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Abstract

An increased demand for novel pharmaceuticals such as recombinant proteins with therapeutic po-

tential has lead to significant advances in the operation of biotechnological processes. In general,

biochemical processes are characterized by nonlinear behavior and a sensitivity to environmental

conditions. Furthermore, due to their complex operation, exposure to contamination and the low

volume of the obtained product, these processes are generally still frequently operated in batch

or fed-batch reactors. The repetitive nature of batch processes motivates the use of previous ex-

perimental effort to improve the performance of future batch operations. In this way, a so-called

run-to-run optimization can be performed where the measurements of the current batch-run are

utilized to determine the input for the next experiment. To conduct this step in a systematic and

reliable manner, fundamental process models can be used for prediction and optimization purposes.

This way, it is possible to determine the input for the next iteration from the predicted optimum

obtained by calibrating a model based on measurements from the current batch-run.

Fundamental models are typically derived from the underlying physical phenomena of the pro-

cess. However, to make these models useful and tractable, it is common to make assumptions

and simplifications during the model development. As a result, there often exists mismatch be-

tween the model and process under study. In the presence of model-plant mismatch, the set of

model parameter estimates, which satisfy an identification objective, may not result in an accurate

prediction of the gradients of the cost-function and constraints, which are essential for optimiza-

tion. To still ensure convergence to the optimum, the method of simultaneous identification and
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optimization aims at forcing the predicted gradients to match the measured gradients by adapting

the model parameters. At the same time, a correction factor is introduced into the model output

so that the previously achieved fitting accuracy can be maintained. This results in a set of model

parameters that reconcile the objectives of identification and optimization in presence of model-

plant mismatch. Although the method provides the potential for dealing with structural error in

iterative optimization schemes, there exist several challenges that have to be addressed before it is

applicable to more complex systems.

For example, when dealing with models containing a large number of parameters, it is unclear

which parameters should be selected for calibration and adaptation. Since updating all available

parameters is impractical due to estimability problems and over-fitting, there is a motivation for

adapting only a subset of parameters. Furthermore, for this method to be more efficient under

uncertainty, it is necessary to introduce additional robustness to uncertainty in initial conditions

and gradient measurements. Finally, it is essential to develop experimental design criteria that will

provide the user with more informative experiments to speed up convergence to the optimum and

to calibrate the model with better accuracy.

Following the above, this work presents the following new contributions:

(i) An algorithmic approach to select a subset of parameters based on the sensitivities of the

model outputs as well as of the cost function and constraint gradients.

(ii) A run-to-run optimization formulation that is robust to uncertainties in initial batch condi-

tions based on polynomial chaos expansions that are used to quantify the uncertainty and to

propagate it onto the optimization cost.

(iii) A modified parameter identification objective based on the minimization of the ratio of the

sum of squared prediction errors to a parametric sensitivity measure to speed up convergence

of the run-to-run procedure.

(iv) The use of uncertainty bounds on the predicted trajectories to ensure model accuracy while
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solving the parameter identification problem described in item (iii) and to determine whether

a model update is necessary at any given run.

(v) The use of a design of experiments approach within the run-to-run optimization procedure to

optimally complement the cost gradient information that is already available from previous

batch experiments.

The presented methods are shown to be efficient and facilitate the use of complex models for run-

to-run optimization of batch processes. Several case studies of cell culture processes are presented

to illustrate the improvements in robustness and performance. These case studies involve batch,

fed-batch and perfusion operations. A part of this work has been developed in collaboration with

an industrial partner whose main line of business is the development of perfusion growth media for

mammalian cell culture operations.
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1. Introduction

Biotechnological processes present a platform for the manufacturing of various products ranging

from vaccines to therapeutic proteins with medical applications. Due to the low volume of the

obtained products and characteristic behaviours such as the build up of toxic byproducts and the

occurrence of contamination, bio-processes are still frequently operated in batch or fed-batch op-

erations. The operation of batch processes presents a challenge compared to the largely continuous

process operations predominant in the chemical industry due to the following distinctive features.

Batch operations generally lack a steady-state as the desired product is obtained through various re-

actions starting from an initial starting material. As the quantities of interest undergo large changes

in concentration between the initial and final time, these processes are usually more difficult to

monitor and control and, mathematically, they exhibit a clear nonlinear behaviour. Furthermore,

due to the high cost of experiments and limited availability of measurements, experimental data

might only be scarcely available. Additional difficulties in the operation of batch process are pre-

sented by safety considerations and constraints on the manipulated variables.

Mathematical models consequently offer an opportunity to gain a better process understanding and

to increase product yields. In terms of their characteristics, one can generally distinguish between

black-box (data-driven) and first-principles (knowledge-driven) models. First-principle models re-

quire an intricate understanding of the process and therefore necessitate larger development time.

Nonetheless, when compared to black-box models, fundamental models offer a larger domain of

validity and are therefore particularly suited for optimization purposes. In addition, the repetitive
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nature of batch processes allows for using past experiments to update model predictions and con-

sequently enhance the operation of future batch-runs based on a progressively improved model. In

this way, a so-called run-to-run optimization can be performed where information from previous

batch-runs is utilized to update an existing model which determines the optimal input for the next

experiment.

Due to their complex nature, run-to-run optimization therefore presents an attractive method when

dealing with biotechnological processes. For cell culture processes, typical optimization goals may

involve the maximization of productivity, while maintaining desired rates of certain metabolic re-

actions. Since this task requires knowledge of the metabolic pathways of the respective organism,

it is advantageous to use this understanding to obtain a more accurate description of the process

and enable a prediction over a broad range of operating conditions. On the other hand, due to the

complexity of bio-organisms, it is common practice to describe biochemical systems with simpli-

fied models based on balances of intra and extra cellular components. Typical techniques involve

the reduction of a model, derived from a metabolic flux analysis, to its most significant metabolic

pathways (fluxes). The result of this reduction is a model which can only capture the significant in-

teractions of the process and therefore leads to a certain amount of discrepancy between the model

and process under study. This discrepancy, referred to as model-plant mismatch, presents a critical

challenge when using models to optimize the process operation. In this case, methods have to be

used which can deal with structural mismatch and drive the process reliably and effectively towards

its optimal operating point.

Following these considerations, for achieving a successful process optimization, it is of utmost

importance to employ a model capable of providing an accurate description of the given process

optimality conditions. To provide for such accuracy, the model has to be calibrated first by fitting

process output measurements. This task is often challenging due to uncertainty in initial parameter

values, measurement noise as well as unknown disturbances entering the process. Thus, in addition
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to a structural mismatch, stochastic sources of uncertainty reduce the accuracy of the model predic-

tions. This is especially important in the context of batch-to-batch optimization since model-plant

mismatch coupled with parametric uncertainty leads to conflicts between the objectives of model

identification and optimization. In other words, the parameters that are identified to generate a sat-

isfactory fitting between output measurements and model predictions may not lead to an accurate

prediction of the cost-function and constraint gradients. Consequently, a model-driven optimiza-

tion that is based on an imperfect model may result in a sub-optimal operating policy. To reach the

process optimum despite the presence of model-plant mismatch, it is therefore vital to consider not

just output measurements, but also available measurements of the gradients of the cost-function

and constraints with respect to the decision variables.

If only process optimization is deemed to be of importance, it would be possible to utilize methods

that maintain a model solely for an accurate prediction of the objective function. Such approaches

for instance include direct search methods or empirical techniques based on experimental design

methodologies. However, in the context of batch-to-batch optimization of bioprocesses, an accurate

model is not only essential for optimization purposes, but often crucial for the following reasons:

I - for predicting the outputs around the optimum in response to possible changes in operating

conditions or disturbances. II - for calculating reference trajectories along the batch to be tracked

under closed-loop control. III - to predict quantities of interest around the optimum that may not

be directly available as measurements in a reasonable time. IV - to enforce constraints on variables

of interest such as toxic species in bio-processes (e.g. ammonia and lactate).

Hence, the ultimate goal set for the current work is to drive the process to the optimum while

identifying a model that can be effectively used for several purposes. To this end, the method of si-

multaneous identification and optimization provides a framework where the model parameters are

first identified from available output measurements and subsequently adapted to match the mea-

sured cost-function and constraint gradients. At the same time, a correction term is introduced into
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the model output to maintain an accurate prediction of outputs. However, there exist several limita-

tions which prevents the method to be applied to models of larger biochemical systems with many

parameters. For instance, it is unclear whether all or only a subset of parameters should be updated

during each iteration of the algorithm. To reduce the effect of uncertainty on the performance, it

is furthermore necessary to develop a more robust parameter estimation technique tailored for run-

to-run optimization. This step also includes a model-update criterion to provide information about

when to update which specific model-outputs in order to achieve an adequate model-fitting. More-

over, to improve the overall cost and efficiency of new experiments, it is beneficial to incorporate a

design of experiments approach which takes the presence of structural mismatch into account.

To address these limitations, this work presents the following contributions:

1. Chapter 3 proposes a careful examination of parametric sensitivities. The analysis is per-

formed not only with respect to the output sensitivities, but also with respect to the sensitivi-

ties of the gradients of the cost and constraint functions. A subsequent ranking and selection

of suitable parameters is developed in order to improve the interplay between conflicting ob-

jectives of identification and optimization. This allows for the method to be applied to more

complex biochemical models involving larger number of parameters.

2. In addition to dealing with structural model error, robustness to stochastic uncertainty in

initial batch conditions is introduced in chapter 3 by an augmented optimization procedure

using polynomial chaos expansions. This approach allows for the propagation of input un-

certainties onto the objective, which ultimately enables the search for operating points that

are robust and thus less susceptible to unknown disturbances.

3. In chapter 4, an approach involving set-based constraints on the model outputs is proposed

to identify parameter values which are more valuable in terms of cost-function and con-

straint gradient sensitivities, allowing for an improved reconciliation of the objectives of

identification and optimization. At the same time, the bounds on the model outputs enable
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a model-update criterion, which avoids an unnecessary re-estimation of parameters for new

batch runs.

4. In chapter 5, a design of experiments approach is implemented to determine operating points

which increase parameter precision when correcting for errors in predicted gradients of cost-

function and constraints. Simultaneously, cost-function information from previous batch

runs is taken into account in a systematic way to reduce the effect of uncertainty in gradient

measurements.

5. Finally, chapter 6 presents a model development to describe the cultivation of mammalian

cells in perfusion systems. The model is subsequently utilized in a run-to-run optimization

case study by applying the methods outlined above.

Overall, the developed methodologies greatly improve the performance of the simultaneous iden-

tification and optimization framework, not only in terms of speed of convergence to the process

optimum, but also in the prediction capabilities around the optimum. The improvements are illus-

trated using several case studies of cell culture processes.
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2. Background and Literature Review

For process optimization, both model-based and model-free methods have been proposed in the

past. In the model-free or direct search method (Garcia & Morari, 1981), the path to the optimum

is based on the measured gradients of the plant cost-function or it can be also sought by performing

carefully planned experiments to improve the process performance (Box & Draper, 1969). On the

other hand, in a model-based optimization the goal is to find the optimum of the process based on

optimizing the objective function of a mathematical model. This task requires that a suitable model

of the process under study is available.

2.1. Model Categories

In general, the types of models that can be utilized to seek for the process optimum can be classified

as follows: i- data-driven models where a representation of the processes is solely derived from

plant measurements but physical principles are not explicitly used, ii- fundamental models that

explicitly consider the physical phenomena by using first principles to describe the underlying

system and iii- hybrid models which consist of a combination of these two approaches.
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2.1.1. Empirical Models

Empirical or black-box models are based on measurements obtained from experiments combined

with a generic pre-determined model structure. As a result, the input-output relationship of the

system under study can be determined by means of a mathematical representation (Box & Draper,

1987; Ljung, 1999). As no further knowledge about the plant is assumed, this approach generally

requires an adequate number of experiments to be performed to achieve a satisfactory mapping.

Model that are linear with respect to the process variables are unsuitable for approximating highly

nonlinear process behavior and thus nonlinear empirical models may be needed. Nonetheless,

empirical models present a cost-effective and reliable method to obtain a representation of the pro-

cess. Data-driven modeling approaches for batch processes include design of experiments (DoE)

approaches (Montgomery, 2012; Georgakis, 2013) as well as multivariate statistical techniques

such as partial least squares (PLS) (Nomikos & MacGregor, 1995; Chen & Liu, 2002). However,

the fact that empirical models are obtained through interpolation of experimental data implies that

they are not necessarily well suited for extrapolation purposes (Bonvin et al., 2016). This is a major

drawback if it is desired to optimize a plant for inputs outside the region of where experiments have

been performed as it is often the case in run-to-run optimization procedures.

2.1.2. First-Principles Models

The primary goal of first-principles models is to utilize available knowledge about the fundamental

physical phenomena that govern a given process to obtain an accurate mathematical description

(Verma, 2014). In chemical engineering for example, it is common to use material and energy

balances to derive relationships between input and output variables (Rodrigues & Minceva, 2005).

Although the model parameters often have a physical meaning, it is common to make assumptions

and simplifications such as lumping certain model parameters to reduce the model’s complexity.

As a result of these simplifications, it is still typically required to estimate the model parameters
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from available experimental data (Bard, 1974). Although their development is substantially more

extensive and costly when compared to black-box models, first-principle models offer the advan-

tage of a broader range of validity (Walter & Kieffer, 2007) and are thus suitable for optimization

purposes that often require extrapolation beyond the range of the available data used for model

calibration (Yip & Marlin, 2004).

With respect to biochemical processes, fundamental models have also become more popular in

the recent years. For example, several models of cell cultivation processes for the production of

therapeutic proteins have been reported (Yahia et al., 2015). In many of these studies, fundamental

dynamic metabolic models have been developed using the metabolic flux analysis (MFA) method-

ology (Naderi et al., 2011). To reduce the complexity of the entire reaction network, MFA has been

utilized to determine metabolites and fluxes which are important for explaining the observed phe-

nomena. This has led to metabolic models which incorporate understandings of the inner workings

of the cells to provide a dynamic description of the process (Provost et al., 2006; Zamorano et al.,

2013; Aghamohseni et al., 2014).

2.1.3. Hybrid Models

Hybrid models are based on the combination of first-principles models with data-driven approaches

(Duarte & Saraiva, 2003; von Stosch et al., 2014). This approach deals with the fact that, typically,

not all underlying phenomena of the process are known. In this case, a model can be augmented

with data-driven elements such as neural networks (Oliveira, 2004) that are capable of representing

the unknown parts of the model, e.g. reaction kinetics, by nonlinear relationships. However, unless

these models are trained from sufficient data, they may also suffer from poor extrapolation abilities.
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2.2. Parameter Estimation

Regardless of the type of models described in section 2.1, it is usually necessary to estimate un-

known model parameters from experimental data. Following first principles, i.e. the mathematical

description of processes based on conservation laws such as mass and energy balances, a process

model can be generally expressed in terms of a system of ordinary differential equations (ODEs)

as follows:

.
x = f(x,u,θ, t) + ν (2.1)

y = h(x) + η (2.2)

where x ∈ Rnx are the state variables evaluated at sampling times ti with i ∈ {1, . . . , nt}, θ ∈

Rnθ the vector of unknown model parameters and u ∈ Rnu the constant vector of model inputs.

y ∈ Rny present the model outputs, ν ∈ Rnx are uncertainties such as model-plant mismatch and

process noise while η ∈ Rny presents the measurement noise. The goal of a parameter estimation

procedure is to find the parameter values which result in the best fit of model predictions to the

experimental data. This task is typically accomplished by a minimization of the sum of squared

errors (SSE) between the model prediction and process measurements as follows (Bard, 1974):

θ̂ = arg min
θ

nt∑
i=1

∥∥yp(ti)− y(θ, ti)
∥∥2

s.t. (2.1) and (2.2) (2.3)

where θ̂ presents a particular set of parameter values that satisfies the parameter estimation objec-

tive. When dealing with nonlinear parameter estimation, it is often the case that only a subset of

parameters can be identified from the given measurements. This lack of parameter observability is

due to the fact that, typically, not all the states can be measured and the ones that can be measured

9



are generally corrupted by noise. Additionally, the parameter’s effect on the model output can be

highly correlated thus complicating their identification (McLean & McAuley, 2012). Also, the cal-

ibration of too many parameters to fit the available data may often lead to overfitting of noise thus

resulting in poor prediction ability. For that reason it is often preferable to select an appropriate

subset of parameters before performing a parameter estimation. To this end, it is first necessary to

perform a sensitivity analysis as described below.

2.2.1. Sensitivity Analysis

A local sensitivity analysis considers sensitivities based on single parameter perturbations. The

effect of an individual parameter perturbation on the model output is given as:

S
yj
θi

(tk) =
∂yj
∂θi

(θ, tk)
θi

yj(tk)
(2.4)

which is the derivative of the model output yj with respect to the parameter θi scaled by the magni-

tude in the nominal parameter value and model output. To obtain an overall sensitivity of an output

for different sampling times, the coefficients can be averaged up over all time points as follows:

S
yj
θi

=
1

nt

nt∑
k=1

∣∣∣Syjθi (tk)
∣∣∣ (2.5)

When it is desired to compare the effect of different parameters on all outputs, the quantities in

(2.5) can be further averaged over all the outputs to obtain the following local sensitivity measure:

Syθi =
1

ny

ny∑
j=1

S
yj
θi

(2.6)

There are several techniques for computing the derivatives needed for the analysis. One method is
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to approximate the derivative by means of a forward finite difference as follows:

f
′
(x) ≈ f(x+ h)− f(x)

h
(2.7)

or alternatively by a central difference approximation:

f
′
(x) ≈ f(x+ h)− f(x− h)

2h
(2.8)

2.2.2. Parameter Selection

For parameter selection within the context of a nonlinear regression problem, it is essential to

determine the effect of each parameter on the model outputs as well as the correlations between

the effects of different parameters. Ideally, one is interested in a set of parameters with very little

correlation between the parameter’s effect on the model output, as this would allow for a precise

estimation. This information can be attained from the parameter covariance matrix V θ, which

generally has to be approximated by linearization. For nonlinear systems, it has been shown that

the inverse of Fisher Information Matrix (FIM) provides a lower bound (Walter & Pronzato, 1990)

for the covariance matrix. The FIM is defined as:

F = STΣ−1S (2.9)

where S is the sensitivity matrix and Σ the measurement covariance matrix. Using the scaled

sensitivities from (2.4), the matrix of output sensitivity functions S at sampling time tk can be
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defined as:

S(tk) =



Sy1θ1 (tk) Sy1θi (tk) · · · Sy1θnθ
(tk)

S
yj
θ1

(tk)
. . .

...
...

. . .
...

S
yny
θ1

(tk) · · · · · · S
yny
θnθ

(tk)


(2.10)

which can be summed up over all time points to yield:

S =

nt∑
i=k

S(tk) (2.11)

As the measurement noise is commonly assumed to be uncorrelated (white), the covariance matrix

of the measurement noise Σ is typically given as:

Σ =



σ2
1

σ2
2

. . .

σ2
ny


(2.12)

Several criteria have been proposed to determine a subset of parameters for a subsequent estimation

(Walter & Pronzato, 1990). In Weijers & Vanrolleghem (1997), the modified E-criterion and the

D-criterion have been applied to select the parameter subsets which yield the highest identifiability.

In that regard, the E-criterion corresponds to the condition number of F , whereas the D-criterion

is based on the determinant of F (Atkinson & Donev, 1992). This is similar to the determinant

measure applied to parameter subsets in Brun et al. (2002). Another approach to determine a

group of identifiable parameters is by successively eliminating parameters which correspond to

small eigenvalues of the F (Schittkowski, 2008). Many of these criteria correspond to geometric

interpretations of the joint confidence region (Franceschini & Macchietto, 2008). For example,

while the D-criterion describes the volume of the joint confidence region, the E-criterion relates to
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the size of its major axis.

A method to address parameter correlations by ranking parameters according to their effect on the

model output is the orthogonalization method proposed by Yao et al. (2003). In this method, the

most influential parameter is determined by comparing the magnitude of the respective columns

of the sensitivity matrix, given in (2.10). The parameter corresponding to the largest magnitude is

deemed to be the most important. To address the correlation between parameters, the sensitivity

matrix is successively adjusted to account for the effect of each parameter. For example, after

computing the first significant parameter, the sensitivity vectors related to the remaining parameters

are projected onto the space normal to the first sensitivity vector. This way, the “net influence”

of the remaining parameters can be assessed. After the adjustment, the second most influential

parameter can be determined by comparing again the magnitude of the remaining columns. This

procedure can be continued until the column with the largest magnitude of the residual matrix,

obtained after successive projections, is lower than a prescribed cut-off value. Using this approach

it is possible to rank the model parameters based on their respective “net influence” on the model

output. The orthogonalization method is a sequential method which optimizes the D-criterion at

each step. However, due to its sequential nature, it is possible that the resulting parameter set might

not be the most significant (Chu & Hahn, 2007).

Another important issue regarding parameter estimation for nonlinear models is the uncertainty in

nominal parameter values. The particular choice of the nominal values can have a significant impact

on the respective sensitivities and therefore may lead to different results. In order to account for

the uncertainty present in the nominal parameter values and as well as in the model input, a global

sensitivity analysis (Saltelli et al., 2008) can be performed over a range of operating conditions to

assess the overall effect of parametric sensitivities .
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2.2.3. Design of Experiments

Design of experiments (DoE) is an important aspect in improving parameter precision and model

prediction (Atkinson & Donev, 1992; Franceschini & Macchietto, 2008). The goal of model-

based experimental design is to obtain the next experimental conditions that minimize a measure

of the parameter covariance matrix thus reducing the corresponding uncertainty in the estimated

parameters. For example, the D-criterion, which minimizes the volume of the joint confidence

region, corresponds to the maximization of the determinant of V −1
θ (Franceschini & Macchietto,

2008), which, from (2.9), is given by:

V −1
θ = F (2.13)

This leads to the following objective function:

ψ(θ̂,u) = det
∣∣V −1

θ

∣∣ = det

∣∣∣∣∣
nt∑
i=1

STi Σ−1Si

∣∣∣∣∣ (2.14)

where u describes the input vector which is generally constrained by the design space. Using the

objective in (2.14), it is possible to determine the input for the next batch run that is especially

informative and would result in and increase in parameter precision:

uDoE = arg min
u
−ψ(θ̂,u)

s.t. (2.1) and (2.2)

uL ≤ u ≤ uU (2.15)

where uDoE describes the input for the input for the next experiment to reduce the parametric

uncertainty. Using this approach, it is also possible to maximize the information content when

multiple experiments are performed at the same time (Galvanin et al., 2007).
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2.3. Run-to-Run Optimization

The repetitive nature of batch processes offers the advantage of making use of previous batch runs

to improve the performance of future runs (Bonvin, 1998). In this fashion, a run-to-run optimization

can be performed, where a model is updated after each batch-run to determine an optimal input for

the next run. In the past, batch-to-batch optimization approaches have been mainly based on data-

driven models such as neural networks (Dong et al., 1996), partial least squares (Camacho et al.,

2007; Duran-Villalobos & Lennox, 2013) or hybrid modelling approaches (Doyle et al., 2003;

Teixeira et al., 2006). In contrast to these data-driven modelling approaches and for the remainder

of the work, we focus on the use of first-principles models that are updated and optimized in a

run-to-run framework to ultimately reach an optimal set of operating conditions.

In general, a batch process can be seen as a static map between a vector of inputs u and outputs

y, i.e. y = M(u) (Bonvin & Francois, 2017). It is also common for a run-end output (at the

final time tf of the batch) to be the quantity of interest to be optimized (maximized or minimized),

such that z = y(tf ). The primary goal of a run-to-run optimization is to progressively minimize a

cost-function φ through the course of numerous repetitive batch-runs to achieve a desired process

improvement. A simple method that performs an iterative model update followed by an optimiza-

tion step, referred to as the two-step approach, is described below.

2.3.1. Two-Step Method

In the two-step approach, reported in previous studies (Chen & Joseph, 1987; Ruppen et al., 1995;

Marlin & Hrymak, 1997), an identification step, in which unknown parameters are identified, is

followed by an optimization step, where the optimal operating point is determined. An illustration

of the approach is given in figure 2.1.

In general, the first step is an identification step that involves the minimization of the difference
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between the predicted and measured outputs, which can be expressed for batch run k as follows:

θk = arg min
θ

nt∑
i=1

∥∥yp,k(ti)− yk(θ, ti)∥∥2

s.t.
.
xk = f(xk,uk,θ)

yk = h(xk)

θ ∈ [θlb,θub] (2.16)

where yp,k ∈ Rnt×ny are the plant measurements and yk ∈ Rnt×ny the model outputs. uk ∈ Rnu

are the decision variables defining the current operating point. θk ∈ Rnθ describes the particular

set of parameter estimates which minimizes the identification objective. The bounds θlb ∈ Rnθ

and θub ∈ Rnθprovide a permissible range of parameter values.

Once the model has been updated using the most recent output measurements, the second step

involves finding the input for which the model predicts a minimum for the given cost-function.

This optimization step is given by:

uk+1 = arg min
u
φ(y(θk),u)

s.t.
.
x = f(x,u,θk)

y = h(x)

g(y(θk),u) ≤ 0

uL ≤ u ≤ uU (2.17)

The optimization is subject to constraints g ∈ Rng and lower and upper bounds on the decision

variablesuL anduU , both∈ Rnu . According to the method, the two steps are successively repeated

to account for changing process conditions and disturbances until convergence to the optimum is

achieved. However, this two-step approach is only successful in determining the plant optimum
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if there is no major discrepancy between the model and the plant. When such mismatch occurs,

the two step approach outlined above must be modified to reach the actual optimum as explained

below.

Start

Batch Run k

Identification
(2.16)

Optimization
(2.17)

Convergence?

Stop

uk

yp,k(t)

θk

uk+1

No

k+ = 1

Yes

Figure 2.1.: Outline of the two-step procedure.
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2.3.2. Model-Plant Mismatch

Structural mismatch between a fundamental model and process under study may arise due to sim-

plifications and assumptions during the model development. Such assumptions generally arise due

to lack of a priori knowledge about some phenomena occurring in the process, e.g. ignoring a par-

ticular metabolic reaction occurring in a biochemical system. Or it is intentionally introduced by

the designer due to the need to reduce the complexity and to obtain a manageable model. Contrary

to statistical uncertainty such as measurement noise, model-plant mismatch presents a systematic

uncertainty and cannot be reduced by performing additional experiments. If such discrepancies

exist, the model might converge to an optimum which does not coincide with that of the plant

(Biegler et al., 1985; Agarwal, 1997). In addition, even for the parameters that are included in

the model, it is necessary that sufficient excitation exists for estimating suitable parameter values.

This leads to further problems in convergence due to a lack of synergy between the identification

and optimization objective (Srinivasan & Bonvin, 2002). Specifically, the predicted gradients of

the cost-function do not match those of the process so that it is impossible to satisfy the necessary

conditions of optimality (NCO) of the process. Hence, the standard two step approach, described

in the previous section, is therefore not practical in the presence of structural model-plant mis-

match in combination with parametric uncertainty. Rather, it is necessary to either employ a model

that is already shown to be adequate for optimization or to perform certain model corrections to

specifically enforce model adequacy.

2.3.3. Model Adequacy

The first-order necessary conditions of optimality (NCOs) of the process are also known as the

Karush-Kuhn-Tucker (KKT) conditions. Assuming that the objective and constraint functions in

(2.17) and the real process are continuously differentiable at a set of optimal input conditions u∗,

18



the KKT conditions of the process are given as:

∂φ

∂u
(u∗) + µT

∂g

∂u
(u∗) = 0 (2.18)

µTg(u∗) = 0 (2.19)

µ ≥ 0 (2.20)

g(u∗) ≤ 0 (2.21)

where µ is the vector of KKT multipliers. The KKT conditions present a generalization of the

method of Lagrange multipliers which presents a strategy of finding an optimum in the presence

of equality constraints. (2.18) represents the stationary condition, i.e. the gradient of the objective

function is canceled out by the gradients of the active constraints. This firstly requires that the

feasibility of the primal problem (2.21) is satisfied. Furthermore, due to the addition of inequal-

ity constraints, which are not necessarily active at the optimum, the KKT conditions include the

complementary slackness (2.19) and the dual feasibility (2.20).

