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Abstract

A central topic in modeling land use change is to understand the “forest transition”
from deforestation to net reforestation. Agricultural land use change is the main driver of
this phenomenon; classically, agricultural land expands considerably to feed a growing pop-
ulation, and then declines as efficiency gains are realized, marginal farmland is abandoned,
and rural populations move to cities. As a result, existing models have focused on the
socioeconomic and demographic factors that drive agricultural intensification. However, in
doing so, these models often neglect the role of ecological feedback effects and thresholds.
These ecological thresholds can cause rapid shifts in ecosystems, such as forest collapse,
based on small changes in parameters, and are very difficult to predict. The existence of
these thresholds implies that agricultural expansion carries a risk of forest collapse. We
aim to use realistic models to assess the risk of collapse in forest cover, dependence on key
parameters, and strategies to avoid it.

To address the risk of forest collapse, we develop and analyze a differential equation
model that incorporates both agricultural intensification and ecological thresholds. We use
parameter values from the literature to adapt this model to boreal and tropical forests.
We analyze the model with bifurcation diagrams, simulations of key resilience metrics, and
fitted time series of real-world data for China, Costa Rica, and Vietnam.

Our analysis shows that there is a risk of forest collapse, and that the system is partic-
ularly sensitive to agricultural parameters. We find that regardless of the mechanism by
which collapse occurs, there is a critical value of 20-25% forest cover. In scenarios of inter-
est (i.e. forest transitions), initial deforestation would result in collapse if left unchecked.
We estimate model parameters at multiple points along historical time series, which allows
us to infer the risk of collapse and identify historical patterns. This shows that forest tran-
sitions can be caused by more varied parameter patterns than classically assumed in the
literature; in particular, rates of land conversion and agricultural abandonment rate may
remain elevated, instead of declining after intensification. The agricultural abandonment
rate is a key advance predictor of collapse at long time horizons, but at the brink of a crisis
forest collapse can best be avoided by reducing the forest conversion rate. We argue that
ecological threshold effects should be acknowledged in forest transition models not only for
ecological accuracy but also to ensure prudent forest management, particularly in the face
of emerging risks such as climate change.
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Chapter 1

Background

1.1 The Forest Transition

1.1.1 Conceptual background

The forest transition refers to a change from net deforestation to net afforestation, or
moving from forest loss to forest gain. The ecological, economic, and cultural importance of
forest preservation is hard to overstate. As early as 1893, it was asserted that “the wholesale
and indiscriminate slaughter of forests brings a host of evils in its train” [1]. Modern
language would frame these benefits in terms of ecosystem services, carbon emissions,
and biodiversity, while avoiding catastrophic shifts in ecosystems [2]. Where forest cover
continues to decrease, achieving a transition is a necessary first step in meeting other
conservation goals.

Agriculture is the main driver of deforestation, and conversely forest transitions are
mainly driven by agricultural intensification and land sparing [3]. These are in turn caused
by socio-economic and population subprocesses such as abandonment of marginal (e.g.
mountainous, poor soil) agricultural land, technologically increased yields, decreasing ru-
ral population density and employment, imports of agricultural and wood products from
abroad, and forest protection policies. While increasing populations are one key factor
driving agricultural expansion and deforestation, yield increases have been high enough to
allow forest transitions while meeting increasing food demands [4, 5]. In recent decades,
these shifts have caused forest transitions in many countries in the global north. How-
ever, deforestation continues in many countries in the global south, such as Indonesia and
Cameroon, largely driven by market demand abroad [5].
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1.1.2 Previous models

Models of the forest transition primarily focus on agricultural intensification. An early
example is Mather and Needle [3]. This presents a simple agent-based model of landowners
optimizing agricultural production in a grid of cells with different productivities. From an
initial state of randomly dispersed cultivation, agents redistribute their cultivation to more
productive grid cells over time. In the process, they increase agricultural efficiency, abandon
marginal farmland, and provide opportunities for forest to grow, thus leading to a forest
transition.

Much research into the forest transition takes a very different approach to the one
we are presenting in this paper. This includes work by geographers focusing on specific
spatial patterns underlying individual forest transitions [6, 7, 8]. As a highly interdis-
ciplinary research area, it also includes work by economists and social scientists, with
research questions focusing on socio-economic and policy determinants of the forest tran-
sition [9, 10, 5, 11, 12, 8].

However, neither of these broad areas is aligned with the specific modeling approach
we intend to take in this project. One paper that does is Pagnutti, Bauch, and Anand’s
“Outlook on a worldwide forest transition” [4]. This is a discrete time model of land
use change to fit the food needs of the world population, while agricultural efficiency also
increases. The question on a global scale is whether consumption (e.g. food waste) can
decrease or production can increase (e.g. through biotechnology) sufficiently to limit the
expansion of farmland and preserve forests [4]. The structure of this model involves five
land states (forest, farmland, pasture, abandoned land, and urban land) and the transitions
between them. We take a subset of these land states, and the transitions between them,
as the basis for our model. However, there are considerable differences, which we will
elaborate in Section 1.3.

Another forest transition paper that presents a very similar model is Satake & Rudel
[13]. This has just three land states: forest, farmland, and abandoned land. Landowners
respond probabilistically to incentives in choosing whether to deforest their land and plant
crops. The authors discuss two different hypotheses for determining the value of forested
land: the forest scarcity and the ecosystem services hypotheses. Under the forest scarcity
hypothesis, the value of forest increases for economic reasons as forest cover decreases,
due to lower supply. Under the ecosystem services hypothesis, environmental degradation
accompanied by loss of forests means that remaining forests have lower value. The environ-
mental degradation hypothesis matches more closely with the ecological approach taken in
this thesis.
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Satake and Rudel find that incentives for conservation are stronger when forest regen-
eration is slower (i.e. deforestation is less easily reversible), and when landowners place a
higher value on the future (i.e. short term gains from selling forest products are less at-
tractive). Under the forest scarcity hypothesis, rapid forest regeneration and high discount
rates both act to destabilize the system, resulting in pronounced oscillations in forest cover
(which are likely vulnerable to perturbations). Under the ecosystem services hypothesis,
there is a bi-stability between high forest and widespread deforestation, since below a criti-
cal threshold it is no longer worthwhile for landowners to maintain any forest; the location
of this threshold depends on the discount factor, forest growth rate, and other parameters.
Since this paper, particularly under the ecosystem services hypothesis, is so similar to the
present work, a more detailed comparison is given in Section 1.3.

1.2 Ecological thresholds

While environmental change is common to all ecosystems, some changes occur gradually,
whereas others occur abruptly. These abrupt or “catastrophic” changes are generally the
result of bistability, whereby alternative stable states coexist in a system [2]. Examples
include lake eutrophication, desertification, and forest/grassland mosaics [2]. In all cases,
these stable states and the shifts between them are due to feedback effects that either
stabilize an existing state or accelerate the change to a new state [14].

Specifically, extensive data has been collected on thresholds between forest and grass-
land, especially within the context of savannah ecosystems. The clear demarcation and
coexistence of these life forms (instead of one inevitably spreading into the other) perplexed
a generation of ecologists, and became known as the “savannah problem” [15], and several
feedback mechanisms are known. These include fire risk [16], soil retention [2], moisture
capture, species composition, and other factors such as strong spatial interactions [17]. For
the purposes of this thesis, we take a phenomenological approach to threshold effects. That
is, we do not assume or explicitly model any particular mechanism; we only assume that
some threshold is present for forest growth.

Ecological thresholds are often demonstrated by empirical patterns in tree cover dis-
tributions. Scheffer et al. demonstrate that tree cover in the earth’s boreal region is
multimodal, with clear thresholds between different vegetation regimes despite unimodal
climactic conditions [18]. As a more detailed and mechanistic example, alternative stable
states of spruce-lichen and spruce-moss forest types, and the importance of fire regimes
and spruce budworm for inducing the changes between them, have been demonstrated in
the boreal forests of Québec [19].
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Analogous findings of clear thresholds and feedback mechanisms, particularly surround-
ing forests’ ability to retain moisture or resist fire, have been found in tropical forests around
the world. The nature and scale of these feedback effects is quite varied [20]. Hirota, Schef-
fer and colleagues show in a series of papers that the empirical distributions of tropical
tree cover, and of response to shocks such as drought and deforestation, match closely to
theoretical threshold models [21, 22, 23]. These papers are described in more detail below.

Within the field of (ecological) thresholds, a prominent subfield is concerned with pre-
dicting critical transitions. This typically involves monitoring small fluctuations of a system
around its equilibrium, and using increasing autocorrelation to infer that a critical tran-
sition is imminent [24]. Though this methodology is standard and has been applied to a
wide variety of systems, we will see that it turns out not to apply to our system of interest.

1.2.1 Previous models

Basic models of nonlinear growth are standard introductory material in mathematical
ecology (e.g. [25]). One of the simplest models is the logistic equation (Eq. 1.1):

dx

dt
= rx(1−

x

K
) (1.1)

This equation represents constrained growth, with population size x (assumed to be
nonnegative), fecundity r, and carrying capacity K. This equation has two equilibria:
x = 0 and x = K, corresponding to zero population or a population at carrying capacity.
The x = 0 equilibrium is unstable, while x = K is stable, meaning that as long as there
are some individuals present, the population will grow towards the carrying capacity, at a
rate determined by r. The growth rate is largest at x = K

2
.

This simple model is useful in some situations, but fails to capture key aspects of some
organisms’ population dynamics. In many species, the population will die out if there
are too few individuals. This can arise from difficulty finding a mate, vulnerability to
predators, or other factors. This is called a strong Allee Effect. (In a weak Allee effect,
the growth rate at low population densities is only slowed, instead of becoming negative.)
It can be modelled as:

dx

dt
= rx(

x

A
− 1)(1−

x

K
) (1.2)

The new term A (0 < A < K) is the Allee threshold. Below this value, the population
will decline to zero; above this value, it will increase up to the carrying capacity as in
logistic growth.
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Mathematically, critical thresholds are a (rather introductory) part of bifurcation theory
[26]. However, since we are just concerned with a simple cusp bifurcation in an ecological
context, the topic is usually sufficiently covered in introductory books on mathematical
biology [25]. We will focus on specific models pertaining to ecological forest models.

In this thesis, we will focus on two forest types: boreal and tropical. Boreal forests
were chosen because of their large area [27] and relevance to Canada. Tropical forests were
chosen because of the importance in the context of the global carbon cycle and biodiversity,
and because they are the most threatened [10]. In particular, considerable deforestation is
ongoing in many tropical forests, and thus they should be a priority for achieving a forest
transition [5].

Some previous models are not restricted to a particular forest type. One simple model
of threshold-based forest growth is described by Innes, Bauch, and Anand [28]. This models
the growth of forest F as a logistic equation with a threshold function w(F )

dF

dt
= w(F )F (1− F )− bF (1.3)

The function w(F ) is a sigmoid that ensures very low growth below 40% forest cover,
and normal logistic growth above this level up to the carrying capacity. In their model,
this forest growth is coupled to a social feedback mechanism representing human attitudes
to forest conservation. No such coupling is included in our model, but we have adopted
the same terminology for the sigmoidal growth function.

