and regional ice 

charts. Image analysis charts are the product of the analysis of operationally significant SAR imagery 

in near real time (within 4 hours of acquisition). Daily ice charts are valid at 18:00 UTC every day 

and are produced by ice forecasters based on various data sources including satellite images, reports 
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from ship and aircraft, as well as climatology and weather conditions. Regional ice charts are weekly 

products that have a complete coverage of a certain region. They are valid on Mondays and are 

produced based on all available data during the week.  

Since the Great Lakes are an area of common operational interest to Canada and U.S., the CIS and 

NIC have shared responsibility for ice charting in the Great Lakes region (Bertoia et al., 2004). The 

production of ice analysis charts is coordinated between the two ice services. The image analysis 

charts are produced only at the CIS primarily for the Canadian Coast Guard ice offices and ice 

breakers to facilitate ship escorts and routings through ice (CIS, 2005). For the daily ice charts, the 

CIS produces charts from Fridays to Mondays and the NIC produces charts from Tuesdays to 

Thursdays. Although ice analysis charts have not been verified systematically, they provide the most 

reliable and accurate ice information for the Great Lakes. The following section focuses on the CIS 

Great Lakes image analysis charts, how to interpret the charts, and the need for automated ice 

mapping algorithm. 

2.4.1 Great Lakes Image Analysis Charts 

The CIS receives approximately 11,000 SAR images annually from various platforms such as  

RADARSAT-2 and Sentinel-1 satellites (ERS-1/2, ENVISAT, RADARSAT-1 in the past) (CIS, 

2005). The CIS produces image analysis charts through visual interpretation of operationally 

significant SAR imagery in near real time (within 4 hours of acquisition). Based on any daily 

available SAR images, image analysis charts are first produced and given to ice forecasters to 

supplement the production of daily and regional ice charts. Compared to daily ice charts, image 

analysis charts are less generalized and are a more detailed analysis of SAR imagery. The spatial 

extent of image analysis charts varies depending on the footprint of the SAR imagery and on the 

operational requirements. Currently, RADARSAT-2 ScanSAR mode and Sentinel-1 Extra Wide 

mode images are the main data source for ice charting. These SAR images have a wide spatial 

coverage of up to 500-km range. Before analysis, they are projected in either Lambert or Polar 

projections and then a 2 × 2 block average is applied to reduce image resolution to approximately 100 

meter for archival purposes.  

Trained ice analysts have sound knowledge of the tone, texture, and spatial context of the ice 

features that allow them to extract ice concentration, ice type, and ice topography from SAR imagery. 

Based on their knowledge, they manually draw lines and polygons through visual interpretation of 

SAR imagery using Polaris, which is a digital image display and vector drawing tool based on 
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ArcGIS. For multi-polarization data, simple RGB composite (i.e. HH-HH-HV, HH-HV-HV) is often 

used to enhance visual display. As mentioned earlier, visual interpretation SAR imagery can be 

challenging during the melting season if liquid water is present on the ice surface. Therefore, ice 

analysts also rely on historic ice patterns (previous charts) and weather conditions to ensure accurate 

and consistent image analysis. In addition, accumulated freezing degree days (AFDD) is often used to 

estimate ice thickness particularly for thicker ice types. Since the charts are for operational use, ice 

analysts always try to generalize the information and sometimes overestimate the ice extent.  

2.4.2 Interpreting Image Analysis Charts 

Image analysis charts are region-based polygon maps drawn by experienced ice experts from SAR 

imagery. For each polygon, qualitative ice conditions are provided in the form of an oval shape “egg 

code” (Figure 2-4). The standard World Meteorological Organization (WMO) egg code reports total 

concentration, partial concentration, stage of development (age), and form of ice without identifying 

the exact location of each ice type. The top value Ct in the egg code is the total ice concentration in 

the polygon area. The second line is the partial concentration for each corresponding ice type (stage 

of development). The third line lists the stage of development of ice from the thickest (So) to thinner 

ice types (Sd, Se), of which their concentrations are reported in the second line. The fourth line reports 

the predominant form of ice (floe size) for each corresponding stage of development. All ice 

concentrations are reported in tenths. Table 2-1 and Table 2-2 show the standard lake-ice stage of 

development coding and the coding for forms of ice, respectively.  

 

Figure 2-4: The WMO egg code for each polygon.  

Table 2-1: Coding for lake-ice stages of development 

Stage of development Thickness (cm) Ice-type code 

New lake ice < 5 1 

Thin lake ice 5 - 15 4 

Medium lake ice 15 - 30 5 
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Thick lake ice 30 - 70 7 

Very thick lake ice > 70 1· 

Table 2-2: Coding for forms of ice 

Description >Width Code 

Pancake ice - 0 

Small ice cake, brash ice, agglomerated brash < 2 meters 1 

Ice cake 2 - 20 meters 2 

Small floe 20 - 100 meters 3 

Medium floe 100 - 500 meters 4 

Big floe 500 - 2,000 meters 5 

Vast floe 2 - 10 kilometers 6 

Giant floe > 10 kilometers 7 

Fast ice - 8 

Icebergs, growlers or floebergs - 9 

Undetermined, unknown or no form - X 

 

Image analysis charts are color-coded using the international WMO code in total concentration 

(CT) or stage of development (SD) of ice in the area. The color code CT shows the total ice 

concentration in each ice analysis polygon, and the color code SD represents the stage of 

development of ice with the highest partial concentration in that polygon. Figure 2-5 shows an 

example of the Eastern Great Lakes image analysis chart color-coded in CT and SD on February 18, 

2016. Fast ice is defined as the ice that is fastened to the shore and is colored in grey.  
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Figure 2-5: The CIS Great Lakes Image analysis chart on February 18, 2016 color-coded in CT 

(left) and SD (right). 

2.4.3 The Need for Automated Algorithm 

Currently, manual analysis of satellite images remains the main mode of operational ice charting at 

most ice centers. However, manual production is subjective, time-consuming, and expensive. At the 

CIS, it takes ice analyst a few hours to produce a complete ice analysis chart for the Great Lakes 

region. Since ice analysts have their individual practice of ice charting, a different interpretation can 

be made by a different ice analyst. Presently, there are seven ice analysts at the CIS in charge of the 

ice charting. Additionally, the level of detail and accuracy of the charts are quite low. Quantitative 

assessments have demonstrated the erroneous and subjective nature of the CIS ice analysis charts 

(Ochilov & Clausi, 2012; Shokr, 2009). Therefore, operational ice services have been seeking for 

effective and accurate information extraction and analysis techniques using (semi)-automated 

algorithms to release the ice analysts and allow them to focus on more important decision-making 

tasks. However, many of the past publications on the development and improvement of image 
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segmentation, expert-system, and data fusion methods have not met the accuracy and timeliness 

required for operational analysis (Bertoia et al., 2004).  

 Previous Studies on SAR Ice Mapping  

Most of the early work on Great Lakes ice mapping was done through visual interpretation of remote 

sensing data due to the large geographic area of the lakes (Rondy, 1971; Schertler et al., 1975). Since 

the mid-1970s, numerous Great Lakes ice cover studies have been conducted including field studies, 

image processing, and freshwater ice classification algorithms using Landsat, AVHRR, ERS-1/2, and 

RADARSAT data (Leshkevich, 1985; Nghiem, Leshkevich, & Kwok, 1998). However, many of the 

early satellite ice interpretation algorithms were subjective (Leshkevich & Nghiem, 2013). In 2007, a 

comprehensive C-band lake ice backscatter signature library was compiled from the radar data from a 

1997 field experiment campaign (GLAWEX’97) together with in situ measurements (Nghiem & 

Leshkevich, 2007). The authors utilized this library for Great Lakes ice mapping with single-

polarized ERS-2 and RADARSAT images through supervised classification (Leshkevich & Nghiem, 

2007). However, the algorithm needs further improvement because open water in single polarization 

data has a large backscatter range depending on the wind conditions and incidence angle. With the 

launch of advanced multi-polarization SAR satellites, Leshkevich and Nghiem (2013) were able to 

advance their Great Lakes ice classification algorithm with multi-polarization RADARSAT-2 quad-

pol and ENVISAT ASAR dual-pol data. They first discriminated ice from open water using a HH 

backscatter threshold of -3 dB for small incident angles and a VV/HH ratio of 3.1 as a threshold for 

large incidence angles. Once the ice/water mask was created, the calibrated ice backscatter library 

was then used to classify the ice types through supervised classification. Their results proved that 

multi-polarization data can better identify ice types and open water than single-polarized data with 

less ambiguity caused by different wind speed and direction over water (Leshkevich & Nghiem, 

2013).  

