
Extracting Non-Functional Requirements
from Unstructured Text

by

Sahba Ezami

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Sahba Ezami 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Non-functional requirements (NFRs) of a software system describe desired quality at-
tributes rather than specific user-visible features; NFRs model stakeholder expectations
about pervasive system properties such as performance, security, reliability, and usability.
Failing to meet these expectations can result in systems that, while functionally complete,
may lead to user dissatisfaction and ultimately to the failure of the product. While NFRs
may be documented, tracked, and evaluated in a variety of ways during development, there
is no single common approach to doing so.

In this work, we investigate extracting information about NFRs that may be contained
in source code and source code comments, since they are often considered to be the ultimate
source of ground truth about a software system. Specifically, we examine how often NFRs
are mentioned explicitly or implicitly in source code comments by using natural language
processing (NLP) techniques, and we evaluate how effectively they can be identified using
machine learning (ML). We modeled the problem as a text classification problem in which
the goal is to identify comments about NFRs, and we evaluated the classifiers using example
systems from the electronic health records (EHR) domain. The best performance was
achieved using SVM classifier, with an F1 measure of 0.86. Our results indicate that using
supervised method for our problem outperforms unsupervised methods which try to find
common NFR patterns in comments. Comparing our results to previous studies shows that
NFRs can be extracted more accurately from source code comments compared to other
software artifacts (e.g., SRS or RFP documents). Moreover, we found that bag-of-words
features are more effective compared to more complicated features (i.e., doc2vec) for the
problem of extracting NFRs from source code comments.

Keywords: requirements engineering, non-functional requirements, natural language
processing, machine learning, text classification

iii

Acknowledgements

I am deeply grateful for my supervisor, Michael Godfrey, for his helpful guidance on
my thesis.

I would like to thank Mei Nagappan, Ian Davis, and all other members of Software
Architecture group (SWAG) for their great help and useful suggestions to my thesis.

Special thanks go to my family and friends for their support.

iv

Table of Contents

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Research Questions . 3

1.2 Contributions . 3

1.3 Organization . 3

2 Background 5

2.1 Requirements engineering . 5

2.2 Machine learning for text processing . 7

2.2.1 Latent Dirichlet Allocation (LDA) 8

2.2.2 Text classification . 10

2.2.3 Doc2vec . 11

2.3 Classification Evaluation . 12

2.4 Summary . 14

3 Related Work 15

3.1 Extracting NFRs from software artifacts 15

3.2 Analyzing the content of source code comments 18

3.3 Summary . 21

v

4 Methodolgy 22

4.1 Dataset . 23

4.1.1 Software documents . 23

4.1.2 iTrust comments . 24

4.2 Preprocessing of comments . 29

4.3 Topic analysis methodology . 32

4.4 Text classification methodology . 33

4.4.1 Feature extraction . 34

4.4.2 Classification models . 35

4.5 Summary . 36

5 Research Results and Discussion 37

5.1 Breakdown of NFRs in the source code . 38

5.2 Performance of Machine learning techniques 39

5.2.1 Topic modeling . 39

5.2.2 Text classification . 40

5.3 Performance of different sets of classification features 42

5.4 Comparison . 45

5.5 Summary . 48

6 Conclusions 49

6.1 Threats to validity . 50

6.2 Future work . 51

References 52

vi

List of Tables

4.1 Type of software documents and projects used for each document type in
dataset of software documents provided by Slankas et al. [57]. 23

4.2 Statistics of dataset of software documents. 24

4.3 Statistics of dataset of software documents after merging security, audit,
access control, and privacy requirements into one single category named
security. 25

4.4 The six categories of NFRs listed in SRS document of the iTrust project
and the description for each NFR. 26

4.5 Statistics of the dataset of comments . 27

4.6 Examples of comments and their corresponding category in the dataset . . 28

4.7 Different categories of source code comments according to their content and
description of each category. 31

4.8 The features extracted for each comment to use it as classification features
in preprocessing of comments. 32

4.9 List of top words in the wordlist for each of the security and reliability category. 34

5.1 Statistics of the dataset of comments . 38

5.2 Effect of number of topics on the performance of LDA-based topic labeling 40

5.3 Effect of number of top selected words on the performance of LDA 41

5.4 Performance of classifiers to determine whether the comment is “NFR” or
“non-NFR”. 42

5.5 Performance of classifiers to determine whether the comment is about secu-
rity or not. 42

vii

5.6 Performance of classifiers to determine whether the comment is about reli-
ability or not. 42

5.7 Performance of difference set of features with Näıve Bayes and SVM classi-
fiers. The method is evaluated using 10-fold cross-validation on the dataset
of comments. 43

5.8 Performance of difference set of features with Näıve Bayes and SVM classi-
fiers. The classifers are trained on the dataset of documents and evaluated
on the comments . 44

5.9 Effect of vector size on performance of classifiers for NFR detection. The
method is evaluated using 10-fold cross-validation on the dataset of com-
ments with doc2vec feature vectors. 44

5.10 Effect of text preprocessing on the performance of classifiers in NFR detec-
tion. The method is evaluated using 10-fold cross-validation on the dataset
of comments with doc2vec feature vectors. 45

5.11 Performance of SVM classifier in different experiment settings 46

5.12 Performance of Näıve Bayes classifier in different experiment settings . . . 46

5.13 Performance of our NFR extraction approach compared to the previous work. 47

viii

List of Figures

2.1 A taxonomy of non-functional requirements [65] 7

2.2 The intuition behind LDA and its generative process for text documents [8] 9

2.3 Representation of CBOW and Skip-gram models. CBOW predicts the cur-
rent word based on the context, and Skip-gram predicts surrounding words
given the current word [42]. 12

4.1 Examples for each comment category in source code 30

ix

Chapter 1

Introduction

In the process of developing a software product, developers usually focus on designing
and implementing a system with specific user-visible behaviors, or functional requirements
(FRs). In addition to functional requirements, there is also another type of requirements
that describe a set of quality attributes that a certain system should exhibit [33]. Such
attributes enforce operational constraints on different aspects of the system’s behavior such
as its usability, security, reliability, performance, and portability [15]. These requirements
specify criteria that can be used to judge the operation of a system as a whole, focusing
on pervasive quality attributes such as performance rather than specific behaviors; these
are called non-functional requirements (NFRs).

The ultimate success of a software system depends on how well both FRs and NFRs
are elicited, modelled, and implemented [57]. The implementation of NFRs is often key
to the user experience, and poor attention to quality attributes — such as performance,
security, and usability — can lead to project failure [67]. One well known survey found
that in software projects where NFRs are not considered, a failure rate of 60% or higher
has been observed [3]. As an example case, a U.S. Army intelligence-sharing application,
which cost USD$ 2.7 billion to develop, was found to be unusable when deployed within a
realistic operating environment due to capacity, performance, and usability issues [57]. As
another example, in the London Ambulance tragedy, the computer-aided dispatch system
for ambulances lost track of its locating system, which led to the death of 46 people within
only a few hours of its initial deployment [24]. It was reported that one of the main reasons
for this failure was an incomplete set of requirements found in the requirement specification
phase due to leaving out key stakeholders in the elicitation process. The delivered system
had issues with reliability, performance, and scalability which made it fail in cases with
invalid data and receiving a significant amount of incident information [21].

1

While FRs focus on the “what” functionalities are being implemented, NFRs strongly
influence “how” they are implemented: e.g., how does the security model affect the user
experience. Ideally, the NFRs of a system are consciously considered throughout all stages
of development, from initial design through implementation and quality assurance to de-
ployment and ongoing evolution [32]. In practice, they are often explicitly addressed late
in development, during system-level testing, and in an ad hoc manner [39]. Recent studies
have focused on the importance of extracting NFRs in the early stages of software devel-
opment and from software documents produced before actual implementation of projects
[17, 12, 26, 57]. An example of these documents is Software Requirements Specification
(SRS) [20] document and Request For Proposal (RFP) [7].

Although developers may understand the importance of NFRs in large and complex
systems, they may also neglect them if the NFRs are improperly documented within the
development artifacts and processes [3]. Moreover, developers consume a considerable
amount of their time and effort in dealing with functional requirements and have been found
to often ignore NFRs due to schedule pressures. As a result, even in a well-documented
system in which all of the requirements are elicited in the early stages, there is always a
significant risk that the delivered system may not reflect the NFRs adequately and the
software does not meet the desired quality criteria.

Motivated by these observations, we propose a method to extract NFRs from comments
in source code. We believe that source code is often the best reference for understanding
how and why a system has been implemented, and if the code is well-documented — which
is often the case in large software projects — the focus is also reflected in the comments.
Thus, by detecting comments about the NFRs in source code, we can track which parts of
the code have changed to fulfill this kind of software requirements and better understand
why a software system has evolved the way it has. Ultimately, the extracted NFRs can be
compared to the NFR goals of the system that are mentioned in the documents generated
in earlier stages of software development — such as SRS and RFP — to discover whether
the system requirements are actually met in the delivered system or not.

The goal of this study is to assist analysts in extracting relevant NFRs from comments
available in source code of software systems using automated natural language processing
(NLP). To meet this goal, we gathered a dataset of comments from software systems in
the electronic health records (EHR) domain and their corresponding labels which indicates
whether a comment references NFRs or not. Knowing that a noticeable proportion of the
comments are about the NFRs, we modeled our study as a text classification problem and
identified the comments that are about either security or reliability as important software
quality attributes in software systems. Using our proposed technique, developers can locate
NFRs in the source code and develop high-quality software in a more organized manner.

2

1.1 Research Questions

This dissertation addresses four research questions:

RQ1: How often are NFRs mentioned explicitly or implicitly in source code comments?

RQ2: How effectively can NFRs be extracted from source code comments?

RQ3: Which sentence characteristics are the most useful for extracting NFRs from source
code comments?

RQ4: What are the differences and similarities between extracting NFRs from source code
comments and other software documents?

1.2 Contributions

This research makes the following contributions:

• We presented a dataset of source code comments that we gathered in the EHR
domain. The dataset contains the text and location of comments and their labels
indicating whether the comment belongs to a certain category of NFR or not.

• We proposed an automated method to find NFRs from unstructured text of comments
available on the source code and locate NFRs in the source code.

• We evaluated empirical performance results for machine learning classifiers to identify
NFRs from comments.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 reviews the background for this
project which briefly provides the basis for software requirements engineering, machine
learning techniques for text processing, and classification evaluation. Chapter 3 summarizes
the related works in finding NFRs from software documents and also processing the text of
source code comments to extract knowledge about software systems. Chapter 4 describes
our proposed method for finding NFRs from source code comments and details of our

3

implementation. Chapter 5 presents our evaluation process along with the results and
discussion of our study. Finally, chapter 6 summarizes our work, and suggests possible
future research directions.

4

Chapter 2

Background

This chapter provides the required background knowledge for this research. Section 2.1
describes software requirements engineering, explains the idea of NFRs, and describes
several different kinds of NFRs. Section 2.2 provides an overview of machine learning
and text classification. Finally, section 2.3 describes the evaluation techniques that are
commonly used for comparing performance of text classification methods.

2.1 Requirements engineering

Requirements engineering can be defined as a coordinated set of activities for exploring,
documenting, and maintaining the objectives, capabilities, qualities, and constraints that a
particular software system should meet. Although requirements engineering is traditionally
considered as the preliminary phase of software development in waterfall-like process mod-
els [52], most modern development processes are iterative and requirements engineering
activities are performed repeatedly throughout development [65, 18, 29].

Within the literature, multiple frameworks have been suggested as models for the re-
quirements engineering lifecycle [36]. In the widely-used categorization, Loucopoulos et al.
categorized requirements engineering into four main activities: (I) discovery (more com-
monly referred to as elicitation), (II) specification, (III) negotiation and (IV) validation and
verification [35]. During requirements discovery, analysts explore candidate requirements
and assumptions that will shape the desired system, based on domain understanding, con-
sultation with stakeholders, and utilizing other sources [65]. Requirements specification
is the process in which the development team acquires, abstracts, and represents the re-
quirements in SRS document. During requirements negotiation, stakeholders are aided by

5

analysts to make informed decision to discuss, select, and prioritize the issues raised in the
first two phases, and attempt to predict the behavior of the system before its implementa-
tion. The goal of the requirements validation and verification phase is quality assurance; in
this phase, analysts ensure that requirements are consistent and reflect actual stakeholder
needs [36]. A number of techniques are used in validation and verification phase including
reviewing the SRS document, cross-referencing the SRS with other models to check for con-
sistency, interviewing stakeholders, and providing simple scenarios and building prototypes
to describe how the system will work once it is in operation [10].

