
Improvements to
Transitive-Closure-based Model

Checking in Alloy

by

Sabria Farheen

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Sabria Farheen 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Model checking, which refers to the verification of temporal properties of a transition
system, is a common formal method for verifying models. Transitive-closure-based model
checking (TCMC), developed by Vakili et al., is a symbolic representation of the semantics
of computational tree logic with fairness constraints (CTLFC) for finite models in first-
order logic with transitive closure (FOLTC). TCMC is an expression of the complete (i.e.,
unbounded) model checking problem for CTLFC as a set of constraints in FOLTC without
induction, iteration, or invariants. TCMC has been implemented in the Alloy Analyzer.

This thesis focuses on improving practical aspects of using TCMC in Alloy. We provide
style guidelines for writing concise declarative models of transition systems for behavioural
analysis in Alloy without any extensions to the Alloy language. We address the issue
of spurious instances produced when generating instances at small scopes using the Alloy
Analyzer by introducing significance axioms, which ensure the instance contains interesting
behaviour. We define scoped TCMC for a state scope of n, where n is less than the size
of the reachable state space, as the model checking of all transition system instances of
state size n that satisfy the transition relation. By considering infinite and finite paths of
a transition system separately, we can make useful deductions about the complete model
checking problem from the results of scoped TCMC for certain categories of properties. The
significant scope, derived from the significance axioms, provides a measure independent of
computing resource limitations that a significant part of the state space has been verified,
providing higher confidence in the deductions from scoped TCMC.

We present case studies that demonstrate the claims and results of this work. We also
compare TCMC in Alloy to NuSMV and bounded model checking in terms of modelling
practices, expressibility of temporal properties, model checking results, and performance.

iii

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Nancy A. Day, who taught me
how to research, write academic literature, and think critically about formal methods. Her
extensive knowledge and insight have been paramount in the development of this work.
She has been truly supportive and inspirational throughout my time in Waterloo.

I would like to thank Dr. Amirhossein Vakili for joining many discussions throughout
my research, and for explaining much of his work to me in great detail. I would like to
thank Dr. Jeffrey Joyce for taking the time to assess my work, providing valuable industry
feedback, and for allowing me the opportunity to contribute to his projects – it was a great
learning experience.

I would like to thank Dr. Joanne Atlee and Dr. Derek Rayside for reviewing my thesis.
I would like to thank my colleagues, Jose Serna and Ali Abbassi, who were very helpful in
providing fresh perspectives and thoughts on many of my research topics.

I would also like to thank Dr. Alma L. Juarez Dominguez for speaking to me about her
career and her experiences in formal methods, which was extremely helpful in developing
my personal goals.

Finally, I would like to thank my family and friends for their continued love and support
throughout all my endeavours.

iv

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Thesis Overview and Contributions . 3

1.2 Case Studies . 6

1.3 Thesis Organization . 6

2 Background 7

2.1 Temporal Logic Model Checking . 7

2.2 Transitive-Closure-based Model Checking (TCMC) 9

2.3 Alloy . 11

2.4 TCMC in Alloy . 12

2.5 Summary . 15

3 Modelling a Transition System in Alloy 16

3.1 Declaring the State Space . 18

3.1.1 State Equivalence . 19

3.1.2 No Invariants . 19

3.2 Defining Initial States and Operations . 21

v

3.2.1 Pre- and Post-conditions . 21

3.2.2 Distinct Operations . 22

3.3 Model Definition . 23

3.3.1 Transition Relation: DisjMethod vs. ConjMethod 24

3.4 Summary . 27

4 Generating an Instance 28

4.1 Scope . 28

4.2 Spurious Instance Problem . 29

4.3 Significance Axioms . 31

4.4 Significant Scope . 33

4.5 Summary . 33

5 Scoped-TCMC Methodology 34

5.1 Types of Properties . 34

5.2 Safety Properties . 37

5.3 Finite Liveness Properties . 38

5.4 Infinite Liveness Properties . 42

5.5 Existential Properties . 43

5.6 Summary . 45

6 Case Studies 46

6.1 Musical Chairs . 46

6.1.1 Style Guidelines . 46

6.1.2 Significance Axioms . 47

6.1.3 Scoped-TCMC Methodology . 48

6.2 Elevator System . 52

6.2.1 Style Guidelines . 52

vi

6.2.2 Significance Axioms . 54

6.2.3 Scoped-TCMC Methodology . 55

6.3 Traffic Light Controller . 58

6.3.1 Style Guidelines . 58

6.3.2 Significance Axioms . 60

6.3.3 Scoped-TCMC Methodology . 60

6.4 Feature Interaction in a Telephone System 61

6.4.1 Style Guidelines . 62

6.4.2 Significance Axioms . 64

6.4.3 Scoped-TCMC Methodology . 64

6.5 Scalability . 65

6.6 Summary . 66

7 Comparison to NuSMV and BMC 68

7.1 NuSMV . 68

7.2 BMC in Alloy . 71

7.3 Summary . 75

8 Related Work 76

9 Conclusion 79

References 82

APPENDICES 87

A Alloy Models: TCMC Case Studies 88

A.1 Musical Chairs . 88

A.2 Elevator System . 92

A.3 Traffic Light Controller . 97

A.4 Feature Interaction in a Telephone System 106

vii

B Non-Alloy Model for Comparison 113

B.1 Musical Chairs in NuSMV . 113

C Alloy Models From Other Works for Comparison 117

C.1 Traffic Light by Vakili [42] . 117

C.2 Span Tree by Macedo et al. [29] . 121

viii

List of Tables

5.1 Deducing Complete Model Checking Results from Scoped TCMC 45

6.1 Performance Results of Case Studies. NS: Number of Signatures, NR: Num-
ber of Relations, SS: Scope Size, min: minutes, s: seconds 66

7.1 Performance Results for BMC of a Safety Property (Figure 7.3 Line 9) in
Musical Chairs. NS: Number of Signatures, NR: Number of Relations, SS:
Scope Size, s: seconds . 72

7.2 Deducing Complete Model Checking Results in Alloy: Scoped TCMC vs.
BMC . 74

ix

List of Figures

2.1 Relationship Between CTLFC and CTL Connectives (figure from [42]) . . 9

2.2 TCMC implementation in Alloy . 13

2.3 Template for use of TCMC . 14

2.4 Multiple instances of a transition system for the constraint: “every state
must reach a state that is reachable from itself” (figure from [42]) 14

3.1 Predicate from Span Tree Alloy Model [29] 16

3.2 Applying Our Guidelines to Predicate from Span Tree Alloy Model [29] in
Figure 3.1 . 17

3.3 Musical Chairs Overview . 18

3.4 Musical Chairs State Space . 19

3.5 Part of an Arbitrary Model . 20

3.6 Initial state constraints . 21

3.7 Eliminate Loser Operation in Musical Chairs: Pre- and Post-Condition . . 21

3.8 Example of a Non-distinct Operation . 22

3.9 Operations in Musical Chairs: music starts and declare winner 23

3.10 DisjMethod for Eliminate Loser Operation and Musical Chairs Model Defi-
nition . 24

3.11 ConjMethod Method for Defining nextState Relation 25

3.12 Overlap in pre-conditions. Shows only transitions starting from S1. 26

3.13 Incomplete pre-conditions. Shows all transitions between S5 and S6. . . . 26

x

4.1 Musical Chairs: 3-State Spurious Instance 29

4.2 Arbitrary Model: State Space and Instances. In: initial states, Opn: user-
defined operations. Intances A and B are Spurious. Instance C is Non-
Spurious. 30

4.3 Musical Chairs: Significance Axioms . 32

5.1 Modelling and checking transitions systems using TCMC in Alloy. T1, T2,
and T3 are transition systems from a non-unique NSR definition. 35

5.2 CTLFC Property Categories . 36

5.3 Safety Property: Scoped-TCMC Methodology 37

5.4 Checking a safety property of Musical Chairs 38

5.5 Finite Liveness Property: Scoped-TCMC Methodology 39

5.6 AFp: TCMC (without dead-loop) results in pass for both 40

5.7 AFp: TCMC with dead-loop results in pass for (a) and fail for (b) 40

5.8 Checking a finite liveness property of Musical Chairs 41

5.9 Dead-loop Constraint in an Alloy Model 41

5.10 Infinite Liveness Property: Scoped-TCMC Methodology 42

5.11 Checking an infinite liveness property of Musical Chairs 43

5.12 Existential Property: Scoped-TCMC Methodology 44

5.13 Checking an existential property of Musical Chairs 44

6.1 Musical Chairs: 5-State Spurious Instance 47

6.2 Musical Chairs: 8-State Non-Spurious Instance (sigma: Transition Relation) 48

6.3 Musical Chairs: Safety Property Counterexample with A Finite Path (sigma:
Transition Relation) . 49

6.4 Musical Chairs: Infinite Liveness Property Counterexample with An Infinite
Path (sigma: Transition Relation) . 51

6.5 Elevator System State Space . 52

6.6 Elevator System Operations . 53

6.7 Elevator System Operations . 54

xi

6.8 Elevator System: 4-State Spurious Instance 54

6.9 Elevator System: Full Significance Axioms 55

6.10 Elevator System: 7-State Non-Spurious Instance (sigma: Transition Relation) 56

6.11 Elevator System: Safety Property . 56

6.12 Elevator System: Finite Liveness Property 57

6.13 Elevator System: Infinite Liveness Property 57

6.14 Traffic Lights Control: State Space . 58

6.15 Traffic Lights Control: Operations and Model Definition 59

6.16 Traffic Lights Control: Fairness Constraints 60

6.17 Traffic Lights Control: Significance Axioms (full axioms in Appendix A.3) . 61

6.18 Traffic Lights Control: Safety Property . 61

6.19 Telephone System: State Space . 62

6.20 Telephone System: Operations and Transition Relation 63

6.21 Telephone System: Significance Axioms (full axioms in Appendix A.4) . . 64

6.22 Telephone System: Safety Property . 64

7.1 Part of Musical Chairs model in NuSMV 69

7.2 Example Transition System . 71

7.3 Musical Chairs: BMC in Alloy . 73

xii

Chapter 1

Introduction

Poor software quality can lead to severe consequences, especially for high-impact systems,
such as, transportation vehicle software, where safety is paramount. A recent article in the
popular magazine, The Atlantic [40], discusses several mishaps, ranging from alarming to
fatal, all caused due to unexpected failures in software, including 911-emergency line out-
ages and automobile accidents. As discussed in the same article, blame is often attributed
to software engineers who lack insight into their system requirements and jump to code
before verifying their intended designs. However, verifying system designs is often not a
simple task, as it requires some form of exhaustive exploration of all possible behaviour a
software system can exhibit.

Formal methods address precisely this concern: how to mathematically (and formally)
prove that a system behaves as it should. When software is so complex that it handles every
scenario of a vehicle’s movement, for example, utilizing formal methods for verification is
perhaps the only fail-safe way to ensure correctness.

When using formal verification, it is best to start early in the software development
process, eliminating flaws before any code is written. To verify systems, it is necessary to
create an abstract model of the system that can be analyzed. These abstract models are
usually declarative, meaning that they are described using a set of constraints. Several
tools and languages exist to create and analyze declarative models, such as, Alloy [23],
B [1], Z [22], TLA+ [45], and ASMs [4]. These languages have many features to express
abstract concepts (e.g., sets, relations, and functions) without sacrificing precision.

These tools can be used to create static models, where the objective is to reason about
a system’s structure, or behavioural models, where the system’s behaviour as it is executed
over time is modelled. A behavioural model usually represents a transition system, which

1

contains a set of states, and transitions connecting those states. Specifications that make
assertions about the execution, or behaviour, of the system, are often expressed in terms
of a temporal logic, such as, linear temporal logic (LTL) [37] and computational tree
logic (CTL) [10]. Behavioural models can be investigated for correctness using model
checking [10], which analyzes a model exhaustively to test if it satisfies a temporal property.

There are two broad techniques for model checking: explicit-state model checking [19]
and symbolic model checking [31]. Explicit-state model checking enumerates all possible
reachable states, and ensures that each of these states satisfies the given property. The
brute-force nature of this algorithm means that any application usually requires a con-
siderable amount of computing resources when analyzing large models. Symbolic model
checking refers to algorithms that traverse the state space more efficiently, considering
multiple states at the same step by representing the set of states as a formula in logic with
the help of data structures or solvers, such as, BDDs [6], SAT solvers and SMT solvers [2].
Applications of symbolic model checking methods are usually faster, and therefore, pre-
ferred over explicit-state model checking. Some symbolic model checking algorithms, such
as IC3 [5], are iterative, that is, they involve multiple runs of the solver. Bounded model
checking (BMC) [3] uses symbolic model checking to verify paths of a specified length.

Model checking, specifically of temporal properties, in abstract behavioural models can
be performed using a number of available tools, each of which implements a version of
the two model checking algorithms. TLA+ [45] (with the TLC model checker) creates
and checks behavioural models for a subset of LTL properties using explicit-state model
checking. ProB [27] is a tool for analyzing finite B machines against LTL specifications
using explicit-state model checking. Iterative symbolic model checking algorithms (such
as IC3) for checking B machines are implemented in [25]. None of these approaches use
non-iterative symbolic model checking algorithms.

The SMV [30] family of tools, including NuSMV [9] and nuXmv [7], perform symbolic
model checking of temporal properties, however, they are quite lacking in language support
for expressing abstract models. Chang and Jackson [8] added finite relations and functions
to a traditional state-based specification language (i.e., the SMV language [30]), and de-
veloped a BDD-based model checker that analyzes these models for CTL specifications.

Del Castillo and Winter [13] provided model checking support for a transition system
specified as an Abstract State Machine (ASM) [4], via the translation of a class of ASMs
to SMV by restricting the range of functions to finite sets. Translation-based approaches
usually unfold user-level abstractions and make understanding models and counterexamples
difficult.

The Alloy Analyzer [24], which is implemented using the Kodkod [41] SAT solver, can

2

be used to perform symbolic model checking. It is fairly straightforward to specify a tran-
sition relation in Alloy for BMC: iterate the transition relation to check bounded duration
temporal properties [24]. Cunha [12] describes how to perform BMC of LTL properties in
Alloy. Electrum [29], an extension of Alloy, can also be used to model check LTL properties
using BMC; additionally, Electrum provides a feature to translate the model and properties
to nuXmv [7]. DynAlloy [18, 38], another extension of Alloy, focuses on describing mod-
els and transition relations using “actions”. It does not support any temporal properties.
None of these approaches allow checking a full set of temporal properties for the complete
(unbounded) model checking problem in Alloy, without extensions or translations.

Transitive-closure-based model checking (TCMC) [17,42,43] encodes CTL with fairness
constraints (CTLFC) in first-order logic with transitive closure (FOLTC) in a size linear
to the model. It is an expression of the complete (unbounded) model checking problem for
a transition system with a finite-state space for CTLFC as a set of constraints in FOLTC
without induction, iteration, or invariants. TCMC is inspired by the previous work of
Immerman and Vardi [21], which encodes the semantics of CTL and CTL* in FOLTC,
but requires an exponential increase in the size of the model with respect to the size of
the temporal logic formula. TCMC has been implemented as an Alloy module, making it
possible to perform model checking of declarative models of transition systems described
in Alloy without translation to another tool.

In this thesis, we focus on using existing tools to make model checking of abstract
behavioural models more practical. The Alloy Analyzer is an established tool that provides
valuable support for creating abstract models; TCMC is able to check a broad category
of temporal (CTLFC) properties of behavioural systems using the Alloy Analyzer without
any extension or translation, making it an appropriate candidate for our purpose. We
attempt to increase TCMC’s practical value by addressing some issues faced by users
when modelling and model checking using TCMC in Alloy.

1.1 Thesis Overview and Contributions

We investigate the following aspects of using TCMC in Alloy:

(a) Modelling a Transition System in Alloy

While studying some Alloy models for transition systems, for example those described
in [29,42], we found that they lacked structure and readability. The expected behaviour of

3

the model was often convoluted: pre- and post-conditions of the operations were unclear,
and there was no precise method for separating operations from each other.

We developed guidelines for creating abstract declarative models of transition systems in
Alloy that we believe promote structure, modularity, and consistency. These guidelines do
not involve any extensions to Alloy. We discuss the implications of using two common styles
for defining the transition relation, which we call the ConjMethod and the DisjMethod.

(b) Generating an Instance

After creating a model, it is common to inspect an instance of the model to confirm that
the expected behaviour is produced. This initial analysis can help catch any modelling
errors before starting the model checking process. In Alloy, we can generate an instance of
a model by executing the run command.

Since the total state space is rarely representable in Alloy due to the state-space explo-
sion problem, we often generate instances using small scopes. When using an exact scope
of n states, the Alloy Analyzer produces a full subgraph that can consist of any subset of
size n of the state space of the complete transition system. This random subset of states
is often not a useful one to inspect and analyze. The instance may not have an initial
state or any interesting operations represented. It is unlikely that anything useful, such
as, the presence of modelling errors, is deducible from such an instance. We refer to such
instances as spurious instances.

To eliminate the spurious instance problem, and assist in the production of a useful
instance, we created a set of axioms, which we call the significance axioms. These axioms
prevent the production of spurious instances by ensuring the existence of some key states.
To be satisfied, these significance axioms require the instance to be of a large enough size,
which we call the significant scope.

(c) Scoped-TCMC Methodology

Scoped TCMC for a state scope of n, where n is less than the reachable state space, is
the model checking of all transition system instances of size n that satisfy the transition
relation. The result from scoped TCMC of a property holds for all/some transition system
instances of that size, but moreover, we can draw some conclusions about whether the
property holds for any complete transition system also. In our scoped-TCMC method-
ology, we carefully describe the meaning of results from scoped TCMC with respect to
the complete model checking problem (meaning over the entire state space), highlighting

4

distinctions for properties with respect to finite and infinite paths. During TCMC, the
significant scope provides a measure independent of computing resource limitations that a
significant part of the state space has been verified.

(d) Comparison to NuSMV and BMC

We compare TCMC in Alloy to NuSMV and BMC in terms of abstract modelling practices,
expressibility of temporal properties, model checking results, and performance.