In order to reach the actual process optimum by means of a model-based optimization it is necessary

to determine if the model is suitable for the purpose of optimization. With the so called model

adequacy requirements, Forbes et al. (1994) and Forbes & Marlin (1996) determined the ability of

a model to accurately predict the process optimum. That is, given the optimal manipulated variable,

the model should satisfy the KKT conditions at the plant optimum. For a combined identification

and optimization problem, given the process optimumu∗ and a set of parameters θ∗, the augmented
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model adequacy criteria are given as follows:

∂Jident
∂θ

(y(θ∗),u∗) = 0 (2.22)

∇rφ(y(θ∗),u∗) = 0 (2.23)

∂2Jident

∂θ2 (y(θ∗),u∗) � 0 (positive definite) (2.24)

∇2
rφ(y(θ∗),u∗) � 0 (positive definite) (2.25)

where the identification and optimization objective are given by Jident and φ respectively. The

subscript r denotes the reduced gradient, i.e. the gradient in the direction where the active con-

straints are not affected. Point-wise adequacy is a necessary requirement for determining the true

optimum in a model-based optimization framework. However, if model-plant mismatch is present

and the optimum of the plant is unknown - which is generally the case - it is not possible to ver-

ify the adequacy of a model beforehand. Moreover, due to structural model-plant mismatch, a

set of parameters satisfying the KKT conditions at the plant optimum might not exist. Therefore,

for model-based optimization in the presence of model-plant mismatch, it is necessary to utilize a

model which, following a suitable adaptation mechanism, will properly describe the process in the

proximity of the optimum. To that purpose, the standard two-step approach outlined in the previous

section must be modified to account for the differences between the model and process gradients

of the constraints and the objective function as shown in the following section.

2.4. Optimization Under Model-Plant Mismatch

In the following, several approaches are presented that aim at enforcing model-adequacy by cor-

recting for errors between predicted and measured cost-function and constraint gradients.
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2.4.1. Modifier Adaptation

In the modified two-step algorithm of Roberts (1979) and Roberts & Williams (1981), a term is

added to the objective function to account for the differences between the model and process ob-

jective function thus achieving the correct optimal process condition despite structural uncertain-

ties. The method was subsequently extended in Brdys et al. (1986) to also account for differences

in constraints. Additional correction terms have been proposed (Gao & Engell, 2005), so that the

gradients of the cost function and constraints of the model are equal to those of the process. A sim-

ilar approach referred to as the integrated system optimization and parameter estimation (ISOPE)

method has been proposed in Brdys & Tatjewski (2005). In the works of Tatjewski (2002), the esti-

mation step was replaced by introducing a linear term in the output which corrects for the difference

between model prediction and measurements. In the subsequently developed Modifier Adaptation

(MA) framework (Marchetti et al., 2009; Chachuat et al., 2009; Costello et al., 2016; Gao et al.,

2016), the identification step is completely eliminated since for the purpose of converging to the

optimum, it was only considered of importance to match the objective and the constraints as well

as their respective gradients accurately. Accordingly, this fixed-model based method uses measure-

ments and a mostly inaccurate process model to guide the process to an optimal operating point.

The modified optimization problem can be stated as follows:

uk+1 = arg min
u
φ(y(u,θ),u) + λTφku

s.t.
.
x = f(x, θ, u)

y = h(x)

g(y(u,θ),u) + εgk + λTgk(u− uk) ≤ 0 (2.26)

where the modifiers λφ and λg are used to correct for the gradients of the objective and constraints.

The modifier εg corrects for the mismatch between the predicted and measured constraint values.
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At the k-th iteration the modifiers are calculated as follows:

λφki =
∂φp
∂ui

(yp(u),u)− ∂φ

∂ui
(y(u,θ),u) (2.27)

λφkij =
∂gj,p
∂ui

(yp(u),u)− ∂gj
∂ui

(y(u,θ),u) (2.28)

εgkj = gj,p(yp(u),u)− gj(y(u,θ),u) (2.29)

It is important to notice that by disregarding the identification step, the model can no longer be

reliably used for prediction purposes. However, as stated in chapter 1, the ability to do predictions

is often very important for predicting the outputs around the optimum, reference trajectories for

closed-loop control and to enforce constraints on variables of interest. Moreover, the MA method

has been shown to be more susceptible to uncertainty in measurements of gradients thus requiring

the use of an ad-hoc filter. If filtering is not applied the method results in excessive over corrections

that may lead to oscillations converging towards the optimum. This may be especially problematic

at the beginning of a batch-to-batch optimization procedure where enough data is not a priori

available.

2.4.2. Direct Input Adaptation

Another class of methods involves transforming the iterative optimization problem into a feedback

control problem to implicitly optimize the process. In this case, functions of the measured variables

are to be controlled at pre-specified constant values in order to enforce optimal operation of the

process (Morari et al., 1980). Skogestad (2000) proposed a method referred to as self-optimizing

control where a linear combination of output variables is tracked in order to maintain close to

optimal performance. However, since this tracking does not automatically result in an optimal

operation, it was proposed (Francois et al., 2005) to select the NCO components as the controlled

variables and thus enforcing optimality of the process. A similar approach is extremum-seeking
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control (Ariyur & Krstic, 2003; Cougnon et al., 2011; Zhang et al., 2003), where the system states

are driven towards desired set-points to maximize the process performance. However, in this class

of methods, the model is no longer of importance and consequently it is not continuously updated.

Moreover, these methods are particularly tailored for online or real-time optimization and are not

suitable for optimizing batch processes (Bonvin & Francois, 2017).

2.4.3. Simultaneous Identification and Optimization

To address the problem of a combined identification and optimization under model-plant mismatch,

Mandur & Budman (2015b) developed a framework where both objectives are satisfied simulta-

neously. In the work of Srinivasan & Bonvin (2002), the identification objective is modified by

including a weighted optimization objective. This “modeling for optimization” paradigm results in

a trade-off between identification and optimization. In contrast, Mandur & Budman (2015b) pro-

posed to satisfy the identification objective first. The gradients of the objective are then matched

to the plant gradients in order to satisfy the optimization objective to a specified extent. The accu-

racy of the identification step is maintained after adjusting the parameters to match the gradients

by incorporating a linear correction term into the model output. The method was shown to pro-

vide a model which is accurate in each iteration up to a certain pre-specified error as well as good

model-based filtering capabilities with respect to gradient uncertainty.

In the simultaneous identification and optimization framework proposed by Mandur & Budman

(2015b), the identification step is performed in similar way as described in (2.16), where the dif-
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ference between the prediction and measurements is minimized:

θk = arg min
θ

nt∑
i=1

∥∥yp,k(ti)− yk(θ, ti)∥∥2

s.t.
.
xk = f(xk,uk,θ)

yk = h(xk)− ck−1

θ ∈ [θlb,θub] (2.30)

where the main difference to (2.16) is the correction term ck−1 ∈ Rnt×ny , explained further below,

which is subtracted from the model output to maintain the fitting accuracy when correcting for

errors in the gradients.

Before a gradient correction can be performed, it is first of all necessary to obtain an estimate

of the plant gradients. Here, we assume that measurements of the cost-function and constraints

are available. One possibility to obtain a gradient estimate at input uk is to run additional batch

experiments with the perturbed inputs uk + δkj . Then, using a finite difference approach, the

gradient estimates of the cost can be obtained as follows:

∇φp,j =
φ(uk + δkj)− φ(uk)

‖δkj‖
(2.31)

where, with j ∈ {1, . . . , nu}, the perturbations δkj are implemented in each direction of the deci-

sion variables, i.e.:

δkj = ∆ujej (2.32)

where ej presents the identity vector in the direction of variable j and ∆uj the corresponding

perturbation step size. The constraint gradients can be obtained in the same way as shown in

(2.31).

Following the gradient estimation, model adequacy is enforced by changing the previously obtained

24



parameter estimates by an amount ∆θ in the following way:

∆θk = arg min
∆θ

(
wT
φ

∣∣∇φp(uk)−∇φ(yk(θk + ∆θ),uk)
∣∣

+

ng∑
i=1

wT
g,i

∣∣∇gp,i(uk)−∇gi(yk(θk + ∆θ),uk)
∣∣)

s.t.
.
xk = f(xk,uk,θk + ∆θ)

yk = h(xk)− ck

θk + ∆θ ∈ [θlb,θub]∥∥εTk ∥∥∞ ≤ εmax (2.33)

With the gradient vectors of the cost-function and constraints given by∇φ ∈ Rnu and∇gi ∈ Rnu

with i ∈ {1, . . . , ng} respectively. The weightswφ ∈ Rnu andwg ∈ Rnu are used to normalize the

two gradient matching objectives. Furthermore, to maintain the same fitting accuracy as obtained

in (2.30), a correction term ck is introduced into the model output. This correction term is defined

by a first-order Taylor series expansion and is updated in each iteration:

ck(ti) = ck−1(ti) +Dyk(θk, ti)∆θk (2.34)

where the Jacobian of the model at sampling time ti is given by Dyk(θk, ti) ∈ Rny×nθ . To avoid

overfitting and reduce the effect of gradient uncertainty, the gradient correction step is constrained

by an upper bound εmax on the relative truncation error εk. The relative truncation error due to the

linear correction is defined:

εk(ti) = [yk(θk + ∆θk, ti)−Dyk(θk, ti)− yk(θk, ti)] · [diag (yk(θk, ti))]
−1 (2.35)
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The gradient correction step results in a set of updated parameter values:

θ′k = θk + ∆θk (2.36)

Due to the correction term ck, the parameter values θ′k provide a simultaneous fitting of both model

outputs and gradients of the cost-function and constraints. In this way, it is possible to reconcile

the two objectives of identification and optimization despite the presence of model-plant mismatch.

Finally, to determine the input for the next batch-run, a model-based optimization can be performed

as follows:

uk+1 = arg min
u
φ(y(u,θ′k),u)

s.t. ẋ = f(x,u,θ′k)

y = h(x)− ck

g(y(u,θ′k),u) ≤ 0

uL ≤ u ≤ uU (2.37)

For clarification, the main steps of the algorithm are illustrated in figure 2.2.
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Figure 2.2.: Block diagram of the simultaneous identification and optimization methodology.
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2.5. Robust Optimization

As explained in section 2.4, when performing optimization in the presence of model-plant mis-

match it is essential to satisfy model adequacy conditions. In contrast, the primary goal of a robust

optimization procedure is typically to optimize a worst case cost with respect to uncertainties in

the model input - usually of stochastic nature - that affect the predicted optimum. Robustness is

introduced by optimizing the nominal value or the mean, while minimizing the variation in the

performance caused by various input uncertainties such as parametric uncertainty or uncertainty in

initial batch conditions. To accomplish this, it is first of all necessary to propagate the effect of the

input uncertainties onto the model output as described below.

2.5.1. Uncertainty Propagation

One of the main aspects of robust optimization is quantifying the effect of uncertainty on the

objective function (cost) to be optimized. Common approaches approximate the objective function

by a Taylor Series Expansion around the nominal parameter values (Ma et al., 1999). This method

works well, if the objective function is linear or quadratic and the uncertainty in the parameters is

reasonably small. However, this assumption are generally not met for most systems especially for

those exhibiting highly nonlinear behavior. Moreover, the result is usually a worst-case solution,

which may result in a very conservative or even infeasible solution.

Another approach for propagating uncertainty onto the cost utilizes Monte Carlo (MC) Sampling.

While this method works well for nonlinear systems and a wide range of uncertainty descriptions,

it is also computationally expensive, as it requires a large amount of simulated samples to correctly

describe the stochastic effect of the inputs. This limits the usefulness of the Monte Carlo approach,

especially if the analysis has to be performed in real time. Another disadvantage of the Monte

Carlo method is that it does not provide a manageable representation of the process (Nagy &
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Braatz, 2007). A more suitable method, which recently has received increasing attention, is based

on Polynomial Chaos Expansions (PCEs).

2.5.2. Polynomial Chaos Expansions

The main advantage of PCEs is that any complex probability distribution can be described by the

expansions and that the mean and variance of the resulting statistical distribution of the outputs or

cost can be calculated analytically. Another benefit is that it requires less model simulations for

the same accuracy as compared to conventional methods and thus it is computationally attractive.

Recently, PCEs have been used for fault detection (Du et al., 2017), robustness analysis (Streif

et al., 2016) and control (Paulson & Mesbah, 2017). This section provides an introduction to the

theory of PCEs and the numerical methods which are necessary to compute the coefficients of

the expansion. More information about the spectral approach of uncertainty quantification can be

found in (Spanos & Ghanem, 1991; Xiu, 2010).

Given a probability space (Ω,F , P ), where Ω is a sample space, F a σ-algebra on Ω and P is

a probability measure. With {ξi(ω)}∞i=1 we have a set of independent standard Gaussian random

variables on Ω. Then we can represent any random variable X : Ω → R, with finite variance, by

a polynomial chaos expansion:

X(ω) = a0Γ0 +

∞∑
i1=1

ai1Γ1(ξi1) +

∞∑
i1=1

i1∑
i2=1

ai1i2Γ2(ξi1 , ξi2)

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Γ3(ξi1 , ξi2 , ξi3) + · · · (2.38)

where Γp is the Wiener Chaos (Wiener, 1938) of order p, ω is the random event and a(.) is the de-

terministic coefficient. With a one-to-one correspondence between the coefficients and functionals,
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we can also rewrite the PCE in a more compact form (Spanos & Ghanem, 1991):

X(ω) =
∞∑
k=1

x̂kΨk(ξ1, ξ2, . . .) (2.39)

For computational feasibility, one generally truncates the PCE in both order p and dimension n as

follows:

X(ω) =
P∑
k=1

x̂kΨk(ξ1, ξ2, . . . , ξn) (2.40)

Thus, the number of terms in the PCE is given by:

P + 1 =
(n+ p)!

n!p!
(2.41)

Exponential convergence of this representation can be observed for random variables with the same

density as that of ξ. In the generalized polynomial chaos (gPC), developed by Xiu & Karniadakis

(2002b), a class of orthogonal polynomials corresponds to the choice of distribution for the ξi

(Najm, 2009). For the continuous case, Hermite polynomials correspond to a Gaussian distribution,

Laguerre polynomial to a Laguerre distribution, Jacobi polynomials to a Beta distribution and

Legendre polynomials to a Uniform distribution.

One important property of the PCE is that all basis functions are orthogonal to each other with

respect to the probability distribution of ξ. This orthogonality property leads to the following

definition of the inner product:

〈Ψi,Ψj〉 =

∫
Ψi(ξ)Ψj(ξ)p(ξ)dξ = δij

〈
Ψ2
i

〉
(2.42)

where p(.) is the probability density of ξ and δij the Kronecker delta. The orthogonality enables
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us to evaluate the truncated PC representation by projecting it onto the corresponding PC basis:

x̂k =
〈X,Ψk〉〈

Ψ2
k

〉 =
1〈

Ψ2
k

〉 ∫ X(ξ)Ψk(ξ)p(ξ)dξ (2.43)

The evaluation of the PCE coefficients can be either performed in an intrusive or non-intrusive way.

In the intrusive approach, one can propagate the uncertainty through a model by using Galerkin

projection to reformulate the governing equations into equations of the mode strength. The non-

intrusive approach treats the original model as a black box and uses numerical evaluation of the PC

modes of the model output. The resulting model for the non-intrusive approach is often referred to

as a surrogate model since it is used to replace the original mathematical model.

Before these approaches will be explained in more detail, we first make the assumption that we

have a model which produces the output y = f(x), with the given input x (O’Hagan, 2013). If the

input is a random variable then so is the output, thus we get Y = f(X). Similar to (2.39), we can

represent the output by a truncated PCE:

Y (ω) =
P∑
j=1

ŷjΨj(ξ) (2.44)

By using the model and PCE we can represent the uncertainty propagation in the following form:

P∑
j=1

ŷjΨj(ξ) = f(

P∑
i=1

x̂iΨi(ξ)) (2.45)

2.5.2.1. Intrusive Approach

In the intrusive approach, we make use of the Galerkin projection for a reformulation of the gov-

erning equation. Applied to y = f(x), we get:

〈y,Ψk〉 = 〈f(x),Ψk〉 (2.46)
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for k = 0, . . . , p. Similarly, for (2.45) we obtain the following:

〈
P∑
j=1

ŷjΨj ,Ψk

〉
=

〈
f(

P∑
i=1

x̂iΨi),Ψk

〉
(2.47)

For the simple case of f(x) = λx (Najm, 2009), with λ =
∑P

i=1 λiΨi (λ is also a random variable)

and by employing orthogonality, we can rewrite (2.47) into:

ŷk =

P∑
i=1

P∑
j=1

λix̂j
〈ΨiΨjΨk〉〈

Ψ2
k

〉 , k = 0, 1, . . . , P (2.48)

The Galerkin method can be difficult to implement, as the reformulation has to be carried out each

time a new model is used.

2.5.2.2. Non-Intrusive Approach

The non-intrusive approach has received much more attention in the literature than the intrusive

approach. The main reason is that it is easier to implement as it does not afford a reformulation

of the governing equations. In contrast to the intrusive method, the non-intrusive approach treats

the model as a black-box. Here, one tries to solve the following version of the problem (O’Hagan,

2013):
P∑
j=1

ŷjΨj(ξ) = f(ηp(ξ)) (2.49)

where ηp(ξ) =
∑P

j=1 x̂jΨj(ξ), using runs of the model for various samples of ξ. With a n-

dimensional basis ξ = (ξ1, ξ2, . . . , ξn) and the known PCEs, we follow the subsequent steps (Najm,

2009):

1. Based on the sampling strategy of interest, generate samples of ξ,

2. From each sample ξi, one can obtain xi =
∑P

j=1 x̂jΨj(ξ
i) and yi = f(xi).
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3. Then, from all the N samples, it is possible to compute the expectation of the Galerkin

projection ŷk = 〈Y,Ψk〉
〈Ψ2

k〉
, ∀ k ∈ {0, 1, . . . P}.

4. Finally, using the obtained ŷk values, one computes Y =
∑P

k=0 ŷkΨ(ξ).

The computational burden in this approach originates from the computation of yi = f(xi) for

every xi. For that reason, it is desired to achieve a given degree of accuracy by employing the least

amount of samples. In this regard, random as well as deterministic sampling approaches can be

used. Random sampling uses Monte Carlo evaluations and can make use of the structure of the

integrand for more efficiency.

Deterministic sampling methods on the other hand present a reasonable alternative (Najm, 2009).

They use numerical methods such as quadrature for the evaluation of projection integrals. These

methods provide significant gains in efficiency over the random sampling methods, but only for

low-dimensional systems where the dimensionality is related to the number of uncertain model

parameters. If the systems are of higher dimensions, the number of quadrature points will rise ex-

ponentially ((p + 1)n), which renders these methods inefficient. In this regard, sparse-quadrature,

Smolyak (Smoljak, 1963) or cubature methods can be implemented to tackle “the curse of di-

mensionality”. In general, for problems with greater than two dimensions, Smolyak sparse grid

approaches outperform tensor-product quadrature approaches (Eldred, 2009).

Another way to evaluate the projection integrals by means of a non-intrusive collocation approach

is to evaluate the PCEs using a regression based on a selected set of points. Linear regression

(also known as point collocation or stochastic response surfaces) uses a single linear least squares

solution to solve the complete set of PCE coefficients. Although the method assures an accurate

representation at the collocation points, it gives no possibility to control the error elsewhere.
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3. Robust Batch-to-Batch Optimization in the

Presence of Model-Plant Mismatch and

Input Uncertainty

Overview

When performing a model-based optimization in the presence of model-plant mismatch, the set

of model parameter estimates which satisfy an identification objective may not result in an ac-

curate prediction of the gradients of the cost-function and constraints. To ensure convergence to

the optimum, the predicted gradients must be forced to match the measured gradients by adapting

the model parameters. Since updating all available parameters is impractical due to estimability

problems and overfitting, there is a strong motivation for adapting a subset of parameters for up-

dating the predicted outputs and gradients. This paper presents an approach to select a subset of

parameters based on the sensitivities of the model outputs and of the cost function and constraint

gradients. Furthermore, robustness to uncertainties in initial batch conditions is introduced using

a robust formulation based on polynomial chaos expansions. The improvements in convergence to

the process optimum and robustness are illustrated using a fed-batch bioprocess.

Adapted from Hille, R., Mandur, J., and Budman, H. (2017). Robust batch-to-batch optimization in the presence of
model-plant mismatch and input uncertainty. AIChE Journal, 63, 2660-2670.
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3.1. Introduction

In the chemical industry, batch processes are essential for the production of specialty products. For

instance, common applications of batch and fed-batch operations are in the production of pharma-

ceutical products. In times of increasing competition, the chemical industry is faced with urgency

to improve performance and minimize the cost of their operations. Because of the intricacy of

these processes, mathematical models have become a fundamental part of the process industries’

range of R&D activities. Beside their application to process design and control, a widespread use

of process models is for performing model-based optimization by finding the minimum of a pre-

dicted cost function. In particular, batch-to-batch optimization has been used where the optimum

is achieved in an iterative fashion after several batches.

This chapter deals with a model-based batch-to-batch optimization procedure that involves sequen-

tial identification and optimization steps performed for a series of batch experiments until an opti-

mum is reached. In order to ensure convergence to the process optimum, the model must provide

an accurate description of the given process in the neighbourhood of the optimum. However, when

using mechanistic models (e.g. first-principles) for process optimization, structural mismatch be-

tween the model and the process is inevitable as simplifications and assumptions are often made to

reduce the complexity of the model. In addition to this discrepancy, the calibration of a mechanistic

model involves the identification of its parameters’ values. This task is often challenging due to

the presence of stochastic measurement noise and unknown input disturbances. Consequently, the

structural and stochastic uncertainties reduce the accuracy of the calibrated model for predicting

outputs over a large range of operating conditions. A necessary condition for model-based opti-

mality is that the model used for optimization is able to predict the Karush-Kuhn-Tucker (KKT)

conditions at the process optimum (Biegler et al., 1985), i.e. the model must accurately predict

the gradients of the cost-function and constraints at the optimum (Forbes et al., 1994). To satisfy

this condition in the presence of model-plant mismatch, it is essential to not only fit the model
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predictions to measured process outputs but also to match the predicted gradients of cost-function

and constraints to the measured ones. As a result of structural uncertainty, iterative optimization

approaches that solely use repeated identification and optimization steps (Chen & Joseph, 1987;

Marlin & Hrymak, 1997) may result in a sub-optimal operating policy or in a worst-case scenario,

in violation of process constraints. This motivates the need for model-based optimization schemes

which are robust to such mismatch.

To this end, a class of algorithms, referred to as Modifier Adaptation (Chachuat et al., 2009;

Marchetti et al., 2010; Navia et al., 2015; Gao et al., 2016; Costello et al., 2016) has been reported

based on earlier studies (Roberts, 1979; Brdys & Tatjewski, 2005; Gao & Engell, 2005). The main

idea in these methods is to modify the cost-function and constraints to correct for the differences in

predicted and measured gradients. The approach then guides the process to the optimal operating

point by correcting for the mismatch iteratively through empirical modification of the cost function

and constraints. Thus, the focus of these methods lies on correcting the cost function and con-

straints directly and does not explicitly update the model, which consequently cannot be used for

prediction purposes. It is very often desirable to have a model that can provide accurate predictions

around the optimum since such a model can be used for different objectives such as model predic-

tions away from the optimum, developing soft-sensors and for calculating set-point trajectories for

control. Then, the goal would be to find a set of parameter estimates, which can satisfy both, the

identification and optimization objective. As this may not be possible due to structural mismatch,

the problem of a combined identification and optimization has been addressed in (Srinivasan &

Bonvin, 2002), where the identification objective is modified by including a weighted optimization

objective. However, this approach results in a trade-off between the objectives of identification and

optimization.

In order to reconcile the two objectives of identification and optimization in a systematic way,

(Mandur & Budman, 2015b) proposed a simultaneous model identification and optimization frame-
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work, where a separate gradient correction step is introduced after a conventional parameter iden-

tification step. By following this approach, the identification objective is satisfied first and subse-

quently the predicted gradients are matched to those of the process by adapting the model param-

eters. The accuracy of the identification step is maintained by incorporating a correction term into

the model outputs and thus providing a set of parameter estimates, which can satisfy the identifi-

cation and optimization objectives simultaneously. This method resulted in an accurate model in

each iteration and also provided model-based filtering capability with an improved robustness to

structural mismatch as well as to uncertainty in gradient measurements. Although in principle all

model parameters could be updated and adapted for achieving matching of gradients as required

in this latter procedure (Mandur & Budman, 2015b), this is often undesirable due to the sensitivity

to noise, overfitting and computational effort. Furthermore, identifying all parameters may not be

possible as often times, some of the states cannot be measured and, generally, the number of exper-

iments is limited leading to insufficient excitation. In terms of model-fitting, it is typically desired

to adjust the parameters that provide the largest effects on the model output. In that regard, there

are several reported methods that are based on measures of the Fisher information matrix (FIM)

and that have been applied to select the parameter subsets, which yield the highest parameter iden-

tifiability (Weijers & Vanrolleghem, 1997; Schittkowski, 2007). Methods related to the sensitivity

matrix include a collinearity index (Brun et al., 2002), a principal component analysis (Degenring

et al., 2004) and orthogonalization methods (Yao et al., 2003; Lund & Foss, 2008; Chu & Hahn,

2012).

An additional limitation of our earlier studies is that they only addressed model structure error but

they did not address uncertainty in process inputs such as uncertainty in initial conditions. Obtain-

ing a measure of the variance of the cost due to stochastic disturbances requires propagating their

effect onto the outputs. A common approach is to use Monte Carlo (MC) methods in which the

objective is calculated by sampling the uncertain inputs. However, to obtain an accurate estimate of

the variance, MC methods are computationally expensive since they require a large number of in-
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dividual model realizations. In recent years, Polynomial Chaos Expansions (PCEs) have been used

as an efficient uncertainty propagation technique (Spanos & Ghanem, 1991; Xiu, 2010). Com-

pared to MC, PCE offers the advantage that any commonly used probability density function can

be propagated onto variables of interest and that the mean and variance can be calculated analyt-

ically (Nagy & Braatz, 2007). For these reasons, the PCE method has been recently applied to

problems in control (Kim & Braatz, 2012), fault detection (Du et al., 2016) and robustness analysis

(Mandur & Budman, 2014; Streif et al., 2016) and it is also used in this work for describing the

effect of initial conditions on the outputs. Therefore, to address the limitations of our earlier studies

(Mandur & Budman, 2015b), the current study presents three main novel contributions:

1. Development of a scheme for selecting a subset of parameters to be updated during each

batch of the run-to-run procedure, whereas in the previous studies only a fixed parameter

subset based on an a priori analysis has been used. The adaptive parameter selection is fully

integrated into the iterative optimization framework, so that appropriate parameters are se-

lected at each batch run. Considering that the sensitivities not only change between operating

points, but also for changes in parameter values, it is shown that selecting an optimal set of

parameters for each batch run can have a profound effect on the performance. The method

is therefore not only adaptive in the sense of the operating point, but also takes into account

the change in parameter values which also impacts the sensitivities of parameters due to

correlation. Additional sampling of the sensitivities within the uncertain parameter space is

performed in order to account for uncertainty in the previously estimated parameter values.

2. Selection of parameters based on the sensitivities of both the model outputs as well as of the

gradients of the cost function and constraints. This is motivated by the fact that in contrast to

parameter estimation problems where the goal is solely to fit the model predictions to a given

set of data, the gradient correction step, required for model-based optimization, necessitates

adapting parameters which more significantly affect the gradients of the cost function and
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constraints. By using those sensitive parameters, it is shown that it is possible to match

the predicted to measured gradients by smaller changes in the parameters thus increasing

robustness. In addition, an orthogonalization technique (Yao et al., 2003) is incorporated to

account for correlation among the parameters considered for updating.

3. Introduction of robustness into the simultaneous identification and optimization algorithm to

account for both model structure error and uncertain inputs such as uncertain initial condi-

tions. In contrast to previous studies of the co-authors, which only addressed robustness to

model structure error, in this work we have also considered robustness to stochastic pertur-

bations in the initial batch conditions. In that regard, we make use of PCE as an efficient

uncertainty propagation technique in order to reduce computational effort which makes the

methodology more practical and also potentially relevant for RTO applications.

The chapter is organized as follows: Section 3.2 reviews the parameter adaptation methodology.

The proposed parameter selection algorithm is presented in section 3.3, whereas section 3.4 out-

lines the polynomial chaos-based uncertainty propagation approach. Finally, the proposed method

and robustness analysis are illustrated by a case study of a penicillin fed-batch process in section

3.5 followed by conclusions in section 3.6.

3.2. Parameter Adaptation Methodology

The algorithm for the simultaneous identification and optimization (Mandur & Budman, 2015b)

involves three steps that are separately reviewed below.

39



3.2.1. Parameter Estimation

A parameter identification is performed by minimizing the difference between model predictions

and measurements collected at sampling times ti with i ∈ {1, . . . , nt} along a batch run:

θk = arg min
θ

nt∑
i=1

∥∥yp,k(ti)− yk(θ, ti)∥∥2

s.t.
.
xk = f(xk,uk,θ)

yk = h(xk)− ck−1

θ ∈ [θlb,θub] (3.1)

where the subscript k denotes the batch index, yp,k ∈ Rnt×ny the plant measurements, xk ∈

Rnt×ny the states and yk ∈ Rnt×ny the outputs of the model at the specified sampling times ti.

uk ∈ Rnu is the vector of decision variables defining the current operating point at batch run k.

