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Abstract 

Topography underpins natural processes ranging from incident solar radiation at a location to 

overland flow and water pooling. Despite the influence of topography on natural processes and 

subsequent ecosystem function, especially in wetland ecosystems reliant on surrounding 

topography for water inputs, topography has not been adequately incorporated into reclamation 

planning and permit closure requirements. Instead, wetland restoration and reclamation projects 

are typically guided by simple height-to-length ratios that produce little variation or resemblance 

to natural wetlands. We present a methodology to quantify the topographic characteristics in 

wetland landscapes to guide the creation of naturally appearing and self-sustaining reclaimed 

wetland landscapes. Topographic characteristics in 3,434 1km2 sample landscapes were quantified 

using terrain roughness and landform element composition and configuration. A large set of 

metrics were reduced to a parsimonious subset that was applied across three natural regions and a 

gradient of disturbance. Nonparametric statistical tests were used to compare landscapes across 

these two dimensions. We found that landscape-scale topographic characteristics can be 

represented by five roughness metrics and seven landform element pattern metrics. These metrics 

demonstrate that surface roughness and landform element patterns significantly differ among 

natural regions and that high disturbance landscapes significantly differ from other disturbance 

levels. Wetland reclamation plans should replicate the topographic characteristics found in the 

surrounding natural landscape. To do so, topographic characteristic benchmarks are required for 

reclamation design and regulatory approval of closure permits. The presented methodology and 

resulting metric values can be used as a step towards achieving this goal. 
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Chapter 1 Introduction and Background 

1 Introduction 

Ecosystem restoration and reclamation are practised by resource managers to either improve the 

function of an ecosystem that has been degraded or recreate a naturally functioning ecosystem at 

a location where anthropogenic disturbance has altered the structure of a landscape and 

topographic characteristics need to be re-created (Nwaishi et al. 2015, Burton 1991). Wetlands 

have been a significant focus of restoration and reclamation projects (Wortley et al. 2013) and, 

despite the ecosystem services that wetlands provide (e.g., habitat for a wide variety of species 

Klemas 2013, Mitsch and Gosselink 2000, storm water mitigation from severe hydrologic events, 

improved water quality, Mitsch and Gosselink 2000), are experiencing a rate of destruction that 

exceeds the rate of restoration or reclamation (Hiraishi et al. 2014). 

 It is difficult to guarantee the success of wetland reclamation projects (Wortley et al. 2013) 

and not all reclamation projects result in healthy wetlands (e.g., Kauffman-Axelrod and Steinberg 

2010, White and Fennessy 2005). Unsuccessful wetland reclamation projects can be caused by 

only focusing on wetland biota without considering the underlying hydrology and topography that 

exist in a region (Kauffman-Axelrod and Steinberg 2010), or by attempting to create ecosystems 

in locations that do not have the surrounding ecological features necessary to support healthy 

ecosystem function (White and Fennessy 2005). Previous research on wetland reclamation 

focussed on an individual wetland being reclaimed, or the wetland-scale (e.g., Newcomer et al. 

2013, Price et al. 2010), without integrating reclamation with the broader landscape (Rooney et al. 

2015). Wetland reclamation projects need to consider not just the individual wetland site but also 

the site’s integration with the surrounding ecological landscape (Kauffman-Axelrod and Steinberg 

2010). 

 To undertake successful wetland reclamation, it is important to understand how natural 

topographic characteristics impact wetland function. Topography is a driver of wetland function 

and impacts a wetland’s resistance to inter-annual climatic variability since the position of a 

wetland within a landscape directly influences the source and amount of water (Mitsch and 

Gosselink 2007, Los Huertos and Smith 2013, Zhou et al. 2008) and dissolved nutrients it receives 

(Cohen et al. 2015, Piehler and Smyth 2001). For example, a wetland located in a regional 
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topographic depression would likely have a larger influx from overland water flow than a wetland 

on a local topographic high, whose water input may be dominated by precipitation (Mitsch and 

Gosselink 2007). Regional geologic and hydrologic systems can influence the relationship 

between topography and wetland hydrologic inputs (Hayashi et al. 2016), such as when 

geographically isolated wetlands become connected to a regional hydrologic system (Rains et al. 

2015) through a fill and spill mechanism, where wetlands fill with water following large rainfall 

events and subsequently spill water that runs downstream to an adjacent wetland (Shaw et al. 2012, 

Rains et al. 2015). 

 A landscape is not a precisely defined spatial unit and is broadly defined in landscape 

ecology as a region that has spatially heterogeneous variables of interest (Wu, 2013), which would 

vary by study and scale of interest. A wetland landscape would be one that includes a wetland 

ecosystem as well as surrounding land that influences that ecosystem. A landscape-scale is 

therefore a scale of analysis that is focussed on an entire landscape to understand the processes 

that occur between spatially heterogeneous variables of interest. 

 Understanding the topographic characteristics of wetland landscapes is a necessary 

component towards improving the design of wetland reclamation projects but requires a method 

to quantify topography across a landscape. The following sections within this chapter overview 

existing methods to quantify topography and highlight two key methods that can be applied to a 

landscape-scale: terrain roughness and landform classification. Finally, a description of the 

wetlands within my study area is given along with the current state of wetland reclamation before 

providing a framework for the rest of the thesis. 

1.1 Terrain Analysis 

Topographic variation within a landscape can be used to predict and model a variety of 

environmental variables such as: soil depth; soil type (Florinsky et al. 2002, Grabs et al. 2009); 

permafrost slope disturbances (Rudy et al. 2016); soil moisture content (Murphy et al. 2011); snow 

depth (Lapen and Martz 1996); and potential for ecosystem restoration (Herzog et al. 2001, 

Kauffman-Axelrod and Steinberg 2010). Individual measurements of topography, known as 

terrain metrics, are often used as inputs when predicting and modelling hydrologic patterns and 

flow regimes using GIS (Hengl and Reuter 2009) and are used to define the boundary and area of 

watersheds (Wilson and Gallant 2000). While terrain metrics have been adapted to predict soil 
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moisture (Murphy et al. 2011), they have yet to be applied to wetland ecosystems (e.g., Ågren et 

al. 2014, Florinsky et al. 2002, Grabs et al. 2009) or to predicting hydric, gleysol soils commonly 

associated with wetland ecosystems (Keddy 2010).  

 Spatially analysing topographic characteristics is referred to as terrain analysis (Wilson and 

Gallant 2000) and literature on terrain analysis was reviewed to determine the most frequently 

used terrain metrics. While it is possible to classify terrain metrics based on a variety of factors, 

here I classify them into primary terrain metrics and secondary terrain metrics. Primary terrain 

metrics are calculated directly from elevation data and typically describe a static characteristic of 

a landscape (Olaya 2009, Appendix 1, Table 1.1). Secondary terrain metrics are a function of one 

or more primary terrain metrics and typically describe a process occurring in the landscape (Lang 

et al. 2013, Appendix 2). 

1.1.1 Primary Terrain Metrics 

Primary terrain metrics are commonly calculated for research in a variety of disciplines as the basis 

for secondary terrain metrics (Olaya 2009) and for their significance to ecosystem function and 

geophysical processes (Appendix 1, Table 1.2). Many of the primary terrain metrics are 

related to the first derivative of elevation, slope. Slope describes the gradient of the land surface 

and can be represented mathematically by the rate of change in the elevation surface. Slope can be 

used to estimate the rate of overland flow across a landscape and contributes to the estimation of 

a variety of geophysical processes, including the distribution of vegetation and soil moisture 

content (Wilson and Gallant 2000). A sudden change in slope, or break, occurs when a steep 

downward slope abruptly changes to a flat or rising slope. Regions of slope breaks can cause the 

water table to rise above the ground surface and produce an outflow of groundwater to the surface 

layer, which maintains localized soil saturation, creating a slope wetland ecosystem (Stein et al. 

2004). 

 Change in slope, or the second derivative of elevation, is measured to describe changes in 

speed and direction of surface flow (Olaya 2009). Change in slope measures how convex or 

concave a slope is and is measured using three primary terrain metrics: plan curvature, measured 

perpendicular to the slope for a horizontal cross-section; profile curvature, measured parallel to 

the slope for a vertical cross-section, (Ågren et al. 2014, Fig 1.1); and the combination of these 

two metrics in what is known as mean curvature (Florinsky et al. 2002, Buckley 2010). Plan 
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curvature influences convergence or divergence of surface flow, which can influence the path of 

overland flow and the distribution of soil moisture, while profile curvature influences the 

acceleration or deceleration of overland flow and erosion rates (Wilson 2012). 

Fig 1.1 Plan curvature illustrated in left three scenarios, A shows convex (+), B shows concave (-), and C shows planar 

(0) plan curvature. Profile curvature illustrated in right three scenarios, A shows convex (-), B shows concave (+), and 

C shows planar (0) profile curvature. Copied from Buckley, 2010. 

 Spatial direction of elevation change is calculated using aspect, a primary terrain metric, 

and is often one of the first terrain metrics calculated when analyzing a surface through terrain 

analysis (Ågren et al. 2014, Olaya 2009). Calculating a slope’s aspect determines the azimuth 

angle of the slope, which is measured in degrees clockwise from north (Olaya 2009). The aspect 

value provides a researcher with the cardinal direction that a particular slope is facing, which can 

be used to estimate geophysical elements of the ground surface such as the direction of water flow 

(Wilson 2012) and incident solar radiation, which affects the surface’s sensible and latent heat 

flux, evapotranspiration rates, and subsequently the distribution of flora and fauna (Wilson 2012). 

 Terrain metrics can also be used to quantify and describe hydrologic processes across the 

Earth’s surface. For example, the path that water flows after falling on a landscape can be estimated 

by using a flow routing terrain metric. Flow routing is a required input for the calculation of other 

terrain and hydrologic metrics, such as flow accumulation, flow path length (Gruber and Peckham 

2009), depth to water index (Murphy et al. 2007), and topographic wetness index (Grabs et al. 

2009). The path of overland flow directly influences the presence and location of saturated soil 

and, in turn, the location of wetland ecosystems (Murphy et al. 2007). 

 Primary terrain metrics are well-established topographic measurements that have clear 

relationships with ecological and physical processes (Appendix 1, Table 2) but describe elevation 

changes along a single hillslope, which limits their applicability to only site-specific analyses or 

to measuring terrain metrics at single points across a landscape. Due to these spatial extent 

restrictions, primary terrain metrics on their own have limited utility when the scale of interest is 

an entire landscape, whereas secondary terrain metrics are more applicable. 
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1.1.2 Secondary Terrain Metrics 

Secondary terrain metrics attempt to quantify active physical processes occurring at a landscape-

scale, particularly hydrological or meteorological processes, and are based on one or more primary 

terrain metrics (Lang et al. 2013, Wilson and Gallant 2000). Two frequently used secondary terrain 

metrics, the topographic wetness index and the depth to water index, describe soil saturation and 

the presence of wet areas, which can be used to estimate the location of wetlands across a 

landscapes (Lang et al. 2013, Murphy et al. 2011). 

 Topographic wetness index has been used to estimate areas of saturated soils across a 

region based on landscape-scale elevation data (Lang et al. 2013, Quinn et al. 1995). Regions that 

have a higher topographic wetness index are likely to be more saturated than surrounding regions 

with a lower value (Lang et al. 2013), which has led to the metric being used to estimate the spatial 

distribution of wetland features (Grabs et al. 2009). The topographic wetness index is based on an 

assumption that the study site has steady-state conditions and homogeneous soil transmissivity 

(Gruber and Peckham 2009). While soil transmissivity would not be constant across all landscapes, 

the impact of this assumption would change based on the location of the study. For example, 

research focussed on a small enough geographic scale, or in a region with uniform soil properties, 

may not have large changes in soil properties across the extent of the study site (Lang et al. 2013), 

which would not hold true for this thesis, since the study area is dominated by glacial till and would 

not have homogeneous soil transmissivity across the study extent (Natural Regions Committee 

2006). 

 Depth to water index has been used in terrain analysis for estimating stream location (White 

et al. 2012), quantifying soil drainage (Murphy et al. 2011), and determining the spatial distribution 

of saturated soil (Ågren et al. 2014). Depth to water was developed as a response to the 

assumptions of the topographic wetness index and has been shown to outperform the topographic 

wetness index in Alberta (Murphy et al. 2009, Murphy et al. 2011) and New Brunswick (Murphy 

et al. 2007). The topographic wetness index and depth to water are frequently used in tandem for 

terrain analysis of saturated soils and researchers will often calculate both metrics to determine 

which is better suited for their unique study area and research goals (Ågren et al. 2014, Murphy et 

al. 2009, Murphy et al. 2011, White et al. 2012). 
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1.2 Analyzing Continuous Spatial Data 

Primary and secondary terrain metrics have been developed with the goal of improving our 

understanding of the relationship between topographic characteristics and a variety of 

environmental variables (Florinsky 2012). These relationships are typically quantified by 

measuring terrain metrics along a transect (Murphy et al. 2011) or by correlating individual terrain 

metric values with associated ecological point data (Lapen and Martz 1996). However, in cases 

where relating topography with an environmental variable is not the goal, a landscape’s continuous 

topographic variation and characteristics still need to be quantified but do not have the benefit of 

relating multiple topographic metrics to a common known variable. The difficulty in quantifying 

the characteristics of a landscape’s continuous topography has been well documented (Deng 2007, 

MacMillan et al. 2000, Burrough et al. 2000, Wood 1996) but limited methods have been used to 

quantify topography across a continuous surface (Grohmann et al. 2011, Tagil and Jenness 2008). 

 A major research gap exists in quantifying and characterizing continuous landscape-scale 

elevation data and I adapted two existing secondary terrain metrics to quantify the topography of 

wetland landscapes, roughness analysis and landform element classification. To further quantify 

the classified landform elements, I calculated landscape metrics to describe the spatial composition 

and configuration of landform elements. The following section will provide an overview of these 

selected techniques. 

1.2.1 Quantifying Landscape Roughness 

A landscape that is topographically rough (i.e., has greater elevation variation) has been 

demonstrated to impact species richness (Hofer et al. 2008), vegetation growth patterns, and 

wildlife behavior (Nellemann and Fry 1995). High species richness is an important characteristic 

of ecosystems that are resistant to disturbance (Hofer et al. 2008, Nellemann and Fry 1995), which 

suggests that designing heterogeneous landscapes that mimic natural surface roughness can 

improve the success rate and ecological stability of reclamation projects. 

 Two types of measurements can be used to quantify a topographic surface, the previously 

discussed terrain metrics, such as slope, and statistical metrics, such as the standard deviation of 

elevation or slope (Olaya 2009). Statistical metrics are used to describe elevation variability and 

terrain roughness due to their applicability to any type of continuous grid data (Olaya 2009). 

Statistical metrics do not originate in terrain analysis research as terrain metrics do, instead, 
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existing statistical measurements of variability, such as standard deviation, skewness, or range, 

were adopted to describe elevation variability (Grohmann et al. 2011).  

 Application of statistical metrics, referred to as terrain roughness metrics herein, are 

frequently divided between calculating the roughness of a single slope profile and calculating the 

roughness of an entire landscape (Olaya 2009). Profile-based metrics, while useful to quantify 

surface roughness along a slope transect, would not translate well to the landscape-scale. In total, 

8 terrain roughness metrics that could be calculated at the landscape-scale were found through a 

literature review: standard deviation of slope, profile curvature and elevation, deviation from mean 

elevation, vector dispersion, topographic position index, 2D:3D area ratio, and slope variability. 

 Terrain roughness metrics are calculated to understand topographic drivers of 

environmental processes (e.g., Florinsky 2012, Hofer et al. 2008, Shaw et al. 2013) and can be 

used to compare the roughness of different landscapes, but these metrics do not describe the spatial 

pattern of topography within a landscape (McGarigal et al. 2012). The following section outlines 

how a landscape can be discretized into individual landform elements to characterize the spatial 

pattern of topography. 

1.2.2 Landforms and their Classification 

Landforms are broadly defined as topographic features that have similar topographic 

characteristics and consistent relationships with environmental variables (MacMillan and Shary 

2009) such as soil type (Milne 1947, Hugget 1975, MacMillan et al. 2000), soil erosion (Kheir et 

al. 2007, Martin-Duque et al. 2010), and water distribution (Summerell et al. 2005). Classifying 

landforms has allowed terrain analysis researchers to characterize the topography of the Earth’s 

surface and overcome the difficulty of describing continuous elevation data (Burrough et al. 2000, 

MacMillan and Shary 2009) by converting continuous and ratio data about elevation into spatially 

continuous nominal data (Evans 2012, MacMillan and Shary 2009). 

 Landforms are highly dependent on spatial scale, which impacts the type of landforms that 

are defined (MacMillan and Shary 2009). For example, continental-scale classification may 

classify mountain, plain, and valley landforms (Schmidt and Hewitt 2004), whereas an ecosystem-

scale classification may classify hummock or hollow landforms (Nagamatsu and Miura 1997). 

Clearly defining the landform classification scale is important since landforms at a larger scale do 

not capture topographic variation at finer scales (i.e., hummock landforms would be lost after 
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classifying a region as a mountain) and may only conceptually incorporate the larger landform 

structures in which the classification is nested (i.e., a small-scale hummock landform may be 

conceptually located within a large-scale plateau landform) (MacMillan and Shary 2009). To 

differentiate between the different types of landforms at varying scales, I define landforms that 

occur along a single hillslope, such as a shoulder or footslope, as landform elements. 

 Within terrain analysis there are two unique landform classification techniques and 

methodologies, rule-based landform classification where classes are defined exactly (i.e., expert 

system, Fig 1.2) and fuzzy threshold landform classification, with the latter subdivided into 

supervised and unsupervised landform classification (Hengl and MacMillan 2009, Fig 1.2). 

Fig 1.2 Overview of process to select landform classification methodology, primarily divided between expert 

classification system and fuzzy threshold classification, copied from Hengl and MacMillan 2009 

 Rule-based landform classification requires expert knowledge of landform types and is 

based on associating explicit primary terrain metric ranges with each landform type (Pennock et 

al. 1987). Defining the explicit terrain metric ranges is up to the researcher and multiple landform 

classification rules have been developed to fit unique situations. For example, a classification rule 

set for prairie landscapes defines 7 landform elements that occur along a hillslope but does not 

differentiate between crests or depressions in the landscape (Pennock et al. 1987). Further research 

extended the original 7 classes into 11 classes by defining flat landform elements located high or 

low in a catchment as well as three landform elements with linear plan curvature (e.g. planar) 

(Reuter et al. 2006, Fig 1.3). However, if an existing classification rule set cannot be applied to a 

study area, fuzzy threshold landform classification can be used to generate landform elements. 

NO 
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Fig 1.3 Landform elements along a hillslope, dashed arrows illustrate conceptual overland flow while solid arrows 

show groundwater flow. Arrow size is related to potential volume of flow. Copied from Reuter et al. 2006 

 Fuzzy threshold landform classification uses clustering algorithms and machine learning 

to classify landforms without requiring discrete terrain metric classification rules. Two key types 

of landform classification can be performed: supervised classification where known landform 

features are used to train the classifier, and unsupervised classification where a clustering 

algorithm generates a defined number of landform classes based on how terrain metric values 

cluster in different locations (Drǎguţ and Blashke 2006, Hengl and MacMillan 2009).  