From our investigations, we have the following thesis statement:

Thesis statement: We developed a set of style guidelines with the goal of
writing structured, modular, and consistent declarative behavioural models in
Alloy. Generating instances of a model with our significance axioms produces
transition system instances that are more representative of the user model. We
define scoped TCMC for a state scope of n, where n is less than the reachable
state space, as the model checking of all transition system instances of size
n that satisfy the transition relation. By considering infinite and finite paths
of a transition system separately, we can make useful deductions about the
complete model checking problem from the results of scoped TCMC for certain
categories of properties. The significant scope, derived from the significance ax-
ioms, provides a measure independent of computing resource limitations that a
significant part of the state space has been verified, providing higher confidence
in the deductions from scoped TCMC.

The following lists the contributions of this thesis:

• Establishes a set of style guidelines for modelling abstract behavioural systems in
Alloy without extensions to Alloy.

• Introduces significance axioms and significant scope for transition systems, which
address the spurious instances problem.

• Introduces scoped TCMC to apply TCMC on subgraphs of a complete transition
system.

5

• Analyzes and documents the meanings of scoped TCMC results for different property
categories with respect to the complete model checking problem.

• Presents case studies to demonstrate proposed claims and results.

• Investigates the scalability of TCMC in Alloy.

• Compares declarative modelling practices in Alloy to those in NuSMV.

• Compares expressibility of temporal properties, and model checking results of TCMC
to those of BMC.

1.2 Case Studies

Including a running example of the game of Musical Chairs, we use four case studies,
described in Chapter 6, to demonstrate our claims. The case studies illustrate the use
of our style guidelines and the benefits associated with them. They show the utility of
significance axioms when generating instances for inspection, how to use our proposed
TCMC methodology to deduce useful results from scoped TCMC for the complete model
checking problem, and how to gain higher confidence by model checking at the significant
scope.

We show that these features can be used at scopes generally used for analyzing Alloy
models in terms of scalability. We also studied comparable models of our case studies
implemented and checked using NuSMV and BMC.

1.3 Thesis Organization

This thesis is organized as follows: In the next chapter, we provide brief background
material on CTLFC model checking, the Alloy language, TCMC, and the implementation
of TCMC in the Alloy Analyzer. Chapter 3 discusses our style guidelines for creating
models of transition systems in Alloy. Chapter 4 presents scoped TCMC, the spurious
instance problem, and our significance axioms as a solution. In Chapter 5, we describe
our methodology for model checking via scoped TCMC and how to interpret the results
with respect to the complete model checking problem. Chapter 6 discusses case studies,
which demonstrate our claims, and investigates the scalability of TCMC through these case
studies. Chapter 7 compares TCMC in Alloy to NuSMV and BMC. We discuss related
work in Chapter 8, and conclude in Chapter 9.

6

Chapter 2

Background

In this section, we provide a brief overview on temporal logic model checking, Alloy, TCMC,
and its implementation in Alloy.

2.1 Temporal Logic Model Checking

Temporal logic model checking is a technique for verifying whether a transition system
satisfies a temporal logic property [10].

A transition system is a finite directed graph with vertices and edges. A vertex repre-
sents a state of a system, where each state is labelled with some attributes whose values
are propositions. A labelling function is used to set the attribute values of the states. An
edge between two vertices represents a transition from one state to another.

Definition 1. Transition System: The transition system TS is a five tuple, TS =
(S, S0, σ, P, l), where: S is a finite set of states; S0, the set of initial states, is a non-empty
subset of S; σ, the transition relation, is a binary relation over S; P is a finite set of atomic
propositions; l, the labelling function, is a total function from S to the power set of P .

A computation path starting at s where s ∈ S is a sequence of states, s0 → s1 → . . .
such that s0 = s and ∀i ≥ 0 : σ(si, si+1). If the transition relation is a total binary relation
then all paths starting at each state are infinite computation paths.

A temporal logic property is a set of logical formulas that describe some desirable
behaviour of a system over time [10]. A temporal logic, such as CTL or CTLFC [10], has

7

connectives for specifying properties over the computation paths of a transition system.
Equation 2.1 represents the grammar for a complete fragment of CTL:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ| EGϕ | ϕEUϕ , where p ∈ P (2.1)

The satisfiability relation for CTL, |=, is used to give meaning to formulas. The notation
TS, s |= ϕ denotes that the state s of the transition system TS satisfies the property ϕ and
TS, s 6|= ϕ is used when TS, s |= ϕ does not hold. The relation |= is defined by structural
induction on ϕ.

Definition 2. Semantics of CTL: For a transition system, TS, with a total transition
relation, σ, the semantics of CTL formulas is as follows:

TS, s |= p iff p ∈ l(s)
TS, s |= ¬ϕ iff TS, s 6|= ϕ
TS, s |= ϕ ∨ ψ iff TS, s |= ϕ or TS, s |= ψ
TS, s |= EXϕ iff there exists s′ ∈ S such that σ(s, s′) ∧

TS, s′ |= ϕ
TS, s |= EGϕ iff there exists a computation path (s0 → s1 →

. . .) starting at s such that for all i
TS, si |= ϕ.

TS, s |= ϕEUψ iff there exists a j and a computation path
(s0 → s1 → . . .) starting at s such that
TS, sj |= ψ and for all i less than j
TS, si |= ϕ.

The transition system TS satisfies the CTL formula ϕ, denoted by TS |= ϕ, if and only
if for all s0 ∈ S0 we have TS, s0 |= ϕ.

The syntax of a complete fragment of CTLFC is the same as Equation 2.1 with the
addition of one connective, EcG. In this connective, c is a fairness constraint, which is
used to define a fair computation path. A computation path s0 → s1 → . . . is fair with
respect to c iff:

{i | TS, si |= c} is infinite.

The semantics of CTLFC is the same as Definition 2 along with the semantics of EcG:

TS, s |= EcGϕ iff there exists a fair computation path starting
at s, s0 → s1 → . . . , such that for all i’s
TS, si |= ϕ.

8

EcXϕ := EX(ϕ ∧ (EcGtrue))
EcFϕ := EF (ϕ ∧ (EcGtrue))
ϕ1EcUϕ2 := ϕ1EU(ϕ2 ∧ (EcGtrue))
AcXϕ := ¬EcX¬ϕ
AcFϕ := ¬EcG¬ϕ
AcGϕ := ¬EcF¬ϕ
ϕ1AcUϕ2 := ¬(EcG¬ϕ2) ∧ ¬(¬ϕ2EcU(¬ϕ1 ∧ ϕ2))

Figure 2.1: Relationship Between CTLFC and CTL Connectives (figure from [42])

Other CTLFC formulas with fairness constraints can be expressed in terms of CTL
formulas and EcGtrue, as shown in Figure 2.1.

2.2 Transitive-Closure-based Model Checking (TCMC)

CTL and CTL* can be encoded in first-order logic with transitive closure (FOLTC) for
finite models as presented by Immerman and Vardi [21]. Their translation of CTL* requires
the introduction of Boolean variables into the model for every sub-formula, and as a result,
the number of states in the transition system increases exponentially with respect to the
size of the formula.

TCMC [17,42,43] presents a translation of CTLFC to FOLTC with a similar approach
to that of Immerman and Vardi. The key difference is that TCMC only considers CTLFC
properties. Therefore, each formula can be defined directly, which means that unlike
CTL*, the encoding of CTLFC in FOLTC does not increase the size of the transition
system. CTLFC is more expressive than CTL, and LTL model checking can be reduced to
CTLFC model checking1 [11].

The general idea of TCMC is to use the (reflexive) transitive closure operator to specify
the necessary and sufficient conditions for the set of states that satisfy a CTLFC property.
The closure operator is used to specify the reachability relation, which is not expressible
in FOL. Similar to traditional representations of CTL model checking, an operator, [·], is
defined that takes a formula as input, and outputs a symbolic representation of the set
of states that satisfy the input formula, except in TCMC this operator is defined using
transitive closure. The recursive definition for [·] is given in Definition 3, where if X is a

1This translation increases the size of a transition system.

9

subset of S, then σX denotes the transition relation σ when its domain is restricted to X:

σX(s1, s2) iff σ(s1, s2) ∧ s1 ∈ X

Also, ^ denotes the transitive closure operator; for example, ^σX is the transitive closure
of the relation σX . The reflexive transitive closure operator is ∗.

Definition 3. TCMC Let TS = (S, S0, σ, P, l) be a transition system and c be a fairness
constraint. The operator [·] takes a CTLFC formula, and produces a subset of S:

1. [p] = {s ∈ S| p ∈ l(s)}

2. [¬ϕ] = {s ∈ S| s 6∈ [ϕ]}

3. [ϕ ∨ ψ] = [ϕ] ∪ [ψ]

4. [EXϕ] = {s ∈ S| ∃t ∈ [ϕ] : σ(s, t)}

5. [EFϕ] = {s ∈ S| ∃t ∈ [ϕ] : ∗σ(s, t)}

6. [ϕEUψ] = {s ∈ S| ∃t ∈ [ψ] : ∗(σ[ϕ])(s, t)}

7. [EGϕ] = {s ∈ S| ∃t ∈ [ϕ] : ∗(σ[ϕ])(s, t) ∧ ^(σ[ϕ])(t, t)}

8. [EcGϕ] = {s ∈ S| ∃t ∈ [ϕ] : ∗(σ[ϕ])(s, t) ∧ ^(σ[ϕ])(t, t) ∧ t ∈ [c]}

The definition of [EcGϕ] is based on the model checking algorithm of EcG that finds the
strongly connected components (SCCs) in a transition system. The state t in the definition
of [EcGϕ] is a state that belongs to a SCC and satisfies the fairness constraint, c.

Properties with multiple fairness constraints can be converted to an equivalent property
with a single fairness constraint using the method described in [42], which is based on Vardi
and Wolper’s work [44]. Therefore, here, TCMC is described for a single fairness constraint.

Theorem 1. Let TS = (S, S0, σ, P, l) be a transition system, ϕ a CTLFC formula, and [·]
the operator defined in Definition 3. We have:

[ϕ] = {s ∈ S | TS, s |= ϕ}

The proof for Theorem 1 is in [42]. The following corollary of this theorem defines the
use of TCMC for model checking a transition system:

10

Corollary 1. Let TS = (S, S0, σ, P, l) be a transition system, ϕ a CTLFC formula, and
[·] the operator defined in Definition 3. We have:

TS |= ϕ iff S0 ⊆ [ϕ]

2.3 Alloy

Alloy is a lightweight declarative relational modelling language [23]. All structures in
Alloy are represented by sets and relations. Alloy supports first-order logic, including set
operators, along with the transitive closure operator for modelling systems.

The Alloy Analyzer, which is the primary analysis tool for Alloy models, provides
support for finite scope analysis where the user specifies constant sizes of the sets in the
model. The Alloy Analyzer translates the model to a propositional CNF formula, which is
handed to a SAT solver, called Kodkod [41], for consistency checking.

The Alloy Analyzer evaluates a model for the specified sizes of the defined sets for
consistency using the run command. If the model is consistent, the run command produces
instances of the model for user inspection. The Analyzer model checks against assertions
at small specified set scopes using the check command.

An Alloy model consists of:

• Declarations, which specify the sets, relations, and functions in a model. These
declarations dictate the state space of the model. The keyword sig is used to initiate
a set structure. The sizes of these structures are not declared at this point – the
sizes are specified when we generate instances of the model or check the model for
properties.

• Constraints, which are logical formulas, that limit the instances of the model. The
keyword fact creates blocks containing these formulas that must hold in the model.
The keyword pred is used to declare named predicate formulas (these preds can be
thought of as macros).

• Assertions are formulas that should hold in all instances of the model, and can be
checked by the Alloy Analyzer. The keyword assert is used to define properties that
can be checked by the Analyzer. The check command, along with the desired scope

11

sizes of all declared sets, is used to check the validity of an assertion. If the assertion
does not hold, then a counterexample instance of the model’s sets and relations is
shown.

2.4 TCMC in Alloy

TCMC has been implemented in the Alloy language in two modules, ctlfc and ctl [42];
ctlfc is used for modelling systems with fairness constraints, whereas, ctl is used when
no fairness constraints need to be modelled. The implementation is shown in Figure 2.2.
The TS (Lines 1–5) declares the sets and relations that are needed to describe a transition
system, where S0 refers to the initial states, sigma refers to the transition relation, and FC

refers to the set of fair states if a fairness constraint is present. These are accessed using
the functions on Lines 7–9.

TCMC (Definition 3) of CTLFC is implemented as Alloy functions as shown in Fig-
ure 2.2 Lines 16–36. It uses two helper functions, domainRes and id, implemented and
explained in Lines 11–14. domainRes[R,X] is the subset of R with its domain restricted to
X; id[X] is the identity relation over X. The functions take advantage of the Alloy join func-
tion, “.”. For example, the .S on Line 25 extracts the domain from the relation produced
in the rest of the expression. The ecg function (Lines 27–29) shows the implementation of
a formula with a fairness constraint: TS.FC (Line 28) ensures that only states that reach a
fair state infinitely often are considered. Other CTLFC formulas with fairness constraints
are implemented in the full ctlfc module in terms of CTL formulas and EcGtrue (the
relationship is shown in Figure 2.1). Also included in the modules are the universal path
quantifiers, AX, AG, AU, AG, defined in terms of the existential temporal operators (Lines
31–36).

The two modules, ctl and ctlfc, are separated because when there are no fairness
constraints, it was found that using the ctl module without the fairness constraints leads
to better performance. These modules are available on-line2 [17].

An example template for developing a model to use with TCMC is shown in Figure 2.3.
The ctlfc module is imported in the model file (Line 1). In the modelDefinition, on Line
6, the initialState function from the module is equated with the initial state constraints
of the model. Similarly, the nextState relation, and the fairness constraint (fc), if any,
are set up. Then the ctlfc mc function is used (Lines 10-15) to perform model checking

2http://www.cs.uwaterloo.ca/~nday/models/TCMC-in-Alloy

12

http://www.cs.uwaterloo.ca/~nday/models/TCMC-in-Alloy

1 private one sig TS{

2 S0: some S, // initial states

3 sigma: S -> S, // next -state relation

4 FC: set S // fair states

5 }

6 ----------------------- MODEL -----------------------------

7 fun initialState: S {TS.S0} // initial state constraints

8 fun nextState: S -> S {TS.sigma} // transition relation

9 fun fc: S {TS.FC} // fairness constraints

10 ------------------ HELPER FUNCTIONS _--------------------

11 // domainRes[R,X]={(x, y) in R | x in X}

12 private fun domainRes[R: S -> S, X: S]: S -> S {X <: R}

13 // id[X]={(x, x) | x in X}

14 private fun id[X:S]: S->S {domainRes[iden ,X]}

15 ----------------- LOGICAL OPERATORS ----------------------

16 fun not_[phi: S]: S {S - phi}

17 fun and_[phi , si: S]: S {phi & si}

18 fun or_[phi , si: S]: S {phi + si}

19 fun imp_[phi , si: S]: S {not_[phi] + si}

20 ----------------- TEMPORAL OPERATORS ----------------------

21 fun ex[phi: S]: S {TS.sigma.phi}

22 fun ef[phi: S]: S {(*(TS.sigma)).phi }

23 fun eu[phi , si: S]: S {(*(domainRes[TS.sigma , phi])).si}

24 fun eg[phi: S]: S { let R= domainRes[TS.sigma ,phi]|

25 *R.((^R & id[S]).S)

26 }

27 fun ecg[phi:S]:S { let R= domainRes[TS.sigma ,phi]|

28 *R.((^R & id[S]).S & TS.FC)

29 }

30 ---------------DERIVED TEMPORAL OPERATORS -----------------

31 fun ax[phi:S]:S {not_[ex[not_[phi]]]}

32 fun af[phi: S]: S {not_[eg[not_[phi]]]}

33 fun au[phi , si: S]:S {

34 not_[or_[eg[not_[si]], eu[not_[si], not_[or_[phi , si]]]]]

35 }

36 fun ag[phi: S]: S {not_[ef[not_[phi]]]}

37 -------------------- MODEL CHECKING -----------------------

38 // used for model checking in user ’s model file

39 pred ctlfc_mc[phi: S] {TS.S0 in phi}

Figure 2.2: TCMC implementation in Alloy

13

1 open ctlfc[State] as ctlfc

2

3 sig State { ... }

4

5 fact modelDefinition {

6 all s:State | s in initialState iff ...

7 all s,s’: State | s->s’ in nextState iff ...

8 all s:State | s in fc iff ...

9 }

10 // universal TCMC

11 check {ctlfc_mc[ag[{s:State| <universal_property >}]]}

12 for exactly <scope >

13 // existential TCMC

14 run {ctlfc_mc[ef[{s:State| <existential_property >}]]}

15 for exactly <scope >

Figure 2.3: Template for use of TCMC

tasks. The template shows the use of the ag and ef temporal logic properties, but others
can be used.

If the declarative model of a transition system is not uniquely defined for a set of
states, there can be multiple transition system instances (TS instances) that satisfy its
constraints. For example, the declarative specification “every state must reach a state that
is reachable from itself” specifies more than one transition system for two states, as shown
in Figure 2.4.

Figure 2.4: Multiple instances of a transition system for the constraint: “every state must
reach a state that is reachable from itself” (figure from [42])

Universal TCMC checks whether the property is satisfied on all paths starting from
all initial states in all TS instances of the model. To implement universal TCMC, we use
ctlfc mc with check, as shown in Figure 2.3, Line 11. Universal TCMC addresses the
complete model checking problem only if all the states in the reachable state space are in
the scope of the check command. Similar to other CTL model checkers, TCMC in Alloy
calculates the set of states that satisfies the given property in a TS instance. If all initial
states of the TS instance are in this satisfying set of states, meaning that the property

14

is satisfied in that TS instance, we get a No counterexample found result. If any initial
state of the TS instance is not in the satisfying set of states, we get a counterexample –
an inspectable transition system that is an instance of our model containing a path that
violates the checked property. As with other CTL model checkers, a particular counterex-
ample path has to be extracted or observed within the instance. Since instances in Alloy
are generally small, we rely on observation of the TS instance to determine the bug in the
model.

Existential TCMC checks if some TS instance of the model satisfies the property.
For existential TCMC, we use ctlfc mc with run, as shown in Figure 2.3, Line 13. If the
model constraints are consistent with the temporal logic property, the Analyzer shows a
transition system that is a valid instance of our model. Otherwise, we see an Instance

not found. Predicate may be inconsistent message.