Developing automated or semi-automated ice classification algorithms from SAR imagery is a 

long-standing goal for researchers as well as operational ice services. Various approaches have been 

explored, including simple backscatter thresholding, neural network (NN), Markov random fields 

(MRF), Bayesian approach, expert system, k-means, support vector machines (SVM), and maximum 

likelihood (ML). The most straightforward method for retrieving ice information from SAR data is to 

identify backscatter thresholds. Backscatter thresholds are usually determined by obtaining the mean 

and standard deviation values of randomly selected homogeneous regions. Previous studies have 
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achieved reasonable ice-water classification results by applying thresholds of SAR backscatter 

intensities (Geldsetzer, Van Der Sanden, & Brisco, 2010; Leshkevich & Nghiem, 2013). However, 

thresholds are generally not robust and constrained by incidence angle and wind conditions. A study 

by Geldsetzer, Sanden, and Brisco (2010) established backscatter thresholds to discriminate decaying 

lake ice from open water on the shallow lakes in the northern Yukon using dual-pol RADARSAT-2 

imagery. A HH backscatter threshold of -21.35 dB was used prior to initial break-up and a HV 

backscatter threshold of -24.35 dB during break-up. However, their thresholds are not robust due to 

the high inter-lake and temporal variability of radar backscatter. Sobiech and Dierking (2013) 

evaluated the performance of unsupervised k-means classification approach and a fixed-threshold 

method for separating decaying freshwater ice and water from RADARSAR-2 and TerraSAR-X 

images. They demonstrated that results of the unsupervised k-means approach were similar to those of 

the threshold method. Since unsupervised classification does not require prior analysis of training 

samples and is easy to implement, it is believed to be superior to the threshold method (Sobiech & 

Dierking, 2013).  

Numerous efforts have been made to automate SAR-based ice mapping; however, the majority of 

the work has focused on sea ice. Early work by Kwok, Rignot, and Holt (1992) applied unsupervised 

ISODATA classification followed by cluster labelling utilizing seasonal look-up tables of different 

ice types. This algorithm has been implemented at the Alaska SAR Facility. Gill (2003) developed a 

semi-automatic SAR sea ice classification algorithm using fuzzy rules on AMPLITUDE, GAMMA-

pdf, PMR, and ENTROPY derived from Gray-Level Co-occurrence Matrix (GLCM). The algorithm 

classifies the data over Arctic sea ice into 8 classes, including both near-range and far-range calm 

water, wind-roughed water, and low and high concentration sea ice. Soh, Tsatsoulis, Gineris, and 

Bertoia, (2004) developed an intelligent SAR sea ice image analysis system named Advanced 

Reasoning using Knowledge for Typing Of Sea ice (ARKTOS). This fully automatic system can 

mimic the reasoning process of ice experts by extracting objects or features and using rule-based 

system to classify the segments. An algorithm based on segment-wise thresholding of local 

backscatter autocorrelation was proposed by Karvonen, Similä, and Mäkynen (2005) for Baltic Sea 

ice and open water discrimination. Their algorithm has been used operationally at the Finnish Ice 

Service for operational sea ice mapping. Shokr (2009) compiled an ice type backscatter database 

using visual RADARSAT image analysis at the CIS. Backscatter equations for open water and ice 

types as a function of incidence angle were derived using both heterogeneous and homogeneous areas 

from the ice analysis polygons. This quantitative assessment also tested the robustness of operational 
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SAR analysis by identifying anomalies in the CIS visual analysis. A texture-based automatically 

trained ML classifier from RADARSAT-1 and ENVISAT ASAR images was developed for ice-

ocean discrimination (Haarpaintner & Solbø, 2007). Their results were significantly improved by 

dividing the images into narrow incidence angle ranges. An automatic NN-based algorithm and a 

Bayesian algorithm trained with texture features were used for SAR sea ice classification in the 

Central Arctic (Zakhvatkina, Alexandrov, Johannessen, Sandvenand, & Frolov, 2013). The result of 

NN classification provided over 80% of correspondence with expert visual analysis of SAR images. 

Recently, Zakhvatkina et al. (2017) developed a fully automated ice-water classification algorithm 

based on dual-polarized RADARSAT-2 images. They used backscatter values and GLCM texture 

features to train a SVM classifier. More than 2700 SAR images were classified to achieve an average 

accuracy of 91%.  

Most of the past studies on SAR ice mapping chose supervised algorithms because they can be 

trained and automated. However, training data can be biased and often cannot capture all the 

variability of different classes. Although unsupervised classification produces arbitrary classes that 

only require manual labelling, it does not require prior analysis of training samples and can efficiently 

adapt to varying backscatter (Yu & Clausi, 2007). Research by Yu and Clausi (2008) proposed an 

unsupervised SAR sea-ice classification algorithm called iterative region growing with semantics 

(IRGS). This algorithm is an edge-based method which uses edge penalty functions and a region 

growing technique (Yu & Clausi, 2008). IRGS has been successfully used by Surdu et al. (2014) for 

grounded and floating ice classification on shallow lakes of the North Slope of Alaska. Recently, 

Leigh, Wang, and Clausi (2014) proposed an automated ice-water discrimination algorithm using 

dual polarization RADARSAT-2 imagery. They implemented the region-based “glocal” IRGS on HV 

polarization followed by the automated labelling with pixel-based SVM algorithm using texture 

features.  

 Iterative Region Growing using Semantics 

IRGS is an image segmentation algorithm integrated into the MAGIC System developed by the 

Vision and Image Processing Research Group at University of Waterloo (Clausi et al., 2010) and is 

the algorithm retained in this thesis. It is an unsupervised classification algorithm that identifies 

homogeneous regions with arbitrary class labels. IRGS is a MRF-based algorithm that accounts for 

spatial relationships and uses Gaussian statistics to model backscatter characteristics (Leigh et al., 

2014). This algorithm has been tested on SAR sea ice classification and it is indicated that IRGS can 
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produce homogeneous regions that are generally consistent with visual interpretation (Yu & Clausi, 

2007, 2008). Since IRGS is a region-based algorithm, it is less affected by speckle noise compared to 

pixel-based algorithms. A more in depth description of the IRGS algorithm can be found in Yu 

(2006). 

IRGS incorporates edge strength to the traditional MRF model, and proceeds labelling and region 

merging in an iterative manner. Firstly, IRGS over-segments the scene into small homogeneous 

regions using a watershed algorithm and a region adjacency graph (RAG) is built on these regions. 

Then, a class label is assigned to each region using an MRF model. These initially identified regions 

rather than individual pixels are used for further classification. Region properties are computed using 

Gaussian statistics (mean and covariance) of all pixels in a region (Leigh, 2013). Adjacent regions 

with the same class label are then merged greedily until the system energy is minimized (Ochilov & 

Clausi, 2012). The region-based labelling and merging processes are iterated until merging cannot be 

performed or the maximum number of iterations is reached. Here, the edge strength between each pair 

of adjacent regions is considered in the segmentation and classification that an increased edge penalty 

is used for each new iteration (Yu & Clausi, 2007). 

For large SAR scenes that are on the order of 500 km wide, the statistics for a class can vary across 

the scene as a result of incidence angle effect and intra-scene class variations. To minimize the non-

stationarities introduced from large scenes, Leigh, Wang, and Clausi (2014) proposed a hierarchical 

classification approach based on the proposed IRGS algorithm called “glocal”. This method combines 

the “high-detail local” and “large-scale global” information (Leigh et al., 2014, p. 5532). By 

performing segmentation separately on smaller polygons, the class statistics for each polygon can be 

considered stationary.  
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Chapter 3 

Semi-automated classification of lake ice cover using dual 

polarization RADARSAT-2 imagery 

 Introduction  

Lake ice is one of the most important components of cryosphere with its large spatial coverage in 

high-latitude regions (Brown & Duguay, 2010). Lake ice is also a robust indicator of climate change 

and variability due to its sensitivity to changing climatic conditions (Brown & Duguay, 2010; Duguay 

et al., 2006; Livingstone & Adrian, 2009). The Laurentian Great Lakes have the world’s largest 

freshwater surface covering an area of 245,000 km2. Ice cover of the Great Lakes has a strong impact 

on the regional climate, navigation, economic activities, and public safety (Leshkevich & Nghiem, 

2013). Knowledge of ice conditions and variability on the Great Lakes is especially important for the 

shipping industry and marine resource management.  