There are a number of models of ecological thresholds within the context of tropical
forests. Staal et al. [23] also use a modified logistic growth function (Equation 1.4).

dF

dt
= r(P )F

(

1−
F

K

)

−mAF
hA

F + hA

(1.4)

In this equation, r(P ) is a moisture-dependent fecundity term, K is the carrying ca-
pacity, mA is the magnitude of Allee-effect mortality, and hA is the Allee threshold. In this
model, unlike Equation 1.3, it is the mortality term that is threshold-based and not the
growth term. In practice, however, the dynamics are very similar. Previous models by the
same research group [21, 22] established that these threshold-based dynamical models fit
the data on tree cover distributions reasonably well. The version presented by Staal et al.
was formulated to answer a research question about the combined effect of drought and
deforestation. The moisture-dependent growth rate is necessary to investigate the effects
of drought, and they model deforestation as a simple one-time decrease in forest cover.
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There are relatively few differential equation models of boreal forest dynamics in the
literature. One of the few is Henderson, Bauch, and Anand [29]. Chapter 2 of this thesis
reviews empirical models of various recruitment functions, with mechanisms such as sapling
recruitment, biomass growth, water stress, and fire risk. In Chapter 3, a model is developed
to model the dynamics of the boreal forest in eastern British Columbia. This model, which
is in part calibrated with the data from Scheffer et al. described above ([18]), has a
similar functional form to Equation 1.3, with additional terms to account for drought-
based mortality, harvesting, replanting, and probability of tree establishment. The forest
growth function we will use is simpler (Chapter 2), in that these factors are assumed to be
incorporated endogenously in model parameters.

1.3 Rationale and Objectives

The central goal of this thesis is to include threshold-based forest dynamics in a model
of an intensification-driven forest transition. (Models which accomplish similar goals are
described below, but I argue that none has accomplished precisely this goal.) Furthermore,
the present approach is unique in analyzing this phenomenon with such a simple model.
This allows a clear analysis of the interaction of agricultural intensification and ecological
thresholds.

Many of the initial efforts in coupled socio-ecological models referenced above only
qualitatively describe the dynamics of interest (beyond the qualitative similarity captured
by initial models of socio-ecological systems [30, 13, 28]). We seek to address this by both
setting parameter values as realistically as possible from prior literature (Table 2.1) and
by demonstrating the model fit for real-world examples of forest transitions (Chapter 4).

Several prior authors in the forest transition literature have included ecological feed-
backs in models of the forest transition. Satake and Rudel’s model [13], as described
above, considers the same three basic land uses and dynamics as ours. Under their ecosys-
tem services hypothesis, the feedback effect they consider is quite similar to the ecological
thresholds discussed above. (Although their density-dependent growth is linear rather than
sigmoidal, this difference is fairly minor.) However, their model is purely conceptual, and
not parameterized with real data. Our forest dynamics in the absence of human inter-
vention are slightly more sophisticated, with flexibility in parameter values to account for
natural forest-open land bistability. In addition, changes in forest conversion and farmland
abandonment are left as exogenous in our model; without Satake and Rudel’s explicit so-
cial coupling, we are more free to explore arbitrary shifts in these key parameters, which
correspond to more macroeconomic changes as compared to the microeconomics of their
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social model. We also add an element of prediction, in providing tools to detect potential
forest collapses from data before they occur. The main difference between the present work
and Satake and Rudel’s paper is the inclusion of more ecological realism and data.

By contrast, the difference when compared to Staal, Decker, Hirota, and Nes 2015 [23]
is a more detailed consideration of agriculture and of forest transition literature. Staal et
al. use a well-calibrated, ecologically sophisticated model of forest dynamics to determine
the combined effects of drought and deforestation on the Amazon forest. However, this
approach models deforestation only as an impulsive shock (instantaneously reducing the
forest cover by e.g. 20%). Considering the fact that conversion to agriculture is the
leading cause of deforestation [31, 11], we extend this line of inquiry by considering the full
dynamics of agriculture as a land use. How much forest is taken out of circulation, and at
what rate does existing farmland become abandoned and re-wilded? The forest transition
literature, and our macro approach of focusing on net conversion rates, offers a framework
for answering these questions.

This thesis is grounded in the literature on forest transitions and on ecological thresh-
olds, and will focus on understanding, interpreting, and avoiding collapses in forest cover.
Specifically, my objectives are:

1. To develop an empirically grounded model of forest dynamics incorporating both
ecological thresholds and land use intensification;

2. To examine the theoretical implications of ecological thresholds in forest transition
scenarios, focusing on the potential for forest collapse;

3. To analyze and weigh risk factors for forest collapse, particularly those under human
control.

The model is developed and parameterized in Chapter 2. Its theoretical properties –
equilibria, bifurcations, and metrics of resilience and recovery in forest transitions – are
analyzed in Chapter 3. In Chapter 4, the model is applied to real-world data in two
different ways, with parameters varying over time either continuously or discretely; in each
case, comparisons are made to theoretical results of Chapter 3, and sensitivity to key land
use change parameters is discussed. Overall conclusions, limitations, and directions for
future work are discussed in Chapter 5.
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Chapter 2

Model

2.1 Model description

The model describes three land types: forest (F ), agricultural land (A), and open land
(G for ‘Grassland’). Open land is a broad category encompassing natural grasslands,
pasture, abandoned cropland, and forest blowdown. The state variables of the model are
the land areas of each class, represented as proportions. The inclusion of just three land
cover classes is a significant assumption, as it neglects dynamics of urbanization, water
and wetlands, and finer distinctions within these three classes (e.g. forest composition
or crop types). Where urban development or other land use classes are significant but
constant throughout the study period, we can simply renormalize to the undeveloped land
and recover the situation described above. This seemingly broad assumption holds for 38
out of 46 US ecoregions for which data is available [32].

Forest is subject to three processes: growth, natural loss, and conversion to farmland.
Growth is logistic, and is proportional to current forest cover, available open land, and a
density-dependent fecundity function w(F ). Natural disturbance to open land, through
fire and storm blowdown, occurs at a constant rate b. Conversion to agricultural land
occurs at a rate u(t). Like other human-determined parameters, this conversion rate varies
over time.

Agricultural land increases by conversion of forest and open land and decreases by
abandonment. Conversion of forest was described above; conversion of open land is anal-
ogous, with rate v(t). We assume that in general v(t) > u(t), as it requires more effort to
clear forest than to prepare open land for agriculture. Farmland abandonment occurs at a
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well-mixed system, where land use change is occurring in small patches. This assumption
is consistent with patch-based models [3] and previous differential equation formulations
[29, 13]. In some cases, these choices of proportionality have additional interpretations:
for example, forest conversion may become more difficult at low densities if the remaining
forest is increasingly inaccessible. The proportionality of farmland abandonment implies
that 1/γ is the average lifetime of a farm. These choices also help ensure the model stays
well-defined: areas land areas cannot become negative.

Table 2.1: Parameter definitions, ranges, and sources

Boreal Tropical
Term Meaning Units Range Baseline Range Baseline Sources

a
Low-density
forest growth rate

% area/y 0-2 0 0-10 0 [29, 22]

b
Natural
disturbance rate

% area/y 0.5-2.5 1.0 1-26 2.5 [29, 22, 23, 34]

h
Threshold for
increased growth

% area 5-60 15 5-50 15 [29, 35, 18, 23]

p
Hill function
steepness (range)

– 2-7 3 2-7 3 [29, 18, 23]

r
High-density
forest growth rate

% area/y 2-10 9 10-50 27
[29, 18, 23],
derived

γ(t)
Farmland
abandonment rate

% area/y 0-6 1.5 0-25 8 [9, 36, 37]

u(t)
Forest
conversion rate

% area/y 0-5 0.4 0-25 2 [4, 38, 27]

v(t)
Open land
conversion rate

% area/y 0-8 1.2 0-50 6 [36, 4]

2.1.1 Forest growth function

As mentioned previously, the fecundity function w(F ) is density-dependent. This is the
mechanism by which ecological feedbacks and thresholds are represented in this model. We
parametrize this as a Hill function with a low-growth regime and a high-growth regime, as
in [22, 23].

When forest cover is low, are in the low growth regime, at rate a. At high forest cover,
the model switches to a high growth regime, with an increase in growth rate of magnitude r.
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The transition between the two regimes is parameterized by a Hill function with steepness
parameter p and a half-saturation forest cover h (Equation 2.4), as illustrated in Figure
2.2.

w(F ) = a+ r
F p

hp + F p
(2.4)
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Figure 2.2: The density-dependent forest growth function w(F ).

Note (Table 2.1) that the baseline value of a is 0, which suggests this parameter may
be redundant. However, the reason we retain it is that a acts as a “switch” for stability of
the F = 0 equilibrium: when a < b, F = 0 is a stable equilibrium. Since there is also an
interior equilibrium under low agricultural pressure (Sec. 3.1), this ensures that our system
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is able to reflect the bistability between forest and grassland [16]; however, by increasing
a, we can also ensure monostability, thus reflecting climactic conditions in which forest is
the only stable outcome.

2.1.2 Natural versus human parameters

Throughout this work (e.g. on Table 2.1), we refer to two distinct sets of parameters: the
natural parameters and the human parameters. The natural parameters {a, b, h, r, p} are
those that affect transitions between forest and natural open land; the human parameters

{γ, u, v} are those that affect transitions to and from agricultural land. There are two
important reasons for making this distinction: timescale, and ability to affect change.

We expect that the human-influenced parameters vary quite rapidly, often on the order
of years. This is because land conversion is tied to multiple economic, demographic, tech-
nological, social, and technological processes that vary on these timescales [9, 27, 37]. The
frequent occurrence of such rapid changes in parameter values is why these parameters
are listed as functions of time. (“Rapid” is in relation to the timescale for the model to
reach equilibrium, which is often more than 100 years.) In this work, two approaches are
used for modeling this variation in time. The first approach, for simulation, is of a smooth
transition between an initial value and a final value (Chapter 3); the second approach, for
working with real-world data, is to generate an ensemble parameter estimates based on
updated data every 5 years (Chapter 4).

The second reason for this separation is that the human parameters are much more
directly under human control. Due to massive coordination problems and the magnitude
of socio-economic forces involved, it may be impossible for any single agent to directly
change land conversion rates. However, agriculture is undeniably under human control.
Further, a number of policy initiatives, such as agricultural subsidies and payment for
ecosystem services, have been shown to effect land use behaviours. One of the goals of
the present research is to consider which possible interventions (in γ, u, or v) best achieve
conservation goals in various circumstances.

Although the human parameters change quickly and are at least in principle control-
lable, it is important to note that these properties may also hold to some extent for natural
parameters. For example, climate change may alter the high-density forest growth rate r,
causing it to increase in some areas and decrease elsewhere [39, 40]. Climate change will
also increase the frequency and severity of fires and droughts, as represented by the natural
disturbance rate b. Other natural parameters, such as the steepness p and half-saturation h
of the Hill function, may vary with species composition. The underlying biotic and abiotic
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factors determining the “natural parameters” of this model will change over time, though
the relevant timescale is more likely to be decades or centuries. And while they are not
entirely governed by human actions, as agricultural land use is, the natural parameters can
be affected in multiple ways by human activity. This could be direct, such as tree planting
to increase the low-density growth rate a, or indirect, such as altering species composition.

2.2 Parametrization

Following our objective of developing an empirically grounded model, we determine all
parameter values from established literature. The details (and difficulties) are described
in the following section; Chapter 4 also discusses fits to real-world data.

As shown on Table 2.1, we adapt the model to describe two distinct settings: tropical
and boreal forests. Parameters for each are calibrated based on published literature and
available data, as described below. As this is a general model, specifying point values for
parameters would be inappropriate, as this would not capture the range of variation within
each forest type. We use the lower bound, estimated peak (i.e. the most probable or typical
value), and upper bound to define triangular distributions for each parameter, which form
the basis of our ensemble simulations (Sec. 3.4). Sensitivity analysis at baseline, shown
through bifurcation diagrams (Figures 3.2-3.9), reveals that uncertainty in parameter val-
ues would not substantively change any of the model behaviour. Parameter values may
appear very high, but this is because this model describes gross changes, which may often
be more than an order of magnitude larger than net land cover changes in realistic settings
[41].