If a model defines a unique transition system, then there is only one TS instance that
satisfies the model, which means that both, universal and existential TCMC, only check one
TS instance (assuming that all states in the reachable state space are included), resulting
in the same result. Therefore, universal and existential TCMC differ only if there are
multiple TS instances that satisfy the model description.

2.5 Summary

A transition system is a finite directed graph with vertices and edges, where the vertices
represent states, and the edges represent transitions, with a non-empty set of initial states.
A temporal logic (e.g., CTLFC) property is a set of logical formulas that describe some
desirable behaviour of a system over time. Temporal logic model checking verifies whether
a transition system satisfies a temporal logic property. Transitive-closure-based model
checking (TCMC) defines CTLFC formulas for finite models in terms of first-order logic
with transitive closure (FOLTC). TCMC has been implemented in Alloy, a language used
to create abstract declarative models, which can be evaluated using the Alloy Analyzer.

15

Chapter 3

Modelling a Transition System in
Alloy

While studying some existing Alloy models of transition systems, for example those de-
scribed in [29, 42] (some of these models are included for comparison in Appendix C), we
found that they lacked structure and readability. The expected behaviour of the model,
such as the operation shown in Figure 3.1 (full model in Appendix C.2), was often convo-
luted: pre- and post-conditions of the operations were unclear, and there was no precise
method for separating operations from each other.

We developed guidelines for writing Alloy models of transition systems that we believe

1 pred Act[p : Process , t,t’ : State] {

2 no lvl.t[p]

3 (p = Root) => {

4 lvl.t’[p] = lo/first

5 no parent.t’[p]

6 } else {

7 some adjProc: p.adj {

8 some lvl.t[adjProc]

9 lvl.t’[p] = lo/next[lvl.t[adjProc]]

10 parent.t’[p] = adjProc

11 }

12 }

13 }

Figure 3.1: Predicate from Span Tree Alloy Model [29]

16

1 pred pre_Act_Root[p : Process , t : State] {

2 no lvl.t[p]

3 p = Root

4 }

5 pred post_Act_Root[p : Process , t,t’ : State] {

6 lvl.t’[p] = lo/first

7 no parent.t’[p]

8 }

9 pred pre_Act_NonRoot[p : Process , t : State] {

10 no lvl.t[p]

11 not (p = Root)

12 }

13 pred post_Act_NonRoot[p : Process , t,t’ : State] {

14 some adjProc: p.adj {

15 some lvl.t[adjProc]

16 lvl.t’[p] = lo/next[lvl.t[adjProc]]

17 parent.t’[p] = adjProc

18 }

19 }

Figure 3.2: Applying Our Guidelines to Predicate from Span Tree Alloy Model [29] in
Figure 3.1

promote structure, modularity, and consistency in the model: In this context, the term
structure refers to the readability of the model, which we believe is improved by following
a template, the term modularity refers to the ability to retain existing behaviour when an
element/behaviour is added to the model, and the term consistency refers to the likelihood
that at least one TS instance of the model exists. For example, we find the operation in
Figure 3.2, where we applied our guidelines to the operation in Figure 3.1, more structured
and modular. Our guidelines, which do not involve any extensions to Alloy, are presented
via an example in this section.

We use the term model to refer to the user-written description of a system in Alloy,
and the term instance to refer to a collection of the declared set elements and relations
of the specified scope sizes produced by the Alloy Analyzer that represents the model. A
transition system instance (TS instance) is an instance produced by the Analyzer that
is a transition system, which means that it contains some state elements, at least one of
which is an initial state, and a transition relation. We use the term operation to refer
to a part of the Alloy model that defines a user-level grouping of some of the system’s
transitions, meaning that an operation defines a group of transitions in the TS instance
that are all the same behaviour to the user.

17

Start Walking

SittingEnd

music

starts

music
stops

eliminate
loserdeclare

winner

#players
=1

#players>1

end
loop

Figure 3.3: Musical Chairs Overview

We use the game of Musical Chairs to illustrate an Alloy model of a transition system.
Our model is based on Nissanke’s model of Musical Chairs [35]. As illustrated in Figure 3.3,
each round of the game moves through the modes Start, Walking, Sitting and End. The
number of rounds will depend on the number of players; we wish to write a flexible model
description that can be used for any number of players, and choose the number of players
by setting a finite scope when we generate an instance and analyze the model.

Our behavioural model for Musical Chairs in Alloy consists of three parts: 1) the
declaration of the state space, 2) the initial state constraints, and 3) the constraints de-
scribing the operations. We combine the constraints describing the operations to create
the transition relation in a standard way.

In the rest of this chapter, we describe how we create each of these pieces, highlighting
the practices that promote structure, modularity, and consistency in the model. The
complete Musical Chairs Alloy model, discussed throughout the rest of the thesis, can be
found in Appendix A.1.

3.1 Declaring the State Space

First, we declare the state space for our system. The state-space declaration for Musical
Chairs, as shown in Figure 3.4, consists of the uninterpreted sets [24] Chair and Player,
and the four possible modes. The State set encapsulates the current set of players, chairs,
mode, and chair occupancy by players, occupied, which is a relation from chairs to players.
The use of uninterpreted sets, such as Chair and Player, plus the use of the relation

18

1 sig Chair , Player {}

2 abstract sig Mode {}

3 one sig start , walking , sitting , end extends Mode {}

4 sig State {

5 players: set Player ,

6 chairs: set Chair ,

7 occupied: set Chair -> set Player ,

8 mode : set Mode

9 }

10 pred equality [s,s’: State] {

11 (s.players=s’. players and

12 s.chairs=s’. chairs and

13 s.occupied=s’. occupied and

14 s.mode=s’.mode)

15 implies s = s’

16 }

Figure 3.4: Musical Chairs State Space

occupied are examples of the abstractions possible in declarative models, which make
models concise, but precise.

3.1.1 State Equivalence

The encapsulation provided by the State set is convenient, but in Alloy such encapsulation
is not a record, rather the elements of State are a distinct set, and the attributes are
mappings from a State element to a set of players, chairs etc. Two elements with the same
attribute values are treated as two distinct elements by default. To match our intuition that
states with the same attributes are equivalent, we introduce an equality predicate, shown
in Lines 11-17 in Figure 3.4. This predicate requires that, if all of the attributes, that is,
players, chairs, etc., of two states are exactly the same, then the two state elements are
equal. (The predicate is added as a constraint in the model definition part of the model.)
This guideline removes a source of inconsistency between the user’s expectation of their
model and the actual model.

3.1.2 No Invariants

In Alloy, all elements are modelled as sets or relations. Alloy provides keywords for mul-
tiplicity constraints, such as lone and one, to constrain relations (and the reachable state

19

space). These constraints are implicit invariants on the behaviour of the model. There-
fore, using these keywords when declaring our state space can lead to inconsistencies in
our model, because, it is possible to write contradictory constraints in another part of
the model, such as, the initial state or operations constraints. For example, in the model
in Figure 3.5, the state-space declaration, which requires attribute to contain only one
element (Line 3), contradicts the initial state constraint, which requires the initial state’s
attribute to contain two elements (Line 7). Executing the run command in Line 10 pro-
duces a No instance found. Predicate may be inconsistent result. (Similar chal-
lenges of maintaining consistency exist in other modellings techniques as well, such as,
UML diagrams, as described in [28].)

1 one sig P, Q, R extends Attribute {}

2 sig State {

3 attribute: one Attribute

4 }

5 // initial state constraints

6 pred init [s:State] {

7 (P+Q) in s.attribute

8 }

9 ...

10 run {} for 3

Figure 3.5: Part of an Arbitrary Model

Therefore, it is important to consider carefully how our model elements should behave
in any given situation before writing invariants in the declarations. To avoid potential
pitfalls, we recommend not declaring any state invariants in the model. Any constraints
dictating the behaviour of the model should be defined as part of the initial state or
operations constraints. If there are invariants that are expected to hold throughout the
model, then these invariants should be model checked as properties to ensure modelling
correctness.

In reflection of this guideline, in our state-space declaration, we use the set keyword
in Lines 5–8 of Figure 3.4 to define all the attributes in State. All structures, including
single-element structures, must be declared as sets in Alloy, whereas, many other languages
allow declaring individual elements. While this guideline is not sufficient to guarantee that
the model is consistent, it does remove a source of inconsistency in models of transition
systems.

20

1 pred init [s:State] {

2 s.mode = start

3 #s.players > 1

4 #s.players = (#s.chairs).plus [1]

5 }

Figure 3.6: Initial state constraints

3.2 Defining Initial States and Operations

Next, we set up our initial state constraints and define our operations. The initial state
constraints for Musical Chairs, shown in Figure 3.6, set the initial mode to start and
constrain the number of players in the game to be greater than one. They also ensure that
the number of players in the game initially exceeds the number of chairs by one.

There are five operations in our Musical Chairs model, as shown in Figure 3.3:
music starts, music stops, eliminate loser, declare winner, and end loop. Fig-
ure 3.7 shows the predicates that define the eliminate loser operation in Alloy.

3.2.1 Pre- and Post-conditions

For the sake of structure in the model description, we separate the operation descriptions
into separate predicates for the pre- and post-conditions. The pre-condition is a constraint
on the previous state and the post-condition is a constraint on the previous and the next
states.

In Figure 3.7, the pre-condition states that the eliminate-loser operation can only occur

1 pred pre_eliminate_loser [s: State] {

2 s.mode = sitting

3 }

4 pred post_eliminate_loser [s, s’: State] {

5 s’.mode = start

6 // loser: player in game not in the range of occupied

7 s’. players = Chair.(s.occupied)

8 #s’. chairs = (#s.chairs).minus [1]

9 }

Figure 3.7: Eliminate Loser Operation in Musical Chairs: Pre- and Post-Condition

21

when the state is in the sitting mode (Line 2). The post-condition sets the mode after
the operation to start (Line 5). Line 7 removes from the game the player not in the
range of the occupied relation, who is the loser of the round – this is an example of the
declarative nature of the model. By decrementing the number of chairs in Line 8, we
remove a chair; this modelling structure is also declarative – the chair to be removed is not
explicitly chosen. Thus, we create declarative constraints for operations separated as pre-
and post-conditions.

3.2.2 Distinct Operations

We recommend separating operations according to the two following rules:

1. A transition in a TS instance cannot belong to more than one operation: Each op-
eration defines a distinct set of transitions with no overlap. Equation 3.1 represents
this rule, showing that the pre- and post-conditions of two operations cannot be
satisfied by the same pair of states. In the equation, op1 and op2 are operations, s
and s′ are states, and op1pre(s), op1post(s, s

′), op2pre(s), and op2post(s, s
′) are pre- and

post-conditions of op1 and op2, respectively.

∀op1, op2 · ∀s, s′ · ¬((op1pre(s) ∧ op1post(s, s′)) ∧ (op2pre(s) ∧ op2post(s, s′))) (3.1)

2. No atomic formula (meaning a formula with no logical connective) in the post-
condition depends only on the previous state: Any atomic formula depending only on
the previous state should be part of the pre-condition of the operation.

1 pred pre_from_start [s:State] {

2 s.mode = start

3 }

4 pred post_from_start [s,s’: State] {

5 #s.players > 1 implies (s’.mode=walking and s’. occupied=none ->none)

6 #s.players = 1 implies s’.mode = end

7 s’. players = s.players

8 s’. chairs = s.chairs

9 }

Figure 3.8: Example of a Non-distinct Operation

22

1 pred pre_music_starts [s: State] {

2 #s.players > 1

3 s.mode = start

4 }

5 pred post_music_starts [s, s’: State] {

6 s’. players = s.players

7 s’. chairs = s.chairs

8 s’. occupied = none -> none

9 s’.mode= walking

10 }

11 pred pre_declare_winner [s: State] {

12 #s.players = 1

13 s.mode = start

14 }

15 pred post_declare_winner [s, s’: State] {

16 s’. players = s.players

17 s’. chairs = s.chairs

18 s’.mode = end

19 }

Figure 3.9: Operations in Musical Chairs: music starts and declare winner

We refer to an operation that follows these two rules as a distinct operation. Creating
distinct operations promotes modularity in our model (which also facilitates our significance
axioms in the next section).

In Musical Chairs, instead of creating a single operation from the start mode, as shown
in Figure 3.8, which breaks our second rule due to the use of atomic propositions that
depend only on the previous state, s.players > 1 (Line 5) and s.players = 1 (Line 6),
in the post-condition, we create separate operations, music starts and declare winner

(Figure 3.9): music starts occurs when the number of players is greater than 1 in the
previous state (Line 2), and declare winner occurs when the number of players is equal
to 1 in the previous state (Line 12).

3.3 Model Definition

To add structure to the model, we create a fact block to compose the initial state con-
straints and operations into a transition system. We call this block the model definition.
Lines 6–15 of Figure 3.10 show a model definition fact block: it matches the template of

23

Figure 2.3 (in Section 2.4) and begins to make use of the ctl/ctlfc modules. It equates
the initialState and nextState functions from the ctl/ctlfc modules to the model-
specific constraints. A state can be an initial state if and only if it satisfies the constraints
set in the init fact, and a pair of states can be in the nextState relation if and only
if it satisfies the constraints in one of the operations. Since we use the “if and only if”
connective to define the transition relation (iff in Line 7), we define a single transition
system in Alloy (if all the states in the reachable state space are in the scope), as is com-
monly done when describing models in other languages. The model definition fact also
enforces the equality predicate described previously for all elements of State. Although
it is often common to define a total transition relation, a model defined in this way does
not guarantee a total transition relation.

3.3.1 Transition Relation: DisjMethod vs. ConjMethod

In this section, we explore two common but distinct methods for defining the transition
relation of a declarative model, which we call the disjunctive modelling method (Dis-
jMethod) and the conjunctive modelling method (ConjMethod). In the DisjMethod,
(Musical Chairs implementation shown in Figure 3.10), each operation is the conjunction
of its pre- and post-conditions (Lines 1–4), and the nextState relation, which is the tran-
sition relation for the system, is a disjunction of the definitions of each operation (Lines

1 pred eliminate_loser [s, s’: State] {

2 pre_eliminate_loser[s]

3 post_eliminate_loser[s,s’]

4 }

5 fact modelDefinition{

6 all s:State | s in initialState iff init[s]

7 all s,s’: State | s->s’ in nextState iff

8 (music_starts[s,s’] or

9 music_stops[s,s’] or

10 eliminate_loser[s,s’] or

11 declare_winner[s,s’] or

12 end_loop[s,s’])

13 all s, s’: State | equality[s,s’]

14 }

Figure 3.10: DisjMethod for Eliminate Loser Operation and Musical Chairs Model Defini-
tion

24

8–13). In the ConjMethod (Musical Chairs implementation shown in Figure 3.11), we
define each operation as an implication, where the pre-condition implies the post-condition
(Lines 1–3), and conjunct the definitions of all the operations (similar to Dijkstra’s guarded
commands [14]) (Lines 5–9).

1 pred eliminate_loser [s, s’: State] {

2 pre_eliminate_loser[s] implies post_eliminate_loser[s,s’]

3 }

4 fact modelDefinition{ all s,s’: State | s->s’ in nextState iff

5 (music_starts[s,s’] and

6 music_stops[s,s’] and

7 eliminate_loser[s,s’] and

8 declare_winner[s,s’] and

9 end_loop[s,s’])

10 ... }

Figure 3.11: ConjMethod Method for Defining nextState Relation

For Musical Chairs, these two modelling methods yield equivalent transition relations,
but this is not the case for all models. The two methods produce equivalent transition
relations when the pre-conditions are mutually exclusive and complete (some pre-condition
is satisfied in every state). Otherwise, the transition relations resulting from these two
methods can differ.

If a state satisfies multiple operations’ pre-conditions, that is, the pre-conditions are
not mutually exclusive, then the transition relation from the DisjMethod can include more
transitions than the ConjMethod. Figure 3.12 illustrates this case; the figure only shows
transitions that start from S1, and each state is labelled with the pre- and post-conditions
that hold in it. For the ConjMethod, all operations from a state that satisfies their pre-
conditions (S1) must have their post-conditions satisfied in the next state (S4). This
requires the next state to satisfy the post-conditions of multiple operations at the same
time, thus there are fewer transitions. But for the DisjMethod, only one of the possible
post-conditions from a state that satisfies their pre-conditions (S1) needs to hold in the
next state (S2, S3, S4). So there is a higher number of transitions included in the transition
relation for the DisjMethod.

The opposite happens when the pre-conditions of the operations are incomplete, that is,
they do not cover all states. Figure 3.13 illustrates this case; the figure shows all transitions
occurring between the two states. From a state that does not satisfy any pre-condition
(S6), transitions to all other states (S5, S6) are included in the transition relation for the
ConjMethod, because the antecedent of the implications in all the operations is false. So

25

Transition Relation Definition in
DisjMethod (solid lines):
σ(s, s′)⇔
(pre1(s) ∧ post1(s, s′))∨
(pre2(s) ∧ post2(s, s′)))
—————————————————
Transition Relation Definition in
ConjMethod (dashed lines):
σ(s, s′)⇔
(pre1(s)⇒ post1(s, s

′))∧
(pre2(s)⇒ post2(s, s

′)))

Figure 3.12: Overlap in pre-conditions. Shows only transitions starting from S1.

there are more transitions included in the transition relation for the ConjMethod than the
DisjMethod in this scenario, although none of these extra transitions are likely ones the
user is expecting.

While the modelling style is a matter of user preference, we prefer the DisjMethod
because it is more modular and additive (i.e., an added operation does not change the
behaviour of the existing operations) in nature than the ConjMethod, and we believe it is

Transition Relation Definition in
DisjMethod
(solid lines):
σ(s, s′)⇔
(pre1(s) ∧ post1(s, s′))∨
(pre2(s) ∧ post2(s, s′)))
—————————————————
Transition Relation Definition in
ConjMethod
(dashed lines):
σ(s, s′)⇔
(pre1(s)⇒ post1(s, s

′))∧
(pre2(s)⇒ post2(s, s

′)))

Figure 3.13: Incomplete pre-conditions. Shows all transitions between S5 and S6.

26

more likely to produce a transition relation that the modeller is expecting.

3.4 Summary

In summary, our style guidelines for modelling a transition system in Alloy consist of:

• State Equivalence: Use an equality constraint to force all states with the same at-
tributes to be equivalent. This guideline promotes consistency.

• No Invariants : Do not write invariants to define attributes of the state. It is unclear
whether operations maintain these constraints, or whether they are invariants to
verify. This guideline promotes consistency.