θk ∈ Rnθ describes the particular set of parameter estimates, which minimizes the identification

objective (3.1). ck−1 ∈ Rnt×ny is described below and presents a correction term necessary when

correcting for errors in the cost-function and constraint gradients.

3.2.2. Gradient Correction

The parameter estimates θk, obtained in (3.1), lead to the following predicted gradients of the cost

with respect to the decision variables at operating point uk:

∇φ(yk(θk),uk) =
∂φ

∂u
(yk(θk),uk) (3.2)

where φ is the predicted cost-function and∇φ ∈ Rnu the corresponding vector of gradients. Given
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a set of process constraints g ∈ Rng , the predicted gradients of the constraints at uk are as follows:

∇gj(yk(θk),uk) =
∂gj
∂u

(yk(θk),uk) (3.3)

where gj is a process constraint with j ∈ {1, . . . , ng} and ∇gj ∈ Rnu is the respective constraint

gradient vector. As mentioned in the introduction, a result of the discrepancy between the model

and process is that the parameter estimates θk, which provide an accurate model-fit according to

(3.1), do not necessarily lead to a correct prediction of the gradients. Convergence to the actual

process optimum requires matching of the predicted to the measured cost function and constraint

gradients, ∇φp and ∇gp. This can be achieved by an additional optimization step where the

originally obtained parameter estimates θk are changed by an amount ∆θ calculated as follows:

∆θk = arg min
∆θ

(
wT
φ

∣∣∇φp(uk)−∇φ(yk(θk + ∆θ),uk)
∣∣

+

ng∑
j=1

wT
g,j

∣∣∇gp,j(uk)−∇gj(yk(θk + ∆θ),uk)
∣∣)

s.t.
.
xk = f(xk,uk,θk + ∆θ)

yk = h(xk)− ck

θk + ∆θ ∈ [θlb,θub]∥∥εTk ∥∥∞ ≤ εmax (3.4)

where the two gradient matching objectives are normalized by their respective weights wφ ∈ Rnu

and wg,j ∈ Rnu . To maintain the same fitting accuracy that has been achieved in (3.1), it is

necessary to introduce a correction term ck ∈ Rnt×ny into the model output. The correction term

is approximated by a first order Taylor series expansion and is updated as follows:

ck(ti) = ck−1(ti) +Dyk(θk, ti)∆θk (3.5)
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whereDyk(θk, ti) ∈ Rny×nθ is the Jacobian of the model at sampling time ti and ck−1 the correc-

tion term from the previous batch run. It should be noticed that approximating the correction term

by the use of an expansion it is not strictly necessary but it is done for simplicity. Furthermore, the

amount by which the parameter estimates are allowed to change is limited by a user selected upper

bound εmax on the relative truncation error, which is defined as the error introduced by the linear

correction term in (3.5):

εk(ti) = [yk(θk + ∆θk, ti)−Dyk(θk, ti)− yk(θk, ti)] · [diag (yk(θk, ti))]
−1 (3.6)

where the diag(.) operator indicates a transformation of a vector into a diagonal matrix. The

inequality in (3.4) yields a bound on the permitted change in parameter values and thus ensures the

boundedness of the model after the gradient matching step. More importantly, it was shown that the

specification of an upper bound on the relative truncation error provides robustness to uncertainty

in the measured gradients of cost and constraints (Mandur & Budman, 2015b).

After performing the gradient correction, the adapted parameter values at batch run k are given by:

θ′k = θk + ∆θk (3.7)

The overall idea behind the algorithm is that the parameter values in (3.7) satisfy the identification

and gradient matching steps simultaneously and thus they reconcile the two objectives.

3.2.3. Robust Model-based Optimization

By using the updated parameter values given by (3.7), a model-based optimization is performed

to determine the new optimal operating point. In order to introduce robustness with respect to

uncertain initial conditions, the robust objective is formulated as a weighted sum of the expected
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value and its variance:

uk+1 = arg min
u

E
[
φ
(
y(θ′k),u

)]
+ wV ar

[
φ
(
y(θ′k),u

)]
s.t. ẋ = f(x,u,θ′k)

y = h(x)− ck

g(y(θ
′
k),u) ≤ 0

uL ≤ u ≤ uU (3.8)

where w represents a weight on the variance of the objective. It was shown in (Mandur & Budman,

2015b) that, upon convergence, the necessary conditions of optimality (NCOs) of the model are

equal to those of the process at the plant optimum. In addition, to obtain a measure of the vari-

ance due to uncertainty in inputs, e.g. stochastic variability in initial conditions, it is necessary to

propagate these probabilistic uncertainties into the model output. For that reason, PCE, a stochastic

spectral method, is used in this work to quantify the effect of the input variability on the variation in

the cost. When the variance term is ignored, the above formulation in (3.8) becomes a non-robust

optimization.

3.2.4. Conditions of Convergence

For convergence of the parameter adaptation scheme to the neighbourhood of a local process op-

timum, it is required that the gradients of the cost and constraints can be matched to those of the

process (Biegler et al., 1985). Matching of the process and model gradients has been referred to as

model adequacy (Forbes et al., 1994), which, for a given set of model parameters θ∗, is satisfied if

the following holds at the process optimum u∗:

∇φ(y(θ∗),u∗) = ∇φp(u∗) (3.9)
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∇g(y(θ∗),u∗) = ∇gp(u∗) (3.10)

∇2φ(y(θ∗),u∗) > 0 (positive definite) (3.11)

Following (3.4), this can be approximately achieved if a set of parameters θ
′
k and a bound on the

truncation error εmax are such that the following amount of gradient correction can be satisfied in

each iteration (Mandur & Budman, 2015b):

∣∣∣∣∣∣(∇φp(uk)−∇φ(yk(θ
′
k),uk)

)
+

ng∑
j=1

wT
j

(
∇gp,j(uk)−∇gj(yk(θ′k),uk)

)∣∣∣∣∣∣ < ε (3.12)

With the normalized weighting given by wj = [diag (wφ)]−1wg,j . Convergence is then achieved

when at the current input uk the updated model predicts an optimum by satisfying the following

stationary condition:

∇φ(yk(θ
′
k),uk) +

ng∑
j=1

µTj ∇gj(yk(θ′k),uk) = 0 (3.13)

Hence, combining (3.12) and (3.13) the following condition must hold for convergence:

∣∣∣∣∣∣∇φp(uk) +

ng∑
j=1

wT
j ∇gp,j(uk) +

(
µTj −wT

j

)
∇gj(yk(θ′k),uk)

∣∣∣∣∣∣ < ε (3.14)

where convergence is achieved to the neighbourhood of the process optimum, which depends on

the weighting ratio wj and minimization tolerance ε. E.g. if wj is such that wj = µj , then (3.14)

simplifies to
∣∣∣∇φp(uk) +

∑ng
j=1w

T
j ∇gp,j(uk)

∣∣∣ < ε. Thus, if the predicted optimum is also a

KKT point of the actual process then we can set u∗ = uk and θ∗ = θ
′
k, so that the conditions

of model adequacy (3.9) - (3.11) are approximately satisfied by the amount of gradient correction

in (3.12). Condition (3.14) can be extended to the robust case by including also the variance in

the condition. In the case that (3.14) does not hold for operating point uk then the model-based
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prediction of an optimum in (3.13) is not a KKT point of the actual process and the algorithm

continues to iterate towards the process optimum.

3.3. Parameter Selection

In the presence of model-plant mismatch, it is necessary to update the model at new operating

points reached during the batch-to-batch optimization procedure. This is mainly due to the fact

that the model does not provide an accurate prediction over a wide range of operating conditions as

the parameters have to compensate for structural mismatch and are affected by measurement noise.

Although all parameters of the model could be updated simultaneously, this is very impractical for

both computational reasons and because of the expected higher sensitivity to noise that may result

from over-fitting noisy data. In addition, the measurements may not provide enough excitation in

order to identify all parameters. Therefore, we propose to update only a sub-set of parameters that

have large effects on the model outputs and the gradients of the cost function and constraints. To

this end, a parametric sensitivity analysis is used to identify the model parameters that have most

effect on these variables of interest.

3.3.1. Parametric Sensitivity for Outputs and Gradients

The scaled local sensitivity of a model-output yj ∈
{
y1, . . . , yny

}
with respect to a parameter

θi ∈ {θ1, . . . , θnθ}, at sample time tk ∈ {t1, . . . , tnt}, at operating point u and nominal parameter

values θ is defined in the following as:

Sθiyj (u,θ, tk) =
∂yj
∂θi

(u,θ, tk)
θi

yj (u,θ)
(3.15)
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where the scaling is done with respect to the nominal parameter value θi and the average magnitude

of the model output over all sampling times, which is given by:

yj (u,θ) =
1

nt

nt∑
k=1

yj (u,θ, tk) (3.16)

Scaling can be also performed according to prior information on the permissible range in the pa-

rameter’s magnitude. If no information is available, it is common to scale the parameters by their

nominal value which corresponds to a 100 % possible change in their magnitude.

For a particular batch run, local sensitivities can be obtained for all outputs and parameters at a

specific sampling time tk, which results in the following output sensitivity matrix:

S (u,θ, tk) =



Sθ1y1 · · · Sθiy1 · · · S
θnθ
y1

...
. . . . . . . . .

...

Sθ1yj
. . . . . . . . . S

θnθ
yj

...
. . . . . . . . .

...

Sθ1yny · · · · · · · · · S
θnθ
yny


(3.17)

The matrix in (3.17) can be computed for all sampling times during a batch to obtain:

S (u,θ) =



S (u,θ, t1)

...

S (u,θ, tk)

...

S (u,θ, tnt)


(3.18)

Given the sensitivity matrix for all sampling times (3.18), it is then possible to obtain a lumped
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metric of the overall effect of a parameter θi on all outputs as follows:

Sθiy (u,θ) =

ny×nt∑
j=1

∣∣∣S (u,θ)ji

∣∣∣ (3.19)

Given the gradient of the cost function with respect to a particular decision variable by∇φl (u,θ) =

∂φ
∂ul

(u,θ) with l ∈ {1, . . . , nu}. The scaled local sensitivity of the gradient of the cost-function

with respect to parameter θi at operating point u and nominal parameter values θ is given by:

Sθi∇φl (u,θ) =
∂ (∇φl)
∂θi

(u,θ)
θi

∇φl (u,θ)
(3.20)

where the scaling is with respect to the nominal gradient and parameter value. In order to obtain a

lumped cost function gradient sensitivity measure, the sensitivities in (3.20) can be summed up to

calculate a lumped sensitivity measure of cost gradients with respect to the parameter θi:

Sθi∇φ (u,θ) =

nu∑
l=1

∣∣∣Sθi∇φl (u,θ)
∣∣∣ (3.21)

Similarly, the local sensitivity of a constraint gradient with respect to a parameter θi is defined as:

Sθi∇gkl (u,θ) =
∂ (∇gkl)
∂θi

(u,θ)
θi

∇gkl (u,θ)
(3.22)

With k ∈ {1, . . . , ng}. The lumped measure of the effect of parameter θi on the constraint gradients

is then given by:

Sθi∇g (u,θ) =

ng∑
k=1

nu∑
l=1

∣∣∣Sθi∇gkl (u,θ)
∣∣∣ (3.23)

3.3.2. Sampling of the Uncertain Parameter Space

The sensitivity measures described in the previous sections are local in the sense that they are

calculated for a specific operating point u and a particular set of nominal parameter values θ. The
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reason that a local sensitivity measure was chosen for this study as compared to a global measure

(Saltelli et al., 2008) is that the identified model is required to be only locally correct since, due

to the structural mismatch, it is successively updated in a batch-to-batch fashion. However, as the

local sensitivities depend on a set of nominal parameter values, we must still account for parametric

uncertainty, which results from model-plant mismatch and measurement noise. To this end, we

calculate the sensitivity measures at different points from the uncertain parameter space based on

the assumption of a multivariate parameter distribution. Given an available parameter co-variance

matrix V θ and normally distributed measurement errors, a sample of the uncertain parameters can

be calculated from the joint probability distribution:

θm ∼ N (θ∗,V θ) (3.24)

A lower bound of the parameter co-variance matrix V θ is provided by the inverse of the Fisher

information matrix (Walter & Pronzato, 1990):

V θ = F−1 (3.25)

where the Fisher information matrix F over all sample points is defined as follows:

F =

nt∑
k=1

S (u,θ, tk)
T Σ−1S (u,θ, tk) (3.26)

where S (u,θ, tk) is the sensitivity matrix defined in (3.17) and Σ the co-variance matrix of the

measurement noise, which is typically given as:

Σ =


σ2

1

. . .

σ2
ny

 (3.27)
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As we are only interested in the mean of the sensitivities, a Latin hyper-cube sampling (LHS)

(McKay et al., 1979) is used to obtain samples θm from the multivariate distribution (3.24). LHS

is preferred in this case over techniques like the Morris method (Morris, 1991) as we assumed an

approximate distribution of the input parameters. Accordingly, if the number of samples is ns, the

mean of the sensitivities of the model output (3.19) are calculated as:

S̄θiy =
1

ns

ns∑
m=1

Sθiy (u,θm) (3.28)

Similarly, the means of the sensitivity measures of the cost function (3.21) and constraint gradients

(3.23) are given by:

S̄θi∇φ =
1

ns

ns∑
m=1

Sθi∇φ (u,θm) (3.29)

S̄θi∇g =
1

ns

ns∑
m=1

Sθi∇g (u,θm) (3.30)

Finally, in vector form, the averaged output and gradient sensitivity measures are given as follows:

S̄y =
[
S̄θ1y , . . . , S̄

θnθ
y

]T
(3.31)

S̄∇φ =
[
S̄θ1∇φ, . . . , S̄

θnθ
∇φ

]T
(3.32)

S̄∇g =
[
S̄θ1∇g, . . . , S̄

θnθ
∇g

]T
(3.33)

3.3.3. Parameter Ranking and Selection

As mentioned before, the goal of a parameter selection is to find the relevant parameters, which

provide the largest effect on both model output and gradients. In order to obtain the overall effect of

each parameter, the sensitivities in (3.31) – (3.33) can be combined into a single sensitivity vector.

However, for an appropriate comparison of the different sensitivities it is first necessary to perform
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the following normalization with respect to their average magnitude:

Ŝy =
S̄y

1
nθ

∑nθ
i=1 S̄

θi
y

(3.34)

Ŝ∇φ =
S̄∇φ

1
nθ

∑nθ
i=1 S̄

θi
∇φ

(3.35)

Ŝ∇g =
S̄∇g

1
nθ

∑nθ
i=1 S̄

θi
∇g

(3.36)

Subsequently, an overall parametric sensitivity vector is defined as the sum of the normalized indi-

vidual sensitivities as follows:

Ŝ = Ŝy + Ŝ∇φ + Ŝ∇g (3.37)

The resulting vector in (3.37) is used to provide a ranking of parameters in terms of their overall

effect on model output and gradients of the cost function and constraints. However, correlation

among model parameters has to be considered to correctly account for the effect of parameters

on model outputs. As the correlation among the parameters’ effects may affect their ranking, an

orthogonalization method (Yao et al., 2003) is applied for this task as it impacts the output sensi-

tivity vector Ŝy appearing on the RHS of (3.37). The aforementioned orthogonalization method is

applied to the sensitivity matrix in (3.18), which is iteratively adjusted to account for the effect of

the selected parameters on the model output. Thus, during each iteration of the parameter selec-

tion procedure, we update the ranking vector Ŝ
p
, where the superscript p indicates the number of

selected parameters to be updated for each batch.

We initialize the selection procedure by setting p = 0 and follow the steps outlined below.

1. Using the ranking vector Ŝ
p
, the most significant parameter at iteration p is obtained from:

imax = arg max
i∈{1,...,nθ}

Ŝ
p
i (3.38)
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2. To account for correlation, the output sensitivity vectors related to the remaining parameters

(i.e. that have not been yet selected) are projected onto the space normal to the selected

sensitivity vector as follows (Yao et al., 2003):

sp+1
i = spi −

(spi )
T
spimax(

spimax
)T
spimax

spimax
∀m ∈ {1, . . . , ns}

∀i ∈ {1, . . . , nθ}

s.t. spi = Sp (u,θm)·,i

spimax = Sp (u,θm)·,imax (3.39)

where spi is a column of the sensitivity matrix (3.18) at iteration p and parametric sample

vector θm. In this way, the “net influence” of the remaining parameters on the model out-

put, which has not been covered by the already selected parameters can be assessed by the

expression in (3.39).

3. A new output sensitivity vector Ŝ
p+1

is calculated from equations (3.19), (3.28) and (3.34).

The sensitivity vectors of the cost function and constraint gradients are updated by elimi-

nating the effect of the already selected parameters, i.e. by setting S̄θimax∇φ = S̄
θimax
∇g = 0

to obtain Ŝ
p+1
∇φ and Ŝ

p+1
∇g from (3.35) and (3.36) respectively. Finally, the updated ranking

vector Ŝ
p+1

is obtained from (3.37).

4. Set the number of selected parameters to p = p+ 1 and go back to step 1.

5. The selection procedure is continued until the remaining effect of a parameter on the model

output, obtained after successive projections, is lower than a prescribed threshold value. The

threshold is defined so that a minimum average effect of a parameter on a model output is

related to the level of measurement noise as follows:

max
j∈{1,...,ny}

{
S̄
θimax
yj (u,θ)

δθimax
θimax

}
≤ ε (3.40)
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where S̄θimaxyj (u,θ) = 1
nt

∑nt
k=1

∣∣∣Sθimaxyj (u,θ, tk)
∣∣∣ is the average effect of parameter θimax

on output yj , ε is the level (standard deviation) of measurement noise and δθimax is a user

selected deviation in the parameter values, e.g. δθimax = 0.1θimax .

The complete proposed parameter selection procedure is illustrated in the flowchart in Figure 3.1

and is summarized as follows. After a batch run at operating point uk, the uncertain parameter

space is sampled using LHS and the initial sensitivity vectors for the model output, cost function

and constraint gradients are obtained. Then, the overall effects are assessed to select the most

significant parameters according to the 5-step procedure outlined above. Subsequently, the model

is updated based on the determined set of parameters by performing a parameter estimation (3.1)

followed by the gradient correction (3.4). The final step is the computation of the next optimal

batch run uk+1 by performing a model-based optimization according to (3.8), using the updated

model.
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Start with initially
calibrated model

Run Batch at Input uk

Start parameter se-
lection. Set p = 0.

Get ranking vector
Ŝ
p
(3.37). Select most sen-

sitive parameter imax (3.38)

Threshold?
(3.40)

Perform Identification
(3.1), Adaptation (3.4)
and Optimization (3.8)

Convergence?

Stop

Perform orthogonalization
(3.39) to get Ŝ

p+1
y

Set S̄θimax∇φ = S̄
θimax
∇g = 0

to obtain Ŝ
p+1
∇φ , Ŝ

p+1
∇g

Yes

uk+1

Yes

No

p+ = 1

No

k+ = 1

Figure 3.1.: Block diagram of the parameter selection procedure integrated into the simultaneous identifica-
tion and optimization framework.
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3.4. Uncertainty Propagation

To calculate the variance of the objective in (3.8), it is first necessary to characterize the uncertainty

that is present in the model input. In general, the PCE method can be used for uncertainty prop-

agation and quantification of parametric uncertainty or uncertainty in initial conditions (Nagy &

Braatz, 2007; Mandur & Budman, 2014). In this work, we assume prior knowledge about the statis-

tical properties of the initial batch conditions. A detailed background on PC expansions is given in

(Spanos & Ghanem, 1991; Xiu, 2010) and a brief background is provided below for completeness.

Given a properly defined probability space (Ω,F , P ) and a set of independent random variables

{ξi (ω)}∞i=1, PCE is used to express a random variable of interest X as a polynomial expansion of

functions of standard random variables as follows:

X (ω) =

N∑
k=0

x̂kφk (ξ (ω)) (3.41)

where x̂k are the PCE coefficients, φk (ξ) the orthogonal basis functions of the standard random

variables ξ = (ξ1, ξ2, . . . , ξn) and N is the total number of terms. The orthogonal basis functions

have to be selected according to the choice of the statistical distribution of ξ. For example, Hermite

polynomials are chosen as basis functions of normal distributions (Xiu & Karniadakis, 2002a). One

key property of the PCE is that all basis functions are orthogonal to each other, which leads to the

following definition of the inner product:

〈
φi,φj

〉
=

∫
φi (ξ)φj (ξ)W (ξ) dξ = δij (3.42)

where δij is the Kronecker delta and W (ξ) a weighting function, which has the form of an n-

dimensional Gaussian probability distribution. The orthogonality permits the evaluation of the PC
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coefficients by a projection onto the corresponding basis function as follows:

x̂k =
〈X,φk〉〈
φ2
k

〉 =

∫
XφkW (ξ) dξ∫
φ2
kW (ξ) dξ

(3.43)

To propagate the uncertainty in initial conditions onto the output, a mapping is first determined

between the set of uncertain inputsX and the set of independent random variables ξ by constructing

a PC expansion as shown in (3.41). Using the model equations, the output of interest Y can be

expressed as a function of X and is therefore also a random variable:

Y = f(X) (3.44)

Similar to the expression in (3.41), the output can also be expressed by a PC expansion as follows:

Y (ω) =

N∑
k=0

ŷkφk (ξ (ω)) (3.45)

So that for the PC coefficients of the output expansion we obtain:

ŷk =
〈Y,φk〉〈
φ2
k

〉 =

∫
Y φkW (ξ) dξ∫
φ2
kW (ξ) dξ

(3.46)

By using a non-intrusive approach, for each value of ξ a value of the input can be generated and

a value of the variable of interest Y can be calculated by using the relation in (3.44). In order

to evaluate the integral in the numerator in (3.46), the model equations are solved at specific col-

location points so that an approximation of the output distribution can be obtained. Finally, the

mean and variance of the desired output Y that are required in the formulation in (3.8), are derived

analytically from orthogonality as follows:

E [Y ] = ŷ0 (3.47)
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V ar [Y ] = ŷ2
k

〈
φ2
k

〉
(3.48)

3.5. Results and Discussion

The batch-to-batch optimization procedure with the proposed parameter selection and robustness

analysis is illustrated in this section using a fed-batch penicillin process.

3.5.1. Case Study

A model describing a fed-batch penicillin process was proposed in (Birol et al., 2002). It was pre-

viously used as a case study in run-to-run optimization studies conducted in (Mandur & Budman,

2015b). The process is described by the following differential equations:

dX

dt
=

(
µXSX

KXX + S

)
− X

V

dV

dt
(3.49)

dP

dt
=

(
µPSX

KP + S + S2

KI

)
−KHP −

P

V

dV

dt
(3.50)

dS

dt
= −

(
1

YX/S

µXSX

KXX + S

)
−

(
1

YP/S

µPSX

KP + S + S2

KI

)

−mXX +
Fsf
V
− S

V

dV

dt
(3.51)

dV

dt
= F − V 6.226 · 10−4 (3.52)

whereX is the biomass, P is the concentration of penicillin, S is the concentration of substrate and

V the volume in the reactor. The constants are defined as follows: µX is the specific growth rate

of biomass, µP is the specific rate of penicillin production, KX and KP are saturation constants,

KI is a substrate inhibition constant, KH is a constant representing the rate of consumption of
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penicillin by hydrolysis, YX/S and YP/S are the yields per unit mass of substrate for the biomass

and penicillin respectively, mX is the consumption rate of substrate for maintaining the biomass,

F is the constant feed rate and sf represents the concentration of substrate in the feed.

The process simulator is defined by the equations (3.49) – (3.52) and is used to generate in silico

data of the process outputs and gradients. Additive Gaussian noise of 10 % of the average output

values is assumed in the process outputs. Measurements of the gradients are estimated by running

additional batch runs with a step change in the input in each direction of the decision variables

and then taking the difference of the noisy measurement over the length of the step size. In order

to reduce the amount of gradient uncertainty due to measurement noise we used a step size of

∆S0 = 3 g/l for the non-robust case and a step size of ∆S0 = 6 g/l in case of the presence of input

disturbances. A step length of ∆F = 0.5 l/h has been used for flowrate gradient measurements.

In order to introduce model-plant mismatch, we introduce an intentional discrepancy between the

model and the process. In this case, the hydrolysis term is assumed to be a priori unknown to the

modeler and is therefore eliminated from the model used for optimization. This elimination reflects

the lack of knowledge about the process and thus results in model structure error. Accordingly, the

following rate of change of penicillin to be used in the model of the process instead of equation

(3.50):
dP

dt
=

(
µPSX

KP + S + S2

KI

)
− P

V

dV

dt
(3.53)

In addition to model-plant mismatch, it is assumed that there are stochastic uncertainties in the

initial concentration of biomass and substrate. For simplicity, we assume that we have prior knowl-

edge that these uncertainties follow Gaussian distributions:

X0 ∼ N
(
X̄0, σX0

)
(3.54)

S0 ∼ N
(
S̄0, σS0

)
(3.55)
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Biomass conc.
(
X̄0

)
0.1 g/l

Biomass standard dev. (σX0) 0.0007 g/l

Substrate conc. (S0) 3 g/l

Substrate standard dev. (σS0) 1 g/l

Product conc. (P0) 0 g/l

Volume (V0) 100 l

Input Feed (F ) 0.04 l/h

Table 3.1.: Initial batch conditions.

The goal of the optimization is to maximize the amount of penicillin at the end of the batch while

minimizing the variance due to uncertainty in the initial biomass and substrate concentration. The

manipulated variables are the initial substrate concentration S0 and the constant inlet feed rate F .

The amount of feeding is constrained by an upper bound of Vmax = 120 l on the volume of the

reactor. The robust optimization problem is stated as follows:

min
S0,F

−E [P (x, X0, S0, F,θ, tf )] + wV ar [P (x, X0, S0, F,θ, tf )]

s.t. (3.49) and (3.51)− (3.53)

V (x, X0, S0, F,θ, tf ) ≤ Vmax (3.56)

The initial batch conditions for the simulator are given in Table 3.1. The values for the initial

substrate concentration S0 and the constant feed rate F are used for running the first batch and are

updated according to the model-based prediction of the next optimal input. The model described

by (3.49) and (3.51)-(3.53) contains eight potential parameters available for performing the model

update and the gradient correction. The initial model parameter values are given in Table 3.2.

µX KX µP KP KI YX/s YP/S mX

0.092 0.15 0.008 0.0002 0.1 0.45 0.9 0.014

Table 3.2.: Initial model parameter values.
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3.5.2. Parameter Selection Results

In this section the effect of the proposed parameter selection procedure is investigated by comparing

the proposed procedure to two cases:

1. An optimization where a fixed parameter subset based on a prior analysis is used.

2. An optimization where the parameters that are updated are chosen based on only output

sensitivities.

For this case, the effect of the input uncertainty is omitted and a non-robust optimization is carried

out by ignoring the variance term in (3.56). A separate analysis of the robust optimization case

with respect to uncertainty in initial conditions is given in section 3.5.3.

3.5.2.1. Comparison to a Previous Subset

In an earlier application of the simultaneous identification and optimization algorithm (Mandur &

Budman, 2014, 2015b), a fixed parameter sub-set containingKI andKX was chosen based on an a

priori analysis for performing the parameter adaptation. In contrast, by using the proposed param-

eter selection scheme, it is found that the subset of parameters that need to be updated varies for

different batches of the run-to-run optimization procedure. For instance, the subset of parameters

that need to be adapted generally includes, depending on the iteration, different combinations of

mX , µP and µX . Based on the threshold defined in (3.40) , the ideal number of parameters that

need to be adapted is three. However, for a fairer comparison to previous results where only two

parameters were updated, the number of selected parameters in the current case study was limited

to two.

In general, the upper bound on the truncation error εmax in (3.4) should be selected so that the

resulting model error is not larger than the level of measurement noise. In this way, the model

fitting remains accurate enough to comply with constraints or other relevant prediction objectives.
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Given the presence of 10 % measurement noise, the upper bound on the relative truncation error

is therefore set to εmax = 1 %. Due to the constraint on the volume of the reactor, the optimal

feed rate F ∗ = 0.1728 l/h is achieved within one iteration. On the other hand, as a result of the

structural mismatch, it takes up to 30 batch runs to obtain the optimal initial substrate concentration

of S∗0 = 54.72 g/l. Figure 3.2 shows the results of the convergence of S0 to the optimum for

the proposed selection and the previously used fixed parameter sub-set. The optimization results

are averaged over 10 different noise realizations and illustrated with 95% confidence intervals

presented by the shaded areas.
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Figure 3.2.: Convergence of S0 for proposed selection and previous parameter set for εmax = 1%.