Monitoring detailed ice conditions on large lakes requires the use of satellite-borne Synthetic 

Aperture Radar (SAR) data that provide all-weather sensing capabilities, high resolution, and large 

spatial coverage. For many ice centers, SAR is considered the only satellite data source suitable for 

operational ice mapping to support navigation safety (Bertoia et al., 2004). C-band satellite SAR data 

from RADARSAT-1, ERS-1/2, and ENVISAT have been intensively used as the prime data source 

for sea ice mapping in the last two decades (Zakhvatkina, Korosov, Muckenhuber, Sandven, & 

Babiker, 2017). With better ice-water discrimination and ice edge detection capabilities, multi-

polarization data from Sentinel-1 and RADARSAT-2 can further improve the ability for ice 

monitoring (Ramsay et al., 2004). Using RADARSAT-2 quad-pol and ENVISAT ASAR dual-pol 

data, Leshkevich and Nghiem (2013) successfully advanced their Great Lakes ice classification 

algorithm utilizing the backscatter signature library established from the 1997 Great LAkes Winter 

Experiment (GLAWEX97). 

Different ice types and open water can be identified from the analysis of SAR images. Due to the 

lack of suitable automated algorithms, the Canadian Ice Service (CIS) and U.S. National Ice Center 

(NIC) have been manually producing Great Lakes ice charts for operational purposes based mainly on 

SAR images with ancillary data. Ice charts can provide reliable region-based ice type and ice 

concentration information. However, the visual interpretation of SAR images is coarse, time-

consuming, and subjective. With the growing number of SAR missions such as the newly launched 
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Sentinel-1A/B and the upcoming RADARSAT Constellation Mission, a dramatic increase of satellite 

imagery is becoming available for lake ice mapping. The large data volume is constrained by the 

inefficient manual interpretation. Therefore, an automated or semi-automated ice classification 

algorithm is desired to assist the CIS ice charting process. 

Numerous efforts have been made to automate ice mapping from SAR data, with a particular focus 

on sea ice. Various types of algorithms have been applied, including simple backscatter thresholding, 

neural network (NN), Bayesian approach, expert system, k-means, support vector machines (SVM), 

maximum likelihood (ML), and Markov random fields (MRF). Algorithms based only on backscatter 

coefficient are often constrained by the ambiguous correlation between backscatter and ice/water 

features. Different ice types with varying surface roughness can have overlapping backscatter ranges 

with open water depending on wind conditions (Shokr, 2009). Therefore, additional SAR statistics 

such as local mean and variance (Shokr, Jessup, & Ramsay, 1999) and texture features (Karvonen, 

Cheng, Vihma, Arkett, & Carrieres, 2012; Leigh, Wang, & Clausi, 2014; Zakhvatkina et al., 2017) 

have been utilized to improve the classification. 

Early work by Kwok, Rignot, and Holt (1992) used unsupervised ISODATA classification 

followed by cluster labelling using seasonal look-up tables of different ice types. This algorithm was 

implemented at the Alaska SAR Facility. Gill (2003) proposed a semi-automatic sea ice classification 

algorithm using fuzzy rules on SAR amplitude data and entropy derived from Gray-Level Co-

occurrence Matrix (GLCM). The algorithm classifies data over the Arctic Ocean into calm water, 

wind-roughed water, and low and high concentration sea ice. An intelligent system called Advanced 

Reasoning using Knowledge for Typing Of Sea ice (ARKTOS) was developed for SAR sea ice image 

analysis (Soh et al., 2004). This fully automatic system can mimic the reasoning process of ice 

experts by extracting objects or features and using rule-based system to classify the segments. 

Karvonen, Similä, and Mäkynen (2005) developed an algorithm based on segment-wise thresholding 

of local backscatter autocorrelation for discriminating open water and Baltic Sea ice. Their algorithm 

has been adopted at the Finnish Ice Service for operational sea ice classification. A texture-based 

automatically trained ML classifier was developed from RADARSAT-1 and ENVISAT ASAR 

images for ice-ocean discrimination (Haarpaintner & Solbø, 2007). By dividing the images into 

narrow incidence angle ranges, their results were significantly improved. A study by Geldsetzer, 

Sanden, and Brisco (2010) established backscatter thresholds to distinguish decaying lake ice from 

open water using dual-pol RADARSAT-2 imagery. However, their thresholds are not robust enough 
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due to the high interlake and temporal variability of radar backscatter. Recently, Zakhvatkina et al. 

(2017) developed a fully automatic ice-water classification algorithm based on dual-polarized 

RADARSAT-2 images. The authors achieved an average accuracy of 91%. They trained a SVM 

classifier with backscatter values and GLCM texture features. Similar texture-based training was also 

previously applied to a NN-based algorithm for sea ice classification in the Central Arctic 

(Zakhvatkina, Alexandrov, Johannessen, Sandvenand, & Frolov, 2013).  

Most of the aforementioned studies on SAR ice classification have used supervised classification 

based on SAR statistics. Although supervised classification can be implemented automatically, the 

training data are generally biased due to the high interclass and intraclass variability of backscatter 

(Ochilov & Clausi, 2012). Additionally, well trained algorithms often perform best on specific 

geographic regions or seasons and thus cannot be widely applied. Unlike supervised classification, the 

unsupervised approach does not require a priori knowledge of the feature of investigation. While the 

arbitrary classes generated from an unsupervised algorithm often need manual labelling, it is believed 

to be a superior approach to many supervised methods since it does not require prior analysis of 

training samples and is easy to implement (Sobiech & Dierking, 2013).  

Recently, an unsupervised classification algorithm named “glocal” iterative region growing with 

semantics (IRGS) based on the published IRGS algorithm was proposed and used for sea ice-water 

classification (Leigh et al., 2014). This is a hierarchical region-based method that minimizes the effect 

of incidence angle variation by performing segmentation separately on smaller polygons. Leigh et al. 

(2014) have used the “glocal” IRGS algorithm on HV polarization imagery and obtained well 

discriminated sea ice and open water segments. It has been shown that for SAR sea-ice image 

segmentation, IRGS can produce homogeneous regions that are relatively consistent with visual 

interpretation (Yu & Clausi, 2008). Among other unsupervised approaches, IRGS has shown robust 

performance for operational SAR sea-ice classification and has been validated by the CIS ice experts 

(Ochilov & Clausi, 2012). IRGS was also successfully used by Surdu et al. (2014) for grounded and 

floating ice classification on shallow lakes of the North Slope of Alaska. Although the multivariate 

version of IRGS algorithm is applicable (Qin & Clausi, 2010), it has not been comprehensively tested 

on dual-pol images for ice mapping. This promising algorithm is also worth testing on large lakes.  

Hence, the objective of this study is to investigate the performance of the semi-automated “glocal” 

IRGS for lake ice classification on Lake Erie using dual polarized (HH and HV) RADARSAT-2 

imagery. Here, ice-water and ice type classification are conducted separately. The performance of the 
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algorithm on dual-pol data as opposed to single polarization is also tested. Classification results are 

validated against Great Lakes image analysis charts provided by the CIS. 

 Study Area 

The selected lake for this study, Lake Erie, is the fourth largest of the Great Lakes by surface area 

(Figure 3-1). It is located in northeastern North America, on the border of Canada and United States. 

Lake Erie lies between 78º to 94º W with a surface area of 25,655 km2 and an average depth of 19 m. 

It is the shallowest and smallest by volume of the Great Lakes. Lake depth determines the amount of 

heat stored in the lake body and thus is an important factor for ice freeze-up (Williams, 1965). Deeper 

lakes have greater heat storage capacity so that they take longer to cool down and eventually freeze 

(Jeffries & Morris, 2007). Therefore during winter, the Great Lakes do not usually freeze over 

completely except the shallowest Lake Erie (Cordeira & Laird, 2008). 

 

Figure 3-1: Bathymetry of Lake Erie. Lake depth contours are in meters. The locations of the 

New Glasgow and ERIEAU (AUT) weather stations are shown by black dots. 