 Terrain metric clustering is performed using a clustering algorithm (e.g., fuzzy k-means 

clustering algorithm, MacMillan et al. 2000) to delineate a set number of landform elements based 

on spatial locations that have similar terrain metric values. The selection of terrain metrics in fuzzy 

landform classification, and the total number of metrics used, have significant impacts on the final 

landform classification output (Deng and Wilson 2006). The clustering output also needs to be 

interpreted by creating geophysical descriptions for each landform element or by defining 

landform classification rules after the landforms have been classified (MacMillan et al. 2000, Table 

1.1). 
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Table 1.1 Landform elements and associated terrain metric value ranges defined in MacMillan et al. (2000) 

Slope 

Category Landform elements Slope (%) 

Profile Curvature 

(deg/100 m) 

Plan Curvature 

(deg/100 m) 

Upper Slope Level Crest 0-2 -10 – 10 -- 

 Divergent Shoulder >2 > 10 -- 

 Upper Depression 0-2 < -10 < -10 

Mid-Slope Backslope >2 -10 – 10 -10 – 10 

 Divergent Backslope >2 -10 – 10 > 10 

 Convergent Backslope >2 -10 – 10 < -10 

 Terrace 0-2 -10 – 10 -- 

 Saddle  < -10 > 10 

 Midslope Depression 0-2 < -10 < -10 

Lower Slope Footslope >2 < -10 -- 

 Toeslope >2 -10 – 10 -10 – 10 

 Fan >2 -10 – 10 > 10 

 Lower slope mound >2 > 10 > 10 

 Level lower slope 0-2 -10 – 10 -10 – 10 

 Depression 0-2 < -10 < -10 

1.2.3 Landscape Metrics 

Landform element classification describes the topographic characteristics of a landscape, 

converting elevation data from continuous ratio data to nominal data classes, but it does not 

inherently quantify the topographic spatial pattern across multiple landscapes. Landscape metrics 

are measurements used in landscape ecology to quantify the spatial composition and configuration 

of discrete environmental patches at a landscape-scale (Cushman and Huettmann 2010). Although 

landscape metrics have been suggested for terrain analysis (Pike 2000, Olaya 2009), they have not 

previously been applied to quantify the spatial pattern of landform elements within a landscape. 

 Landscape metrics have measured the spatial pattern of land use to quantify the relationship 

between land use and water quality (Moreno-Mateos et al. 2008), habitat structure (McGarigal 

2012), distribution and behaviour of organisms (Cushman and Huettmann 2010), and to broadly 

understand how landscape structure interacts with ecological processes (Wu et al. 2000). However, 

little research has been conducted on determining the utility of using landscape metrics for 

quantifying surface elevation at a landscape-scale and relevant research has only focused on 

determining how surface topography can be used to improve the accuracy of typically 2-
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dimensional landscape metrics (e.g., Zhiming et al. 2012, Hoechstetter et al. 2008). Chapter 2 will 

use landscape metrics to quantify the spatial composition and configuration of landform elements 

in wetland landscapes. 

1.3 Wetland Ecosystems 

Wetlands are broadly defined as ecosystems where the soil is permanently saturated or saturated 

for most of the year, which creates primarily anaerobic soils (Keddy 2010). Under this broad 

definition, multiple types of wetlands can be defined, and wetland classification systems are 

typically defined for specific ecoregions. For example, wetlands in Alberta, Canada are grouped 

into five classes: bogs, fens, marshes, shallow open water, and swamps, which are further 

subdivided by vegetation type and annual water permanence (ESRD 2015). 

 A unique wetland occurs in the Prairie Pothole Region of central North America, which 

extends from Iowa in the south to central Alberta in the north, spanning three provinces and five 

states with an aerial extent of 750,000 km2 (Zhang et al. 2009). This region is characterized by 

prairie pothole wetlands that form in thousands of small pothole depressions created during the 

last glacial retreat with an average wetland size of 1600 m2 (Huang et al. 2011). Pothole wetlands 

are hydrologically isolated and receive most of their hydrologic input from seasonal snow-melt 

runoff (Fang and Pomeroy 2008, Hayashi et al. 1998, Winter and Rosenberry 1998). Due to their 

hydrologic isolation, pothole wetlands are highly sensitive to climatic variability (Zhang et al. 

2009, Winter and Rosenberry 1998) and experience seasonal hydrologic cycles where the wetland 

fills with spring snow melt before the water slowly evaporates during the summer (van der Kamp 

and Hayashi, 2008). This cycle of annual water permanence can be used to further categorize 

pothole wetlands based on a wetland’s seasonal fluctuation in water availability (Stewart and 

Kantrud 1971, Table 1.2). While the Boreal region of Alberta is dominated by peatlands, as 

opposed to the pothole wetlands in the Parkland and Grassland regions, the southern Dry 

Mixedwood subregion of the Boreal included in this study is cultivated for the majority of its 

region and has similar physiography to the Grassland and Parkland, mainly undulating plains and 

hummocky uplands with primarily glacial till soils (Natural Regions Committee 2006). 
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Table 1.2 Summary of marsh wetland permanence types specific to prairie pothole wetlands (Stewart and Kantrud 

1971) 

Name Description 

Temporary Wetlands where water is usually retained for only a brief period in the early spring 

Seasonal 
Wetlands with water persisting for more than three weeks, have a higher water table 

than temporary wetlands 

Semi to Permanent 
Wetlands with standing water throughout the year, except during extreme drought. 

Often adjacent to open water. 

Open Water Permanent open-water regions that are larger than 0.2 hectares 

Alkali Wetlands with a variable temporal range of still water and has a salt crust 

1.3.1 Wetland Reclamation and Existing Guidelines 

Topography is a key consideration when designing landscapes for wetland reclamation (e.g., 

Kauffman-Axelrod & Steinberg 2010, Martin-Duque et al. 2010, Thiffault et al. 2017, Ayres et al. 

2006) since topography is the natural structure that drives many ecological functions associated 

with wetlands (e.g., water inputs, van der Kamp and Hayashi 2008). Recreating natural 

topographic variation is an important component of wetland reclamation when the natural 

topography has been completely removed due to human disturbance (Martin-Duque et al. 2010) 

and natural topographic baseline conditions need to be defined to provide reclamation planners 

with clear guidelines to mimic natural landscapes. 

 Landscape-scale reclamation is a complex and difficult undertaking and no standard or 

reference condition exists to design landscapes that mimic the natural topography of similar 

ecological landscapes (Martin-Duque et al. 2010). Basing reclamation plans on natural topographic 

landforms would maintain natural aesthetics within the landscape (McKenna 2002) and limit 

erosion and decrease sediment runoff whereas unnatural landforms are more likely to undergo 

slope failure and increased sediment runoff (Ayres et al. 2006, Martin-Duque et al. 2010). 

 Although current policy guidelines recommend that reclamation plans mimic natural 

topographic characteristics (CEMA 2014), existing wetland design guidelines do not define natural 

topographic features and are typically limited to basic height-to-length ratios for slopes 

surrounding a wetland (typically 2:1 or 3:1, Fig 1.4, Green Plan Ltd 2014), a range of length-to-

width ratios for the wetland dimensions (2:1 < L:W < 4:1, CH2MHILL, 2014) and loosely defined 

‘irregular shorelines’ for the wetland itself (Green Plan Ltd 2014). Current reclamation designs 
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lead to landscapes with evident anthropomorphic history and do not successfully mimic natural 

topographic characteristics (Ayres et al. 2006, Martin-Duque et al. 2010). 

Fig 1.4 Example profile of a constructed wetland in existing guidance documents, where ratios refer to the slopes 

surrounding a wetland (Green Plan Ltd 2014) 

 If wetland landscape reclamation designs are to achieve a naturally appearing and naturally 

functioning landscape, topographic characteristics of natural landscapes need to be quantified to 

create a baseline for future landscape design guidelines. 

2 Thesis Framework 

Chapter 2 develops a methodology to statistically compare and quantify continuous elevation data 

at a landscape-scale using terrain roughness, landform element classification, and landscape metric 

analysis. The research develops these methods while answering the question “to what degree do 

topographic characteristics and variation in elevation differ by natural region and along a gradient 

of human disturbance?” Apart from my first goal of defining a clear method of analyzing 

continuous elevation data at a landscape-scale, a second goal is to define baseline topographic 

characteristics to improve the understanding of wetland landscape topography and improve the 

design of future wetland landscape reclamation projects. Chapter 3 extends the results of Chapter 

2 by situating the results within existing research on landscape ecology and terrain analysis, 

describes how the research is useful for environmental policy development, and suggests future 

research directions. 
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Chapter 2 A Methodology to Quantify the Topographic Characteristics of 

Wetland Landscapes 

1 Introduction 

Characteristics of the surface of Earth (e.g., slope, aspect) and variation in elevation affect erosion 

(Martin-Duque et al. 2010), hydrology (Los Huertos and Smith 2013), and other natural processes 

that subsequently influence the distribution of biotic communities across local-to-regional 

landscapes (Hofer et al. 2008; Nellemann and Fry 1995). Through terrain analysis (Wilson and 

Gallant 2000; Hengl and Reuter 2009), topographic characteristics and variation in elevation are 

quantified to better understand how topography and landform elements underpin natural processes 

and the spatial distribution of ecosystems.  

 Wetland ecosystems are an archetype of natural systems often reliant on surrounding 

topography for water inputs (Los Huertos and Smith 2013). These ecosystems provide a range of 

services that include: habitat for a diverse range of species (Mitsch and Gosselink 2007), 

environmental regulation including storm water mitigation and water purification, and carbon 

sequestration (Zedler and Kercher 2005). Despite the benefits of wetland ecosystem services, 

global wetland loss is estimated at 64 – 71 % since 1900 AD (Davidson 2014) and these 

ecosystems are difficult to restore back to natural biological structure and function (Moreno-

Mateos et al. 2012). 

 Ecological restoration is practiced to restore important ecosystem services to a region, of 

which wetlands have been a prevalent focus (Wortley et al. 2013). However, it is difficult to assess 

the success of restoration projects (Wortley et al. 2013) and not all projects result in healthy 

wetlands (Kauffman-Axelrod and Steinberg 2010) or even functional wetlands (Moreno-Mateos 

et al. 2012). Unsuccessful restoration projects often occur by focusing on restoring wetland biota 

without considering the underlying hydrology and terrain conditions (Kauffman-Axelrod and 

Steinberg 2010). Similarly, wetland restoration focused on individual wetlands, i.e. at the wetland 

scale (e.g., Newcomer et al. 2013), is likely to fail when it is not integrated into the broader 

landscape (Van Meter and Basu 2015).  

 The success of restoration projects is dependent on the degree to which the restored wetland 

function is integrated with the surrounding landscape (White and Fennessy 2005). A driver of 
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wetland function is the underlying topography of the landscape as it affects hydrological processes 

and water availability (Los Huertos and Smith 2013). For example, the topographic position (e.g., 

toeslope or depression) of a wetland within a landscape can influence the source (overland flow, 

ground water flow, or precipitation) and amount of water received (Mitsch and Gosselink 2007). 

However, topography is not the only driver of wetland hydrology; soil type and associated 

infiltration rates (Conly and van der Kamp 2001, Hayashi et al. 1998) as well as established 

vegetation and associated evapotranspiration rates (Hayashi et al. 1998) can also impact the 

amount of water that a wetland receives and retains throughout a given year (Hayashi et al. 1998). 

 Where topography and ecosystems have been degraded by anthropogenic disturbance, 

restoration to a state identical to that which existed prior to disturbance can be an unachievable 

goal (Suding 2011; Rooney et al. 2015). In such cases, reclamation as opposed to restoration may 

represent a more attainable objective, whereby active intervention may return the wetland to a 

stable, productive and self-sustaining state, even if it does not resemble the pre-disturbance state 

(Vitt and Bhatti 2012). Reclamation commonly involves recontouring the land, commonly with 

the intention of reducing erosion and promoting slope stability (SER 2002). The movement of soil 

to reshape the landscape can also improve ecosystem function and integration with adjoining land 

at locations where the landscape has been completely altered and degraded (Burton 1991), as 

degradation typically results in the loss of topographic heterogeneity. However, reclamation 

guidelines for wetlands typically advise for the creation of gentle slopes surrounding a wetland at 

a 2:1 or 3:1 height-to-length ratio and irregular shorelines for the wetland itself (e.g., Appendix 3). 

These guidelines lead to the homogenization of wetland landscapes with evident anthropomorphic 

history that lack natural topographic variation and pattern. Instead, wetland reclamation guidelines 

should provide design criteria based on natural variability in topography and encourage the 

creation of mature landform elements that mimic natural conditions, limit erosion, and decrease 

sediment runoff (Martin-Duque et al. 2010). By implementing mature landforms, reclaimed 

landscapes can establish natural channel and surface morphology that have a greater resistance to 

erosion from precipitation and discharge events thereby avoiding expensive, continuous 

maintenance and regrading (Martin-Duque et al. 2010; McKenna 2002). 

 While the reference condition approach has been used to create benchmarks for indicators 

of biological integrity (Bailey et al. 2004), river restoration (Nestler et al. 2010), and the 

composition and configuration of land cover (Evans et al. 2017) to evaluate the health of 
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ecosystems and guide ecosystem reclamation and regulations (Stoddard et al. 2006), no 

benchmarks have been established for topographic characteristics or variation. The adoption of 

topographic benchmarks by reclamation planners would increase the potential for designed 

landscapes, with diverse topographic features, to integrate with the surrounding natural landscape, 

be naturally appearing and self-sustaining, and lead to successful reclamation. 

 To improve our understanding of the relationship between wetlands and their surrounding 

landscapes and to assist resource managers and policy makers in reclaiming wetland ecosystems, 

I quantified the spatial pattern and characteristics of topography within wetland landscapes to 

answer the question: to what degree do topographic characteristics and variation in elevation differ 

by natural region and along a gradient of human disturbance?  

2 Methodology 

2.1 Study Area 

Wetlands have been decreasing in number and areal extent globally (Davidson 2014) and Canada 

is no different (Ducks Unlimited Canada 2008). Within Canada an estimated 70 % of wetlands 

have been lost (Ducks Unlimited Canada 2008) and the Prairie Pothole Region, a geographical 

zone characterized by small, frequent depressions in the ground surface that includes the southern 

portion of the Province of Alberta (Shaw et al. 2013), has experienced wetland consolidation from 

agriculture and a loss of approximately 90 % of historic wetland area (Van Meter and Basu 2015). 

To ameliorate wetland loss, the Government of Alberta has developed the ‘Water for Life’ action 

plan, with one among several goals of ensuring healthy aquatic ecosystems, which requires the 

conservation and restoration of Alberta’s wetlands through an improved understanding of wetland 

functions (Alberta Environment 2003; Alberta Water Council 2008).  

 The research is situated within the Grassland, Parkland, and Dry Mixedwood subregion of 

the Boreal natural regions of Alberta, Canada, and more specifically within two wetland 

inventories that cover 27.8 percent of the province (Fig 2.1). The inventories are located within 

the more populated southern and central regions of the province, which is dominated by the Prairie 

Pothole Region of North America. This region is dominated by palustrine wetlands that are reliant 

on seasonal snow melt as a primary water input (Shaw et al. 2013) but can become connected to a 

regional surface water network through a fill and spill mechanism that occurs when a 
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geographically isolated wetland fills with water and spills over, generating runoff that can flow 

into a downslope wetland, thereby connecting these depression wetlands to the local hydrologic 

system (Shaw et al. 2012). 

 
Fig 2.1 Study location in the southern Boreal, Parkland, and Grassland regions of Southern Alberta shown using a 

grey grid. Study area restricted by the extent of two wetland inventories in Alberta 
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2.2 Methodology Overview 

To quantify topographic characteristics and variation in elevation, in wetland landscapes, my 

analysis is divided into six conceptual steps (Fig 2.2). I begin with the study site creation and 

subsequently group sample landscapes by natural region and proportion of disturbance. This is 

followed by the quantification of topographic characteristics and landform elements, calculating 

spatial configuration metrics, reducing the calculated metrics to a parsimonious set, and finally 

testing for differences in metric values across sample landscape groups (Fig 2.2). 

 
Fig 2.2 Overview of key analysis steps undertaken within the thesis. 

2.3 Data and Sample Design 

Terrain analysis theoretically requires only elevation data. Elevation data were acquired from 

AltaLIS Ltd. (AltaLIS, 2015) with a 10 m spatial resolution and smoothed using two passes of a 5 

X 5 cell mean filter to reduce noise in the data (e.g., Buchanan et al. 2014, MacMillan et al. 2003). 
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A high data resolution enabled the representation of topographic changes that may influence 

wetland ecosystems in the region (MacMillan et al. 2003). 

 Wetlands do not exist as an ecosystem in isolation from the surrounding landscape. The 

land cover surrounding wetlands, particularly in hydrologically ‘upstream’ regions, are influential 

to the health of wetland ecosystems (Mitsch and Gosselink 2007). Two key types of land cover, 

referred to as disturbance in this research, that can negatively affect wetland health are agricultural 

and urban lands (Mitsch and Gosselink 2007). Land cover data for Alberta from Agriculture and 

Agri-Food Canada were acquired and the proportion of disturbance (areas classified as 

‘agriculture’, ‘pasture’, or ‘urban’) was calculated for each sample landscape (Evans et al. 2017). 

 Within the study area, 4,000 1 km2 square sample landscapes were generated at random 

and only those that contained wetlands were retained, resulting in 3,434 sample landscapes (Evans 

et al. 2017). The 1 km2 sample landscapes are sized to match the average size of land that impacts 

a wetland (i.e. 500 m radius around a wetland, Kraft 2016), as well as to facilitate future 

comparisons with existing research that quantified the spatial pattern of land cover in wetland 

landscapes using the same sample landscapes (Evans et al. 2017). 

2.4 Landscape Grouping 

Landscapes with similar characteristics have been shown to function similarly and understanding 

landscape-level ecosystem services is an important concept in landscape planning (de Groot et al. 

2010). For example, landscapes with similar characteristics have similar impacts on water quality 

(Huang et al. 2013), can be used to predict vertebrate species abundance (Mazerolle and Villard 

1999), and pest abundance (Zaller et al. 2008). To generalize these landscapes, develop a 

parsimonious set of criteria that can be used by regulators and industry, and simplify their 

application, landscapes can be grouped together based on a variety of landscape-level 

characteristics. 

 Existing research has demonstrated that the spatial composition and configuration of land 

cover in the same sample landscapes differed by natural region and disturbance (Evans et al. 2017). 