It is evident from Figure 3.2 that the use of a variable sub-set of model parameters as per the

proposed selection leads to a very significant improvement in the speed of convergence to the

process optimum. While the presented parameter selection is able to converge to the optimal initial

substrate concentration on average within 8 iterations, more than 30 iterations are required for the

fixed parameter set based on a prior analysis. This is mainly due to the fact that the selection of
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appropriate parameters leads to a superior gradient correction and thus a better prediction of the

objective function around the neighbourhood of the operating point at that iteration. Furthermore,

as can be seen from the confidence intervals, the proposed selection leads to a reduction in the

uncertainty in the prediction of the next optimal batch run.

3.5.2.2. Effect of Gradient Sensitivities

0 5 10 15 20 25 30
Batch run

0

10

20

30

40

50

60

S 0

Process optimum
Proposed selection
Output sensitivity selection

Figure 3.3.: Convergence of S0 for proposed selection and output sensitivity selection for εmax = 1%.

In this subsection we compare the proposed selection based on sensitivities of outputs, cost function

and constraint gradients to a selection which is only based on output sensitivities. Figure 3.3

compares the results for the two selection methods for an upper bound on the truncation error of

εmax = 1%. As in the previous subsection, the optimization results are averaged over 10 different

noise realizations and illustrated with 95% confidence intervals shown as shaded areas. By taking

into account the parametric sensitivities of the gradients, it is possible to achieve a significantly

faster convergence to the process optimum, especially during the initial iterations. The proposed
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selection convergences on average within 8 iterations to the optimal substrate concentration, while

it takes up to 14 iterations for a selection without gradient sensitivities. The difference in the

selected parameters in each iteration is illustrated in figure 3.4, showing that the choice of the

parameters’ subset can change between iterations. Furthermore, the proposed parameter selection

based on gradients and outputs also results in less uncertainty in the prediction of the next optimal

batch runs as compared with the case that only output sensitivity is considered, which can be

inferred from the smaller confidence intervals shown in Figure 3.3.

0 5 10 15 20 25 30
Batch run

x

KX

P

KP

KI

YX/S

YX/S

mX

Se
le

ct
ed

 P
ar

am
et

er
s

Proposed selection
Output sensitivity selection
Fixed parameter sub-set

Figure 3.4.: Example of selected parameters in each iteration.

Finally, Table 3.3 compares the three approaches, i.e. fixed parameters’ set, parameters selected

based on output sensitivity and parameters selected based on the proposed output and gradient

sensitivities. The comparison includes the integral absolute error (IAE), which is the error between

the predicted and the actual process optimum, averaged over all iterations and simulations. The

average gradient error is the relative error between the corrected and the measured cost function

gradients, averaged over all iterations and simulations. It is evident that, for both criteria, the
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proposed selection outperforms the parameter selection that is based only on output sensitivities

and the fixed parameter sub-set used in previously reported studies. In conclusion, by updating

model parameters based on sensitivities of both outputs and gradients, it is possible to improve

speed and reduce uncertainty in the convergence of a parameter adaption scheme for the model-

based optimization under model-plant mismatch.

Method IAE Gradient Error

Proposed output and gradient based
sensitivity selection

3.6313 0.8273

Output based sensitivity selection 4.9796 1.6983

Fixed sub-set from previous works 9.5030 4.6350

Table 3.3.: Comparison of methods in terms of IAE and average gradient error.

3.5.3. Robust Optimization Results

In addition to structural model-plant mismatch, we now consider uncertainties in initial biomass

and initial substrate concentrations. A robust optimization is carried out using the robust optimiza-

tion methodology based on the PCE approach from section 3.4. The properties of the stochastic

distributions of the uncertain initial conditions in biomass and substrate are given in Table 3.1. Per-

forming a robust optimization as shown in (3.56) amounts to finding the operating point for which

the amount of penicillin is maximized in the worst-case scenario as defined by the expectation

minus the variance multiplied by w. In figure 3.5, the results are illustrated for different weights

w on the variance of the cost. As in the previous subsection, the robust optimization results are

averaged over 10 different noise realizations. We used the proposed parameter selection based on

sensitivities of output and gradients as shown in the previous section for updating the model and

correction of gradients.
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Figure 3.5.: Results of the robust optimization for different weights on the variance of the cost.

By increasing the weight on the variation due to input uncertainty, the final amount of substrate

will be reduced. To explain this result, it is important to notice that the production of penicillin is

governed by a substrate inhibition effect. Thus, the production of penicillin is significantly reduced

if there is an excess of substrate in the reactor according to the expression in the denominator

of the kinetic term in (3.50). Thus by increasing the robustness of the solution and lowering the

amount of the initial amount of substrate, we avoid a possible excess of substrate that would result

in inhibition in the production of penicillin. On the other hand, too small levels of initial substrate

would result in smaller productivity according to the substrate dependency in the numerator of the

kinetic expression in (3.50).
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Figure 3.6.: Average amount and deviations (shaded area) of penicillin over 10 realizations of the input
uncertainty at non-robust (w = 0) and robust (w = 0.05) operating points from figure 3.5.

This is confirmed, as shown in figure 3.6, by running the simulator for samples of the input dis-

tributions at the corresponding operating points obtained from the non-robust (w = 0) and robust

(w = 0.05) case shown in figure 3.5. In order to assess the overall performance of the robust

solution, 10, 000 MC simulations were performed at the final respective non-robust (w = 0) and

robust (w = 0.05) solutions. This results in an average final amount of penicillin of 574.3 g for

the non-robust case and 583.4 g for the robust solution. This is also illustrated in figure 3.7, where

the non-robust output distribution exhibits a much broader tail leading to a lower mean value when

compared to the robust solution. In conclusion, although the robust operating point leads to less

penicillin during nominal conditions, it is much less affected by disturbances in inlet concentra-

tion, which results in superior performance for extreme cases and in a higher average over a large

number of runs.
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Figure 3.7.: Distributions of the amount of penicillin obtained from MC simulations for the non-robust (w =
0) and robust (w = 0.05) case.

3.6. Conclusions

This chapter presents a new methodology for selecting a subset of model parameters to be updated

in each iteration of a batch-to-batch optimization in the presence of model-plant mismatch. The

parameters are ranked according to their overall effect on the model output and the gradients of the

cost function and constraints. An orthogonalization procedure is applied to account for correlation

between the parameters’ effect. It was shown that the selection of appropriate parameters leads

to an improvement in the correction of the predicted gradients. This results in a significant speed

up in convergence to the process optimum. It is demonstrated that it is very important to consider

sensitivities of both outputs and gradients of cost and constraints to maximize improvements in

convergence. Furthermore, robustness with respect to uncertainties in initial batch conditions was

implemented by using a robust formulation of the objective. The propagation of uncertainty in
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initial conditions onto the output was achieved by using a PCE based approach. A robust solution

was obtained, which results in an improved performance, not only in the worst-case scenario, but

also on average over a large number of batch runs. In conclusion, by using the proposed parameter

selection approach in combination with the robust formulation of the objective, it is possible to

obtain operating points, which are less susceptible to input uncertainty.
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4. Simultaneous Identification and

Optimization Using Output Uncertainty

Bounds

Overview

The method of simultaneous identification and optimization aims at satisfying the conditions of

optimality while providing accurate predictions of the process outputs. The model parameters are

updated in a run-to-run procedure as to account for changes in operating points and to correct

for errors in the predicted gradients of the cost-function and constraints. To make this parameter

updating step more robust, we propose an objective function for parameter identification consisting

of the ratio of the sum of squared errors to the parametric gradient sensitivity function. This results

in an identified set of parameters which provide larger sensitivities for the subsequent gradient

correction step thus leading to faster convergence to the optimum. Uncertainty bounds on the

model outputs are utilized to enforce an adequate model fitting and are also used at each run to

decide whether it is required to update the model parameters. This is especially valuable when

identifying dynamic metabolic models with many parameters. The resulting improvements are

Adapted from Hille, R., and Budman, H. (2017). Simultaneous identification and optimization of biochemical pro-
cesses under model-plant mismatch using output uncertainty bounds. Computers & Chemical Engineering, [submit-
ted].
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illustrated using two simulated cell culture processes.

4.1. Introduction

Mathematical models play a key role in the design and operation of biochemical processes. Com-

pared to the largely continuous process operations in the chemical industries, biotechnological

processes are typically still operated in batch or fed-batch modes (Croughan et al., 2015). The

operation of batch processes is usually challenging due to nonlinear process behavior, an extensive

cost and duration of performing experiments and the lack of a steady-state (Bonvin, 1998). Math-

ematical models consequently offer an opportunity to gain a better process understanding and to

enhance product yields. In terms of their nature, one can generally distinguish between black-box

(data-driven) (Box & Draper, 1987) and fundamental (knowledge-driven) models. The latter type,

generally based on first principles balances, require an intricate understanding of the process and

therefore involve an extensive development. Nonetheless, when compared to black-box models,

they generally offer a larger domain of validity (Walter & Kieffer, 2007; Bonvin et al., 2016) and

thus are particularly suited for searching for optima that may lie outside the data used for model

calibration (Yip & Marlin, 2004).

When dealing with complex nonlinear models, the identification of the model parameters might be

impaired due to lack of experimental data or occurrence of unmeasured disturbances. Moreover,

due to simplifications and assumptions in the modelling step, discrepancies between the model and

the process under study may arise. This so-called model-plant mismatch has the implication that

the parameters’ values that provide an adequate fit to the measured process outputs, do not neces-

sarily result in an accurate prediction of the gradients of the cost-function and constraints, which

are necessary for optimization (Srinivasan & Bonvin, 2002). This lack of synergy between identifi-

cation and optimization objectives therefore presents a challenge when carrying out a model-based

optimization. Hence, under such conditions, a standard two-step procedure (Chen & Joseph, 1987),
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involving repeated identification and optimization steps, may result in a sub-optimal operating pol-

icy.

For a model to be useful in the context of optimization, it should have the capability to provide, at

least in the neighbourhood of the optimum, an accurate prediction of the process optimality con-

ditions (Forbes et al., 1994; Biegler et al., 1985). In the presence of model-plant mismatch, this

implies that the model must be adjusted so as to achieve a correct prediction of the Karush-Kuhn-

Tucker (KKT) conditions at the process optimum. Considering these challenges, several methods,

such as Modifier Adaptation (MA) (Marchetti et al., 2009; Gao et al., 2016) have been developed to

compensate for errors in the predicted optimality conditions. In MA, additional modifiers are added

to the cost-function and constraints to update the predicted gradients based on newly available data.

Instead of modifying the cost and constraint functions, the algorithm for the simultaneous identi-

fication and optimization (Mandur & Budman, 2015b) aims at reconciling these two objectives

through an adaptation of the model parameters. The rationale for pursuing accurate model pre-

dictions is that the model is often needed for goals other than optimization such as testing what-if

scenarios, computing set-point trajectories for closed loop operation and for designing soft sensors.

The algorithm for simultaneous identification and optimization used in this study involves 3 steps:

I - model identification based on fitting of model outputs, II - parameter adaptation to correct

for errors in predicted gradients of cost-function and constraints and III - optimization using the

model with updated parameters. The overall objective of this chapter is to find a set of parameter

values which provide an accurate prediction of the cost-function around the current operating point

in the presence of model-plant mismatch. However, for complex nonlinear models, a repeated

re-estimation of model parameters from uncertain measurements in each iteration can result in

increased run-to-run variability in the parameter values. This in turn leads to increased uncertainty

in the calculated optimal conditions for the next batch run. To mitigate this limitation, it is therefore

essential to implement a parameter estimation procedure that is robust to model uncertainty.
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Regarding a parameter identification from output measurements, set-based constraints have been

applied to biochemical systems as a mechanism for model discrimination and invalidation (Walter

& Kieffer, 2007; Rumschinski et al., 2010). For example, constraints on the model outputs, derived

from experimental data, have been used for identifying feasible model parametrizations (Paulen

et al., 2013) that can satisfy given output restrictions. Recently, set-based bounds have also been

used for identifying dynamic metabolic flux models (Villegas et al., 2017). In this case, the con-

straints on the model outputs enable the use of a modified version of the standard model output

fitting objective, frequently defined as the minimization of the sum of squared errors (SSE). In-

stead, Villegas et al. (2017) defined an objective function for the parameter estimation problem that

weights the SSE objective by a parametric sensitivity measure. This results in improved estimates

of model parameters for the case that the time varying trajectories are assumed to be uniformly

distributed within the permissible boundaries.

In this study, we use a modified version of the approach from Villegas et al. (2017) for identifying

a model to be used for optimization under model-plant mismatch. Since the model is required to

meet the optimality conditions at the optimum, the model parameters are adapted to correct for

errors in the predicted cost-function and constraint gradients. To facilitate the gradient correction

step, we propose to modify the parameter estimation objective commonly used for identification,

i.e. the SSE between model predictions and data, by dividing the latter by a lumped measure of the

parametric sensitivities of the cost-function and constraint gradients. Combined with the set-based

constraints, which enforce bounds on the model outputs, the approach provides higher robustness

to measurement noise and unmeasured disturbances thus resulting in an improved performance in

terms of convergence of a run-to-run optimization procedure. Furthermore, the uncertainty bounds

on the process outputs are used to define a criterion that allows updating the parameters to re-fit the

model outputs only if constraints are violated. By doing so, unnecessary re-estimation steps of the

model parameters can be avoided. This is particularly useful for the identification of more com-

plex biochemical models with a large number of parameters. To deal with large scale metabolic
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models in batch-to-batch optimization, a sequential parameter estimation strategy is implemented

that splits the estimation into problems with smaller number of parameters. In each instance of the

estimation procedure, the use of uncertainty bounds on the model outputs guarantee a feasible pre-

diction of metabolites’ trajectories, ultimately resulting in an adequate prediction of outputs in each

iteration of the run-to-run optimization. Moreover, using the uncertainty bounds, re-estimation is

limited only to the metabolites which require updating. This is especially of importance, consider-

ing that an iterative optimization under model-plant mismatch leads to frequent updating of model

parameters to compensate for the lack of fit between model predictions and data.

In chapter 3, it was shown that an appropriate parameter selection can speed-up convergence as

highly sensitive parameters will improve the amount of gradient correction. In contrast to that,

this chapter presents a methodology to obtain more suitable parameter values from the identifica-

tion step itself. This approach thus represents and addition to the overall run-to-run optimization

framework and is independent of the subset that has been selected a priori.

The chapter is organized as follows. Section 2 presents a brief review of the algorithm for the

simultaneous identification and optimization. The proposed approach for parameter updating using

set based constraints is presented in section 3 followed by the application of the proposed approach

in section 4 using two cell culture case studies. Section 4 also outlines the sequential parameter

estimation procedure when dealing with dynamic metabolic models containing many parameters.

Conclusions are provided in section 5.

4.2. Simultaneous Identification and Optimization Methodology

The method for simultaneous identification and optimization (Mandur & Budman, 2015a) consists,

in each iteration (batch run), of the following steps: I – parameter identification, II - gradient

correction and III - model-based optimization to determine the input for the next batch run.
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4.2.1. Parameter Identification

We consider the problem of identifying parameter values of an available model from experimental

data. For this purpose, measurements of the process outputs are obtained by performing one or

several batch experiments at a given operating point characterized by the input uk ∈ Rnu . A

typical model-fitting objective is the minimization of the SSE between the obtained measurements

and the model predictions (Bard, 1974). Such an SSE objective can be defined as follows:

φSSE(θ) =

nt∑
i=1

∥∥yp,k(ti)− yk(θ, ti)∥∥2 (4.1)

where yp,k ∈ Rnt×ny are the acquired process output measurements and yk ∈ Rnt×ny the outputs

of the model at the specified sampling times ti with i ∈ {1, . . . , nt}. Using the objective in (4.1),

it is possible to fit the model outputs to the experimental data and thus determine an estimate of the

model parameters by solving the following problem:

θk = arg min
θ
φSSE(θ)

s.t. ẋk = f(xk,uk,θ)

yk = h(xk)− ck−1

θ ∈ [θlb,θub] (4.2)

where xk ∈ Rnt×nx are the model states and θk ∈ Rnθ a set of parameter values which provide

an adequate fit according to the objective in (4.1). The bounds θlb and θub present the permissible

range for the model parameters. The correction term ck−1 ∈ Rnt×ny is further explained in the

gradient correction section below and is required to maintain the fitting accuracy when performing

a gradient correction.

As mentioned in the introduction, in the presence of model-plant mismatch, the parameters ob-
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tained from fitting the model outputs may not provide a correct prediction of the gradients of the

cost-function and constraints (Srinivasan & Bonvin, 2002). This error therefore can result in a

mismatch between predicted and measured gradients:

∇φ(yk(θ),uk) 6= ∇φp(uk) (4.3)

and/or

∇gj(yk(θ),uk) 6= ∇gp,j(uk) (4.4)

where φ ∈ R denotes the predicted cost-function and ∇φ ∈ Rnu its gradient vector at input

uk. Given a set of predicted process constraints g ∈ Rng , their respective gradient is given by

∇gj ∈ Rnu with j ∈ {1, . . . , ng}. The subscript p denotes measured quantities.

4.2.2. Gradient Correction

To converge to the optimum in the presence of a structural model error, it is necessary to adjust the

values θk, obtained in problem (4.2), such that the error between the respective gradients described

by (4.3) and (4.4) can be minimized. This goal can be achieved by performing the following

parameter adjustment:

∆θk = arg min
∆θ

(
wT
φ

∣∣∇φp(uk)−∇φ(yk(θk + ∆θ),uk)
∣∣

+

ng∑
j=1

wT
g,j

∣∣∇gp,j(uk)−∇gj(yk(θk + ∆θ),uk)
∣∣)

s.t.
.
xk = f(xk,uk,θk + ∆θ)

yk = h(xk)− ck

θk + ∆θ ∈ [θlb,θub]∥∥εTk ∥∥∞ ≤ εmax (4.5)

74



where the weights wφ ∈ Rnu and wg,j ∈ Rnu are used to scale the respective cost-function and

constraint gradients. As the parameter values are changed by the amount ∆θk, it is essential to

introduce the correction term ck into the model output in order to maintain the fitting accuracy

achieved in the previous identification step (4.2). The correction term is updated in each iteration

and is calculated using a first order Taylor approximation:

ck(ti) = ck−1(ti) +Dyk(θk, ti)∆θk (4.6)

whereDyk(θk, ti) ∈ Rny×nθ is the Jacobian of the model at sampling time ti. Moreover, to avoid

overfitting of noisy gradient measurements, an upper bound on the relative truncation error εmax is

used to limit the amount of gradient correction. The truncation error is the relative error introduced

into the model when using the approximation in (4.6) and is calculated as follows:

εk(ti) = [yk(θk + ∆θk, ti)−Dyk(θk, ti)− yk(θk, ti)] · [diag (yk(θk, ti))]
−1 (4.7)

The result of the gradient correction step is an updated set of parameter values given as follows:

θ′k = θk + ∆θk (4.8)

Which, for the current operating point uk, provide a simultaneous fitting of model outputs, due to

ck, as well as of the gradients of the cost-function and constraints. The next step is to perform an

optimization based on the updated model, i.e. the model with the parameter values calculated from

the gradient correction step, in order to determine the optimal input for the next batch run.

4.2.3. Model-based Optimization

The overall goal of the algorithm is to reach the process optimum. Using the locally corrected

parameter values from (4.8), we can determine the optimal input for the next batch run during each
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iteration of the run-to-run procedure as follows:

uk+1 = arg min
u
φ(y(θ′k),u)

s.t. ẋ = f(x,u,θ′k)

y = h(x)− ck

g(y(θ′k),u) ≤ 0

uL ≤ u ≤ uU (4.9)

where the bounds uL and uU present the permissible search range for the optimal input. The

following assumptions are necessary for convergence of the outlined procedure to the process op-

timum when considering the presence of model-plant mismatch.

Assumption 3.1: For the convergence of a model-based optimization scheme to the process op-

timum u∗, a necessary condition is that, for a set of model parameters θ∗, the model adequacy

conditions (Forbes et al., 1994) can be satisfied:

∃θ∗ ∈ [θlb,θub] ,u
∗ :

∇φ(y(θ∗),u∗) = ∇φp(u∗)

∇g(y(θ∗),u∗) = ∇gp(u∗)

∇2φ(y(θ∗),u∗) > 0 (4.10)

Furthermore, in addition to the satisfaction of the optimality conditions at the process optimum in

(4.10), to converge to a neighbourhood of the optimum it is also necessary to achieve a sufficient

gradient correction in each iteration. This step requires the following assumption.

Assumption 3.2: For each operating point uk considered during the run-to-run optimization, a set

of corresponding model parameters θ′k and an upper bound on the relative truncation εmax provides
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sufficient gradient correction:

∃θ′
k ∈ [θlb,θub] , εmax :∣∣∣∣∣∣[∇φp(uk)−∇φ(yk(θ

′
k),uk)

]
+

ng∑
j=1

wT
j

[
∇gp,j(uk)−∇gj(yk(θ′k),uk)

]∣∣∣∣∣∣ < ε (4.11)

With the normalizing weight given by wj = [diag (wφ)]−1wg,j . The choice of ε will determine

the region of convergence around the true optimum.

4.2.4. Model Parameter Selection

When dealing with the identification of nonlinear models, not all model-parameters need or can be

identified. This is mainly due to correlation of the parameters’ effect on the model output, lack of

excitation and sensitivity to measurement noise. Hence, it is often necessary to select a subset of

parameters which can be identified and that can provide a significant effect on the model output

(McLean & McAuley, 2012). In case of run-to-run optimization under model-plant mismatch, it

is also important to consider sensitive parameters which provide a large effect on the gradients of

cost-function and constraints as to satisfy the conditions in (4.10) and (4.11). To conform to these

demands on the parameters, an appropriate subset of model parameters can be selected based on

the procedure previously outlined in Hille et al. (2017).

4.3. Proposed Methodology

In the run-to-run optimization framework, outlined in section 4.2, the model is updated at each

iteration by re-estimating the parameters in order to re-fit model outputs to process measurements.

This is generally necessary as the model parameters have to compensate for the structural model

error. However, measurement noise and disturbances entering the process lead to a considerable
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degree of uncertainty in the parameter values. The result is an increased batch-to-batch variability

in the parameter values which affects the performance of the subsequent gradient correction step.

This in turn can lead to a slower or oscillatory convergence to the process optimum. For that reason,

we propose the use of uncertainty bounds on the process outputs, which enable the formulation of

a model-fitting criterion that involves the parametric gradient sensitivities. We are particularly

interested in using a measure of the fitting based on a combination of the SSE and parametric

gradient sensitivities, where the latter are specifically relevant for optimization. Furthermore, the

availability of uncertainty bounds on the outputs also allows for the definition of a model-update

criterion. This way, model outputs only have to be updated when it is strictly necessary. This is

especially useful for the repeated parameter estimation of large metabolic models of biochemical

processes as illustrated in the case study.

4.3.1. Output Uncertainty Bounds

Experimental data from biochemical processes frequently exhibit a lack of repeatability due to sen-

sor error, unmeasured disturbances and a high sensitivity to environmental conditions. Set-based

constraints have been introduced to provide bounds on the process outputs and subsequently deter-

mine a possible model parametrization that can satisfy the uncertainty bounds (Rumschinski et al.,

2012; Paulen et al., 2013). In addition, such bounds on the process outputs provide the possibility

of modifying a standard model-fitting objective (4.1), i.e. the SSE between model predictions and

data, so as to account for a parametric sensitivity objective (Villegas et al., 2017).

In this work, we assume that a set of process output measurements yp,k(ti) can be obtained at an

operating point given by the decision variables’ vector uk. In addition, due to measurement noise

and input uncertainties, we assume the error of the output measurements to be bounded as follows:

Ek =
[
eLk , e

U
k

]
(4.12)

78



For the operating point uk and all sampling times along the batch, a permissible range of process

outputs can be defined using uncertainty bounds as follows (Paulen et al., 2013):

Yk =
{
Y i
k = yp,k(ti) +

[
eLk , e

U
k

]
|i ∈ {1, . . . , nt}

}
(4.13)

where the error vectors ek ∈ Ek describe worst-case uncertainty bounds on the process outputs

and ti the sampling times along the batch. Accordingly, the process output at each time interval

i ∈ {1, . . . , nt} can be bounded by and upper and lower bound (Streif et al., 2016):

yi
k
≤ yik ≤ yik (4.14)

In a similar way, we typically assume a permissible range for the model parameter values:

Θ0 = [θlb,θub] (4.15)

Assumption 3.3: Note that, although we consider the case of structural mismatch between the

model used for optimization and a simulator describing the actual process in this work, we assume

that the discrepancy and the error bounds on the outputs are such that for every operating point uk

we can state:

∃θk ∈ Θ0, ek ∈ Ek :

ẋk = f(xk,uk,θk)

yk = h(xk)− ck−1

yk ∈ Yk (4.16)

Thus, we do not consider the problem of model invalidation (Prajna, 2006; Rumschinski et al.,

2012), but rather we take into account a bounded error for which there exist a feasible model
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parametrization where the model outputs can satisfy the available worst-case bounds on the process

outputs.

4.3.2. Modified Parameter Estimation Problem

Compared to a parameter estimation that is minimizing the SSE according to (4.1), the general goal

of a set-based (Rumschinski et al., 2010) or guaranteed parameter estimation (Paulen et al., 2013)

can be expressed as follows (Mukkula & Paulen, 2017):

Θk = arg find
θ∈Θ0

all θ

s.t.
.
x = f(x,uk,θ)

y = h(x)

y ∈ Yk (4.17)

Here, the goal is to determine the complete set of model parametrizations which are able to satisfy

the given measured outputs and error bounds. However, in the context of simultaneous identifi-

cation and optimization, the primary objective is to reconcile the objectives of identification with

those of optimization. We are thus mainly interested in a set of parameter values, which can si-

multaneously satisfy the uncertainty bounds and at the same time, allow for an improved gradient

correction. It should be noticed that, for the purpose of enhancing the gradient correction step in

(4.5), we require parameters which provide large parametric gradient sensitivities since for large

parametric gradient sensitivities, given by ∂∇φ/∂θ and ∂∇g/∂θ, it is possible to achieve a signif-

icant gradient correction for smaller changes of ∆θ in the model parameters. Achieving gradient

matching with smaller changes of the parameter values with respect to the values obtained in the

estimation step results in smoother convergence of the run-to-run procedure. One possibility for

enhancing the gradient correction is to select a subset of highly sensitive model parameters, which
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has been addressed in Hille et al. (2017). The second option, pursued in the present work, is to find

values for a particular subset of parameters which lead to higher gradient sensitivities when fitting

model outputs, while satisfying the set-based uncertainty bounds.

Towards the formulation of the proposed parameter estimation problem, we first define a scaled

local sensitivity of a cost-function gradient∇φl with respect to a model parameter θi as follows:

Sθi∇φl (u,θ) =
∂ (∇φl (u,θ))

∂θi

∣∣∣∣ θi
∇φl (u,θ)

∣∣∣∣ (4.18)

With i ∈ {1, . . . , nθ} and l ∈ {1, . . . , nu}. The scaling is performed with respect to the magnitude

in both parameters and gradient. For all gradients and parameters, the sensitivity in (4.18) can be

calculated and arranged into a matrix as follows:

S∇φ =



Sθ1∇φ1 · · · Sθi∇φ1 · · · S
θnθ
∇φ1

...
. . . . . . . . .

...

Sθ1∇φl
. . . . . . . . . S

θnθ
∇φl

...
. . . . . . . . .

...

Sθ1∇φnu
· · · Sθi∇φnu

· · · S
θnθ
∇φnu


(4.19)

In a similar way, the parametric sensitivity of a constraint gradient ∇gjl with respect to model

parameter θi is given as:

Sθi∇gjl (u,θ) =
∂ (∇gjl (u,θ))

∂θi

∣∣∣∣ θi
∇gjl (u,θ)

∣∣∣∣ (4.20)

With j ∈ {1, . . . , ng}. In the same way as (4.19), the sensitivity matrix for constraint j is given by

81



S∇gj . For all constraints, the sensitivity matrix is then described by:

S∇g =



S∇g1
...

S∇gj
...

S∇gng


(4.21)

Following the definitions of the sensitivity matrices in (4.19) and (4.21), we define an overall para-

metric gradient sensitivity measure by summing up over of all elements of the sensitivity matrices:

φS∇(u,θ) =

nu∑
i=1

nθ∑
j=1

|s∇φ,ij(u,θ)|+
nu×ng∑
i=1

nθ∑
j=1

|s∇g,ij(u,θ)| (4.22)

Finally, using the scalar measure describing the sensitivity function (4.22), the proposed parameter

estimation problem can be stated as follows:

θk = arg min
θ

(
φSSE(u,θ)

φS∇(u,θ)

)
s.t. ẋk = f(xk,uk,θ)

yk = h(xk)− ck−1

θ ∈ Θ0

yk ∈ Yk (4.23)

where the standard SSE objective is now divided by the parametric gradient sensitivity function. In

this manner, we seek parameter values which result in an adequate model-fitting by minimizing the

SSE while maximizing the sensitivities of the cost-function and constraint gradients. By using this

modified objective function, smaller parameter corrections ∆θ will be required in the subsequent

gradient correction step (4.5), allowing for an improved reconciliation of the two objectives of
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identification and gradient correction. Since the optimization cost was modified from a norm of

the prediction errors as in (4.1) to a norm of the errors divided by the sensitivity function as in

(4.23), the uncertainty bounds (set-based bounds) help to ensure that the predicted outputs remain

relatively close to the measured process outputs.