For the past five years (2013-2017), the mean winter air temperature and mean annual temperature 

recorded at the New Glasgow weather station, near the northern shore of Lake Eire (Figure 3-1), was 

-2.68 ºC and 9.25 ºC respectively (Table 3-1). The period of analysis is the cold winter of 2013-2014 
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which experienced an average winter temperature of -6.36 ºC. During that winter, the constant low 

temperature caused 92.5% of the Great Lakes to become frozen by early March, which is the second 

largest ice coverage since 1973 (NOAA/GLERL, 2014). The daily minimum and maximum air 

temperatures in the area of Lake Erie during this winter is shown in Figure 3-2. The hourly air 

temperature at the time of each RADARSAT-2 image acquisition used in the study is also shown. 

Ascending and descending scenes are acquired at 6 pm and 6 am local time, respectively.   

Table 3-1: Seasonal mean air temperature (ºC) for winter (DJF), spring (MAM), summer (JJA), 

and fall (SON) recorded at New Glasgow weather station (42°30'52.062" N, 81°38'10.092" W). 

 Winter 

(DJF) 

Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Annual 

Temp 

2013 -1.38 6.96 19.90 10.54 9.00 

2014 -6.36 5.33 19.44 9.91 7.08 

2015 0.71 6.56 19.19 12.55 9.75 

2016 0.56 7.41 20.97 13.10 10.51 

2017 -0.22 7.73 20.31 11.78 9.90 

Mean -2.68 5.46 19.96 11.58 9.25 

 

 

Figure 3-2: Lake Erie min (green) and max (orange) daily air temperature during the winter 

2013-2014 measured at the New Glasgow weather station (42°30'52.1"N 81°38'10.1"W). Hourly 

air temperature of the RADARSAT-2 acquisitions measured at the ERIEAU (AUT) weather 

station (42°15'00.4"N, 81°54'00.5"W) is shown as yellow and blue dots for ascending (6 pm) and 

descending (6 am) scene, respectively.  
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 Data  

3.3.1 Synthetic aperture radar  

Dual co- and cross- polarized (HH+HV) C-band RADARSAT-2 ScanSAR Wide A images obtained 

from the Canadian Space Agency were used in the study for lake ice classification. They have a 

nominal pixel spacing of 50 m × 50 m and a scene size of 500 km × 500 km in both range and 

azimuth directions. With a wide spatial coverage, ScanSAR Wide mode has been the main mode used 

by the CIS for operational lake ice monitoring. The incidence angle of the images ranges from 20° to 

49°. The temporal resolution is around 1-3 days with varying incidence angle ranges. A total of 26 

scenes acquired over Lake Erie from January to April 2014 with varying ice and wind conditions 

were selected to test the algorithm (Figure 3-3).  

 

Figure 3-3: Map of Lake Erie. Coverage of the 26 RADARSAT-2 scenes is shown in white. 

An example of a RADARSAT-2 scene is shown in Figure 3-4. This scene was acquired on January 

19, 2014 during the ice freeze-up period. The scene covers Lake Erie (bottom), part of Georgian Bay 

(top), and Lake Ontario (right). Various ice types on Lake Erie are well captured at HH polarization. 

As shown, HV polarization is less sensitive to incidence angle and wind-induced open water surface 

roughness in contrast to HH polarization. The original images were downsampled from 

(b) 
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approximately 10,000 × 10,000 pixels to 5,000 × 5,000 pixels by performing a 2 × 2 block averaging 

(100-m pixel spacing). This reduces the image size by a factor of 4 which increases the computational 

efficiency. This is the same procedure followed at the CIS for ice charting from SAR imagery.  

    

Figure 3-4: RADARSAT-2 SCW scene acquired on January 19, 2014. (a) HH polarization; (b) 

HV polarization.  

3.3.2 CIS image analysis charts 

The Great Lakes image analysis charts acquired from the CIS were used for validation of the 

classification results. They are produced through visual interpretation of the ice conditions from 

operationally significant SAR imagery in near real time (within 4 hours of acquisition). Visual 

interpretation of SAR imagery is conducted by an experienced ice analyst through a digital image 

display and vector drawing tool. In addition to SAR imagery, historic ice patterns and meteorological 

conditions are also analyzed to support the ice charting. Ice analysts manually draw polygons on the 

SAR image and for each polygon, the ice types and their estimated concentrations are reported in an 

oval shape “egg code”. The egg code is the World Meteorological Organization (WMO) standard 

which lists total concentration, partial concentration, stage of development (ice type), and form of ice 

without identifying the exact location of each ice type. The ice types in the charts follow the WMO 

standard thickness-based categories. The standard lake-ice stage of development coding is given in 

Table 3-2. 

  

(a) (b) 
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Table 3-2: Description of lake-ice stages of development 

Stage of development Thickness (cm) Ice-type code 

New lake ice < 5 1 

Thin lake ice 5 – 15 4 

Medium lake ice 15 – 30 5 

Thick lake ice 30 – 70 7 

Very thick lake ice > 70 1· 

 

Image analysis charts are color-coded using the international WMO code for total concentration 

(CT) or stage of development (SD) of ice in the area. The total ice concentration is often monitored 

for weather forecasting while stage of development is more useful for operational purposes such as 

ship navigation. Color code CT represents the estimated total ice concentration (in tenths) in each 

manually drawn polygon. Fast ice that is fastened to the shore is 100 percent concentration by 

definition. Color code SD is the ice type that has highest partial concentration in that polygon. The 

color code for CT is used when concentration is more variable than stage of development, while the 

color code for SD is intended to be used when stage of development is more variable than 

concentration (CIS, 2016). An example of the Eastern Great Lakes image analysis chart color coded 

as CT and SD drawn from the RADARSAT-2 January 19, 2014 scene (Figure 3-4) is shown in Figure 

3-5.  
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 (a)             (b) 

Figure 3-5: CIS Great Lakes Image analysis chart of January 19, 2014 with (a) WMO CT color 

code (b) WMO SD color code  

 Methodology 

3.4.1 “Glocal” iterative region growing with semantics classification  

To map lake ice types and open water, image segmentation was performed on the 26 RADARSAT-2 

scenes. The hierarchical region-based classification called “glocal” IRGS method was used in the 

study (Leigh et al., 2014). This is an unsupervised classification method that can identify 

homogeneous regions with arbitrary class labels. It has been integrated into the MAp-Guided Ice 

Classification (MAGIC) System developed by the Vision and Image Processing Research Group at 

University of Waterloo (Clausi et al., 2010). 

The “glocal” method used in the study was built upon the IRGS algorithm developed by Yu and 

Clausi (2008). It is an unsupervised segmentation algorithm proposed for SAR sea-ice mapping. 

IRGS is an edge-based method which uses edge penalty functions and a region growing technique 
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(Yu & Clausi, 2008). Basically, IRGS first breaks the scene into small homogeneous regions using a 

watershed segmentation algorithm and assigns each region a class label using an MRF model 

(Ochilov & Clausi, 2012). Then, adjacent regions with the same assigned class are merged greedily 

until the system energy is minimized. The classification and merging process are combined in a 

iterative manner until the merging cannot be performed further or the maximum number of iterations 

is reached (Yu, 2006). This algorithm incorporates the edge strength, which improves the adaptivity 

of the spatial context model to non-stationarity situations (Yu, 2006; Yu & Clausi, 2008). Since IRGS 

is performed on regions rather than pixels, long range of the spatial interactions between pixels are 

accounted efficiently (Yu, 2006).  

For large lakes such as the Great Lakes, large SAR scenes on the order of 500 km wide are 

necessary for mapping lake ice. However, such large scenes introduces statistical nonstationarities 

across the image as a result of the incidence angle effects. To minimize the effects of incidence angle, 

the hierarchical “glocal” IRGS classification approach which combines the “high-detail local” and 

“large-scale global” information was introduced (Leigh et al., 2014, p. 5532). The local step divides 

the image into a number of autopolygons and IRGS classification is performed separately for each 

autopolygon. The class statistics for each autopolygon can be considered stationary (Leigh et al., 

2014). The global step then glues the autopolygons and forms a classification across the whole scene. 

This hierarchical method identifies homogeneous regions in the full scene with arbitrary class labels. 