In many cases, it is difficult to estimate parameters precisely. This is largely because
the parameters in this model, while ecologically meaningful, do not often correspond to
other researchers’ questions of interest. This is particularly true of the constituent pa-
rameters in the Hill function. In cases where prior research does investigate density-
dependent feedbacks on forest growth, it is typically within a mechanistic context of a
particular phenomenon: fire risk [22, 28], fragmentation [23], and/or moisture retention.
The present ‘generic’ model is phenomenological and does not distinguish the cause of
density-dependent feedbacks; this resembles cases where frequency distributions and input
variables suggest threshold effects but no mechanism has been firmly established [18]. This
phenomenological basis is another reason our parameter estimates emphasize broad ranges
over point estimates.
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2.2.1 Low-density forest growth rate a

This represents the forest cover from 0; it is the intercept of the growth rate function
w(F ). Most models of feedback effects do not include this term (e.g. [29][Ch. 2], [28]),
thus implicitly setting it to 0. Further, a is difficult to find empirically since forest is only
rarely introduced to completely deforested areas. Fortunately, at the baseline value, we
find little sensitivity to a.

In light of these difficulties, it is worth examining why we include this parameter at
all. The reason is that it acts as a switch for the bistability dynamics. If a < b, the F = 0
steady state is stable; for a > b it is unstable. Because we are interested in bistability, we
impose the condition a < b, even if in fact many global forests may not be in a bistable
regime. For model simplicity, and ease of parameterization, we set a = 0, though we still
estimate plausible ranges.

For managed boreal forests, Henderson reports a planting rate of 0.1% ≤ a ≤ 0.6%
annually [29]. However, the growth rate from 0 is not just the planting rate: it also
depends on the natural regeneration rate at F = 0, which reaches as high as approximately
2% annually. For tropical forests, we estimate 0 ≤ a ≤ 10 % annually. Unfortunately, due
to a lack of previous models, this is only an estimate; it is based on the approximate a : r
ratio in boreal forests.

2.2.2 Forest mortality b

Forest mortality includes losses due to storms, fire, and other natural processes. There are
many reliable estimates for this parameter.

In tropical forests, annual loss estimates include 1% [42], 2% [29, Chapter 2]. Some
models have much higher loss rates of 10-15% annually [23, 29] or even 26% [22] for very
low tree covers, due to the combined effects of both fire-induced mortality and an Allee
threshold. These very large loss rates do not reflect net loss, however, since they are
balanced by greater growth rates in this model (and the present model reduces the growth
rate at low F values, rather than increasing the loss rate).

For boreal forests, [34] gives a range of 0.5-2% for fire mortality, which agrees closely
with the range of 0.5-2.5% reported in [29].
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2.2.3 Sigmoidal threshold h

Direct evidence for the threshold value in forest growth is quite scant; we often infer the
location of thresholds from the frequency distributions of forest cover [18]. Further, it varies
considerably depending on the ecosystem, and in may cases there are multiple thresholds.
We will report all threshold values, but for this research we are primarily interested in the
lowest ones, between presence and absence of forest.

For tropical forests, thresholds have been reported at 10% and 64% [22], 20% and 70%
[23] (inferred from frequency distribution; ), and 40% [29, Chapter 2]. For boreal forests,
Scheffer and colleagues’ global survey reveals thresholds around 10%, 30%, and 60% [18];
Henderson and colleagues report a value of 25%, though it may range from 5-50% [29,
Chapter 3]. We expect that thresholds occur at very low values in temperate forests as
well, at least for national-scale forest cover, since countries such as France have experienced
forest transitions at 14% cover [35], implying a threshold at most this large.

While this ‘generic’ system necessarily has a great deal of uncertainty in the location
of the threshold, we are mainly concerned with the lowest threshold present, marking the
collapse of the forest. In addition, sensitivity analysis shows that the dynamics are not
very sensitive to this parameter.

2.2.4 Sigmoidal steepness p

Models based on fire risk have quite steep thresholds, with the exponent p as large as 7 [22]
for fire risk in tropical forests. However, in this model the exponent for growth-dependent
mortality (the Allee effect term) is 1.

For boreal forests, we have no direct estimates of steepness parameters. Instead, we
estimate p from the frequency distribution in [18]. Since it is fairly shallow, we expect p to
be approximately in the range of 1-5. This agrees qualitatively with the threshold response
in [29, Chapter 3].

2.2.5 High-density forest growth rate r

This parameter governs the maximum expansion rate of forest cover, and as such is ex-
tremely important. It is also very well documented in previous logistic models of forest
growth, and more generally in trends of forest cover area (though deriving the appropriate
r value from forest cover area requires normalizing for both current forest and open land).
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For tropical forests, estimates of r are often given as moisture-dependent in other
models. For simplicity, we do not explicitly consider this variable; we simply incorporate
high and low moisture regimes into our estimates for the range of r. Furthermore, the
effect is only significant for very low precipitation levels. Published estimates of r include
10-50% [29] and 30% annually [22, 23] at high precipitation levels. However, to account
for the moisture dependence, we reduce this by 10% to 27% annually.

For boreal forests, Henderson gives an estimate of 2-6% annually (depending on mois-
ture and species). We can check this range from the steady state forest cover, using the
relation F̄ = 1 − b/(a + r). Since F̄ ≈ 80%, b ≈ 1 − 2%, and a = 0, this confirms that
r ∈ [5− 10%].

2.2.6 Farmland abandonment rate γ

In the tropics, shifting cultivation is frequently practiced. Under this regime, farmland
can be left fallow after just 4-6 years [33], implying u ∈ [16 − 25%]. Note that this is not
technically abandonment, as landowners continue to use it for secondary crops and intend
to return to growing primary food crops after a suitable period of time; however, for the
purpose of this model, we count this fallow land as open. In tropical agriculture where
shifting cultivation is not practiced, all transition rates, including abandonment, will be
substantially lower. In cases where agriculture is profitable, land abandonment can be
arbitrarily close to 0 (and in fact this occurs more often than might be expected [9]).

For boreal forests, an upper bound on the observed rates of farmland abandonment was
provided from the breakup of the Soviet Union and its associated agricultural subsidies.
This maximal rate is 2-6% annual abandonment [37].

2.2.7 Forest clearing rate u

We cross-reference this parameter from a number of sources. Many sources give estimates
on the fraction of farmland derived from forest versus farmland; [4] gives this ratio as 2:3
globally. Hansen and colleagues provide data on overall ratios of forest loss to forest gain,
which are about 3.6 for tropical forests and 2.1 for boreal forests [27]. In model terms, this
means b + u = 3.6 ∗ w(F ) ∗ (1 − A − F ); thus, u ∈ [3 − 25%]. However, if people are not
actively clearing forests, u may reach 0.

For boreal forests, the same calculation yields u ∈ [1 − 5%]. Alternatively, we may
use Popatov’s finding that natural disturbance accounts for about 45% of forest losses in
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their study area on the Northern Hemisphere [38]; this implies u ≈ 1.1b, giving a similar
range. However, these measurements were made in circumstances with declining forest
cover. In post-forest-transition regions, where forest cover is stable, the forest clearing rate
is substantially lower, reaching as low as 0.2% in Canada [43].

2.2.8 Grassland clearing rate v

We cross-reference this parameter indirectly, since it is hard to find existing estimates.
Pagnutti and colleagues provide the fraction of farmland derived from forest versus grass-
land; [4] gives this ratio as 2:3 globally; hence v > 1.5 ∗u. (The inequality is because there
is typically much more forest than grassland, so we have to rescale). However, this ratio
may be as high as 4:1 in the tropics [36]. It is generally easier to farm grasslands than
forests, so we would expect v to be quite high; however, if u is in the upper end of its
range, it will be unfeasible to keep such high v values.

17



Chapter 3

Model analysis and simulation results

In this chapter the model is analyzed, with equilibrium analysis, bifurcation diagrams, and
simulation results. The bifurcation diagrams offer a classical dynamical systems analysis,
which comprehensively describes the behaviour of the system over a wide range of param-
eter values, such as might be found in different forest types or agricultural regimes. The
simulations feature time-varying parameters to characterize land use intensification, which
introduces inhomogeneity, with consequences that cannot always be described by bifurca-
tion diagrams. In particular, during forest transitions multiple parameters are likely to
be changing simultaneously, and they are changing at approximately the same timescale
as the system dynamics. As a result of these issues, transients are key to our analysis
[44], particularly for the real-world situations discussed in Chapter 4. First, however, we
consider equilibria, typical trajectories, and bifurcations. We examine how both the ini-
tial parameters and the changes associated with land use intensification affect measures of
forest resilience and recovery.

3.1 Equilibria and stability

3.1.1 Forest dynamics in the absence of agriculture

In an undisturbed system, the only land classes are forest and natural open land. Due to
conservation, this can be modelled with the single equation:

Ḟ = w(F )F (1− F )− bF (3.1)
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Setting Ḟ = 0 to obtain the equilibria and factoring out F , we find either
{

F̄ = 0

w(F̄ )(1− F̄ )− b = 0

For the second case, we substitute the definition of w(F ):

(

a+ r
F p

hp + F p

)

(1− F ) = b

With p = 3, this is a quartic equation with no straightforward solution. However, one root
can be approximated by noting that as F > h, F 3 � h3, so F p

hp+F p ≈ 1. Then

F̄ ≈ 1−
b

a+ r

This is the high forest cover state in the absence of agriculture, which is empirically
around 80-90% in both tropical and boreal forests [21, 29]. At baseline parameters, there
are no other equilibria, and this high forest cover equilibrium is stable, while F̄ = 0 is
unstable. However, changing parameter values can lead to new equilibria and/or change
the stability of these equilibria, reflecting different vegetation regimes.

3.1.2 Equilibria with agriculture

To incorporate agriculture, we reintroduce the equation for A:

Ḟ = w(F )F (1− F − A)− bF − uF

Ȧ = uF + v(1− F − A)− γA

Setting the left hand sides to 0, the second equation allows us to solve for Ā in terms
of F̄ :

0 = uF + v(1− F − A)− γA

This can be substituted into the F equation derived above, though in general (as previ-
ously) a solution can only be found by computer solvers. Within the ecologically relevant
domain, the model has 1 or 3 equilibria (Fig. 3.1). In much of the parameter space, the
system is bistable, with 3 equilibria: 2 stable nodes and one saddle point. One stable node,
corresponding to forest collapse, is at (F̄1, Ā1) = (0, Ā1), while the stable node indicating
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forest persistence is at (F̄3, Ā3) = (0, Ā3), with F̄3 u 40% and Ā1 > Ā3. The third equi-
librium is a saddle node (F̄2, Ā2) that lies approximately halfway between the two stable
nodes. It is possible to find the equilibria analytically, but only as the roots of a quartic
polynomial, so doing so offers little insight and we present a graphical solution instead.

For some parameter values, the system loses bistability. This occurs through a fold
bifurcation when the saddle point annihilates one of the stable nodes. Under high con-
version rates, such as at t = 0 in our baseline simulation (Section 3.4), it is the interior
stable state (F̄3, Ā3) that is annihilated, so all initial outcomes lead to forest collapse (Fig.
3.1b). However, if conversion rates are low and the low-density forest growth rate a is high,
(F̄1, Ā1) will be annihilated, and all initial conditions lead to forest persistence.

Under highly specific parameter values, additional interior equilibria appear (Appendix).
The conditions required for this to occur are uncommon, and are never reached by altering
only single parameter values from the baseline, as the bifurcation diagrams in this chapter
indicate. (In principle, since F factors out of the algebraic expression for F̄ , the equilibria
occur as solutions of a polynomial of degree p + 1 = 4. The discriminant of this quartic
will determine the number of equilibria. However, the discriminant of a quartic equation
is a degree 6 polynomial with 16 terms, and the coefficients of the quartic are themselves
compound functions of our model parameters; there is the additional step of determining
whether any such solutions lie within the ecologically valid region.) Most importantly, the
bulk of this thesis focuses on the bifurcation between stability and collapse, and for this
research question the distinction between 1 and 2 stable equilibria is of little importance.