• Pre- and Post-Conditions : Separate the description of each operation into separate
facts for pre- and post- conditions. This guideline promotes structure.

• Distinct Operations : Operations should be defined such that each transition belongs
to only one operation, and no atomic formula in the post-condition depends only on
the previous state. This guideline promotes modularity.

• DisjMethod vs. ConjMethod : Build the transition relation using the DisjMethod (dis-
junct together the conjunctions of the pre- and post-conditions for each operation),
instead of the ConjMethod. This guideline promotes structure and modularity.

Our style guidelines are useful for describing a transition system in Alloy in a structured,
modular, and consistent manner, which may be analyzed via TCMC or BMC in the Alloy
Analyzer.

27

Chapter 4

Generating an Instance

After creating a model, it is common to inspect an instance of the model to confirm that
the expected behaviour is produced. This initial analysis can help catch any modelling
errors before starting the model checking process.

In Alloy, we can execute the run command to produce an instance of a model with a
finite number of states. This chapter discusses common methods for generating an instance
of a model in Alloy, some problems involved, and potential solutions.

4.1 Scope

To generate an instance of our model, we use the Alloy Analyzer’s finite model finding
capabilities by executing the run command. As part of this command, we need to provide
scope sizes for the sets declared in our state space. Since we force all elements with the same
attributes to be equivalent (using our state equality predicate), if we consider finite sizes for
our uninterpreted sets (Players and Chairs for Musical Chairs), the maximum size of all
other sets (for example, the State set) can be determined, generating a total state space.
For example, in Musical Chairs, if we consider a game starting with 5 players and 4 chairs,
we can calculate the number of State elements in the total state space to be the product
of the number of possible combinations of players (25, because the players currently in the
game, players, is defined as a set of Player, meaning that any of the 5 Player elements
can be present or absent from the set of players), the number of possible combinations
of chairs (24), the number of possible combinations of the occupied relation (29), and the
number of possible combinations of modes (24), which comes to 4,194,304. If we could set

28

the scope of the State set to this size when executing the run command, we would get a
transition system instance containing all possible states (that is, states with all possible
attribute value combinations, reachable and unreachable), and all transitions among them
– we call such a transition system the complete transition system. However, this total
state space is usually too large to produce in the Alloy Analyzer due to computing resource
limitations. One potential strategy to decrease the state scope would be to attempt to limit
the scope to the number of reachable states, however, this is also usually too big, and not
possible to calculate a priori.

Instead, we follow Jackson’s small scope hypothesis [24], and start generating instances
at small scopes for the State set with the goal of producing a transition system instance
that is useful for analyzing model correctness with the least amount of resources possible.
(We also start at small scopes when model checking for properties to find bugs in the
system, which we discuss in detail in the next chapter). We call generating instances of
models at scopes smaller than the total-state-space size scoped generation. For a given
exact state scope of n in scoped generation, the Alloy Analyzer produces a full subgraph
of size n of a complete transition system for inspection. A full subgraph of a graph is a
subset of the nodes, along with all edges between these nodes that are found in the original
graph.

4.2 Spurious Instance Problem

When we generate an instance using an exact scope, n, in the Alloy Analyzer, a full
subgraph that can consist of any subset of size n of the total state space is produced. This
random subset of states is often not a useful one to inspect and analyze. The instance
may not have an initial state or any interesting operations represented. In Musical Chairs,
for example, executing a command such as run {} for exactly 3 Player, exactly 2

Figure 4.1: Musical Chairs: 3-State Spurious Instance

29

Chair, exactly 3 State for our current model produces a random, disconnected set of
states shown in Figure 4.1. The initialState set and the nextState relation produced
are empty, and two of the states have multiple modes, which are unreachable in our model.
It is unlikely that anything useful, such as, the presence of modelling errors, is deducible
from such an instance. We refer to such instances as spurious instances. In our context,
a spurious instance exhibits one or more of the following characteristics:

• No initial state present: When no state is included that satisfies the initial state
constraints, the instance does not have a starting point, making it less useful for
inspection.

• Includes unreachable states: Unreachable states are generally not useful for inspec-
tion, therefore, it is important for the states included to be reachable.

• Absence of reachable transitions representing all operations defined in the model: The

Figure 4.2: Arbitrary Model: State Space and Instances. In: initial states, Opn: user-
defined operations. Intances A and B are Spurious. Instance C is Non-Spurious.

30

user may wish to inspect reachable representatives of all operations in order to check
for modelling errors.

In Figure 4.2, which shows some instances of an arbitrary model, instances A and B
are spurious. They are both instances produced from a state scope set to 3. Instance B
does not contain any transitions, and neither instance contains a valid initial state. Also,
instance A has no reachable states, and instance B has only one. These two instances
provide no useful feedback to the modeller about the correctness of the model.

We call the inability to produce a useful instance for inspection during scoped generation
as the spurious instance problem.

4.3 Significance Axioms

To tackle the spurious instance problem, and to assist in the production of a useful instance
during scoped generation, we propose a set of axioms, which we call the significance
axioms. When included as facts in the model, these axioms address each of the deficiencies
listed above to prevent the production of spurious instances by ensuring the existence of
some key states. Our significance axioms are:

• Reachability Axiom: All states produced must be reachable from an initial state. This
axiom also ensures that an initial state is included, and all transitions in the instance
are reachable. Equation 4.1 represents this axiom, where s and si are states, σ is
the transition relation, and S0 is the set of initial states (recall that ∗ is the reflexive
transitive closure operator):

∀s · ∃si · ∗σ(si, s) ∧ si ∈ S0 (4.1)

• Operations Axiom: At least one reachable transition that satisfies each operation
must be produced. Equation 4.2 represents this axiom, where s and s′ are states, op
is an operation, and op(s, s′) is a predicate where (s, s′) satisfies the operation op.

∀op · ∃s, s′ · op(s, s′) (4.2)

To be satisfied, these axioms, which are added as facts to the model, require a “big enough”
state scope, because there is a minimum set of (reachable) states that need to be included
if we wish each operation to be represented, as required by the Operations Axiom. These
axioms work whether the transition relation is uniquely defined or not.

31

One can view our significance axioms as an example of Jackson’s generator axioms [24]
that are specific for transition systems. Jackson describes generator axioms as a means
of forcing certain sets to be fully populated when verifying an assertion, so that instances
that do not satisfy the assertion due to a scope limitation, that is, instances where increas-
ing the scope would satisfy the assertion, are not produced as counterexamples. Jackson’s
generator axioms focus on the generation of states with all possible attribute values, which
can cause the state scope to explode. Our significance axioms focus on generating a tran-
sition representing each possible operation. The scope only increases linearly to the finite
number of operations defined (depending on the reachability of transitions representing the
operations), which is usually smaller than that of all possible state attribute combinations.

The significance axioms for Musical Chairs are shown in Figure 4.3. The Reachability
Axiom (Lines 1–3) is generic for all models. The Operations Axiom (Lines 4–10) ensures
that each of the model’s operations (in this case, music starts, music stops, etc.) are
represented in the produced instance. Lines 16–17 shows the run command used to include
the significance axioms in the model when generating an instance. These axioms ensure
that we have an instance in which some player wins, but the transition system is not
required to include a path for every player to win.

1 pred reachabilityAxiom {

2 all s:State | s in initialState .* nextState

3 }

4 pred operationsAxiom {

5 some s,s’: State | music_starts[s,s’]

6 some s,s’: State | music_stops[s,s’]

7 some s,s’: State | eliminate_loser[s,s’]

8 some s,s’: State | declare_winner[s,s’]

9 some s,s’: State | end_loop[s,s’]

10 }

11 pred significanceAxioms {

12 reachabilityAxiom

13 operationsAxiom

14 }

15 run significanceAxioms for exactly 3 Player ,

16 exactly 2 Chair , exactly 8 State

Figure 4.3: Musical Chairs: Significance Axioms

32

4.4 Significant Scope

As discussed previously, when generating an instance using the run command in the Alloy
Analyzer, we specify a (usually small) state scope. After we add the significance axioms
to our model, we may find that too small a scope makes our model inconsistent and no
instance is found. As previously mentioned, a minimum set of states is required to satisfy
the Operations Axiom, which means that a big enough state scope must be provided to
generate an instance. Hence, we iteratively increment our state scope until we have a
consistent model, and an instance is produced. We call the minimum scope at which the
significance axioms are satisfied the significant scope.

For the abstract example of Figure 4.2, a scope of 4 states (Instance C) is needed to
satisfy the significance axioms. Instance C contains only reachable states, an initial state,
and a transition for each operation.

This significant scope is also useful when performing scoped TCMC for certain kinds
of properties. The general idea for why this is useful in model checking is that checking at
the significant scope ensures that some non-spurious part of the total state space has been
verified, which is a measured method independent of computing resource limitations. This
is discussed in detail in the next chapter.

4.5 Summary

Scoped generation is the process of generating instances of models at scopes smaller than
the total-state-space size, and, scoped TCMC is the process of model checking using TCMC
in Alloy at scopes smaller than the total-state-space size. These scoped processes are use-
ful because the total state space is usually too large to be represented in Alloy. However,
scoped generation can produce spurious instances, which are full subgraphs of the model
that do not convey useful information for inspection and analysis. Thus, the generation
of spurious instances poses a problem for modellers when trying to detect modelling er-
rors. We created a set of axioms, called the significance axioms, that addresses this issue
by ensuring that some key states and transitions are produced, and that the states pro-
duced are within the reachable state space. A minimum state scope, called the significant
scope is required to satisfy the significance axioms. We can find this scope by iteratively
incrementing the state scope until a valid instance is found by the Analyzer.

33

Chapter 5

Scoped-TCMC Methodology

Scoped TCMC for a state scope of n, where n is less than the reachable state space, is
the model checking of all TS instances of size n of any transition system that satisfies the
transition relation. An example of scoped TCMC is shown in Figure 5.1, where T1, T2, and
T3 represent possible transition systems from a non-unique transition relation definition,
and the example TS instances are some of the checked TS instances of size n. Even with a
uniquely-defined transition system, there are multiple TS instances of size n, thus, scoped
universal TCMC, which checks whether a property is satisfied on all paths starting from
all initial states in all TS instances of the model, and scoped existential TCMC, which
checks if some TS instance of the model satisfies the property, return different results.

The result from scoped universal TCMC of a property holds for all transition system
instances of that size, and that from scoped existential TCMC holds for at least one
transition system instance of that size, but moreover, we can draw some conclusions about
whether the property holds for any complete transition system. Recall that a complete
transition system of a model is a transition system containing all possible states (that is,
states with all possible attribute value combinations, reachable and unreachable), and all
transitions among them. In this chapter, we propose a scoped-TCMC methodology that
helps us make such deductions.

5.1 Types of Properties

Before introducing our proposed scoped-TCMC methodology, we establish some categories
for classifying CTLFC properties. These categories, shown in Figure 5.2, help us compare

34

Figure 5.1: Modelling and checking transitions systems using TCMC in Alloy. T1, T2, and
T3 are transition systems from a non-unique NSR definition.

the model checking abilities of TCMC to those of BMC in Chapter 7. For our catego-
rization, we convert any given property to negation normal form, so that negations are
only applied to atomic propositions (similar to [10]). In our property examples, p and q
represent atomic propositions.

The first distinction made is between universal and existential properties [10]. Univer-
sal properties are those where we reason about all paths of a transition system. These
properties, also referred to as ACTL formulas [10], only contain universal quantifiers, A’s,
when expressed in negation normal form. If a universal property does not hold, a coun-
terexample, which is a path where the property is not satisfied, can be produced. AGp,
AFp, AFAGp and AG(p ⇒ AFq) are all examples of universal properties. Existential
properties are those where we reason about the existence of a satisfying path. Such

35

CTLFC
Properties

Universal
e.g. AGp,
AFp, AFAGp
(holds for all paths)

Safety
e.g. AGp
(c/e is finite path)

Liveness
e.g. AFp, AFAGp
(c/e is
infinite path)

Finite Liveness
e.g. AFp, A(pUq)
(can be satisfied
by finite path)

Infinite Liveness
e.g. AFAGp,
AG(p⇒ AFq)
(cannot be satisfied
by finite path)

Existential
e.g. EGp, EFp
(holds for some path)

Figure 5.2: CTLFC Property Categories

properties (all non-ACTL formulas) contain one or more existential quantifier, E, when
expressed such that negations are only applied to atomic propositions. If the property does
not hold, no counterexample is produced, however, if the property holds, a witness, which
is a path where the property holds, can be produced. EGp and EFp are examples of such
properties.

Following traditional definitions, universal properties are categorized into safety and
liveness properties [10]. Safety properties are properties that have finite paths as coun-
terexamples. Liveness properties are those that have infinite paths as counterexamples.
Since every path of a finite model has a finite representation, we define an infinite path
as one with a loop at the end, which means that the last state appears earlier in the path,
and a finite path as one without a loop at the end, meaning there is no repetition of the
last state earlier in the path.

Liveness properties are further categorized based on whether they can be satisfied by
a finite path or not. Finite liveness properties are those that can be satisfied by a
finite path, that is, the prefix of an infinite path. Properties of the form AFp or A(pUq)
are finite liveness properties. Infinite liveness properties are those that cannot be
satisfied by finite paths. Examples of such properties are those of the form AFAGp or
AG(p ⇒ AFq). Any universal property with a fairness constraint is categorized as an
infinite liveness property because only infinite paths can satisfy these properties.

The rest of this chapter describes model checking methodologies and how to interpret
results for the complete transition system for these different types of properties. In our
figures, we use the word real to signify if a scoped TCMC pass or fail holds for the complete
transition system of the model. We use the term ambiguous to refer to a scoped TCMC
result that could potentially be reversed when considering the complete transition system.

36

Safety Property,
Scope n

Universal
TCMC

Real
Bug

Ambiguous
if real pass

or eventually
violated

Find significant
scope if not

already found

Ambiguous, but
high confidence

in real pass
Increment n

Fail: instance with
finite path c/e

Pass

n ≥ sig. scopen < sig. scope

Figure 5.3: Safety Property: Scoped-TCMC Methodology

5.2 Safety Properties

Safety properties, that is, properties that have finite path counterexamples, are checked
using the process outlined in Figure 5.3. We run universal TCMC as described in Sec-
tion 2.4. If the check fails, we get a TS instance with a finite path containing a bug: this
is a real bug in the complete transition system of the model.

If it passes, we can conclude that it passes in all transition systems of the specified
scope, however, for the complete transition system, it is ambiguous if the pass holds or if
a violating state would be encountered at a larger scope. At this stage, we recommend
testing the model at least up to the significant scope, which is the minimum scope required
to satisfy our significance axioms, as described in Section 4.3. We iteratively increment
the state scope for our check and rerun universal TCMC until this significant scope is
reached or a failure occurs. We increment iteratively instead of directly checking at the
significant scope to take advantage of the better model checking performance at lower
scopes. Model checking at least at the significant scope ensures that we check some non-
spurious instances, which contain at least one transition representing each operation. This
results in a higher confidence in our pass result. If computing resources allow it, then
we continue to increment our state scope for model checking to continue to increase our
confidence in the result.

Figure 5.4 shows an example of checking a safety property in our Musical Chairs model.
Here we consider a game starting with 3 players and 2 chairs. We check that the number

37

1 assert safety {

2 // number of players is always 1 greater than number of chairs

3 ctl_mc[ag [{s: State| #s.players = (#s.chairs).plus [1] }]]

4 }

5 check safety for exactly 3 Player , exactly 2 Chair ,

6 exactly 8 State

Figure 5.4: Checking a safety property of Musical Chairs

of players is always one more than the number of chairs using the ag function from the
ctl module. The model checking process is started at a low State scope of 4 to detect
initial bugs since a lower scope yields better performance. When we get a pass result, we
iteratively increment the State scope until we reach 8, which is the significant scope for
the Musical Chairs model of 3 players and 2 chairs. A pass at this scope gives us some
confidence that the property is satisfied in the complete transition system.

5.3 Finite Liveness Properties

Although transition systems are often thought of as having only infinite paths generated
from a total next-state relation, when we perform scoped TCMC in Alloy, the transition
systems checked contain a limited number of states, and thus may contain finite paths
(i.e., states that have no successor). Finite liveness properties are those that are violated
only by infinite paths, but can be satisfied by finite paths. These properties can be checked
using scoped TCMC in Alloy using the methodology illustrated in Figure 5.5.

When checking finite liveness properties, universal TCMC inherently only considers and
checks infinite paths (see the use of id[X] in eg, and the derived functions af and au, in
the TCMC implementation in Figure 2.2). Therefore, if the check fails (while considering
only infinite paths), the culprit path in the counterexample instance is an infinite path,
guaranteeing that a real bug has been uncovered in the complete transition system of the
model.

If the check passes, it is ambiguous whether the property holds for the complete tran-
sition system, since paths that are finite at the specified scope have not been checked.
However, it is useful to consider finite paths when checking finite liveness properties, since
these properties can be satisfied by finite paths, which means that, at the given scope,
if all paths, finite and infinite, satisfy a finite liveness property, then the property is sat-
isfied for the complete transition system as well. For the transition system instances in

38

Finite Liveness
Property,
Scope n

Universal
TCMC

Real
bug

Add
dead-loop
constraint

Universal
TCMC

Real
pass

Ambiguous
if real bug

or eventually
satisfied

Find significant
scope if not

already found

Ambiguous, but
high confidence

in real bug
Increment n

Fail: instance with
infinite path c/e

Pass

Pass

Fail: instance with
finite path c/e

n ≥ sig. scopen < sig. scope

Figure 5.5: Finite Liveness Property: Scoped-TCMC Methodology

Figure 5.6, where A0 and B0 are the initial states, 5.6a shows an instance that should be a
real pass for AFp since all paths contain a state satisfying p, and 5.6b shows an instance
that is ambiguous for the property since there is a finite path with no state that satisfies
p. In both of these cases, TCMC of the AFp property results in a pass because there is
no infinite path without p being true at some point: It cannot differentiate the real and
ambiguous passes, because in 5.6a, the path A0 → A3 → A4 is not infinite and, therefore,
is not checked. We wish to distinguish between these two instances.