The “glocal” IRGS classification is performed in the MAGIC system and the flowchart is shown in 

Figure 3-6. The inputs to the system are HH and HV polarizations of a RADARSAT-2 image and its 

corresponding landmask that masks out land and other lakes. First, a number of autopolygons (10 × 

10 grid) are created on the HV image using the watershed segmentation (Vincent & Soille, 1991). 

The HV polarization is chosen because it is less sensitive to incidence angle and wind-induced 

surface roughness. An example of autopolygon segmentation for the January 19, 2014 scene (see 

original imagery in Figure 3-4) is presented in Figure 3-7a. Each autopolygon is then segmented to 

five arbitrary classes using IRGS classification based on both HH and HV bands. This step 

oversegments the image to ensure each class is almost homogeneous. Figure 3-7b shows this 

classification for each autopolygon. Following this, the global step glues the regions of the local 

autopolygon classification using IRGS and then completes the full scene classification with arbitrary 

class labels. Here, different number of arbitrary classes are segmented for the ice-water classification 

and lake ice type classification.  
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1) Ice-water classification: The global step glues the autopolygons to 8 classes across the entire 

scene. Each of the 8 classes is considered homogeneous and contains only water or only ice. An 

example of the full-scene “glocal” classification is presented in Figure 3-8a. 

2) Lake ice type classification: The global step glues the autopolygons to 4 distinct classes across 

the whole scene. Each of the 4 classes is considered as one of the WMO standard thickness-based ice 

types. 

The last step is to manually label the classes as ice types or water based on visual interpretation of 

SAR imagery. A labelled ice-water classification of the example scene is shown in Figure 3-8b.  

 

Figure 3-6: “Glocal” IRGS classification flowchart 

Experimentation was accomplished to ensure the parameters of “glocal” classification (10 × 10 

grid, 5 classes for local, 4 or 8 classes for global) used in the study performed well for the 26 tested 

Manually assign 

class labels 

Divide HV image into 

autopolygons 

Input: 

 - Dual-pol SAR image 

 - Landmask 

 

Classify each 

autopolygon using IRGS 

(5 classes) based on both 

HH and HV bands 

Glue full image 

using IRGS 

Return: 

Labelled lake ice 

classification 
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scenes. To oversegment to the most homogenous regions, best ice-water classification results are 

obtained when 8 classes are segmented. For ice type classification, only 4 classes are segmented 

because it is difficult to visually label different ice types. The performance of the algorithm was not 

sensitive to the minor adjustment of parameters.   

   

Figure 3-7: Local autopolygon classification of the January 19, 2014 scene. (a) Autopolygon 

segmentation boundaries in white. (b) IRGS classification of each autopolygon. Five classes are 

identified in each autopolygon. 

  

Figure 3-8: (a) “Glocal” IRGS classification (8 classes) of the January 19, 2014 scene. (b) 

Labelled ice-water classification (ice in yellow, water in blue). 

 

(a) (b) 

(a) (b) 
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3.4.2 Dual-pol vs. single-pol 

The advantage of utilizing dual polarization compared to single polarization for ice observation is 

evident particularly for ice-water classification. One of the main challenges in discriminating open 

water from ice is the wind-affected water in co-polarized images. Wind-roughened open water has 

similar backscatter than ice in a single co-polarized image particularly at small incidence angles, 

whereas cross-polarization is less sensitive to wind effects and can be useful for ice-water 

discrimination (Duguay, Bernier, Gauthier, & Kouraev, 2015). However, there is limited ice-water 

contrast in cross-polarized backscatter because of the relatively low signal-to-noise ratio (Geldsetzer 

et al., 2010). Therefore, a combined use of co- and cross-polarized data should improve the potential 

for ice-water classification than using single polarization. With the launch of Sentinel-1A/B and 

RADARSAT-2, more multi-polarization SAR data are becoming available and increasingly used for 

operational ice mapping at ice centers. To test the advantages of using the dual-polarization 

(HH+HV) opposed to single HH polarization, “glocal” IRGS ice-water classification was also 

performed on only HH-polarized images. 

 Results and Discussion 

3.5.1 Overall results 

The semi-automated “glocal” IRGS classification was tested on 26 ScanSAR Wide RADARSAT-2 

scenes and the results were compared against the CIS image analysis charts. The image analysis 

charts are manually drawn direcly from RADARSAT-2 imagery by trained ice analysts at the CIS. 

They are currently the most reliable reference data available for the ice cover over the Great Lakes. 

This study assumes that the CIS image analysis charts represent the “true” lake ice conditions and the 

absolute difference between the charts and classification results were calculated as the classification 

error. Figure 3-9 shows an example of the validation process for both ice-water and ice-type 

classification for the January 19 scene. The HH and HV images are shown in Figure 3-9a and 3-9b. 

The ice-water and ice type classification results are shown in Figure 3-9e and 3-9h, respectively. For 

ice-water classification, image analysis charts color coded in CT (Figure 3-9c) were reclassified into 

lake ice and open water using a total ice concentration threshold of 10% (Figure 3-9d). This is the 

lowest ice concentration identified by ice analysts. Polygons with ice concentration smaller than 10% 

were reclassified as open water, otherwise they were considered ice. To perform a quantitative 

accuracy assessment, error maps based on pixel-by-pixel differences between image analysis charts 
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and “glocal” IRGS results were generated (Figure 3-9f). For each scene, open water and lake ice 

correspondence as well as the overall accuracy were obtained. Since image analysis charts are region-

based products that have much lower resolution than our pixel-based classification, per-pixel 

validation was also conducted using 200 random sample points per scene. For lake ice type 

classification, the image analysis charts color coded in SD (Figure 3-9g) were used for visual 

comparison. Of the 26 scenes, 12 scenes of Lake Erie were fully ice covered and therefore not 

included in the ice-water classification. The ice-water and ice type classification results for all scenes 

are presented in Appendix A and Appendix B, respectively.  

 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 
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Figure 3-9: Validation process of the classification results against the CIS image analysis charts. 

(a) Original RADARSAT-2 HH-polarized image acquired on January 19, 2014. (b) Original 

HV-polarized image. (c) Collocated subset of image analysis chart (color-coded in CT) on the 

same date. (d) Image analysis chart reclassified into lake ice (ice concentration from 10 to 

100%) and open water (ice concentration from 0 to 10%). (e) Labelled ice-water classification 

result. (f) Error map showing the pixel-by-pixel difference between image analysis chart and 

ice-water classification result: no difference, open water error (open water misclassified as lake 

ice), and lake ice error (lake ice misclassified as open water). (g) Image analysis chart color-

coded in SD. (h) Labelled ice type classification result.  

There is generally a good agreement between the image analysis charts and our ice-water 

classification results. The average overall accuracy of the ice-water classification is 85.1% and the 

highest overall accuracy reaches 93.8% (Table 3-3). Most of the errors come from misclassifying ice 

as open water. Although the HH backscatter for open water is highly dependent on incidence angle as 

well as wind speed and directions (Shokr, 2009), the “glocal” IRGS algorithm can provide a robust 

ice-water discrimination in most conditions. The random pixel sampling shows an overall accuracy of 

90.2%. Examples of different cases are analyzed in Section 3.5.2.1.  

Table 3-3: Accuracy assessment of ice-water classification for 12 scenes. 

 
Pixel-by-pixel difference with 

image analysis charts 

Pixel-by-pixel difference against 

original SAR images (200 randomly 

selected pixels per scene) 
SAR acquisition 

date (M/D/Y) 

Overall 

accuracy 

Open water 

error 

Ice 

error 

Overall 

accuracy 

Open water 

error 
Ice error 

1/11/2014 84.8% 0.6% 14.5% 92.0% 1.0% 7.0% 

1/12/2014 84.1% 7.6% 8.3% 86.0% 5.5% 8.5% 

1/14/2014 88.0% 0.5% 11.5% 94.5% 2.0% 3.5% 

1/15/2014 87.8% 1.8% 10.4% 89.5% 2.0% 8.5% 

1/18/2014 84.9% 0.9% 14.9% 92.0% 2.0% 6.0% 

1/19/2014 85.2% 0.1% 14.7% 89.5% 0.5% 10.0% 

2/21/2014 91.7% 0.9% 7.4% 96.0% 0.0% 4.0% 

2/22/2014 78.9% 0.1% 21.0% 81.0% 0.0% 19.0% 

3/25/2014 88.7% 0.7% 10.6% 92.0% 1.0% 7.0% 

3/28/2014 89.1% 2.8% 8.1% 88.5% 3.0% 8.5% 

4/1/2014 93.8% 0.6% 5.6% 94.5% 1.5% 4.0% 

4/4/2014 86.2% 5.7% 8.1% 87.0% 5.5% 7.5% 

Average 86.9% 1.9% 11.3% 90.2% 2.0% 7.8% 

 
For comparison between classification using single-pol and dual-pol, results showed that there is 

generally a slight improvement of using dual-pol rather than single HH polarization (Figure 3-10). 