3.2 Bifurcation diagrams

The most distinctive feature of this model are bifurcations. Bifurcation diagrams offer a
comprehensive and intuitive way to see how these bifurcations occur in each of the model
parameters. This offers a clear visual understanding of the effect of model parameters
(much more than we can gain algebraically or with intuition).

Diagrams were constructed for both tropical and boreal parameters; since the underly-
ing model is identical, they have identical dynamical behaviour, although they are quanti-
tatively different.

These bifurcation diagrams demonstrate that, under our model, forests are prone to
catastrophic collapses. This is expected from introducing ecological thresholds into forest
transition modeling, but the bifurcation diagrams provide additional levels of detail. We
can see that forests are considerably more sensitive – both in terms of the stable forest
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cover, and tolerance to parameter changes before collapse – to agriculturally-determined
human parameters (Figures 3.7-3.9) than they are to “natural parameters” only affecting
forest growth (Figures 3.2-3.6). While forest collapse can occur due to shifts in natural
parameters (e.g. severe drought [20]), it is much more likely to occur as a result of human
actions [30], or from a combination of factors [23]. These 1-D bifurcation diagrams only
allow us to investigate the effects of single-parameter shifts; however, shifts in multiple
parameters tend to have the effects one might expect as a result of combining the effects
of the single-parameter shifts (Sections 3.4, 4.3, Appendix).

Strikingly, the forest cover at which collapse occurs is in the narrow range of 20-25% for
most parameters. This is somewhat above the value of h = 15%, which we refer to as the
threshold for high-density growth. However, due to the functional form used, this is more
accurately a half-saturation value (as in Figure 2.2, so 5-10% above this value is a reasonable
estimate of where the growth rate begins to decline significantly from its maximal value.
The fact that collapses from many possible sources (i.e. changes in b, r, γ, u, v) all occur at
nearly the same forest cover suggests that, unlike many other situations [24], the value of
the state variable (forest cover) might be of some use as a predictor of collapse risk. Unlike
forest cover, the agricultural land cover at the point of this collapse is highly variable
(Figures 3.3-3.9). Agricultural land generally increases after forest collapse, but not if the
forest conversion rate was higher than the open land conversion rate (Figure 3.8b).

This value for collapse risk aligns fairly well with Environment Canada’s recommended
guideline of minimum forest cover. This states “30% forest cover at the watershed scale is
the minimum forest cover threshold. This equates to a high-risk approach that may only
support less than one half of the potential species richness, and marginally healthy aquatic
systems [45].” This metric was devised largely based on the requirements for bird habitat,
but cautions that true thresholds are site- and species-dependent and often unknown. In
our model, this corresponds to uncertainty in the value of h.

3.2.1 Bifurcations in natural parameters

In this section we consider the impact of natural parameters. As stated previously, these
are intrinsic to the forest dynamics. They may change slowly, in particular due to climate
change or varying moisture levels. They may also be affected by human action, which
could be through direct means such as tree planting (for the low-density growth rate a) or
by indirect means such as spreading invasive species or otherwise altering the ecology of
the community.

While we want to understand how the model responds to these changes, we are much
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more concerned about synergies between changes in natural parameters with changes in
human parameters that we are with changes in natural parameters in isolation [23].

0 0.02 0.04 0.06

a

0

0.2

0.4

0.6

0.8

1

L
a

n
d

 c
o

v
e

r

Boreal forest, with threshold, varying a

LPBPLP

LPBPLP

BP

BP

0 0.02 0.04 0.06 0.08 0.1

a

0

0.2

0.4

0.6

0.8

1

L
a

n
d

 c
o

v
e

r

Tropical forest, with threshold, varying a

LPBPLP

LPBPLP

BP

BP

Figure 3.2: Bifurcations in a, the low-density forest growth rate, for (a) boreal forest
and (b) tropical forest. Green and red lines correspond to equilibrium forest and farmland
cover, respectively. Solid lines represent stable equilibria, and dashed lines represent saddle
points. The thick lines indicate the interior equilibrium, and the thin lines indicate the
F = 0 equilibrium. “LP” stands for “Limit Point”, indicating the cusp bifurcation.

0 0.01 0.02 0.03

b

0

0.2

0.4

0.6

0.8

1

L
a

n
d

 c
o

v
e

r

Boreal forest, with threshold, varying b

LP

BP

LP

BP

BP

BP

0.02 0.04 0.06 0.08 0.1

b

0

0.2

0.4

0.6

0.8

1

L
a

n
d

 c
o

v
e

r

Tropical forest, with threshold, varying b

LP
LP

Figure 3.3: Bifurcations in b, the natural forest disturbance rate, for (a) boreal forest
and (b) tropical forest. Green and red lines correspond to equilibrium forest and farmland
cover, respectively. Solid lines represent stable equilibria, and dashed lines represent saddle
points. The thick lines indicate the interior equilibrium, and the thin lines indicate the
F = 0 equilibrium. “LP” stands for “Limit Point”, indicating the cusp bifurcation.

When a is low, the F = 0 equilibrium corresponding to forest collapse is stable (Fig.
3.2). As a increases, this equilibrium loses stability – this is a transcritical bifurcation
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Figure 3.4: Bifurcations in h, the half-saturation value of the Hill function for density-
induced feedback in forest growth, for (a) boreal forest and (b) tropical forest. Green
and red lines correspond to equilibrium forest and farmland cover, respectively. Solid
lines represent stable equilibria, and dashed lines represent saddle points. The thick lines
indicate the interior equilibrium, and the thin lines indicate the F = 0 equilibrium. “LP”
stands for “Limit Point”, indicating the cusp bifurcation.
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Figure 3.5: Bifurcations in p, the steepness parameter for density-dependent forest growth,
for (a) boreal forest and (b) tropical forest. Green and red lines correspond to equilibrium
forest and farmland cover, respectively. Solid lines represent stable equilibria, and dashed
lines represent saddle points. The thick lines indicate the interior equilibrium, and the thin
lines indicate the F = 0 equilibrium. “LP” stands for “Limit Point”, indicating the cusp
bifurcation. Sensitivity to p is negligible, so it was kept fixed at p = 3 for all subsequent
analysis.

leading to monostability of the interior equilibrium. The interior equilibrium value also
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Figure 3.6: Bifurcations in r, the increase in growth rate for high-density forests, for (a)
boreal forest and (b) tropical forest. Green and red lines correspond to equilibrium forest
and farmland cover, respectively. Solid lines represent stable equilibria, and dashed lines
represent saddle points. The thick lines indicate the interior equilibrium, and the thin
lines indicate the F = 0 equilibrium. “LP” stands for “Limit Point”, indicating the cusp
bifurcation.

increases slightly as a increases, but changes in a do not change its stability.

The natural disturbance rate is likely to increase with climate change and drought.
Changes in b have a moderate impact on the location of the internal steady state, but
do not impact the stability of the system except for very extreme values, which induce a
bifurcation to forest collapse (Fig. 3.3).

Changes in h, the half-saturation value for forest growth, affect the value of the unstable
saddle, and consequently the basin boundary between stable forest and collapse (Fig. 3.4).
As h becomes very large, this saddle point collides with the interior equilibrium, in a fold
bifurcation leading to forest collapse. Prior to this point, changes in h have almost no effect
on the location of the interior equilibrium, and unless cover levels are low it is difficult to
accurately parameterize h.

The steepness parameter p has almost no effect on the dynamics (Fig. 3.5). The
numerics did not converge for the saddle point in this case. However, there is almost no
effect of p on the interior equilibrium, and within the viable range there are no bifurcations.
Due to this very low sensitivity we have fixed p = 3 throughout this work, to reduce the
dimensionality of parameter space.

Changes in r have a substantial impact on the location of the interior equilibrium, and
little impact on the unstable equilibrium (Fig. 3.6). Extremely low values will induce a
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bifurcation to forest collapse. This parameter can be estimated fairly accurately based on
growth data, and is likely to be influenced by climate change, e.g. increasing in Quebec
boreal forests due to rising temperature and precipitation [40].

3.2.2 Bifurcations in human parameters
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Figure 3.7: Bifurcations in γ, the agricultural abandonment rate, for (a) boreal forest
and (b) tropical forest. Green and red lines correspond to equilibrium forest and farmland
cover, respectively. Solid lines represent stable equilibria, and dashed lines represent saddle
points. The thick lines indicate the interior equilibrium, and the thin lines indicate the
F = 0 equilibrium. “LP” stands for “Limit Point”, indicating the cusp bifurcation.

As the farmland abandonment rate decreases (γ → 0), the agricultural area markedly
increases with a corresponding decrease in forest cover, until a bifurcation occurs (Fig. 3.7).
At this bifurcation, forest cover collapses to 0, and agricultural cover increases slightly. The
sensitivity to γ is very large.

Changes in the forest conversion rate u have a large effect on the location of the interior
equilibrium, and increases soon lead to forest collapse (Fig. 3.8). If u > v at the point of
collapse, as in the tropical case shown here, agricultural land will decrease, as open land
is being farmed less aggressively than the now-extirpated forest. Sensitivity to u is also
large.

Changes in the open land conversion rate v have a similar effect, although less dramat-
ically (Figure 3.9). Though forest is not being cleared directly, increases in v still lead to
reduction in forest cover and then collapse, since to maintain its size the forest requires
readily available open land. Relative sensitivity, as can be seen from the steepness of the
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Figure 3.8: Bifurcations in u, the forest conversion rate, for (a) boreal forest and (b)
tropical forest. Green and red lines correspond to equilibrium forest and farmland cover,
respectively. Solid lines represent stable equilibria, and dashed lines represent saddle points.
The thick lines indicate the interior equilibrium, and the thin lines indicate the F = 0
equilibrium. “LP” stands for “Limit Point”, indicating the cusp bifurcation.
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Figure 3.9: Bifurcations in v, the open land conversion rate, for (a) boreal forest and
(b) tropical forest. Green and red lines correspond to equilibrium forest and farmland
cover, respectively. Solid lines represent stable equilibria, and dashed lines represent saddle
points. The thick lines indicate the interior equilibrium, and the thin lines indicate the
F = 0 equilibrium. “LP” stands for “Limit Point”, indicating the cusp bifurcation.

curve on the bifurcation diagram, is of similar magnitude for v as for u, though the absolute
sensitivity is much smaller, since the range of v is quite broad.
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3.3 Metrics of resilience and recovery

3.3.1 Metrics of ecological resilience

While resilience is a topic of primary interest to mathematical ecology, and the broader field
has various methods to quantify resilience, these have less often been applied in the sub-field
of forest transition scholarship. These measures, such as distance from undesirable tipping
points or the distinct but related concept of being able to withstand small perturbations,
are often used in models of coupled human-environment systems [46]. However, much
of the associated theory, such as early warning signals for critical transitions, is based
on equilibrium analysis of the system. This means that it does not apply in our case,
where slow dynamics of forest cover (i.e. on the order of decades, even if parameter
changes are faster) ensure very long transients. Given these limitations, we apply two
more fundamental definitions of resilience, as described by Walker and colleagues [47]. Of
the four aspects of resilience they identify, we apply two: precariousness and resistance.
Precariousness measures how close the system is to a threshold; for our system, we define
it as the distance in phase space between the point of minimum forest cover and the basin
of attraction for forest collapse. It also represents the largest perturbation the system
is guaranteed to withstand. Resistance, by contrast, represents the ease or difficulty of
changing the system. This can be determined by how quickly the the system returns
to equilibrium after a perturbation, which is controlled by the dominant (i.e. largest in
magnitude) eigenvalue at the stable forest equilibrium. This is indicated by λ (Figure 3.12),
with more strongly negative values of λ indicating greater stability. Although eigenvalues
of a particular equilibrium are a purely local phenomenon, they can often convey more
information about system behaviour [25].