It would be useful to relate the topographic analysis undertaken in this study to previous research 

on the spatial pattern of land cover (Evans et al. 2017), so similar landscape groups were defined 

to facilitate future comparisons. Landscapes were discretized into 15 groups by partitioning the 

landscapes by five disturbance levels in each of three natural regions of Alberta: Grassland, 
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Parkland, and Boreal Dry Mixedwood subregion (Table 2.1, Fig 2.3). These landscapes do not 

have an even distribution across the 15 groups and it is evident that there is a higher level of 

disturbance in the obtained sample of Parkland landscapes than in Grassland or Boreal landscapes, 

where 69% of Parkland landscapes are in the highest disturbance group (Table 2.1). 

Table 2.1 Total number of landscapes in each landscape group, by natural region and 20 % disturbance intervals. 

  Natural Region  

  Grassland Parkland Boreal Total 

D
is

tu
rb

an
ce

 (
%

) 

0-20 471 68 426 965 

>20-40 87 44 155 286 

>40-60 97 58 160 315 

>60-80 122 103 181 406 

>80-100 506 608 348 1462 

Total 1283 881 1270 3434 
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Fig 2.3 Spatial distribution of 1 km2 landscapes across Grassland, Parkland, and southern extent of Boreal natural 

regions of Alberta, coloured based on proportion of disturbance in 20% intervals 

2.5 Terrain Roughness 

Terrain analysis methods are used for relational and descriptive purposes. Relational analyses seek 

to improve our understanding of the relationship between topography and environmental variables. 

For example, the relationship between elevation and environmental variables such as soil depth 

and type (Florinsky et al. 2002), soil wetness (Murphy et al. 2011), snow depth (Lapen and Martz 

1996), and potential for ecosystem restoration (Kauffman-Axelrod and Steinberg 2010) have been 

quantified. Correlation and regression analyses are used to quantify the relationship between these 
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two ratio datasets to test if a relationship exists between topography and an environmental variable 

(Murphy et al. 2011).   

 When the terrain analysis is conducted for descriptive purposes, a different set of methods 

is required to quantify the variation in topography across an area. Despite a wide range of metrics 

used in terrain analysis (e.g., Olaya 2009, Florinsky 2012) to quantify elements of topography, 

from individual cells (elevation value), to local cell windows (slope), and regional relationships 

(flow accumulation), none are designed specifically for a landscape scale. Quantifying the 

topographic characteristics of a landscape is known to be a challenge (Deng 2007, MacMillan et 

al. 2000), which is partly due to the continuous surface of ratio data representing elevation. To 

overcome this challenge, variation in elevation has been 1) described aspatially using 

measurements of terrain roughness (Hengl and MacMillan 2009) or 2) transformed into nominal 

data describing landform elements (Reuter et al. 2006).  

 Terrain roughness, a measure of the region’s topographic complexity, is an important 

component and driver of ecological processes (e.g., landscape structure, McGarigal et al. 2009; 

vegetation growth patterns and wildlife behaviour, Nellemann and Fry 1995; plant species 

richness, Hofer et al. 2008). The link between terrain roughness and ecological process emphasizes 

the need to design heterogeneous landscapes that mimic natural surface roughness to improve the 

success rate of reclamation projects. 

 A review of terrain roughness metrics (TRMs) identified eight metrics designed to quantify 

the variation in elevation that could be conceptually applied at a landscape scale (Table 2.2) using 

spatially continuous input data (Grohmann et al. 2011). The topographic position index was 

removed as it has been shown to provide a less accurate representation of topographic variation 

than the deviation from mean elevation (DEV) metric (De Reu et al. 2013). 
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Table 2.2 Landscape-scale terrain roughness metrics identified through a literature review. Metrics selected and 

calculated in this study are designated with *. 

Metric Name Source Calculation 

*Deviation from Mean Elevation 

(DEV) 
Lindsay et al. 2015 |DEM –  MeanDEM|2 

*Standard Deviation of Elevation Grohmann et al. 2011 𝑆𝐷 = √
∑(𝐷𝐸𝑀 − 𝑀𝑒𝑎𝑛𝐷𝐸𝑀)2

𝑁
 

*2D:3D Area Ratio Rashid 2010 
3Darea = (2Darea3)/cos(Slp4) 

Ratio = (3Darea / 2Darea3) 

*Standard Deviation of Profile 

Curvature 
Olaya 2009 

𝑆𝐷

= √
∑(𝑃𝑟𝑓𝐶𝑢𝑟𝑣 − 𝑀𝑒𝑎𝑛𝑃𝑟𝑓𝐶𝑢𝑟𝑣)2

𝑁
 

Topographic Position Index 

(TPI) 
De Reu et al. 2013 

TPI = (MeanDEM2–MinDEM2) / 

(MaxDEM2–MinDEM2) 

*Slope Variability Grohmann et al. 2011 SV = MaxSlp4–MinSlp4 

*Standard Deviation of Slope Olaya 2009 𝑆𝐷 = √
∑(𝑆𝑙𝑝 − 𝑀𝑒𝑎𝑛𝑆𝑙𝑝)2

𝑁
 

*Inverse Vector Dispersion 
Grohmann et al. 2011, 

Olaya 2009 
Appendix 4 

2DEM = elevation values, 32Darea = window area (length*width), 4Slp = slope in degrees 

 In total, seven TRMs were used to quantify surface roughness in each sample landscape 

(see Appendix 4 for detailed description of metric calculations and modifications). For five of the 

seven metrics, DEV, standard deviation (SD) elevation, SD profile curvature, SD slope, and slope 

variability, two variations on the metric calculations were performed: 1) the metric was calculated 

based on all cells in the entire sample landscape (i.e., global), 2) the metric was calculated using a 

moving 5x5 focal window and then the average of the window values for the entire sample 

landscape was recorded. The 2D:3D Area Ratio and Inverse Vector Dispersion metrics are 

inherently based on focal windows and thus could not be directly calculated for the entire 

landscape, resulting in 12 total metrics.  

 Summary statistics of the average and standard deviation for each TRM were calculated 

by natural region and disturbance level (Appendix 5). Each landscape group’s TRM distribution 
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was tested for normality using the Shapiro-Wilks test and visually assessed using QQ plots, where 

it was determined that all TRMs had a non-normal distribution for all landscape groups. 

 Next, the 12 TRMs were reduced by grouping metrics that shared a Pearson’s correlation 

coefficient > 0.9 with all other members of the group (Moreno-Mateos et al. 2008 Riitters et al. 

1995). A representative metric was selected from each correlation group and the process repeated 

until all representative metrics fell below the correlation threshold (Riitters et al. 1995). Through 

the iterative comparison of each metric pair’s correlation value, a final set of five TRMs was 

selected. 

 A Kruskal-Wallis statistic was used to test for significant differences between landscapes 

grouped by natural region and disturbance. In the case where a significant difference was found, a 

post-hoc Dunn’s test was used to perform pairwise comparison tests between landscape groups. A 

Bonferroni correction was also applied to control for Type 1 errors, which occur when a test 

incorrectly reports a significant difference when none exists (Dunn 1961); to increase analytical 

rigor since I did not measure spatial autocorrelation; and to create statistically-sound guidelines 

for industry. 

2.6 Landform Classification Methodology 

A complementary approach to quantifying the variation in elevation using surface roughness 

metrics involves transforming the surface into landforms. A landform is ‘a physical feature of the 

Earth’s surface having a characteristic, recognizable shape and produced by natural causes’ (pg. 

228, MacMillan and Shary 2009). Landform classification has been widely applied to different 

regions (e.g., Turkey, Tagil and Jenness 2008; Germany, d’Oleir-Oltmanns et al. 2013) and scales 

(e.g., micro-topographic hummocks and hollows, Nagamatsu and Miura 1997; to continental-scale 

mountains and plains, Schmidt and Hewitt 2004). The purpose of the classification is, typically, to 

describe the composition of landforms in a study area in relation to an environmental variable of 

interest (e.g., Florinsky 2012). The use of landscape metrics to differentiate and quantify landform 

pattern across a landscape has been suggested as a promising research direction (Pike 2000) but 

the author is unaware of any research that has undertaken this methodology. 

 The use of 1 km2 sample landscapes situate the landform classification at a scale for 

defining landform elements (Schmidt and Hewitt 2004) rather than traditional landforms such as 

drumlins, plains, or mountains. Landform elements are small regions with homogeneous terrain 
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metric values that occur along a hillslope (Schmidt and Hewitt 2004, MacMillan et al. 2000). A 

hillslope can be composed of multiple landform elements, such as a peak, shoulder, toeslope, and 

depression (Reuter et al. 2006). 

 The presented research uses a discrete (or rule-based) approach to delineate landforms 

based on classification rules for calculated terrain metric values (Pennock et al. 1987, Reuter et al. 

2006). While the classification rules need to be adapted for the region in which the landform 

classification is occurring (Reuter et al. 2006), their use enables 1) transparency and ease of use, 

2) comparison across different regions, and 3) builds a compendium of examples for meta-analysis. 

The discrete landform classification used geometric terrain metrics of slope, profile curvature, plan 

curvature (MacMillan et al. 2000, Pennock et al. 1987) and deviation from mean elevation (DEV) 

(Lindsay et al. 2015). These four terrain metrics were combined to create 12 distinct landform 

elements, 11 that correspond to those by Reuter et al. (2006) and one taken from (MacMillan et al. 

2000, Table 2.3, Appendix 6). 

Table 2.3 Landform element classification criteria used to group topographic features, DEV refers to deviation from 

mean elevation metric (Reuter et al. 2006, * from MacMillan et al. 2000) 

Landform element Slope (Deg.) Prof. Curv. Plan Curv. DEV 

Divergent shoulder >0 Convex Convex Any 

Planar Shoulder >0 Convex Linear Any 

Convergent Shoulder >0 Convex Concave Any 

Divergent Backslope >3.0 Linear Convex Any 

Planar Backslope >3.0 Linear Linear Any 

Convergent Backslope >3.0 Linear Concave Any 

Divergent Footslope >0 Concave Convex Any 

Planar Footslope >0 Concave Linear Any 

Convergent Footslope >3.0 Concave Concave Any 

Low Level <=3.0 Linear Any Low 

High Level <=3.0 Linear Any Mid-High 

*Depression <=3.0 Concave Concave Any 

2.7 Quantifying topographic composition and configuration 

To quantify the composition and configuration of landform elements and characterize topographic 

patterns by natural region and disturbance, landscape metrics were applied to the sample 

landscapes using FRAGSTATS (McGarigal et al. 2012). The FRAGSTATS software 

conceptualizes spatial pattern by measures of area-edge, shape, aggregation, and diversity, which 
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may be applied to an individual patch, a class, or at a landscape scale (McGarigal et al. 2012). 

Many landscape metrics quantify a relationship between ecological processes and land cover 

patterns (e.g., core area and contrast, McGarigal et al. 2012). Since these relationships are 

irrelevant to landforms, all core area and contrast metrics were excluded from the analysis. 

 Thirty-three landscape metrics were deemed applicable to landform elements and were 

calculated at the landscape-scale (as opposed to patch- or class-scale) for each sample landscape 

(Appendix 7). Sample landscapes were grouped based on natural region and disturbance level 

(Table 1). Each landscape metric was tested, by group, for normality using the Shapiro-Wilks test 

and visually assessed using QQ plots, which determined that all metrics had a non-normal 

distribution. The thirty-two metrics were reduced to a subset of representative landscape metrics 

using the same correlation analysis described above for terrain roughness. In addition, a principal 

component analysis (PCA) was used to further reduce the subset of metrics similar to the 

bioclimate envelope approach (Metzger et al. 2013) used by Evans et al. (2017). The metric with 

the highest absolute factor loading for each principal component, with an eigenvalue greater than 

one, was retained.  

 Once the final subset of landscape metrics was defined, a Kruskal-Wallis test identified 

significant differences between natural regions and disturbance levels. Where significant 

differences were found, a post-hoc Dunn’s test with Bonferroni correction was used to perform 

pairwise landscape metric tests between landscape groups. 

3 Results 

3.1 Terrain Roughness Results 

Five representative terrain roughness metrics (TRMs) were selected based on the iterative 

correlation analysis (Appendix 8). The correlation analysis was repeated for each natural region 

separately to test if different representative metrics were selected. All natural regions returned the 

same five representative metrics: focal slope variability, global slope variability, 2D:3D area ratio, 

global DEV, and focal inverse vector dispersion. For each metric, its median and standard 

deviation was calculated for each landscape group (e.g., natural region and disturbance level, 

Appendix 5) and analysis of variance tests were applied across natural regions and disturbance 

levels (Table 2.4 and Table 2.5). 
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 We tested for significant differences among natural regions within the same disturbance 

level using a Kruskal-Wallis test for each of the five representative TRMs (Table 2.4). Of the 25 

tests, 12 (48%) were significantly different at p<0.001, 4 (16%) were significantly different at 

p<0.01, 3 (12%) were significantly different at p<0.05, and 6 (24%) were not significantly 

different. Focal slope variability, global slope variability, and area ratio metrics were significantly 

different among natural regions at p<0.05 for all five disturbance levels, whereas global DEV and 

inverse vector dispersion were significantly different for only two of the five disturbance levels 

(Table 2.4). The remaining two metrics, global DEV and inverse vector dispersion, were not 

congruent but still demonstrated sensitivity to natural region. The results, that 76% of the tests 

have significantly different metric values, suggest that surface roughness differs among natural 

regions regardless of the level of disturbance in the landscape 

Table 2.4 Significant differences in representative roughness metrics (TRMs) among landscapes in different natural 

regions with the same disturbance level, shown using p-values obtained from a Kruskal-Wallis test. Full p-values, d.f. 

and chi-squared for each test provided in Appendix 9 

 Disturbance (%) 

Metric 0-20 20-40 40-60 60-80 80-100 

Focal Slope Var. <0.001 0.012 <0.001 <0.001 <0.001 

Global Slope Var. 0.008 0.008 <0.001 <0.001 <0.001 

Area Ratio 0.003 0.03 <0.001 <0.001 <0.001 

Global DEV 0.03 0.133 <0.001 0.19 0.114 

Inv. Vector Dispersion 0.106 0.004 0.966 0.996 <0.001 

 To identify specific differences in TRMs between natural regions within different levels of 

disturbance a pairwise Dunn’s test was conducted. Of the five TRMs, focal and global slope 

variability as well as area ratio were significantly different between all three natural regions. The 

remaining two TRMs, global DEV and inverse vector dispersion, were only significantly different 

between Parkland and Grassland landscapes (Table 2.5). These results confirm that significant 

differences in surface roughness exist between natural regions; however, these differences are less 

pronounced between the Grassland and Parkland regions. 
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Table 2.5 Significant differences between TRMs for landscapes in different natural regions using a Bonferroni 

corrected Dunn’s test. Significant levels of p<0.05, <0.01, and <0.001 shown by *, **, and ***. Full p-values, chi-

squared, and Z statistics provided in Appendix 9 

Natural Region Boreal Parkland 

Parkland 

Focal Slope Var.*** 

Global Slope Var.** 

Area Ratio* 

 

Grassland 

Focal Slope Var.*** 

Global Slope Var.* 

Area Ratio** 

Global DEV** 

Inv. Vector Dispersion** 

 To evaluate if surface roughness differed with disturbance level, a Kruskal-Wallis test was 

conducted separately for each natural region for the five representative TRMs based on landscapes 

grouped by proportion of disturbance. The Kruskal-Wallis test identified that a significant 

difference existed between landscapes at different disturbance levels for all five TRMs at p<0.001, 

except for the inverse vector dispersion metric in the Parkland (significant at p<0.01) and 

Grassland (not significant) regions (Appendix 9). These results suggest that landscapes with 

different levels of disturbance within the same natural region have significantly different surface 

roughness. 

 To identify specific differences in surface roughness between disturbance levels, a Dunn’s 

posthoc pairwise comparison test was performed for each of the three natural regions. For the 

Boreal region, the test identified that high disturbance landscapes (80–100% disturbance) were 

significantly different than all other landscapes for all five representative TRMs (Table 2.6). There 

was also a significant difference between landscapes with 0–20% and 20–40% disturbance for 4 

of the 5 metrics and focal slope variability was significantly different between 20–40% and 60–

80% disturbance landscapes (Table 2.6). 
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Table 2.6 Dunn’s pairwise comparison of TRMs by disturbance in Boreal with Bonferroni correction. Significance 

levels of p<0.05, p<0.01, and p<0.001 shown by *, **, and ***. Full p-values, chi-squared, and Z statistics provided 

in Appendix 9 

Disturbance 

Class (%) 
0 – 20 20 – 40 40 – 60 60 – 80 

20 – 40 

Focal Slope Var. ** 

Global Slope Var.* 

Area Ratio** 

Global DEV** 

   

40 – 60 None None   

60 – 80 None Focal Slope Var. * None  

80 – 100 

 Focal Slope Var.*** 

Global Slope Var.*** 

Area Ratio*** 

Global DEV** 

Inv. Vector 

Dispersion*** 

Focal Slope Var.*** 

Global Slope Var.*** 

Area Ratio*** 

Global DEV*** 

Inv. Vector 

Dispersion*** 

Focal Slope Var. *** 

Global Slope Var.*** 

Area Ratio*** 

Global DEV*** 

Inv. Vector 

Dispersion*** 

Focal Slope Var. *** 

Global Slope Var.*** 

Area Ratio*** 

Global DEV*** 

Inv. Vector 

Dispersion*** 

 Results for Parkland landscapes found significant differences between high disturbance 

landscapes (80–100% disturbance) and all other landscapes for at least 3 of the 5 TRMs (Table 

2.7). Landscapes with 0–20% in disturbance were also found to be significantly different than 40–

60% landscapes for 4 of the 5 TRMs (Table 2.7). 
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Table 2.7 Dunn’s pairwise comparison of TRMs by disturbance in Parkland with Bonferroni correction. Significance 

levels of p<0.05, p<0.01, and p<0.001 shown by *, **, and ***. Full p-values, chi-squared, and Z statistics provided 

in Appendix 9 

Disturbance 

Class (%) 
0 – 20 20 – 40 40 – 60 60 – 80 

20 – 40 None    

40 – 60 

Focal Slope Var.* 

Global Slope Var.* 

Area Ratio** 

Global DEV ** 

None   

60 – 80 
Inv. Vector 

Dispersion * 

Inv. Vector 

Dispersion * 
None  

80 – 100 

Focal Slope Var.*** 

Global Slope Var.*** 

Area Ratio*** 

Focal Slope Var.*** 

Global Slope Var.*** 

Area Ratio*** 

Global DEV *** 

Focal Slope Var.*** 

Global Slope Var.*** 

Area Ratio*** 

Global DEV *** 

Focal Slope Var.*** 

Global Slope Var.*** 

Area Ratio*** 

Global DEV *** 

Inv. Vector 

Dispersion * 

 For the Grassland natural region, the pairwise comparisons found significant differences 

between high disturbance landscapes and all other landscapes at p<0.001 for all TRMs except for 

inverse vector dispersion (Table 2.8). There were no significant differences found for any of the 

other pairwise comparisons (Table 2.8).  
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Table 2.8 Dunn’s pairwise comparison of TRMs by disturbance in Grassland with Bonferroni correction. Significance 

levels of p<0.05, p<0.01, and p<0.001 shown by *, **, and ***. Full p-values, chi-squared, and Z statistics provided 

in Appendix 9 

Disturbance 

Class (%) 
0 – 20 20 – 40 40 – 60 60 – 80 

20 – 40 None    

40 – 60 None None   

60 – 80 None None None  

80 – 100 

Focal Slope Var.*** 

Global Slope Var.*** 

Area Ratio*** 

Global DEV *** 

Focal Slope Var.*** 

Global Slope Var.** 

Area Ratio*** 

Global DEV * 

Focal Slope Var.*** 

Global Slope Var.*** 

Area Ratio*** 

Global DEV ** 

Focal Slope Var.*** 

Global Slope Var.*** 

Area Ratio*** 

Global DEV *** 

 Pairwise comparison results across disturbance levels within each of the natural regions 

demonstrate congruence that surface roughness of 80-100% disturbance landscapes are 

significantly different than landscapes with other levels of disturbance. Of the three natural 

regions, disturbance in Grassland is the least differentiated in terms of surface roughness (Table 

2.8). Among the TRMs, focal slope variability was found to be the strongest differentiator across 

disturbance levels, showing significant differences in 15 of the 30 comparisons, which 

corroborates its influence in differentiating between natural regions (Table 2.4, Table 2.6 - Table 

2.8). 