Compared with the image analysis charts, the average overall accuracy using single-pol for 12 scenes 

is 83.4%, which is around 3% lower than the accuracy for dual-pol. The inclusion of HV polarization 
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can improve the ice-water classification accuracy, especially at small incidence angles where wind-

roughed open water tends to be as bright as lake ice. However, a few scenes showed higher accuracy 

for single-pol than dual-pol mainly owing to the low signal-to-noise ratio in HV image. This implies 

that if there is a good ice-water contrast in the HH polarization, the contribution of the HV 

polarization is negligible. Overall, most of the scenes showed little difference (<5%) between using 

single-pol and dual-pol images. This difference can be ignored because some inconsistencies can be 

attributed to the low spatial resolution of the image analysis charts. Example of scenes for comparison 

will be discussed in Section 3.5.2.2. 

 

Figure 3-10: Overall accuracy of “glocal” IRGS ice-water classification using dual-polarization 

(HH+HV) and single-polarization (HH). 

The ice type classification results were not quantitatively assessed because image analysis charts 

are coarse and do not contain heterogeneous ice type polygons. From visual comparison, “glocal” 

IRGS algorithm can generally identify different ice types with single-pol and dual-pol imagery, 

particularly when the surface conditions are different for different ice types. New lake ice is often 

confused with open water due to their similar low backscatter range. Thick lake ice and very thick 

lake ice appear similar in the SAR imagery, so that they were not discriminated from each other in 

most cases. Specific scenes are analyzed in Section 3.5.2.3. 

The total time for ice classification of Lake Erie in a 5,000 × 5,000 pixel scene is under 10 minutes, 

which is much faster than the manual ice charting at the CIS. The CIS ice analyst takes around 2 

hours to produce a Great Lakes image analysis chart from a large swath SAR image. The local 
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autopolygon classification takes around 1 minute, the global IRGS gluing takes 30 seconds, and the 

manual labelling takes about 2-5 minutes depending on the complexity of the scene.  

3.5.2 Analysis of specific cases 

The performance of lake ice classification can vary with incidence angle, wind speed and direction, as 

well as ice conditions. Here, a sample of scenes exhibiting different ice and open water conditions are 

analyzed and discussed. 

 Ice-water classification 

The final classification result for the April 1 scene is shown in Figure 3-11. This is an easy scene for 

ice-water discrimination because there is a good backscatter contrast between open water and lake 

ice. Although this scene is acquired during the break-up season where the melting ice weakens the 

backscatter, open water in the far range scatters away most of the radar signal and appears much 

darker than the decaying lake ice. This scene achieves a high correspondence of 93.8% with the 

image analysis chart. Differences between the classification results and image analysis charts are 

found at the ice-water boundary and some cracks between ice floes (Figure 3-11g). This can be 

attributed to the coarse resolution of the image analysis charts. Errors also appear at the northeastern 

part of Lake Erie where some fast ice is misclassified as open water (Figure 3-11d and Figure 3-11f).  

The scene of January 15, presented in Figure 3-12, is a typical case where Lake Erie is located in 

the near range. This scene is acquired during the ice freeze-up and mainly contains thin lake ice and 

medium lake ice. A Landsat-8 image acquired one day before is shown in Figure 3-12e. The 

seasonally-predominant southwesterly winds push the ice to the northeastern part of the lake. The HH 

backscatter of open water is highly dependent on the incidence angle with a large increase in 

backscatter towards smaller incidence angles, as shown in Figure 3-12a towards the right portion of 

the image. This is because at small incidence angles, surface scattering dominates the scattering 

mechanism where open water with a high dielectric constant has a stronger reflection of the radar 

energy than that of ice. With wind-induced surface roughness, open water can have even higher 

backscatter than the lake ice. Using this ice/water contrast, Leshkevich and Nghiem (2013) 

successfully separated lake ice and open water using a simple threshold of HH backscatter at small 

incidence angles. This scene achieves an overall accuracy of 89.5%. Some errors appear at the ice-

water boundaries where the contrast of the edges of open water and ice is less evident. 
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Figure 3-11: (a) Original RADARSAT-2 HH-polarized image acquired on April 1, 2014. (b) 

Original HV-polarized image. (c) Image analysis chart reclassified into lake ice (ice 

concentration from 10 to 100%) and open water (ice concentration from 0 to 10%). (d) Labelled 

ice-water “glocal” IRGS classification. 

(a) (b) 

(c) (d) 
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(a) (b) 

(c) (d) 
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Figure 3-12: (a) Original RADARSAT-2 HH-polarized image acquired on January 15, 2014. (b) 

Original HV-polarized image. (c) Image analysis chart reclassified into lake ice (ice 

concentration from 10 to 100%) and open water (ice concentration from 0 to 10%). (d) Labelled 

ice-water “glocal” IRGS classification. (e) Landsat 8 image acquired on January 14, 2014.  

Of the 12 scenes, the scene of April 4 is a fairly difficult scene during spring melt (Figure 3-13). 

The ice in this scene is mainly very thick lake ice (>70 cm) mixed with 20 to 30% of thick lake ice 

(30-70 cm). Lake Erie is located in the near-to-middle incidence angle range where open water tends 

to appear as grey tone with wind-induced surface roughness. Since this scene is acquired during the 

ice decay season, the melting lake ice has a medium grey tone backscatter which results in a very low 

contrast with open water. Some open water areas were misclassified as lake ice but the overall 

accuracy achieved 87.0%. The algorithm also identified cracks in the northeastern part of the lake 

which were not delineated in the image analysis chart.  

(e) 
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Figure 3-13: (a) Original RADARSAT-2 HH-polarized image acquired on April 4, 2014. (b) 

Original HV-polarized image. (c) Image analysis chart reclassified into lake ice (ice 

concentration from 10 to 100%) and open water (ice concentration from 0 to 10%). (d) Labelled 

ice-water “glocal” IRGS classification. 

The scene of February 21 is a case during the spring melt when wet ice and snow or melt ponds on 

top of the lake ice are present (Figure 3-14). This scene was acquired when the minimum air 

temperature was higher than the freezing point during that day (Figure 3-3). The decaying lake ice in 

this scene has relatively low backscatter because melting ice and wet snow on the ice surface absorbs 

most of the radar signal (Duguay et al., 2002). Since this is a near-range scene, there is generally a 

good contrast between the bright wind-roughed open water and dark lake ice. However, the bright 

brash ice with high angular topography in area A of the scene can barely be distinguished from open 

water at HH polarization but HV can provide a good contrast. As a result, this scene achieves a high 

overall accuracy of 96.0%.  

(a) (b) 

(c) (d) 
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Figure 3-14: (a) Original RADARSAT-2 HH-polarized image acquired on February 21, 2014. 

(b) Original HV-polarized image. (c) Image analysis chart reclassified into lake ice (ice 

concentration from 10 to 100%) and open water (ice concentration from 0 to 10%). (d) Labelled 

ice-water “glocal” IRGS classification. 

The next scene shown in Figure 3-15 was acquired 12 hours after the last February 21 scene. This 

is a scene acquired in the morning around 6 am local time (descending mode) of February 22, 

whereas the last scene is acquired the night before at around 6 pm (ascending mode). Compared to the 

February 21 scene, the ice in this scene appears much brighter because the melted ice refroze as the 

temperature started to drop at 4am and reached the freezing point at 6 am. As shown in Figure 3-16, 

there was a significant melting episode before the February 21 scene was acquired as the air 

temperature for the previous 24 hours was greater than 1.5°C and reached 6.3°C at 1 am. Melting ice 

or melt ponds on the surface of the ice are likely present on the western part of the lake where the 

signal from the ice underneath is obscured. The low radar return of ice cover makes it difficult to 

(a) (b) 

(c) (d) 

A A 
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discriminate from open water in the near-range. As shown in Figure 3-15f, ice in the western part was 

misclassified as open water and the overall accuracy is 81.0%.   