3.3.2 Metrics for recovery

In addition, we define a pair of measures for the extent of forest recovery following a po-
tential forest transition. The first is a qualitative hierarchy based on the overall trajectory
of the time series (Figure 3.10), which was first defined by Pagnutti et al. [4]. We frame it
here as a metric of recovery, following the definition of adaptability as “changing the cur-
rent state of the system so as to move either deeper into a desirable basin, or closer to the
edge of an undesirable one” [47]. The second measure is simply the increase in forest area a
specified time after the transition. This is quantitative and more straightforward, but arbi-
trary in certain ways that limit its applicability. Note that our measures of forest recovery
are entirely distinct from restoration, which consists of achieving an ecological transition
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from the steady state of forest collapse to forest persistence [48], which we consider outside
the scope of the present work.

3.4 Simulations

3.4.1 Model for agricultural intensification

To reflect agricultural intensification (i.e. a change in land use patterns whereby agriculture
is concentrated in productive lands, allowing marginal lands revert to a natural state),
model parameters for agriculture must change over time. These changes occur to the
parameters {γ, u, v} that describe conversion to and from agricultural land.

We capture this change with a sigmoidal function varying smoothly from the initial
value to a final value. This sigmoid is parameterized by the time of the transition (the
midpoint between final and initial values) and by a steepness term, governing the time
scale of the transition. For the forest conversion rate u(t), the initial and final value are
u0 and u1, and the parameters for transition time and timescale are, respectively, Tu and
ku. The exponential sigmoid is given by

u(t) = u0 + (u1 − u0)
1

1 + exp (ku(Tu − t))
(3.2)

The graph of u(t) is illustrated in Figure 3.11; functional forms for γ(t) and v(t) were
identical. This makes the system of DEs inhomogeneous. The timescale of parameter
change and of system dynamics are both on the order of decades.

For the land conversion parameters {γ, u, v}, both the initial and final values lay within
the ranges on Table 2.1. The timing parameters Ti and ki were chosen to represent real-
istic forest transitions, with land use intensification occurring near the midpoint of each
simulation, and the transition between land use regimes taking approximately 5-20 years.

Note that, although intensification typically entails abandonment of farmland (espe-
cially marginal lands) [35, 11], the annual rate of farmland abandonment γ will often
decrease with intensification. This counter-intuitive parameter shift is based on several
contributing factors. Firstly, the remaining high-quality land will have less turnover. Sec-
ondly, decreasing conversion rates ensure that net agricultural area will still decrease.
Thirdly, the decrease in farmland abandonment typically occurs after the decrease in the
conversion rates (i.e. Tγ > Tu, Tv). This is because the cost to clear and plant new cropland
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Figure 3.10: Qualitative classification of recovery outcomes, based on the extrema of forest
cover, from [4].

• No Forest Remaining: Final forest below a cutoff level of 10%

• No Forest Transition: No local minimum; can be either no decline, or a steady decline
with more than 10% forest cover remaining at the end of the time series

• Overshot Forest Transition: Global minimum followed by local maximum

• False Forest Transition: Local minimum followed by local maximum and subsequent
decline

• Classical Forest Transition: Global minimum only

Simulations that fall into the same qualitative classification may have very different final
forest cover levels, as illustrated. Subsequently in this work, Overshot Forest Transition and
False Forest Transition are grouped into a single category, since both are very uncommon.
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Figure 3.11: Time-varying forest conversion rate u(t), as land use intensification reduces the
forest conversion rate. The time of intensification Tu = 1990 marks the midpoint between
the initial high forest conversion and subsequent low forest conversion; the timescale of the
change is given by ku.

is generally greater than the maintenance cost of existing farmland. The net abandonment
of agricultural land occurs during this period when the annual abandonment rate outstrips
the annual conversion rates.
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3.4.2 Simulation setup

For both tropical and boreal parameter values, we generate a baseline transition scenario.
This was chosen to exemplify a forest transition that comes as near to collapse as possible,
so that it i) shows a prototypical example of a forest transition (while lying well within
the established parameter ranges) and ii) allows small perturbations in parameter values
to tip the balance between recovery and collapse.

The goal of these simulations was to determine the impact of human-influenced parame-
ters – both the initial values and the changes at the time of agricultural intensification – on
system output. An ensemble of 100,000 parameter sets was generated from perturbations
of agricultural parameters from the baseline simulation (Figure 3.1) and used to simulate
the differential equation system, from the same initial condition (F,A) = (0.75, 0.1) as in
the baseline scenario. One set of simulations was conducted with all parameters varying,
and one set was conducted with the natural parameters {a, b, h, r} held fixed at the values
specified in the baseline scenario, to isolate the effects of the human-controlled parameters.
Simulations were conducted for both tropical and boreal scenarios.

All simulation runs were ordinary differential equations, implemented in MATLAB
using ode45. The only source of randomness was the selection of parameters; the simulation
was deterministic. Each realization of the randomly generated parameters was passed to
the ODE function. After specifying the initial condition and time span (all of which were
identical to the baseline simulation), the output was analyzed for local stability properties,
local extrema, and other properties required to compute the metrics of resilience and
recovery described above. Local extrema that only dominated surrounding points by a
small amount (1% cover) were rejected to eliminate computational artefacts, and because
even a true forest transition The distance to collapse was analyzed by first analytically
identifying the saddle point and separatix (via an inverse time trajectory beginning along
the appropriate eigenvector), and then computing the minimum distance to the solution
curve.

MATLAB code implementing the above calculations, including a list of scripts to gen-
erate each figure, are found at the repository given in the appendix.

3.4.3 Results

Our analysis has shown that forest collapse can occur in situations where agriculture and
ecological thresholds occur together (Figures 3.2-3.9). Simulations show that trends of
resilience measures (minimum distance from collapse and resistivity to perturbations) and
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recovery measures (inflection points in forest cover and total regrowth area) follow broadly
similar patterns as the risk of collapse (Figures 3.12, 3.13). Parameters associated with
agriculture have a larger impact on the risk of forest collapse than natural forest parameters.
The most important parameter for determining the risk of collapse is the initial farmland
abandonment rate γ0. This has a clear threshold effect, in that if γ is sufficiently large
the risk of collapse is negligible. Agricultural conversion rates u (forest conversion) and v
(open land conversion) also have a considerable effect. Changes at the time of land use
intensification have very little impact on resilience, and only have small effect on forest
recovery.

Results were very similar for tropical and boreal parameters, as shown in the bifurcation
diagrams. For applicability and policy considerations, we are most interested in the en-
semble simulations of tropical forests. The reasons are twofold: (a) fewer tropical countries
have so far undergone a forest transition, so interventions to increase forest resilience are
more necessary, and (b) the shorter time scale decreases the chance of unforeseen external
factors invalidating the model.

The most important parameter for determining the risk of collapse is the initial farmland
abandonment rate. For γ0 ≈ 0, the chance of collapse is almost 100% (Figure 3.12). As
agricultural abandonment increases, the risk of collapse declines rapidly, to less than 10%
for γ0 of 12% annually. Beyond the regime where collapse is very unlikely, further increases
in γ0 continue to increase the system resilience, as measured by distance from threshold.
Resistivity displays similar dependency on this parameter. Conversely, the two recovery
metrics display much less sensitivity to further increases in γ0 (Figure 3.13). In contrast
to the strong effect of γ0 on collapse risk, reduction in γ at the time of intensification has
a very weak effect on collapse risk and on resilience. It does impact recovery – reducing
γ1 can turn a very resilient Classical Forest Transition into a much less resilient False or
Overshot Forest Transition, and can similarly increase the extent of forest regrowth – but
these beneficial outcomes are only seen in a relatively small minority of cases.

The forest conversion rate u0 and the open land conversion rate v0 have a similar degree
of impact on the risk of collapse. Unlike with γ0, their impact is linear across the entire
range of the parameter, from almost no chance of collapse for u0 and v0 near 0, to 60% risk
at the upper limit of each parameter. In spite of this similarity, the impact of u0 is much
more severe, since its range is much smaller; furthermore, when collapse is avoided, it has
a much larger impact on both metrics of resilience. The forest conversion rate is also the
best target to reduce at the time of intensification: doing so can reduce the risk of collapse
from around 45% to 25%. As with γ, reducing the conversion rates has little impact on
the distance from threshold, but a substantial impact on the qualitative resilience metric.
Even where collapse is avoided, these reductions will often move the system from No Forest
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Transition to Classical Forest Transition, going up two levels on the hierarchy.

These results show that the gradual encroachment of farmland (and hence lack of avail-
able room to expand) is at least as severe a threat to forest as direct land conversion. After
intensification, increasing γ and decreasing u remain important in optimizing resilience by
the qualitative metric. However, the gains in resilience are quite marginal if we are mea-
suring distance from collapse. This is because most of the impact of intensification occurs
after the inflection point, so the timing or location of this point does not change.

This difference in effect of the initial and intensified parameters occurs because the
resilience measures are entirely determined at the point of transition, which in turn depends
on the initial forest loss. The intensified parameters only change system properties after
this inflection point has occurred (or to a very small extent as it is about to occur); this is
precisely the time window that is reflected in the metrics of forest recovery.

Comparing all four metrics, we find that distance from collapse has the best discrimina-
tion, in that it splits the ensemble space more evenly than any of the other three metrics.
For example, at some parameter values (such as high u0), the intermediate levels of the
qualitative recovery hierarchy do not occur, so this metric offers little more than a binary
classification between collapse or forest persistence.

Somewhat surprisingly, considering the strong similarity in their responses to parameter
changes, we find that the relationships between each of our metrics of resilience and recovery
are quite weak (Figures A.2-A.4; no scatter plots were produced for the qualitative recovery
metric)). This suggests that it is worth collecting information on each of these measures
and that none is redundant, even if they may all suggest the same choices of parameters
(i.e. high γ, low u and v) to ensure robust forest cover.

We also considered cross-effects of multiple parameters on resilience, as measured by
distance from collapse (Figures A.5-A.7). The cross-effects between the key parameters
γ0, u, v are prominent and as expected, in that collapse risk is higher if two parameters
simultaneously change in directions that would increase it, and so on. Cross-effects between
any other parameters are quite weak. Surprisingly, this includes the timing parameters
Tγ, Tu, Tv (Figures A.8 - A.10); interactions between the base parameter and its associated
timing parameter (within the distribution we selected) seem to have no strong effect on
system resilience. This further emphasizes the importance of the initial parameters as
compared to any changes at the time of intensification.
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Chapter 4

Real-world data and predicting

collapse risk

In this chapter, we describe two different adaptations of the model to fit real-world data. In
the first adaptation, the parameters are continuous functions of time, following the land use
intensification model of Section 3.4. This first adaptation is a post-hoc analysis, allowing
us to see the factors influencing empirical forest transitions. In the second adaptation, the
parameters are discrete functions of time, calibrated every five years as new data becomes
available. This is more predictive, as it allows us to extrapolate future land cover based on
current trends; it incorporates an ensemble approach as a means to address uncertainty.
This addresses a major limitation of the previous chapter, which was that collapse could
only be predicted in the unrealistic situation of known parameter values.