The results show that landscape roughness differs by measurements of slope variability 

and elevation variability between high disturbance landscapes and all others. In addition, the 

results suggest that reclamation plans should have greater slope (focal slope var. 0.69 – 1.21) and 

elevation variability (global DEV 2.91 – 3.35) than what is observed in high disturbance 

landscapes (focal slope var. 0.43 – 0.61, global DEV 2.17 – 2.50) to mimic natural landscapes 

(Appendix 5). 

3.2 Landform Results 

Each sample landscape’s topography was classified into 12 discrete landform elements that 

represent the topographic characteristics of a landscape and were grouped based on their expected 

overland flow characteristics (Fig 2.4). In general, low and high level landform elements are the 

most prevalent across all landscapes, while convergent backslope and convergent footslope 
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elements are the least prevalent. I quantify the composition and configuration of these landform 

elements across natural regions and disturbance levels using a parsimonious set of landscape 

metrics. Finally, I test for differences in composition and configuration by natural region and 

proportion of disturbance. 

Fig 2.4 Example of landform element classification results across six landscapes at each disturbance level, all within 

the Boreal natural region. Landscapes increase in disturbance from left-to-right, starting at the top left square, and 

exemplifies how level landform elements dominate landscapes with a high proportion of disturbance while low 

disturbance landscapes have greater landform diversity. 

Landscape Boundary

2 m Contours

1. Level 

Low Level

High Level

Depression

2. Converging Flow

Convergent Shoulder

Convergent Backslope

Convergent Footslope

3. Planar Flow

Planar Shoulder

Planar Backslope

Planar Footslope

4. Diverging Flow

Divergent Shoulder

Divergent Backslope

Divergent Footslope
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3.2.1 Metric Reduction 

Thirty-two landscape metrics were reduced using an iterative correlation analysis, which grouped 

all metrics with a paired Pearson correlation coefficient greater than 0.9 and then a representative 

from each group was selected. The correlation analysis resulted in 15 representative landscape 

metrics for the Boreal and Grassland regions, 14 metrics for the Parkland region, and 16 metrics 

when considering the entire region (Appendix 10). 

 To further refine the landscape metrics, a Principal Component Analysis (PCA) was 

performed on the representative metrics identified in the correlation analysis for each natural 

region (Table 2.9). The PCA identified a set of five landscape metrics for the entire study area, 

four landscape metrics for each natural region, and a total of seven unique metrics. Each natural 

region retained the same two metrics (SHEI and ENN_AM), while Boreal and Parkland both 

retained GYRATE_AM and Parkland and Grassland both retained PROX_AM (Table 2.9) 

Table 2.9 Representative landscape metrics for each natural region based on PCA. Metric name is given in capitals. 

Metric conceptual grouping is given below each metric. 

 Principal Component 

Natural 

Region 
1 2 3 4 5 

All 

SIDI SHEI SHAPE_AM ENN_AM CONNECT 

Diversity/ 

Evenness 

Diversity/ 

Evenness 
Shape Aggregation Aggregation 

Boreal 

GYRATE_AM SHEI SHAPE_AM ENN_AM 

N/A 
Area/Edge 

Diversity/ 

Evenness 
Shape Aggregation 

Parkland 

GYRATE_AM SHEI PROX_AM ENN_AM 

N/A 

Area/Edge 
Diversity/ 

Evenness 
Aggregation Aggregation 

Grassland 

SIDI SHEI PROX_AM ENN_AM 

N/A Diversity/ 

Evenness 

Diversity/ 

Evenness 
Aggregation Aggregation 

 Out of the seven unique representative landscape metrics identified, three landscape 

metrics measured landform element aggregation, two metrics measured landscape diversity or 

evenness, one measured landform element area or edge, and one measured landform element shape 
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(Appendix 7). The seven representative metric’s mean and standard deviation values were 

calculated to compare the distribution of metric values across landscapes based on both natural 

region and proportion of disturbance (Appendix 5). 

3.2.2 Relating Metrics to Natural Region and Human Disturbance 

The representative landscape metrics for each sample landscape group were tested for normality 

using a Shapiro-Wilks test and visually compared using QQ-plots; each landscape category 

reported a p-value of <0.01, rejecting the null hypothesis that the data followed a normal 

distribution. A Kruskal-Wallis test was conducted to determine if significant difference existed 

among the three natural regions for landscapes with the same proportion of human disturbance 

(Table 2.10). Of the 35 total comparisons made, 17 (48.6%) were significant at p<0.001, 5 (14%) 

were significant at p<0.01, 5 (14%) were significant at p<0.05, and 8 (22.9%) had no significant 

difference (Table 2.10). Two of the seven metrics were significantly different for all five 

disturbance groups (GYRATE_AM and SIDI) (Table 2.10). 

Table 2.10 Kruskal-Wallis test results for significant difference between landscape metrics in different natural regions 

with the same proportion of disturbance. Full p-values, d.f., and chi-squared statistics provided in Appendix 9 

  Disturbance (%) 

Metric 0-20 20-40 40-60 60-80 80-100 

GYRATE_AM <0.001 0.026 <0.001 <0.001 <0.001 

PROX_AM <0.001 0.655 <0.001 0.003 <0.001 

SIDI <0.001 0.014 <0.001 <0.001 <0.001 

SHEI <0.001 0.019 0.095 0.943 0.054 

SHAPE_AM <0.001 0.383 <0.001 <0.001 <0.001 

ENN_AM <0.001 0.33 0.034 0.002 0.073 

CONNECT 0.001 0.007 0.027 0.002 0.715 

 Landscapes in different natural regions were statistically compared using Dunn’s pairwise 

comparison test for the seven representative landscape metrics. The test found significant 

differences in landscape metrics between all three natural regions, and the greatest number of 

differences was found between Parkland and Boreal where six out of the seven representative 

metrics were significantly different (Table 2.11). Parkland and Grassland had the least number of 

differences, with three out of the seven representative metrics significantly different (Table 2.11). 

These results suggest that the configuration of landscape elements differ significantly between 

natural regions. 
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Table 2.11 Pairwise comparison between landscapes in different natural regions for each landscape metric. 

Significance levels p<0.005, p<0.01, and p<0.001 shown by *, **, and ***. Full p-values, chi-squared, and Z statistics 

provided in Appendix 9 

Natural Region Boreal Parkland 

Parkland 

GYRATE_AM*** 

PROX_AM*** 

SIDI*** 

SHAPE_AM*** 

ENN_AM* 

CONNECT** 

 

Grassland 

GYRATE_AM*** 

PROX_AM*** 

SIDI*** 

SHEI* 

SHAPE_AM*** 

SHAPE_AM*** 

ENN_AM** 

CONNECT** 

 Given significant differences between natural regions, I tested for significant difference 

between landscape disturbance levels within each natural region. Results showed significant 

differences between landscapes with different proportions of disturbance for all seven 

representative metrics, with the exception of the CONNECT metric in the Boreal and Grassland 

regions and the SHEI metric in the Grassland region (Table 2.12). 
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Table 2.12 Kruskal-Wallis test results for significant differences between landscape metrics values among disturbance 

levels by natural region, all tests have 4 degrees of freedom 

  Metric Chi-squared (H) p Significance 

B
o

re
al

 

GYRATE_AM 41.504 <0.001 *** 

PROX_AM 15.757 0.003 ** 

SIDI 53.126 <0.001 *** 

SHEI 15.926 0.003 ** 

SHAPE_AM 25.983 <0.001 *** 

ENN_AM 20.039 <0.001 *** 

CONNECT 3.618 0.46  

P
ar

k
la

n
d
 

GYRATE_AM 88.756 <0.001 *** 

PROX_AM 23.018 <0.001 *** 

SIDI 103.509 <0.001 *** 

SHEI 12.465 0.014 * 

SHAPE_AM 33.289 <0.001 *** 

ENN_AM 33.336 <0.001 *** 

CONNECT 32.213 <0.001 *** 

G
ra

ss
la

n
d

 

GYRATE_AM 59.356 <0.001 *** 

PROX_AM 33.406 <0.001 *** 

SIDI 71.437 <0.001 *** 

SHEI 6.681 0.154  

SHAPE_AM 37.954 <0.001 *** 

ENN_AM 16.113 0.003 ** 

CONNECT 3.757 0.44  

 Pairwise comparisons between disturbance classes in the Boreal using an adjusted post-

hoc Dunn’s test found significant difference between high disturbance landscapes and all other 

landscape groups for the GYRATE_AM and SIDI metrics. Furthermore, six of the seven 

representative metrics are significantly different between landscapes with 0–20% and 80–100% 

disturbance (Table 2.13). Significant differences were also found for three of the seven metrics 

between 0–20% and 20–40% landscapes (Table 2.13). 
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Table 2.13 Pairwise comparison of disturbance levels in Boreal region using a Bonferroni corrected Dunn's test. 

Significance levels p<0.05, p<0.01, and p<0.001 shown by *, **, and ***. Full p-values, chi-squared, and Z statistics 

provided in Appendix 9 

Disturbance 

Class (%) 
0 – 20 20 – 40 40 – 60 60 – 80 

20 – 40 

GYRATE_AM*** 

PROX_AM** 

SIDI** 

   

40 – 60 None None   

60 – 80 ENN_AM** SHAPE_AM* None  

80 – 100 

GYRATE_AM* 

SIDI*** 

SHEI*** 

SHAPE_AM** 

ENN_AM** 

GYRATE_AM*** 

PROX_AM*** 

SIDI*** 

SHAPE_AM*** 

GYRATE_AM** 

SIDI*** 

GYRATE_AM** 

SIDI*** 

 The Parkland natural region results also found that the high disturbance landscapes are 

significantly different from landscapes at all other disturbance levels (Table 2.14). At least four of 

the seven representative landscape metrics were significantly different between high disturbance 

landscapes and all other landscapes and six of the seven metrics were significantly different 

between landscapes with 60–80% and 80–100% disturbance. The only other difference detected 

was for the SIDI metric at p<0.05 between 0–20% and 40–60% disturbance landscapes (Table 

2.14). 
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Table 2.14 Pairwise comparison of disturbance levels in the Parkland region using a Bonferroni corrected Dunn's test. 

Significance levels p<0.05, p<0.01, and p<0.001 shown by *, **, and ***. Full p-values, chi-squared, and Z statistics 

provided in Appendix 9 

Disturbance 

Class (%) 
0 – 20 20 – 40 40 – 60 60 – 80 

20 – 40 None    

40 – 60 SIDI* None   

60 – 80 None None None  

80 – 100 

GYRATE_AM** 

SIDI*** 

ENN_AM*** 

CONNECT 

GYRATE_AM*** 

SIDI*** 

SHEI* 

CONNECT* 

GYRATE_AM*** 

PROX_AM*** 

SIDI*** 

SHAPE_AM** 

GYRATE_AM*** 

PROX_AM* 

SIDI*** 

SHAPE_AM*** 

ENN_AM* 

CONNECT* 

 Our comparison between levels of disturbance within the Grassland region identified 

significant differences between high disturbance landscapes and all other landscapes, with no other 

significant differences found. Between three and five representative landscape metrics were 

significantly different between 80–100% disturbance landscapes and all other landscapes (Table 

2.15). Three metrics, GYRATE_AM, SHAPE_AM, and SIDI were significantly different across 

all four comparisons for high disturbance landscapes (Table 2.15) 

Table 2.15 Pairwise comparison of disturbance levels in the Grassland region using a Bonferroni corrected Dunn's 

test. Significance levels p<0.05, p<0.01, and p<0.001 shown by *, **, and ***. Full p-values, chi-squared, and Z 

statistics provided in Appendix 9 

Disturbance 

Class (%) 
0 – 20 20 – 40 40 – 60 60 – 80 

20 – 40 None    

40 – 60 None None   

60 – 80 None None None  

80 – 100 

GYRATE_AM*** 

PROX_AM* 

SIDI*** 

SHAPE_AM*** 

ENN_AM*** 

GYRATE_AM*** 

PROX_AM** 

SIDI*** 

SHAPE_AM** 

GYRATE_AM*** 

PROX_AM** 

SIDI*** 

SHAPE_AM** 

GYRATE_AM*** 

SIDI*** 

SHAPE_AM** 
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 The results of the landform element analysis were similar to the results of the surface 

roughness analysis. Specifically, landscapes with 80-100% disturbance differed significantly from 

all other landscapes while the Grassland region showed the least difference across disturbance 

levels. This suggests that similar spatial patterns of landform elements exist in Grassland regions 

with medium to low levels of disturbance. Of the 30 total comparisons (Table 2.13 to Table 2.15), 

14 showed SIDI to be significantly different, and the most pronounced differentiator of landform 

pattern, across disturbance levels and natural regions. 

The differences observed between high disturbance landscapes and landscapes with low 

disturbance show that landscape designs for wetland reclamation should use a diverse set of 

landform elements (SIDI 0.51 – 0.60) that are small (GYRATE 251.84 - 277.04), irregularly 

shaped (SHAPE_AM 1.92 – 2.12), and located close to other landform elements of the same type 

(ENN_AM 42.65 – 69.29) to more closely mimic the topographic pattern of natural landscapes 

(Appendix 5). 

4 Discussion 

4.1 Terrain Roughness 

The presented results show that the representative roughness metrics were statistically different 

between natural regions in Alberta, Canada, with a tendency for Parkland landscapes to have 

greater topographic roughness than Boreal and Grassland landscapes. Results were less systematic 

when comparing landscape roughness among landscapes with different disturbance levels. 

However, high disturbance landscapes (80-100% disturbed) were significantly different from all 

other disturbance levels in each natural region and tended to have the lowest TRM values across 

all three natural regions. The low TRM values illustrate that high disturbance landscapes were 

significantly flatter, and had less elevation variability and topographic complexity than less 

disturbed landscapes. 

 Across all three natural regions, highly disturbed landscapes are primarily in cropland (73.9 

%). Flat land is more suitable for agriculture (Yeh and Li 1998), which, when combined with 

conventional tillage practices in this study area, reduces the topographic variation. Similarly, 

development, and land-use change in general, decreases topographic variability (Lóczy and 

Gyenizse 2010). This flattening of topography by anthropogenic land-uses reaches a threshold that 



40 

 

significantly differs for highly disturbed landscapes relative to all other disturbance levels, 

illustrated by the lower TRM values in highly disturbed landscapes when compared to all other 

landscapes. 

 Within the three natural regions, Grassland was the only region that did not have significant 

differences in TRMs between landscapes with less than 80 % disturbance (Table 2.8). High 

disturbance landscapes in the Grassland region are primarily affected by crop-based disturbance 

(87.14% of landscape area) whereas landscapes with less than 80 % disturbance have that 

disturbance more evenly distributed between agriculture (avg. 59%) and pasture (avg. 37%). The 

preference for flat land, or the levelling of land, prior to the development of cropland may account 

for the significant difference between landscapes with high disturbance relative to landscapes with 

all other levels of disturbance. 

 While low-to-medium disturbance landscapes in all natural regions have no systematic 

difference in terrain roughness, it is important to note that the entire study region had low terrain 

roughness values comprising a small range (Appendix 5). For example, average values for the 

Area Ratio TRM, which measure elevation change within a 5x5 cell window, ranged from a 

median of 1.001 in low disturbance Grassland landscapes to 1.000 in high disturbance landscapes 

(Appendix 5) with a maximum elevation range of 200 m. This value range is a minute difference 

when compared to other studies. For example, a mountainous study area with ~1,200 m of 

elevation change had Area Ratio values between 1.000 and 1.300 (Grohmann 2004), which 

emphasizes that our Alberta study area, located in a region known for its low relief, had an overall 

flat topography. Other TRMs, such as focal slope variability, demonstrate wider value ranges. 

Regardless of the small range in TRMs across the sample landscapes (e.g., 0.43 to 1.68 for focal 

slope variability), an interesting finding is that there is a clear tendency for high disturbance 

landscapes to have the lowest TRM values (e.g., 0.43 to 0.61 for focal slope variability; Appendix 

5). 

4.2 Landscape Metrics 

The characterization of landscape topography showed different patterns in landform elements 

across natural regions and disturbance levels. From 32 metrics, I identified a parsimonious set of 

seven unique landscape metrics that can be used to quantify landform patterns. Comparing these 

results with previous research that used a landscape metric reduction approach to reduce landscape 
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metrics calculated for land cover data within the same 1 km2 sample landscapes used in my study 

(Evans et al. 2017), three of the seven landscape metrics were selected in both studies, 

SHAPE_AM, ENN_AM, and SIDI. In addition, a comparison with Evans et al. (2017) suggests 

that a single data analysis for all landscapes results in less variability in landscape metric selection. 

For example, Evans et al. (2017) were required to use two separate data layers with different data 

accuracy for the landscape metric reduction analysis, which resulted in ten unique representative 

metrics for six landscape subsets (Evans et al. 2017). Conversely, this study reduced the landscape 

metrics to seven unique representative metrics and required only three landscape subsets based on 

natural region. 

 Of the seven metrics selected, three represent measures of aggregation, two represent 

measures of diversity/evenness, and the remaining two were measures of area/edge and shape, 

which totals to five measures of spatial configuration and two measures of spatial composition. 

The aggregation metrics measured how disperse or connected each landform element is within a 

landscape and how similar adjacent landform elements are to each other (McGarigal 2012), which 

is useful to determine how landform elements are arranged within a landscape. Diversity/evenness 

metrics describe the variability of landform elements, which can inform reclamation planners 

about how many different landform elements should be created in each landscape. Area/edge 

metrics describe landform element size within a landscape and the metric selected does this by 

measuring the spatial reach of each landform element (McGarigal 2012). Finally, shape metrics 

measure the average shape of landform elements, where the shape metric selected measures how 

much a landform element deviates from a square shape (McGarigal 2012). 