Historically, software system requirements have been categorized into two classes, func-
tional requirements (FRs) and non-functional requirements (NFRs). While the focus of
functional requirements is user-observable operational properties of the system, NFRs focus
on quality attributes of the system and constraints on the way the desired system should
satisfy the functional requirements. However, the distinction between FRs and NFRs is
fuzzy, and there are cases in which they overlap [65]. For example, many functional require-
ments in a firewall management system can be also considered as security requirements
[65].

Since the number of NFRs categories can be large1, some previous studies have worked
on classifying them in a taxonomy [15, 1, 65]. Figure 2.1 shows a typical taxonomy that
classifies NFRs into four main categories: Quality of Service (QoS), compliance, archi-
tectural constraints, and development constraints [65]. Quality of Service NFRs concern
quality requirements of the software; they complement the “what” aspect of software with
“how well” it should be met. Security, reliability, and performance are some of the most
common NFRs in this category. The compliance category focuses mostly on external stan-
dards and organizational regulations, such as HIPAA — Health Insurance Portability and
Accountability Act — for the medical domain that sets the standards for protecting sen-
sitive patient data. This category focuses on the effects of software on the environment to
conform to standards, national laws, and cultural and political constraints. Architectural
constraints are mostly focused on the structural constraints of a developed software to fit
its environment. Examples of this type of requirements are distribution constraints that
focus on the distribution of data or geographic distribution of host and installation con-
straints that concerns running software smoothly on the target platform. The last category
is development constraints that are mostly concerned with the attributes that regulate de-
velopment of an anticipated software. This category include requirements on development
costs, delivery schedule, variability of features, maintainability, reusability, and portability.

1 Chung et al. identified 156 NFR categories [15]

6

Figure 2.1: A taxonomy of non-functional requirements [65]

2.2 Machine learning for text processing

While there is a wide variety of techniques and algorithms in machine learning, they can
be divided into two main categories: supervised learning and unsupervised learning.

The goal of supervised learning is to infer a function from labeled training data that
consists of data instances and the desired output value for each instance. The inferred
function can then be used to predict the label for the unseen data instances. In contrast,
unsupervised learning infers a function to describe the hidden structure of the unlabeled
data. Thus, it searches data for common patterns, and then groups (clusters) of common
instances are created. Besides these two common categories, there is another category
named semi-supervised learning, that falls between supervised learning and unsupervised
learning [13]. In semi-supervised learning, the goal is to infer a function based on small
amount of labeled training data and a large amount of unlabeled data.

The goal of our work is to extract NFRs from the natural language text of source code
comments i.e., to identify whether a comment is about any of the categories of NFRs or
not. This can be modeled as a supervised learning task in which the goal is to create an
NFR classifier from a provided labeled dataset. Another approach to solve this problem
is to assume that all of the sentences about a certain category of NFR share a common
pattern, and use NLP techniques to learn and extract these patterns. Thus, unsupervised
learning can be utilized to extract these NFR patterns from the comments. Throughout
this thesis, we have used Latent Dirichlet Allocation (LDA) algorithm [9], which is an

7

unsupervised topic modeling method, and also text classification, which is a supervised
algorithm to model our problem.

To be able to use unstructured text for classification, the first step is to convert the
text to a vector of features to feed into the classifiers. In this thesis, other than using
a simple bag-of-words model to convert text to vector, we have used doc2vec, which is
an unsupervised model to convert text to the vector of semantic features and used the
generated vectors to train our supervised model [34].

2.2.1 Latent Dirichlet Allocation (LDA)

Topic modeling techniques are a suite of statistical models that analyze the words in the
original text of unstructured documents to find any themes that might run through the
text, the connection between these themes, and their change over time [8]. The intuition
is that if groups of words occur together often, then there is likely an underlying common
theme, or topic, that they represent [9]. For example, if a text document has the words
“player, game, win, lose, stadium” with relatively high frequency, one might guess that the
topic of this document is “sport”. Topic modeling algorithms do not require prior labeling
to find the topics in the text. Thus, they can be categorized among the unsupervised
techniques with the goal of finding latent topic structure from a text corpus.

Latent Dirichlet Allocation (LDA) is one of the most popular and simplest topic mod-
eling algorithms [9]. The main intuition behind LDA is that each document can belong
to several topics. LDA is most easily described by its generative process, the imaginary
process by which it is assumed each text document is generated [8]. In this model, it is
assumed that each document is generated in two steps: First, a set of topics is chosen for
the document according to the distribution of topics. Then, to generate each word in the
document, a topic is selected according to the distribution in the first step, and then a
word is randomly selected according to the distribution of words for each topic. In this
way, it generates a set of words and put it together as a document. Within this model,
each text document is represented as a bag-of-words, that is a simple representation of a
text as a multiset of words, disregarding grammar and order of words in the text. Figure
2.2 shows the generation process for a sample text document. The topics (left side of the
figure) shows the distribution over words available in the entire text corpus. For each word,
first a topic (colored coins) is chosen according to the topic distribution (right side of the
figure), and then a word is then chosen from the corresponding topic [8].

The goal of LDA algorithm is to automatically find the topics for each document, given
a set of documents. In this problem, the unstructured text documents are observed, while

8

Figure 2.2: The intuition behind LDA and its generative process for text documents [8]

9

the topic distribution for each document and the word distribution for each of the topics
are hidden structures. The central computation problem for LDA is to infer the hidden
topic structure by using the observed text documents, that can be assumed as reversing
the imaginary generative process. Therefore, the input needed by LDA is a text corpus
and a user-defined number of topics. The model has two outputs that determine the latent
statistical structure of the text corpus: (i) the word distribution for each topic, and (ii)
the topic distribution for each text document.

LDA model has several features that make it useful for different domains. One of these
features is that LDA enables a low-dimensional representation of text that uncovers the
latent semantic relationships and also allows faster analysis on the text [69]. Moreover,
LDA is an unsupervised method which means that there is no need for providing the labeled
dataset to learn the model. In many of the domains, providing the label for documents is
a laborious and time-consuming task. So, using unsupervised methods like LDA can be
helpful in those domains.

One drawback of LDA is the topics found by this technique are unlabeled, and human
experts are usually needed to decide on an appropriate name for the topics according to
the distribution of the words for each topic. Another drawback of this approach is that
number of topics must be chosen by the user before the analysis, and may not correspond
to the number of distinct topics that a human expert might feel is present in the dataset.
Recently, there have been some efforts in automatically suggesting an appropriate value
for the number of topics for a given dataset, but the proposed methods are still inaccuracte
and the area needs more effort [2].

2.2.2 Text classification

The goal of classification is to infer a function from labeled training data that consists of
data instances and the desired output value for each instance. The inferred function can
then be used to predict the label for the unseen data instances. In contrast, unsupervised
learning infers a function to describe the hidden structure of the unlabeled data. Thus, it
searches data for common patterns and groups (clusters) of common instances are created.

For the classification tasks, we used two popular classifiers that are known to perform
well on text data: Näıve Bayes classifier [40] and Support Vector Machine (SVM) [60, 30].
Näıve Bayes is a probabilistic classifier based on applying Bayes theorem [31]. In this
classifier, it is näıvely assumed that each of the features in data instances is independent
of other features, which may not be true in practice. The goal of the model is to find
the class that maximizes the conditional probability of belonging to the class, given the

10

data instances. The model calculates this conditional probability for each class with the
independence assumption and using Bayes theorem to calculate conditional probability
for each class. Then, it assigns the data instance to the class with maximum conditional
probability. Although the model seems oversimplified, it is known to work effectively on
real-world problems; the reason is that although the probability estimations of Näıve Bayes
is not accurate because of the näıve independence assumption, its classification decision is
accurate [14]. In SVM classifier, the objective is to find a separator with the maximum
margin between the classes. Thus, suppose that we are dealing with data instance of
p dimensions. SVM classifier tries to find a (p-1)-dimensional hyperplane in space that
represents the highest possible separation (margin) between the classes.

2.2.3 Doc2vec

When it comes to text processing, most approaches use a simple bag-of-words to convert the
text to the vector of fixed length. Although the bag-of-words model performs accurately
in many cases, it ignores the semantic meaning of the words and their context. With
the progress of machine learning, it has become possible to train more complex models
that typically outperform simple models [4]. For example, neural network-based language
models outperform N-gram models on larger datasets and predictor of the words given the
context for neural network-based language models was the closest to true model of the
language [43, 42]. However, in practice the training time required to create these models
often make their use infeasible.

Mikolov et al. suggested two models focused on distributed representations of words
learned by neural networks to overcome the above-mentioned shortcomings: Continuous
Bag-of-Words Model (CBOW) and the Continuous Skip-gram Model (Skip-gram) [42].
CBOW model moves through all words and learns to predict the current word based
on the surrounding words. The Skip-gram model is very similar to CBOW, but instead
of predicting the current word based on the context, it predicts the surrounding words
in a sentence or document based on the current word. Figure 2.3 shows the graphical
representation of CBOW and Skip-gram models.

It has been shown that representation of words as vectors in this model goes beyond
syntactic representation, and the vectors can be used to capture semantic relationships
between words, such as the city and the country it belongs to. Semantic analysis is possible
using simple algebraic operations on word vectors. As an example, the result of a vector
calculation vec(“Madrid”) - vec(“Spain”) + vec(“France”) is closer to vec(“Paris”) than
to any other word vector [42, 44].

11

Figure 2.3: Representation of CBOW and Skip-gram models. CBOW predicts the current
word based on the context, and Skip-gram predicts surrounding words given the current
word [42].

These models, known as word2vec, can be used to convert a word to a fixed length vector
that takes into account the semantics of the word. Le et al. proposed an extended version of
CBOW and Skip-gram models called Paragraph Vector or doc2vec [34]. Paragraph Vector
is an unsupervised algorithm that learns vectors of fixed length for larger blocks of text,
such as sentences, paragraphs, and documents. Unlike the bag-of-words represenatation,
paragraph vectors have the power of taking into account the ordering of words in text and
also semantics of each word. Thus, Le et al. showed that paragraph vector can outperform
bag-of-words and N-grams for text representation [34].

2.3 Classification Evaluation

In our work, we have used various types of classification techniques as well as a variety
of features passed to these classifiers. To evaluate the performance of each classifier and
compare the results, we used precision, recall, and F1 measure. For binary decisions
(yes/no), the classifier’s prediciton can be divided into one of four categories:

• True Positives (TP) are correct predictions when the classification under evaluation

12

(e.g., NFR) is implied by the sentence and also predicted by the classifer.

• True Negatives (TN) are correct predictions when the classification under evaluation
(e.g., NFR) is not implied by the sentence and also not predicted by the classifer.

• False Positives (FP) are incorrect predictions when the classification under evaluation
(e.g., NFR) is not implied by the sentence but predicted by the classifer.

• False Negatives (FN) are incorrect predictions when the classification under evalua-
tion (e.g., NFR) is implied by the sentence but not predicted by the classifer.

Having computed these values, we used precision, recall, and F1 measure to evaluate
our clasifiers. Precision (P) is the proportion of correctly predicted classifications against
all of the predictions under test.

P =
TP

(TP + FP)
(2.1)

Recall (R) is the proportion of correctly predicted classifications against all of the
instances with “yes” as their actual class.

R =
TP

(TP + FN)
(2.2)

In general, maximizing recall and precision simultaneously is not feasible [11]. F1
measure is the harmonic mean of precision and recall, giving equal weight to each of them.

F1 = 2 ∗ P ∗R
P +R

(2.3)

In the context of NFR extraction, higher recall implies that more of the sentences related
to NFRs are being found in the text, while lower recall implies NFR-related sentences are
missing from the model. High precision means that from the sentences that the model
has chosen as related to NFR, most of them are indeed NFR-related sentences; while low
precision implies that from the sentences found as NFR-related by the model, a high ratio
were not related. From the NFR extraction perspective, we consider that recall is more
important than precision since we wish to extract all of the relevant NFRs mentioned in
the software documents and source code. However, we try to maximize precision as much
as we can, since low precision will frustrate users.

13

2.4 Summary

This chapter reviewed some of the background knowledge for our study. Since the problem
we are addressing is automatically extracting NFRs from source code comments, during
this chapter we have provided the basis for requirements engineering, machine learning
techniques used for text processing with the focus on the algorithms we used for this
study, and also methods used for evaluating the performance of classification algorithms.
In the next chapter, we will review some of the most related previous studies to this thesis.