4.1 Data

We obtain historical land cover data for three countries – China, Costa Rica, and Vietnam
– from Lambin and Meyfroidt (2011) [10]. These countries were selected because they un-
derwent forest transitions in the second half of the 20th century, and they have good data
available over an extended period. Data on agricultural land at the national level since
1960 can be reliably found from the United Nations Food and Agriculture Organization’s
FAOSTAT database [49], but until recent decades when satellite imaging became promi-
nent, reliable data on forest cover was scarce. Since the timescale of interest for forest
transitions is decades at a minimum, the present work relies on Lambin and Meyfroidt’s
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interpolated data for forest cover values [10]. An error in their record of agricultural land
in Costa Rica post-1985 was fixed with reference to FAO data [49].

4.2 Continuously varying parameters

For the continuous time model, we are interested in obtaining the best fit of the land use
intensification model described in Section 3.4. There are a total of sixteen parameters to
fit. Four come from the constant natural parameters a, b, h, r (p is assumed fixed at 3, due
to very low sensitivity), and twelve from the varying agricultural parameters. For each of
u, v, γ, there is an initial value, a final value, a time of transition, and a steepness of the
transition. We assume that two values of each agricultural parameter are sufficient, since
most of the forest transition literature speaks in terms of a shift between two regimes [12].

The fitting method to determine these parameters is bounded simulated annealing, as
implemented in the MATLAB function @simannealbnd A sample run is shown in Figure
4.1a. Simulated annealing is an iterative algorithm for approximating global optima in
large search spaces; the use of an internal “temperature” variable to control the probability
of moving away from a local minimum simulates an analogous process in metallurgical
annealing, hence the name. The steps of the algorithm are:

1. Let β = β0 and evaluate the objective function f(β) (in this case, model error as
described below)

2. Decrease the temperature T

3. Randomly sample (from a multivariate normal distribution, within the specified
bounds) a nearby parameter vector β1

4. Evaluate the objective function (model error) on this input, f(β1)

5. If f(β1) < f(β0) (i.e. there is an improvement in the objective function), set β ← β1

with high probability. If not, rather than rejecting β1, set β ← β1 with some non-zero
probability that is an increasing function of temperature.

6. Repeat these steps until the temperature T reaches a minimum value, or a large
number of steps have passed with no significant improvement in β.
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There are many options available for the function by which the temperature decreases
in Step 2 and the acceptance probabilities in Step 5. The key is that temperature should
decrease over time, and the probability of moving out of a local minimum should be high
when temperature is high and should be low when temperature is low. Specifics for the
use of the @simannealbnd function in this project are described in code repository listed
in the appendix.

To perform this fit, we require a measure of the error between a parameter set and
a data series. We use the simple sum of Euclidean errors. To be more precise, let β =
[a, b, h, p, r, γ(t), u(t), v(t)]T be a parameter set (noting that γ, u and v are functions of
time) and x = xt,i, t ∈ {t0, . . . , tN}, i ∈ {1, 2} be a data set, indexed by year and by
land cover type (forest and agricultural land). To define an error function:

1. Simulate the differential equation solution with the given parameters, using the first
data point (xt0,1, xt0,2) as the initial condition. Evaluate the simulated solution at
the same time points as the original data series, and call this simulated solution
x̂(β) = x̂t,i

2. Define the error as the sum of the Euclidean distances between x and x̂(β) at each
year:

Error =

tN
∑

t=t0

√

(xt,1 − x̂t,1)2 + (xt,2 − x̂t,2)2 (4.1)

This is the sum over all years of the 2-dimensional (forest and farmland) distances
between the data and the model.

Having defined the error function, we only need to set the bounds for each parame-
ter estimate, as well as the initial estimate. The bounds on the parameter space for the
algorithmic fitting are taken from the literature as summarized on Table 2.1, with only
very slight modifications to ensure reasonable values. The precise values of the simulated
annealing parameters are shown on Table 4.1, along with the fitted values. For the simu-
lated annealing metaparameters, the system was initialized with a high initial temperature
(1500) and re-annealed frequently to sufficiently explore the 16-dimensional parameter
space. For each country, the algorithm completed successfully in less than 20,000 steps by
reaching the threshold value for function improvement. A sample run is shown in Figure
4.1a, and information about the code is included in the appendix.
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4.2.1 Results and discussion

The model fits broad trends in the data fairly well (Figure 4.1). In all cases, errors are
due to the model being smoother than the data. For China, the modelled agricultural land
cover continues to rise smoothly, instead of abruptly levelling off in the late 1980s. For
Costa Rica, the model is unable to make as steep a decline and recovery as the data. For
Vietnam, the model averaged over the forest cover after 1980, instead of tracking the slight
decline and subsequent large recovery beginning in the late 1990s. This smoothness of the
fitted model is expected behaviour for a differential equation.

These errors, along with the underdeterminacy of the parameters in this system (see
below) suggest that we cannot be entirely confident in the fitted parameter values. How-
ever, it is still instructive to examine the relative changes characterizing each country’s
forest transition.

For China, the fitted parameters showed considerable increases in u and v, along with
a slight increase in γ. However, the changes in u and v come in the 1960s, which is early
enough that the initial values have little effect. And while the change in γ is much smaller
in magnitude, Chapter 3 demonstrated the model’s high sensitivity to γ, so this may have
a moderate effect on forest resilience despite the lack of transition in the fitted model.

For Costa Rica, we see that the changes in u and v are not very significant. The change
in u occurs very early, in 1963, and the change in v is negligible in magnitude. For the
most part, this pronounced forest transition was driven by an increase in the farmland
abandonment rate γ. However, it is instructive to note that the levelling off of agricultural
land begins well in advance of Tγ, which is in 1989. The forest’s subsequent recovery can
be attributed to very high growth parameters a and r.

For Vietnam, the forest conversion rate u plays a surprisingly small role. Both its
initial and final values are much smaller than other parameters, and it decreases right at
the beginning of the time series, in 1961. Instead, the dynamics of forest change in Vietnam
are driven by γ and v. The slight decrease in γ in 1980 corresponds to the slight decrease
in the forest loss rate at about the same time, and the 1993 increase in v corresponds
to the expansion of agriculture. Unfortunately, the fitted model does not capture the
accompanying rise in forest cover, and so does not produce a forest transition. the fitted
model also found a very high natural disturbance rate b and low growth rates a and r,
suggesting that the forest would have difficulty recovering. The mechanism behind the post-
1980 forest transition would be an interesting one to consider, as the simultaneous increase
in forest and farmland cover contradicts classical forest transition theory [3]. However, land
use is intimately tied to large-scale political issues, and the difficulties of recovering from
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the Vietnam war make this an anomalous example. This should not affect the baseline
viability of the model, but it does imply that initial open land G was unusually large, such
that the classical tradeoff between forest and agriculture did not apply.

While it is both necessary and informative to fit our model to real-world data, this
continuous time approach is more limited than we might have hoped. There are several
issues: fits are approximate, and even time-varying parameters sometimes fail to capture
forest transitions. In addition, these are all post-hoc fits, in that they were based on the
entire time series. This is useful for analysis of the factors involved in real-world forest
transitions and for establishing model validity, but offers no benefit in anticipating or
preventing forest collapse.

4.3 Discretely varying parameters

To complement the continuous time model and address some of its shortcomings, we de-
velop an alternative method for fitting parameters in discrete time. For this method, we
divide the data series into overlapping subintervals, and estimate the parameter values on
each subinterval.

Instead of estimating a single set of parameter values as we did in the continuous-
time model, we estimate an ensemble of parameter values. This is to address the under-
determination of the system and acknowledge uncertainty.

The precise fitting method is:

1. Divide the 50 year time period (1961-2010) into 8 overlapping subintervals of 15 years
each: [1961-1975], [1966-1980], . . . , [1996-2010]

2. Sample 250,000 values of each parameter {a, b, h, r, γ, u, v} from the literature-based
triangular distributions on Table 4.1, with the initial “SA init” values as the peak of
each triangular distribution. No time-varying parameters Ti, ki were selected, since
by assumption the parameters are discrete functions of time. Triangular distributions
were chosen as a best-guess approach that still allowed all possible values to occur.

3. For each subinterval, score each of the 250,000 parameter sets according to the error
formula (Equation 4.1).

4. For each subinterval, collect the 100 best-performing parameter sets
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4.3.1 China

The forest cover in China did not experience a pronounced transition between 1961 and
2010, because the rate of decline was never very steep. However, China did experience
concurrent increases in forest and agricultural land, a phenomenon generally associated
with forest transitions. This indicates dramatic increases in agricultural yields over this
period, and substantial conversion of open land to other land covers; we expect v to be
high in the latter half of this time series.

The results of the ensemble fitting approach confirm this suspicion. Estimates for the
natural parameters are fairly consistent, as we had hoped, with minor exceptions for h
and r. By contrast, there are large variations in the human parameters, including v in
particular. Compared to other countries, the interquartile ranges (given by dotted lines)
for a and r are quite wide, while those for u are quite narrow.

As the agricultural area expands, the estimated probability of long-term forest survival
goes from unlikely to vanishingly remote. While the model suggested that reducing u was,
by a small margin, the most effective choice to prevent forest collapse, in reality collapse
appears to have been averted by only a slight decreases in u, and slight increases in γ and
r. These were strong enough to offset the large increase in v.

Finally, the results of this discrete time parameter fitting are very different from those
for the continuous time model. All the human parameter values are much higher in the
discrete time model, and the large changes in the discrete time parameter values between
[1976-1990] and [1986-2000] are barely reflected in the continuous model at all. Due to the
smaller time intervals, the fits for the discrete time model are much more precise.

4.3.2 Costa Rica

Costa Rica had a very abrupt forest transition, which is a model of success in many areas
of forest policy, including payment for ecosystem services [5]. As reported in Lambin and
Meydfroidt, the forest cover data is of coarser quality, and has been generated by spline
interpolation [10]. The model fits the data for Costa Rica less well than it did for China,
since fits between 1970 and 1995 struggle to cope with the abruptness of the cusp in 1985.

This example is illustrative of the limitations of model retrodictions. Visually, it is
clear that a forest transition occurs in 1985 (Figure 4.4). Even without seeing subsequent
years of data, this discrete fitting approach would have shown a clear forest transition
by 1990, as the forest cover outperforms the entire envelope of fitted model retrodictions.
However, extrapolations do not show a decrease in collapse risk until 1995 (Figure 4.5),
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when the forest transition has become clearly established. The model fits, and consequently
the extrapolated steady states, are not as concave as the data, and only characterize a
successful transition based on a more established trend.

Parameter estimates for Costa Rica are substantially more variable over time. The
natural parameters are much less consistent, and the change in human parameters is more
abrupt. There is a pronounced increase in estimates of r over time; this matches the onset
of forest growth. Similarly, there are large decreases in b and u. Both γ and v have large
spikes at the inflection point; γ regains its higher value, while v does not. The interquartile
ranges are narrower for a and r than they are for China, while being quite large for v over
most of the time series.

The initial decline is steep enough that all parameter estimates in the first several
ensembles predict forest collapse; furthermore, none of the proposed interventions would
be able to prevent this. Only in 1990 would any of these have an effect; u would be
the strongest and γ the weakest. Five years later, parameters have already changed so
substantially that all estimates predict stability.

Further illustrating the differences with the continuous model, the steady decline of u
in this model fitting directly contradicts the continuous model fit of u increasing in the first
decade and remaining high. However, one broad similarity can be found in the gradual
increase in γ.

4.3.3 Vietnam

The forest transition in Vietnam was quite shallow, occurred late in the study period, and
was unusually accompanied by an increase in agricultural land. Logically, this implies that
open land must have been lost at a high rate to both forest and farmland.