 The seven representative landscape metrics were systematically different amongst natural 

regions, with only GYRATE_AM and SIDI statistically different across all five disturbance levels 

(Table 2.10). Within natural regions, high disturbance landscapes had significantly different 

landform element spatial pattern from landscapes at all other disturbance levels and no significant 

differences were observed between landscapes with less than 80 % disturbance in the Grassland 

and Parkland, with one exception. Landscapes in the Boreal region followed a similar trend, where 

landscapes with greater than 80 % disturbance had significant differences in landscape metrics 

when compared to landscapes with less than 80 % disturbance. Boreal landscapes had the greatest 

number of differences in landscapes with less than 80 % disturbance, where three disturbance 

comparisons were significantly different (Table 2.13). The differences observed in the Boreal 



42 

 

comparisons versus Parkland or Grassland comparisons by disturbance may be due to differences 

in disturbance types in these natural regions (Downing and Pettapiece 2006), where Boreal has a 

more even split between pasture and agricultural disturbance in high disturbance landscapes, 

whereas Grassland and Parkland are dominated by agricultural disturbance in high disturbance 

landscapes (Fig 2.5). 

 

Fig 2.5 Proportion of disturbance type at each disturbance level, separated by natural region. Figure shows that high 

disturbance landscapes in the Grassland and Parkland are dominated by agricultural disturbance with a more even split 

between agriculture and pasture in lower disturbance landscapes 

 A landscape diversity metric measuring landform element composition (SIDI) and an 

area/edge metric measuring landform element configuration (GYRATE_AM) were the only two 

metrics that were significantly different between high disturbance landscapes and all other 

landscapes across all natural regions. High disturbance landscapes were likely dominated by 

‘level’ landform elements which results in a low number of large landform elements and less 

landform element diversity. This is shown by higher radius of gyration values (e.g., in Parkland 

landscapes, GYRATE_AM had a median of 276.59 for high disturbance and 251.84 for low 

disturbance, Appendix 5) and lower average landform element SIDI values in high disturbance 

landscapes (e.g., in Parkland landscapes, average SIDI equaled 0.50 for high disturbance and 0.60 

for low disturbance, Appendix 5). The landform element spatial pattern analysis corroborates the 

findings from the roughness analysis that high disturbance have less topographic variability, less 

complexity, and overall flatter landscapes. 
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4.3 Use of Terrain Analysis for Reclamation 

The presented research identified a parsimonious set of five surface roughness metrics and seven 

landform element pattern metrics that can statistically differentiate the terrain of landscapes in 

different natural regions and between high disturbance landscapes from those with less than 80 % 

disturbance. Given that, one roughness metric, focal slope variability, and two landform element 

pattern metrics, SIDI and GYRATE_AM, were shown to be sensitive to topographic differences 

between natural regions and along a gradient of disturbance, they may be used as a simplified set 

to quantify and compare terrain roughness and spatial pattern of landscape elements. 

 The observed values for each metric (by natural region and disturbance level; Appendix 5) 

can be used as a lookup table to guide reclamation planning and design by industry or to guide the 

evaluation of reclamation closure plans to ensure reclamation landscapes fall within the range of 

topographic characteristics found in natural landscapes. The results from low disturbance 

landscapes can be summarized to provide clear recommendations for how to use roughness and 

landscape metrics to quantify the topography of landscapes and mimic natural topographic 

characteristics (Table 2.16). However, oversight is required to ensure that the aggregation of 

reclaimed landscapes applying the presented topographic characteristic benchmarks represents the 

distribution of the metric values. If these benchmarks are used (e.g., just the median value) to 

generate a collection of homogeneous landscapes then my efforts have not advanced upon the 

height-to-length ratio guidelines (e.g., Appendix 3) for wetland reclamation that fail to represent 

natural topographic variability. 
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Table 2.16: Overview of recommendations for landscape-scale reclamation from both roughness and landform 

element analysis 

Recommendation Associated Metrics Metric Ranges 

Wide slope variability Focal Slope Var. 

Global Slope Var. 

2D:3D Area Ratio 

FclSlpVar 0.69 – 1.21 

GblSlpVar. 5.04 – 7.09 

AreaRatio 1.0004 – 1.0007 

Wide elevation variability Global DEV 

Inverse Vector Dispersion 

GblDEV 2.91 – 3.35 

InvVectDisp 1.05x10-2 – 1.07x10-2 

Diverse range of landform elements Simpson’s Diversity Index SIDI 0.51 – 0.60 

Small landform elements Radius of Gyration GYRATE_AM 251.84 – 277.04 

Irregularly shaped landform 

elements 

Shape Index SHAPE_AM 1.92 – 2.12 

Near landform elements of the 

same type 

Euclidean Nearest Neighbour Index ENN_AM 42.65 – 69.29 

 Incorporating natural topographic characteristics into wetland reclamation projects would 

likely improve upon ecohydrologic function reclaimed wetlands. A disturbed landscape has a 

greater potential for erosion (Martin-Duque et al. 2010) and disturbed wetlands have less 

vegetation richness than natural wetlands (Trites and Bayley 2009). Attempting reclamation 

without mimicking natural topography can cause reclaimed landscapes to have less topographic 

stability (Martin-Duque et al. 2010) and an inability to mimic natural hydrologic processes (Price 

et al. 2010). Thus, incorporating a more natural topography into reclamation plans would likely 

yield more success in achieving reclamation objectives of natural ecosystem appearance, 

landscape integration, and sustainability. 

 Quantification of topography is one of many characteristics that affect wetland function 

and subsequently reclamation planning and acquisition of closure permits, e.g., soil and 

hydrological characteristics (McKenna 2002). Identifying the covariation among these different 

biophysical components remains a research gap and opportunity (de Groot et al. 2010) since the 

dependencies among topography and hydrology (Shaw et al. 2013), solar radiation (Mei et al. 

2015; Hofer et al. 2008), and vegetation diversity (Hofer et al. 2008) are strong. Incorporating 

covariation among the components of reclamation will improve the probability of reclamation 

success. 
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4.4 Limitations 

Terrain analysis results have some dependency on the resolution of the input elevation data used 

(Deng et al. 2007; Thompson et al. 2001). For example, a coarser resolution can cause lower slope 

values in steep slope regions and higher slope values in flat slope regions while also decreasing 

the range in topographic curvature values (Thompson et al. 2001). While the presented research 

uses a 10 m resolution digital elevation model (DEM), the degree to which this resolution captures 

the true topographic variation within the study area is unknown. Terrain analysis in geographically 

similar landscapes have used elevation data with resolutions ranging from 1 m (Van Meter and 

Basu 2015) to 10 m (MacMillan et al. 2003). Recent advances in unmanned aerial vehicle (UAV) 

technology equipped with light detecting and ranging (LiDAR) or used in structure for motion 

derivation of surface elevation models may provide a cost-effective approach for quantifying the 

effects of spatial resolution on topographic representation. Comparison of the presented 

benchmarks across a range of spatial resolutions would add value to the presented research by 

quantifying the relative change in metric values by spatial resolution while also validating 

landform classification. 

 The elevation data used in this analysis, or that of others (e.g., MacMillan et al. 2000), does 

not include bathymetry of hydrological features within the sample landscapes. To more accurately 

capture the topographic variation in natural wetland landscapes, future research could replicate the 

presented methodology with the inclusion of bathymetric measurements within the wetland 

boundary (CEMA 2014). While costly, incorporating bathymetric measurements would increase 

information about the water holding capacity, bank profiles, and shape of natural wetlands, which 

would further assist reclamation planners in designing wetland landscapes that are naturally 

appearing and self sustaining. 

 A greater understanding of how each representative roughness and landscape metric relates 

to landscape disturbance, natural region, and how these metrics interact with each other could have 

been attained through using multivariate analysis rather than the multiple single analysis of 

variance tests used in this thesis. Multivariate analysis would treat each metric as an independent 

variable (Carey 1998) and would have allowed the study to determine how each roughness and 

landscape metric interacts with each other by quantifying their covariation, as well as measure how 

that interaction changes by disturbance or natural region (Warne 2014). Multivariate analysis 
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would have allowed the results to quantify the relationship between each metric, which is useful 

when there are correlated continuous response variables, which occurs in this thesis (Warne 2014). 

 Finally, the proportion of disturbance used in this study was calculated using AAFC annual 

crop inventory (land cover) data, which has a 56 m spatial resolution (Fisette et al. 2014). At this 

spatial resolution it is likely that I have both overestimated disturbance and the rectilinear 

representation of land cover patches in wetland landscapes. The degree to which the results are 

affected by spatial resolution remains an avenue for future research.  

5 Conclusion 

Successful reclamation of wetland landscapes requires integrating reclamation projects with 

surrounding landscapes, of which topography is a key component. Topography is a driver of 

ecological processes such as water availability and sunlight potential (Los Huertos and Smith 

2013), which are components in the health and location of wetland ecosystems (Mitsch and 

Gosselink 2007). I have developed a methodology to quantify and describe the topographic 

characteristics of wetland landscapes and set of topographic metrics that quantify baseline 

topographic characteristics of wetland landscapes in Alberta. 

 A parsimonious set of terrain roughness metrics and landform pattern metrics have been 

defined that can quantify the topographic variability of wetland landscapes and describe the spatial 

pattern of topographic landform elements across natural regions and at a gradient of disturbance. 

These metrics can be applied to landscapes to statistically compare topographic characteristics and 

to define baseline topographic characteristics for different landscapes. Significant differences in 

topographic characteristics between landscapes in different natural regions and between high 

disturbance landscapes and all other landscapes illustrates that reclamation plans can define 

baseline topographic characteristics within the same natural region and with <80% human 

disturbance. 
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Chapter 3 – Context, Contributions, and Future Research 

1 Implications of Metric Selection 

Our research defined a parsimonious set of roughness and landscape metrics that describe the 

topographic variability of landscapes as well as landform element spatial composition and 

configuration. These metrics can be used to quantify and characterize wetland landscapes to define 

baseline topographic conditions to better understand wetland systems and create guidelines for 

future reclamation. The content within this chapter builds off the results of Chapter 2 by providing 

greater depth on the conceptual differences between each representative metric, defines 

environmental properties that the representative metrics measure, and provides recommendations 

for how these metrics should be used in landscape reclamation. 

1.1 Topographic Roughness Metrics 

A parsimonious set of 5 TRMs were defined in the research, focal and global slope variability, 

2D:3D area ratio, global DEV, and inverse vector dispersion. All five metrics were found to be 

statistically different across landscape groups in different natural regions and across a gradient of 

disturbance, but a clear trend was observed. When comparing solely by natural region, global DEV 

and inverse vector dispersion were the only two metrics significantly different between Parkland 

and Grassland, while the other three metrics (focal and global slope variability, 2D:3D area ratio) 

were significantly different when comparing Boreal to Parkland/Grassland but were not different 

between Parkland and Grassland. This leads us to conclude that there is a topographic 

characteristic occurring that is captured by one of these groups of TRMs that is not measured by 

the other group. While it is not presently possible to concretely determine what is setting these 

TRMs apart, it is possible to delve into their conceptual underpinnings to fully understand what 

aspects of topographic roughness each metric measures. 

 Slope variability measures the range in slope values in the landscapes, either using the focal 

version calculated by taking the landscape-average of the slope range of a moving 5x5 window 

(focal slope variability) or the global version based on the direct slope range of each landscapes 

(global slope variability). A focal approach is likely to report less slope variability than the global 

approach since slope measurements near each other are likely to have similar values. This is 

apparent when comparing the median focal and global slope variability values across landscape 
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groups, where median focal slope variability ranges from 0.43 to 1.68 and median global slope 

variability ranges from 3.12 to 9.47 (Appendix 5). Given the generally flat topography of the study 

area, global slope variability is primarily quantifying the maximum slope value in each landscape 

(since the minimum slope value is close to 0 degrees), whereas focal slope variability is reporting 

if large slope changes occur in close proximity. 

 2D:3D area ratio was significantly different between the same natural regions as slope 

variability, which may be caused by these metrics measuring similar topographic characteristics. 

2D:3D area ratio calculates the ratio between the 2D surface area of each 5x5 window and its 3D 

area. Landscapes with low (0 – 20 %) disturbance had higher median 2D:3D area ratio (1.0004 – 

1.0007) than high (80 – 100 %) disturbance landscapes (1.0002) and had a median range across all 

landscapes of 1.0002 to 1.0013 (Appendix 5), highlighting the general flat topography of the study 

area and, similar to focal slope variability, measuring regions where large slope changes occur 

within close proximity.  

 All three metrics that found significant differences between Boreal and Parkland/Grassland 

measure large slope changes in either close proximity (focal slope variability, 2D:3D area ratio) 

or large slope ranges in a landscape (global slope variability), which suggests that the topographic 

characteristic that these three metrics are capturing is directly related to the slope within a 

landscape. A landscape’s slope has direct impacts on the distribution of vegetation (Bennie et al. 

2006, Wilson and Gallant 2000), soil moisture (Murphy et al., 2011), solar radiation (Dubayah and 

Rich 1995), and can directly impact wetland location (Stein et al. 2004). These three metrics were 

lower in the southern Boreal subregion than in the Parkland or Grassland (Appendix 5), which 

suggests that Boreal landscapes were slightly flatter with less slope variability. 

 When comparing solely by natural region, global DEV and inverse vector dispersion were 

the only two metrics significantly different between Parkland and Grassland landscapes, which 

suggests that Parkland and Grassland had more similarities in topographic roughness than the 

southern Boreal subregion. Global DEV calculates the deviation from mean elevation for each 

landscape, which measures if a landscape’s topography is flat with low deviation from the mean 

or if there are significant topographic variations. However, global DEV cannot determine if a large 

deviation is the result of one significant topographic feature surrounded by flat land or a series of 

undulating hills that vary about a mean elevation. Global DEV was on average lower in the 
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Grassland (2.50 – 3.54) than in the Parkland (2.14 – 5.12) and was lower in high disturbance 

landscapes (2.17 – 2.50) than low disturbance landscapes (2.91 – 3.35), reinforcing that high 

disturbance landscapes had lower topographic variability than less disturbed landscapes (Appendix 

5). 

 Inverse vector dispersion measures a landscape’s topographic roughness by defining a unit 

vector perpendicular to each cell in a landscape, based on both slope degree and aspect. The 

variability in unit vector direction is used to define the topographic roughness of a landscape. 

Significant differences in inverse vector dispersion between low (0 – 20 %) disturbance and high 

(80 – 100 %) disturbance landscapes were only apparent in the Boreal region, where low 

disturbance had higher inverse vector dispersion (1.07x10-2) than landscapes with high disturbance 

(Avg. 1.04x10-2, Appendix 5), which is due to the flatter high disturbance landscapes observed in 

the Boreal than what is observed in the Parkland or Grassland (Appendix 5). 

 Our research has shown that quantifying landscape roughness requires measurements of 

slope variability as well as elevation variability when assessing landscape roughness. In addition, 

the results suggest that reclamation plans have greater slope (focal slope var. 0.69 – 1.21) and 

elevation variability (global DEV 2.91 – 3.35) than what is observed in high disturbance 

landscapes to mimic natural landscapes (Appendix 5). 

1.2 Configuration and Composition of Landform Elements 

The spatial composition and configuration of the 12 landform elements was quantified using seven 

representative landscape metrics, radius of gyration, shape index, Euclidean nearest neighbour, 

proximity index, connectance index, Simpson’s diversity index, and Shannon’s evenness index. 

Chapter 2 discusses the aspects of landform spatial pattern that each metric measures and I build 

on that here by more thoroughly describing how landscape metrics can be used to design 

landscapes for reclamation. The seven representative landscape metrics can be grouped into four 

metric types based on the aspect of landform element spatial pattern that each metric measures 

(e.g., area/edge, shape, aggregation, diversity/evenness) and this section will provide an overview 

of how landscape metrics within each type can guide wetland reclamation designs. 

 Landform element area/edge quantifies the average landform element size within a 

landscape by measuring how far a landform element extends from its central point (McGarigal 

2012). If a landscape has high area/edge metric values, quantified in this study by radius of 
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gyration, then it can be determined that the landform elements in the landscape are large. One 

would expect landscapes with high area/edge to have low diversity as the landscape is likely 

dominated by a few large landform elements rather than a multitude of smaller landform elements. 

Since this study found that low disturbance landscapes had lower area/edge values (251.84 - 

277.04) than high disturbance landscapes (276.59 – 287.58, Appendix 5), the results suggest that 

reclamation designs should incorporate multiple smaller landform elements into the design rather 

than dominating the landscape with a few large landform elements, which would provide 

landscapes with greater ecological and topographic diversity. 

 Shape landscape metrics measure how much the landform elements in a landscape deviate 

from a defined geometric shape (McGarigal 2012), quantified by deviation from a square using 

the shape index. Natural landform elements would likely have greater variability in their shape and 

this study corroborates this hypothesis by finding that high disturbance landscapes have lower 

shape values (1.80 – 1.94) than low disturbance landscapes (1.92 – 2.12, Appendix 5). The results 

suggest that a shape metric should be utilized in reclamation planning, rather than solely relying 

on the existing height-to-length ratios in current guidelines (Green Plan Ltd 2014), to ensure that 

landform element designs use unique and varied shapes to better mimic natural landscapes. 

 Landform element aggregation is measured using the proximity index, Euclidean nearest 

neighbour index, and connectance index, which all measure isolation, or how close landform 

elements of the same class occur in a landscape (McGarigal 2012). Landscapes with high 

proximity or connectance and low Euclidean nearest neighbour would have clusters of the same 

landform element near each other. While not as clear of a trend as other landscape metric types, 

generally high disturbance landscapes with 80 – 100 % disturbance have greater isolation 

(ENN_AM 74.95 – 83.13) than natural landscapes with 0 to 20 % disturbance (ENN_AM 42.65 – 

69.29, Appendix 5), suggesting that landscape designs should place landform elements of the same 

type close together. 

 Finally, diversity/evenness metrics quantify how many different landform elements there 

are and how evenly the landform elements are spread across a landscape (McGarigal 2012), 

measured using Simpson’s diversity index and Shannon’s evenness index. A landscape with low 

diversity would likely be dominated by one or two large landform elements and have high 

area/edge metric values. This trend is observed in this study where high disturbance landscapes 
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had higher area/edge values (GYRATE_AM 276.59 – 287.58) and lower diversity values (SIDI 

0.49 – 0.50) compared to landscapes with 0 - 20 % disturbance (GYRATE 251.84 - 277.04, SIDI 

0.51 – 0.60, Appendix 5). While a few landscapes had statistically different evenness values, there 

was not a consistent trend across compared landscapes by disturbance or natural region. To mimic 

natural landscapes, reclamation plans should ensure designed landscapes have a diverse range of 

landform elements. 

 To summarize, I recommend that landscape designs for wetland reclamation use a wide 

range (SIDI 0.51 – 0.60) of small (GYRATE 251.84 - 277.04), irregularly shaped (SHAPE_AM 

1.92 – 2.12) landform elements near (ENN_AM 42.65 – 69.29) elements of the same type, to more 

closely mimic the topographic pattern of natural landscapes (Appendix 5). 