14

Chapter 3

Related Work

The research areas most similar to our project can be divided into two main categories:
extracting NFRs from software artifacts, such as SRS and RFP, and analyzing the content
of source code comments to extract semantic knowledge. In this chapter, we briefly review
notable works related to each of these two categories.

3.1 Extracting NFRs from software artifacts

Cleland-Huang et al. performed the first notable exploration of NFR extraction and clas-
sification from software development artifacts [17]; in this work, they attempted to detect
and classify NFRs for 15 SRS documents developed as term projects by MS students at
DePaul University. Their approach is based on the assumption that different types of
NFRs can be distinguished by certain keywords known as indicator terms. Thus, they
trained some NFR-specific indicator terms for each of the NFRs from the training data,
and then tried to classify each given document as one or more class of NFR according to
the function of the occurrence of indicator terms. The model worked well for detecting the
most of the NFRs appearing in the text, with a classification recall of 81.2 %. However,
the precision was low (12.4 %) due to a high rate of false positives. They also made their
dataset available to the PROMISE repository [41], and it since been used by the other
authors to build their models and compare it to the original work.

Using the PROMISE dataset, Casamayor et al. replicated the study of Cleland-Huang
et al. using a semi-supervised approach, so as to decrease the need for manually labeled
data and to improve the results of the original work [12]. They used a multinomial Näıve

15

Bayes classifier coupled with an Expectation-Maximization (EM) algorithm [46] to boost
the performance of the classifier. To this end, they provided labels for each instance of
unlabeled data based on the function learned by the small labeled training set. The results
provided by this work approach the maximum theoretical performance on the data set
with a given algorithm. Empirical evaluation of the approach showed higher classification
accuracy compared to the cases in which a fully supervised approach was used.

Zhang et al. repeated the experiment in 2011 using an SVM classifier with a linear
kernel as their classifier [70]. They investigated the effect of different features, including
original words, N-grams, and phrases in detecting NFRs. Interestingly, they found that
using single original words with Boolean weight was the most effective approach for this
problem. Compared to the original study performed by Cleland-Huang et al., they reported
higher precision but lower recall on the same dataset.

The approaches that used PROMISE NFR dataset are similar to our project since they
all used supervised learning approaches to solve the NFR detection problem. They differ
because they tried to extract NFRs from various software documents, while we extracted
them from the comments in source code. The data they used for the project is not directly
related to the EHR domain. However, we included the data in part of our training to be
able to compare our approach to the previous studies.

Another approach for finding NFRs from text is to look for semantic similarities in text
and try to extract NFRs based on observed semantic patterns. Using this idea, Hindle
et al. used topic modeling to find the topics from commit-log comments recovered from
source control systems such as CVS and BitKeeper [26]. Their idea was to relate the topics
back to the NFR categories, and to this end, they used a cross-project taxonomy of NFRs
to assign NFR classes to each extracted topic. More specifically, they used a wordlist of
top words for each NFR category and compared the words of the topics with the words of
the wordlists to decide whether the topic is about any of the NFR categories or not. With
ROC score between 0.6 and 0.8, they claimed that labeled topic extraction is an accurate
approach to find NFRs in text. We used their method in a part of our study to examine
the performance of topic modeling for comments. However, their application is different
since they used commit log messages and mailing list of developers for their research.

The study conducted by Zou et al. [71] used the method proposed by Hindle et al. [26]
to find NFRs from posts in StackOverflow and the comments on posts. They tried to find
answers to three questions: (I) Which NFRs are discussed most and least frequently? (II)
For which NFRs are questions most likely to remain unanswered? (III) What evolutionary
trends of NFRs exist with respect to time? By analyzing the topics of posts and comments
in StackOverflow, the authors found that developers are mostly concerned about usability

16

and reliability. In contrast, they pay less attention to maintainability and efficiency when
they are coding. They also found that more than 80% of the questions about usability
remain unresolved, which suggests that developers need more help in this area. Moreover,
by analyzing topic tends over time, it was found that usability was always a hot topic
among developers, while functionality and reliability became more troublesome over time.

In a recent study, Mahmoud et al. [38] tried to extract NFRs and trace them to their im-
plementation in source code. In the NFR extraction part of their approach, they extracted
keywords from requirements documents and then clustered these words according to their
semantic similarity calculated by using Normalized Google Distance (NGD) of words [16].
Then, they classified each cluster as NFR classes based on the semantic similarity between
the functional requirement and the clusters of words representing individual NFRs. They
evaluated the proposed method on SRS of three different projects. The average recall
reported for each of the projects was at least 74%, with the least precision of 50%.

The work that is most related to our research is the method proposed by Slankas et
al. [57] to find NFRs from sentences in unstructured text. To that end, they collected a
series of 12 documents of various types — including Data Use Agreements (DUA), install
manuals, regulations, RFPs, SRS, and user manuals — from different projects in the EHR
domain. They developed a framework called NFR-Locator, based on machine learning and
NLP techniques to classify each sentence in natural language text documents into their
appropriate NFRs; they used a mode with 14 NFR categories, including access control,
security, maintainability, and reliability.

NFR-Locator identifies NFR-related sentences in a text document in two steps. In the
first step, natural language text is parsed into an internal representation called “Sentence
Representation (SR)” based on the Stanford Type Dependency Representation (STDR)
[22]. SR is a tree-like representation in which each sentence is represented as a directed
graph where vertices are words and edges are relationships between words. In the second
step of the process, SRs are used to classify the sentence into specific NFR categories or “not
applicable” category if it does not specify any NFRs. They proposed a modified version of
the k-nearest neighbor (k-NN) classifier that computes a custom distance function based
on similarity of SRs and assigns NFR categories based on similar sentences.

The highest accuracy was achieved by using Sequential Minimum Optimizer (SMO),
with 0.60 in F1 measure. The suggested k-NN had an F1 measure of 0.54, outperforming the
optimal Näıve Bayes classifier with F1 measure of 0.32. They found that all of the evaluated
documents contained NFRs; however, they found that the types of NFRs available in each
document can vary. For example, DUA documents contained high frequencies of legal
and privacy NFRs compared to other types of documents. Moreover, in analyzing specific

17

NFR categories, they found particular features unique to each category that make them a
suitable candidate to use as a feature in classification and improving the accuracy of the
models.

Riaz et al. [51] extended the application of Slankas et al. [57] by focusing on security re-
quirements and by generating more comprehensive and classified set of requirements. The
process takes natural language text documents as input and identifies security-relevant sen-
tences in the documents using customized k-NN classifier [57] and classifies them according
to the security objectives (such as confidentiality, integrity, availability). By observing sim-
ilarities and common elements in the classified set of security-relevant sentences, they derive
a set of context-specific security requirements templates and suggest them to requirements
engineers to generate the security requirements. Moreover, similar studies were performed
by the same authors to extract access control NFRs from text documents [56, 58].

We built our proposed framework on top of NFR-Locator suggested by Slankas et al.
[57] and used their data for part of our training. However, the goal of our study is to find
NFRs in the comments developers write in source code of software projects. Although the
approaches we used are similar to previous studies, none of the studies so far has attacked
the problem for source code comments.

3.2 Analyzing the content of source code comments

Ying et al. [68] analyzed the content of comments with the purpose of exploring the widely
varying ways in which comments may be used. The primary focus of the project was “Task”
comments that Java programmers use in their project. To this end, they checked out 2,231
files from an IBM internal codebase, the Architects Workbench (AWB), and analyzed
221 Eclipse task comments that were present in those files. As a result, they found that
programmers not only use comments for explaining the source code and describing tasks
but also for many other purposes, such as communication with their colleagues. Thus,
these comments can be considered as useful inputs for mining project information.

Padioleau et al. [47] designed a taxonomy to classify contents of comments programmers
write in the source code. They believe that leveraging comments can help in improving
software reliability and a better understanding of programmers needs. The study was
initially performed on a dataset of 1050 comments randomly sampled from the latest
versions of Linux, FreeBSD, and OpenSolaris.

The comment classification was performed from different aspects on the basis of four
“Wh” questions:

18

• What? concerns the “Content” of the comment

• Who? concerns “Beneficiary” (who benefits from the comment e.g., testers) and
“Author” (who wrote the comment e.g., an expert or a beginner)

• Where? concerns “Code entity” (the location of comment in the file (e.g., header,
before a loop, function) and “Subsystems” (which subsystems the comment is located
in e.g., file system)

• When? concerns “Time” (when the comment was written) and “Evolution” (how
comments evolve over time)

The research mostly focused on the content of the comment, that is the answer to
the “What” question. They found that while many comments are simply explanations
of the code, 52.6% of the comments can be used by existing tools — such as annotation
languages, bug detection tools, editor features, and programming languages — or inspire
new tools. The authors labelled these comments as “exploitable”, since they can be useful
for enhancing software reliability and detecting bugs. In this study, they found that (1)
many comments describe code relationships, code evolution aspects such as cloned code,
deprecated code, TODOs, or the usage and meaning of integers and integer macros, (2) a
significant number of comments could be expressed by existing annotation languages, and
(3) many comments express synchronization-related concerns, although they are not well
supported by annotation languages.

In a similar study, Steidl et al. [59] analyzed the content of comments with the pur-
pose of providing a model for comment quality based on different categories. They used
a machine learning classification algorithm to categorize each comment according to its
inferred type: Copyright, Header, Member, Inline, Section, Code, and Task. The classifier
was trained on a dataset of 1330 comments from twelve open source projects in Java and
C++. The evaluation shows that using a J48 decision tree achieved the best performance
for this problem with a weighted average precision and recall of 96%. They assessed the
coherence between Member comments — i.e., comments that describe the functionality of
a method/field — and the name of the corresponding method. Their coherence evalua-
tion determines whether the Member comment provide a useful description of the method.
They also used the length of Inline comments — i.e., comments within a method body
— as an indicator of their coherence to the following lines of code. Intuitively, shorter
inline comments contain less information compared to the longer ones. However, the role
of very short or very long comments has not been investigated. They suggested to use
short comments — with at most two words — indicates redundant information and helps

19

developers to find parts of the code that should be refactored. Moreover, they found that
very long comments — with more than 30 words — contain significant global informa-
tion. Although the long comments can lead to better understanding of code, having too
many long comments indicates a missing information in other software documents for the
corresponding software system.

Tan et al. have proposed several techniques to automatically extract knowledge from
source code comments [62, 63, 64]. These studies used comments mainly to improve soft-
ware quality by detecting bugs — where the source code does not follow the assumptions
mentioned in the comments — and inappropriate comments — where the comments are
misleading and inconsistent with the source code. These techniques have extracted rules
from comments and applied these rules to detect inconsistencies between what is said in
the comments and what is implemented in the code. As an example case, the rules con-
cerning lock and synchronization can be extracted from both source code and comments
automatically. According to the extracted rules, if the comment says that a lock is needed
within a method, but there is no acquisition found in the code, the code is not consistent
with the comment [62].

Identifying common topics of the comments can help in extracting related information
for each topic. To discover the topics of comment, Tan et al. proposed two kinds of
topic miners: Hot-Word-Miner and Hot-Cluster-Miner [62]. Both of these miners rely on
various NLP and statistical techniques to preprocess each comment and break it down to
its individual constituent pieces — such as words and phrases — and their corresponding
Part of Speech (POS) tags. Hot-Word-Miner uses simple word frequencies to find the most
common words in the corpus that can later be used to identify common topics by the user.
In Hot-Cluster-Miner, instead of using a simple word count, they clustered the related
words together and proposed a more sophisticated model for finding topics.

Having extracted topics and topic-related comments using the two topic miners de-
scribed above, the study performed by Tan et al. focused on the analysis of C/C++ com-
ments regarding locks and call relationships [62]. In subsequent studies, they focused
on analyzing comments related to interrupts and locks [63], and utilized dynamic testing
combined with analysis of Javadoc comments concerning null pointers and exceptions [64].

According to Tan et al., most comments can be categorized into one of two classes:
comments that descibe the code, and comments that explain programming rules [61]. For
the studies performed by Tan et al. [62, 63, 64], the second type is more important since it
focuses on specifying rules that programmers are supposed to follow. Although comments
like this can be beneficial for bug detection and prevention goals, they are less helpful for
our problem. To find NFRs from comments, we focus only on the content of comments

20

describing the code and purpose of implementing it.