4.3.3. Model-Update Criterion

In addition to the proposed identification problem (4.23), the use of the uncertainty bounds on the

process outputs also allow for the definition of a model-update criterion. Since the method pursues

simultaneous identification and optimization there may be conflictive demands from the parameters

to satisfy each one of these two objectives. Thus, the rationale behind the use of a model update

criterion is that the model-fitting should only be performed when it is absolutely necessary. This

would save computational time and avoid changes in parameter values due to measurement noise.

As the gradient correction step is still maintained, the model update criterion does not affect the

update of the predicted gradients of the cost-function and constraints. Accordingly, we define the

model-update criterion as follows:

y′k ∈ Yk

s.t. ẋk = f(xk,uk,θ
′
k−1)

y′k = h(xk)− ck−1

θ′k−1 ∈ Θ0 (4.24)

If condition (4.24) holds, we consider the identification objective as satisfied and thus simply update

the parameter values as follows:

θk = θ′k−1 (4.25)
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The model-update criterion combined with the above identification approach ensures that the iden-

tification objective, as given by the set-based constraints, is satisfied and allows for an improved

prediction of the next optimal input due to a superior gradient correction.

4.3.4. Summary of the Proposed Model Update Methodology

The proposed extension to the simultaneous identification and optimization method can be sum-

marized as per the steps described in Algorithm 4.1. The required assumptions for convergence to

the process optimum, given in (4.10) and (4.11), remain unchanged for the proposed method.

Algorithm 4.1 Summary of the proposed approach
1: Initialize algorithm with k = 1, θ′0 = θ0 and c0 = 0
2: Perform several experiments at input uk to acquire process uncertainty bounds Yk

3: if y′k ∈ Yk then
4: Model-update criterion (4.25): θk = θ′k−1

5: else
6: Multi-objective identification: Solve (4.23) to find θk such that yk ∈ Yk

7: end if
8: Gradient correction: Solve (4.5) to obtain θ′k = θk + ∆θk
9: Model-based optimization: Solve (4.9) to find uk+1

10: Implement new optimal input and go back to step 2: k+ = 1

4.4. Results and Discussion

This section presents the results and a discussion of the proposed identification approach including

the model update criterion. Two cell-culture case studies are considered for illustration. The first

case study deals with a penicillin process model and the second case study presents a relatively

more complex dynamic metabolic model of a Chinese Hamster Ovary (CHO) cell line. To obtain

feasible model parametrizations and avoid needless re-estimation steps for the latter case study, a

sequential parameter estimation procedure is implemented that makes use of the already introduced

output uncertainty bounds.
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4.4.1. Penicillin Process

A model of a penicillin fed-batch process has been proposed in (Birol et al., 2002). It is used as a

case study to perform a run-to-run optimization. The process can be described by the following set

of ODEs:

dX

dt
=

(
µXSX

KXX + S

)
− X

V

dV

dt
(4.26)

dP

dt
=

(
µPSX

KP + S + S2

KI

)
−KHP −

P

V

dV

dt
(4.27)

dS

dt
= −

(
1

YX/S

µXSX

KXX + S

)
−

(
1

YP/S

µPSX

KP + S + S2

KI

)

−mXX +
Fsf
V
− S

V

dV

dt
(4.28)

dV

dt
= F − V 6.226 · 10−4 (4.29)

where the biomass is given by X , the penicillin concentration by P , the substrate concentration

by S and volume by V . The model parameters are as follows: µX is the specific growth rate of

biomass, µP is the specific rate of penicillin production, KX and KP are saturation constants,

KI is a substrate inhibition constant, KH is a constant representing the rate of consumption of

penicillin by hydrolysis, YX/S and YP/S are the yields per unit mass of substrate for the biomass

and penicillin respectively, mX is the consumption rate of substrate for maintaining the biomass,

F is the constant feed rate and sf represents the concentration of substrate in the feed.

The equations (4.26) – (4.29) describe the process simulator and are used to generate in silico

data for use as process output and gradient measurements by the proposed run-to-run optimiza-

tion procedure. Gaussian noise with a standard deviation corresponding to 10 % of magnitude of

the process outputs is added. In addition, we assume stochastic disturbances in the initial batch
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concentrations of biomass and substrate, both following normal distributions. Information on the

standard deviations of disturbances and on the other initial batch conditions can be found in table

4.1.

Biomass conc. (X0) 0.1 g/l

Biomass standard dev. (σX0) 0.0006 g/l

Substrate conc. (S0) 1 g/l

Substrate standard dev. (σS0) 0.4 g/l

Product conc. (P0) 0 g/l

Volume (V0) 100 l

Input Feed (F ) 0.04 l/h

Table 4.1.: Initial batch conditions for the penicillin process.

4.4.1.1. Model-Plant Mismatch

Model-plant mismatch is deliberately introduced by eliminating the hydrolysis term in the peni-

cillin equation in (4.27). Assuming that the user is not aware of the existence of the penicillin

hydrolysis phenomena, the penicillin equation assumed in the model is given by:

dP

dt
=

(
µPSX

KP + S + S2

KI

)
− P

V

dV

dt
(4.30)

Accordingly, the model to be calibrated and utilized for optimization of the penicillin process is

given by equations (4.26) and (4.28) - (4.30). The goal of this run-to-run optimization is to run

repeated batch experiments as to maximize the amount of penicillin at the final batch time tf . To

accomplish this task, the available manipulated variables are the initial substrate concentration S0

and constant feed rate F . Thus, the optimization problem to be solved in each iteration of the
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run-to-run optimization is stated as:

min
S0,F

−P (x, S0, F,θ, tf )

s.t. (4.26) and (4.28)− (4.30)

V (x, S0, F,θ, tf ) ≤ Vmax (4.31)

where a constraint on the volume of the reactor is given by Vmax = 120 l. We assume that four

batch experiments are performed at each operating point to obtain output measurements and the

process uncertainty bounds. Furthermore, a finite difference approach is used to obtain the gradi-

ents of the cost at each operating point. In order to reduce the effect of noise and input disturbances

on the gradient estimate, step sizes of ∆S0 = 5 g/l and ∆F = 0.5 l/h are used for the respective

initial substrate concentration and feed rate. The initial model parameters used in the first iteration

are given in table 4.2.

µX KX µP KP KI YX/s YP/S mX

0.092 0.15 0.008 0.0002 0.1 0.45 0.9 0.014

Table 4.2.: Initial values of the penicillin model parameters.

4.4.1.2. Output Uncertainty Bounds

As discussed in section 4.3.1, the worst-case uncertainty bounds are used to enforce boundedness

of the model outputs in each iteration. In this work, we calculate the worst-case error term (4.12)

for each operating point as follows. First, we note that from the nb = 4 batch experiments per

operating point uk we can calculate the average output values at each sampling time:

ŷp,k =
1

nb

nb∑
i=1

yip,k (4.32)
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Then, the worst-case errors for the outputs and input uk are calculated as:

eLk = min
i∈{1,...,nb}

(
yip,k − ŷp,k

)
(4.33)

eUk = max
i∈{1,...,nb}

(
yip,k − ŷp,k

)
(4.34)

Consequently, the worst-case deviations from the mean are used as the bounded errors on the

output measurements. An example of the obtained uncertainty bounds for the penicillin process

and feasible trajectories are given in figure 4.1. The main reason for using these bounded errors is

to provide a more even and broader range for the predicted outputs that will permit to satisfy the

model feasibility condition in (4.16) despite the existing model mismatch.
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Figure 4.1.: Illustration of uncertainty bounds (-) and feasible model-fitting (--) for the penicillin process.
Biomass, penicillin and substrate in [g/l]. Volume in [l] and time in [h].
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4.4.1.3. Run-to-Run Optimization Results

In the following, we compare the proposed method to the previous version of the simultaneous

identification and optimization method for two different parameter subsets. Subset I, consisting

of KI and KX has been implemented in previous applications (Mandur & Budman, 2015b), while

subset II, consisting ofmX , µP and µX , is based on an appropriate parameter selection (Hille et al.,

2017).
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Batch run
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S 0

Subset I

10 20 30
Batch run

10

20

30

40

50

60

S 0

Subset II

Process optimum
Proposed objetive
SSE objective

Figure 4.2.: Comparison of convergence of S0 for parameter subset I and II.

Due to the constraint on the volume of the reactor, the optimal constant feed rate ofF ∗ = 0.1728 l/h

can be obtained within one iteration. However, the model-plant mismatch has a significant effect

on the prediction of the optimal substrate concentration of S∗0 = 54.72 g/l and thus requires nu-

merous batch experiments. The upper bound on the relative truncation error in (4.5) is selected

as εmax = 0.01 and it is thus lower than the magnitude of measurement noise of 10 %. This is

done to maintain a model-fitting accuracy that is sufficient to satisfy constraints and other relevant

prediction objectives. Finally, in order to account for different noise and disturbance realizations,
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the results are averaged over 10 simulations.

The performance in convergence to the process optimum for parameter subset I is illustrated on

the left graph in figure 4.2. The shaded areas represent the 95 % confidence regions obtained

from the 10 simulations. It can be seen that the proposed objective leads to a faster and smoother

convergence to the process optimum. This result corroborates that, by using an objective function

for identification that consists of the SSE divided by the gradient sensitivity to parameter changes,

we have obtained a better gradient correction. This is especially evident from the reduction in

the confidence intervals. Overall, the proposed method leads to a reduction in the IAE (Integral

Absolute Error) of 33 % (where the IAE is calculated based on the errors with respect to the true

optimum S∗0 ) and a decrease in the gradient error of 37 % for subset I.
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SSE objective
Modified objective
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Figure 4.3.: Comparison of KI and KX in terms of the gradient sensitivity objective function φS∇ .

The main improvement stems of the fact that the inclusion of a gradient sensitivity objective forces

the parameters into a region of high sensitivity. This is illustrated in figure 4.3, where the gradient

sensitivity objective function φS∇ and the trajectories of the parameter values of KI and KX are
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illustrated for both the SSE and the proposed modified identification objective. It is clear, that by

using the proposed objective, the parameter values converge to a region of high gradient sensitivity,

while the estimated parameter values from an SSE objective mostly lie in regions of lower gradient

sensitivity.

The results for parameter subset II are presented on the right graph of figure 4.2. Note that this

subset already results in an improved performance as compared to subset I, since the selected

model parameters provide larger parametric gradient sensitivities. However, even for this case,

the proposed approach leads to an additional speed-up in convergence. Furthermore, as it is also

the case for parameter subset I, the new estimation objective results in less uncertainty of the next

optimal batch run as illustrated by the narrower confidence regions. Overall, the presented method

reduces the IAE by 24 % and improves the gradient correction by 36 % for subset II.

4.4.2. CHO Cell Cultivation Process

An important class of proteins with therapeutic potential are humanized monoclonal antibodies

(MAb). In recent years, increasing attention has been paid to improve the production of MAb by

cultivation in bioreactors. To this end, dynamic metabolic models (Provost et al., 2006; Zamorano

et al., 2013; Yahia et al., 2015) have been developed to obtain a better understanding of these pro-

cesses. For that reason, this second case study is of a cell cultivation process using a dynamic

metabolic model previously developed for a CHO cell line (Aghamohseni et al., 2014). The model

describes the dynamics of MAb and other extra cellular metabolites during a batch experiment. Dy-

namic metabolic models can be developed using the metabolic flux analysis (MFA) methodology

(Naderi et al., 2011). To reduce the complexity of the entire reaction network, MFA is utilized to

determine metabolites and fluxes which are important for explaining the distribution of carbon and

nitrogen in the cultivation process. In this way, insignificant fluxes can be eliminated leading to a

reduction of the network to a smaller set of macro-reactions, where each of those can be described
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by Monod-type kinetics. Consequently, this kind of model reduction also leads to a certain degree

of structural mismatch as only the important reactions are included in the model. The model devel-

opment is further complicated by the fact that not all metabolites can be measured, further limiting

prediction capabilities.

The process simulator is taken from (Aghamohseni et al., 2014) and is defined by the following set

of mathematical equations:

dfgr

dt
= −K11

fgr

1 +
(

[Glc]
K12

) (4.35)

dXv

dt
= µ · fgr ·Xv

 [Glc] [Gln]

(K21 + [Glc]) (K26 + [Gln])

1

1 +
(

[Amm]
K23

) 1

1 +
(

[Glc]
K22

)


− dXd

dt
(4.36)

dXd

dt
= kd (1− fgr)Xv

 1

1 +
(

K24
[Amm]

)n +
K25

[Glc]

 (4.37)

d [Glc]

dt
= −

(
K31 [Glc] [Gln]

(K32 + [Glc]) (K36 + [Gln])

K33 [Glc]

(K34 + [Glc])

)
Xv −K35Xv (4.38)

d [Gln]

dt
= −

(
K41 [Glc] [Gln]

(K42 + [Glc]) (K43 + [Gln])

)
Xv (4.39)

d [Lac]

dt
= −

(
K51 [Glc]

(K52 + [Glc])

d [Glc]

dt

)
Xv (4.40)

d [Asn]

dt
= −

(
K61 [Asn]

(K62 + [Asn])

)
Xv (4.41)

d [Asp]

dt
=

(
K61 [Asn]

(K62 + [Asn])
+

K63 [Glc] [Gln]

(K64 + [Glc]) (K65 + [Gln])
− K71 [Asp]

(K72 + [Asp])

)
Xv (4.42)
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d [Ala]

dt
=

(
K63 [Glc] [Gln]

(K64 + [Glc]) (K65 + [Gln])
− K81 [Ala]

(K82 + [Ala])

)
Xv (4.43)

d [Amm]

dt
= −K91

d [Gln]

dt
+K92

(
K61 [Asn]

(K62 + [Asn])
+

K71 [Asp]

(K72 + [Asp])

+
K81 [Ala]

(K82 + [Ala])

)
Xv (4.44)

d [Mab]

dt
= (K101 +K102 [Gln])Xv (4.45)

where fgr represents the fraction of growing cells, Xv the viable cell density (VCD) and Xd the

dead cell density (DCD). Furthermore, the concentrations of metabolites are defined as follows:

[Glc] - glucose, [Gln] - glutamine, [Lac] - lactate, [Asn] - asparagine, [Asp] - aspartate, [Ala] -

alanine, [Amm] - ammonia and [Mab] – MAb. The kinetic parameters are given by K11 to K102.

As in the case of the penicillin process, the simulator (4.35) – (4.45) is used to generate in silico

measurements of the process outputs and gradients. For uncertainty in measurements, additive

Gaussian noise of 10 % of the average output values is assumed as well as stochastic disturbances

in initial batch conditions. Gradients are estimated using finite differences by running an additional

batch experiment and then calculating the difference in the cost over the perturbation step size. The

initial media composition for the CHO study are given in table 4.3.
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Fraction of growing cells (fgr) 1

Viable Cell Density (Xv) 0.0024 106cells/ml

Dead Cell Density (Xd) 0.0001 106cells/ml

Glucose ([Glc]) 60 mmol/l

Glutamine ([Gln]) 3.48 mmol/l

Lactate ([Lac]) 0.22 mmol/l

Ammonia ([Amm]) 0.71 mmol/l

Aspartate ([Asp]) 1.22 mmol/l

Alanine ([Ala]) 0.66 mmol/l

Asparagine ([Asn]) 0.67 mmol/l

Monoclonal Antibodies ([Mab]) 0.1µg/ml

Table 4.3.: Initial batch conditions for the CHO process.

The parameters of the process simulator have been identified from experimental data obtained by

running several batch experiments in shaker flasks. It is important to point out that, in comparison

to the model given in (Aghamohseni et al., 2014), we have also included an inhibition effect in

growth with respect to large concentrations of glucose in the current process model. This behavior

was observed during the experiments for larger glucose concentrations, but not included in the

original model due to limited available experimental data. The parameter used for generating the

output and gradient measurements are given in table 4.4.
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K11 0.1996 K42 10.1826

K12 1.7519 K43 4.9627

µ 4.1363 K51 0.5338

K21 11.9183 K52 1 · 10−7

K22 60 K61 1.9053

K23 2.0097 K62 27.0327

K24 4.8981 K63 0.3899

kd 2.1627 K64 1 · 10−5

n 0.1046 K65 0.0306

K25 0.0281 K71 3.0264

K26 0.1449 K72 7.8973

K31 25.4691 K81 5.5223

K32 27.3228 K82 34.7467

K33 0.8686 K91 0.4451

K34 29.7875 K92 0.2498

K35 0.1964 K101 1

K36 0.1456 K102 0.7

K41 18.1200

Table 4.4.: Parameter values used in the simulator (4.35) – (4.45).

4.4.2.1. Model-Plant Mismatch

In addition to the process simulator that is used to generate in silico data, we also define a model of

the process that is used for calibration and optimization purposes. To introduce structural mismatch

between the model and process, we assume that glutamine ([Gln]) measurements are not available

and that its effects on the cell metabolism are unknown. This is motivated by the general observa-

tion that the concentrations of many media components are frequently not measured throughout the

cultivation and that their effects on the cell metabolism are often not well understood. Therefore,

the model equations are similar to the simulator, with the difference that all the parts containing a
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product involving glutamine concentration are made a function of only the glucose concentration

and that all dependencies on glutamine alone are eliminated. This results in a structural error for

which the remaining model parameters must compensate for to achieve a precise model fitting.

Furthermore, this impairs the prediction capability in terms of the location of the process opti-

mum. Thus, the model of the process used for identification and optimization is described by the

following ODEs:

dfgr

dt
= −K11

fgr

1 +
(

[Glc]
K12

) (4.46)

dXv

dt
= µ · fgr ·Xv

 [Glc]

(K21 + [Glc])

1

1 +
(

[Amm]
K23

) 1

1 +
(

[Glc]
K22

)
− dXd

dt
(4.47)

dXd

dt
= kd (1− fgr)Xv

 1

1 +
(

K24
[Amm]

)n +
K25

[Glc]

 (4.48)

d [Glc]

dt
= −

(
K33 [Glc]

(K34 + [Glc])

)
Xv −K35Xv (4.49)

d [Lac]

dt
= −

(
K51 [Glc]

(K52 + [Glc])

d [Glc]

dt

)
Xv (4.50)

d [Asn]

dt
= −

(
K61 [Asn]

(K62 + [Asn])

)
Xv (4.51)

d [Asp]

dt
=

(
K61 [Asn]

(K62 + [Asn])
+

K63 [Glc]

(K64 + [Glc])
− K71 [Asp]

(K72 + [Asp])

)
Xv (4.52)

d [Ala]

dt
=

(
K63 [Glc]

(K64 + [Glc])
− K81 [Ala]

(K82 + [Ala])

)
Xv (4.53)
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d [Amm]

dt
= K92

(
K61 [Asn]

(K62 + [Asn])
+

K71 [Asp]

(K72 + [Asp])
+

K81 [Ala]

(K82 + [Ala])

)
Xv (4.54)

d [Mab]

dt
= K101Xv (4.55)

The goal of the run-to-run optimization is to maximize the amount of MAb at the end of the batch

time of tf = 9 days . The decision variable in this case is the initial concentration of the main

substrate glucose [Glc]0. Thus, the optimization problem to be solved in each iteration can be

stated as:

min
[Glc]0

− [Mab] (x, [Glc]0, θ, tf )

s.t. (4.46)− (4.55) (4.56)

For the CHO case study, we assume that five batch experiments are performed at each operating

point to obtain output measurements and the process uncertainty bounds. To obtain an estimate of

the cost gradient, a step size of ∆[Glc]0 = 4 mmol/l is used for the initial glucose concentration.

Furthermore, the initial model parameters are given in table 4.5. It should be noticed that this

example is considerably more complex, as compared to the first case study, in terms of the number

of equations and the corresponding larger number of parameters that are candidates for model

calibration and updating. Due to the complexity and number of parameters for this model, the

parameter estimation step is divided into smaller problems as outlined below.
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K11 0.0140 K51 0.2788

K12 42.4918 K52 1.8564

µ 3.2719 K61 9.6146

K21 53.6983 K62 23.7654

K22 10 K63 0.5120

K23 0.0405 K64 8.5160

K24 47.5529 K71 3.2121

kd 2.2 K72 9.6238

n 0.2103 K81 5.9924

K25 12.9023 K82 34.7341

K33 36.1942 K92 0.8071

K34 55.1386 K101 1.0023

K35 0.0375

Table 4.5.: Initial model parameters for the CHO model used in the run-to-run optimization.

The subset of parameters that is used in the gradient correction step is determined from the param-

eter selection outlined in Hille et al. (2017). For this purpose, we only selected parameters which

provide large parametric sensitivities with respect to the gradients of the cost-function. Conse-

quently, parameters K11, µ, K23, K25, K22 and K101 are used in the gradient correction step for

this case study. A threshold of 1 % of the magnitude of the most gradient sensitive parameter has

been used to determine the number of parameters used in the gradient correction step.

4.4.2.2. Output Uncertainty Bounds

The uncertainty bounds for the CHO process have been derived in a similar fashion as described in

section 4.4.1.2 for the penicillin process. Figure 4.4 illustrates the obtained uncertainty bounds for

the CHO process together with one feasible trajectory resulting from model fitting, i.e. a trajectory

that satisfies the set based bounds. The results show that the model can provide a feasible fitting
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despite the structural mismatch. However, due to the missing glutamine metabolism in the model,

the prediction capabilities of the fitted model are only valid for a small range of inputs.
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Figure 4.4.: Illustration of uncertainty bounds (-) and feasible model-fitting (--) for the CHO process. Units:
Viable and dead cell densities in [106 cells/ml]; glucose, lactate, ammonia, asparagine, aspartate
and alanine in [mmol/l]; MAb in [µg/ml] and time in [d].

4.4.2.3. Model Parameter Estimation Using Uncertainty Bounds

When considering a biochemical model with many equations and parameters, it is not trivial to

reliably identify all model parameters simultaneously. For that reason, we are making use of the

introduced uncertainty bounds to facilitate the parameter estimation for the dynamic metabolic

model. This is especially important considering that the parameters must be re-estimated each time

the model is updated in the run-to-run optimization. The main motivation behind the presented

procedure is that the dynamics of most metabolites depend on the behavior in VCD, as can be

seen from the presence of Xv term in each equation ((4.46) - (4.55)). Therefore, in order to obtain

initial parameter values for the extracellular metabolite equations ((4.49) – (4.55)), a piecewise
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interpolation of the experimental VCD profile can be used for a preliminary fitting. Given input

uk, let the measured profile be given byXp,v, a piecewise interpolation X̂p,v can then be obtained

such that:

Xv ≤ X̂p,v ≤Xv (4.57)

where the definition of the uncertainty bounds guarantees that the interpolated trajectory satisfies

the output constraintsXv andXv. Using the approximation of the VCD trajectory, it is possible to

obtain initial parameter values such that the output constraints can be satisfied for all metabolites.

This task is divided up into smaller problems, where the dynamics of the main substrates, for

which uptake/production it is not coupled to the other metabolites are estimated first. Finally, the

dynamics of the remaining species are estimated. This results in adequate initial model prediction

and estimates of parameter values which are then used to identify the dynamics of the viable and

dead cell densities. This separate estimation procedure of model parameters for metabolites and for

viable and dead cells is repeated iteratively until convergence. However, parameters of metabolites

are only re-estimated if the corresponding output uncertainty bounds are violated. The procedure

is stopped once all set-based constraints have been satisfied.

Mathematically, the identification procedure is implemented as follows. We first note that the

dynamic model, given by (4.46) - (4.55), is derived from a set of macro-reactions which can be

stated as follows (Naderi et al., 2011):

dξ(t)

dt
= Kr(t) (4.58)

where ξ ∈ Rnξ is the vector of extracellular metabolites, K ∈ Rnξ×nr the matrix composed

of the stoichiometric coefficients of the macro-reactions and r ∈ Rnr a vector of reaction rates

that are expressed by Monod-type kinetics. The assumed macro-reactions for the model used for

optimization are given in table 4.6. For more information on the reactions used in the original

model used as the simulator, see Aghamohseni et al. (2014).
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# Reaction

1 Glc→ 2Lac

2 Glc→ 6CO2

3 Asn→ Asp+NH3

4 Ala→ NH3 + 3CO2

5 Glc→ Asp+Ala+ CO2

6 Asp→ NH3 + 4CO2

Table 4.6.: Macro-reactions assumed for the model used in the run-to-run optimization.

From the macro-reactions outlined in table 4.6, we can obtain the matrix of stoichiometric coeffi-

cients as follows:

K =

Glc

Lac

Asn

Asp

Ala

Amm

CO2



−1 −1 0 0 −1 0

2 0 0 0 0 0

0 0 −1 0 0 0

0 0 1 0 1 −1

0 0 0 −1 1 0

0 0 1 1 0 1

0 6 0 3 1 4



(4.59)

where each column describes the corresponding reaction in table 4.6. Using the matrix in (4.59),

we define a vector of a subset of substrates ϕ whose evolution depends only on biomass but not

on the concentration of other substrates, i.e. ϕ = f(Xv). This corresponds to species associated

with rows that do not contain any positive values. It is important to point out here, that the lack

of dependency on other substrates is related to the assumption that the uptake kinetics are always

assumed to be a function of the reactant but not of the product of each reaction. Formally, the

related indices can be defined as:

M = {i ∈R|@kij > 0, ∀j ∈ C} (4.60)
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With the row and column indices given by R = {1, . . . , nξ} and C = {1, . . . , nr}. Subsequently,

the corresponding subset of metabolites is given by:

ϕ = {ξi|i ∈M} (4.61)

For which the corresponding uncertainty bounds, obtained from measurements at a given input

uk, are denoted by Φk. For this case study, the relevant metabolites which are not affected by the

evolution of the other metabolites are glucose (Glc) and asparagine (Asn). Next, we are interested

in metabolites whose dynamics only depend on the species in ϕ and biomass, i.e. ψ = f(Xv,ϕ).

In other words, metabolites that are produced as a direct result of consumption of metabolites in

set M. These indices are defined by:

N = {i ∈R|(∃kij > 0 ∧ @klj < 0,∀l ∈R \M), j ∈ C} (4.62)

From which we obtain:

ψ = {ξi|i ∈N } (4.63)

where the corresponding uncertainty bounds at input uk are denoted by Ψk. From (4.59), the

relevant metabolites included in (4.63) are lactate (Lac), aspartate (Asp) and alanine (Ala). Finally,

the remaining metabolites can be determined from:

P = R \ (M ∪N ) (4.64)

With the corresponding vector of metabolite concentrations given by:

ω = {ξi|i ∈ P} (4.65)

For which we get ω = f(Xv,ϕ,ψ,ω) and the associated uncertainty bounds Ωk. In the current
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case study, the only remaining metabolites are ammonia (Amm) and MAb (Mab).

To summarize the described procedure, the sequential estimation algorithm is outlined in Algorithm

4.2. Note that, for the dynamic metabolic model, the presented estimation algorithm replaces step

2-7 in the run-to-run optimization framework shown in Algorithm 4.1.

Algorithm 4.2 Sequential parameter estimation in the presence of model-plant mismatch.
1: Obtain uncertainty bounds by performing experiments at input uk
2: ApproximateXp,v by a piecewise interpolation X̂p,v

3: if ϕ /∈ Φk then
4: Solve (4.23) such that ϕk(Xv,θk) ∈ Φk

5: end if
6: if ψ /∈ Ψk then
7: Solve (4.23) such that ψk(Xv,ϕ,θk) ∈ Ψk

8: end if
9: if ω /∈ Ωk then

10: Solve (4.23) such that ωk(Xv,ϕ,ψ,ω,θk) ∈ Ωk

11: end if
12: Use predicted dynamics of VCD:Xv

13: ifXv /∈ [Xv,Xv] then
14: Solve (4.23) such thatXv ≤Xv(ϕ,ψ,ω,θk) ≤Xv

15: end if
16: Go back to step 3 and repeat estimation until feasible trajectories have been found.

A key benefit of the proposed method is that it is possible to obtain feasible model parametriza-

tions with an initial estimation using an experimental VCD profile. By dividing the identification

into smaller problems, only a subset of parameters is estimated in each step. Furthermore, an

update of parameters is only performed if uncertainty bounds are not satisfied. This reduces the

computational effort and facilitates finding a feasible model prediction during each iteration of the

run-to-run optimization procedure.
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4.4.2.4. Run-to-Run Optimization Results
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Figure 4.5.: Comparison of the run-to-run optimization results in terms of the initial glucose concentration.