Therefore, at this point, we check if the given property holds on the finite paths of the
transition system. We achieve this by adding a constraint to our model that creates a loop
at any dead state, which is a reachable state with no successor, in the limited scope. We
call this constraint the dead-loop constraint. Equation 5.1 represents such a constraint,
where s, s′, and sn are states, ops(s, sn) is a predicate where (s, sn) satisfies any of the

39

(a) Real Pass (b) Ambiguous

Figure 5.6: AFp: TCMC (without dead-loop) results in pass for both

model’s operations, and σ is the transition relation.

∀s, s′ · (¬(∃sn · ops(s, sn)) ∧ (s = s′))⇒ σ(s, s′) (5.1)

Adding the dead-loop constraint forces all finite paths in an instance to be infinite by
adding a transition from any reachable state without a successor back to itself. This
enables us to check finite paths when checking for finite liveness properties using TCMC.
Figure 5.7 shows the transition systems from Figure 5.6 with the additional transitions
resulting from the dead-loop constraint with dashed arrows. These added transitions make
all paths infinite and allow TCMC to distinguish between a real pass and an ambiguous
pass.

When we perform scoped TCMC after adding the dead-loop constraint, a pass result

(a) Real Pass (b) Ambiguous

Figure 5.7: AFp: TCMC with dead-loop results in pass for (a) and fail for (b)

40

(Figure 5.7a) means that all paths originating from all initial states reach satisfying states,
where the desired behaviour occurs, within the limited scope. So we can deduce that the
property passes in the complete transition system as well, and we can stop our model
checking process.

If the check fails (Figure 5.7b), it means that there is a violating finite path in the
given scope. However, it is unknown whether the path represents a real bug in the complete
transition system or if the finite path can eventually lead to a satisfying state, which makes
the fail result ambiguous. To add some assurance to this result, as with safety properties,
we model check up to the significant scope. A failure at the significant scope results in
higher confidence that the finite liveness property is not satisfied in the complete transition
system.

Figure 5.8 shows an example of checking a finite liveness property in our Musical Chairs
model. Here, we check that a game of 3 players and 2 chairs always reaches a state with a
sitting mode, ensuring the game’s progress. We assert the property using the af function
from the ctl module. When we perform TCMC at a scope of 2 States, the check passes,
although vacuously, since no infinite paths exist for a scope of 2 for this model. Then we
add our dead-loop constraint to the model, as shown in Figure 5.9, to consider finite paths
as well. On executing the check command with a state scope of 2, the check fails. We

1 assert finiteLiveness {

2 ctl_mc[af [{ s: State| s.mode=sitting }]]

3 }

4 check finiteLiveness for exactly 3 Player , exactly 2 Chair ,

5 exactly 3 State

Figure 5.8: Checking a finite liveness property of Musical Chairs

1 // ops[s1 ,s2] is a disjunction of the model ’s operations

2 pred dead_loop [s,s’: State] {

3 (no s_n:State | ops[s,s_n]) and s=s’

4 }

5 fact modelDefinition {

6 all s,s’: State | s->s’ in nextState iff

7 (ops[s,s’] or dead_loop[s,s’])

8 ...

9 }

Figure 5.9: Dead-loop Constraint in an Alloy Model

41

increase the scope to increase confidence since 2 is less than the significant scope. When
we set the State scope to 3, we find that the property holds, which is a real pass for the
complete transition system.

5.4 Infinite Liveness Properties

An infinite liveness property can only be satisfied and violated by infinite paths, therefore,
we only need to consider and check infinite paths during scoped TCMC. Our proposed
method for using TCMC to check infinite liveness properties is outlined in Figure 5.10.

If TCMC for an infinite liveness property fails, the counterexample produced represents
a real bug in the complete transition system. TCMC inherently only considers infinite
paths for these properties, meaning that only an instance with a culprit infinite path, thus,
representing a real bug, can be produced as a counterexample.

If TCMC passes for such a property, then it is ambiguous whether the result represents
a real pass in the complete transition system or a false positive. Longer paths may exist
that have not been checked that violate the property. However, as before, model checking
up to the significant scope gives us greater confidence in our pass result. There is no point

Infinite Liveness
Property,
Scope n

Universal
TCMC

Real
bug

Ambiguous
if real pass

or eventually
violated

Find significant
scope if not

already found

Ambiguous, but
high confidence

in real pass
Increment n

Fail: instance with
infinite path c/e

Pass

n ≥ sig. scopen < sig. scope

Figure 5.10: Infinite Liveness Property: Scoped-TCMC Methodology

42

1 assert infiniteLiveness {

2 // #players eventually always reaches and remains at 1

3 ctl_mc[af [ag [{s: State| #s.players =1}]]]

4 }

5 check infiniteLiveness for exactly 3 Player , exactly 2 Chair ,

6 exactly 8 State

Figure 5.11: Checking an infinite liveness property of Musical Chairs

in adding our dead-loop constraint to check finite paths in this case, because, unlike finite
liveness properties, infinite liveness properties cannot be satisfied by finite paths.

Our methodology for infinite liveness properties is similar to that for safety properties,
however, there is a distinction between the kind of counterexample returned for each prop-
erty on failure: TCMC of a safety property returns a counterexample with a finite culprit
path, whereas, TCMC of an infinite liveness property returns a counterexample with an
infinite culprit path.

Figure 5.11 shows an example of checking an infinite liveness property in our Musical
Chairs model of the form AFAGp. We use the af and ag functions from the ctl module
to check that we always eventually reach a point where the number of players is one and
always remains at one at all further states on that path, in other words, the transition
system converges. We start the model checking at a State scope of 4. We find that
the check passes (although, from our knowledge about the model, we know that this pass
occurs vacuously since no paths at this scope are infinite). We repeat the check until we
reach a scope of 8, which is the significant scope. At this point, we are relatively confident
of our pass result (and we know that the pass is not vacuously obtained since infinite paths
exist at this scope).

5.5 Existential Properties

To check existential properties (including existential properties with fairness constraints)
such as EFp or EGp, in TCMC, we use existential TCMC as described in Section 2.4.
Checking an existential property using universal TCMC would check if there is some path
in all instances of the model that satisfies the property. This check is too strong since
to satisfy an existential property, there only needs to be some path in some instance of
the model that satisfies the property, which is what we accomplish with existential model
checking.

43

Existential
Property,
Scope n

Existential
TCMC

Real pass

Ambiguous
if real bug

or eventually
satisfied

Find significant
scope if not

already found

Ambiguous, but
high confidence

in real bug
Increment n

Pass

Fail

n ≥ sig. scopen < sig. scope

Figure 5.12: Existential Property: Scoped-TCMC Methodology

Our methodology for checking existential properties is shown in Figure 5.12. If an
existential TCMC run produces a satisfying instance, then the property passes for the
complete transition system of the model because a path (finite or infinite) exists in some
instance that satisfies the property. If the run does not find an instance, it is ambiguous
whether the property fails for the complete transition system of the model, because there
may exist an instance larger than the specified scope that contains a path satisfying the
property. However, as before, model checking up to the significant scope gives us greater
confidence in our pass result.

Figure 5.13 shows an example of checking an existential property in our Musical Chairs
model. In this example, we assert, using the ef function, that there is a player named
Alice in the game, and there exists an instance where she eventually wins the game. When
we start our model checking process at a State scope of 4, our property fails (since an end

1 one sig Alice extends Player {}

2 pred existential {

3 // Alice wins in some instance

4 ctl_mc[ef [{s: State| s.mode=end and s.players=Alice }]]

5 }

6 run existential for exactly 3 Player , 2 Chair , exactly 8 State

Figure 5.13: Checking an existential property of Musical Chairs

44

state has not been reached). We increment the scope but get failures until we reach 8. At
this point, we find the property is satisfied, which means it is satisfied for the complete
transition system.

5.6 Summary

We can categorize CTLFC properties into existential and universal properties. Universal
properties can be divided into safety (counterexample is a finite path) and liveness (coun-
terexample is an infinite path) properties. Liveness properties can, in turn, be divided into
infinite liveness properties and finite liveness properties, depending on whether finite paths
can satisfy them or not. We can use scoped TCMC for each of these property categories,
and then, deduce model checking results for the complete transition system from the scoped
TCMC results, as shown in Table 5.1. By checking at the significant scope, we gain higher
confidence in our scoped TCMC result with respect to the complete transition system. Our
scoped-TCMC methodology works whether the model defines a unique transition system
or not, because, scoped TCMC checks all TS instances of the given state-scope size across
all possible transition systems.

Table 5.1: Deducing Complete Model Checking Results from Scoped TCMC

Property Scoped TCMC Pass Scoped TCMC Fail

Safety Unknown Real Bug
Finite Liveness w/o dead-loop Unknown Real Bug

w/ dead-loop Real Pass Unknown
Infinite Liveness Unknown Real Bug

Existential Real Pass Unknown

45

Chapter 6

Case Studies

We developed four case studies, including our Musical Chairs example, to demonstrate the
contributions made in this thesis. The complete Alloy models are included in Appendix A.
In the first four sections of this chapter, we discuss our case studies highlighting how each
utilizes the style guidelines discussed in Chapter 3, the significance axioms in Chapter 4,
and the scoped-TCMC methodology in Chapter 5. In the last section of the chapter, we
investigate the scalability of TCMC in Alloy in terms of these case studies.

6.1 Musical Chairs

As described throughout the previous chapters, we modelled the game of Musical Chairs
based on [35] and checked its properties using TCMC. (The full model is provided in
Appendix A.1.) This section describes the utility provided by our contributions to this
process.

6.1.1 Style Guidelines

Our Musical Chairs model adheres to our style guidelines in Chapter 3 that we believe
promote structure, modularity, and consistency when modelling. We use an equality con-
straint to ensure that states with equivalent attribute values are treated as the same state
to avoid the occurrence of multiple State elements that do not represent distinct states
of the system (Appendix A.1 Lines 125–129). The state-space declaration avoids enforc-
ing invariants (such as using multiplicity constraints like lone or one). This rule helps the

46

modeller to define their model only through initial state constraints and operations, so that
any expected invariants can be model checked to verify modelling correctness, promoting
consistency when modelling. The operations defined in the model are separated into pre-
and post-conditions, and into distinct operations (Section 3.2.2), to support structure and
modularity. This treatment of operations also helps when using significance axioms to
generate a non-spurious instance (Section 4.2). When constraining our model’s transition
relation, we use the DisjMethod (as opposed to the ConjMethod) discussed in Section 3.3.1,
which results in a transition system with the expected behaviour.

6.1.2 Significance Axioms

Generating an instance of our Musical Chairs model using the run command in the Alloy
Analyzer produces a spurious instance, which is a random set of states that provides no
value to the modeller for inspection or analysis. Figure 6.1 shows such an instance pro-
duced using the command run {} for exactly 3 Player, exactly 2 Chair, exactly

5 State. The instance has no initial state, no transitions, and include unreachable states
(e.g. the states with multiple modes).

Using the significance axioms shown previously (Figure 4.3) to generate an instance with
the command run significanceAxioms for exactly 3 Player, exactly 2 Chair,

exactly 8 State produces a more useful instance, as shown in Figure 6.2. The significant

Figure 6.1: Musical Chairs: 5-State Spurious Instance

47

Figure 6.2: Musical Chairs: 8-State Non-Spurious Instance (sigma: Transition Relation)

scope for this model for 3 players and 2 chairs is 8 states, which means a minimum of 8
states must be present to satisfy the significance axioms. The instance produced has an
initial state (State7), and shows at least one reachable transition for each operation. As
modellers, we are able to inspect the pre- and post-conditions of each operation, and the
initial state constraints in this instance. This establishes the utility of significance axioms
when generating instances of models for inspection.

6.1.3 Scoped-TCMC Methodology

In Musical Chairs, we check a property in each of the four different categories using the
scoped-TCMC methodology proposed in this thesis.

As a safety property, we check if the number of players in the game is always 1 greater
than the number of chairs: AG(#players = #chairs+1). This property holds in the model
as described previously (and in Appendix A.1). However, if a bug is introduced by removing

48

the constraint #s’.chairs = (#s.chairs).minus[1] (Line 75 in Appendix A.1) from the
post eliminate loser predicate that enforces a decremented number of chairs in the next
state, and we execute the command check safety for exactly 3 Player, exactly 2

Chair, exactly 4 State, we discover the property is not satisfied, which means the bug
has been discovered. The counterexample shown in Figure 6.3 is produced by the Analyzer.
From our scoped-TCMC methodology, we know that this is a real bug, that is, a bug in
the complete transition system.

After fixing the bug, we find the significant state scope as outlined in Chapter 4. We
execute the check command, and since it returns a pass result, we iteratively increment the
scope until the significant scope, which is 8 in this case, is reached. By performing TCMC
at this scope, we can have some confidence that this pass result holds for the complete
model checking problem of the entire state space. Inspection of an instance generated

Figure 6.3: Musical Chairs: Safety Property Counterexample with A Finite Path (sigma:
Transition Relation)

49

using the significance axioms (e.g., the one in Figure 6.2), corroborates this deduction.

As a finite liveness property, we check if a state with a sitting mode is always
eventually reached: AF (mode = sitting). The property checks if a significant part of the
game is reached where the loser of the round is eliminated. We use the ctl module’s af

function to express this property. At the significant scope of 8 states (for 3 players), the
check passes, meaning the property holds on all infinite paths present at this scope. If we
introduce a bug, for example by replacing all occurrences of sitting in the model with an
arbitrary mode, then the check produces a counterexample with an infinite path showing
a real bug in the complete transition system.

Without the bug, if we now add our dead-loop constraint (Section 5.3) to check all
finite paths as well, and execute TCMC at a state scope of 8, we find that the check passes
again. This pass represents a real pass for the complete model checking problem, since all
paths, finite and infinite, reach a sitting mode at the given scope.

As an infinite liveness property, we check if the number of players eventually reaches
and remains at 1: AFAG(#players = 1). Performing TCMC at a state scope of 8, results
in a pass for the property. This pass means that all infinite paths at this scope satisfy
the property, but since it is unknown whether other infinite paths exist in the complete
transition system that potentially violate the property, the result is ambiguous in terms of
the complete model checking problem.

If we introduce a bug in our model by letting the declare winner operation occur when
the number of players reaches 2 instead of 1, TCMC fails, and produces a counterexample
with an infinite path (Figure 6.4). This counterexample represents a real bug in the
complete transition system.

To check an existential property, we first assert that there is a player in the system
called Alice, and write a property to check that there exists a path where Alice wins, which
happens when a state with the end mode is reached and Alice is the only remaining player:
EF (mode = end ∧ players = {Alice}). If we start existential TCMC for the property at
a state scope of 4, we find that the property fails, and no instance is found. From our
knowledge of the model, we know the fail occurs because at this scope, a winner has not
been declared yet. As we increase the state scope to the significant scope of 8, we find
that TCMC for this property holds, and an instance showing Alice winning is produced.
Since this is an existential property, as long as there is one path present in the system
that satisfies the property, the property holds for the complete transition system. The
opposite, however, is not true: if an existential property does not hold for scoped TCMC,
it is ambiguous whether it holds in the complete transition system, since there could be a
path present when considering the entire state space that satisfies the property.

50

Figure 6.4: Musical Chairs: Infinite Liveness Property Counterexample with An Infinite
Path (sigma: Transition Relation)

51

6.2 Elevator System

We developed a model (Appendix A.2) of a simple Elevator System in Alloy inspired by [36]
and [29]. The elevator can be called by any floor; it moves up and down, stopping at the
closest called floor in its current direction, and switches directions when no more called
floors exist in the current direction. The elevator also requires a maintenance check after
it has changed direction a certain number of times. Every state of the Elevator System
contains attributes pertaining to the current floor, the set of called floors, the current
direction of the elevator’s movement (goingUp), and the number of times the direction has
been changed since the last maintenance (maintenance).

The rest of this section discusses how our style guidelines, significance axioms, and
scoped-TCMC methodology contribute to the modelling and model checking process of
this system.

6.2.1 Style Guidelines

Our Elevator System model follows the style guidelines discussed in Chapter 3 of this
thesis. An equality constraint, shown in Figure 6.5 Lines 9-15, is used to require states
with equivalent attributes to be the same state. No invariants are used in the state space
declaration. For example, since the current attribute can only contain one Floor element

1 sig Floor {}

2 one sig Up {}

3 sig State {

4 current: set Floor ,

5 goingUp: set Up ,

6 called: set Floor ,

7 maintenance: Int

8 }

9 pred equality [s,s’: State] {

10 (s’. current = s.current and

11 s’. maintenance = s.maintenance and

12 s’. goingUp = s.goingUp and

13 s’. called = s.called)

14 implies s = s’

15 }

Figure 6.5: Elevator System State Space

52

at a time, we could have declared it as current: one Floor. However, to maintain a
consistent model, this invariant should hold throughout the reachable states of the model
because of its initial state and operation constraints. Therefore, instead of declaring the
invariant as an explicit constraint in the model, we verify it through model checking.

1 pred pre_moveUp[s:State] {

2 some s.called

3 some s.goingUp

4 some nexts[s.current] & s.called

5 }

6 pred post_moveUp[s,s’: State] {

7 s’. current = min[nexts[s.current] & s.called]

8 s’. current not in s’. called

9 s’. maint = s.maint

10 s’. goingUp = s.goingUp

11 (s.called - s’. current) in s’. called

12 }

13

14 pred pre_moveDown[s:State] {

15 some s.called

16 no s.goingUp

17 some prevs[s.current] & s.called

18 }

19 pred post_moveDown[s,s’: State] {

20 s’. current = max[prevs[s.current] & s.called]

21 s’. current not in s’. called

22 s’.maint = s.maint

23 s’. goingUp = s.goingUp

24 (s.called - s’. current) in s’. called

25 }

Figure 6.6: Elevator System Operations

When defining the model’s operation constraints, we ensure that each operation is
distinct, as discussed in Section 3.2.2. For example, we create separate operations to
represent the elevator moving up and down (moveUp and moveDown), as shown in Figure 6.6,
since each of these operations have distinct pre- and post-conditions. Also, for the sake of
structure and modularity, we create separate predicates for the pre- and post-conditions
within each operation, as shown in Figure 6.6. These practices in modularity also help
when creating our significance axioms to ensure that in every instance produced, we are
shown at least one transition from each defined operation.

The model definition block, which adds structure to our model, uses the DisjMethod to

53

1 pred moveUp[s,s’: State] {

2 pre_moveUp[s]

3 post_moveUp[s,s’]

4 }

5 ...