3.3 Summary

This chapter highlighted some previous research that is closely related to our work. We
divided the similar studies into two main categories: studies performed for extracting NFRs
from text of various software artifacts such as SRS, DUA, and RFP, and the previous works
related to analyzing the content of source code comments.

Our initial investigation shows that most of the previous studies utilized machine learn-
ing and NLP techniques to extract semantic knowledge from the text of software artifacts,
especially comments. However, as yet there is no unique solution that solves the problem
of NFR extraction considering the characteristics of source code comments and its similar-
ities and differences to other artifacts. In the next chapter, we will present our proposed
approach for extracting NFRs from the source code comments.

21

Chapter 4

Methodolgy

The goal of this work is to locate NFRs in source code by using automated NLP techniques.
In order to do that, we find comments that concern NFRs from all of the comments available
within the source code of a set of open-source software projects. We narrowed our focus
to security and reliability NFRs, since they are the two most common types of NFRs that
developers mentioned in our dataset of comments from the EHR domain. Therefore, given
a dataset of comments, we aim to identify which of the comments are about security or
reliability requirements and which are not. By detecting this kind of comments successfully,
we would be able to take a first step in the more general problem of locating where any
NFRs are implemented within a code base, and to tag those locations for possible future
reference. This can help developers and project stakeholders to ensure these requirements
are met in the development process.

Tracking whether the source code meets the requirements or not can be costly and
time-consuming, especially in cases that scale of the project grows very fast. Our goal is to
use machine learning techniques to extract NFRs in a cost-effective way automatically. To
do this, we provided a set of data from comments on the source code, as well as labels for
training and evaluation purposes (section 4.1). Before any further analysis, we preprocessed
and removed noise from the data (section 4.2). We suggested two approaches to extract
NFRs from source code comments. In the first approach, we analyzed the topics that
developers talk about in the comments and related those topics back to NFRs to solve the
problem in an unsupervised manner (section 4.3). In the second approach, we modeled the
problem as a supervised text classification problem and tried to classify each comment as
related or not-related to NFRs. Section 4.4 describes details of methodologies we used for
this project.

22

Table 4.1: Type of software documents and projects used for each document type in dataset
of software documents provided by Slankas et al. [57].

Document Type Projects
SRS CCHIT Ambulatory Requirements, iTrust, PROMISE NFR

dataset
Installation manual
and user manual

OpenEMR

DUA Two documents Centers for Medicare & Medicaid Services 9
and the North Carolina Department of Public Health

RFP Two documents from organizations within the state of Califor-
nia for EHR system

Code of Federal Regu-
lations (CFRs)

Three sections of the United States Code of Federal Regulations
related to healthcare

4.1 Dataset

Most of the previous studies in the literature of extracting NFRs from text has been
performed in the Electronic Health Record (EHR) domain and provided data in this field.
To be able to compare our proposed approach with previous works and also continue the
efforts in this area, we focused on the EHR domain in our projects and provided a dataset
of comments in this field. The rest of this section describes the details of the datasets that
we utilized1.

4.1.1 Software documents

We used the dataset from the EHR domain that was collected by Slankas et al. [57] for
parts of our training and comparing the characteristics to our dataset of comments. The
dataset contains five types of software documents from 12 projects in the EHR domain.
The type of these documents and projects used for each type is listed in table 4.1. The
data is available in original format, txt format, json and arff format2.

The labels provided for this span 14 NFR categories: legal, look and feel, privacy, reli-
ability, recoverability, audit, maintainability, operational, security, usability, access control,

1The data is available on: https://github.com/Sahba-e/NFRExtaction
2https://github.com/RealsearchGroup/NFRLocator

23

https://github.com/Sahba-e/NFRExtaction
https://github.com/RealsearchGroup/NFRLocator

Table 4.2: Statistics of dataset of software documents. For each document, the number of
total sentences (Size) and number of sentences related to each NFR category is shown.

Document Document Type Size AC AU AV LG LF MT OP PR PS RC RL SC US OT FN NA
CCHIT Ambulatory Requirements SRS 306 12 27 1 2 0 10 0 0 1 5 2 28 4 8 228 6
iTrust SRS, Use Case 1165 439 44 0 2 2 18 2 9 0 9 9 55 2 0 734 376
PromiseData SRS 792 164 20 36 10 50 26 89 7 75 4 12 71 101 19 340 0
Open EMR Install Manual Installation Manual 225 3 0 0 0 0 0 5 1 0 6 1 25 0 0 2 184
Open EMR User Manual User Manual 473 169 0 0 0 14 0 0 0 0 0 0 8 4 0 286 95
NC Public Health DUA DUA 62 1 0 0 20 0 0 0 4 0 0 0 1 0 0 0 41
US Medicare/Medicaid DUA DUA 140 1 0 0 26 0 0 0 17 0 0 0 0 0 5 2 108
California Correctional Health Care RFP 1893 94 120 9 85 0 133 94 52 13 16 13 193 14 38 987 409
Los Angeles County EHR RFP 1268 58 37 8 3 2 28 19 3 11 8 13 108 21 10 639 380
HIPAA Combined Rule CFR 2642 28 8 3 0 0 78 0 213 0 9 0 41 1 0 317 2018
Meaningful Use Criteria CFR 1435 0 0 0 0 0 0 0 0 0 0 0 8 0 0 116 1311
Health IT Standards CFR 1475 10 20 0 0 0 119 0 1 0 2 2 71 1 2 164 1146
Total 11876 979 276 57 152 68 413 207 300 100 50 43 563 148 82 3568 6076

Notes: AC: access control, AU: audit, AV: availability, LG: legal, LF: look and feel, MT: maintainab-
ility, OP: operational, PR: privacy, PS: capacity and performance, RC: recoverability, RL: reliability,
SC: security, US: usability, OT: other, FN: functional, NA: Not Applicable

capacity and performance, availability, and other NFR categories. The other category is
added to cover NFR sentences that did not readily fall into any other existing categories.
As it was claimed by Slankas et al. [57], this category helps in terms of removing noise from
the data in each category and improving the performance of machine learning algorithms.
Table 4.2 shows the number of sentences per category and in total. From the table, we
can see that functional and database design categories have the most number of sentences
since they refer to more general NFR concepts.

To use the dataset for our project, we found that the NFR categories defined in this
dataset are narrow, providing more details than is needed for our project. In the original
work, the authors mentioned that they separated access control and audit from security to
meet the future research needs. As we do not need to separate these concepts, we merged
security, audit, access control, and privacy classes in the training set into one more general
class named security. Then we removed the labels for all of the classes except for security
and reliability, that is the focus of our study. Table 4.3 shows the statistics for the modified
version of the software documents dataset.

4.1.2 iTrust comments

The dataset of comments that we used for this project is from iTrust, which is an open
source medical application within the EHR domain [66]. This project involves the devel-
opment of an application that can help patients track their medical history and contact
their selected medical professionals. It also helps medical professionals to obtain and share
information about their patients and their medical records.

24

Table 4.3: Statistics of dataset of software documents after merging security, audit, ac-
cess control, and privacy requirements into one single category named security. For each
document, the number of total sentences (Size), number of sentences related to security
requirement (SC), and number of sentences related to reliability requirement (RL) is shown.

Document Document Type Size SC RL
CCHIT Ambulatory Requirements SRS 306 67 2
iTrust SRS, Use Case 1165 547 9
PromiseData SRS 792 262 12
Open EMR Install Manual Installation Manual 225 29 1
Open EMR User Manual User Manual 473 177 0
NC Public Health DUA DUA 62 6 0
US Medicare/Medicaid DUA DUA 140 18 0
California Correctional Health Care RFP 1893 459 13
Los Angeles County EHR RFP 1268 206 13
HIPAA Combined Rule CFR 2642 290 0
Meaningful Use Criteria CFR 1435 8 0
Health IT Standards CFR 1475 102 2
Total 11876 2171 43

25

Table 4.4: The six categories of NFRs listed in SRS document of the iTrust project and
the description for each NFR.
NFR # NFR Description

1 HIPAA Implementation must not violate HIPAA guide-
lines.

2 Exclusive authentication The system shall enable multiple simultaneous
users, each with his/her exclusive authentication.

3 Form validation The form validation of the system shall show the
errors of all the fields in a format the same time.

4 Reports A report is a page which opens in a separate win-
dow and contains minimal decoration. The for-
mat is printer-friendly in that the background is
white and the information does not exceed the
width of 750 pixels so that upon printing, no in-
formation is lost due to the information being too
wide.

5 Privacy policy The system shall have a privacy policy linked off
of the homepage. The privacy policy should follow
the template provided here.

6 Security of MID Remove MID from being displayed on all pages
and URLs. MIDs should be considered private,
sensitive information.

For the iTrust project, we have access to its SRS document and to the source code of
the project. The SRS includes diagrams and descriptions of the project’s use-cases, func-
tional requirements, NFRs, and constraints on development process such as programming
language and coding standards. In particular, six NFRs are stated in the SRS document
and listed in table 4.4.

Knowing the NFRs of the system, we collected the comments on the source code of
version 21 of the iTrust project. The project contains 432 Java source code files, 444
classes, and 53727 lines of code. By processing all of the files with .java extension in the
source code of the project, we generated a dataset of 7726 comments from source code.
According to the syntax of comments in Java, we extracted any blocks of text in one of
the following forms as a single comment:

• A line of text starting with //

26

Table 4.5: Statistics of the dataset of comments; number of comments related to each
category and percentage of the category in the dataset

Category Number Percentage
Reliability 1316 17.9
Security 73 1.0
Other NFRs 3 0.04
Total 1392 18.9

• A block of text (containing one or more lines) starting with /* and ending with */

Since we collected the dataset of comments to use for extraction of NFRs, we provided
each comment with a label that makes it appropriate to use for training and evaluation
purposes. We performed the labeling process manually by reading all of the comments
available in the dataset. The NFR categories that we were specifically looking for in the
source code was based on the intersection of the six categories mentioned in the SRS
document and 14 categories that were defined by Slankas et al. [57]. Before starting the
labeling process, we looked through a sample set of comments and found that the iTrust
project mostly focuses on fulfilling Quality of Service (QoS) requirements and especially on
two of the categories: reliability and security. Table 4.5 shows the statistics for the labeled
dataset. Results show that less than 0.1% of the comments belong to other categories
of NFRs in the dataset. Thus, we focused on these two categories during our study and
assigned comments to each of these categories as follows:

• Security: A comment is labeled with security class if it concerns security, authenti-
cation, privacy, and user login of the system.

• Reliability: A comment is labeled with reliability if it concerns making a more robust
and reliable system, such as form and data validation, verification and also handling
exceptions of the system.

As a result of this process, we provide binary labels for the dataset to determine whether
the comment is related to NFR concepts or not. In other words, the binary label can have
one of the two values for each comment:

• True: The comment relates to at least one of the NFR categories reliability and
security.

27

Table 4.6: Examples of comments and their corresponding category in the dataset
Category Comment
NFR /*The patient ID is validated by the superclass*/

not-NFR /*Returns a list of all HealthRecords for the given

patient*/

NFR /***

Generate a new more secure hashed and randomly salted

password based on the users

* new desired password passed in as a String.

* @param newpas String, desired new plain text password

* @return

private String genPassword(String newpas){
String pas = "";

SecureRandom rand = new SecureRandom();

byte newbie[] = new byte[32];

return pas;

}
*/

not-NFR /***

*

* Used for chronicDiseaseRisks.jsp. Passes most of the

logic off to @link ChronicDiseaseMediator, and the

* various subclasses of @link RiskChecker.

*

*/

28

• False: The comment is not related to either of security or reliability categories.

Table 4.6 shows some examples of comments and the corresponding label we picked for
them.

4.2 Preprocessing of comments

We preprocessed the data to tokenize comments into their constituent words. The tok-
enization process was done using NLTK, Natural Language Toolkit, a library written in
Python that takes into account white spaces as a delimiter of its tokenizer [6]. We also
implemented a customized tokenizer for our problem to tokenize words written in camel
case, which is commonly used for the names of methods and variables in Java. Moreover,
we removed stop words from each comment and used different techniques of stemming and
lemmatization provided by NLTK tool to remove noise from the data.