The batch-to-batch optimization results are presented in figure 4.5. We compare the proposed ap-

proach using the algorithm to the original simultaneous identification/optimization algorithm used

by Mandur & Budman (2015b), where the latter is based on the minimization of the SSE for identi-

fication. In addition, results are shown when performing a run-to-run optimization when just using

the two-step approach (repeated identification and optimization) (Chen & Joseph, 1987). Again,

the results are averaged over 10 simulations and the shaded areas illustrate the 95 % confidence

intervals. The left graph in figure 4.5 shows the convergence results in terms of the initial glucose

concentration [Glc]0, where the optimal concentration is given by [Glc]∗0 = 28.17 mM. It is clear

that the proposed approach outperforms the original SSE based identification/optimization proce-

dure both, in terms of speed and confidence in the prediction of the next input. Overall, the results

show an improvement of 52 % and 38 % in the IAE and confidence intervals, respectively.
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Figure 4.6.: Comparison of the run-to-run optimization results in terms of the final amount of MAb.

Furthermore, figure 4.6 illustrates the performance of the three approaches in terms of the final

amount of MAb. When using the two-step method, i.e. not correcting for errors in the predicted

gradients, the obtained operating policy is sub-optimal and far from the process optimum leading

to a loss in product yield of 37 %.

4.5. Conclusions

In this chapter we presented a parameter identification method tailored for the simultaneous identi-

fication and optimization of batch processes in the presence of model-plant mismatch. The method

introduced a modified objective function for identification that is different from the standard SSE

minimization used in the original approach, consisting of the SSE divided by the gradient sen-

sitivity to parameter changes. Since the SSE objective is modified, uncertainty bounds on time

trajectories are imposed to ensure an acceptable level of fitting between model predictions and
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measurements. At the same time, the use of these uncertainty bounds on the process outputs allow

for the formulation of a model-update criterion that determines whether model update is needed or

not. This is especially useful when dealing with the identification of biochemical models with a

larger number of parameters. Overall, the presented approach leads to an improved reconciliation

of the objectives of identification and optimization, resulting in a more robust (less oscillatory)

and much faster convergence to the process optimum as compared to the original method with less

uncertainty in the prediction of the optimal input for the next batch run. Future research focuses

on the incorporation of a design of experiments approach to obtain a better cost prediction over a

wider range of inputs and gradient measurements that are more informative for obtaining higher

parameter precision.
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5. Design of Experiments for Optimization

Under Model-Plant Mismatch

Overview

Model-plant mismatch commonly arises from simplifications and assumptions during the devel-

opment of first-principles models. Hence, when employing such models in iterative optimization

schemes, structural mismatch may lead to inaccurate prediction of the necessary conditions of opti-

mality. This results in convergence to a predicted optimum which does not coincide with the actual

process optimum. The method of simultaneous identification and optimization, used in the current

work, aims to correct for errors in the predicted gradients of the cost and constraints by adapting

the model parameters. In a former implementation of this approach, the gradients have been cor-

rected only locally at the current operating point. To achieve a better prediction of the cost function

over a wider range of input conditions, we propose to consider cost measurements from previous

batch experiments combined with an optimal experimental design of future experiments. Using

this approach, it is possible to achieve a better prediction, especially around the optimum, and to

make the gradient correction step less susceptible to uncertainty in local gradient measurements.

The improvements are illustrated using three simulated run-to-run optimization case studies.

Adapted from Hille, R., and Budman, H. (2018). Experimental design in simultaneous identification and optimization
of batch processes under model-plant mismatch. IFAC Symposium on Advanced Control of Chemical Processes
2018, [submitted].
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5.1. Introduction

Mathematical models play an essential role in the optimal design and operation of chemical pro-

cesses and are typically classified as either black-box or first-principles models (Bonvin et al.,

2016). While first-principles models require process knowledge and a rigorous development, they

offer the benefit of superior extrapolation abilities compared to black-box models thus offering a

better chance of predicting an optimum that lies outside the range of data used for model calibration

(Yip & Marlin, 2004).

However, due to simplifications and assumptions during model development, there regularly exists

structural mismatch between the model and the process. As a result, the model parameters’ values

that minimize the errors between measured and predicted process outputs (identification) may not

be equal to the values that result in a correct prediction of the gradients of the cost function and

constraints (optimization). In this case, an optimization method that is based on successive identi-

fication and optimization steps may fail to converge to the process optimum (Srinivasan & Bonvin,

2002).

When the main use of the model is optimization, methods such as Modifier Adaptation (Marchetti

et al., 2009; Gao et al., 2016) have been proposed to deal with structural mismatch. On the other

hand, for some cases, a model is sought both for optimization as well as for predicting the process

behavior around the optimum. For such cases the method for simultaneous identification and op-

timization (Mandur & Budman, 2015b) has been proposed that aims at finding a set of parameter

values which simultaneously predicts the model outputs as well as fits the gradients of cost-function

and constraints as to correctly predict the necessary conditions of optimality (NCOs). However, in

our previous studies, only the most recent gradient measurements have been used for the gradient

correction, thus not making use of information already acquired through past experimental effort.

In addition, the choice of the location of next gradient measurement, as realized in the Modifier

Adaptation algorithm (Costello et al., 2016), has so far not been addressed in the simultaneous
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identification and optimization framework used in the current work.

The Design of Experiments (DoE) methodology, first derived for data-driven models (Box &

Draper, 1987), is also an established method for reducing parameter uncertainty in the estimation of

nonlinear first-principles models (Franceschini & Macchietto, 2008). The focus of these methods

is the minimization of an estimation related criterion associated with the parameter covariance ma-

trix, which is typically approximated using the inverse of the Fisher Information Matrix (FIM). In

the context of batch process optimization, such an experimental design approach has been applied

for the selection of sampling times that are important for an optimization objective (Martinez et al.,

2009). However, as mentioned above, in the presence of model-plant mismatch, a precise fitting of

model outputs does not necessary result in an accurate prediction of cost and constraint gradients.

This is also relevant if an economic design objective is considered when designing experiments for

model output fitting (Houska et al., 2015). Hence, the goal of the simultaneous identification and

optimization framework used in this work, is both to fit model outputs to measured ones and match-

ing the measured gradients of the cost-function and the constraints. To improve the prediction of

the process cost-function, model parameters’ values can be sought that can reduce the paramet-

ric uncertainty when fitting the cost function and the constraint gradients. Towards that goal, we

make use of a covariance matrix derived from the parametric sensitivities of the gradients of the

cost-function and constraints in combination with a suitable experimental design criterion. The

overall objective is to determine at each iteration new experiments that provide valuable gradient

information in addition to the past experiments.

In summary, this chapter represents an addition to the methodologies outlined in chapter 3 and 4. As

a first step, we use information about costs and constraints already gathered from past experiments

when correcting the predicted gradients. In a second step, future optimal experiments, necessary

for obtaining better gradient estimates, are determined based on a design of experiments approach.

It is shown that the presented approach leads to the following improvements:
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i. The effect of gradient uncertainty is significantly reduced when cost measurements from

previous batch runs are considered.

ii. The improved parameter precision leads to a better prediction of the cost function near the

process optimum.

For illustration purposes, run-to-run optimization studies are performed using simulated case stud-

ies of a simple synthetic batch process, a penicillin process and a CHO cell cultivation process.

5.2. Simultaneous Identification and Optimization Methodology

The method for simultaneous identification and optimization (Mandur & Budman, 2015b) has been

recently extended to a parameter identification using set-based constraints (Hille & Budman, 2017).

The main steps are briefly reviewed below.

5.2.1. Identification Using Set-Based Bounds

Suppose we perform several experiments (batch runs) at a given operation point uk ∈ Rnu . The

collection of measurements for all sampling times ti can then be defined as (Rumschinski et al.,

2010):

Yk =
{
Y i
k ∈ Rny |i ∈ {1, . . . , nt}

}
(5.1)

where the set-based bounds provide an upper and lower bound for the permissible range of model

outputs at each sampling time such that (Streif et al., 2016):

yi
k
≤ yik ≤ yik (5.2)

With the model outputs given by yk ∈ Rny . Set-based bounds have been found to be particu-

larly well suited for describing experimental data in biological systems (Rumschinski et al., 2010).
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When estimating model parameters, a typical model fitting objective is given by the sum of squared

errors (SSE) between process outputs and model predictions:

φSSE(θ) =

nt∑
i=1

∥∥yp,k(ti)− yk(θ, ti)∥∥2 (5.3)

where yp,k ∈ Rnt×ny are the plant measurements and θ ∈ Rnθ are the set of model parameters.

In contrast to a standard identification problem where only model fitting is required, the goal in

simultaneous identification and model-based optimization is to find parameter values which yield

both good model fitting and a correct prediction of the gradients of the cost function and constraints.

To obtain parameter values from the identification step which enhance the performance of the

subsequent gradient correction step, Hille & Budman (2017) proposed the following parametric

sensitivity objective:

φS∇(u,θ) =

nu∑
i=1

nθ∑
j=1

∣∣∣s∇φij (u,θ)
∣∣∣+

nu×ng∑
i=1

nθ∑
j=1

∣∣∣s∇gij (u,θ)
∣∣∣ (5.4)

where s∇φij and s∇gij are elements of the scaled cost-function and constraint gradient sensitivity

matrices:

s∇φij =
∂ (∇φi)
∂θj

∣∣∣∣ θj∇φi
∣∣∣∣ (5.5)

Equation (5.4) defines a scalar measure of the parametric cost function and constraint sensitivities

where large gradient sensitivities are desired since smaller parameter deviations from the ones ob-

tained in the identification step are required for matching of the gradients. Avoiding large deviations

between the parameter values required for fitting the outputs and the parameter values required for

matching gradients result in smaller oscillations and smoother convergence of the run to run opti-

mization procedure. An objective combining the model-fitting goal (5.3) and the maximization of
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the sensitivity measure in (5.4) is subsequently defined as:

θk = arg min
θ

(
φSSE(u,θ)

φS∇(u,θ)

)
s.t. ẋk = f(xk,uk,θ)

yk = h(xk)− ck−1

θ ∈ Θ0

yk ∈ Yk (5.6)

where xk ∈ Rnt×ny are the states and yk ∈ Rnt×ny the outputs of the model. The correction term

ck−1 ∈ Rnt×ny is defined in the gradient correction step described below. The set Θk presents a

permissible space for the parameter values. According to (5.6), the goal of the set-based parameter

estimation is to fit the model predictions to model outputs while penalizing parameter values which

lead to a reduction in the gradient sensitivities. It should be noticed that, since the optimization cost

was modified from a norm of the prediction errors as in (5.3) to a norm of the errors divided by

the sensitivity function as in (5.6), the set-based bounds are necessary to enforce that the predicted

outputs remain reasonably close to the process outputs.

Furthermore, using the output uncertainty bounds (5.1), it is possible to define a model-update

criterion so that the multi-objective identification step (5.6) is only performed when it is strictly

necessary to update the outputs, i.e. when the uncertainty bounds are violated. For more informa-

tion, see Hille & Budman (2017).

5.2.2. Gradient Correction

As mentioned above, a correct prediction of the process optimum requires that the predicted gra-

dients at each iteration coincide with that of the process. To satisfy this condition, a gradient
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correction step is performed as follows:

∆θk = arg min
∆θ

(
wT
φ

∣∣∇φp(uk)−∇φ(yk(θk + ∆θ),uk)
∣∣

+

ng∑
j=1

wT
g,j

∣∣∇gp,j(uk)−∇gj(yk(θk + ∆θ),uk)
∣∣)

s.t.
.
xk = f(xk,uk,θk + ∆θ)

yk = h(xk)− ck

θk + ∆θ ∈ Θ0∥∥εTk ∥∥∞ ≤ εmax (5.7)

where ∇φ ∈ Rnu and ∇gj ∈ Rnu with j = 1, . . . , ng are the cost and constraint gradients. The

measured gradients are denoted by the subscript p. The errors in gradients are normalized using

the respective weights wφ ∈ Rnu and wg,j ∈ Rnu . A correction factor ck is introduced into the

model outputs so as to preserve the fitting accuracy that has been achieved in the identification step

(5.6). The correction term is derived from a first order Taylor expansion:

ck(ti) = ck−1(ti) +Dyk(θk, ti)∆θk (5.8)

where Dyk(θk, ti) ∈ Rny×nθ is the Jacobian of the model at sampling time ti. The upper bound

εmax on the relative truncation error is a user selected parameter that determines the maximum

error allowed for the model fitting and indirectly determines the allowable amount of gradient

correction. The relative truncation error is defined as the error introduced by the linear correction

term as follows:

εk(ti) = [yk(θk + ∆θk, ti)−Dyk(θk, ti)− yk(θk, ti)] · [diag (yk(θk, ti))]
−1 (5.9)
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Thus, after the additional gradient correction step, the adapted parameter values at batch run k are

given by:

θ′k = θk + ∆θk

5.2.3. Model-based Optimization

Following the identification (5.6) and the gradient correction steps (5.7), a model based optimiza-

tion is performed as follows:

uk+1 = arg min
u
φ(y(θ′k),u)

s.t. ẋ = f(x,u,θ′k)

y = h(x)− ck

g(y(θ′k),u) ≤ 0

uL ≤ u ≤ uU (5.10)

where uk+1 presents the optimal input for the next batch run. The lower and upper bounds uL and

uU limit the search space for the optimal input.

5.3. Experimental Design Methodology

Although the simultaneous identification and optimization methodology already provides some ro-

bustness to gradient uncertainty due to the use of a bound on the relative truncation error in (5.7),

one drawback is that the gradients are only corrected at the current operating point. Information

from past operating points is thus not taken into consideration when using the most recent gra-

dient measurements. However, correcting only at the current operating point may lead to more

uncertainty in the prediction of the next optimal batch run due to overfitting of the local gradient.
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Furthermore, a local correction may lead to an adequate local prediction, but does not guarantee an

accurate prediction of the cost function at other operating points around the process optimum. To

introduce additional robustness to uncertainty in gradient measurements and to increase parameter

precision, we therefore propose to match the predicted gradients not only locally but also consider

cost measurements from previous batch runs. Moreover, the inputs for the next experimental batch

runs, necessary for gradient measurements, will be determined based on an optimal experimental

design approach. The goal is an improved prediction capability of the model for a wider range

of inputs and lower sensitivity to uncertainty in local gradient measurements, especially in the

neighbourhood of the process optimum.

5.3.1. Local Gradient Correction

In the parameter adaptation methodology outlined in section 5.2, gradient measurements are re-

quired to satisfy the necessary conditions of optimality as per the gradient correction step described

in (5.7). Regarding the cost function, a gradient is defined as the derivative with respect to the de-

cision variables:

∇φm(uk) =
∂φ

∂um
(uk) (5.11)

where m = 1, . . . , nu denotes the respective decision variable. The gradient at operating point uk

can be estimated by performing a step change ∆um in the direction of each decision variable. At

input uk and using finite differences, the derivative can be approximated as a normalized difference

coefficient between two operating points:

αk,m =
φ(uk + ∆umem)− φ(uk)

‖∆umem‖
(5.12)

where em ∈ Rnu is the identity vector in the direction of the respective decision variable. Using

this approach, the standard gradient correction problem from (5.7) for the cost-function gradients
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can thus also be expressed as follows:

∆θk = arg min
∆θ

nu∑
m=1

wαm

∥∥∥αpk,m(uk)− αk,m(uk,θk + ∆θk)
∥∥∥2

s.t. ẋk = f(xk,uk,θk + ∆θ)

yk = h(xk)− ck

θk + ∆θ ∈ Θ0∥∥εT∥∥∞ ≤ εmax (5.13)

where wαm is a normalizing weight and the superscript p denotes the approximated cost-function

derivative (5.12) estimated from plant measurements.

5.3.2. Consideration of Information from Prior Experiments

Besides the gradient measurements that can be acquired by perturbing the plant at operating point

uk (5.12), additional cost-function measurements are already available from past experiments. Let

us define a vector whose elements are the differences between the measured cost at the current

operating point uk and past ones as follows:

∆Φk = [ φk − φk−1 φk − φk−2 · · · φk − φk−nb−1 ]T (5.14)

where nb is the number of past operating points at which experiments have been performed and

whose measurements are available. Similarly, we define a matrix containing the differences be-

tween the current and past decision variables as:

∆Uk = [ uk − uk−1 uk − uk−2 · · · uk − uk−nb−1 ]T (5.15)
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Following the finite difference approach (5.12), for any two operating points k and k − l with

l ∈ {1, . . . , nb − 1}, we can define the following normalized cost-difference coefficient:

βk,l =
∆Φk,l
‖∆Uk,l‖

=
φk − φk−l
‖uk − uk−l‖

(5.16)

Due to the uncertainty in the measured cost, we are ultimately interested in considering only past

operating points that are sufficiently far away. In other words, we want to reduce the effect of gradi-

ent uncertainty when considering past cost-function evaluations. For that reason, from the available

coefficients of previous experiments (5.16), we select only the ones for which the increase in pre-

dicted cost is beyond the magnitude of the measurement noise. Accordingly, we solely consider

the points belonging to the following set:

Lε =

{
l ∈ {1, . . . , nβ}

∣∣∣∣1− φ(uk)

φ(uk−l)
≥ εφ

}
(5.17)

where nβ ≤ nb − 1 describes the maximum number of past points to be considered and the bound

εφ determines the minimum deviation in the inputs from the current operating point. This limit can

be estimated from cost-function measurements as follows:

εφ =
σφ
µφ

(5.18)

where σφ is the estimated standard deviation of the measurement noise and µφ the average cost

magnitude. Hence, the minimum range for operating points considered from past experiments is

controlled by the increase in the predicted cost corresponding to the magnitude in the expected

standard deviation of the measurement noise.

It is important to point out that, instead of a fixed number of past operating points nβ to be con-

sidered in (5.17), it is also possible to determine the maximum permissible range by checking for

which operating point uk−l the corresponding set-based constraints Yk−l can no longer be satisfied
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with the current set of parameter values (i.e. y(uk−l,θk) /∈ Yk−l). In that sense, the minimum

deviation is still given by the inequality in (5.17), however, the maximum deviation is determined

based on the range for which the model can provide an adequate output prediction.

5.3.3. Design of New Experiments

In addition to using past cost measurements as outlined above, we propose to use optimal DoE to

acquire future cost information. For the latter, the goal is to identify future operating points for

gradient experiments that are more informative in terms of cost information instead of the fixed

perturbations done at current k as done in our earlier studies as per (5.12). As before, these ex-

periments are run in addition to the experiments conducted at the current optimal input determined

by the model-based optimization (5.10). Thus, the goal of the proposed experimental design is

to replace the experiments involving fixed perturbations in the direction of each decision variable

with experiments involving perturbations that are more informative as per an experimental design

criterion.

To quantify the level of information, we first define a parametric sensitivity matrix Sβ of the coef-

ficients of past experiments (5.16), whose elements are defined as follows:

Sβ =

[
∂βk,l
∂θj

] ∀l ∈ Lε

∀j ∈ {1, . . . , nθ}
(5.19)

Using the sensitivity matrix, let us define a D-optimal design criterion (Franceschini & Macchietto,

2008) which seeks to minimize the following measure of the parameter covariance matrix:

ψ = det (V θ) = det

([
STβΣ

−1
β Sβ

]−1
)

(5.20)

where the measurement error matrix Σβ of the gradient measurements can be obtained from the
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cost-function measurement noise. The variance of the gradient measurement is therefore given as

follows:

σ2
βk,l

=
2σ2

φ

‖uk − uk−l‖2
(5.21)

where we assume that the measurement noise in the cost, necessary for the gradient estimation,

remains unchanged and is uncorrelated.

Thus, the aim of the experimental design is primarily to find the plant perturbation vectors which

provide information that will complement the information already gained from past experiments.

To this end, we note that the gradient estimator in (5.12) can also be formulated for directions other

than the directions associated with the individual decision variables as follows:

γk,q(vq) =
φ(uk + vq)− φ(uk)

‖vq‖
(5.22)

where q = 1, . . . , nDOE presents the number of plant perturbations at each operating point imple-

mented to acquire the gradient information. The vector uk+vq presents a perturbation of the plant

in the neighbourhood of uk. The experimental design goal is to select the appropriate perturbation

vectors vq so as to increase parameter precision when performing the fitting of measured gradients.

Similar to (5.21), the variance of (5.22) can be estimated by:

σ2
γk,q

=
2σ2

φ

‖vq‖2
(5.23)

Notice that the gradient variance approaches infinity for vq → 0. For that reason, it is desired to

introduce a minimum distance when designing new experiments in order to reduce the estimated

variance of the gradient measurement (5.23). At the same time, there is often a cost associated

with performing new experiments. In other words, experiments for gradient information should

not be performed too far away from the optimum as it could result in a significant deterioration

(increase) in cost. Therefore, to implement a minimum step-size due to gradient uncertainty while
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limiting the distance from the current optimum to avoid an increase in cost, we propose to enforce

the following equality when designing new experiments:

1− φ(uk)

φ(uk + vq)
= εφ (5.24)

where the εφ is defined in (5.18). Notice that this bound is similar to the inequality used for past

operating points in (5.17), but in this case the equality is used to obtain a lower and upper bound

for the step-size.

Finally, using the D-optimality design criterion in (5.20), we can formulate a sequential procedure

to select the most informative input perturbations as follows:

1. Initialize by setting q = 0, Sqφ = Sβ andΣq
φ = Σβ .

2. Based on the considered prior experiments, find the perturbation which provides the most

additional information as per the D-optimality criterion:

vq = arg min
v

det
([
STΣ−1S

]−1
)

s.t. S =

 Sqφ
sγ

 , Σ =

 Σq
φ 0

0 σ2
γ


sγ =

[
∂γ
∂θ1

· · · ∂γ
∂θnθ

]
γ(v) =

φ(uk + v)− φ(uk)

‖v‖

1− φ(uk)

φ(uk + v)
= εφ (5.25)

3. Update the sensitivity matrix Sq+1
φ = S,Σq+1

φ = Σ and set q = q + 1.

4. Go back to step 2 until the number of gradient measurements nDOE is reached.

Thus, using the outlined procedure, we are essentially seeking input perturbations around uk that
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increase the available information content given by (5.20).

5.3.4. Extended Gradient Correction

After carrying out the set of cost-function measurements from the optimal plant perturbations pro-

vided by the procedure in (5.25), the standard gradient correction method from (5.13) can be ex-

tended to consider the normalized differences to cost-function measurements of past operating

points as well as gradient measurements resulting from the experimental design as follows:

∆θk = arg min
∆θ

nDOE∑
q=1

wγq

∥∥∥γpk,q(uk)− γk,q(uk,θk + ∆θk)
∥∥∥2

+
∑
l∈Lε

wβl

∥∥∥βpk,l(uk)− βk,l(uk,θk + ∆θk)
∥∥∥2

s.t.
.
xk = f(xk,uk,θk + ∆θ)

yk = h(xk)− ck

θk + ∆θ ∈ Θ0∥∥εTk ∥∥∞ ≤ εmax (5.26)

In this way, we simultaneously consider available information from past batch runs and valuable

information from specifically designed experiments. This results in more robustness to gradient

uncertainty and an improved parameter precision as further illustrated by the case studies at the

end of this chapter.

5.4. Results and Discussion

The proposed design of experiments methodology is illustrated in the following using three dif-

ferent case studies. While first study consists of a simple synthetic process, the remaining studies
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describe two cell culture processes.

5.4.1. Synthetic Batch Process

This simple case study provides an illustration of the algorithm for the simultaneous identification

and optimization in combination with the proposed design of experiments approach. The synthetic

batch process under investigation is defined by the following ODE:

dyp
dt

= β1u− β2yp + β3t (5.27)

where yp ∈ R describes the measured process output, u ∈ R the manipulated input and β1, β2 and

β3 the process parameters. We assume that measurements are taken along the duration of the batch

at particular sampling times given by ti ∈ {t1, . . . , tf}, where tf represents the final batch time. In

addition to the process output (5.27), a cost function to be minimized is given by:

φ(u, yp(tf )) = γu2 − yp(u, tf ) (5.28)

With the additional cost-function parameter γ. In the following we assume that φ can measured for

each input u. The values of the process parameters are given in table 5.1.

β1 β2 β3 γ

1 2 0.3 0.05

Table 5.1.: Process parameter values for the synthetic batch process.

In the following, we assume that the actual process representation (5.27) is unknown and that only

a model of the process is available. However, due to a lack of knowledge about the exact behavior,

there exist a discrepancy between model and process. The known process model is defined as
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follows:
dy

dt
= β̂1u− β̂2y (5.29)

Notice that model-plant mismatch is deliberately introduced by eliminating the time-dependent

term β3t in (5.27). Furthermore, the available cost-function used in the optimization is given by:

φ(y(u,θ, tf ), u,θ) = γ̂u2 − y(u,θ, tf ) (5.30)

where the model parameters β̂1, β̂2 and γ̂ are expressed by the vector θ = [ β̂1 β̂2 γ̂ ]T . Fol-

lowing the identification step outlined in (5.6) and the subsequent gradient correction (5.7), for each

input uk, we obtain the adapted set of parameters θ′k. Using the updated parameters, the overall

goal of the run-to-run optimization is to iteratively minimize the cost-function (5.30) so as to find

the optimal input u∗, which minimizes the actual cost-function (5.28). The problem to be solved in

each iteration k can therefore be stated as follows:

uk+1 = arg min
u
φ
(
y(u,θ′k, tf ), u,θ′k

)
s.t. (5.29) and (5.30)

uL ≤ u ≤ uU (5.31)

The model parameters and initial conditions for this case study are given in table 5.2. Here u0

presents the input for the initial batch run.

β̂1 β̂2 γ̂ y0 u0

4 2 0.05 8 20

Table 5.2.: Initial conditions and model parameters.
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5.4.1.1. Run-to-Run Optimization Results

In the following, we compare the results of using the extended gradient correction (5.26) to case

of the standard gradient correction (5.13). The upper bound of the truncation error was selected to

be εmax = 0.01, while the standard deviation of the measurement noise σφ corresponds to 10 %

of the magnitude in the cost. Although the parameters β̂1 and β̂2 already provide enough degrees

of freedom for an adequate gradient correction to achieve convergence to the process optimum,

we opted to also include the cost-function parameter γ̂ when performing the gradient correction.

Including parameter γ̂ results in a higher sensitivity to gradient measurement uncertainty with re-

spect to which the extended gradient correction should provide more robustness. Furthermore, the

number of past operating points considered for the experimental design and the extended gradient

correction was limited to five, i.e. nβ = 5.
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Figure 5.1.: Comparison of convergence results using the standard gradient correction and extended correc-
tion with DoE. The left graph shows the optimal input prediction over 10 noise realizations,
while the right graph illustrates the corresponding cost.
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The results are illustrated in figure 5.1, where the left graph is showing the convergence for the two

gradient correction methods for all 10 different noise realizations. As shown in the figure, by using

the proposed method, it is possible to significantly reduce the uncertainty in the prediction of the

next optimal input around the optimum. This is also evident from the corresponding cost evalua-

tions, shown on the right graph in figure 5.1, where the proposed method results in a significant

reduction in deviation from the optimal cost.

Method IAE σu

Standard Gradient
Correction (5.13)

1.38 6.41

Extended Gradient
Correction (5.26)

0.41 0.38

Table 5.3.: Integral absolute error (IAE) and variance of predicted inputs u.

To quantify the performance, table 5.3 provides the integral absolute error (IAE) and the variance

in the predicted optimal input σu for the gradient correction methods. This confirms the very

significant improvement in performance since the proposed method leads to a reduction of 70 %

and 94 % in IAE and σu respectively.
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5.4.2. Penicillin Process Case Study

The case study under investigation is of a fed-batch penicillin process. The following set of equa-

tions define the process simulator (Birol et al., 2002):

dX

dt
=

(
µXSX

KXX + S

)
− X

V

dV

dt
(5.32)

dP

dt
=

(
µPSX

KP + S + S2

KI

)
−KHP −

P

V

dV

dt
(5.33)

dS

dt
= −

(
1

YX/S

µXSX

KXX + S

)
−

(
1

YP/S

µPSX

KP + S + S2

KI

)

−mXX +
Fsf
V
− S

V

dV

dt
(5.34)

dV

dt
= F − V 6.226 · 10−4 (5.35)

whereX is the biomass, P is the concentration of penicillin, S is the concentration of substrate and

V the volume in the reactor. The constants are defined as follows: µX is the specific growth rate

of biomass, µP is the specific rate of penicillin production, KX and KP are saturation constants,

KI is a substrate inhibition constant, KH is a constant representing the rate of consumption of

penicillin by hydrolysis, YX/S and YP/S are the yields per unit mass of substrate for the biomass

and penicillin respectively, mX is the consumption rate of substrate for maintaining the biomass,

F is the constant feed rate and sf represents the concentration of substrate in the feed.