6 fact modelDefinition {

7 all s:State | s in initialState iff init[s]

8 all s,s’: State | s->s’ in nextState iff

9 changeDir[s,s’] or

10 moveUp[s,s’] or

11 moveDown[s,s’] or

12 defaultToGround[s,s’] or

13 idle[s,s’] or

14 maintain[s,s’]

15 all s, s’: State | equality[s,s’]

16 }

Figure 6.7: Elevator System Operations

Figure 6.8: Elevator System: 4-State Spurious Instance

constrain our transition relation as shown in Figure 6.7. This method of conjuncting the
pre- and post-condition of the operations (Lines 1-4), and disjuncting each operation for
the transition relation (Lines 8-14) models the behaviour that we expect for this system.

6.2.2 Significance Axioms

When we generate an instance of our Elevator System model in the Alloy Analyzer using the
command run {} for exactly 6 Floor, exactly 4 State, we get an unhelpful spuri-
ous instance like the one shown in Figure 6.8. Therefore, we create significance axioms as
described in Section 4.3. The significance axioms for this model are shown in Figure 6.9. We
find that a significant scope of 7 states is required to satisfy the axioms for 6 floors. When
we generate an instance of the model using the command run significanceAxioms for

exactly 6 Floor, exactly 7 State, an instance such as the one shown in Figure 6.10

54

1 pred reachabilityAxiom {

2 all s:State | s in State.(initialState <: *nextState)

3 }

4 pred operationsAxiom {

5 some s,s’: State | changeDirToDown[s,s’]

6 some s,s’: State | changeDirToUp[s,s’]

7 some s,s’: State | moveUp[s,s’]

8 some s,s’: State | moveDown[s,s’]

9 some s,s’: State | defaultToGround[s,s’]

10 some s,s’:State | idle[s,s’]

11 some s,s’:State | maintain[s,s’]

12 }

13 pred significanceAxioms {

14 reachabilityAxiom

15 operationsAxiom

16 }

Figure 6.9: Elevator System: Full Significance Axioms

is produced. This instance contains an initial state, and reachable transitions representing
each of our defined operations. We can inspect this instance to verify that it exhibits the
behaviour expected from the constraints declared in the model.

6.2.3 Scoped-TCMC Methodology

In our Elevator System model, we check a property from each of the three categories of
universal properties. We follow the scoped-TCMC methodology described in Chapter 5
for each of these properties.

For safety, we check model correctness by verifying that there is only one floor associ-
ated with current for every state. We use the ag function from the ctl module as shown
in Figure 6.11. TCMC of the property passes at the given significant scope, which means
that although it is ambiguous whether the property holds for the entire state space, we
gain confidence in the pass by checking at least at the significant scope.

As a finite liveness property, we check that the elevator always reaches a maintenance
state. Maintenance is required after the elevator changes direction a specified number of
times. The maintenance state is represented by a 0 value for the maintenance attribute,
which tracks the number of times the elevator changed directions since the last time the
maintenance check was 0. We use the af function to write the property as shown in

55

Figure 6.10: Elevator System: 7-State Non-Spurious Instance (sigma: Transition Relation)

1 assert safety {

2 // there is only one current floor

3 ctl_mc[ag [{s: State| one s.current }]]

4 }

5 check safety for exactly 6 Floor , exactly 7 State

Figure 6.11: Elevator System: Safety Property

56

1 assert finiteLiveness {

2 // always reaches maintenance state

3 ctl_mc[af [{s: State| s.maint = 0}]]

4 }

5 check finiteLiveness for exactly 6 Floor , exactly 7 State

Figure 6.12: Elevator System: Finite Liveness Property

Figure 6.12 Line 3. This property passes for 6 floors and 7 states. Therefore, no bugs
are found when considering only infinite paths. Next, we add our dead-loop constraint
(Figure 5.9) to consider finite paths as well. This time, TCMC fails with an ambiguous
counterexample with a violating finite path, which means that it is uncertain whether the
property holds in the complete transition system. We check up to the significant scope,
and the check fails, thus, we have a higher confidence in the failure since we checked up to
the significant scope.

As an infinite liveness property, we check that whenever a floor is called, that floor is
always eventually reached as a current floor. The property is expressed in Alloy for TCMC
as shown in Figure 6.13 Line 4. We use the ag and af temporal logic functions from the
ctl module, along with the imp (implies) logical operator function to create the property.
We perform TCMC up to the significant scope, and find that the property holds. Although
it is ambiguous from our scoped TCMC result if the property holds for the complete model
checking problem, we have gained confidence in the pass result by checking at least at the
significant scope.

1 assert infiniteLiveness {

2 // a floor called is always eventually reached as current

3 // AG(floorCalled => AF (floorCurrent))

4 all f:Floor | ctl_mc[ag [imp_[called.f, af [current.f]]]]

5 }

6 check infiniteLiveness for exactly 6 Floor , 7 State

Figure 6.13: Elevator System: Infinite Liveness Property

57

6.3 Traffic Light Controller

We developed a Traffic Light Controller model by applying our modelling guidelines to
the model developed by Vakili [42] (Appendix C.1 for comparison), which was originally
inspired by [30]. We represented the three fairness constraints in the original model using
one equivalent fairness constraint. Our full model is in Appendix A.3. The system models
the behaviour of a three-way traffic intersection. Each side of the intersection has a sensor
to detect if there are vehicles present that request the green light from that direction. On
such a request, the green light is eventually provided to that direction. The value of our
contributions for this model is discussed in the rest of this section.

6.3.1 Style Guidelines

In the state-space declaration, we avoid enforcing invariants (which promotes consistency),
and include an equality constraint to consider all states with equivalent attributes as the

1 abstract sig Counter {}

2 one sig f0 , f1 , f2 , f3 extends Counter {}

3 abstract sig Sense{}

4 one sig N_Sense , S_Sense , E_Sense extends Sense{}

5 abstract sig Go{}

6 one sig N_Go , S_Go , E_Go extends Go{}

7 abstract sig Request {}

8 one sig N_Req , S_Req , E_Req extends Request {}

9 sig State{

10 sensors: set Sense ,

11 goes: set Go,

12 req: set Request ,

13 NS_Lock: set Bool ,

14 counter: set Counter

15 }

16 pred equality [s,s’: State] {

17 (s.sensors = s’. sensors and

18 s.goes = s’.goes and

19 s.req = s’.req and

20 s.NS_Lock = s’. NS_Lock)

21 implies s = s’

22 }

Figure 6.14: Traffic Lights Control: State Space

58

1 pred pre_N_Go[s:State]{

2 N_Go_True[s]

3 }

4 pred post_N_Go[s’: State] {

5 N_Go in s’.goes

6 }

7 pred N_Go_[s,s’: State]{

8 pre_N_Go[s]

9 post_N_Go[s’]

10 }

11 ...

12 fact modelDefinition{

13 all s:State| initial[s] iff (s in initialState)

14 all s,s’:State| s->s’ in nextState iff (

15 N_Go_[s,s’] or

16 S_Go_[s,s’] or

17 E_Go_[s,s’] or

18 ...

19)

20 }

Figure 6.15: Traffic Lights Control: Operations and Model Definition

same state, as shown in Figure 6.14. When declaring our operations, we create separate
predicates for the pre- and post-conditions, promoting structure and modularity, and use
the DisjMethod in the model definition to constrain the transition relation, as shown
in Figure 6.15. The original Alloy model by Vakili [42] is provided for comparison in
Appendix C.1. We found that applying our style guidelines promotes structure, modularity,
and consistency in the model.

This case study uses the ctlfc module and shows an example of the use of fairness
constraints in TCMC. It also shows an application (by hand) of the method described
in [42], which is based on [44], to convert multiple fairness constraints to one. Our model has
three fairness constraints that ensure all directions at the three-way traffic light intersection
(North, South and East) receive adequate green light time. The fair states satisfying each
of these three constraints are described by the functions implemented in Lines 3–5 in
Figure 6.16. The fact fairness { ... } in Lines 8–15 dictates the update of a counter
attribute in State whenever a new type of fair state is encountered, and the counter is
reset when all three types of fair states have occurred. The predicate fair (Lines 16–18)
is true whenever a member from each of the three fair state sets has been encountered.
We equate the function representing the set of accepted fair states in the ctlfc module,

59

1 open ctlfc[State]

2 ...

3 fun N_fair []: State {State - (sensors.N_Sense & goes.N_Go)}

4 fun S_fair []: State {State - (sensors.S_Sense & goes.S_Go)}

5 fun E_fair []: State {State - (sensors.E_Sense & goes.E_Go)}

6 // combines 3 fcs into 1 fc by checking that

7 // all 3 fcs occur infinitely often using a counter

8 fact fairness {

9 all s,s’: State | s->s’ in nextState implies (

10 (s in N_fair [] and s.counter=f0) implies s’. counter=f1 else

11 (s in S_fair [] and s.counter=f1) implies s’. counter=f2 else

12 (s in E_fair [] and s.counter=f2) implies s’. counter=f3 else

13 s.counter=f3 implies s’. counter=f0 else

14 s’. counter=s.counter)

15 }

16 pred fair[s:State] {

17 s.counter = f3

18 }

19 ...

20 fact modelDefinition{

21 ...

22 all s:State | s in fc iff fair[s]

23 }

Figure 6.16: Traffic Lights Control: Fairness Constraints

fc, to the set of states satisfying fair (Line 21). Therefore, when performing TCMC, the
ctlfc module ensures that the fair predicate holds infinitely often in checked instances,
thus, satisfying all three fairness constraints of the model.

6.3.2 Significance Axioms

We use our significance axioms, shown in Figure 6.17, to generate a non-spurious instance
by executing the command run significanceAxioms for exactly 17 State. The sig-
nificant scope for this model is found to be 17 states.

6.3.3 Scoped-TCMC Methodology

Using TCMC, we check a safety property in this model that traffic from cross directions
never receive the green light at the same time, as shown in Figure 6.18. We use the ag

60

1 pred reachablityAxiom {

2 all s:State | s in State.(initialState <: *nextState)

3 }

4 pred operationsAxiom {

5 some s,s’: State | N_Go_[s,s’]

6 some s,s’: State | N_Not_Go[s,s’]

7 some s,s’: State | N_Go_Unchanged[s,s’]

8 ...

9 }

10 pred significanceAxioms {

11 reachablityAxiom

12 operationsAxiom

13 }

Figure 6.17: Traffic Lights Control: Significance Axioms (full axioms in Appendix A.3)

1 assert safety{

2 // light in cross directions never on at same time

3 // AG !(E_Go & (N_Go | S_Go))

4 ctlfc_mc[ag [not_[goes.E_Go & goes.(N_Go + S_Go)]]]

5 }

6 check safety for exactly 17 State

Figure 6.18: Traffic Lights Control: Safety Property

function and the not function, representing the negation logical operator, from the ctlfc

module to express the property. We find that the property holds for the specified scope.
According to our methodology, this pass is ambiguous in terms of the complete model
checking problem, however, we gain confidence in the result by performing TCMC at least
at the significant scope of 17 states.

6.4 Feature Interaction in a Telephone System

We created a model (Appendix A.4) for Feature Interaction in a Telephone System, which
was previously modelled by Vakili [42]. This example models two features of a telephone
system, call waiting and call forwarding, and investigates any interference caused by each
feature for the other. We applied our contributions to this model, and discuss our modelling
and model checking process in the rest of this section.

61

6.4.1 Style Guidelines

Similar to our previous case studies, we avoid invariants, including multiplicity constraints,
in our state-space declaration, which promotes consistency, and use an equality constraint,
as shown in Figure 6.19. For our operations, we separate the pre- and post-conditions,
which adds structure and modularity, and ensure that distinct operations are defined to
represent different kinds of transitions. For example, we create separate operations called
calling talkingTo and calling busy, instead of aggregating two different pre- and post-
conditions in one operation, as shown in Figure 6.20 Lines 1–19. We use the DisjMethod
to constrain the transition relation, as shown in Figure 6.20 Lines 20–33, which produces
the transitions we expect in the system.

1 abstract sig Feature {}

2 one sig CW ,CF extends Feature {}

3 sig PhoneNumber{

4 feature: set Feature ,

5 fw: set PhoneNumber

6 }

7 sig State{

8 idle: set PhoneNumber ,

9 busy: PhoneNumber -> PhoneNumber ,

10 calling: PhoneNumber -> PhoneNumber ,

11 talkingTo: PhoneNumber -> PhoneNumber ,

12 waitingFor: PhoneNumber -> PhoneNumber ,

13 forwardedTo: PhoneNumber -> PhoneNumber

14 }

15 pred equality [s,s’: State] {

16 (s.idle = s’.idle and s.calling = s’. calling and

17 s.talkingTo = s’. talkingTo and s.busy = s’.busy and

18 s.waitingFor = s’. waitingFor and

19 s.forwardedTo = s’. forwardedTo)

20 implies s = s’

21 }

Figure 6.19: Telephone System: State Space

62

1 pred pre_calling_busy[s:State]{

2 some n,n’: PhoneNumber |

3 (n->n’ in s.calling) and (n’ not in s.idle)

4 }

5 pred post_calling_busy[s,s’: State]{

6 some n,n’: PhoneNumber |

7 (s’. calling = s.calling - (n->n’)) and (s’.busy = s.busy + (n->n’))

8 ...

9 }

10 pred pre_calling_talkingTo[s:State]{

11 some n,n’: PhoneNumber |

12 (n->n’ in s.calling) and (n’ in s.idle)

13 }

14 pred post_calling_talkingTo[s,s’: State]{

15 some n,n’: PhoneNumber |

16 (s’.idle = s.idle - n’) and (s’. calling = s.calling - (n -> n’)) and

17 (s’. talkingTo = s.talkingTo + (n -> n’))

18 ...

19 }

20 pred calling_busy[s,s’: State]{

21 pre_calling_busy[s]

22 post_calling_busy[s,s’]

23 }

24 fact modelDefinition {

25 all s,s’: State | (s->s’ in nextState) iff

26 (idle_calling[s,s’] or calling_talkingTo[s,s’] or

27 talkingTo_idle[s,s’ or calling_busy[s,s’] or

28 busy_waitingFor[s,s’] or busy_forwardedTo[s,s’] or

29 busy_idle[s,s’] or waitingFor_idle[s,s’] or

30 waitingFor_talkingTo[s,s’] or

31 forwardedTo_calling[s,s’])

32 ...

33 }

Figure 6.20: Telephone System: Operations and Transition Relation

63

6.4.2 Significance Axioms

We use our significance axioms, shown in Figure 6.21, to generate a non-spurious instance of
the model by executing the command run significanceAxioms for exactly 6 State,

exactly 4 PhoneNumber. The significant scope in this model for 4 phone numbers is 6
states.

1 pred reachablityAxiom {

2 all s:State | s in State.(initialState <: *nextState)

3 }

4 pred operationsAxiom {

5 some s,s’: State | idle_calling[s,s’]

6 some s,s’: State | calling_talkingTo[s,s’]

7 ...

8 }

9 pred significanceAxioms {

10 reachablityAxiom

11 operationsAxiom

12 }

Figure 6.21: Telephone System: Significance Axioms (full axioms in Appendix A.4)

6.4.3 Scoped-TCMC Methodology

In this case study, we check the safety property that no phone number is being waited
for and forwarded to at the same time, as shown in Figure 6.22. TCMC passes for the
property at the specified scope, which is the significant scope. It is ambiguous whether the
property holds for the entire state space, however, we gain confidence in our pass result by
checking at least at the significant scope.

1 pred ap_safety [s:State] {

2 no s.waitingFor.PhoneNumber & s.forwardedTo.PhoneNumber

3 }

4 assert safety { ctl_mc[ag [{s:State | ap_safety[s]}]] }

5 check safety for exactly 6 State , exactly 4 PhoneNumber

Figure 6.22: Telephone System: Safety Property

64

6.5 Scalability

This section explores the performance of TCMC with respect to these case studies. For
this analysis, each property checked was satisfied by the model, which represents the worst-
case scenario in terms of performance for universal properties, since all instances need to
be checked in this case. For TCMC of our models, we used the Alloy Analyzer 4.2 with
the MiniSat SAT-solver [16]. The experiments were run on an Intel(R) Xeon(R) CPU
E3-1240 v5 @ 3.50GHzx8 machine running Linux version 4.4.0-92-generic with up to 64GB
of user-space memory.

We show our performance results in the three sub-tables in Table 6.1: 6.1a gives per-
formance data for our four properties (one from each property category) from the Musical
Chairs example, 6.1b shows the performance data for the three universal properties checked
in the Elevator System model, and 6.1c shows the performance results for model checking
safety properties for the Traffic Light Controller and the Feature Interation in Telephone
System case studies. The scope size (SS) denotes the sum of scopes of all uninterpreted
sets.

With respect to scalability, although our contributions do not improve performance of
the TCMC process, we found that they do not deteriorate performance compared to the
TCMC process described in [42]. Therefore, CTLFC specifications can still be analyzed
using TCMC up to the scopes that non-temporal specifications are often analyzed in Alloy,
as previously shown in [42].

The models checked in Alloy are not as large as those that can be checked using a model
checker such as NuSMV [9], however, the declarative and relational aspects of Alloy have
significant advantages for creating concise, abstract behavioural models. TCMC adds to
Alloy the ability to check complex temporal logic specifications directly on small scopes of
these models, and this thesis provides a methodology to make useful deductions about the
complete model checking problem as well.