2 Future Research Recommendations 

While the research has been able to provide recommendations for how to better mimic natural 

landscapes when designing reclamation plans, two existing terrain analysis and topographic 

modelling methods have been identified that could improve the findings. Wet areas mapping and 

landscape evolution models are two existing methods that would be beneficial additions to this 

research and could create a more robust topographic characterization of wetland landscapes.  

2.1 Wet-areas mapping 

Wet areas mapping is a terrain analysis process used to identify locations with saturated soils and, 

given the academic evidence relating landforms and soil types (e.g., Florinsky et al. 2002, Böhner 

and Selige 2006, Dobos and Hengl 2009), would be a useful addition to quantify the relationship 

between landform elements and ‘wet areas’. Wet areas mapping estimates regions in a landscape 

that are likely to have saturated soil using the depth-to-water metric (Murphy et al. 2009), which 

is based on a location’s proximity to a known surface water body and the slope between those two 

points. This analysis method has been used to delineate regions susceptible to soil erosion and 

rutting (Ågren et al. 2014), locate ephemeral streams (White et al. 2012), estimate wetland 

locations (Murphy et al. 2007), and model forest soil properties (Murphy et al. 2011). The results 

from wet areas mapping are validated using either field surveys to collect data on soil type, 

drainage, and vegetation cover (Ågren et al. 2014, Murphy et al. 2011, Murphy et al. 2009) or 

results are compared to existing soil data sets (Murphy et al. 2007, White et al. 2012). 
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 Incorporating existing wet-areas mapping techniques into the landscape-scale analysis 

would allow the quantification of the relationship between each landform element and its 

likelihood to have saturated soils, which would determine which landform elements have the 

greatest association with hydric soils and, potentially, wetlands. It would be beneficial to identify 

landform elements with a high proportion of saturated soils to improve where these landform 

elements are placed in wetland reclamation plans and could create more robust guidelines for how 

to design wetland landscapes. 

 In addition, wet areas mapping has been shown to be a useful tool to delineate wetland 

locations (Murphy et al. 2007) and it would be beneficial to test if this process could improve the 

accuracy of wetland inventories in Alberta. Alberta’s wetland inventory has been identified as 

having inconsistent accuracy across its extent (Evans et al. 2017), which limits the research that 

can be conducted on relating topographic characteristics with specific wetland location. If wet 

areas mapping could improve the accuracy of Alberta’s wetland inventory, it would allow this 

research to be extended to not just the topographic characteristics of wetland landscapes as a whole, 

but also quantify the topographic characteristics both within and surrounding wetland sites.  

2.2 Landscape Evolution Models 

Natural landscapes and their landform elements are assumed to be mature features that are less 

prone to erosion and landscape change than constructed landscapes (Martin-Duque et al. 2010, 

Thiffault et al. 2017, Ayres et al. 2006). The spatial pattern and composition of landform elements 

have been defined for landscapes along a gradient of disturbance, which provides an opportunity 

to test the assumption that natural landscapes are less prone to erosion (Martin-Duque et al. 2010) 

by using landscape erosion models. Existing soil erosion models could be applied to landscapes at 

each disturbance level and individually to each landform element to estimate the volume of 

sediment that would erode in each scenario. In addition to testing a landscape’s resilience to 

erosion, this method would also provide a useful summary of landform elements that are least 

likely to experience erosion, which may assist in limiting soil erosion in future reclamation projects 

(Ayres et al. 2006).  

 Soil erosion is an important factor to consider when designing wetland landscapes for 

reclamation because soil loss can alter the created landscape shape and anticipated surface water 

flow paths (Hancock et al. 2008, Martin-Duque et al. 2010), decrease downstream water quality 
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(Martin-Duque et al. 2010), and impact the soil’s nutrient availability and productive capability 

(Erwin 2009, Wall et al. 2002). To anticipate how resilient each landform element is to erosion 

and to model how a designed landscape’s shape will evolve over time, traditional soil erosion 

models and more robust landscape evolution models, which simulate how a landscape’s surface 

will change following years of erosion and deposition (Ayres et al. 2006), can be applied to 

landscapes with defined topographic characteristics. 

 Traditional soil erosion models estimate the erosion processes of soil detachment and 

deposition along a single hillslope based on set of input parameters that typically include slope 

length and angle, rainfall, soil type, and vegetation cover (Wall et al. 2002). These models, such 

as the Revised Universal Soil Loss Equation (RUSLE) and Water Erosion Prediction Program 

(WEPP), typically calculate erosion along a two-dimensional hillslope and multiple model 

iterations are often linked together to estimate landscape-scale erosion (Taylor et al. 2016). While 

these soil erosion models are useful for estimating rill erosion along a hillslope or in a watershed, 

they are not able to simulate how a landscape will evolve with continuous erosion and deposition 

over geomorphic time scales (Ayres et al. 2006). To simulate the future erosion of natural and 

disturbed landscapes, landscape evolution models could be used. 

 Landscape evolution models quantify the erosion response of a landscapes over long time 

scales and model the changes to a landscape’s topography as erosion or deposition occurs (Ayres 

et al. 2006, Coulthard 2001). Two popular landscape evolution models are SIBERIA, which 

requires annual precipitation, a calibrated fluvial sediment transport equation, soil particle size, 

and topography parameters to simulate annual topographic evolution and erosion (Ayres et al. 

2006, Willgoose, 2005), and CAESAR, which has a greater emphasis on hydrology and requires 

hourly rainfall, soil particle size, and topography to simulate a landscape’s hourly erosion response 

(Hancock et al. 2010). While these two models have been shown to produce similar results after 

1,000 years (Hancock et al. 2010), SIBERIA requires greater effort to set up and calibrate due to 

its dependence on a fluvial sediment transport equation than the CAESAR model (Hancock et al. 

2010). 

 Landscape evolution models have been used in landform design and modelling for 

reclamation planning but have been limited to individual sites and projects (e.g., Taylor et al. 

2006). If this research was extended by applying landscape evolution models to the thousands of 
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different landscapes analyzed in this study, it would define a unique classification of the erosion 

response of landscapes along a gradient of disturbance and natural region. However, CAESAR 

and SIBERIA are sensitive to the accuracy of input parameters (Hancock et al. 2010), which limits 

the applicability of landscape evolution models to regions that have soil particle and hydrology 

data available at a high enough resolution to accurately model sediment transport and landscape 

evolution. 

 Applying a landscape evolution model to the study landscapes would provide insight on 

how each landform element responds to erosion and provide a clear example of how topographic 

baseline characteristics can be implemented in landscape design simulations. Running multiple 

iterations of a landscape evolution model using a range of landscapes with varying topographic 

roughness and landform element composition and configuration would allow us to determine what 

topographic characteristics are most resilient to erosion. 

3 Expected Contributions and Broader Implications 

This thesis has made contributions to wetland management and policy while also contributing to 

the academic terrain analysis and landscape ecology communities. The contributions and 

implications of the research have been divided into these two key areas: management and policy, 

and academic. 

3.1 Management and Policy 

As identified in Chapter 1, a goal of this thesis was to define baseline topographic characteristics 

of natural wetland landscapes to improve our understanding of these landscapes and improve the 

design of future wetland landscape reclamation projects. I have defined a set of terrain metrics that 

have been statistically proven to capture differences in topographic variation and spatial structure 

of wetland landscapes across natural regions and increasing levels of disturbance (Appendix 5).  

 The terrain roughness and landform element results can be utilized as a quantitative 

baseline in reclamation design of wetland landscapes since it has been shown that topographic 

variability and spatial pattern differs by natural region and between high-disturbance landscapes 

and landscapes with less than 80 % disturbance. While there were some exceptions, the research 

also shows that reclamation planners can establish baseline roughness and spatial pattern 
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characteristics for landscapes within the same natural region as long less than 80 % of the 

landscape is disturbed. 

 In addition, the quantified topographic characteristics will contribute to ongoing research 

on characterizing wetland landscapes that will culminate in the creation of a tool to assist wetland 

reclamation at a landscape scale in Alberta. Future research will work to develop a wetland 

reclamation tool using a combination of topographic roughness and landform metrics, biologic 

features, land cover metrics (Evans et al. 2017), and future climate scenarios. The tool will be used 

to inform stakeholders involved in wetland reclamation on the necessary biophysical and 

geophysical characteristics that should exist within a reclaimed wetland ecosystem based on the 

characterization of existing, healthy wetlands. 

 We hope that the quantified topographic characteristics will assist the Government of 

Alberta to achieve their Water for Life goals, through which the province is striving to better 

understand wetland landscapes and improve wetland reclamation (Alberta Environment, 2003; 

Alberta Water Council, 2008). As was stated in Chapter 1, natural topographic characteristics have 

not been clearly defined in wetland reclamation guidelines and, by defining these characteristics, 

I hope to contribute to future wetland reclamation policy by outlining clearer guidelines to 

incorporate natural topographic characteristics into reclamation plans. 

3.2 Academic 

A second goal of this thesis was to define a clear methodology to analyze continuous landscape-

scale elevation data and by doing so, I hope to contribute to the academic disciplines of landscape 

ecology and terrain analysis. The research methodology describes a process to quantify and 

compare the spatial pattern and roughness of topography in wetland landscapes at various 

disturbance levels and within three different natural. I believe this to be a unique method that has 

not previously been completed in terrain analysis or landscape ecology literature. 

 While the research was applied to a specific geographic region, southern Alberta, the 

methodology could be replicated and applied to other locations and the baseline topographic 

characteristics quantified can be used as a comparison for future studies. 
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Appendix 1 - Primary Terrain Metrics 

Table 1.1 Frequently used primary terrain metrics. Sources that have used or referenced a terrain metric are marked using an ‘x’ under the authors’ name 
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Upslope Height Average height of upslope area           x   

Aspect The azimuth angle of the slope x x x  x    x x x x  

Slope The gradient of the land surface x x x x x  x x x x x x x 

Upslope slope The mean gradient of the upslope area   x        x x  

Dispersal slope The mean gradient of the dispersal area   x        x x  

Catchment slope 
The average gradient over the whole 

catchment 
  x        x   

Upslope area 
The catchment area above a short length of 

contour 
x  x  x  x x x  x x  

Dispersal Area 
The area downslope from a short length of 

contour 
  x        x   

Catchment Area The area draining to a catchment outlet x x x  x     x x   

Specific Catchment 

area 
Upslope area per unit width of contour   x        x   

Flow path length 
The maximum distance of water flow to a 

given point in the catchment 
 x x  x  x  x  x x x 
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Upslope length 
Mean length of flow paths to a point in the 

catchment 
  x        x   

Dispersal length 
Distance from a point in the catchment to 

the outlet point 
  x        x   

Catchment length 
Distance from the highest elevation point 

to the outlet point 
  x        x   

Profile curvature 
The profile curvature of the slope, which 

influences the rate of water flow 
x x x x      x x x  

Plan curvature 

The contour curvature, which influences 

the convergence on divergence of water 

flow 

x x x       x x x  

Mean Curvature 
An average of the calculated profile and 

plan curvature values 
 x            

Topographic 

Position Index 

The difference between a cell's elevation 

and the average elevation of the 

surrounding cells 

x  x         x  

Flow Routing 
The cell-by-cell direction which water 

would flow on the landscape. 
x  x x  x x x x x x  x 
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Table 1.2 Ecological significance of primary terrain metrics (Ågren et al. 2014, Wilson 2012, White et al. 2012, Olaya 

2009, Wilson and Gallant 2000) 

Terrain Metric Name Ecological or Geophysical Significance 

Aspect 
Can be used to determine the direction of flow, ground latent and sensible heat flux, and 

distribution of flora or fauna 

Catchment Area 
In combination with catchment slope, determines the total runoff volume of the study 

area 

Catchment length Impacts the overland flow that will be attenuated into local storage 

Catchment slope 
In combination with catchment area, the average slope helps determine total runoff 

volume of the area 

Depth to Water 

(DTW) 

Can be used to determine the location and extent of wet areas on a landscape, including 

wetlands, ponds, and streams, and can calculate the water table elevation 

Dispersal Area In combination with dispersal slope, determines the rate of soil drainage 

Dispersal length 
The total distance from a point to the outflow of the catchment would describe the 

impedance to soil drainage of the point 

Dispersal slope 
In combination with dispersal area, the average slope helps determine the rate at which 

wetland would drain 

 Flow path length 
The total distance that water flows to a given point influences the erosion rates and total 

sediment yield at that point 

Flow Routing 
The path that overland water would flow impacts the volume of water that accumulates 

and the location of saturated land 

Mean Curvature 
The average of both plan and profile curvature can be used to estimate both the 

acceleration and divergence of water flow 

Plan curvature Influences whether water flow is diverging or converging and the soil water content 

Profile curvature 
Influences the acceleration or deceleration of flowing water and the erosion or deposition 

rate 

Roughness 
The roughness of the landscape can be used to characterize the exposure of the landscape 

to wind and wind directions 

Slope 
A key component in the calculation of the rate of overland and subsurface flow, soil 

moisture content, and is an input in many other terrain metrics 

Specific Catchment 

area 

The catchment area for a specific elevation region impacts runoff volume, soil-water 

content, and runoff rate for that region 

Strahler Stream 

Order 

Calculating the presence of streams in the landscape can be used to indicate presence of 

saturated soil. The closer a cell is a to a higher order stream, the more likely the ground 

will be saturated. 

Stream-power 

indices 

Its output provides a measure of the erosive power of certain reach of flowing water, with 

influences sediment yield of the stream and erosion potential 
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Topographic 

Depression Status 

The value of this metric describes the ability of surface water to accumulate in an area of 

lower elevation than the surrounding area, a high value designates an area with a 

topographic depression and would be a likely area for a wetland  

Topographic Position 

Index 

Its measurement of the ridges, valleys, and flat areas of a region can be used to find 

regions that would likely contain wetter soil and potentially wetland ecosystems 

Topographic 

Wetness Index 

Used to predict the location and extent of zones of saturation, which can contribute to 

runoff generation and surface water ponding and is an indication of a wetland ecosystem 

Upslope area 
In combination with upslope slope, determines the runoff volume of an upslope area, 

which influences the water availability for the point of interest and downslope regions 

Upslope Height 
It can be used to estimate the potential energy of the system, since it is based on the 

height of the local topographic high 

Upslope length 
Influences flow acceleration and the rate of erosion above a certain point of interest, can 

be used to determine the water flow and sediment load into a wetland 

Upslope slope Average slope of upslope area would determine the speed of runoff into the wetland 
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Appendix 2 - Secondary Terrain metrics 

Table 2.1 Commonly used secondary terrain metrics. Sources that have used or referenced a terrain metric are marked with an ‘x’ under the authors’ name 

Name Description 
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Roughness 
The complexity or variability in 

the catchment terrain 
    x         x  x 

Topographic 

Depression 

Status 

Calculates the ability of surface 

water to accumulate in 

depressions in the surface 

           x  x   

Strahler Stream 

Order 

Calculates the strahler stream 

order of the local stream network 

to determine the distance of each 

cell to a higher order stream 

 x   x        x    

Topographic 

Wetness Index 

Quantifies the topographic 

control on hydrologic processes, 

variations in the calculation are 

based on different flow routing 

algorithms 

x x x x x x x x x x x  x  x x 

Depth to Water 

The elevation difference between 

a point and the closest open 

water feature 

x x     x x x     x   

Stream-power 

indices 

A measure of the erosive power 

of flowing water  
 x   x x         x x 
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Appendix 3 - Wetland Reclamation Design Guidelines 

Table 3.1 Overview of wetland reclamation design guidelines 

Organization Guidelines 
Shoreline Slope 

Ratio 

Alberta Transportation (Alberta 

Transportation 2014) 

Gentle slopes surrounding a wetland at a 2:1 or 3:1 

height to length ratio that will guide runoff into a 

wetland and irregular shorelines for the wetland 

itself 

3:1 adjacent to 

open water; 6:1 in 

the littoral zone; 

variable slopes 

after. 

United States Environmental 

Protection Agency (EPA 2015) 

Recommends selecting sites for reclamation that 

have gradual slopes and can be easily altered. 

Primarily recommends finding sites with natural 

topography rather than constructing a landscape to 

mimic natural topography. 

N/A 

United States Environmental 

Protection Agency (EPA 2000) 

Use existing natural landforms and gravity when 

designing wetlands. Ensure wetland and adjacent 

land have topographic variability and diversity. 

N/A 

City of Saskatoon (CH2MHILL 

2013) 

Design should have the goal of attaining 

‘naturalistic’ features that mimic existing natural 

wetlands, including undulating boundaries and 

natural landform shapes. 

Wetland itself should have a length to width ratio 

greater than 1:1 with some consensus of ideal ratio 

between 2:1 < L:W < 4:1. 

3.5:1 or lower 

slope angle directly 

adjacent to the 

wetland. 
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Appendix 4 - Roughness Metric Calculation 

The DEV metric calculates a value for each cell that describes the cell’s deviation from the mean 

elevation of a surrounding region of a user-defined size (Lindsay et al. 2015; De Reu et al. 2013). 

This metric was adapted for this study by using the mean elevation of each sample landscape 

and subtracting this average value from each elevation value in the landscape. The result was a 

measure of each cell’s deviation from the mean landscape elevation and the absolute value of 

the deviation was then calculated. Finally, the average of the absolute deviation from mean 

elevation was calculated for each landscape. This calculation methodology for the DEV metric 

results in each landscape having a single value for average deviation from mean elevation while 

ensuring that a true representation of the elevation variation is retained. 

Three standard deviation based metrics were all calculated using a similar formula but 

with three different inputs: elevation, profile curvature, or slope. Each metric is calculated by 

finding the standard deviation of the input values within a defined region, either focally using a 

moving window then obtaining the average value for each landscape or globally using the entire 

distribution of values in a landscape. Standard deviation is calculated by squaring the result of 

subtracting the mean value of a region from a given cell within the region, this is repeated for 

each cell in the region and all resultant values are summed together. Finally, the summed values 

are divided by the number of cells in the region and the square root is then taken. Standard 

deviation is a straight forward method of quantifying elevation variation occurring within a 

region (Grohmann 2011). 

A cell’s area in a digital elevation model is not the true area of the surface since it does 

not incorporate the additional area created by a sloping land surface (Rashid 2010). A proxy for 
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a region’s surface roughness can be quantified by finding the ratio between a region’s 2-

Dimensional surface area and its true 3-Dimensional surface area. The area ratio metric is 

calculated by first finding 3D area by dividing the 2D area, simply the length multiplied by the 

width of each 5x5 window (2,500 m2), by the cos of the slope (Equation 1). The 3D area is then 

divided by the 2D area to find the area ratio value, where a value of 1 would indicate a flat 

surface and a moderately hilly region would have a value of 1.3 (Rashid 2010). For example, a 

region with a maximum slope of 11 degrees would have a 3D surface area equal to 2,546.86 m2 

(2,500 / cos (11)) or 2,500 / 0.9816), which would result in an area ratio of 1.0187 

Equation 1: 3D area calculation 

3𝐷𝑎𝑟𝑒𝑎 = (2𝐷𝑎𝑟𝑒𝑎)/ cos(𝑠𝑙𝑜𝑝𝑒) 

Slope variability is a measure of the range in slope values that occur within a defined 

region. It is calculated by subtracting a region’s minimum slope value from the same region’s 

maximum slope value (Grohmann 2011). The simplicity of this equation allows slope variability 

to be implemented at a variety of scales and was calculated directly for each landscape as well 

as focally with a moving 5X5 window then averaged across each landscape. 