Until about 1990, the parameter ensembles generated by the discrete time method re-
main static, and the forecast of collapse (which is already high, though easily prevented by
reducing u) becomes gradually worse as forest cover continues to decrease. Following 1990,
the agricultural abandonment rate γ declines sharply, while other parameters experience
subtler changes: forest growth rate r increases, and forest conversion u, open land con-
version v, and the natural disturbance b rate all decrease. Considering the net reduction
in open land, it is surprising that v should decrease in this period; however, a net gain of
farmland from open land is ensured by the large reduction in agricultural abandonment.
The uncertainty on this agricultural abandonment rate is very high throughout.

The discrete time model is much better at describing the dynamics of land cover in
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Vietnam than the continuous model, since the continuous model did not fit to the post-
1990 forest transition.

4.3.4 Model robustness

To ensure that the conclusions of the previous sections were broadly valid, we tested
the model under alternate conditions. First, we considered the model performance in a
prediction task, rather than retrodiction. We fit the discrete-time model over 10-year
windows (instead of 15) and plot the extrapolations over another 10 year period (Figures
A.14-A.19). The estimated parameter values match very closely, but some of the same
issues are apparent: in particular, calibration based on past data means that predictions
do not accurately forecast increases in forest cover soon after the transition. In addition,
we consider the impact of 25% and 75% changes in parameter values, and confirm that
reducing the forest conversion rate u remains the best choice to decrease the risk of forest
collapse.

4.4 Discussion

The results of both the continuous and discrete-time models show that reducing the forest
conversion rate u is always a good candidate for averting collapse. It may be insufficient in
many situations, but by comparison the relative effectiveness of increasing farmland aban-
donment or decreasing open land conversion are quite variable. This appears to contradict
the findings of Chapter 3 that found greatest sensitivity to the agricultural abandonment
rate γ. However, upon closer inspection, the findings show that the initial agricultural
abandonment rate γ0 is extremely important, but near the point of crisis the forest con-
version rate u is more important. This did not emerge from the analysis of time-varying
parameters in Chapter 3, because the variation in initial parameters meant that the time of
intensification was arbitrary with respect to the actual system trajectory. In the real-world
data of this chapter, that was not the case.

The continuous time model shows that forest transitions can occur from parameter
combinations beyond those that might be suggested by forest transition theory [3]. The
pattern of farmers consolidating high-quality land would suggest a decrease in u and/or
v (as farmers cultivate less new land, and land abandonment outpaces new cultivation)
followed by a decrease in γ (as they consolidate existing land). However, in Costa Rica, the
only country for which the fitted model demonstrated a forest transition, the agricultural
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abandonment rate increased substantially but remained high, without any other parameters
adjusting to compensate. It may be that the end of the data period is still a transient, and
a better fit would conform to a more classical pattern – or it may not.

The ensemble-based discrete time approach tells a different story for Costa Rica, which
aligns more closely with the classical theory. Forest conversion declines steadily, and af-
ter a brief but significant spike, which enables the forest transition to occur, farmland
abandonment returns to a baseline level only slightly higher than the pre-transition level.

The discrete time ensemble approach provides several advantages due to working over
smaller subintervals. Over each subinterval, it naturally provides a much closer fit to the
data, ensuring that the results accurately represent crucial periods of a forest transition. It
can also function predictively in a limited capacity, with the ensemble approach generating
probabilistic forecasts of forest collapse or stability based on recent trends. These forecasts
can be used for strategically choosing which parameters to target to have the greatest
impact on collapse risk. However, it is worth noting that the lack of feedback mechanisms
(e.g. predicting a priori when demand for farmland is saturating) prevents this from being
as effective a prediction tool as more integrated models might provide [4].

The discrete time ensemble approach has several disadvantages, too. A major one is
that the estimated natural parameters are highly variable over time, which is not only
unrealistic based on the model premises, but conceals a number of degrees of freedom.
Conceptually, this can be fixed quite simply by forcing natural parameters to remain con-
stant, but finding the best-fitting values (over the sum of errors of all subintervals, each
with optimized human parameters) would be quite computationally intensive.

One novel feature of the ensemble approach to parameter fitting is that it introduces a
meaningful measure of the value of information. If the value of one parameter is specified
(say there is complete economic data on farmland abandonment that allows us to fix γ),
then by inputting that value we can quantify the reduction in the variation of each other
parameter.

Fitting our model to data using both the continuous-time simulated annealing approach
and the discrete-time ensemble approach has provided some more insight into the func-
tionality of this model (in that non-classical transitions are possible, and the timing of
parameter changes need not coincide with the timing of regime changes), and provided sit-
uational awareness into the circumstances of forest transitions in China, Costa Rica, and
Vietnam. As Vespignani argues for epidemic modelling, models provide not only forecast-
ing, but situational awareness, intervention planning and projections, and the identification
of factors that fundamentally alter the landscape [50]. Our previous bifurcation analysis
and simulation work enabled some identification of fundamental factors. However, only by
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applying the model to real data is it meaningful to talk about situational awareness and
projections.

The discrete-time ensemble approach was partially developed due to the recognized
lack of any other methods available to anticipate critical transitions. Its performance on
this task is decidedly short-term, but can provide a meaningful risk assessment using the
probability derived from an ensemble. The predicted collapses never arose, despite the
fact that in each country the forecast suggested collapse was almost certain for over a
decade. This is because the forecast was only extrapolating that such a collapse would
happen eventually, and with the biased sample of three successful forest transitions, the
parameters changed before the forest irrevocably crossed the threshold to collapse.
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Figure 4.1: (a) Trace of simulated annealing algorithm for China. (b)-(d) Data and fitted
continuous time model for China, Costa Rica, and Vietnam, respectively. The model
captures broad trends very well, though it performs less well at capturing sudden shifts,
such as Costa Rica’s sharp forest transition or Vietnam’s reforestation at the end of the
data period.
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Table 4.1: Parameter inputs and results for simulated annealing. “SA init”, “SA min”,
and “SA max” define the inputs and bounds to the simulated annealing algorithm.

Term Meaning Units
SA
init

SA
min

SA
max

China Costa Rica Vietnam

a
Low-density
forest growth rate

% year−1 1 0 10 6.85 6.66 3.64

b
Natural
disturbance rate

% year−1 2 0.5 26 2.10 1.57 8.64

h
Threshold for
increased growth

% 15 10 50 25.82 19.20 10.22

p
Steepness of
threshold (fixed)

– 3 3 3 3 3 3

r
High-density
forest growth rate

% year−1 40 2 50 23.45 39.49 14.52

Tγ
Time of
change in γ

year 1980 1960 2010 1977.79 1988.96 1979.59

kγ
Timescale of
change in γ

years 5 1 10 7.75 3.89 9.85

γ0
Initial agricultural
abandonment rate

% year−1 6 0.1 25 0.21 10.52 2.57

γ1
Final agricultural
abandonment rate

% year−1 6 0.1 25 0.236 19.93 3.15

Tu
Time of
change in u

year 1980 1960 2010 1962.01 1963.26 1961.09

ku
Timescale of
change in u

years 5 1 10 2.67 5.71 6.25

u0

Initial forest
conversion rate

% year−1 4.5 0 25 0.446 4.58 0.459

u1

Final forest
conversion rate

% year−1 1.8 0 25 1.23 8.88 0.409

Tv
Time of
change in v

year 1980 1960 2010 1967.67 2007.80 1992.73

kv
Timescale of
change in v

years 5 1 10 2.23 1.62 2.14

v0
Initial open land
conversion rate

% year−1 13 0 50 0.489 12.09 1.03

v1
Final open land
conversion rate

% year−1 13 0 50 1.45 12.56 2.84

48



1960 1970 1980 1990 2000 2010

Year

10

15

20

25

30

35

40

45

50

55

60

%
 l
a
n
d
 a

re
a

China 1960-1975, ensemble fit

Forest

Farmland

Forest sims

Farmland sims

Time window

1960 1970 1980 1990 2000 2010

Year

10

15

20

25

30

35

40

45

50

55

60

%
 l
a
n
d
 a

re
a

China 1965-1980, ensemble fit

Forest

Farmland

Forest sims

Farmland sims

Time window

1960 1970 1980 1990 2000 2010

Year

10

15

20

25

30

35

40

45

50

55

60

%
 l
a
n
d
 a

re
a

China 1970-1985, ensemble fit

Forest

Farmland

Forest sims

Farmland sims

Time window

1960 1970 1980 1990 2000 2010

Year

10

15

20

25

30

35

40

45

50

55

60

%
 l
a
n
d
 a

re
a

China 1975-1990, ensemble fit

Forest

Farmland

Forest sims

Farmland sims

Time window

1960 1970 1980 1990 2000 2010

Year

10

15

20

25

30

35

40

45

50

55

60

%
 l
a
n
d
 a

re
a

China 1980-1995, ensemble fit

Forest

Farmland

Forest sims

Farmland sims

Time window

1960 1970 1980 1990 2000 2010

Year

10

15

20

25

30

35

40

45

50

55

60

%
 l
a
n
d
 a

re
a

China 1985-2000, ensemble fit

Forest

Farmland

Forest sims

Farmland sims

Time window

1960 1970 1980 1990 2000 2010

Year

10

15

20

25

30

35

40

45

50

55

60

%
 l
a
n
d
 a

re
a

China 1990-2005, ensemble fit

Forest

Farmland

Forest sims

Farmland sims

Time window

1960 1970 1980 1990 2000 2010

Year

10

15

20

25

30

35

40

45

50

55

60

%
 l
a
n
d
 a

re
a

China 1995-2010, ensemble fit

Forest

Farmland

Forest sims

Farmland sims

Time window

Figure 4.2: Fitted 15-year time windows for China. By updating parameter estimates every
5 years, these retrodictions match the data much more closely than in the continuous case.
The same parameter estimates are also used to generate predictions of collapse risk (Figure
4.3). The period from 1980 to 1995 is particularly interesting, as forest begins to recover
while agricultural land is still increasing, showing that these land uses are not always at
odds.
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Figure 4.3: Fitted discrete-time parameter ensembles for China. Parameters were fitted
over 15-year intervals; the axis indicates the final year of each interval (so “1975” covers
1961-1975). (a) Natural parameters. The fitted values remain relatively consistent, though
wide interquartile ranges, particularly for h and r, indicate considerable uncertainty and/or
a partially underdetermined model. (b) Human parameters. At the forest transition in
1990, open land conversion v increases substantially, but is mitigated by increased farmland
abandonment and decreased forest conversion. (c) Extrapolations based on trends to date
indicate that the risk of forest collapse virtually disappears between 1990 and 1995. Before
collapse was averted, reducing u or v would have been most strategic.
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Figure 4.4: Fitted 15-year time windows for Costa Rica. These retrodictions fit the data for
Costa Rica less well than they did for China, although this example is a more typical forest
transition. Model fits covering the period between 1970 and 1995 show a discrepancy as
improvements in forest cover occur faster than the model fitting window. The comparison
of forest cover to model retrodictions allows us to identify a transition as early as 1985, 10
years before the extrapolated risk of collapse drops off (Figure 4.5); this difference occurs
because it is only after 1995 that the transition is robust.
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Figure 4.5: Fitted discrete-time parameter ensembles for Costa Rica. Parameters were
fitted over 15-year intervals; the axis indicates the final year of each interval. (a) Natural
parameters. The fitted values are much less consistent than they were for China. The
best fitting threshold h declines as the forest cover declines; the estimated growth rate r
increases as regrowth is observed. (b) Human parameters. Forest conversion u declines
fairly steadily. Agricultural abandonment and to a lesser extent open land conversion have
a large peak in the period [1975-1990], during the abrupt forest transition, followed by a
return to their previous values. (c) Extrapolations based on trends to date provide little
information in this case beyond an abrupt shift from certain collapse to certain forest
persistence; this forest transition was very sudden.
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Figure 4.6: Fitted 15-year time windows for Vietnam. These retrodictions fit the data for
Vietnam quite well, with the exception of the period 1985-2000. This discrepancy is due
to the width of the fitting window. Unlike with Costa Rica, visual identification of forest
transition timing (approximately 1995) matches the model’s output (2000; Figure 4.7)
reasonably closely. As with China, this shows an example of forest cover and agricultural
land increasing simultaneously.
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Figure 4.7: Fitted discrete-time parameter ensembles for Vietnam. Parameters were fitted
over 15-year intervals; the axis indicates the final year of each interval. (a) Natural param-
eters. The fitted values are quite consistent over time, with the exception of a decline in b
and a slight increase in r. The wide interquartile range reflects uncertainty. (b) Human pa-
rameters. Agricultural abandonment declines substantially, while the land conversion rates
have a much smaller reduction; the net effect would be to destabilitze forest. (c) Contrary
to the trends in estimated human parameters, extrapolations show that after 1995 the risk
of forest collapse decreases significantly. Reducing u would have made a substantial impact
on the risk of forest collapse right from 1975, unlike in the other countries.
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Chapter 5

Summary and Discussion

5.1 Conclusions

We have developed a model that includes both ecological thresholds and forest transition
dynamics, to synthesize the ideas of these often disparate research areas. Our general
model can describe boreal or tropical forests, depending on parameter values, as found
in previous literature. It includes explicit modeling of ecological thresholds and time-
varying parameters, representing changing land use patterns as found in forest transition
scenarios [35]. We have found that forest transitions may arise from patterns of parameter
variation that are different from those predicted by theory; in particular, the agricultural
abandonment rate may remain high rather than declining.