65

Musical Chairs. NS: 8, NR: 4
SS Safety Existential Finite Liveness Infinite Liveness

8 0.041 s 0.011 s 0.015 s 0.132 s
10 1.037 s 0.076 s 0.025 s 0.379 s
13 8.547 s 0.377 s 0.050 s 4.726 s
15 11 min 51 s 0.488 s 0.096 s 6 min 29 s
18 >1 hour 4.386 s 0.134 s >1 hour

(a)

Elevator System. NS: 3, NR: 4
SS Safety Finite Liveness Infinite Liveness

12 0.626 s 1.815 s 2.197 s
13 1.934 s 16.111 s 18.676 s
14 22.621 s 1 min 24 s 4 min 4 s
15 3 min 11 s 9 min 38 s >1 hour

(b)

Feature Interaction. NS:5, NR:6 Traffic Light Controller. NS:18, NR:5
SS Safety SS Safety

9 2.54 s 16 0.711 s
10 18.40 s 17 3.815 s
11 9 min 25 s 18 11 min 55 s
12 > 1 hour 19 > 1 hour

(c)

Table 6.1: Performance Results of Case Studies. NS: Number of Signatures, NR: Number
of Relations, SS: Scope Size, min: minutes, s: seconds

6.6 Summary

We developed four case studies to demonstrate the contributions of this thesis, as described
in Chapters 3, 4, and 5. We believe that each of our models benefited in terms of structure,
modularity, and consistency by using our proposed modelling style guidelines for abstract
behavioural models. When generating instances of our models in the Alloy Analyzer, we
were able to produce more useful transition systems for inspection by using the significance

66

axioms – these instances contained at least one initial state, and a reachable transition
representing each defined operation. Using our proposed scoped-TCMC methodology in
these case studies, we were able to reach useful deductions about properties for the entire
state space from our results for scoped TCMC. We also showed an example of using multiple
fairness constraints with TCMC using the ctlfc module. Through scalability experiments,
we found that using TCMC for our case studies is feasible from a performance perspective.

67

Chapter 7

Comparison to NuSMV and BMC

As previously discussed, many different languages and tool-sets are available to create
models and perform model checking tasks. NuSMV [9] is a tool from the SMV system [30]
family that can be used for model checking. Alloy can be used to perform model checking
using bounded model checking (BMC) [3]. In this chapter, we compare TCMC in Alloy to
these two alternatives.

7.1 NuSMV

NuSMV [9] is a tool for symbolic model checking that uses the SMV system [30]. The tool
only provides a rudimentary set of modelling constructs, with no support for first-order
logic or sets/relations When modelling a transition system in NuSMV, it is only possible
to define a unique transition relation, and models are written for fixed-sized collection
structures. With sufficient computational resources, the tool checks the entire state space
for desired properties.

To compare NuSMV to TCMC in Alloy, we modelled our Musical Chairs example in
NuSMV. A part of this model is shown in Figure 7.1; the full model can be found in Ap-
pendix B.1. We focused primarily on investigating how to write a declarative behavioural
model in NuSMV. The rest of this section compares the authoring experience of Musical
Chairs in Alloy to that in NuSMV.

In Alloy, we model all our collection structures as sets and relations; however, in
NuSMV, we have to use arrays, since sets and relations like Alloy’s are not supported
as native constructs. When declaring the state space for Musical Chairs in NuSMV, we

68

1 DEFINE

2 numPlayers := 3;

3 numChairs := numPlayers - 1;

4 VAR

5 players : array 1.. numPlayers of boolean;

6 chairs : array 1.. numChairs of boolean;

7 occupied : array 1.. numChairs of 0.. numPlayers;

8 ...

9 TRANS

10 case

11 mode = walking : next(mode) = sitting &

12 occupied [1] = 0 &

13 occupied [2] = 0 &

14 next(players [1]) = players [1] &

15 next(players [2]) = players [2] &

16 next(players [3]) = players [3] &

17 next(chairs [1]) = chairs [1] &

18 next(chairs [2]) = chairs [2] ;

19

20 mode = sitting : next(mode) = start &

21 -- occupied only has current chairs and players

22 (occupied [1]!=0 -> (players[occupied [1]] <-> chairs [1])) &

23 (occupied [2]!=0 -> (players[occupied [2]] <-> chairs [2])) &

24 -- eliminate player if player doesn ’t occupy any chairs

25 ((occupied [1]!=1 & occupied [2]!=1) ?

26 !next(players [1]) : next(players [1])=players [1]) &

27 ((occupied [1]!=2 & occupied [2]!=2) ?

28 !next(players [2]) : next(players [2])=players [2]) &

29 ((occupied [1]!=3 & occupied [2]!=3) ?

30 !next(players [3]) : next(players [3])=players [3]) &

31 -- leave chair outside game if already outside

32 ((! chairs [1]) -> next(chairs [1])=FALSE) &

33 ((! chairs [2]) -> next(chairs [2])=FALSE) &

34 -- eliminate 1 chair for next round

35 count(chairs [1], chairs [2]) =

36 next(count(chairs [1], chairs [2])) + 1 &

37 ...

Figure 7.1: Part of Musical Chairs model in NuSMV

use arrays of Booleans to represent our players and chairs as shown in Lines 5–6 of Fig-
ure 7.1. The occupied structure is modelled as an array of integers (Line 7), where each
index represents a chair, and its value represents the player occupying that chair. A value

69

of 0 is used to indicate that the chair at that index is unoccupied. We found representing
structures and attributes as sets and relations in Alloy more intuitive and concise than
modelling them as arrays in NuSMV.

We cannot change the sizes of the collection structures in our model in NuSMV as easily
as in Alloy. In Alloy, we can create our whole model without ever hard-coding the sizes
of our sets, such as the number of player and chairs, into the constraints. We only specify
the sizes when we generate an instance of the model or perform model checking tasks.
Therefore, changing these sizes is trivial – we just change the scope of our run or check

command. In NuSMV, however, the sizes of the arrays used to represent our structures
must be specified at the very beginning (Figure 7.1 Lines 2–3). The size specified also
dictates many of the model’s constraints, which means that if we wish to change the size of
any of these structures, such as the number of players, we need to make non-trivial changes
to our model to reflect it. Lines 14–18 show the NuSMV model’s constraints to ensure that
the same players and chairs remain in the game in the next state – a similar constraint
needs to be included for every additional player or chair. This kind of addition must be
made to other more complex constraints as well, such as, the ones in Lines 22–23, which
constrain the values of the occupied structure. Since the sizes of the structures are deeply
ingrained in the model, we found NuSMV more inflexible than Alloy when modelling and
model checking our Musical Chairs example for different numbers of players and chairs.

Alloy supports non-determinism in a first-class way by providing an abstract declarative
language, whereas, creating non-determinism in NuSMV is not intuitive because of the lack
of necessary language support. In the eliminate loser operation in Alloy, we only need
one constraint to ensure that the loser of the round is removed from the game: s’.players
= Chair.(s.occupied). In NuSMV, this non-deterministic behaviour, described in Lines
25–30 of Figure 7.1, requires a separate constraint for each player (which needs to be
extended if we wish to increase the number of players). Additional constraints (Lines 32–
33) are also needed to keep track of previously eliminated chairs. We found this kind of
description of constraints in NuSMV tedious to write when compared to Alloy’s concise
constraints.

In summary, although NuSMV is faster than TCMC in Alloy, we found that our Musical
Chairs model was more easily and clearly implemented in Alloy than in NuSMV. Modules in
NuSMV may make the model’s description less verbose, but it is clear that the abstractions
provided by Alloy are substantially better for writing declarative models.

70

7.2 BMC in Alloy

Bounded model checking (BMC) [3] uses symbolic model checking to verify temporal (gen-
erally LTL) properties along paths up to a certain length. It is different from scoped TCMC
in that, when model checking, BMC limits the path length, whereas, scoped TCMC limits
the number of states. In scoped universal TCMC of scope n, we check all TS instances
of size n of any transition system that satisfies the transition relation. For each of these
TS instances, TCMC calculates the set of states that satisfies the property, and checks if
each initial state for that TS instance is in it. In BMC, all paths of the given length of any
transition system that satisfies the transition relation are checked for the property.

Figure 7.2: Example Transition System

If we consider the example transition system shown in Figure 7.2, where S0 is the
initial state, we can compare the paths (and instances) considered during model checking
as follows: For a bound of 3, BMC looks at the following paths:

• S0 → S1 → S2 → S3

• S0 → S4 → S5 → S6

• S0 → S8 → S9 → S10

For a state scope of 4 (which is comparable to a BMC bound of 3 since one more state
than the path length may be used in BMC), TCMC in Alloy considers transition system

71

Table 7.1: Performance Results for BMC of a Safety Property (Figure 7.3 Line 9) in Musical
Chairs. NS: Number of Signatures, NR: Number of Relations, SS: Scope Size, s: seconds

Musical Chairs. NS: 8, NR: 1
SS BMC of Safety Property

8 0.001 s
10 0.001 s
13 0.002 s
15 0.004 s
18 0.007 s

instances (and paths) such as the following, as well as all other instances with 4 states (all
transitions between these states are included in the instance):

• Instance 1: S0, S1, S2, S3

– S0 → S1 → S2 → S3 → S3 → ... (infinite path)

• Instance 2: S0, S4, S5, S6

– S0 → S4 → S5 → S6

• Instance 3: S0, S8, S9, S10

– S0 → S8 → S9 → S10 → S8 → S9 → S10 → ... (infinite path)

• Instance 4: S0, S1, S2, S4

– S0 → S1 → S2

– S0 → S4

In TCMC, paths are not limited to the scope size, and can be infinite. In BMC, all paths are
finite, and of the length specified; infinite paths can be represented using repeated states,
but usually additional constraints (separate from the transition relation constraints) are
necessary to designate loops, and for the model checking task to consider the paths infinite
(for example, the trace module [12]).

In Alloy, we can perform BMC by utilizing Jackson’s ordering module [24]. We can use
the module to define the transition relation, and to express certain temporal properties for

72

1 open util/ordering [State] as StateOrder

2 ...

3 fact modelDefinition {

4 init [first]

5 all s: State -last | let s’ = s.next | ops[s,s’]

6 }

7 assert bmc {

8 // G(# players =# chairs +1)

9 all s:State | #s.players = (#s.chairs).plus [1]

10 // F(mode=sitting)

11 all s:State | init[s] implies (some s’: State |

12 (s’ in nexts[s]+s and s’.mode=sitting))

13 }

14 check bmc for exactly 3 Player , exactly 2 Chair , exactly 6 State

Figure 7.3: Musical Chairs: BMC in Alloy

model checking. The ordering module does not allow repeated states in a path, therefore,
it is impossible to represent infinite paths. To compare TCMC in Alloy with BMC in
Alloy, we implemented our Musical Chairs model using the ordering module, and model
checked a safety property and a finite liveness property using BMC. Figure 7.3 shows the
model definition block created using the ordering module (Lines 3–6), and the properties
checked (Lines 7–13).

BMC performance is shown in Table 7.1. BMC is faster than TCMC because TCMC
checks more instances (and paths) than BMC. Aside from performance, TCMC has several
advantages over BMC in Alloy:

• The counterexamples produced by TCMC for liveness are real bugs in the complete
transition system. In BMC, it is not possible to limit the search to infinite paths, and
therefore ambiguous counterexamples, i.e., instances with violating finite paths that
would satisfy the liveness property if extended, are possible. It is possible to represent
infinite paths for BMC in Alloy using the method proposed in [12] (requires extra
constraints to represent loops in paths and to consider only infinite paths), which
would prevent ambiguous counterexamples.

• Checking up to the significant scope in TCMC provides a measure of confidence in
the scoped result independent of computing resources (which limit BMC).

• BMC can only check LTL properties, which means that we cannot express or check

73

CTLFC’s existential properties using BMC. Existential TCMC allows us to check
existential properties in Alloy.

• When performing BMC in Alloy using the ordering module, no repeated states are
allowed in the paths, and therefore, it is only possible to consider finite paths. This
means that there is no way to express and model check infinite liveness properties,
which includes all properties with fairness constraints. TCMC can check all CTLFC
properties. Without the ordering module it is possible that the paths may have
repeated states.

• When a property does not hold, universal TCMC returns an instance that is a transi-
tion system, in which there is no path that satisfies the property. A transition system
instance provides more inspectable information than a path; a violating (likely small)
instance may include multiple paths that violate the property uncovering multiple
bugs.

We also compared the deductions we can make from scoped TCMC about the entire
state space, as described in Chapter 5, to those from BMC. Table 7.2 summarizes our
findings. For safety properties, we found that TCMC and BMC achieve similar conclusions.
For finite liveness properties, TCMC produces real bugs, whereas, a failure in BMC using
the ordering module represents an ambiguous result for the complete model checking
problem. On the other hand, a pass result from BMC indicates a real pass, whereas a
pass from TCMC is ambiguous since it only checks infinite paths. However, in TCMC,
we can add our dead-loop constraint (Section 5.3) to check finite paths as well, yielding

Table 7.2: Deducing Complete Model Checking Results in Alloy: Scoped TCMC vs. BMC

Scoped TCMC BMC using ordering

Property Pass Fail Pass Fail

Safety Ambiguous Real Bug Ambiguous Real Bug
Finite w/o dead-loop Ambiguous Real Bug Real Pass Ambiguous

Liveness w/ dead-loop Real Pass Ambiguous
Infinite Liveness Ambiguous Real Bug Cannot Express

Existential Real Pass Ambiguous Cannot Express

74

results similar to BMC for finite liveness properties. We cannot express infinite liveness
and existential properties for BMC using the ordering module.

In conclusion, while TCMC is currently slower than BMC, TCMC produces more con-
clusive results for the complete model checking problem, and can check a larger range of
properties than BMC.

7.3 Summary

In this chapter, we compared techniques for developing a model in NuSMV to those in
Alloy. We found Alloy to be a more suitable language for creating declarative behavioural
models. We investigated the use of BMC in Alloy using the ordering module, which
exhibits several deficiencies when compared to TCMC, including the inability to check
infinite paths and lack of support for all CTLFC properties. TCMC checks more instances
(and paths) than BMC, which makes TCMC slower than BMC, but TCMC provides more
conclusive results for a comparable scope.

75

Chapter 8

Related Work

In this chapter, we discuss work related to this thesis.

The SMV system [30] family provides efficient tools, such as NuSMV [9], for symbolic
model checking of finite-state transition systems for temporal properties. However, these
tools only provide a primitive set of modelling constructs, which excludes first-order logic
and sets/relations. The lack of support in model development, as elaborated in Section 7.1,
often makes such tools unsuitable for users.

Chang and Jackson [8] propose a modelling language for transition systems focusing
on the integration of operators used in programming languages (such as loops, function
calls, and integer arithmetic) in temporal properties and behavioural constraints, which can
be expressed imperatively or declaratively, augmenting the traditional languages of model
checkers with sets, relations and declarative constructs to specify a transition system. They
introduce a BDD-based model checker for temporal properties that has only been verified
with small simple models. TCMC in Alloy and our proposed methodologies provide more
robust support for model checking of temporal properties, and for generating interesting
instances for inspection.

The B [1] modelling language provides many features that are similar to Alloy, such as
sets and relations. ProB [27] can be used to model check finite B machines, the name given
to B models, for LTL properties. However, ProB employs an explicit-state-search based
model checking technique which requires a considerable amount of computing resources.
Several implementations of symbolic model checking algorithms (BMC, k-induction, IC3)
for B machines are provided in [25], however, they cannot check all CTLFC properties,
and suffer from solver performance constraints (as does our TCMC in Alloy methodolo-
gies). Some of these algorithms are iterative (k-induction, IC3), meaning that they involve

76

multiple runs of the solver, hindering efficiency.

The Abstract State Machine (ASM) method [4] is generally used to model high-level
system designs as infinite transition systems. The transition systems can be analyzed
using techniques such as, theorem proving [15, 39], and model checking [13], which in-
volves translating ASMs to SMV models with fixed sized structures. Translation-based
approaches usually unfold user-level abstractions and make understanding models and
counterexamples difficult.

TLA+ [45] (with the TLC model checker) checks behavioural models for temporal
properties. TLC supports model checking of a subset of LTL formulas using explicit-state
model checking. Our work using TCMC in Alloy supports all CTLFC properties and
involves a symbolic approach to model checking.

The ordering module of Alloy can be used for simple bounded model checking (BMC) [3].
Cunha [12] proposes a module called trace, which is based on the ordering module, to
model infinite paths, and for bounded model checking of LTL properties. TCMC, which
is available as the ctlfc and ctl modules in Alloy, and our model checking methodology,
support more sophisticated temporal properties and provide some advantages over BMC
as discussed in Section 7.2.

Electrum [29] is an extension of Alloy that incorporates features from both Alloy and
TLA+. It introduces syntax for signifying mutable variables, and focuses on the ability to
model check both structural and behavioural properties. It supports finite-state bounded
model checking of LTL properties using methods similar to those proposed in [12]. It also
provides a feature to translate the model and properties to nuXmv [7], which is a faster
extension of NuSMV, for unbounded model checking. TCMC and our model checking
methodology focus on using only Alloy without extensions, to perform model checking
tasks of a larger set of temporal properties (CTLFC), and producing interesting transition
system instances for inspection.

DynAlloy [18], along with the DynAlloy Analyzer [38], is a set of extensions to Alloy
for describing and analyzing dynamic properties of systems, that is, properties that reason
about execution traces as opposed to structural properties. They introduce syntax for the
use of actions to describe operations of the system when defining a transition relation. This
kind of description requires the separation of pre- and post-conditions of actions. However,
DynAlloy does not support the model checking of any temporal logic properties. The work
in [33] proposes an extension similar to DynAlloy, which provides support for imperative
operators, and adds syntax to denote actions and mutable variables. Our proposed Alloy
modelling style guidelines provide guidance for creating behavioural models for model
checking of temporal properties, such as CTLFC, without the use of any extensions or

77

extraneous keywords.

Giannakopoulos et al. [20] offers some ideas on how to use Alloy to model state-based
systems. The authors ask users to separate constraints that are state invariants from ini-
tial state and operation constraints. We suggest avoiding constraining the state space with
expected invariants altogether, and instead model the system using only initial state and
operation constraints, which allows us to check for modelling errors by model checking
for the invariant. Alchemy [26] is another extension to Alloy that interprets Alloy opera-
tion constraints and specifications imperatively. It mainly focuses on interpreting systems
modelled using Alloy as relational database systems.

Generator axioms, described by Jackson in [24], provide a technique to consider all
elements in a set when checking assertions that may be affected by the scope size specified
for such a set. Our significance axioms are similar to generator axioms, but are motivated
by our interest in producing non-spurious instances for inspection, as well as for model
checking. Jackson’s generator axioms require the generation of states with all possible
attribute values, which causes the state scope to explode. Our significance axioms focus
on generating a transition representing each possible operation. The scope only increases
linearly to the finite number of operations defined (depending on the reachability of tran-
sitions representing the operations), which is usually smaller than that of all possible state
attribute combinations.

78

Chapter 9

Conclusion

In this thesis, we focused on using existing tools to make model checking of abstract be-
havioural models more practical. Transitive-closure-based model checking (TCMC) is able
to check a broad category of temporal (CTLFC) properties of behavioural systems using
the Alloy Analyzer, a tool that provides valuable support for creating abstract models,
without any extension or translation. We attempted to increase TCMC’s practical value
by addressing some issues faced by users when modelling and model checking using TCMC
in Alloy.