Vector dispersion is quantified by defining unit vectors normal to the cell plane based on 

each cell’s slope and aspect. Vector strength and dispersion are then calculated using a series of 

equations (Equation 2) and can be used to understand the roughness of a surface. Areas with 

high roughness will result in low vector strength and high vector dispersion, with the opposite 

occurring in regions with a smooth surface. 

Equation 2: Vector Dispersion Calculation.  

Colatitude =  90.0 –  Slope 

𝑥𝑖 =  sin(𝐶𝑜𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) ∗ cos(𝐴𝑠𝑝𝑒𝑐𝑡)    y𝑖 =  sin(𝐶𝑜𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) ∗ sin(𝐴𝑠𝑝𝑒𝑐𝑡)    𝑧𝑖 =  cos(𝐶𝑜𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) 
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𝑥𝑖̅ =  ∑ x𝑖

𝑚1

𝑖=1

           𝑦𝑖̅ =  ∑ y𝑖

𝑚1

𝑖=1

          𝑧𝑖̅ =  ∑ 𝑧𝑖

𝑚1

𝑖=1

 

𝑉𝑒𝑐𝑡𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ =  √𝑥𝑖̅
2 + 𝑦𝑖̅

2 + 𝑧𝑖̅
2 

𝑉𝑒𝑐𝑡𝑜𝑟 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 =  1/ (
𝑁 − 1

𝑁 − 𝑉𝑒𝑐𝑡𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ
) 

Note: 𝑚1 is a 5x5 cell window centered on cell 𝑖, N = number of cells in window (15) 
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Appendix 5 - Representative Metrics Summary Statistics and Boxplots 

Table 5.1 Mean and Standard deviation values for representative TRMs for each natural region and disturbance group. Values are rounded to two decimal places 

for visual clarity, except for Area Ratio, which required four decimal places, and Inverse Vector Dispersion, which was best shown using scientific notation. 

  Disturbance (%) 0 - 20 20 - 40 40 - 60 60 - 80 80 - 100 

  Metric Name median SD median SD median SD median SD median SD 

Boreal FclSlpVar 0.69 0.79 0.89 0.86 0.67 0.78 0.67 0.67 0.43 0.47 

  GblSlpVar 5.04 4.82 6.44 5.42 4.87 4.80 5.00 4.65 3.12 3.18 

  AreaRatio 1.0004 0.002 1.0006 0.002 1.0004 0.001 1.0003 0.001 1.0002 0.001 

  GblDEV 2.91 3.91 3.50 4.98 3.33 3.00 3.14 3.32 2.41 2.11 

  FclInvVecDisp 1.07E-02 7.17E-04 1.08E-02 6.80E-04 1.07E-02 8.17E-04 1.08E-02 7.64E-04 1.04E-02 7.44E-04 

Parkland FclSlpVar 1.21 1.13 1.49 1.50 1.68 1.04 1.26 1.01 0.61 0.57 

  GblSlpVar 7.09 5.90 7.40 8.01 9.47 7.08 6.76 5.81 3.99 3.71 

  AreaRatio 1.0007 0.002 1.0011 0.005 1.0013 0.003 1.0007 0.002 1.0002 0.001 

  GblDEV 3.15 3.90 4.35 9.28 5.12 6.20 3.61 4.09 2.17 2.50 

  FclInvVecDisp 1.05E-02 4.67E-04 1.05E-02 4.88E-04 1.08E-02 4.27E-04 1.08E-02 6.07E-04 1.06E-02 7.68E-04 

Grassland FclSlpVar 0.83 1.19 0.80 0.95 1.00 1.05 0.90 0.81 0.53 0.47 

  GblSlpVar 5.58 6.80 5.29 6.09 5.74 7.09 5.85 6.30 3.54 3.90 

  AreaRatio 1.0005 0.004 1.0004 0.002 1.0006 0.003 1.0005 0.001 1.0002 0.001 

  GblDEV 3.35 5.39 3.51 3.51 3.39 4.32 3.54 3.36 2.50 2.48 

  FclInvVecDisp 1.07E-02 6.65E-04 1.06E-02 6.62E-04 1.08E-02 5.89E-04 1.08E-02 7.35E-04 1.07E-02 8.04E-04 
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Fig. 5.1 Boxplots of representative TRMs: Area Ratio (a), focal slope variability (b), global slope variability (c), 

focal inverse vector dispersion (d), and global deviation from mean elevation (e). 

a b 

c 
d 

e 
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Table 5.2 Median and standard deviation values for representative landscape metrics for each natural region and disturbance class. Values are rounded to two 

decimal places for visual clarity. 

  Disturbance (%) 0 - 20 20 - 40 40 - 60 60 - 80 80 - 100 

  Metric Name median SD median SD median SD median SD median SD 

Boreal GYRATE_AM 277.04 62.53 258.20 63.76 272.48 57.23 274.39 53.21 287.58 44.53 

  PROX_AM 2.11 32.28 5.33 23.48 2.47 19.59 2.59 40.41 1.62 32.40 

  SIDI 0.51 0.18 0.56 0.16 0.51 0.14 0.50 0.12 0.49 0.12 

  SHEI 0.51 0.21 0.54 0.17 0.52 0.18 0.52 0.19 0.55 0.24 

  SHAPE_AM 1.92 1.02 1.96 0.46 1.83 0.40 1.87 0.44 1.80 0.39 

  ENN_AM 65.18 65.90 66.87 55.06 65.80 67.26 85.90 73.43 83.13 83.79 

  CONNECT 13.64 15.25 14.98 14.99 14.29 16.89 15.15 14.31 15.30 16.09 

Parkland GYRATE_AM 251.84 89.06 211.55 83.84 214.58 67.47 241.01 68.76 276.59 48.38 

  PROX_AM 6.06 20.48 6.46 17.14 10.43 18.82 7.89 17.06 3.61 40.51 

  SIDI 0.60 0.22 0.69 0.18 0.69 0.14 0.60 0.14 0.50 0.11 

  SHEI 0.58 0.24 0.63 0.19 0.61 0.16 0.53 0.17 0.50 0.22 

  SHAPE_AM 2.12 0.52 2.08 0.47 2.20 0.42 2.21 0.45 1.94 0.44 

  ENN_AM 42.65 56.29 51.58 52.97 53.11 48.53 53.13 53.53 74.95 67.33 

  CONNECT 8.96 8.42 9.43 12.92 10.45 7.76 11.04 11.67 14.47 12.83 

Grassland GYRATE_AM 262.28 68.38 256.65 66.78 254.04 58.67 259.62 62.09 276.85 43.47 

  PROX_AM 5.41 31.55 5.76 24.01 6.33 22.95 4.99 23.01 1.96 30.98 

  SIDI 0.54 0.15 0.54 0.14 0.57 0.14 0.54 0.14 0.50 0.10 

  SHEI 0.56 0.19 0.59 0.19 0.53 0.16 0.52 0.18 0.51 0.22 

  SHAPE_AM 2.01 0.42 2.01 0.39 1.97 0.41 1.99 0.45 1.85 0.38 

  ENN_AM 69.29 61.33 70.18 52.96 81.92 57.38 71.20 71.27 79.77 78.12 

  CONNECT 13.44 13.03 14.44 14.34 13.64 11.87 14.62 11.89 15.98 16.23 
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Fig. 5.2 Boxplots of representative landscape metrics. Colour gradient denotes natural region and each boxplot’s 

x-axis denotes the proportion of disturbance
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Appendix 6 - Landform Classification Calculation 

The slope metric was calculated using the D8-algorithm and was classified into three classes to 

designate flat regions (zero degree slopes), low slope regions (greater than zero and less than 

three degrees slopes), and high slope regions (greater than three degrees slopes) (Table 4.1). 

Classification ranges were selected based on the understanding that a three-degree slope 

threshold value corresponds with a change in hydrologic activity (Macmillan et al. 2000). 

Profile curvature was calculated based on Zeverbergen and Thorne’s (1987) algorithm, 

which produces profile curvature signs opposite to alternative algorithms (Pennock et al. 1987, 

MacMillan et al. 2000) and requires care to ensure congruence with literature-derived landform 

classification criteria. Threshold values for each profile curvature class varies from 0.1 Deg/100 

m (Pennock et al. 1987, Reuter et al. 2006) to 10 Deg/100 m (MacMillan et al. 2000). Iterative 

geovisualization of threshold values at 0.01, 0.05, 0.1, 1, and 10 resulted in the selection of a 

+/- 0.05 Deg/100 m profile curvature threshold value based on its ability to best visually 

represent the elevation contours in this study area. The profile curvature was reclassified to 

define convex (water shedding), linear, and concave (water ponding) regions (Table 4.1). 

 Plan curvature was also calculated based on Zeverbergen and Thorne’s (1987) algorithm 

but produced plan curvature signs in agreement with existing landform literature (Pennock et 

al. 1987, MacMillan et al. 2000). Following an iterative process similar to the profile curvature 

process, a threshold value of +/- 0.05 was selected for plan curvature. Negative values (< -0.05) 

designate horizontally concave surfaces that would experience converging flow while positive 

values (> 0.05) designate horizontally convex surfaces that would experience diverging flow. 

Zero values (- 0.05 - + 0.05) designate horizontally linear surfaces (Table 4.1). 
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A deviation from mean elevation (DEV) metric was calculated that quantified each 

cell’s deviation from a landscape’s mean elevation to quantify high and low elevation regions 

in each landscape. The DEV metric calculation followed a similar methodology to the DEV 

metric outlined in the roughness analysis section but with small modifications to ensure the 

metric output was suitable for landform classification. This study’s use of the DEV metric 

differs from existing DEV calculations (e.g., Lindsay et al. 2015, De Reu et al. 2013) by using 

the mean elevation of each 1 km sq landscape, whereas existing studies calculate the mean 

elevation surrounding each cell using a moving window. The mean elevation of the entire 

landscape was used to ensure that the metric output highlighted the high and low elevation 

regions of each landscape, rather than localized elevation extremes in a moving window. Each 

cell’s elevation value was subtracted from the mean elevation of the landscape and then divided 

by the standard deviation of each landscape’s elevation. Dividing the elevation deviation by the 

standard deviation improves the interpretation of the DEV metric and allowed most of the 

metric values to fall between -1 and 1 (De Reu et al. 2013). The DEV metric was then 

reclassified to create three distinct classes of low elevation position (< -0.5), middle elevation 

position (-0.5 – 0.5), and high elevation position (> 0.5) (Table 4.1). 
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Table 6.1 Value ranges used to reclassify input terrain metrics for landform element classification (Pennock et al. 

1987, MacMillan et al. 2000, Reuter et al. 2006). 

Metric Class Range Class Value Description 

Deviation from mean < -0.5 1000 Low Elevation Regions 

elevation (DEV) -0.5 – 0.5 2000 Mid Elevation Regions 

 >0.5 3000 High Elevation Regions 

Slope 0 100 No Slope 

(Degrees) 0 – 3 200 Low Slope 

 >3 300 High Slope 

Profile Curvature < - 0.05 10 Convex (Shedding) 

(1/100 m) -0.05 – 0.05 20 Linear 

 >0.05 30 Concave (Ponding) 

Plan Curvature < - 0.05 1 Concave (Converging) 

(1/100 m) -0.05 – 0.05 2 Linear 

 >0.05 3 Convex (Diverging) 

 The reclassified terrain metrics (Table 4.1) were summed together to generate distinct 

topographic features with unique class codes that describe the range of each input terrain metric. 

For example, topographic feature 1231 would refer to a feature in the low elevation position 

with a low slope (0 – 3 Degrees), concave profile curvature (> 0.05 1/100 m), and concave plan 

curvature (< - 0.05 1/100 m). The class creation process generated 57 unique topographic 

features from which landform elements were defined by grouping features (In text Table 3) 

based on established landform classification criteria (MacMillan et al. 2000, Reuter et al. 2006). 
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Appendix 7 - Landscape Metric Calculation 

Area-weighted mean was calculated for each metric that used distribution statistics. The following equations display how the distribution 

statistics are calculated, where 𝑋 designates the specific metric of interest, and 𝑎𝑖𝑗 is the area of patch 𝑖𝑗. 

 

Area-weighted mean equation: 

𝐴𝑀 = ∑ ∑ [𝑋𝑖𝑗 (
𝑎𝑖𝑗

∑ ∑ 𝑎𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1

)]

𝑛

𝑗=1

𝑚

𝑖=1

 

 

Table 7.1 Calculations and descriptions for the seven representative landscape metrics 

Type Metric Acronym Description Formula Units Range 

A
re

a/
E

d
g

e 

Radius of Gyration GYRATE 

Describes how far a landform element reaches, 

measured by the distance between each cell in an 

element and the element's centroid 

∑ ℎ𝑖𝑗𝑟
𝑍
𝑟=1

𝑍
 Metres GYRATE ≥ 0 

S
h

ap
e Shape Index SHAPE 

Measures how irregular the shape of each landform 

element patch is, with 1 representing a square patch 

𝑝𝑖𝑗

min 𝑝𝑖𝑗

 None SHAPE ≥ 1 

A
g

g
re

g
at

io
n

 

Euclidean Nearest 

Neighbour 
ENN 

Measures the distance from the edge of each 

landform element to the nearest patch of the same 

element, describes how isolated each landform 

element is within a landscape 

ℎ𝑖𝑗 Metres ENN > 0 
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Type Metric Acronym Description Formula Units Range 
A

g
g

re
g

at
io

n
 

Proximity Index PROX 

Measures how close landform elements of the same 

type are by dividing the patch area by the distance 

to the edge of a patch of the same landform element 

type 

∑
𝑎𝑖𝑗𝑠

ℎ𝑖𝑗𝑠2

𝑛

𝑠=1

 None PROX ≥ 0 

A
g

g
re

g
at

io
n

 

Connectance Index CONNECT 

Describes how connected the landform element 

patches are by searching for the same landform 

element within 100 m of each element 

[
∑ 𝑐𝑖𝑗𝑘

𝑛
𝑗≠𝑘

𝑛𝑖(𝑛𝑖 − 1)
2

] (100) Percent 0 ≤ CONNECT ≤ 100 

D
iv

er
si

ty
/ 

E
v

en
n

es
s Simpson’s 

Diversity Index 
SIDI 

A measure of how diverse landform elements are 

within a sample landscape, based on the probability 

that two randomly selected pixels would be from 

different landform elements 

1 − ∑ 𝑃𝑖
2

𝑚

𝑖=1

 None 0 ≤ SIDI < 1 

D
iv

er
si

ty
/ 

E
v

en
n

es
s Shannon’s 

Evenness Index 
SHEI 

Describes the distribution of landform elements in 

a landscape, a SHEI value close to 1 indicates that 

landform elements within a landscape have an even 

distribution of area 

− ∑ (𝑃𝑖 ∗ ln 𝑃𝑖)𝑚
𝑖=1

ln 𝑚
 None 0 ≤ SHEI < 1 

𝑎𝑖𝑗= area of landform element 𝑖𝑗 

ℎ𝑖𝑗 = distance from element 𝑖𝑗  to 

nearest element of the same type 

ℎ𝑖𝑗𝑟 = distance between cell 𝑖𝑗𝑟  and 

centroid of element 𝑖𝑗 

𝑍 = number of cells in element 𝑖𝑗 

𝑃𝑖  = proportion of landscape occupied by element 𝑖 

𝑝𝑖𝑗  = perimeter of element ij 

𝑎𝑖𝑗𝑠= area of element 𝑖𝑗𝑠 within defined neighbourhood (m) of element 𝑖𝑗 

𝑐𝑖𝑗𝑘  = joining between element 𝑗  and 𝑘  of element type 𝑖  where 0 = 

unjoined and 1 = joined  

ℎ𝑖𝑗𝑠 = edge-to-edge distance between 

element 𝑖𝑗𝑠 and element 𝑖𝑗𝑠 

𝑚  = number of element types in the 

landscape 

𝑛𝑖 = number of elements in the landscape 

of the same type 
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Appendix 8 - Correlation Grouping for Roughness Metrics 

 

Table 8.1 TRM groups based on correlation analysis, where the prefix Fcl designates the focal calculation method and the prefix Gbl designates the global 

calculation method. 

Representative Other Group Members 

Focal Slope Variability FclPrfCrv GblPrfCrv  FclDEV  FclSDSlp FclSDElev 

Global Slope Variability GblSDSlp         

Area Ratio           

Global DEV GblSDElev       

Focal Inv. Vector 

Dispersion           
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Appendix 9 – Full Tables for Roughness and Landform Analysis Results 

Table 9.1 Differences between landscapes with different proportions of disturbance for each TRM by natural 

region, calculated using a Kruskal-Wallis test. Chi-squared, degrees of freedom and p-value reported 

  Metric Chi-squared (H) d.f. p 
B

o
re

al
 

Focal Slope Var. 88.26 4 3.09E-18 

Global Slope Var. 97.14 4 4.01E-20 

Area Ratio 85.48 4 1.20E-17 

Global DEV 42.95 4 1.06E-08 

Inv. Vector Dispersion 36.65 4 2.13E-07 

P
ar

k
la

n
d
 

Focal Slope Var. 145.34 4 2.03E-30 

Global Slope Var. 131.73 4 1.66E-27 

Area Ratio 127.53 4 1.32E-26 

Global DEV 84.70 4 1.76E-17 

Inv. Vector Dispersion 15.59 4 3.62E-03 

G
ra

ss
la

n
d

 

Focal Slope Var. 112.39 4 2.25E-23 

Global Slope Var. 87.45 4 4.59E-18 

Area Ratio 83.81 4 2.71E-17 

Global DEV 38.79 4 7.69E-08 

Inv. Vector Dispersion 6.63 4 1.57E-01 

 

Table 9.2 Differences in landscapes in different natural regions with the same disturbance level by TRM, 

calculated using Kruskal-Wallis. P-values shown first followed by H statistic in brackets, all tests have 2 degrees 

of freedom 

  Disturbance (%) 

Metric  0-20 20-40 40-60 60-80 80-100 

Focal Slope Var. 