The simulator (5.32) – (5.35) is used to produce in silico experimental data for model fitting and

gradient correction. For that purpose, 10 % measurement noise as well as stochastic disturbances

in initial biomass and substrate concentrations are realized. Based on the in silico measurements, a

model is calibrated and utilized for the purpose of run-to-run optimization. Model-plant mismatch
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is intentionally introduced by assuming a lack of knowledge about the hydrolysis term in the peni-

cillin equation. Therefore, the model used in the optimization scheme is defined by (5.32), (5.34),

(5.35) and:
dP

dt
=

(
µPSX

KP + S + S2

KI

)
− P

V

dV

dt
(5.36)

The goal of this run-to-run study is the maximization of penicillin at the end of the batch time.

The available decision variables are the initial substrate concentration S0 and constant feed rate F .

Accordingly, we can formulate the objective as follows:

min
S0,F

−P (x,θ, S0, F, tf )

s.t. (5.32) and (5.34)− (5.36)

V (x,θ, S0, F, tf ) ≤ Vmax (5.37)

where a constraint on the volume of the reactor is given by Vmax = 120 l. The initial values used

for the first operating point are given in table 5.4, where S0 and F are the decision variables to be

determined by the model-based optimization.

Biomass conc. (X0) 0.1 g/l

Substrate conc. (S0) 0.1 g/l

Product conc. (P0) 0 g/l

Volume (V0) 100 l

Input Feed (F ) 0.04 l/h

Table 5.4.: Initial batch conditions.

The initial values of the model parameters are given in table 5.5. From these eight available model

parameters, only a subset is selected for performing the model update (fitting of predicted outputs

to measurements) and gradient correction (fitting predicted gradients to measured ones) to avoid

overfitting and sensitivity to parameter correlation. The optimal choice of a suitable subset of
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parameters for updating has been addressed in Hille et al. (2017). Accordingly, the parameters µX ,

µP and mX are used for model update and gradient correction.

µX KX µP KP KI YX/s YP/S mX

0.092 0.15 0.008 0.0002 0.1 0.45 0.9 0.014

Table 5.5.: Initial model parameter values.

For the standard gradient correction, the gradients of the cost function are estimated by perturbing

the plant in the directions of each of the decision variables as shown in (5.12). In this case, fixed

step sizes of ∆S0 = 2 g/l and ∆F = 0.5 l/h are used for the initial substrate concentration and

the constant flow rate respectively. As the optimal fixed flow rate is obtained within one iteration

(due to the constraint on the volume), we used the proposed approach for improving the predictions

of the optimal initial substrate concentration. Accordingly, in this case, the optimal step size (or

plant perturbation) ∆S0 was determined based on the available past experimental data and DOE

methodology (5.25).

5.4.2.1. Results

To compare the performance of the proposed approach, we conducted 10 run-to-run simulations

for the following two cases:

1. Only the local gradient is used for correction (5.13).

2. The extended gradient correction is used involving past and current gradients using DOE

(5.26).
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Figure 5.2.: Performance comparison of the standard correction and the proposed experimental design
methodology.

The run-to-run optimization results are shown in figure 5.2, where the left-hand graph shows the

comparison in terms of the manipulated variable S0. The bound on the relative truncation error

in (5.26) was selected to be εmax = 0.03 and thus it is smaller than the level of measurement

noise of 10 %. The proposed approach shows a speed-up in convergence to the process optimum

corresponding to a ca. 28% improvement in the IAE. It is evident from this result that by consid-

ering cost information of previous experiments, it is possible to reduce the effect uncertainty in the

local gradient measurement. Furthermore, the proposed approach leads to a 61% reduction in the

variability in the predicted optimal input, characterized by the more precise confidence regions. In

addition, the right-hand graph in figure 5.2 shows the cost-function evaluations corresponding to

the optimal inputs from the left graph. The proposed approach thus leads to far superior prediction

capabilities, especially around the optimum.
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Figure 5.3.: Example of the predicted cost-functions for S0 in the neighbourhood of the process optimum.

This fact is further supported by the cost-function prediction as shown in Figure 5.3. The use of past

cost function measurements and DoE results in a decrease in the SSE of the cost-function fitting

around the optimum of more than 90% when compared to the cost predicted without past gradients

and DoE. Thus, when the identification of a model around the optimum is an important goal for the

user beyond the optimization goal, the proposed gradient correction provides a significantly more

accurate model.

5.4.3. CHO Cell Cultivation Process

The second case study describes a cell cultivation process of a CHO cell line (Aghamohseni

et al., 2014). A dynamic metabolic model describes the dynamics of MAb and other extra cel-

lular metabolites during a batch experiment. The process simulator is defined by the following set
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of ODEs:

dfgr

dt
= −K11

fgr

1 +
(

[Glc]
K12

) (5.38)

dXv

dt
= µ · fgr ·Xv

 [Glc] [Gln]

(K21 + [Glc]) (K26 + [Gln])

1

1 +
(

[Amm]
K23

) 1

1 +
(

[Glc]
K22

)


− dXd

dt
(5.39)

dXd

dt
= kd (1− fgr)Xv

 1

1 +
(

K24
[Amm]

)n +
K25

[Glc]

 (5.40)

d [Glc]

dt
= −

(
K31 [Glc] [Gln]

(K32 + [Glc]) (K36 + [Gln])

K33 [Glc]

(K34 + [Glc])

)
Xv −K35Xv (5.41)

d [Gln]

dt
= −

(
K41 [Glc] [Gln]

(K42 + [Glc]) (K43 + [Gln])

)
Xv (5.42)

d [Lac]

dt
= −

(
K51 [Glc]

(K52 + [Glc])

d [Glc]

dt

)
Xv (5.43)

d [Asn]

dt
= −

(
K61 [Asn]

(K62 + [Asn])

)
Xv (5.44)

d [Asp]

dt
=

(
K61 [Asn]

(K62 + [Asn])
+

K63 [Glc] [Gln]

(K64 + [Glc]) (K65 + [Gln])
− K71 [Asp]

(K72 + [Asp])

)
Xv (5.45)
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d [Ala]

dt
=

(
K63 [Glc] [Gln]

(K64 + [Glc]) (K65 + [Gln])
− K81 [Ala]

(K82 + [Ala])

)
Xv

d [Amm]

dt
= −K91

d [Gln]

dt
+K92

(
K61 [Asn]

(K62 + [Asn])
+

K71 [Asp]

(K72 + [Asp])
(5.46)

+
K81 [Ala]

(K82 + [Ala])

)
Xv (5.47)

d [Mab]

dt
= (K101 +K102 [Gln])Xv (5.48)

where fgr represents the fraction of growing cells, Xv the viable cell density (VCD) and Xd the

dead cell density (DCD). Furthermore, the concentrations of metabolites are defined as follows:

[Glc] - glucose, [Gln] - glutamine,[Lac] - lactate, [Asn] - asparagine, [Asp] - aspartate, [Ala] -

alanine, [Amm] - ammonia and [Mab] – MAb. The kinetic parameters are given by K11 to K102.

As in the case of the penicillin process, the simulator (5.38) – (5.48) is used to generate in silico

measurements of the process outputs and gradients. For uncertainty in measurements, additive

Gaussian noise of 10 % of the average output values is assumed as well as stochastic disturbances

in initial batch conditions. Gradients are estimated using finite differences by running an additional

batch experiment and then calculating the difference in the cost over the perturbation step size. The

initial media composition for the CHO study are given in table 5.6.
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Fraction of growing cells (fgr) 1

Viable Cell Density (Xv) 0.0024 106cells/ml

Dead Cell Density (Xd) 0.0001 106cells/ml

Glucose ([Glc]) 60 mmol/l

Glutamine ([Gln]) 3.48 mmol/l

Lactate ([Lac]) 0.22 mmol/l

Ammonia ([Amm]) 0.71 mmol/l

Aspartate ([Asp]) 1.22 mmol/l

Alanine ([Ala]) 0.66 mmol/l

Asparagine ([Asn]) 0.67 mmol/l

Monoclonal Antibodies ([Mab]) 0.1µg/ml

Table 5.6.: Initial batch conditions

5.4.3.1. Model-Plant Mismatch

In addition to the process simulator that is used to generate in silico data, we also define a model of

the process that is used for calibration and optimization purposes. To introduce structural mismatch

between the model and process, we assume that glutamine ([Gln]) measurements are not available

and that its effects on the cell metabolism are unknown. This is motivated by the fact that the

concentrations of many media components are frequently not measured throughout the cultivation

and that their effects on the cell metabolism are often not well understood. Therefore, the model

equations are similar to the simulator, with the difference that all the parts containing a product

involving glutamine concentration are made a function of only the glucose concentration and that

all dependencies on glutamine alone are eliminated. This results in a structural error for which

the remaining model parameters must compensate for his mismatch as to achieve a precise model

fitting. Furthermore, this impairs the prediction capability in terms of the location of the process

optimum. Thus, the model of the process used for identification and optimization is described by
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the following ODEs:

dfgr

dt
= −K11

fgr

1 +
(

[Glc]
K12

) (5.49)

dXv

dt
= µ · fgr ·Xv

 [Glc]

(K21 + [Glc])

1

1 +
(

[Amm]
K23

) 1

1 +
(

[Glc]
K22

)
− dXd

dt
(5.50)

dXd

dt
= kd (1− fgr)Xv

 1

1 +
(

K24
[Amm]

)n +
K25

[Glc]

 (5.51)

d [Glc]

dt
= −

(
K33 [Glc]

(K34 + [Glc])

)
Xv −K35Xv (5.52)

d [Lac]

dt
= −

(
K51 [Glc]

(K52 + [Glc])

d [Glc]

dt

)
Xv (5.53)

d [Asn]

dt
= −

(
K61 [Asn]

(K62 + [Asn])

)
Xv (5.54)

d [Asp]

dt
=

(
K61 [Asn]

(K62 + [Asn])
+

K63 [Glc]

(K64 + [Glc])
− K71 [Asp]

(K72 + [Asp])

)
Xv (5.55)

d [Ala]

dt
=

(
K63 [Glc]

(K64 + [Glc])
− K81 [Ala]

(K82 + [Ala])

)
Xv (5.56)

d [Amm]

dt
= K92

(
K61 [Asn]

(K62 + [Asn])
+

K71 [Asp]

(K72 + [Asp])
+

K81 [Ala]

(K82 + [Ala])

)
Xv (5.57)

d [Mab]

dt
= K101Xv (5.58)

The goal of the run-to-run optimization is to maximize the amount of MAb at the end of the batch

time of tf over the batch time length. The decision variables in this case are the initial concentration

of the main substrate glucose [Glc]0 and final batch time tf . Thus, we are seeking the initial glucose
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concentration and final batch time for which the process is most cost effective. The optimization

problem to be solved in each iteration is stated as:

uk+1 = min
[Glc]0,tf

− [Mab]

tf
(x, [Glc]0,θ, tf )

s.t. (5.49)− (5.58)

1 ≤ tf ≤ 20

For the CHO case study, we assume that five batch experiments are performed at each operating

point to generate output measurements and the process uncertainty bounds. To obtain an estimate

of the cost gradient, a step size of ∆[Glc]0 = 2 mmol/l is used for the initial glucose concentration

as well as a step size of ∆tf = 1 d. Furthermore, the initial model parameters are given in table

5.7.

K11 0.0140 K51 0.2788

K12 42.4918 K52 1.8564

µ 3.2719 K61 9.6146

K21 53.6983 K62 23.7654

K22 10 K63 0.5120

K23 0.0405 K64 8.5160

K24 47.5529 K71 3.2121

kd 2.2 K72 9.6238

n 0.2103 K81 5.9924

K25 12.9023 K82 34.7341

K33 36.1942 K92 0.8071

K34 55.1386 K101 1.0023

K35 0.0375

Table 5.7.: Initial model parameters for the CHO model used in the run-to-run optimization.

The subset of parameters that is used in the gradient correction step is determined from the pa-
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rameter selection outlined in Hille et al. (2017). For this purpose, we performed a selection of

parameters which provide large parametric sensitivities with respect to the gradients of the cost-

function. Consequently, parameters K11, µ, K21, K23, K25, K22 and K101 are used in the gradient

correction step for this case study.

5.4.3.2. Results

Figure 5.4 illustrates the convergence for seven different noise realizations using the standard gra-

dient correction. The gradient uncertainty strongly affects the performance leading to a significant

variability between different realizations. This is especially evident around the optimum.
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Figure 5.4.: Run-to-run optimization results with standard gradient correction.

On the other hand, figure 5.5 shows the results when using the extended gradient correction pro-

cedure. Again, five different noise realizations result in different trajectories towards the optimum.

In this case however, the performance between different run-to-run optimizations is more similar.
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More importantly, the proposed gradient correction method leads to a significantly better prediction

in the neighbourhood of the optimum.
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Figure 5.5.: Run-to-run optimization results using the extended gradient correction procedure.

To quantify this improvement, table 5.8 compares the two approaches in terms of the average IAE

and the standard deviation of the manipulated variables over the seven simulations. Although - on

average - the IAE is fairly similar between the two methods, the proposed method outperforms the

standard gradient correction with regard to the standard deviation of the cost about the optimum

thus further illustrating the robustness of the proposed method.

Method IAE σu

Standard Gradient
Correction (5.13)

2.81 3.02

Extended Gradient
Correction (5.26)

2.53 1.72

Table 5.8.: IAE and standard deviation of the averaged manipulated variables for the CHO case study.
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5.5. Conclusions

When dealing with model-based run-to-run optimization under model-plant mismatch, it is vital

to correct for errors in the predicted gradients of the cost-function and constraints. To achieve

this, it is required to obtain estimates of the gradients by perturbing the plant around the current

operating point. An experimental design methodology was presented, where the goal is to reduce

the effect of gradient uncertainty on the convergence of the run-to-run procedure and to improve

parameter precision to achieve a better prediction of the cost-function around the optimum. More

specifically, based on available cost information from previous experiments, new experiments for

gradient measurements are designed that are particularly valuable to complement the already avail-

able information. Based on the results from three case studies, we conclude that the proposed

approach leads to smoother convergence of the run-to-run procedure and to a superior prediction

of the cost-function, especially in the vicinity of the process optimum.
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6. Run-to-Run Optimization Applied to

Mammalian Cells in Perfusion Cultures

Overview

This chapter is based on a collaboration with an industrial partner pursued during my PhD that

involved the development of a comprehensive model of a CHO cell culture system operated in

perfusion mode. The comprehensive cell culture model developed here is considerably larger than

the examples considered earlier in this thesis in terms of number of equations and parameters and

therefore it served to test the ability of our run-to-run methods to deal with larger complexity. The

industrial collaborator provided extensive data that was used to calibrate the model.

Due to a constant supply of fresh media and reactor outflow, perfusion processes can be used to

avoid nutrient limitations and the build up of toxic byproducts. At the same time, a high cell den-

sity can be maintained through the use of a cell retention device which retains the cells within the

system and thus prevents the loss of biomass. Hence, it is possible to maintain a steady-state in

perfusion cultures, which can be beneficial for the production of recombinant proteins. The first

part of this chapter presents the development of a dynamic metabolic model for the description

of the dynamic behavior of CHO cells and extra cellular metabolites in a perfusion culture. To-

wards that goal, the established MFA (Metabolic Flux Analysis) methodology is adjusted for the

application to perfusion processes. In the second part, the developed model is utilized as a case
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study for a run-to-run optimization in the presence of model-plant mismatch. The methodology

for simultaneous identification and optimization is used to deal with model-plant mismatch and to

drive the process to the desired operating point. The optimization problem, specifically tailored for

perfusion processes, is selected to take into account a cell specific perfusion rate.

6.1. Introduction

Throughout the recent decades, mammalian cells have been used as the primary platform for the

production of recombinant therapeutic proteins that require human-like post-translational modifica-

tions. In particular, Chinese hamster ovary (CHO) cells are an established cell line for the industrial

manufacturing of monoclonal antibodies (MAbs) (Fischer et al., 2015). Due to growing medical

needs, pharmaceutical companies are faced with increasing pressure for a cost-efficient commer-

cial production of MAbs (Farid, 2007; Butler & Meneses-Acosta, 2012). Increasing attention has

been therefore paid to improve the production of antibodies through genetic engineering (Fischer

et al., 2015), leading to higher recombinant protein yields (Majors et al., 2009). In addition to cell

engineering, the optimization of the bioprocess operation and media design have also been widely

used to improve the performance of CHO processes (Wurm, 2004).

The challenging design and operation of bioprocesses combined with their complex nature and

extensive cost of experiments has motivated the development of macroscopic knowledge-driven

models. The main purpose of these mechanistic models is to not only gain a better understanding

of the processes under study, but also to enhance their performance (Yahia et al., 2015; Zamorano

et al., 2013). Regarding the cultivation of CHO cells, metabolic flux analysis (MFA) has been suc-

cessfully applied as a technique to derive metabolic models to describe the dynamics of the major

metabolites (Gao et al., 2007). The MFA methodology is based on the metabolic reactions that are

occurring within the cell. By assuming a steady state of intracellular metabolites an optimal flux

profile can be determined which reflects the measured uptake and production rates of consumed and
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secreted metabolites (Provost et al., 2006). In this way, MFA is used to determine significant intra

cellular fluxes which are subsequently utilized to derive a set of macro reactions linking consumed

nutrients to secreted by-products that should be included in the metabolic model.

In the past, dynamic metabolic models have been primarily used to describe batch and fed-batch

operations (Dorka et al., 2009; Nolan & Lee, 2011). In contrast to their previous applications, in

this work we investigate the implementation of dynamic metabolic models to describe and compare

results obtained from bioreactor perfusion processes. The main difference of perfusion systems

compared to typical fed-batch operations is that fresh media is continuously provided by a feeding

rate, while the outflow of the reactor is regulated at a particular rate referred to as the harvest rate.

Furthermore, the cells are separated from the rest of the outflow by means of a cell separation

device and recirculated into the reactor. Thus, due to the constant feed of fresh media and the

retaining of cells, it is possible to achieve high cell densities along with longer operation times

(Chuppa et al., 1997; Clincke et al., 2013).

The first goal of the work in this chapter is therefore to investigate to which extent dynamic

metabolic models are capable of describing mammalian cell cultivation in perfusion systems. To

this end, a MFA has been performed using experimental data from perfusion experiments. Subse-

quently, the derived dynamic metabolic model is calibrated by performing a parameter estimation.

In the second part of this work, the developed model is utilized for a run-to-run optimization case

study of a perfusion system. In this case, it is assumed that there exist a discrepancy between the

model and the process under study. In order to address the model error, it is necessary to imple-

ment a method that is robust to structural uncertainties. To this end, the method of simultaneous

identification and optimization (Mandur & Budman, 2015b; Hille et al., 2017) presents a frame-

work where the model parameters are adjusted to correct for errors in the predicted gradients of the

cost-function and constraints. This is necessary for the model to accurately predict the optimality

conditions of the process. The objective of the run-to-run optimization involves criteria such as the
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cell specific perfusion rate and thus it is particularly targeted to perfusion processes. To facilitate

the run-to-run optimization, the methodologies developed in chapters 3, 4 and 5 are implemented

and compared to a previous version of the algorithm.

6.2. Model Development

6.2.1. Metabolic Flux Analysis

In recent years, MFA has been applied as a tool for systematic dynamic metabolic model develop-

ment (Naderi et al., 2011) for cell culture processes. The idea behind the approach is to estimate

the intracellular flux distribution by means of stoichiometric balances of intra- and extracellular

reactions and measurements of extracellular metabolites. One of the fundamental assumptions of

this analysis is that there is no accumulation of intracellular metabolites during the cultivation pro-

cess (Provost et al., 2006). Based on the stoichiometric matrix of known intracellular reactions and

following the calculation of the fluxes corresponding to each reaction, it is possible to reduce the

complexity of the complete cell network to determine metabolites and fluxes which are important

for explaining the distribution of carbon and nitrogen in the cultivation process. In such a way,

insignificant fluxes can be eliminated leading to reduction of the network dimensionality to a set of

macro-reactions, referred as “macro” since each represent more than one reaction. Then, each one

of the macro-reactions can be described by kinetic expressions that are generally assumed to be of

Monod-type.

As a first step of the MFA, a dynamic mass balance equation is obtained for each of the metabolites,

which results in the following set of linear equations:

dψ(t)

dt
= rmXv(t) (6.1)
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where ψ(t) ∈ Rnψ describes the time dependent vector of intra- and extracellular metabolite

concentrations and Xv(t) ∈ R the total viable cell density. rm ∈ Rnψ is a vector of specific up-

take/production rates, usually obtained during a particular phase of cell cultivation (i.e. typically

exponential or post-exponential phases). Following the quasi steady-state assumption (no accumu-

lation of intracellular metabolites), rm is deemed to be constant during each phase and thus can be

determined from the relation in (6.1). However, if operating modes other than batch are considered,

it is necessary to adjust equation (6.1) for any feeding of media and outflow of the reactor. In this

way, it is possible to predict the evolution of the metabolites’ concentration with time as a function

of changes in biomass and the metabolites’ concentrations at previous times. In the case of a per-

fusion operation, we account for the effect of the time varying perfusion rate P (t) and harvest rate

H(t) on each of the metabolite concentrations by modifying the left-hand side of equation (6.1) as

follows:
dψ(t)
dt −

P (t)
V (t)ψin + H(t)

V (t)ψ(t)

Xv(t)
= rm (6.2)

To obtain a smooth rate of change, the left-hand side of equation (6.2) can be discretized with

respect to different regimes of perfusion/harvest rates and summed up to provide a cumulative

production/consumption profile (Niu et al., 2013):

Ψ =

nt∑
k=1

ψ(tk+1)−ψ(tk) +
[
−P (tk)
V (tk)ψin + H(tk)

V (tk)
ψ(tk+1)+ψ(tk)

2

]
∆t

Xv(tk+1)+Xv(tk)
2

(6.3)

where the perfusion and harvest rates are constant for the time period of ∆t = tk+1− tk. Typically,

the perfusion rates are changed once per day until a desired steady-state has been achieved. A

linear regression function flr(·) is then used to approximate the cumulative profile (6.3). From the

corresponding slope we are able to obtain the rate of change of this cumulative profile as follows

(Niu et al., 2013):
dflr(Ψi)

dt
= rm,i (6.4)
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With i = 1, . . . , nψ. Accordingly, for each measured metabolite, the RHS of equation (6.4) can be

evaluated to obtain the specific uptake and production rates to construct the vector rm. Given the

vector rm and the stoichiometric matrix of intracellular reactions related to externalR and internal

rates S, it is possible to calculate the intracellular fluxes j by posing the following problem:

 R
S

 j =

 rm
0

 (6.5)

As the system in (6.5) is generally undetermined, it is necessary to perform a least-squares mini-

mization as follows:

ĵ = arg min
j

(r − rm)T W (r − rm)

s.t. r = Rj

0 = Sj (6.6)

where W is a weighting matrix composed of the inverses of the measurement variances. The

matrix relating the intracellular metabolites S is used to enforce the steady state condition of the

intracellular metabolites. With the kernel of S defined as K = null(S), the solution to problem

(6.6) has been derived in (Leighty & Antoniewicz, 2011):

ĵ = K
(
KTRTWRK

)−1
KTRTWrm (6.7)

By calculating the fluxes using (6.7), the goal is to eliminate insignificant fluxes to simplify the

metabolic network. For example, fluxes that contribute less than 1% to the total fluxes are con-

sidered to be insignificant and can subsequently be removed from the reaction network (Naderi

et al., 2011). Based on the network reduction, it is possible to formulate the macro reactions which

involve the remaining significant intracellular reactions (macro-reactions are shown in Section 3).
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Finally, a dynamic metabolic model is developed by assuming Monod-type kinetics for each of the

extracellular metabolites.

6.2.2. Macro-Reactions

Once the cumulative profiles have been obtained by using (6.3), the specific uptake and production

rates can be determined from (6.4). Following that, we calculated the profile of intracellular fluxes

using (6.7). To this end, we used a matrix of intracellular reactions containing 27 metabolites and

35 reactions (Niu et al., 2013). For more information on the metabolic network, consult the supple-

mentary material in the appendix A.1. It is important to point out that the matrix of stoichiometric

coefficients includes a reaction for the glutamine synthesis as the cell line has been introduced with

a glutamine synthetase (GS) gene.
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Figure 6.1.: Optimal flux distribution that explains the observed uptake/production rates.

By using eq. (6.7), it is possible to obtain the optimal flux distribution that can describe the ob-

served uptake and production rates as shown in figure 6.1. Based on the most significant fluxes, we

are able to construct the macro-reactions by relating substrates to products by combining reactions

and including in these combinations all of the significant fluxes at least once (Naderi et al., 2011).
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The result is the following macro-reactions shown in table 6.1, which are subsequently used to

formulate the dynamic metabolic model.

# Macro Reaction Included Fluxes

1 Glc+ 2ADP → 2Lac+ 2ATP 1,2,3

2 Asn→ Asp+NH3 18

3 Ser +NH3 + CO2 +NADH →
2Gly +NAD+

19

4 Ser +NADH → Ala+NAD+ 12, 15, 26

5 Asp+ 0.5Glc+ 3NAD+ +ADP →
Glu+ 2CO2 + 3NADH +ATP

1, 2, 4, 5, 6, 16

6 Glu+NH3 → Gln 11

7 Glc+ 12NAD + 2ADP →
6CO2 + 12NADH + 2ATP

1, 2, 4, 5, 6, 7, 8, 9, 10, 33

8 Biomass 34

9 IgG 35

Table 6.1.: Macro-reactions based on significant fluxes

The macro reactions in table 6.1 provide an understanding of the dominant intracellular reactions

of this cell line. For example, it is evident that lactate is getting produced as a result of the pathway

from glucose to the TCA cycle. Other significant reactions are the synthesis of glutamine from

glutamate and ammonia as well as the production of aspartate and ammonia from asparagine.

For most of the minor amino acids, which are not part of the macro reactions as per the MFA,

we assumed a simple consumption term expressed by a Monod kinetic. We constructed dynamic

balance equations as shown in the next subsection.