After creating the dataset of comments, we immediately noticed that many of them
clearly did not pertain to NFRs; these included comments about copyright licensing and
authorship. We sought to discard these comments as irrelevant before proceeding to the
automated classification stage; in so doing, we reduced the number of noisy comments
and likely improved the accuracy of the classifiers. Since these irrelevant comments were
easy to detect, we felt that any real-world implementation of our ideas would also likely
filter them out. We used a comment classifier introduced by Steidl et al. [59] to classify
comments into categories according to its natural language semantics by using machine
learning. Table 4.7 shows the categories of the comment and description for each category.
The approach suggested by the authors of the paper was reported to have more than 0.87
in F1 measure accuracy on each of the classes in a dataset of comments from twelve open
source projects written in Java and C++. Similar to the original work, we defined seven
categories and modeled the problem as a multi-class text classification problem in that the
goal is to classify each comment as belonging to one of the categories listed in table 4.7.
Figure 4.1 shows example code with comments illustrating each category3. Each comment
is thereby annotated with a highlighted preceding note, stating the corresponding category.

We believe that comments related to NFRs are likely to be found only in “Inline”,
“Member”, or “Task” comments, and that comments from the other categories can be
considered unlikely to related to NFRs. Specifically, comments in the “Copyright” and

3 The original code was taken from the book “Java in a Nutshell” by David Flanagan but modified
and extended with more comments by Daniela Steidl.

29

1 Copyright
2 // This example i s from the book −Java in a Nutshe l l− by David
3 // Flanagan . Written by David Flanagan . Copyright (c) 1996
4 // O’ R e i l l y & Assoc i a t e s . For Demonstration purposes , source
5 // code was modi f i ed and comments were added by Danie la S t e i d l
6 import java . app le t . ∗ ;
7 . . .
8 Header
9 /∗∗

10 ∗ This app le t d i s p l a y s an animaton . I t doesn ’ t handle e r r o r s
11 ∗ whi le l oad ing images .
12 ∗∗/
13 public class Animator extends Applet implements Runnable {
14 Interface
15 /∗ the cur r ent image ∗/
16 protected int current image ;
17 Section
18 /∗∗ ∗∗∗
19 ∗ Methods to s t a r t and stop the app le t ∗
20 ∗∗∗/
21 Interface
22 // Read the basename and num images parameters .
23 // Then read in the images , us ing the s p e c i f i e d base name .
24 public void i n i t () { . . . }
25 public void stop () {
26 Code
27 // animator thread . s l e e p () ;
28 i f ((animator thread != null) && animator thread . i s A l i v e ())
29 animator thread . stop () ;
30 Inline
31 // We do t h i s so the garbage c o l l e c t o r can rec la im the Thread
32 // ob j e c t . Otherwise i t might s i t around in the Web browser
33 // f o r a long time .
34 animator thread = null ;
35 }
36 public void run () {
37 Task
38 //@TODO: add f u n c t i o n a l i t y to launch animator in s epara t e window
39 while (true) { . . . }
40 }
41 }

Figure 4.1: Examples for each comment category in source code

30

Table 4.7: Different categories of source code comments according to their content and
description of each category.

Comment Category Description
Copyright comments Include information about the copyright and license of the source

code.
Header comments Give an overview of the functionality of the class and provide in-

formation about, e.g., the class author and the revision number.
Member comments Describe the functionality of a method or field
Inline comments Describe implementation decisions within a method body
Section comments Address a group of methods and variables that are similar in func-

tionality, e.g., getters and setters
Code comments Contain a piece of commented out code
Task comments Contain note for developers and related to their future tasks or

current issue.

“Section” classes cannot be about NFRs according to their description. Also, comments
describing a code section can also be ignored, since our ultimate goal is to find NFRs
from unstructured text of comments and commented codes cannot be helpful in our case.
Furthermore, according to the definition of comment classes and also by investigating sam-
ples of source code comments, “Header” comments often contain more general information
about large blocks of code — such as classes — and rarely has information about NFRs.
Thus, by designing an accurate classifier, we decided to discard comments in the afore-
mentioned classes and process only comments in one of “Inline”, “Member”, and “Task”
categories.

We modeled this task as a classification problem and replicated the method used by
Steidl et al. [59] with the following settings:

• Training set: In order to provide the data for training and also evaluation, we
selected a set of 700 comments from Apache httpd web server (version 2.4.18) and
manually labeled them with one of the comment categories described above4.

• Classification method: The classification is done using Weka library. Steidl et al.

4 The data was a part of a dataset containing 3667 .c files from source code of Apache httpd web
server, with totally 16163 comments. The original dataset is collected by Ian J. Davis for a line of research
that we chose not to explore further.

31

Table 4.8: The features extracted for each comment to use it as classification features in
preprocessing of comments.

Feature Description
isCopyright Boolean feature that is true if comment contains the words “copy-

right” or “license”.
braceCount Indicates how many braces are open at the position of the comment.
isFrame Boolean feature that is true if comment contains a separator string

multiple times (e.g., ***, - - -, ///)
length Shows the number of words, separated by white spaces, in the com-

ment.
hasTaskTag Boolean feature that is true if comment is tagged with “task”,

“todo”, “fixme”, or “hack”
followed Boolean feature that indicates whether the comment is directly fol-

lowed by another comment
specialCharacters Indicates the percentage of special characters in a comment (e.g.,

;, =, (,))
containsSnippet Boolean feature that is true if comment contains code snippet.
insideMethod Boolean feature that is true if the comment is within a method

definition

found that optimal results were obtained by using the J48 tree as the classification
method. We have also tried SVM and REP tree.

• Classification features: We have extracted the set of features that was used in the
original work by Steidl et al. [59] from each single comment to use it as classification
features. Table 4.8 lists the extracted features and their description.

The best accuracy was obtained by training a J48 classifier using 10-fold cross validation
on the set of 700 training data. The trained model had an F1 measure of 80.832% with
the above-mentioned setting.

4.3 Topic analysis methodology

The problem of detecting NFRs that occur in text can be considered as an unsupervised
learning problem in which the goal is to identify common patterns between all of the

32

sentences in certain NFR categories. If this kind of pattern exists, it can be used for unseen
data to decide whether it contains discussion of an NFR or not. We believe that each NFR
can determine a distribution over words, and thus a comment that is about a certain NFR
will contain certain related words with higher probability. To capture this distribution for
each requirement, we built our classifier based on topic modeling, as suggested by Hindle
et al. [26]. We believe that there is likely a relation between generated topics and NFRs.
So, the method performs the classification in two phases: finding topics and finding labels
for each topic.

• Finding topics: We used LDA provided by Gensim, a Python library that provides
tools to infer semantic information from text [50]. The input to this method is the
dataset of comments plus the number of user-defined topics. The output is the model
that shows topic distribution per document and word distribution for each topic.

• Finding labels for each topic: To find labels associated with each topic we used a
wordlist provided by Hindle et al. [26]. In their study, they used three wordlists and
compared the results of them. In this project, we just used one of these datasets that
performed better than the others in the original study. Table 4.9 shows the list of
top words in the wordlist for each of the security and reliability category. The goal
of this part is to assign a label for each topic, if there is any correlation between the
that topic and any of the categories of NFRs. The label for each topic is determined
by using the intersection of the wordlist and the top words in a topic. We chose set of
50 common words for each topic and then compared it to the words in each wordlist.
If there were at least one common words between them, we labeled that topic with
the corresponding NFR category in the wordlist. With this assumption, a topic can
be labeled with more than one NFR category or even no categories (in case that the
lists have no common words).

The results of using topic modeling for extracting NFRs from the source code comments
are discussed in detail in section 5.2.1.

4.4 Text classification methodology

The problem of extracting NFRs from text can be modeled as a text classification problem
in which the goal is to find out whether a comment contains any of the categories of NFR
or not. The precise model for this classification problem is:

33

Table 4.9: List of top words in the wordlist for each of the security and reliability category.
Category Related Words
Reliability reliability, dependability, dependableness, reliableness, accountabil-

ity, answerability, answerableness, fault, reliable, authentic, de-
pendable, honest, failure, error, redundancy, fails, bug, crash, sta-
ble, stability, integrity, resilience, responsibility, responsibleness,
maturity, recoverability, fault tolerance

Security security, protection, certificate, security department, security mea-
sure, security system, amount, payroll, resistance, risklessness, per-
sonnel, return, share, law, bill, expenditure, loss, capital, antenna,
resource, authorization, license, plug, permit

• Document: Each comment is assumed to be a single document. A single comment
can consist of several sentences, the name of variables, a piece of commented out
code or description of the functionality of a class, variable, or method.

• Classes: Each comment can be either about NFRs or not. Thus, the decision is
binary in which a comment belongs to “NFR” category if it belongs to at least one
of the security and reliability classes. If the comment is neither about security nor
reliability, we classify it in “not-NFR” class.

• Classification model: In principle, any binary classifier can be used with this
problem; we chose to use Support Vector Machine (SVM) and Näıve Bayes as they
are simple and commonly use.

4.4.1 Feature extraction

The original features we used to convert each comment to a vector was the original bag-of-
words suggested by Slankas et al. [57]. By looking through a small sample of comments,
we found out that some of the features in the comments can help in deciding whether a
comment is about the NFR or not. For example, the comments describing the “return
type” or “return value” of the functions are usually very short and just name one or more
variables of the function. Thus, they usually describe a functionality of the method and
does not concern about NFRs of the software.

By capturing similar kinds of patterns in the comments, we extracted the following six

34

attributes for each comment and used them as classification features in addition to the
bag-of-words features suggested by Slankas et al. [57].

• isCRUD: A Boolean attribute that is true if the comment is detected as related to one
of the CRUD (Create, Read, Update, Delete) operations on data and false otherwise.
So, the attribute is true if the comment contains at least one of the words “create”,
“read”, “update”, “remove”, and “delete”

• hasReturn: A Boolean attribute that is true if the comment contains the word “re-
turn” and is false otherwise

• isImperative: A Boolean attribute that checks whether the comment contains im-
perative words or not. The attribute is true if the comment contains at least one of
the words “should”, “must”, “ought to”, “have to”, “has to”, “need”, “remember”,
“make sure”, and “be sure” and is false otherwise.

• length: A numerical attribute that shows the length of the comment in number of
characters

Although bag-of-words features are known to have a high performance in text classi-
fication approaches, they have two major drawbacks [34]: (1) they lose ordering of the
words and (2) they ignore the semantics of the words, and the concepts that are similar to
each other. Thus, to capture the semantics of text, we also used doc2vec, a model based
on neural networks, to convert each document to a fixed length vector in an unsupervised
manner. The model was learned using Gensim package using the dataset of comment with
ten epochs and parameters “α” = 0.025 and “min-α” = 0.025. The effect of using different
sets of features on the performance of classifiers is discussed in chapter 5.3.

4.4.2 Classification models

To perform the classifications, we converted each comment into its corresponding feature
vector. The size of feature vectors depends on the feature extraction approach we use,
however for each approach the length of feature is fixed for all of the documents. For
classification, we used Gaussian Näıve Bayes and also SVM with polynomial kernel in
which we evaluated the model using 10-fold cross-validation on our dataset of comments.
We discuss the results of using text classifiers in detail in section 5.2.2.

35

4.5 Summary

In this chapter, we proposed a framework to extract NFRs from the comments available
in the source code of software project in the EHR domain. To this end, we modeled the
problem as a text classification problem and classified each comment to determine whether
it is related to any categories of NFR or not. For this project, we only focused on security
and reliability categories that are the most common quality attributes of software that are
mentioned in the source code. As the first step of the process, we created a labeled dataset
of comments to have a ground truth to work with. Next, we preprocessed data to filter
out some of the irrelevant comments and remove noise from the data. We suggested two
approaches to solve the problem, the first one is based on topic patterns in the comments
and the second one is based on supervised text classification models. The details of the
experiments and result on our methodology is explained in chapter 5

36

Chapter 5

Research Results and Discussion

Throughout this chapter, we present the results of running the experiments described in
chapter 4 on the dataset of software documents and comments in the EHR domain. As
suggested in chapter 4, we analyzed the topics available in the comments to find common
patterns of using non-functional categories in the comments, with the idea of relating
the topics to categories of NFRs. We have also modeled the problem as a classic text
classification problem and performed the experiment on the available data. This chapter
presents the performance of suggested models for our problem and compares the results
under different settings.

In this project, we address the following research questions:

RQ1: How often are NFRs mentioned explicitly or implicitly in source code comments?

RQ2: How effectively can NFRs be extracted from source code comments?

RQ3: Which sentence characteristics are the most useful for extracting NFRs from source
code comments?

RQ4: What are the differences and similarities between extracting NFRs from source code
comments and other software documents?