<0.001 

(29.64) 0.012 (8.85) 

<0.001 

(48.04) 

<0.001 

(37.25) 

<0.001 

(38.01) 

Global Slope Var. 0.008 (9.75) 0.008 (9.78) 

<0.001 

(30.65) 

<0.001 

(19.56) 

<0.001 

(21.91) 

Area Ratio 0.003 (11.96) 0.030 (6.98) 

<0.001 

(32.87) 

<0.001 

(16.83) 

<0.001 

(16.4) 

Global DEV 0.030 (7.02) 0.133 (4.03) 0.001 (14.17) 0.190 (3.32) 0.114 (4.34) 

Inv. Vector Dispersion 0.106 (4.49) 0.004 (11.19) 0.966 (0.07) 0.996 (0.01) 0.001 (14.35) 
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Table 9.3 Differences in landscapes in different natural regions by TRM, calculated using a Bonferroni corrected 

Dunn’s Test. P-values shown first followed by H statistic and Z value in brackets 

Natural Region Boreal Parkland 

Parkland 

Focal Slope Var. <0.001 (36.12, -5.4)  

Global Slope Var. 0.010 (7.12, -2.31)  

Area Ratio 0.040 (7.85, -1.75)  

  

Grassland 

Focal Slope Var. <0.001 (36.12, -4.81)  

Global Slope Var. 0.013 (7.12, -2.24)  

Area Ratio 0.003 (7.85, -2.74) 

Global DEV 0.004 (6.89, 2.61)  

Inv. Vector Dispersion 0.009 (5.57, 2.35) 

 

Table 9.4 Differences in landscapes with different levels of disturbance in the Boreal natural region by TRM. 

Significant TRMs are displayed in the matrix followed by their respective p-value first then H statistic and Z value 

in brackets, calculated using a Bonferroni corrected Dunn’s Test 

Disturbance 

Class (%) 
0 – 20 20 – 40 40 – 60 60 – 80 

20 – 40 

Focal Slope Var. 

0.002 (88.26, -3.57)  

Global Slope Var. 

0.027 (97.13, -2.78)  

Area Ratio 0.005 

(85.47, -3.27)  

Global DEV 0.008 

(42.95, -3.14) 

      

40 – 60 None None     

60 – 80 None 
Focal Slope Var. 

0.044 (88.26, 2.62) 
None   

80 – 100 

Focal Slope Var. 

<0.001 (88.26, 6.47)  

Global Slope Var. 

<0.001 (97.13, 7.57)  

Area Ratio <0.001 

(85.47, 6.55)  

Global DEV 0.004 

(42.95, 3.38)  

Inv. Vector 

Dispersion <0.001 

(36.65, 3.95) 

Focal Slope Var. 

<0.001 (88.26, 8.32)  

Global Slope Var. 

<0.001 (97.13, 8.37)  

Area Ratio <0.001 

(85.47, 8.08)  

Global DEV <0.001 

(42.95, 5.58)  

Inv. Vector 

Dispersion <0.001 

(36.65, 4.39) 

Focal Slope Var. 

<0.001 (88.26, 5.62)  

Global Slope Var. 

<0.001 (97.13, 5.73)  

Area Ratio <0.001 

(85.47, 5.64)  

Global DEV <0.001 

(42.95, 4.53)  

Inv. Vector 

Dispersion <0.001 

(36.65, 4.36) 

Focal Slope Var. 

<0.001 (88.26, 5.63)  

Global Slope Var. 

<0.001 (97.13, 6)  

Area Ratio <0.001 

(85.47, 5.55)  

Global DEV <0.001 

(42.95, 4.13)  

Inv. Vector 

Dispersion <0.001 

(36.65, 4.61) 
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Table 9.5 Differences in landscapes with different levels of disturbance in the Parkland natural region by TRM. 

Significant TRMs are displayed in the matrix followed by their respective p-value and H statistic in brackets, 

calculated using a Bonferroni corrected Dunn’s Test 

Disturbance 

Class (%) 
0 – 20 20 – 40 40 – 60 60 – 80 

20 – 40 None       

40 – 60 

Focal Slope Var. 

0.023 (145.34, -1.12)  

Global Slope Var. 

0.024 (131.73, -1.65)  

Area Ratio 0.005 

(127.53, 1.63)  

Global DEV 0.001 

(84.7, -2.51) 

None     

60 – 80 

Inv. Vector 

Dispersion 0.037 

(15.59, -2.68) 

Inv. Vector 

Dispersion 0.02 

(15.59, -2.88) 

None   

80 – 100 

Focal Slope Var. 

<0.001 (145.34, 5.05)  

Global Slope Var. 

<0.001 (131.73, 4.47)  

Area Ratio <0.001 

(127.53, 4.17) 

Focal Slope Var. 

<0.001 (145.34, 5.52)  

Global Slope Var. 

<0.001 (131.73, 5.71)  

Area Ratio <0.001 

(127.53, 5.43)  

Global DEV <0.001 

(84.7, 4.89) 

Focal Slope Var. 

<0.001 (145.34, 8.39)  

Global Slope Var. 

<0.001 (131.73, 7.83)  

Area Ratio <0.001 

(127.53, 8.19)  

Global DEV <0.001 

(84.7, 6.83) 

Focal Slope Var. 

<0.001 (145.34, 7.67)  

Global Slope Var. 

<0.001 (131.73, 7.33)  

Area Ratio <0.001 

(127.53, 6.88)  

Global DEV <0.001 

(84.7, 5.40)  

Inv. Vector 

Dispersion 0.03 

(15.59, 2.74) 

 

Table 9.6 Differences in landscapes with different levels of disturbance in the Grassland natural region by TRM. 

Significant TRMs are displayed in the matrix followed by their respective p-value and H statistic in brackets, 

calculated using a Bonferroni corrected Dunn’s Test 

Disturbance 

Class (%) 
0 – 20 20 – 40 40 – 60 60 – 80 

20 – 40 None       

40 – 60 None None     

60 – 80 None None None   

80 – 100 

Focal Slope Var. 

<0.001 (112.39, 8.75)  

Global Slope Var. 

<0.001 (87.45, 7.95)  

Area Ratio <0.001 

(83.81, 7.70)  

Global DEV <0.001 

(38.79, 5.16) 

Focal Slope Var. 

<0.001 (112.39, 4.83)  

Global Slope Var. 

0.002 (87.45, 3.52)  

Area Ratio 0.001 

(83.81, 3.81)  

Global DEV 0.012 

(38.79, 3.04) 

Focal Slope Var. 

<0.001 (112.39, 6.45)  

Global Slope Var. 

<0.001 (87.45, 5.57)  

Area Ratio <0.001 

(83.81, 5.48)  

Global DEV 0.001 

(38.79, 3.63) 

Focal Slope Var. 

<0.001 (112.39, 6.70)  

Global Slope Var. 

<0.001 (87.45, 5.94)  

Area Ratio <0.001 

(83.81, 5.82)  

Global DEV <0.001 

(38.79, 3.94) 
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Table 9.7 Differences between landscapes with different proportions of disturbance for each landscape metric by 

natural region, calculated using a Kruskal-Wallis test. Chi-squared, degrees of freedom and p-value reported 

  
Metric 

Chi-squared 

(H) 
d.f. p 

B
o

re
al

 

GYRATE_AM 41.50 4 2.11E-08 

PROX_AM 15.76 4 3.36E-03 

SIDI 53.13 4 8.02E-11 

SHEI 15.93 4 3.12E-03 

SHAPE_AM 25.98 4 3.19E-05 

ENN_AM 20.04 4 4.91E-04 

CONNECT 3.62 4 4.60E-01 

P
ar

k
la

n
d
 

GYRATE_AM 88.76 4 2.42E-18 

PROX_AM 23.02 4 1.26E-04 

SIDI 103.51 4 1.76E-21 

SHEI 12.46 4 1.42E-02 

SHAPE_AM 33.29 4 1.04E-06 

ENN_AM 33.34 4 1.02E-06 

CONNECT 32.21 4 1.73E-06 

G
ra

ss
la

n
d

 

GYRATE_AM 59.36 4 3.96E-12 

PROX_AM 33.41 4 9.86E-07 

SIDI 71.44 4 1.13E-14 

SHEI 6.68 4 1.54E-01 

SHAPE_AM 37.95 4 1.15E-07 

ENN_AM 16.11 4 2.87E-03 

CONNECT 3.76 4 4.40E-01 
 

Table 9.8 Differences in landscapes in different natural regions with the same disturbance level by landscape 

metric, calculated using Kruskal-Wallis. P-values shown first followed by H statistic in brackets, all tests have 2 

degrees of freedom 

  Disturbance (%) 

Metric  0-20 20-40 40-60 60-80 80-100 

GYRATE_AM 
<0.001 

(38.13) 

0.026 

(7.33) 

<0.001 

(31.1) 

<0.001 

(25.85) 

<0.001 

(27.27) 

PROX_AM 
<0.001 

(27.27) 

0.655 

(0.85) 

<0.001 

(24.11) 

0.003 

(11.55) 

0.001 

(15.13) 

SIDI 
<0.001 

(26.51) 

0.014 

(8.47) 

<0.001 

(31.78) 

<0.001 

(19.98) 

<0.001 

(27.3) 

SHEI 
<0.001 

(17.88) 

0.019 

(7.93) 

0.095 

(4.7) 

0.943 

(0.12) 

0.054 

(5.84) 

SHAPE_AM 
<0.001 

(15.94) 

0.383 

(1.92) 

<0.001 

(23.14) 

<0.001 

(30.81) 0 (38.73) 

ENN_AM 
<0.001 

(18.19) 

0.33 

(2.22) 

0.034 

(6.77) 

0.002 

(12.66) 

0.073 

(5.24) 

CONNECT 
0.001 

(13.74) 

0.007 

(9.93) 

0.027 

(7.2) 

0.002 

(12.27) 

0.715 

(0.67) 
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Table 9.9 Differences in landscapes in different natural regions by landscape metric, calculated using a Bonferroni 

corrected Dunn’s Test. P-values shown first followed by H statistic and Z value in brackets 

Natural 

Region 
Boreal Parkland 

Parkland 

GYRATE_AM <0.001 (48.66, 

6.01)  

PROX_AM <0.001 (35.04, -5.46)  

SIDI <0.001 (29.85, -4.64) 

SHAPE_AM <0.001 (56.59, -

7.38)  

ENN_AM 0.018 (8.93, 2.09)  

CONNECT 0.002 (9.58, 2.84) 

  

Grassland 

GYRATE_AM <0.001 (48.66, 

5.88)  

PROX_AM <0.001 (35.04, -4.51)  

SIDI <0.001 (29.85, -4.67)  

SHEI 0.023 (4.52, -1.99)  

SHAPE_AM <0.001 (56.59, -

4.64) 

SHAPE_AM 0.001 (56.59, -3.2)  

ENN_AM 0.002 (8.93, 2.96)  

CONNECT 0.004 (9.58, 2.67) 

 

Table 9.10 Differences in landscapes with different levels of disturbance in the Boreal natural region by landscape 

metric. Significant landscape metrics are displayed in the matrix followed by their respective p-value first then H 

statistic and Z value in brackets, calculated using a Bonferroni corrected Dunn’s Test 

Disturbance 

Class (%) 
0 – 20 20 – 40 40 – 60 60 – 80 

20 – 40 

GYRATE_AM 

<0.001 (41.5, 3.93)  

PROX_AM 0.009 

(15.76, -3.14)  

SIDI 0.002 (53.13, -

3.49) 

      

40 – 60 None None     

60 – 80 
ENN_AM 0.002 

(20.04, -3.53) 

SHAPE_AM 0.041 

(25.98, 2.65) 
None   

80 – 100 

GYRATE_AM 0.019 

(41.5, -2.89)  

PROX_AM 1 (15.76, 

1.11)  

SIDI <0.001 (53.13, 

4.2)  

SHEI 0.001 (15.93, -

3.76)  

SHAPE_AM 0.002 

(25.98, 3.58)  

ENN_AM 0.002 

(20.04, -3.59) 

GYRATE_AM 

<0.001 (41.5, -5.97)  

PROX_AM 0.001 

(15.76, 3.88)  

SIDI 0 (53.13, 6.53) 

SHAPE_AM <0.001 

(25.98, 4.77) 

GYRATE_AM 0.001 

(41.5, -3.63)  

SIDI <0.001 (53.13, 

4.32) 

GYRATE_AM 0.001 

(41.5, -3.67) 

SIDI <0.001 (53.13, 

4.66) 

 



 

92 

 

Table 9.11 Differences in landscapes with different levels of disturbance in the Boreal natural region by landscape 

metric. Significant landscape metrics are displayed in the matrix followed by their respective p-value first then H 

statistic and Z value in brackets, calculated using a Bonferroni corrected Dunn’s Test 

Disturbance 

Class (%) 
0 – 20 20 – 40 40 – 60 60 – 80 

20 – 40 None       

40 – 60 
SIDI 0.046 (103.51, -

2.61) 
None     

60 – 80 None None None   

80 – 100 

GYRATE_AM 0.002 

(88.76, -3.58) 

SIDI <0.001 (103.51, 

4.06) 

ENN_AM <0.001 

(33.34, -4.99)  

CONNECT <0.001 

(32.21, -4.25) 

GYRATE_AM 

<0.001 (88.76, -4.57) 

SIDI <0.001 (103.51, 

5)  

SHEI 0.011 (12.46, 

3.05)  

CONNECT 0.031 

(32.21, -2.74) 

GYRATE_AM 

<0.001 (88.76, -6.54) 

PROX_AM <0.001 

(23.02, 4.02)  

SIDI <0.001 (103.51, 

7.17)  

SHAPE_AM 0.001 

(33.29, 3.63) 

GYRATE_AM 

<0.001 (88.76, -6.01)  

PROX_AM 0.029 

(23.02, 2.76)  

SIDI <0.001 (103.51, 

6.22) 

SHAPE_AM <0.001 

(33.29, 4.39)  

ENN_AM 0.043 

(33.34, -2.63)  

CONNECT 0.015 

(32.21, -2.97) 

 

Table 9.12 Differences in landscapes with different levels of disturbance in the Boreal natural region by landscape 

metric. Significant landscape metrics are displayed in the matrix followed by their respective p-value first then H 

statistic and Z value in brackets, calculated using a Bonferroni corrected Dunn’s Test 

Disturbance 

Class (%) 
0 – 20 20 – 40 40 – 60 60 – 80 

20 – 40 None       

40 – 60 None None     

60 – 80 None None None   

80 – 100 

GYRATE_AM 

<0.001 (59.36, -6.78)  

PROX_AM <0.001 

(33.41, 5.09)  

SIDI <0.001 (71.44, 

7.01)  

SHAPE_AM <0.001 

(37.95, 5.14)  

ENN_AM 0.001 

(16.11, -3.72) 

GYRATE_AM 

<0.001 (59.36, -3.9)  

PROX_AM 0.004 

(33.41, 3.36)  

SIDI <0.001 (71.44, 

4.25)  

SHAPE_AM 0.005 

(37.95, 3.32) 

GYRATE_AM 

<0.001 (59.36, -4.11)  

PROX_AM 0.008 

(33.41, 3.17)  

SIDI <0.001 (71.44, 

5.16)  

SHAPE_AM 0.002 

(37.95, 3.6) 

GYRATE_AM 

<0.001 (59.36, -4.38) 

SIDI <0.001 (71.44, 

5.01) 

SHAPE_AM 0.002 

(37.95, 3.6) 
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Appendix 10 - Correlation Grouping for Landscape Metrics 

Table 10.1 Parkland landscape metric groups where Pearson’s correlation coefficient |>0.9| 

Group Representative Other Group Members 

1 Number of patches 

Patch density; Total edge; Landscape shape index; Area-weighted perimeter-area 

ratio; Area-weighted contiguity index; Proportion of like adjacencies; Patch 

cohesion index; Aggregation index 

2 Largest patch index Area-weighted patch area; Landscape division index; Effective mesh size 

3 Radius of gyration 
Shannon's diversity index; Simpson's diversity index; Modified Simpson's 

diversity index 

4 Area-weighted shape index Area-weighted fractal dimension index 

5 Related circumscribing circle   

6 Perimeter-Area fractal dimension   

7 Area-weighted proximity index   

8 Area-weighted Euclidean nearest neighbor distance   

9 Contagion   

10 Interspersion juxtaposition index   

11 Connectance index   

12 Splitting index   

13 Patch richness Patch richness density; Relative patch richness 

14 Shannon's evenness index Simpson's evenness index; Modified Simpson's evenness index 
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Table 10.2 Grassland landscape metric groups where Pearson's correlation coefficient |>0.9| 

Group Representative Other Group Members 

1 Number of patches 

Patch density; Total edge; Landscape shape index; Area-weighted perimeter-area 

ratio; Area-weighted contiguity index; Proportion of like adjacencies; Patch 

cohesion index; Aggregation index 

2 Largest patch index Area-weighted patch area; Landscape division index; Effective mesh size 

3 Radius of gyration Shannon's diversity index; Modified Simpson's diversity index 

4 Area-weighted shape index Area-weighted fractal dimension index 

5 Related circumscribing circle   

6 Perimeter-Area fractal dimension   

7 Area-weighted proximity index   

8 Area-weighted Euclidean nearest neighbor distance   

9 Contagion   

10 Interspersion juxtaposition index   

11 Connectance index   

12 Splitting index   

13 Patch richness Patch richness density; Relative patch richness 

14 Simpson's diversity index   

15 Shannon's evenness index Simpson's evenness index; Modified Simpson's evenness index 
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Table 10.3 Boreal landscape metric groups where Pearson's correlation coefficient |>0.9| 

Group Representative Other Group Members 

1 Number of patches 

Patch density; Total edge; Landscape shape index; Area-weighted perimeter-

area ratio; Area-weighted contiguity index; Proportion of like adjacencies; Patch 

cohesion index; Aggregation index 

2 Largest patch index 
Area-weighted patch area; Landscape division index; Effective mesh size; 

Simpson's diversity index 

3 Radius of gyration Shannon's diversity index; Modified Simpson's diversity index 

4 Area-weighted shape index   

5 Area-weighted fractal dimension index   

6 Related circumscribing circle   

7 Perimeter-Area fractal dimension   

8 Area-weighted proximity index   

9 Area-weighted Euclidean nearest neighbor distance   

10 Contagion   

11 Interspersion juxtaposition index   

12 Connectance index   

13 Splitting index   

14 Patch richness Patch richness density; Relative patch richness 

15 Shannon's evenness index Simpson's evenness index; Modified Simpson's evenness index 
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Table 10.4 All landscape metric groups where Pearson's correlation coefficient |>0.9| 

Group Representative Other Group Members 

1 Number of patches 

Patch density; Total edge; Landscape shape index; Area-weighted 

perimeter-area ratio; Area-weighted contiguity index; Proportion of like 

adjacencies; Patch cohesion index; Aggregation index 

2 Largest patch index Area-weighted patch area; Landscape division index; Effective mesh size 

3 Radius of gyration Shannon's diversity index; Modified Simpson's diversity index 

4 Area-weighted shape index   

5 Area-weighted fractal dimension index   

6 Related circumscribing circle   

7 Perimeter-Area fractal dimension   

8 Area-weighted proximity index   

9 Area-weighted Euclidean nearest neighbor distance   

10 Contagion   

11 Interspersion juxtaposition index   

12 Connectance index   

13 Splitting index   

14 Patch richness Patch richness density; Relative patch richness 

15 Simpson's diversity index   

16 Shannon's evenness index Simpson's evenness index; Modified Simpson's evenness index 

 