 

(a) (b) 

(c) (d) 
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Figure 3-15: (a) Original RADARSAT-2 HH-polarized image acquired on February 22, 2014. 

(b) Original HV-polarized image. (c) Image analysis chart reclassified into lake ice (ice 

concentration from 10 to 100%) and open water (ice concentration from 0 to 10%). (d) Labelled 

ice-water “glocal” IRGS classification. (e) Landsat 8 image acquired on February 22, 2014. 

 

 

Figure 3-16: Hourly air temperature from February 21 00:00 to February 22 12:00 measured at 

the ERIEAU (AUT) weather station (42°15'00.4"N, 81°54'00.5"W). Local times of acquisition 

of the two SAR scenes are identified by red dots.  
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 Dual-pol vs. single-pol 

The advantage of using dual-pol as opposed to single-pol images is more evident for scenes acquired 

at small incidence angles. As mentioned earlier in section 3.5.2.1, the scene of January 15 is a near-

range scene in which wind-roughed open water can appear just as bright as lake ice at HH 

polarization (area A in Figure 3-17a). Therefore, using only a HH image cannot discriminate some of 

the rougher ice types from open water (Figure 3-17d). However, HV polarization (Figure 3-17b) is 

less sensitive to incidence angle with open water appearing darker than the ice in area A. This 

provides a better backscatter contrast at the ice-water boundary. As shown in Figure 3-17e, the 

inclusion of both HH and HV polarizations in the algorithm produced a generally better ice-water 

classification result than using single polarization alone. 

 

Figure 3-17: (a) Original RADARSAT-2 HH-polarized image acquired on January 15, 2014. (b) 

Original HV-polarized image. (c) Image analysis chart reclassified into lake ice (ice 

concentration from 10 to 100%) and open water (ice concentration from 0 to 10%). (d) Labelled 

“glocal” IRGS classification using HH polarization. (e) Labelled “glocal” IRGS classification 

using dual-pol images. 

Most of the scenes analyzed showed that classification using single-pol or dual-pol results in 

similar classification accuracy. For example, the scene of April 1 shown in Figure 3-18 is a case when 

using dual-pol is slightly better than using HH-pol only. Although the dual-pol result (Figure 3-18e) 

shows a better correspondence with the image analysis chart (Figure 3-18c), the result of using single 

(a) (b) (c) 

(d) (e) 

A A 
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HH-pol (Figure 3-18d) can identify more cracks between ice floes which were not delineated by the 

ice analyst. 

 

Figure 3-18: (a) Original RADARSAT-2 HH-polarized image acquired on April 1, 2014. (b) 

Original HV-polarized image. (c) Image analysis chart reclassified into lake ice (ice 

concentration from 10 to 100%) and open water (ice concentration from 0 to 10%). (d) Labelled 

“glocal” IRGS classification using HH polarization. (e) Labelled “glocal” IRGS classification 

using dual-pol images. 

 Ice type classification 

The ice type classification result for the January 14 scene is shown in Figure 3-19. There are three 

ice types including thin lake ice, medium lake ice, and new lake ice in the scene. The classified ice 

types (Figure 3-19d) have much different distribution compared to the image analysis chart (Figure 3-

19c). Some of the inconsistencies do not necessarily mean the results are erroneous because the ice 

expert at the CIS does not take into account small features in the image. Moreover, many of the image 

analysis polygons are not homogenous. They contain more than one ice type as shown in the egg code 

(Figure 3-19c). New lake ice is misclassified as open water due to its similar low radar return. 

Overall, most of the thicker ice types are correctly discriminated from open water.  

(a) (b) (c) 

(d) (e) 
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Figure 3-19: (a) Original RADARSAT-2 HH-polarized image acquired on January 14, 2014. (b) 

Original HV-polarized image. (c) Image analysis chart color-coded in SD. (d) Labelled “glocal” 

IRGS classification. 

The scene of March 21 is a complicated scene that contains various ice types (Figure 3-20). The ice 

thickness in this scene ranges from less than 5 cm to more than 70 cm. New lake ice appears dark in 

the image because of its smooth surface whereas medium lake ice appears brighter with its rough 

surface. Thick lake ice and very thick lake ice have similar backscatter intensities and appear 

relatively darker than the medium lake ice. Generally, the algorithm accurately identified new lake 

ice, medium lake ice, and very thick lake ice. However, thick lake ice cannot be differentiated from 

very thick lake ice due to their similar backscatter range.  

(a) (b) 

(c) (d) 
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Figure 3-20: (a) Original RADARSAT-2 HH-polarized image acquired on March 21, 2014. (b) 

Original HV-polarized image. (c) Image analysis chart color-coded in SD. (d) Labelled “glocal” 

IRGS classification. 

3.5.3 Classification errors 

Lack of ground truth data is one of the main challenges in evaluating ice classification algorithms 

(Ochilov & Clausi, 2012). Since in-situ observations on large lakes like the Great Lakes is impractical 

and expensive, we used image analysis charts provided by the CIS who has decades of experience 

interpreting SAR imagery as the reference data. However, the coarse representation of image analysis 

charts imposes limitations in the validation process. The resolution of image analysis charts is 

(a) (b) 

(c) (d) 
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significantly lower than our pixel-based classification results. In order for clients to easily read the 

charts, ice conditions in image analysis charts are expressed for large polygons that are at least tens of 

square kilometers in size. Furthermore, since the image analysis charts are produced near real-time on 

almost a daily basis, SAR image analysis are performed quickly by ice analysts and they do not take 

into account small features such as cracks between ice floes. Therefore, an absolute quantitative 

comparison between image analysis charts and classification results is not possible.  

To compare our pixel-based ice-water classification results with the region-based image analysis 

charts, we reclassified the charts into ice and open water using an ice concentration threshold of 10%. 

Here, polygons with total ice concentration larger than 10% are regarded as lake ice, otherwise are 

reclassified as open water. This means that even regions with 20% of ice are considered fully ice 

covered, which explains why most errors come from misclassifying ice as water (Table 3-3). This 

subjective assumption contributes to some of the discrepancy and reduces the accuracy. Considering 

the limitations of the validation procedure, the classification accuracy are likely more reliable than the 

calculated pixel-by-pixel differences with the image analysis charts. Therefore, we have also 

conducted the per-pixel validation using random sample points and the overall accuracy reached 90%. 

Comparing ice type classification results with image analysis charts is a more challenging task than 

ice-water classification. The ice types in the image analysis charts are based on stage of development, 

and each category contains a wide range of ice thicknesses (Table 3-2). Although the CIS provides 

the stage of development color code, most of the polygons are heterogeneous and contain multiple ice 

types without identifying the exact locations of the different ice types (see egg codes in Figure 3-21). 

In most cases, multiple ice types are mixed together in the ice analysis polygons and small features 

were not included. Therefore, the quantitative assessment of the ice type classification accuracy was 

not performed.  

Although image analysis charts are produced by ice experts, they may contain some human-made 

errors. The total concentration, number of classes, and ice types are assigned subjectively from visual 

interpretation. A quantitative assessment of the CIS visual analysis done by Shokr (2009) has 

indicated the existence of anomalies in image analysis charts. To ensure navigation safety, ice 

analysts are generally biased toward overestimation of ice concentration and assigning thicker ice 

types. Additionally, the interpretation of SAR images may vary between ice analysts depending on 

their level of expertise. Some analysts may include more details. Currently, there are seven ice 

analysts at the CIS in charge of the image analysis charts. 
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3.5.4 Limitations 

 Ice-water classification 

There are two limitations of the “glocal” IRGS ice-water classification used in this study. One 

limitation is the difficulty in discriminating calm open water from new lake ice (Figure 3-19). New 

lake ice is a thin layer of ice that forms at the beginning of the freeze-up period. It generally has a 

smooth surface/ice-water interface and high optical depth allowing light to transmit to the subsurface 

water, which makes it visually transparent. Therefore, new lake ice can be challenging to recognize 

from open water in either optical or SAR imagery. Ice experts at CIS often have to rely on weather 

conditions to determine the presence of new lake ice. Although a robust ice-water discrimination is 

desirable, the very thin new lake ice is less of an issue from an operational perspective. 

The presence of water on ice due to rainfall or melt is another challenge for ice-water classification. 