This chapter provides the answer to these research questions along with the results of
our studies.

37

Table 5.1: Statistics of the dataset of comments; number of comments related to each
category and percentage of the category in the dataset

Category Number Percentage
Reliability 1316 17.9
Security 73 1.0
Other NFRs 3 0.04
Total 1392 18.9

5.1 Breakdown of NFRs in the source code

RQ1: How often are NFRs mentioned explicitly or implicitly in source code comments?

Based on the labels we manually provided for the dataset of comments in the EHR
domain, we found that 1392 comments out of 7337 total comments explicitly or implicitly
relate to non-functional properties of the system (18.9% of the total which is a noticeable
portion of the comments). Table 5.1 shows the breakdown of each category of NFRs among
comments.

As it is indicated in table 5.1, we found that 1389 of the comments belong to one of
the categories of reliability or security (18.9 % of comments) which is 99.7% of the total
comments that are related to the NFRs. Having only 0.04% of the comments about other
categories, convinced us to discard those categories in the training and evaluation process
and focus on the two most common categories: reliability and security.

From the comments that are related to security, we found that only 26% (19 comments)
explicitly mentioned the words “security” or “secure”, while the other 74% implied this
requirement. However, the results for reliability category were somewhat surprising since
none of the comments in this category explicitly mentioned words “reliability” or “reliable”
in the comments and they mostly talked about other concepts like “validation” that implies
the reliability of the system.

Although the breakdown of categories of NFRs mentioned in the comments can be
different for other domains and other projects, the results for the iTrust project shows that
in that project, most of the developers are concerned about Quality of Service (QoS) type
of requirements during the implementation phase of the project. This category can contain
any of the requirements related to safety, security, reliability, performance, interface, and
accuracy [65].

38

5.2 Performance of Machine learning techniques

RQ2: How effectively can NFRs be extracted from source code comments?

As described in chapter 4, we modeled the problem as a classification problem of ex-
tracting NFRs from text and proposed two approaches to deal with the problem. The first
approach used topic modeling to verify the existence of NFRs in text of comments and also
infer the common patterns for each requirement if such patterns exist. The other approach
uses supervised text classification to decide whether the comment contains any NFRs or
not. The rest of this section presents our results from using these two approaches.

5.2.1 Topic modeling

We believe that if there exist comments about NFRs in the source code, each NFR category
could be considered as a “topic” that developers are talking about. In other words, each
NFR category can define a distribution of words according to its type, and in this case,
the problem can be modeled as a topic modeling problem in which the goal is to identify
latent topics in text according to the word distribution for each topic.

Our method for finding NFRs from the topic mentioned in text works in two phases:

• Finding topics: We used LDA implementation in the Gensim package to find the
topics for the corpus of comments. The input for this phase is the text of dataset in
which each comment is considered as a separate document and the number of topics
that is user-defined. For our study, we used 50 as the number of topics, since we
believe it showed better word distribution according to the actual topics in text. The
output of this phase is a model that shows the word probability for each individual
topic and also topic probabilities for each comment.

• Assigning label for each topic: We used the labeling process suggested by Hindle et al.
[26]. To this end, we selected the N top words (the words with the highest probability)
for each topic as representatives of that topic. The top words are intersected with a
pre-defined list of words for security and reliability NFRs to determine whether the
topic is about any of these categories or not. If there exists at least one common
word, the topic is labeled with that NFR tag.

Table 5.2 shows the effect of the number of topics on the performance of our approach.
We tried a range of topics numbers, between 10 and 60. At the low end, we found that

39

Table 5.2: Effect of number of topics on the performance of LDA-based topic labeling
Number of topics Precision Recall F-measure

10 0.209 0.849 0.336
20 0.203 0.654 0.310
35 0.193 0.447 0.269
50 0.210 0.561 0.305
60 0.157 0.339 0.215

with a smaller number of topics, the model appears to be accurate in terms of precision,
recall, and F1 measure. However, in those models, the extracted topics are too general
and it can be hard to decide on a specific, concrete unifying theme. On the other hand, at
the high end with more than 50 topics, we found that the topics become much narrower,
and cannot capture statistical co-occurrence behavior of the comments. In the end and
using our judgment, we found that 50 topics provided the best trade-off between high
performance of the proposed model and level of semantic granularity.

Table 5.3 shows the effect of number of selected word for each topic on performance of
our proposed approach. For the experiments in this part, the number of extracted topics
is 50 for our corpus. The results shows that when the number of selected words are very
limited (for example 5 or 10 words per topic), the model does not perform well. In these
cases, the labels assigned to each topic is decided based on a small set of words, that might
not represent the distribution of words in the topic very well. Thus, when the number of
selected top words are low (fewer than 20), both the precision and recall of the model are
relatively low. On the other side, in cases where the number of selected words for each
topic is high (more than 35), the performance drops. For these cases, the words with lower
conditional topic-term probability are also selected as a representative of the topics and
are involved in deciding whether the topic is about NFRs or not. In these models, the
recall is high compared to other settings. However, low precision is likely to frustrate users
in a real-world situation. For the number of words between 20 and 35, the classifier has
the highest F1 score (with 0.305 F1 score in best case) and the top words can be accurate
representative of the distribution of words within the topic.

5.2.2 Text classification

We modeled the problem as a classification problem in which the goal is to find whether
given code comment concerns an NFR or not. To perform the classification, we used two

40

Table 5.3: Effect of number of top selected words for each of 50 topics on the performance
of LDA

Number of words Precision Recall F-measure
5 0.153 0.195 0.172
10 0.157 0.296 0.195
20 0.210 0.561 0.305
35 0.204 0.606 0.305
50 0.183 0.730 0.293

approaches — Gaussian Näıve Bayes and Support Vector Machine (SVM) with Polyno-
mial kernel — from Scikit-Learn, a toolkit for machine learning and data analysis written
in Python [48]. We chose these two classification approaches over other classification ap-
proaches, since they are known to perform well on text data. Moreover, both approaches
were used in the original work by Slankas et al. [57], which enables us to compare our
approach to theirs in a similar setting.

For the experiments in this part, we used our extended feature set explained in 4.4.1.
The features include the words in original form, length of the comment, whether comment
sentence is imperative or not, whether the comment is about CRUD operations or not, and
whether it contains “return” statement.

Table 5.4 presents the precision, recall, and F1 measure for the average for five runs of
each binary classification algorithm in which the goal is to determine whether the comments
are related to NFR or not. For each experiment, the classifier is trained on the dataset of
comments using 10-fold cross-validation. We also repeated the experiment for each of the
security and reliability categories separately and presented the results in tables 5.5 and 5.6
respectively.

According to the results for all of the cases, SVM classifier had an F1 score of 0.860 and
performed better compared to Näıve Bayes classifier with an F1 score of 0.741. This was
unsurprising since SVM models usually work well with large dimensional problems with
relatively few instances because of being well-regularized that makes it tolerate misclassifi-
cation and generalize to new data points [55]. This property of SVM justifies the huge gap
between the results in table 5.5, which is the case of determining whether a comment is
about security or not. The number of sentences with security label is very low (only 2.2%
of the comments) that makes Näıve Bayes perform poor in this case. However, the gap is
less for reliability category since it contains relatively more comments in the dataset.

41

Table 5.4: Performance of classifiers to determine whether the comment is “NFR” or “non-
NFR”. The method is evaluated using 10-fold cross-validation on the dataset of comments.

Classifier Precision Recall F-measure
Näıve Bayes 0.765 0.718 0.741
SVM 0.875 0.845 0.860

Table 5.5: Performance of classifiers to determine whether the comment is about security
or not. The method is evaluated using 10-fold cross-validation on the dataset of comments.

Classifier Precision Recall F-measure
Näıve Bayes 0.634 0.261 0.369
SVM 0.870 0.643 0.739

5.3 Performance of different sets of classification fea-

tures

RQ3: Which sentence characteristics are the most useful for extracting NFRs from source
code comments?

Classifiers can use any number of features to decide whether a comment belongs to
any of the NFR categories or not. In this study, we examined different sets of features
to evaluate the performance of classifiers and determine the best set of features for our
problem. The feature sets that we used is listed as follows.

1. The first feature set is the same as the features used by Slankas et al. [57]. This feature
set includes the words in the original form and a modified version of dependency tree
defined in the original work, that is called Sentence Representation (SR).

2. The second feature set is an extended version of feature set #1. Thus, in addi-
tion to the original form of the words, it takes into account factors such as length

Table 5.6: Performance of classifiers to determine whether the comment is about reliability
or not. The method is evaluated using 10-fold cross-validation on the dataset of comments.

Classifier Precision Recall F-measure
Näıve Bayes 0.767 0.784 0.775
SVM 0.876 0.876 0.876

42

Table 5.7: Performance of difference set of features with Näıve Bayes and SVM classifiers.
The method is evaluated using 10-fold cross-validation on the dataset of comments.

Näıve Bayes SVM
Feature set Precision Recall F1 Precision Recall F1
Feature set #1 0.711 0.755 0.733 0.872 0.838 0.854
Feature set #2 0.765 0.718 0.741 0.875 0.845 0.860
Feature set #3 0.269 0.316 0.290 0.580 0.583 0.581

of the comment, whether comment is imperative or not, whether the comment is
about CRUD operations or not, and whether it contains “return” statement. These
extended features are described in more details in section 4.4.1.

3. The third set of features is the vector representation of each sentence in multi-
dimensional space. The vectors are created using doc2vec that is an extended version
of word2vec, and provides continuous representation for larger blocks of text such as
one or more sentences in a comment.

Table 5.7 shows the results of each set of features evaluated using 10-fold cross-validation
on each of the two classification models used throughout this study. The results show that
second set of features has the best performance compared to other features (F1 score
of 0.860 with SVM classifier and 0.741 with Näıve Bayes classifier). Since doc2vec is
a statistical model and needs a very large amount of data to be trained on, it is highly
unlikely to perform as well as other approaches when the amount of data is limited. In those
cases, using words as they appear in the sentence and classic feature extraction approaches
will have better performance. To validate this claim, we repeated the experiment, but this
time instead of learning the feature vectors using merely the dataset of comments, we used
the dataset of software documents to train our model. The learned model is evaluated on
the dataset of comments. The results in table 5.8 show that in this case, the doc2vec has
the highest performance compared to other feature settings. Although the gap between
F1 scores is not large, this suggests that doc2vec method can perform better in cases that
there is enough data to learn semantics from.

For the feature sets #1 and #2, we used the exact feature setting suggested in the
original work [57]. As the authors suggested, the best performance was achieved using
original word form and also by filtering out determiners as stop words. Thus we used the
same feature setting for our experiments and replicated the work for our dataset of com-
ments. For feature set #3, we examined the effect of the size of vectors on the performance
of doc2vec models. Table 5.9 presents the results of using different vector size in each of

43

Table 5.8: Performance of difference set of features with Näıve Bayes and SVM classifiers.
The classifers are trained on the dataset of documents and evaluated on the comments

Näıve Bayes SVM
Feature set Precision Recall F1 Precision Recall F1

Feature set #1 0.07 0.40 0.13 0.07 0.10 0.08
Feature set #2 0.031 0.059 0.039 0.031 0.052 0.039
Feature set #3 0.220 0.094 0.132 0.246 0.098 0.140

Table 5.9: Effect of vector size on performance of classifiers for NFR detection. The method
is evaluated using 10-fold cross-validation on the dataset of comments with doc2vec feature
vectors.

Näıve Bayes SVM
Vector size Precision Recall F1 Precision Recall F1

50 0.255 0.244 0.249 0.523 0.548 0.535
100 0.271 0.278 0.274 0.563 0.560 0.561
200 0.263 0.294 0.277 0.560 0.552 0.555
300 0.260 0.295 0.276 0.561 0.569 0.564
400 0.269 0.316 0.290 0.580 0.583 0.581

the classification methods we used in our study. Vector size shows the dimensionality of
feature vectors used in the classification. As the results suggest, all of the models perform
better in high dimentionality, i.e., vector size bigger than 200. The F1 measure is almost
the same for vector sizes 200, 300, and 400. However, since recall is a more critical score
for our problem, we chose vector size of 400 for our experiments with doc2vec features.