As expected [23], our analysis shows that pressures from agriculture may cause forests
to collapse in a catastrophic shift [2], instead of merely declining as many forest transition
models implicitly assume. For both tropical and boreal forests, we derive a critical forest
cover level of around 20-25%. We have also shown that the risk of collapse is much more
sensitive to agricultural parameters than to inherent forest parameters. The agricultural
abandonment rate, in particular, has a strong, threshold-based effect: forest collapse almost
never occurs if agricultural abandonment is greater than 10% annually. Sensitivity to forest
conversion and open-land conversion is also high. In fact, in the real-world data sets we
analyzed, decreasing the forest conversion rate would have been the most effective choice
to minimize ecological damage and ensure earlier forest transitions.

The resilience metrics we used in Chapter 3 performed poorly, because at the outset of
each simulation our system had no stable interior equilibrium. Therefore, methods based
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on the characteristics (e.g. eigenvalues) of such an equilibrium were not applicable, and
our analysis based on these metrics gave only limited post-hoc information. To predict
potential collapses [24], we had to resolve this issue in a situation with unknown and
time-varying parameters. We did by so by estimating ensembles of parameter sets over
15-year intervals and extrapolating the stable forest cover; this also allowed us to simulate
interventions in various parameters.

From our analysis, we conclude that threshold-based models should be used much more
often in the study of forest transitions. The possibility of forest (and other ecosystem)
collapses should be a consideration in agricultural policies; it should be considered in
addition to more linear measures such as remaining area or greenhouse gas emissions. One
major consequence of this is that, even if a forest transition appears almost certain (due
to projected agricultural intensification, planned replanting, or other factors), forest cover
should not be permitted to decrease too far. In our model, this critical threshold would be
25%. As a more concrete example: if forest cover is currently 30%, and agricultural land
cover is 60% but expected to decline to 45% within a few decades, then forest must still
be protected, or ecological collapse may preclude a forest transition, even with favourable
socio-economic conditions.

This is not to say that all models of the forest transition must necessarily incorpo-
rate ecological thresholds. Doing so would often add undesirable complexity, and would
be plagued by technical difficulties, such as the difficulty accurately parameterizing the
thresholds. However, researchers should be aware of the possibility of collapse, and con-
sider it as a serious risk, particularly in the face of climate change. More broadly, stronger
ties between forest transition research emphasizing socioeconomic factors and ecological
research emphasizing nonlinear dynamics and critical transitions would be beneficial to
both disciplines.

5.2 Limitations and directions for future work

The form of our model introduces numerous potential issues. In general, differential equa-
tion models of complicated systems sacrifice realism for interpretability [25]. For example,
it is a strong assumption that forest growth occurs as an essentially mass-action process
(i.e. with a rate given by the product of forest and open land). Land use change is an
inherently spatial phenomenon; even if our non-spatial model can provide some insight, its
results should be checked against agent-based or partial differential equation models.

Another limitation is that our model does not include any economic trade or socio-
ecological feedback. The forest transition literature is largely concerned with economic
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questions, such as trade balances of agricultural and forest products [5], which we did not
include. Discussing trade between a number of countries or regions, each with their own
potential forest transitions and ecological thresholds, would be an important extension of
this work. Doing so could build a bridge from the local level on which ecological thresholds
occur to the global level of feeding the world population and ensuring sufficient natural
habitat [4]. Similarly, our model did not include feedback effects such as conservation-
driven demand for forest; ecological dynamics are often coupled to social dynamics [29, 28].
In any case, future models should include socio-economic inputs to the land conversion
rates.

Another major issue to be addressed is the issue of scale. In general, ecological feedbacks
– particularly those severe enough to cause full ecosystem collapse – are best documented
on small scales [2, 51]. Some tipping points in forest dynamics do occur on large scales [20],
but in general these will not be the same national scales on which economic indicators and
policy decisions occur. Even when large-scale thresholds in abundance data occur, such as
tree cover densities in the entire boreal forest, the scale of any underlying feedback process
is not clear [18]. Fundamentally, this thesis is based on investigating forest transitions
under the hypothesis that ecological thresholds are present in the forest in question. They
may not be: with Scotland’s sub-5% forest cover for a period lasting a minimum of several
decades [6], it is clear that there was no threshold to collapse. However, climate change may
stress entire biomes, so new thresholds may emerge where there were none before [20, 23].
Models that include explicit moisture and/or temperature dependence [29, 23] are key tools
in considering these questions. There are many difficulties in appropriately accounting for
ecological thresholds, but it is important to keep them in mind when discussing the forest
transition.
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Appendix A

Appendix

Code for all figures in this thesis is stored at this repository:

https://ln.sync.com/dl/223975570/be3famsy-5224977q-srtak6cu-nynx2n8z.

This includes a list of the scripts produce each of the figures in the thesis.
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Figure A.1: Loss of stability at the F = 0 equilibrium. Instead, F = 0 is a saddle point,
and there are two stable interior equilibria, corresponding to high and low forest cover.
Parameters are a = 3.74, b = 1.15, h = 20.68, p = 3, r = 11.91, γ = 9.76, u = 1.29, v = 4.96.
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Figure A.2: Relationship between recovery (% forest cover regained) and latitude (mini-
mum distance from collapse). Situations that never approach collapse cannot experience
large recoveries, but otherwise there is no strong association.
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Figure A.3: Relationship between recovery (% forest cover regained) and resistance (λ, the
dominant eigenvalue of the interior equilibrium). Strongly stable systems do not experience
large recoveries, since they do not decline. For weakly stable systems, there is no strong
association, and the extent of recovery is highly variable.
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Figure A.4: Relationship between resistance (λ, the dominant eigenvalue of the interior
equilibrium) and latitude (minimum distance from collapse). The correlation between
these two resilience measures is stronger than it was between either of them and forest
recovery. Broadly, simulations that were further from collapse were also more resistant to
perturbations. One exception is in the upper left of this graph, with a a cluster of points
that come very near to collapse yet are reasonably resistant to disturbances.
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Figure A.5: Cross-effects of γ0 and other parameters on distance from collapse. There are
strong cross-effects with u0 and v0, but interactions with other parameters, including the
time of intensification Tγ are much weaker.

68



Figure A.6: Cross-effects of u0 and other parameters on distance from collapse. There are
strong cross-effects with γ0 and v0, but interactions with other parameters, including the
time of intensification Tu, are much weaker.
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Figure A.7: Cross-effects of open land conversion rate v and other parameters on distance
from collapse. There are strong interdependencies with the dominant parameters γ and
u, and little interaction with other parameters, including Tv, the time of intensification of
open land conversion.
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Figure A.8: Cross-effects of Tγ and other parameters on distance from collapse. The first-
order effects of the dominant parameters γ0, u0, v0 are visible, but Tγ does not display
strong interactions with any parameters, including the magnitude of the shift in γ. This
shows how weak the effect of land-use intensification is on resilience.
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Figure A.9: Cross-effects of Tu and other parameters on distance from collapse. The first-
order effects of the dominant parameters γ0, u0, v0 are visible, but Tu does not display
strong interactions with any parameters, including the magnitude of the shift in u. This
shows how weak the effect of land-use intensification is on resilience.
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Figure A.10: Cross-effects of Tv and other parameters on distance from collapse. The
first-order effects of the dominant parameters γ0, u0, v0 are visible, but Tv does not display
strong interactions with any parameters, including the magnitude of the shift in v. This
shows how weak the effect of land-use intensification is on resilience.
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Figure A.11: 10 year prediction windows for China. We use the same discrete-time model
as Figure 4.2 to make short-term forecasts, instead of simply retrodiction. Overall the
ensembles perform well, but often underestimates agricultural land and does not predict
the increase in forest cover after 1990.
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Figure A.12: 10 year prediction windows for Costa Rica. We use the same discrete-time
model as Figure 4.2 to make short-term forecasts, instead of simply retrodiction. Due to
the reliance on past data, forecasts show continued decline (or mediocre recovery) even
when a robust recovery is under way.
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Figure A.13: 10 year prediction windows for Vietnam. We use the same discrete-time
model as Figure 4.2 to make short-term forecasts, instead of simply retrodiction. Some
of the same issues are present around the failure to predict recovery, but this example is
particularly interesting for the considerable increase in uncertainty after 2005.
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Figure A.14: Fitted discrete-time parameter ensembles for China with 25% reduction. The
upper and middle panels reproduce the results of Figure 4.3, though fitted over 10 years
instead of 15, confirming that the results are not sensitive to the fitting window. The
bottom subpanel shows that for a 25% change in parameters, reducing u still produces the
best results.
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Figure A.15: Fitted discrete-time parameter ensembles for China with 75% reduction. The
upper and middle panels reproduce the results of Figure 4.3, though fitted over 10 years
instead of 15, confirming that the results are not sensitive to the fitting window. The
bottom subpanel shows that for a 75% change in parameters, reducing u still produces the
best results.
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Figure A.16: Fitted discrete-time parameter ensembles for Costa Rica with 25% reduction.
The upper and middle panels reproduce the results of Figure 4.5, though fitted over 10
years instead of 15, confirming that the results are not sensitive to the fitting window. The
bottom subpanel shows that for a 25% change in parameters, no reduction in collapse risk
can be achieved. There is as much reason to reduce u as to change any other parameter.
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Figure A.17: Fitted discrete-time parameter ensembles for Costa Rica with 25% reduction.
The upper and middle panels reproduce the results of Figure 4.5 though fitted over 10
years instead of 15, confirming that the results are not sensitive to the fitting window. The
bottom subpanel shows that for a 75% change in parameters, reducing u still produces the
best results.
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Figure A.18: Fitted discrete-time parameter ensembles for Vietnam with 25% reduction.
The upper and middle panels reproduce the results of Figure 4.7 though fitted over 10
years instead of 15, confirming that the results are not sensitive to the fitting window. The
bottom subpanel shows that for a 25% change in parameters, reducing u still produces the
best results.
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Figure A.19: Fitted discrete-time parameter ensembles for Vietnam with 25% reduction.
The upper and middle panels reproduce the results of Figure 4.7 though fitted over 10
years instead of 15, confirming that the results are not sensitive to the fitting window. The
bottom subpanel shows that for a 75% change in parameters, reducing u still produces the
best results.
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