6.2.3. Model Equations

Based on the macro-reaction shown in table 6.1, a set of ODEs can be derived to describe the under-

lying dynamics. The macro-reactions are used to construct the equations of the main metabolites
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whereas for the remaining minor amino acids we assumed that they are getting consumed without

affecting the evolution of other metabolites. Furthermore, the bleeding rate for viable and dead cell

bleeding is denoted by B, while the perfusion and harvest rate is denoted by P and H respectively.

dXv

dt
= µXv

 [Glc]

(K21 + [Glc])

1

1 +
(

[Amm]
K23

) 1

1 +
(

[Lac]
K25

)


−kdX2
v

 1

1 +
(

K24
[Amm]

)n +
K26

[Glc]

− B

V
Xv (6.8)

dXd

dt
= kdX

2
v

 1

1 +
(

K24
[Amm]

)n +
K26

[Glc]

−KlysXd −
B

V
Xd (6.9)

d[Glc]

dt
= −K41Xv −

(
K42[Glc]

K43 + [Glc]

)
Xv +

P

V
[Glc]in −

H

V
[Glc] (6.10)

d[Lac]

dt
= K51Xv +

(
K52[Glc]

K43 + [Glc]
− K53[Lac]

K54 + [Lac]

)
Xv −

H

V
[Lac] (6.11)

d[Amm]

dt
=

(
K64[Asn]

K72 + [Asn]
− K62[Amm][Glu]

(K61 + [Amm])(K63 + [Glu])

− K65[Amm][Ser]

(K133 + [Amm])(K134 + [Ser])

)
Xv −

H

V
[Amm] (6.12)

d[Asn]

dt
= −

(
K71[Asn]

K72 + [Asn]

)
Xv +

P

V
[Asn]in −

H

V
[Asn] (6.13)

d[Asp]

dt
=

(
K81[Asn]

K72 + [Asn]
− K82[Asn]

K83 + [Asn]

)
Xv +

P

V
[Asp]in −

H

V
[Asp] (6.14)

d[Ala]

dt
= K91

(
K42[Glc]

K43 + [Glc]
+

K53[Lac]

K54 + [Lac]
− K92[Ala]

K93 + [Ala]

)
Xv

+
P

V
[Ala]in −

H

V
[Ala] (6.15)
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d[Glu]

dt
=

(
K101[Glc]

K43 + [Glc]
− K104[Lac]

K54 + [Lac]
+

K102[Asn]

K83 + [Asn]

− K103[Amm][Glu]

(K61 + [Amm])(K63 + [Glu])

)
Xv +

P

V
[Glu]in −

H

V
[Glu] (6.16)

d[Pro]

dt
= −

(
K110[Pro]

K111 + [Pro]

)
Xv +

P

V
[Pro]in −

H

V
[Pro] (6.17)

d[Ser]

dt
= −

(
K120[Ser]

K121 + [Ser]
+

K122[Amm][Ser]

(K133 + [Amm])(K134 + [Ser])

)
Xv

+
P

V
[Ser]in −

H

V
[Ser] (6.18)

d[Gly]

dt
=

(
K130[Amm][Ser]

(K133 + [Amm])(K134 + [Ser])
− K131[Gly]

K132 + [Gly]

)
Xv

+
P

V
[Gly]in −

H

V
[Gly] (6.19)

d[Gln]

dt
=

(
K140[Amm][Glu]

(K61 + [Amm])(K63 + [Glu])
− K143[Gln]

K144 + [Gln]

)
− H

V
[Gln] (6.20)

d[Thr]

dt
= −

(
K150[Thr]

K151 + [Thr]

)
Xv +

P

V
[Thr]in −

H

V
[Thr] (6.21)

d[His]

dt
= −

(
K160[His]

K161 + [His]

)
Xv +

P

V
[His]in −

H

V
[His] (6.22)

d[Arg]

dt
= −

(
K170[Arg]

K171 + [Arg]

)
Xv +

P

V
[Arg]in −

H

V
[Arg] (6.23)

d[Cys]

dt
= −

(
K180[Cys]

K181 + [Cys]

)
Xv +

P

V
[Cys]in −

H

V
[Cys] (6.24)

d[Lys]

dt
= −

(
K190[Lys]

K191 + [Lys]

)
Xv +

P

V
[Lys]in −

H

V
[Lys] (6.25)
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d[Tyr]

dt
= −

(
K200[Tyr]

K201 + [Tyr]

)
Xv +

P

V
[Tyr]in −

H

V
[Tyr] (6.26)

d[Met]

dt
= −

(
K210[Met]

K211 + [Met]

)
Xv +

P

V
[Met]in −

H

V
[Met] (6.27)

d[V al]

dt
= −

(
K220[V al]

K221 + [V al]

)
Xv +

P

V
[V al]in −

H

V
[V al] (6.28)

d[Ile]

dt
= −

(
K230[Ile]

K231 + [Ile]

)
Xv +

P

V
[Ile]in −

H

V
[Ile] (6.29)

d[Leu]

dt
= −

(
K240[Leu]

K241 + [Leu]

)
Xv +

P

V
[Leu]in −

H

V
[Leu] (6.30)

d[Phe]

dt
= −

(
K250[Phe]

K251 + [Phe]

)
Xv +

P

V
[Phe]in −

H

V
[Phe] (6.31)

d[Trp]

dt
= −

(
K260[Trp]

K261 + [Trp]

)
Xv +

P

V
[Trp]in −

H

V
[Trp] (6.32)

d[Mab]

dt
= − (K270 +K271[Glc])Xv −

H

V
[Mab] (6.33)

where Xv represents the viable cell density (VCD) and Xd the dead cell density (DCD). Further-

more, the concentrations of metabolites are defined as follows: [Glc] - glucose,[Lac] - lactate,

[Amm] - ammonia, [Asn] - asparagine, [Asp] - aspartate, [Ala] - alanine, [Glu] - glutamate, [Pro]

- proline, [Ser] - serine, [Gly] - glycine, [Gln] - glutamine, [Thr] - threonine, [His] - histidine,

[Arg] - arginine, [Cys] - cysteine, [Lys] - lysine, [Tyr] - tyrosine, [Met] - methionine, [V al] -

valine, [Ile] - Isoleucine, [Leu] - leucine, [Phe] - phenylalanine, [Trp] - tryptophan and [Mab]

– MAb. The kinetic parameters, to be estimated from the experimental data, are given by K21 to

K271.
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6.2.4. Parameter Estimation

Performing a parameter estimation involving such a large number of ODEs and parameters as pro-

vided by the model described in subsection 6.2.3 is a computational extensive task. This problem

is even more challenging due to the coupling between equations and sparse measurements in case

of most of the amino acids. Trying to estimate all parameters at the same time is thus an intractable

task for such a large system due to the nonlinear nature of the optimization problem. For that rea-

son, we divided the parameter estimation problem into successive optimization problems involving

a reduced number of parameters. This is similar to the approach presented in subsection 4.4.2.3.

The main motivation behind this sequential model calibration procedure is that the dynamics of

most metabolites mainly depend on the change in biomass. This allows us to divide the problem

into the following steps:

1. Approximation of the measured viable cell density profile by a simple piecewise linear in-

terpolation to capture the dynamic behaviour of biomass.

2. Successive estimation of all the minor amino acids which do not contribute to the evolution

of other metabolites in the sense that their fluxes are insignificant as per the MFA. These

smaller parameter estimation steps can be executed independently from each other.

3. Estimation of major metabolites which are involved in the macro-reactions, where the dy-

namics of coupled metabolites are estimated simultaneously.

4. Finally, separate estimation of the parameters related to the dead cell and viable cell density

equations.

6.2.5. Results

In the following, the results of the model-fitting are presented. One set of experimental data is used

for calibration while a different set is used for validation. The estimated parameter values are given

150



in the appendix in table A.2.
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Figure 6.2.: Calibration and validation results of the developed dynamic metabolic model for perfusion sys-
tems with normalized units.

The developed model provides an adequate fit (qualitatively) of the metabolites for both the cal-

ibration and validation data. For example, one major difference between the two media which is
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captured by the model is the different rate of ammonia production. Some metabolites such as ala-

nine and glycine seem to be more difficult to predict accurately. Note that the parameters of the

Mab equation (6.33) haven been calibrated from a different data set (not shown).

6.3. Run-to-Run Optimization

The aim of this section is to utilize the developed model for the purpose of a run-to-run optimization

under model-plant mismatch case study. Specifically, we implement the methodologies proposed in

the chapters 3, 4 and 5, which are based on the algorithm developed by Mandur & Budman (2015b).

The model equations in (6.8) - (6.33) thus define the model for the perfusion process simulation

and are utilized to generate experimental data. We assume that the measurements are corrupted

by Gaussian noise with standard deviation of 10 % of the respective average output magnitude.

Before providing more detail of the optimization objective, we first discuss the assumed model-

plant mismatch.

6.3.1. Model-Plant Mismatch

One challenge in the modelling of cell culture processes is the description of the viable and dead

cell densities. This is especially true for mammalian cells who exhibit complex biological phe-

nomena such as apoptosis (programmed cell death) (Meshram et al., 2012). Due to the complex

behaviour of biomass formation, it is common to construct semi-empirical relations for the VCD

and DCD as shown in (6.8) and (6.9). For that reason, we assume that there exist a structural er-

ror in the biomass behavior. Instead of the DCD being a function of X2
v , we just assume a linear

dependence of the death term with respect to viable cell concentration. Therefore, the respective
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model equations to be used for optimization purposes are given by:

dXv

dt
= µXv

 [Glc]

(K21 + [Glc])

1

1 +
(

[Amm]
K23

) 1

1 +
(

[Lac]
K25

) 1

1 + [Glc]
K22


−kdXv

 1

1 +
(

K24
[Amm]

)n +
K26

[Glc]

− B

V
Xv (6.34)

dXd

dt
= kdXv

 1

1 +
(

K24
[Amm]

)n +
K26

[Glc]

−KlysXd −
B

V
Xd (6.35)

Notice, that we have also introduced an inhibition term in (6.34) for large glucose concentrations.

This is necessary to obtain a distinct optimum for the optimization objective described in the next

section. For the optimization case study, this inhibition term has also been introduced into the

simulator equation (6.8).

6.3.2. Optimization Objective

The main advantage of a perfusion system compared to batch or fed-batch operations is the fact that

it is possible to avoid nutrient limitations due to a continuous supply of fresh media and discharge

of toxic byproducts. Furthermore, maintaining a steady-state of the VCD is achievable through

the bleeding of cells. As a result, perfusion cultures can be maintained at optimal conditions for

long periods of time which leads to increased recombinant protein yields. However, it is first of

all necessary to reach the desired cell density level before a steady-state is to be maintained. In

order to do that, the perfusion rate is gradually increased in a step-wise fashion. For example,

the normalized perfusion rate profile corresponding to the validation data shown in figure 6.2 is

illustrated on the left-hand graph in figure 6.3.
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Figure 6.3.: Normalized perfusion rate and cell specific perfusion rate (CSPR) corresponding to the valida-
tion data shown in figure 6.2.

The reason for implementing this gradual increase is to maintain a certain cell specific perfusion

rate (CSPR), which is defined as (Ozturk, 1996):

CSPR =
D

Xv
(6.36)

where D is the dilution rate. For illustration, the measured and (from the model) predicted normal-

ized CSPR are shown on the right graph in figure 6.3. Hence, a goal in the operation of perfusion

processes is to maintain a desired CSPR to avoid nutrient limitations and the build-up of toxic

byproducts (Clincke et al., 2013).

For this case study, we define as the objective the maximization of the amount of harvested prod-

uct per day during the steady-state period. The decision variables for optimization are the media

glucose concentration [Glc]in and the perfusion rate at steady-state Pss. To achieve this, we im-

plement a step-wise increasing perfusion profile, similar to the left graph in figure 6.3, where we

assume that the perfusion rate is changed on a daily basis until the steady-state is reached within

tss days. Moreover, to limit the amount of perfused media, a constraint on the maximum CSPR at

steady-state is provided. The optimization problem solved during each perfusion run can therefore
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be formulated as follows:

uk+1 = min
[Glc]0,Pss

−Pss [Mab] (x, [Glc]0, Pss,θ, tss)

s.t. (6.10)− (6.35)

CSPRss(x, [Glc]0, Pss, tss) ≤ 0.08 nL/cell/day (6.37)

Where uk+1 presents the input for the next perfusion run. The steady-state CSPR is defined as

CSPR = Pss/Xv,ss. Furthermore, for simplicity, the bleed rate is defined as a function of the

perfusion rate as B = 0.1P .

6.3.3. Results

For updating model outputs, it is possible to apply the sequential procedure outlined in (Hille

& Budman, 2017). However, before an optimization can be performed, it is first necessary to

determine the subset of parameters to be adjusted for gradient correction. For that reason, the

parameter selection procedure proposed in (Hille et al., 2017) is utilized to determine, at each

iteration, the particular subset of parameters associated with large gradient sensitivities. When

applying the procedure to the model (6.10) − (6.35), a set of highly sensitive parameters in the

first iteration is given by µ, K21, K43, K25 and K270. On the other hand, upon converging to

the process optimum, the optimal subset for gradient correction is given by µ, K21, K22, kd and

K53. Considering the selection procedure is based on local sensitivities, this illustrates, that it is

particularly important to adjust the parameters associated with glucose inhibition, i.e. K21 and

K22, to obtain an accurate prediction around the optimum.

It is important to point out that, due to the large number of equations and parameters in (6.10) −

(6.35), there is a significant increase in computational time in each of the steps involved in the

simultaneous identification and optimization framework. Compared to the penicillin process, in-
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volving 8 model parameters, presented in chapter 3, just the computational time of the parameter

selection increases by a factor of 30.
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Figure 6.4.: Run-to-run optimization results (normalized) of the perfusion process. Contour lines represent
the objective function described in (6.37).

Finally, the optimization results are shown in figure 6.4, where three optimization schemes are

compared. The two-step method (Chen & Joseph, 1987), consisting of a repeated identification

step followed by a model-based optimization, converges to a sub-optimal operating point. This

shows that a minor model-plant mismatch such as the wrongly assumed dependence of cell death

with respect to cell density can have significant impact in iterative optimization schemes.

When using the approach for simultaneous identification and optimization on the other hand, con-

vergence to the optimal operating point is achieved. The standard gradient correction method was

applied where only the most recent gradient measurements are used in the gradient correction step.

The extended gradient correction is based on the procedure outlined in chapter 5 and includes a

design of experiments approach to determine the optimal input perturbation for more informative
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cost gradient measurements. From 6.4 it can be seen that the effect of uncertainty in gradient

measurements can be mitigated by applying the proposed procedure for gradient correction with

design of experiments. This illustrates the effectiveness of the parameter selection, estimation and

experimental design techniques presented in this work.

6.4. Conclusions

This chapter presented two contributions. In the first part, a dynamic metabolic model was devel-

oped to describe the dynamic behavior of biomass and extra cellular metabolites during a perfusion

cultivation of CHO cells. A metabolic flux analysis was adjusted to account for the effects of

perfusion and harvest rates. The obtained model showed a good agreement with the experimental

data.

In the second part of this chapter, the derived model was utilized for a case study of a run-to-run

optimization in the presence of model-plant mismatch. To illustrate the effectiveness of the run-

to-run procedure in the presence of model error, a lack of knowledge about the accurate effect of

apoptosis was assumed. Furthermore, an objective was defined involving the maximization of anti-

body production while maintaining a specified CSPR. Overall, the results illustrate the importance

of optimization methods that provide robustness to model-plant mismatch. To this end, it is shown

in this chapter that the methods developed in this work are particularly valuable when complex

models with numerous parameters are used in iterative optimization schemes.
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7. Conclusions and Outlook

7.1. Overview

Biochemical processes present a platform for the production of specific pharmaceuticals such as

humanized monoclonal antibodies. Due to rising demand for medical applications, there exist an

urgency to increase product yields. Model-based optimization presents an opportunity to improve

the process performance in a methodical approach. This is especially true for biotechnological pro-

cesses that are mostly operated in batch or fed-batch modes, which makes the run-to-run optimiza-

tion approach a particularly attractive method. Following the run-to-run approach, it is possible to

utilize the information from past experiments to update an existing model to predict the optimal

input for the next batch-run.

However, several challenges have to be addressed to achieve a successful convergence to the pro-

cess optimum. These challenges are mostly related to the existence of model-plant mismatch and

the occurrence of unmeasured disturbances that impair the prediction capabilities of the involved

models. For that reason, it is vital to implement optimization methods that provide the required

robustness to such uncertainties. To this end, the method of simultaneous identification and op-

timization presents a framework where the model parameters are adjusted to correct for errors in

the predicted cost-function and constraint gradients. This enforces model adequacy and drives the

process to the desired operating point. The present work builds up on this framework and extends

it in the following ways.
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Chapter 3 presents a novel methodology for selecting a subset of model parameters to be updated

in each iteration of a batch-to-batch optimization in the presence of model-plant mismatch. The

parameters are ranked according to their overall effect on the model output and the gradients of

the cost-function and constraints. Furthermore, robustness with respect to uncertainties in initial

batch conditions is implemented by using a robust formulation of the objective. The propagation

of uncertainty in initial conditions onto the output was achieved by using an approach based on

Polynomial Chaos Expansions.

Chapter 4 introduces set-based uncertainty bounds into the run-to-run optimization framework.

Using the bounds on the model outputs, a parameter estimation problem is proposed that mini-

mizes the ratio of the error between model predictions and measurements to a lumped measure

of the parametric sensitivities of cost-function and constraint gradients subject to constraints on

time varying trajectories (set based constraints) of output variables. In this way, trajectories within

the set-based constraints are found that provide high gradient sensitivities that are necessary for

correcting the gradients with small deviation of the parameter values with respect to the values

obtained in the identification step. As a result, we are able to mitigate the conflicting objectives

of identification and gradient correction which results in a smoother and faster convergence to the

process optimum. Furthermore, using the output uncertainty bounds, a model-update criterion is

implemented to only update the specific model outputs where it is strictly necessary. This is espe-

cially of use for larger biochemical models where the identification step can be divided into smaller

problems with a reduced number of parameters.

Experimental design is vital for acquiring additional information with the aim of reducing para-

metric uncertainty. To this end, most design criteria evolve around the design of new experiments

deemed more informative in terms of model identification. However, in the presence of model-

plant mismatch there exist a lack of synergy between identification and optimization. Chapter 5

therefore outlines a design of experiments approach that focuses on the design of new batch exper-
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iments that are most informative with respect to the gradients of cost and constraints. In that sense,

parameter precision is being improved by using available information of past batch-runs combined

with new experiments. This use of an experimental design approach leads to additional robust-

ness against gradient uncertainty and superior model prediction capabilities, especially around the

process optimum.

Finally, chapter 6 presents the model development of a perfusion operation of a mammalian cell

culture and the application of the run-to-run optimization procedures developed in this thesis. This

part of the work was developed in collaboration with an industrial partner that provided perfusion

data for model development and calibration. In contrast to regular batch processes, perfusion op-

erations provide a constant supply of fresh media and a constant outflow through a perfusion and

harvest rate respectively. At the same time, the discharge of cells is prevented through a filter lead-

ing to high cell densities during cultivation. Perfusion processes thus present an attractive system

for the industrial production of bio manufactured products. The illustrated model development and

optimization case study show that model-based optimization presents an opportunity to enhance

the performance of perfusion processes, while providing robustness to model uncertainty.

7.2. Concluding Remarks

In summary, it can be concluded that an appropriate parameter selection is essential in iterative op-

timization schemes where the model is updated and corrected by adjusting the model parameters.

As shown in chapter 3, the main benefit in selecting a set of highly sensitive parameters is a major

speed-up in convergence leading to a reduction in the integral absolute error (IAE), i.e. the differ-

ence between the predicted and optimal input averaged over all iterations, of more than 50 %. This

is mainly due to the fact that more sensitive parameters result in a significantly improved gradient

correction. In other words, for the same upper bound on the relative truncation error, the proposed

selection leads to parameters that will provide larger effect on the gradient with small deviation in
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parameter values from the ones calculated in the earlier identification step. In this way we reduce

the conflict between the identification and the gradient matching step thus resulting in smoother

convergence.

Another reason for selecting only a subset of parameters is the effect of overfitting and computa-

tional time. In that sense, overfitting of noisy measurements can be avoided by only considering

the parameter that provide the most effect on model outputs. At the same time, as computational

time increases monotonically with the number of parameters that are updated at each iteration,

there is a motivation to limit the number of considered parameters . This is especially important

when employing models of larger complexity as illustrated by the dynamic metabolic models in

chapter 4, 5 and 6. In terms of model identification, the parameter selection problem has been

mainly addressed by a sequential procedure that divides the identification in smaller problems with

a reduced number of parameters. Nonetheless, the parameter selection technique from chapter 3

can still be applied to determine the subset of parameters to be utilized in the gradient correction

step. This can be of substantial help to the user, as it is often unclear, which set of parameters are

ideally suited for performing the gradient matching.

As illustrated in chapter 4, it is also possible to further improve convergence to the optimum when

using suitable or even sub-optimal parameter sets. This can be achieved by using a modified pa-

rameter estimation objective, i.e. the ratio of the sum of squared errors to a measure of parametric

sensitivity, which leads to parameter values that are better suited for the subsequent gradient correc-

tion step. The strength of the modified parameter estimation is that it not only leads to a speed-up

of convergence in terms of the IAE, but also results in a reduction of the variance of the predicted

input for the next batch-run. This is made possible by utilizing worst-case bounds on the process

outputs (set-based constraints) to avoid unnecessary re-estimation steps and to also find time vary-

ing trajectories that provide larger parametric sensitivities. However, a trade-off exists here since

additional experiments have to be performed in order to obtain the set-based constraints.
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While the methods developed in chapter 3 and 4 help in enforcing model adequacy, a persisting

problem in run-to-run optimization is given by the uncertainty in gradient measurements. To this

end, the design of experiments approach outlined in chapter 5 introduces additional robustness by

incorporating past and future cost measurements into the gradient correction step. The main benefit

here is not necessarily related to improvement in the IAE, as shown by the CHO case study in chap-

ter 5 for example, but rather in the reduction of the variance in the prediction of the next optimal

input for which reductions of over 90 % were observed. This effect is most prominent around the

optimum, where the variance in gradient measurements is especially large. One drawback of the

design of experiment approach is the increase in computational time of the gradient correction step

resulting from additional function evaluations as more gradient measurements are considered. In

presence of time constraints, this increase in computational time can be especially prohibitive for

large scale models presented in chapter 6.

Finally, the impact of stochastic uncertainty in initial batch conditions has been investigated in

chapter 3. By performing a robustness analysis, it was shown that the effect of input uncertainties

can be mitigated leading, on average, to higher product yields.

7.3. Future Work

Through this work we have identified a number of challenges that should be addressed in the future:

1. Model adequacy: One of main aspects discussed in this work is the enforcement of model

adequacy in model-based run-to-run optimization schemes. In order to achieve that, it was

shown that it is critical to utilize the particular model parameters associated with large gradi-

ent sensitivities. However, for this procedure to be successful, it is necessary that there exist

a suitable set of model parameters that are available for adaptation. To facilitate this step in

the future, it will be useful to address this issue already during the model development. This
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implies that additional parameters may have to be included as to provide enough sensitiv-

ity for optimization objectives. To this end, it will be necessary to investigate what kind of

model structure is best suited for this purpose. This issue is also related to the feasibility of

set-based constraints which is currently considered a key challenge in the use of uncertainty

bounds for parameter estimation.

2. Development of growth media for cell culture processes: One example where the run-to-

run approach is directly applicable is the model-based design of new media for cell culti-

vation processes. It is generally the case that cultivation media contain a large number of

different components. Many of those are not included in the kind of fundamental models

discussed throughout this work, as their mechanistic effects are usually not well understood.

However, if it is desired to perform a model-based media design, it is essential to introduce

additional model components that have been ignored but may have large impact on growth

and productivity. To address this problem without significantly increasing the dimensions

of the model one option is to use Principal Component Analysis (PCA) to reduce the input

dimension into a few principal components (PCs) and relate those to the observed uptake

and production rates exhibited by the cells for different media. Then, the mechanistic model

could be augmented with respect to the scores of the main principal components to result in a

hybrid model that combines the major amino acids and principal scores, where the latter de-

scribe a large combination of minor elements. This way, a measure of the effect of all media

components can be incorporated, which enables a model-based optimization by searching

for an optimum within the space spanned by the PCs and the major amino acids.

3. Real Time Optimization (RTO): A major challenge of presented method to RTO applica-

tions lies in the determination of the optimal trade-off between exploration and exploitation.

In RTO, the plant has to be perturbed to introduce excitation necessary for a parameter esti-

mation. At the same time, when dealing with model-plant mismatch, plant perturbation are
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also necessary to obtain gradient measurements. Hence, there exist two objectives for which

the optimal plant perturbation directions have to be determined. In this context, perfusion

processes present an innovative opportunity for RTO applications. Typically, after an initial

period, perfusion processes are able to reach a steady-state where the cell density is main-

tained around a specific level. During the steady-state there exist an opportunity to increase

the production of the desired proteins by changing process conditions such as the tempera-

ture. For this purpose, a model could be calibrated around the steady-state and used for RTO,

provided the presence of sufficient excitation. Furthermore, an available model can also be

used for process control purposes. In that regard, it is often desired to reach a certain cell

specific perfusion rate, which could be maintained by a controller.

4. Economic Model Predictive Control (EMPC): MPC presents an established methodology

in advanced control of chemical processes. An extension of the method, referred to as EMPC,

that also takes into account an economic cost of the control action, has recently gained much

popularity. Similar to run-to-run optimization, EMPC presents an approach where a plant is

driven to an optimal operating point over the course of a finite horizon. However, in presence

of a structural error in the model used by the controller such as the model errors considered

in the this thesis, the process may converge to a sub-optimal operating point. Hence, there

exist an opportunity to introduce robustness to model-plant mismatch in EMPC by applying

the methods developed in this work to correct the involved model. In this case, since the

optimization will be performed online and will be typically applied to continuous processes,

a number of challenges will have to be addressed such as computational time and persistence

of excitation that will enable parameter update and speed of parameter adaptation during

transient operation.
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A. Supplementary Material for Chapter 6

A.1. Metabolic Network

The following metabolic network and corresponding reactions, used for the analysis and model

development in chapter 6, have been taken from (Niu et al., 2013).

Table A.1.: Metabolic network based on 35 metabolic reactions.

Flux # Pathway Reaction

1 fGlc−G6P Glcex +ATP → G6P +ADP

2 fG6P−Pyr G6P + 2NAD+ + 3ADP → 2Pyr + 2NADH + 3ATP

3 fPyr−Lac Pyr +NADH → Lacex +NAD+

4 fPyr−Pyrm Pyr → Pyrm

5 fPyrm−AcCm Pyrm +NAD+
m → AcCm + CO2 +NADHm

6 fOaam−αKGm AcCm +OAAm +NAD+
m → αKGm + CO2 +NADHm

7 fαKGm−Sucm αKGm+NAD+
m → Sucm + CO2 +NADHm

8 fSucm−Fumm Sucm + FADm +GDP → Fumm + FADH2m +GTP

9 fFumm−Malm Fumm →Malm
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Table A.1.: Metabolic network based on 35 metabolic reactions.

Flux # Pathway Reaction

10 fMalm−Oaam Malm +NAD+
m → OAAm +NADHm

11 fGln−Glu Gluex +NH3ex +ATP → Glnex +ADP

12 fGlu−αKGm Gluex +NAD+
m → αKGm +NH3ex +NADHm

13 fMalm−Mal Malm →Mal

14 fMal−Pyr Mal +NAD+ → Pyr + CO2 +NADH

15 fPyr−Ala Pyr +Gluex → Alaex + αKGm

16 fOaam−Asp OAAm +Gluex → Asp+ αKGm

17 fArg−Glu Arg + 2NAD+
m → Gluex + 3NH3ex + CO2 + 2NADHm

18 fAsn−Asp Asn→ Asp+NH3ex

19 fGly−Ser 2Gly +NAD+
m → Ser +NH3ex + CO2 +NADHm

20 fHis−Glu His+NAD+
m → Gluex + 2NH3ex + CO2 +NADHm

21 fIle−Sucm Ile+ 2NAD+
m → AcCm + Sucm +NH3ex + 2NADHm

22 fLeu−AcCm Leu+ 3NAD+
m → 3AcCm + 3NADHm

23 fLys−AcCm Lys+ 6NAD+
m → 2CO2 + 2AcCm + 6NADHm

24 fMet−Sucm Met+ 4NAD+
m → CO2 +NH3ex + Sucm + 4NADHm

25 fPhe−Tyr Phe+NAD+
m → Tyr +NADHm

26 fSer−Pyr Ser → Pyr +NH3ex

27 fThr−Sucm Thr +NAD+
m → Sucm +NH3ex +NADHm
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Table A.1.: Metabolic network based on 35 metabolic reactions.

Flux # Pathway Reaction

28 fTrp−AcCm Trp+ 19NAD+
m → 3AcCm + 5CO2 + 19NADHm

29 fTyr−Fumm Tyr + 5NAD+
m → Fumm + 2AcCm + CO2 + 5NADHm

30 fV al−Sucm V al + 5NAD+
m → CO2 + Sucm + 5NADHm +NH3ex

31 fNADH−NADHm NADH +NAD+
m → NADHm +NAD+

32 fNADHm−ATP NADHm + 0.5O2 + (P/O)ADP → NAD+
m + (P/O)ATP

33 fFADH2m−NADHm FADH2m +GTP +NAD+
m → NADHm +GDP + FADm

34 fbio γG6P,bioG6P + γGln,bioGlnex + γGlu,bioGluex +

γAla,bioAlaex + ΣγAAi,bioCwiHxiNyiOzi+(κbio −

6γG6P,bioκG6P − 5γGln,bioκGln − 5γGlu,bioκGlu −

3γAla,bioκAla − ΣγAAiwiκAAi)NADH
+y’atpbioATP →

Biomass(CHα,bioNβ,bioOγ,bio)+(κbio − 6γG6P,bioκG6P −

5γGln,bioκGln − 5γGlu,bioκGlu − 3γAla,bioκAla −

ΣγAAiwiκAAi)NAD
+ + yatpbioADP

35 fmab γGln,mabGlnex + γGlu,mabGluex +

γAla,mabAlaex+ΣγAAi,mabCwiHxiNyiOzi +

yatpmabATP →MAb(CHα,mabNβ,mabOγ,mab) + yatpmabADP
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A.2. Model Parameters

Parameter Value Parameter Value Parameter Value

µ 2.52 K83 1.28 K161 11.76

K21 2.53 K91 1.17 K170 0.69

K23 100.04 K92 1.36 K171 14.76

K24 66.75 K93 13.68 K180 7.06

K25 3.22 K101 18.49 K181 20.14

K26 0.10 K102 23.04 K190 1.31

kd 0.01 K103 64.97 K191 16.66

Klys 0.71 K104 1.00 K200 1.42

K41 0.02 K110 0.92 K201 12.64

K42 5.98 K111 13.55 K210 1.09

K43 91.27 K120 17.34 K211 14.46

K51 0.58 K121 28.71 K220 1.58

K52 4.64 K122 3.21 K221 15.78

K53 1.24 K130 0.16 K230 1.27

K54 87.56 K131 0.06 K231 16.26

K61 0.33 K132 9.57 K240 3.92

K62 0.27 K133 3.91 K241 49.17

K63 2.52 K134 0.10 K250 0.81

K64 0.61 K140 0.01 K251 10.92

K65 0.76 K143 0.29 K260 1.91

K71 0.99 K144 98.95 K261 36.85

K72 1.78 K150 1.29 K270 26.38

K81 0.03 K151 15.79 K271 0.10

K82 0.33 K160 0.72

Table A.2.: Estimated parameter values from the results shown in figure 6.2.
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B. Availablility of the Implementation

Most of the documented methodologies and case studies were implemented in MATLAB (2015b)

and are available under https://github.com/RHille/R2R_Batch_Optimization.
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