Table 5.10 presents the results of using different word forms and stop words as the
classification features. To compare the effect of different word forms and different sets
of stop words to remove from data, we used SVM with polynomial kernel. The size of
feature vectors is 400 for each of the comments, and the results are obtained by 10-fold
cross-validation on the dataset of comments. The “Original” word form represents the
words as they appear in the document. “Lemma” is the lemma of the original word, that
was obtained using WordNet Lemmatizer in Natural Language Toolkit (NLTK) library.
“Stemmed” form is the stem of the original word produced by Porter stemming algorithm
[49]. Stopwords are a list of words that do not carry semantic significance due to the
common appearance in text. These words can be filtered out from text before further
processing. “Determiners” are “a”, “an” and “the”, and “English stopwords” is a list of
153 common terms in English provided by NLTK.

44

Table 5.10: Effect of text preprocessing on the performance of classifiers in NFR detection.
The method is evaluated using 10-fold cross-validation on the dataset of comments with
doc2vec feature vectors.

Word Form Stop Words Precision Recalll F-measure

Original
- 0.511 0.524 0.517

Determiners 0.540 0.566 0.552
English Stopwords 0.563 0.545 0.551

Lemma
- 0.527 0.564 0.541

Determiners 0.538 0.559 0.545
English Stopwords 0.553 0.552 0.552

Stemmed

- 0.527 0.530 0.528
Determiners 0.532 0.541 0.535

English Stopwords 0.580 0.583 0.581

As the results suggest, for the doc2vec model the best performance was achieved using
a stemmed version of the word in processing and training the model. Lemmatization does
not help much in enhancing the performance and f-measure is almost the same in cases of
using original word and lemma of the word. For all of the classifiers, removing stop words
improved the accuracy of the model, specially in case of using the stemmed version of the
word that removing stop words improved the accuracy of the model from 0.528 in F1 score
to 0.581. Thus, we used this setting in all of the results presented in this thesis.

5.4 Comparison

RQ4: What are the differences and similarities between extracting NFRs from source code
comments and other software documents?

To compare the characteristics of comments and other software documents, we repeated
the classification experiment under three different settings:

• Experiment 1: Learning the model on the sentences from the comments and eval-
uating on the same dataset using 10-fold cross-validation.

• Experiment 2: Learning the model on the sentences from dataset of software doc-
uments and evaluating on the same dataset using 10-fold cross-validation

• Experiment 3: Learning the model on the sentences from the dataset of software
documents and evaluating on the sentences from comments.

45

Table 5.11: Performance of SVM classifier in different experiment settings
Experiment # Precision Recall F-measure
Experiment 1 0.875 0.845 0.860
Experiment 2 0.743 0.693 0.717
Experiment 3 0.031 0.052 0.039

Table 5.12: Performance of Näıve Bayes classifier in different experiment settings
Experiment # Precision Recall F-measure
Experiment 1 0.765 0.718 0.741
Experiment 2 0.596 0.747 0.663
Experiment 3 0.031 0.059 0.039

We evaluated each of the experiments with the two classifiers described at the beginning
of this chapter. Tables 5.11 and 5.12 show the evaluation results using SVM and Näıve
Bayes as the classification model respectively. As it is shown in these tables, in both
of the models the highest performance is achieved by using the dataset of comments as
both training and test set. Although characteristics of data might be slightly different
for software documents (compared to the dataset of comments), we believe that higher
accuracy in the first experiment is mostly because of the consistency of data in comments
and choosing the data from one project.

Experiment 3 — where the classifier is trained on the dataset of software documents and
evaluated on the dataset of comments — has the lowest accuracy among other experiments.
Since the algorithm we are using is the same for all of the experiments, we can conclude
that the difference in performance relates back to the difference in characteristics of our
datasets, for example:

• The number of words in the sentences used in the comments is slightly fewer than
the number of words in the sentences for other software artifacts. For the dataset
that we have, the average length of a comment is 9.74 that indicates developers use
shorter sentences compared to other documents (with average 18.45 in length). Thus,
comment sentences on average probably convey less information and this will affect
the performance of machine learning methods.

• Due to the nature of the code comments, developers mostly tend to talk about
functional requirements rather than NFRs in the source code. Moreover, even among
NFRs they mostly talk about certain categories and ignore other types. Since other

46

Table 5.13: Performance of our NFR extraction approach compared to the previous work.
Classifier Precision Recall F-measure

Proposed topic modeling 0.210 0.561 0.305
Proposed classification 0.875 0.845 0.860
NFR-Locator 0.728 0.544 0.523

types of software artifacts have more data in each category and on average cover
more types of NFRs, we believe that this will result in a difference in patterns of
using NFRs in the two types of data.

• In supervised learning tasks, the performance of the models depends heavily on the
labels provided for training and evaluation data. Since the labeling process and
the set of labels are slightly different for the two datasets, inconsistency in labeling
process might lead to differences in the results.

• Word distributions and category definitions are different for the two datasets. For
example, the number of sentences with reliability label in the dataset of software
artifacts is small — 43 sentences in total — that made the classifier for this category
relatively inaccurate. By carefully looking through these 43 sentences, we found that
most of the sentences labeled with reliability in our own dataset of comments are
either about validation or verification of the system and data. In contrast, in the
dataset of software artifacts, there were a few sentences about these two concepts.
We believe that the difference in definition of the categories can lead to difference in
the distribution of words used to describe a certain NFR category (e.g., reliability)
in the two datasets.

Table 5.13 shows the results of our proposed approach compared to the others. Since
our work is the first study in finding NFRs from source code comments, there is no previous
method to compare our methods with it. Thus, we discuss the results for NFR-Locator [57]
in the results, which was the inspiration for our study. However, even the results for NFR-
Locator is obtained for classifying dataset of software documents in 14 NFR categories,
that is different from our experiment in data and the number of categories.

As the results show, modeling the problem of extracting NFRs from the comments as
supervised classification has better performance compared to the suggested unsupervised
approach. The main reason for poor performance of topic modeling for our problem is
that the number of comments is limited and also the comments are usually short (9.74
words on average). These two characteristics make finding patterns in text and relating

47

them back to NFRs a problematic task for statistical models like topic modeling. Thus,
we believe that supervised methods are more appropriate models for extracting knowledge
from comments.

In general, our proposed approach performed better compared to the original model.
Choosing data from one type of software artifact (comments in the source code) and limiting
the task to identifying two categories of NFRs instead of 14 categories may have impacted
the accuracy of our model. However, we believe that the main reason for the difference
in performance relates back to the characteristics of the data in our method and NFR-
Locator. As it was mentioned in section 4.2, a large proportion of the comments are clearly
not about NFRs and can be filtered out in early stages of NFR detection to make the
detection task easier.

5.5 Summary

In this chapter, we present the results of running our proposed methods for extracting
NFRs from source code comments under different settings. The results show that mod-
eling the problem of extracting NFRs from the comments as supervised classification has
better performance compared to the proposed unsupervised approach. We believe that the
difference can be due to the small size of available data and characteristics of the dataset
of comments (e.g., shorter sentences). We have also evaluated the classifiers with multiple
sets of features to identify NFRs from the comments. The results show that in our case,
using bag-of-words with added customized features — that help in capturing semantic and
structural patterns in the comments — outperforms the more complicated feature sets
(e.g., doc2vec features). In the next chapter, we discuss the threats to the validity of the
experiments that we have performed throughout this research and also the possible future
directions to pursue this work.

48

Chapter 6

Conclusions

In this dissertation, we have presented a method to assist analysts in extracting relevant
NFRs from comments available in the source code of software systems using automated
NLP. To evaluate the approach, we collected a set of comments from iTrust, an open-source
software in the EHR domain and demonstrated that developers are concerned about quality
attributes of this software by finding source code comments that are related to NFRs.

We modeled the problem of extracting NFRs from source code as a classification prob-
lem in which the model decides whether a sentence contains any NFRs or not. According
to the domain of the project and the requirement document available for the iTrust project,
we focused on two common types of NFRs, security and reliability.

We evaluated multiple classifiers with multiple sets of features to identify NFRs from the
comments. For the features, we found that for smaller data size, using bag-of-words with
some customized features added to capture some patterns in the comments outperforms
the other feature sets. However, for significantly larger datasets, the doc2vec method can
be an excellent candidate to convert the text of each comment to a fixed-sized vector that
encompasses the semantics in the comment.

As far as we are aware, this study can be considered as the first attempt to extract
NFRs from source code comments. Thus by designing different experiments on comments
and also other software documents, we found that although approaches to extract NFRs
from comments are similar to extracting it from other kinds of documents, there are sev-
eral characteristics inherent to comments that can impact the studies. Considering these
differences can open future research directions for extracting comments from the source
code and its comments.

49

6.1 Threats to validity

There are several threats that may affect the validity of our study. We have divided them
into three main categories: Construct Validity, Internal Validity, and External Validity.

The main construct validity threat for this project is the bias in labeling process. All
of the labels for training and evaluation purpose is provided by the author. Although the
labels are reviewed several times to avoid possible mistakes, there is still a chance of missing
requirements due to inherent ambiguity and complexity of natural language. Moreover,
the person performed the labeling process for the dataset of comments was different from
the one who provided labels for the dataset of software documents. This might introduce
inconsistency between labels for some sentences.

One of the threats to internal validity of this project is the size of data. The dataset
of comments that we used in our experiments is of size fewer than 8000 sentences which is
considered small for statistical analysis of data. We tried to reduce the effect of lack of data
by training the classifiers on a bigger size dataset of other software documents. However,
the models that we used for this study are among statistical models, in which larger size
of data will provide more information and enhance the performance of the models. Using
statistical models like doc2vec for small dataset available for our study could invalidate
some of our results.

For the experiments in this project, we focused on data from the EHR domain that
provided us with some extent of labeled data and previous studies to compare to our
results. Although the approaches we used in this study are independent of the domain
and can be easily used for other domains, our results should not be generalized for other
domains. For example, it is possible that developers have more concerns about NFRs in
the EHR domain compared to other domains. Using data from one domain can be an
external threat to the validity of the results.

We have used a variety of software documents and software projects within the EHR
domain. However, we only had access to the source code of one of those projects — the
iTrust project — to create our dataset of comments. We believe that the accuracy of the
methods can be directly dependent on how well the code is commented by developers. To
mitigate this risk, we investigated a subset of comments from the iTrust project before
any further processing, and we made sure that it is a well-documented project and the
comments adequately reflect the code, which might not be the case for all of the projects
even within the EHR domain.

50

6.2 Future work

The work performed in this project can be considered as the first attempt to extract NFRs
from comments on the source code. Thus, it can open several research directions to be
pursued in future works. Some of the possible future directions are discussed below.

In this study, we focused on the EHR domain for training and evaluating our work.
One possible direction for future studies is to expand the domain both within the EHR
and also into other domains. By performing the same analysis on the comments from
other domains, we can examine the generalizability of our approach and also investigate
similarities and differences of comments in various areas.

The major roadblock for this study was limited access to data to train our model.
This issue constrained the models that we could use for the project and also might have
affected the results. Neural network-based approach such as doc2vec usually have the best
performance when trained on a large set of data. By training the model on a large data,
we would be able to capture the semantic information hidden in the comment sentences as
much as we can and train more accurate models.

The idea behind extracting NFRs from comments available in the source code was to
track the focus of developers on implementing this kind of requirements. To this end,
we used a well-documented codebase in which the comments reflect the description of
functionalities along with the purpose of implementing various pieces of code. In this
study, our goal was to extract NFRs from text of comments. The next step for finding
NFRs from source code is to use the requirements found by our approach and trace it to
their implementation in the source code.

The main drawback of the approach proposed in this study is the need for the labeled
dataset to train the models in a supervised manner. Although there is a very large amount
of data from comments in open source projects in both EHR and other domains, none of
them has the labels to indicate whether they are about any of the categories of NFRs or
not. Providing labels for each sentence is a costly process and might be inaccurate due
to human bias. Thus, using unsupervised or semi-supervised approaches with comparable
performance and less need for labeled data can be one of the possible directions for this
study.

51

References

[1] Nida Afreen, Asma Khatoon, and Mohd Sadiq. A taxonomy of softwares non-
functional requirements. In Proceedings of the Second International Conference on
Computer and Communication Technologies, pages 47–53. Springer, 2016.

[2] R Arun, Venkatasubramaniyan Suresh, CE Veni Madhavan, and MN Narasimha
Murthy. On finding the natural number of topics with latent dirichlet allocation:
Some observations. In Advances in Knowledge Discovery and Data Mining, pages
391–402. Springer, 2010.

[3] Vikas Bajpai and Ravi Prakash Gorthi. On non-functional requirements: A survey.
In Electrical, Electronics and Computer Science (SCEECS), 2012 IEEE Students’
Conference on, pages 1–4. IEEE, 2012.