Melting snow on ice can absorb or melt ponds reflect away most of the radar signal resulting in 

similar low backscatter to open water. Melt conditions are also a challenging situation for ice analysts 

interpreting SAR images.  

 Ice type classification 

The correlation between backscatter and different ice types is ambiguous. Each ice type can depict a 

large variability of backscatter that overlaps each other. Depending on the roughness at the surface 

and the ice-water interface, the same ice type can display very high backscatter with heavy ridging or 

low backscatter with a smooth surface. As shown in Figure 3-22c, the CIS ice analyst provided 

ridging description of the same type of ice. As they get to thicker ice types (thick and very thick lake 

ice), ice analysts often have to rely on freezing degree days as well as history and weather of the last 

few days to determine the stage of development. Therefore, it is difficult in practice to identify 

different ice types and estimate ice thickness based only on SAR backscatter. For further 

improvement, additional image characteristics such as texture features could be included (Leigh et al., 

2014; Zakhvatkina et al., 2013). 
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Figure 3-21: (a) Original RADARSAT-2 HH-polarized image acquired on March 8, 2014. (b) 

Original HV-polarized image. (c) Requested CIS image analysis chart for Lake Erie.   

 Conclusions 

The semi-automated “glocal” IRGS classification was tested on 26 dual polarized RADARSAT-2 

imagery over Lake Erie. This is hierarchical region-based approach that divides the image into small 

polygons and minimizes the effect of incidence angle. This unsupervised classification method 

identifies homogeneous regions with arbitrary classes followed by manual labeling. Validation of the 

classification was done via pixel-by-pixel comparison with the CIS image analysis charts. The 

algorithm achieved an overall accuracy of 90.2% for ice-water classification. Analysis of various case 

studies indicates that the “glocal” IRGS algorithm can provide a reliable ice-water classification using 

dual polarized images. The algorithm has difficulty distinguishing calm open water from new lake ice 

and decaying ice. However, the misidentification of new lake ice is not a significant drawback for 

operational purposes. For lake ice type classification, most thin ice types were effectively identified 

but thick and very thick lake ice were often confused due to the ambiguous relation between 

(a) 

(b) (c) 
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backscatter and ice types. Texture features could be included for further improvement. Overall, our 

“glocal” IRGS classification results are close to visual interpretation by ice analysts and would have 

expected to be closer if they could draw ice charts at a more detailed level. The testing of dual- and 

single-pol images demonstrated the improvement of ice-water discrimination utilizing dual polarized 

data as opposed to single polarization, particularly for windy near-range scenes.  

Although the “glocal” IRGS algorithm needs manual labelling, the whole classification process 

takes less than 10 minutes for each scene, which is likely to be operationally useful. The algorithm 

can be fully automated by implementing automatic labelling using trained models, as demonstrated 

by Leigh et al. (2014) for application to sea ice mapping.  
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Chapter 4 

General Conclusions 

 Summary 

Monitoring ice conditions and variability on the Great Lakes is crucial for marine resource 

management and the shipping industry. Satellite SAR systems provide high resolution and all weather 

sensing capabilities that make them well suited for ice mapping. For operational purposes, the CIS 

and NIC have been manually generating Great Lakes ice analysis charts based on mainly satellite 

imagery. The availability of an automated or semi-automated ice classification algorithm would 

benefit operational ice services. Numerous efforts have been made to automate SAR ice mapping, but 

little success had been achieved to date. The overall objective of this study was therefore to 

investigate the performance of the previously published semi-automated sea ice classification 

algorithm “glocal” IRGS for lake ice classification using dual polarized RADARSAT imagery.  

Chapter 3 presented the results of the evaluation of “glocal” IRGS for Lake Erie ice classification 

using 26 dual polarized RADARSAT-2 images in 2014. The classification results were evaluated 

against the CIS Great Lakes image analysis charts. This study showed that the “glocal” IRGS 

algorithm can effectively discriminate lake ice from open water in most ice conditions, with an 

overall accuracy of 90.2%. Thickness-based lake ice types were effectively identified in most cases, 

but large overlapping backscatter range of different ice types can sometimes confuse the algorithm. 

Texture features could be included for further improvement of the ice type classification. The study 

also demonstrated a slight improvement of using dual-pol as opposed to single-pol images for ice-

water separation, especially for windy near-range scenes. 

In summary, this thesis demonstrated the potential of the “glocal” IRGS algorithm for operational 

lake ice-water classification using dual polarized SAR imagery. The classes generated from the 

algorithm are close to visual interpretation by ice analysts. It is a promising algorithm that can 

overcome a number challenges including incidence angle effect and speckle noise. Although the 

algorithm requires manual labelling, the whole classification process takes less than 10 minutes and is 

likely to be operationally useful.  
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 Limitations 

There are several limitations in this study, particularly the validation procedure. Due to the lack of 

ground truth data for the Great Lakes ice cover, the image analysis charts provided by the CIS were 

used to quantitatively evaluate the classification results. The region-based image analysis charts have 

much coarser representation than our pixel-based results and is challenging to compare with. 

Therefore, subjective ice concentration threshold was applied for direct comparison with the ice-water 

classification results. Evaluation of the lake ice type classification results is more difficult because 

most ice analysis polygons are heterogeneous and contain multiple ice types. Furthermore, the image 

analysis charts themselves may contain human-made errors and may vary between ice analysts. 

Although the “glocal” IRGS algorithm can well discriminate open water from lake ice in most 

cases, it cannot effectively identify new lake ice from calm open water. New lake ice has a very low 

backscatter and little texture, which is similar to calm open water especially in the large incidence 

angles. This drawback does not pose significant risks for operational ice mapping. Another limitation 

of the algorithm is the difficulty in ice identification during spring melt where melting snow or melt 

ponds on the ice surface obscure the radar signal from the ice underneath.  

The image segmentation was performed in the MAGIC software which requires a human operator 

to read in images, specify parameters, and export the results. Currently, the MAGIC system does not 

include automatic labelling so that a visual inspection is required to manually label the images. This is 

the main limitation for ice mapping in an operational perspective.  

 Recommendations for Future Work 

The “glocal” IRGS algorithm tested in this study is an unsupervised approach that produces 

homogeneous segments with arbitrary class labels. The automatic labelling can be achieved by 

combining the non-labelled “glocal” results with trained supervised classification results. Leigh, 

Wang, and Clausi (2014) successfully implemented automatic labelling by combing the “glocal” 

IRGS with SVM classification using the IRGS framework. Future development of the automatic 

labelling in the MAGIC system would greatly improve the algorithm.  

IRGS is a promising algorithm for SAR lake ice mapping. However, performing ice classification 

in the MAGIC software requires a human operator to manually execute each step of the process. It is 

recommended that the IRGS algorithm be incorporated into a processing chain that can be fully 

automated for operational use. 
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This study demonstrated the good performance of the “glocal” IRGS algorithm for lake ice-water 

discrimination, but its ability to identify different lake ice types is limited. For future improvement, 

additional image characteristics such as texture features could be considered. The low ice type 

classification accuracy is also partly due to the coarse representation and the sparse thickness-based 

ice type categories of the image analysis charts. Unlike sea ice, there is no well-defined lake ice 

category that captures the characteristics of each ice type. The standard terminology for lake ice used 

in the operational ice services are generally sparse and cannot well describe the surface conditions. 

Future development of a more comprehensive lake ice category would greatly benefit the lake ice 

studies. 
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Appendix A 

Ice-water classification result images 

This appendix list the final ice-water classification results for the 12 scenes. The images are displayed 

in the following format: 

Date of SAR scene (M/D/Y) 

HH-polarized image HV-polarized image 

Image analysis chart  

color-coded in total concentration 

(CT) 

Image analysis chart reclassified 

into lake ice (ice concentration 

from 10 to 100%) and open water 

(ice concentration from 0 to 10%) 

Labelled “glocal” IRGS 

classification using HH 

polarization only 

Labelled “glocal” IRGS 

classification using dual-pol 

images 
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Appendix B 

Ice type classification result images 

This appendix list the final ice type classification results for the 26 scenes. The images are displayed 

in the following format: 

Date of SAR scene (M/D/Y) 

HH-polarized image HV-polarized image 

Image analysis chart  

color-coded in stage of 

development (SD) 

Labelled “glocal” IRGS 

classification using dual-pol 

images 
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