[4] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of machine learning research, 3(Feb):1137–1155,
2003.

[5] Christian Bird, Tim Menzies, and Thomas Zimmermann. The Art and Science of
Analyzing Software Data. Elsevier, 2015.

[6] Steven Bird. Nltk: the natural language toolkit. In Proceedings of the COLING/ACL
on Interactive presentation sessions, pages 69–72. Association for Computational Lin-
guistics, 2006.

[7] Gary Blake and Robert W Bly. The elements of technical writing. Macmillan New
York, NY, 1993.

[8] David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84,
2012.

52

[9] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the
Journal of machine Learning research, 3:993–1022, 2003.

[10] Barry W. Boehm. Verifying and validating software requirements and design specifi-
cations. IEEE software, 1(1):75, 1984.

[11] Michael Buckland and Fredric Gey. The relationship between recall and precision.
Journal of the American society for information science, 45(1):12, 1994.

[12] Agustin Casamayor, Daniela Godoy, and Marcelo Campo. Identification of non-
functional requirements in textual specifications: A semi-supervised learning ap-
proach. Information and Software Technology, 52(4):436–445, 2010.

[13] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural Networks,
20(3):542–542, 2009.

[14] D Manning Christopher, Raghavan Prabhakar, and SCHÜTZE Hinrich. Introduction
to information retrieval. An Introduction To Information Retrieval, 151:177, 2008.

[15] Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos. Non-functional
requirements in software engineering, volume 5. Springer Science & Business Media,
2012.

[16] Rudi L Cilibrasi and Paul MB Vitanyi. The google similarity distance. IEEE Trans-
actions on knowledge and data engineering, 19(3), 2007.

[17] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Peter Solc. Automated
classification of non-functional requirements. Requirements Engineering, 12(2):103–
120, 2007.

[18] Alistair Cockburn. Agile software development, volume 177. Addison-Wesley Boston,
2002.

[19] International Organization For Standardization/International Electrotechnical Com-
mission et al. Software engineering–product quality–part 1: Quality model. ISO/IEC,
9126:2001, 2001.

[20] IEEE Computer Society. Software Engineering Standards Committee and IEEE-
SA Standards Board. IEEE recommended practice for software requirements spec-
ifications. Institute of Electrical and Electronics Engineers, 1998.

53

[21] Darren Dalcher. Disaster in london. the las case study. In Engineering of Computer-
Based Systems, 1999. Proceedings. ECBS’99. IEEE Conference and Workshop on,
pages 41–52. IEEE, 1999.

[22] Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al. Gener-
ating typed dependency parses from phrase structure parses. In Proceedings of LREC,
volume 6, pages 449–454. Genoa Italy, 2006.

[23] Neil A Ernst and John Mylopoulos. On the perception of software quality requirements
during the project lifecycle. In Requirements Engineering: Foundation for Software
Quality, pages 143–157. Springer, 2010.

[24] Anthony Finkelstein and John Dowell. A comedy of errors: the london ambulance
service case study. In Proceedings of the 8th International Workshop on Software
Specification and Design, page 2. IEEE Computer Society, 1996.

[25] M Mahmudul Hasan, Pericles Loucopoulos, and Mara Nikolaidou. Classification
and qualitative analysis of non-functional requirements approaches. In Enterprise,
Business-Process and Information Systems Modeling, pages 348–362. Springer, 2014.

[26] Abram Hindle, Neil A Ernst, Michael W Godfrey, Richard C Holt, and John Mylopou-
los. Automated topic naming to support analysis of software maintenance activities.
In The 33rd International Conference on Software Engineering, ICSE, 2011.

[27] Abram Hindle, Michael W Godfrey, and Richard C Holt. What’s hot and what’s not:
Windowed developer topic analysis. In Software Maintenance, 2009. ICSM 2009.
IEEE International Conference on, pages 339–348. IEEE, 2009.

[28] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 50–57. ACM, 1999.

[29] Ivar Jacobson, Grady Booch, James Rumbaugh, James Rumbaugh, and Grady Booch.
The unified software development process, volume 1. Addison-wesley Reading, 1999.

[30] Thorsten Joachims. Text categorization with support vector machines: Learning with
many relevant features. Machine learning: ECML-98, pages 137–142, 1998.

[31] James Joyce. Bayes’ theorem. In Edward N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford University, winter 2016 edition,
2016.

54

[32] Hyo Taeg Jung and Gil-Haeng Lee. A systematic software development process for
non-functional requirements. In Information and Communication Technology Conver-
gence (ICTC), 2010 International Conference on, pages 431–436. IEEE, 2010.

[33] Gerald Kotonya and Ian Sommerville. Requirements engineering: processes and tech-
niques. Wiley Publishing, 1998.

[34] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents.
In Proceedings of the 31st International Conference on Machine Learning (ICML-14),
pages 1188–1196, 2014.

[35] Pericles Loucopoulos and Vassilios Karakostas. System requirements engineering.
McGraw-Hill, Inc., 1995.

[36] Pericles Loucopoulos, Jie Sun, Liping Zhao, and Farideh Heidari. A systematic clas-
sification and analysis of NFRs. 2013.

[37] K Mahalakshmi and R Prabhakar. Hybrid optimization of svm for improved non-
functional requirements classification. International Journal of Applied Engineering
Research, 10(20):2015, 2015.

[38] Anas Mahmoud. An information theoretic approach for extracting and tracing non-
functional requirements. In Requirements Engineering Conference (RE), 2015 IEEE
23rd International, pages 36–45. IEEE, 2015.

[39] Richard R Maiti and Frank J Mitropoulos. Capturing, eliciting, predicting and prior-
itizing (cepp) non-functional requirements metadata during the early stages of agile
software development. In SoutheastCon 2015, pages 1–8. IEEE, 2015.

[40] Andrew McCallum, Kamal Nigam, et al. A comparison of event models for naive
bayes text classification. In AAAI-98 workshop on learning for text categorization,
volume 752, pages 41–48. Madison, WI, 1998.

[41] Tim Menzies, Bora Caglayan, Ekrem Kocaguneli, Joe Krall, Fayola Peters, and Burak
Turhan. The promise repository of empirical software engineering data, 2012.

[42] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[43] Tomáš Mikolov, Anoop Deoras, Stefan Kombrink, Lukáš Burget, and Jan Černockỳ.
Empirical evaluation and combination of advanced language modeling techniques. In

55

Twelfth Annual Conference of the International Speech Communication Association,
2011.

[44] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[45] George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

[46] Kamal Nigam, Andrew Kachites McCallum, Sebastian Thrun, and Tom Mitchell.
Text classification from labeled and unlabeled documents using em. Machine learning,
39(2):103–134, 2000.

[47] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. Listening to programmers taxonomies
and characteristics of comments in operating system code. In Proceedings of the 31st
International Conference on Software Engineering, pages 331–341. IEEE Computer
Society, 2009.

[48] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of Machine Learning
Research, 12(Oct):2825–2830, 2011.

[49] Martin F Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[50] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.cz/

publication/884893/en.

[51] Maria Riaz, Jason King, John Slankas, and Laurie Williams. Hidden in plain sight:
Automatically identifying security requirements from natural language artifacts. In
Requirements Engineering Conference (RE), 2014 IEEE 22nd International, pages
183–192. IEEE, 2014.

[52] Winston W Royce. Managing the development of large software systems: concepts and
techniques. In Proceedings of the 9th international conference on Software Engineering,
pages 328–338. IEEE Computer Society Press, 1987.

56

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

[53] David E. Rumelhart, James L. McClelland, and CORPORATE PDP Research Group,
editors. Parallel Distributed Processing: Explorations in the Microstructure of Cogni-
tion, Vol. 1: Foundations. MIT Press, Cambridge, MA, USA, 1986.

[54] Vibhu Saujanya Sharma, Roshni R Ramnani, and Shubhashis Sengupta. A framework
for identifying and analyzing non-functional requirements from text. In Proceedings
of the 4th International Workshop on Twin Peaks of Requirements and Architecture,
pages 1–8. ACM, 2014.

[55] SN Sivanandam and SN Deepa. Introduction to neural networks using Matlab 6.0.
Tata McGraw-Hill Education, 2006.

[56] John Slankas and Laurie Williams. Access control policy extraction from uncon-
strained natural language text. In Social Computing (SocialCom), 2013 International
Conference on, pages 435–440. IEEE, 2013.

[57] John Slankas and Laurie Williams. Automated extraction of non-functional require-
ments in available documentation. In Natural Language Analysis in Software Engi-
neering (NaturaLiSE), 2013 1st International Workshop on, pages 9–16. IEEE, 2013.

[58] John Slankas, Xusheng Xiao, Laurie Williams, and Tao Xie. Relation extraction for
inferring access control rules from natural language artifacts. In Proceedings of the
30th Annual Computer Security Applications Conference, pages 366–375. ACM, 2014.

[59] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. Quality analysis of source
code comments. In Program Comprehension (ICPC), 2013 IEEE 21st International
Conference on, pages 83–92. IEEE, 2013.

[60] Johan AK Suykens and Joos Vandewalle. Least squares support vector machine clas-
sifiers. Neural processing letters, 9(3):293–300, 1999.

[61] Lin Tan. Chapter 17 - code comment analysis for improving software quality*. In
Christian Bird, Tim Menzies, and Thomas Zimmermann, editors, The Art and Science
of Analyzing Software Data, pages 493 – 517. Morgan Kaufmann, Boston, 2015.

[62] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /* iComment: bugs or bad
comments?*. In ACM SIGOPS Operating Systems Review, volume 41, pages 145–158.
ACM, 2007.

[63] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. aComment: mining annotations
from comments and code to detect interrupt related concurrency bugs. In Software
Engineering (ICSE), 2011 33rd International Conference on, pages 11–20. IEEE, 2011.

57

[64] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T Leavens. @ tComment: Testing
javadoc comments to detect comment-code inconsistencies. In Software Testing, Ver-
ification and Validation (ICST), 2012 IEEE Fifth International Conference on, pages
260–269. IEEE, 2012.

[65] Axel Van Lamsweerde. Requirements engineering: From system goals to UML models
to software, volume 10. Chichester, UK: John Wiley & Sons, 2009.

[66] Laurie Williams, Tao Xie, Andy Meneely, Lauren Hayward, and A Massey. itrust
medical care requirements specification. Versions of September 3rd 2010, 2008.

[67] Bin Yin and Zhi Jin. Extending the problem frames approach for capturing
non-functional requirements. In Computer and Information Science (ICIS), 2012
IEEE/ACIS 11th International Conference on, pages 432–437. IEEE, 2012.

[68] Annie TT Ying, James L Wright, and Steven Abrams. Source code that talks: an
exploration of eclipse task comments and their implication to repository mining. In
ACM SIGSOFT software engineering notes, volume 30, pages 1–5. ACM, 2005.

[69] ChengXiang Zhai. Statistical language models for information retrieval. Synthesis
Lectures on Human Language Technologies, 1(1):1–141, 2008.

[70] Wen Zhang, Ye Yang, Qing Wang, and Fengdi Shu. An empirical study on classifica-
tion of non-functional requirements. In The Twenty-Third International Conference
on Software Engineering and Knowledge Engineering (SEKE 2011), pages 190–195,
2011.

[71] Jie Zou, Ling Xu, Weikang Guo, Meng Yan, Dan Yang, and Xiaohong Zhang. Which
non-functional requirements do developers focus on? an empirical study on stack over-
flow using topic analysis. In Mining Software Repositories (MSR), 2015 IEEE/ACM
12th Working Conference on, pages 446–449. IEEE, 2015.

58

	List of Tables
	List of Figures
	Introduction
	Research Questions
	Contributions
	Organization

	Background
	Requirements engineering
	Machine learning for text processing
	Latent Dirichlet Allocation (LDA)
	Text classification
	Doc2vec

	Classification Evaluation
	Summary

	Related Work
	Extracting NFRs from software artifacts
	Analyzing the content of source code comments
	Summary

	Methodolgy
	Dataset
	Software documents
	iTrust comments

	Preprocessing of comments
	Topic analysis methodology
	Text classification methodology
	Feature extraction
	Classification models

	Summary

	Research Results and Discussion
	Breakdown of NFRs in the source code
	Performance of Machine learning techniques
	Topic modeling
	Text classification

	Performance of different sets of classification features
	Comparison
	Summary

	Conclusions
	Threats to validity
	Future work

	References