We investigated three distinct aspects of using TCMC in Alloy:

1. Modelling a Transition System in Alloy: We developed some guidelines for Alloy
that we believe promote structure, modularity, and consistency in the model. These
guidelines do not involve any extensions to Alloy. We recognized two common styles
for defining the transition relation, which we call the ConjMethod and the DisjMethod,
and discussed their implications.

2. Generating an Instance: We proposed a set of axioms, called the significance ax-
ioms, that aid in the generation of useful instances when using the run command in
the Alloy Analyzer. These axioms ensure that the instance produced contain only
reachable states, an initial state, and reachable transitions representing each user-
defined operation. As a modeller, we found these instances more useful to inspect
for modelling correctness.

3. Scoped-TCMC Methodology: We carefully described the meaning of results from
TCMC at scopes smaller than that of the total state space, with respect to the

79

complete model checking problem (meaning over the entire state space), highlighting
distinctions for properties with respect to finite and infinite paths. We discussed
how, during TCMC, the significant scope, the minimum scope at which our signif-
icance axioms are satisfied, provides a measure independent of computing resource
limitations that a significant part of the state space has been verified.

We utilized our guidelines and methodologies to develop four case studies, which demon-
strated our claims and results. We also used these case studies to compare TCMC in Alloy
to other tools and model checking methods. Although NuSMV analysis is faster, we found
Alloy to be a more suitable language for creating abstract declarative models than the
NuSMV language. BMC in Alloy, although currently faster than TCMC in Alloy, does
not support checking all CTLFC properties. Counterexamples produced by TCMC always
contain real, useful bugs because of its ability to consider finite and infinite paths sepa-
rately, whereas, counterexamples produced by BMC for liveness properties can represent
false negatives.

The following lists the contributions of this thesis:

• Establishes a set of style guidelines for modelling abstract behavioural systems in
Alloy without extensions to Alloy.

• Introduces significance axioms and significant scope for transition systems, which
address the spurious instances problem.

• Introduces scoped TCMC to apply TCMC on subgraphs of a complete transition
system.

• Analyzes and documents the meanings of scoped TCMC results for different property
categories with respect to the complete model checking problem.

• Presents case studies to demonstrate proposed claims and results.

• Investigates the scalability of TCMC in Alloy.

• Compares declarative modelling practices in Alloy to those in NuSMV.

• Compares expressibility of temporal properties, and model checking results of TCMC
to those of BMC.

80

The work in this thesis could be supplemented in the future by looking into categorizing
existential properties further to provide more useful deductions from scoped existential
TCMC. It may be helpful to investigate if our Operations Axiom can be modularized
to make writing it simpler and more flexible. It may also be useful to explore the use of
TCMC for declarative models that define more than one transition system. Research on the
extraction of a particular path from counterexample TS instances produced by the Alloy
Analyzer would be helpful. TCMC could be implemented in Alloy* [32], an extension of
the Alloy Analyzer, to take advantage of its higher-order quantification features. Further
investigation into improving the scalability of TCMC could also increase the method’s
utility.

Model checking of software has become more relevant in engineering industries because
of the rise of easily adoptable tools, as described in [34]. We believe that TCMC shows
promise in the world of temporal model checking, therefore, this thesis attempts to make
TCMC’s implementation in Alloy more practical. We believe research into the accessibility
of existing and upcoming tools and methods is immensely important in order to encourage
the usage of formal methods in the wider community of software engineering, because it
has the potential to prevent many critical software disasters.

81

References

[1] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[2] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. Satisfiability
Modulo Theories, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 26, pages 825–885. 2009.

[3] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan
Zhu. Bounded model checking. volume 58 of Advances in Computers, pages 117 –
148. Elsevier, 2003.

[4] Egon Börger. The ASM Method for System Design and Analysis. A Tutorial Introduc-
tion. In Frontiers of Combining Systems, volume 3717 of Lecture Notes In Computer
Science, pages 264–283. Springer, 2005.

[5] Aaron R. Bradley. SAT-Based Model Checking without Unrolling. In Verification,
Model Checking, and Abstract Interpretation, pages 70–87. Springer, 2011.

[6] Randal E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams. ACM Computing Surveys, 24:293–318, 1992.

[7] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessan-
dro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta.
The nuXmv symbolic model checker. In Computer-Aided Verification, pages 334–342.
Springer, 2014.

[8] Felix Sheng-Ho Chang and Daniel Jackson. Symbolic Model Checking of Declarative
Relational Models. In International Conference on Software Engineering, pages 312–
320. ACM, 2006.

82

[9] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An
OpenSource Tool for Symbolic Model Checking. In Computer Aided Verification,
volume 2404 of Lecture Notes In Computer Science, pages 241–268. Springer, 2002.

[10] Edmund Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
1999.

[11] Edmund M. Clarke, Orna Grumberg, and Kiyoharu Hamaguchi. Another Look at
LTL Model Checking. Formal Methods in System Design, 10:47–71, 1997.

[12] Alcino Cunha. Bounded Model Checking of Temporal Formulas with Alloy. In In-
ternational Conference on Abstract State Machines, Alloy, B, VDM, and Z, pages
303–308. Springer, 2014.

[13] Giuseppe Del Castillo and Kirsten Winter. Model Checking Support for the ASM
High-Level Language. In Tools and Algorithms for the Construction and Analysis of
Systems, volume 1785 of Lecture Notes In Computer Science, pages 331–346. Springer,
2000.

[14] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8):453–457, 1975.

[15] A. Dold. A Formal Representation of Abstract State Machines Using PVS. Verifix
Technical Report Ulm/6.2, Universität Ulm, 1998.

[16] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Theory and Appli-
cations of Satisfiability Testing, volume 2919 of Lecture Notes In Computer Science,
pages 333–336. Springer, 2004.

[17] Sabria Farheen, Nancy A. Day, Amirhossein Vakili, and Ali Abbassi. Transitive-
closure-based model checking (TCMC) in Alloy. Manuscript submitted for publication,
2017.

[18] Marcelo F. Frias, Juan P. Galeotti, Carlos G. López Pombo, and Nazareno M. Aguirre.
DynAlloy: Upgrading Alloy with Actions. In International Conference on Software
Engineering, pages 442–451. ACM, 2005.

[19] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple On-the-fly Automatic Veri-
fication of Linear Temporal Logic, pages 3–18. Springer, 1996.

83

[20] Theophilos Giannakopoulos, Daniel J. Dougherty, Kathi Fisler, and Shriram Krishna-
murthi. Towards an Operational Semantics for Alloy. In FM 2009: Formal Methods:
Second World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceed-
ings, pages 483–498. Springer, 2009.

[21] Neil Immerman and Moshe Vardi. Model Checking and Transitive-Closure Logic.
In Computer-Aided Verification, volume 1254 of Lecture Notes In Computer Science,
pages 291–302. Springer, 1997.

[22] Information Technology Z Formal Specification Notation Syntax, Type System and
Semantics, 2000.

[23] Daniel Jackson. Alloy: A Lightweight Object Modelling Notation. ACM Transactions
on Software Engineering and Methodology, 11(2):256–290, 2002.

[24] Daniel Jackson. Software Abstractions - Logic, Language, and Analysis. MIT Press,
2006.

[25] Sebastian Krings and Michael Leuschel. Proof assisted bounded and unbounded sym-
bolic model checking of software and system models. Science of Computer Program-
ming, 2017.

[26] Shriram Krishnamurthi, Kathi Fisler, Daniel J. Dougherty, and Daniel Yoo. Alchemy:
Transmuting Base Alloy Specifications into Implementations. In Foundations of Soft-
ware Engineering, SIGSOFT ’08/FSE-16, pages 158–169. ACM, 2008.

[27] Michael Leuschel and Michael Butler. ProB : an automated analysis toolset for the B
method. International Journal on Software Tools for Technology Transfer, 10:185–203,
2008.

[28] Xianhong Liu. Identification and check of inconsistencies between UML diagrams.
In International Conference on Computer Sciences and Applications, pages 487–490.
IEEE, 2013.

[29] Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha, and Denis Kuperberg.
Lightweight Specification and Analysis of Dynamic Systems with Rich Configurations.
In Foundations of Software Engineering, pages 373–383. ACM, 2016.

[30] Kenneth L. McMillan. The SMV system, 1992.

[31] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

84

[32] Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang, and Daniel Jackson. Alloy*: A
general-purpose higher-order relational constraint solver. In International Conference
on Software Engineering, volume 1, pages 609–619. IEEE, 2015.

[33] Joseph P. Near and Daniel Jackson. An Imperative Extension to Alloy. In Interna-
tional Conference on Abstract State Machines, Alloy, B, VDM, and Z, pages 118–131.
Springer, 2010.

[34] Chris Newcombe. Why Amazon Chose TLA+. In International Conference on Ab-
stract State Machines, Alloy, B, VDM, and Z, pages 25–39. Springer, 2014.

[35] Nimal Nissanke. Formal Specification: Techniques and Applications. Springer Verlag,
1999.

[36] Malte Plath and Mark Ryan. Feature integration using a feature construct. Science
of Computer Programming, 41(1):53–84, 2001.

[37] Amir Pnueli. The Temporal Logic of Programs. In Foundations of Computer Science,
pages 46–57. IEEE Computer Society, 1977.

[38] Germán Regis, César Cornejo, Simón Gutiérrez Brida, Mariano Politano, Fernando
Raverta, Pablo Ponzio, Nazareno Aguirre, Juan Pablo Galeotti, and Marcelo Frias.
DynAlloy Analyzer: A Tool for the Specification and Analysis of Alloy Models with
Dynamic Behaviour. In Foundations of Software Engineering, pages 969–973. ACM,
2017.

[39] G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines: The WAM
Case Study. Journal of Universal Computer Science, 3(4):377–413, 1997.

[40] James Somers. The Coming Software Apocalypse. The Atlantic. [Online; posted
26-September-2017].

[41] Emina Torlak and Daniel Jackson. Kodkod: A Relational Model Finder. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 632–647. Springer,
2007.

[42] Amirhossein Vakili. Temporal Logic Model Checking as Automated Theorem Proving.
PhD thesis, University of Waterloo, David R. Cheriton School of Computer Science,
2016.

85

[43] Amirhossein Vakili and Nancy A. Day. Temporal Model Checking in Alloy. In In-
ternational Conference on Abstract State Machines, Alloy, B, VDM, and Z, pages
150–163. Springer, 2012.

[44] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Informa-
tion and Computation, 115:1–37, 1994.

[45] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+ specifica-
tions. In IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware
Design and Verification Methods, pages 54–66. Springer Verlag, 1999.

86

APPENDICES

87

Appendix A

Alloy Models: TCMC Case Studies

A.1 Musical Chairs

1 open ctl[State]

2 open util/integer

3

4 // *********************** STATE SPACE *************************//

5 sig Chair , Player {}

6 abstract sig Mode {}

7 one sig start , walking , sitting , end extends Mode {}

8

9 sig State {

10 // current players

11 players: set Player ,

12 // current chairs

13 chairs: set Chair ,

14 // current chair player relation

15 occupied: set Chair -> set Player ,

16 // current state of game , should always be 1

17 mode : set Mode

18 }

19

20 // ***************** INITIAL STATE CONSTRAINTS ********************//

21

22 pred init [s:State] {

23 s.mode = start

24 #s.players > 1

25 #s.players = (#s.chairs).plus [1]

26 // force all Chair and Player to be included

88

27 s.players = Player

28 s.chairs = Chair

29 s.occupied = none -> none

30 }

31

32 // ******************* TRANSITION CONSTRAINTS *****************//

33 pred pre_music_starts [s: State] {

34 #s.players > 1

35 s.mode = start

36 }

37 pred post_music_starts [s, s’: State] {

38 s’. players = s.players

39 s’. chairs = s.chairs

40 // no one is sitting after music starts

41 s’. occupied = none -> none

42 s’.mode= walking

43 }

44 pred music_starts [s, s’: State] {

45 pre_music_starts[s]

46 post_music_starts[s,s’]

47 }

48

49 pred pre_music_stops [s: State] {

50 s.mode = walking

51 }

52 pred post_music_stops [s, s’: State] {

53 s’. players = s.players

54 s’. chairs = s.chairs

55 // no other chair/player than chairs/players

56 s’. occupied in s’. chairs -> s’. players

57 // forcing occupied to be total and

58 //each chair mapped to only one player

59 all c:s’. chairs | one c.(s’. occupied)

60 // each "occupying" player is sitting on one chair

61 all p:Chair.(s’. occupied) | one s’. occupied.p

62 s’.mode = sitting

63 }

64 pred music_stops [s, s’: State] {

65 pre_music_stops[s]

66 post_music_stops[s,s’]

67 }

68

69 pred pre_eliminate_loser [s: State] {

70 s.mode = sitting

71 }

89

72 pred post_eliminate_loser [s, s’: State] {

73 // loser is the player in the game not in the range of occupied

74 s’. players = Chair.(s.occupied)

75 #s’. chairs = (#s.chairs).minus [1]

76 s’.mode = start

77 }

78 pred eliminate_loser [s, s’: State] {

79 pre_eliminate_loser[s]

80 post_eliminate_loser[s,s’]

81 }

82

83 pred pre_declare_winner [s: State] {

84 #s.players = 1

85 s.mode = start

86 }

87 pred post_declare_winner [s, s’: State] {

88 s’. players = s.players

89 s’. chairs = s.chairs

90 s’.mode = end

91 }

92 pred declare_winner [s, s’: State] {

93 pre_declare_winner[s]

94 post_declare_winner[s,s’]

95 }

96

97 pred pre_end_loop [s: State] {

98 s.mode = end

99 }

100 pred post_end_loop [s, s’: State] {

101 s’.mode = end

102 s’. players = s.players

103 s’. chairs = s.chairs

104 s’. occupied = s.occupied

105 }

106 pred end_loop [s, s’: State] {

107 pre_end_loop[s]

108 post_end_loop[s,s’]

109 }

110

111 // helper to define valid transitions

112 pred ops [s,s’: State] {

113 music_starts[s,s’] or

114 music_stops[s,s’] or

115 eliminate_loser[s,s’] or

116 declare_winner[s,s’] or

90

117 end_loop[s,s’]

118 }

119

120 // ************************ MODEL DEFINITION *********************//

121 fact {

122 all s:State | s in initialState iff init[s]

123 all s,s’: State | s->s’ in nextState iff ops[s,s’]

124 // equality pred: two states with the same features are equivalent

125 all s, s’: State | s.players=s’. players and

126 s.chairs=s’. chairs and

127 s.occupied=s’. occupied and

128 s.mode=s’.mode

129 implies s = s’

130 }

131

132 // ********************** SIGNIFICANCE AXIOMS *********************//

133 pred reachablityAxiom {

134 all s:State | s in State.(initialState <: *nextState)

135 }

136 pred operationsAxiom {

137 some s,s’: State | music_starts[s,s’]

138 some s,s’: State | music_stops[s,s’]

139 some s,s’: State | eliminate_loser[s,s’]

140 some s,s’: State | declare_winner[s,s’]

141 some s,s’: State | end_loop[s,s’]

142 }

143 pred significanceAxioms {

144 reachablityAxiom

145 operationsAxiom

146 }

147 run significanceAxioms for exactly 3 Player , exactly 2 Chair ,

148 exactly 8 State

149

150 // ********************** PROPERTIES *********************//

151 // *********************** SAFETY ************************//

152 assert safety {

153 // number of players is walways 1 greater than number of chairs

154 ctl_mc[ag[{s: State| #s.players = (#s.chairs).plus [1] }]]

155 }

156 check safety for exactly 3 Player , exactly 2 Chair ,

157 exactly 8 State

158 // *********************** EXISTENTIAL ************************//

159 one sig Alice extends Player {}

160 pred existential {

161 // Alice wins in some instance

91

162 ctl_mc[ef[{s: State| s.mode=end and s.players=Alice }]]

163 }

164 run existential for exactly 3 Player , exactly 2 Chair ,

165 exactly 8 State

166 // *********************** FINITE LIVENESS ********************//

167 assert finiteLiveness {

168 ctl_mc[af [{ s: State| s.mode=sitting }]]

169 }

170 check finiteLiveness for exactly 3 Player , exactly 2 Chair ,

171 exactly 8 State

172 // ********************** INFINITE LIVENESS *********************//

173 assert infiniteLiveness {

174 // number of players eventually always reaches and remains at 1

175 ctl_mc[af [ag [{s: State| #s.players =1}]]]

176 }

177 check infiniteLiveness for exactly 3 Player , exactly 2 Chair ,

178 exactly 8 State

A.2 Elevator System

1 module Elevator

2 open util/integer

3 open util/ordering[Floor]

4 open ctl[State]

5

6 sig Floor {}

7 one sig Up {}

8 sig State {

9 current: set Floor ,

10 goingUp: set Up ,

11 called: set Floor ,

12 maint: Int

13 }

14

15 // ***************** INITIAL STATE CONSTRAINTS ********************//

16 pred init [s:State] {

17 #s.called = 0

18 s.maint = 1

19 no s.goingUp

20 s.current = max[Floor]

21 }

22

92

23 // ********************** OPERATIONS ***********************//

24 pred pre_maintain[s:State] {

25 s.maint = 2

26 }

27 pred post_maintain[s,s’: State] {

28 s’. current = min[Floor]

29 no s’. goingUp

30

31 s’. maint = 0

32 s’. goingUp = s.goingUp

33 (s.called - s’. current) in s’. called

34 s’. current not in s’. called

35 }

36 pred maintain[s,s’: State] {

37 pre_maintain[s]

38 post_maintain[s,s’]

39 }

40

41 pred pre_changeDirToDown[s:State] {

42 some s.called

43 s.maint < 2

44 some s.goingUp

45 no nexts[s.current] & s.called

46 }

47 pred post_changeDirToDown[s,s’: State] {

48 no s’. goingUp

49 s’. maint = s.maint.plus [1]

50

51 s’. current = s.current

52 (s.called - s’. current) in s’. called

53 s’. current not in s’. called

54

55 }

56 pred changeDirToDown[s,s’: State] {

57 pre_changeDirToDown[s]

58 post_changeDirToDown[s,s’]

59 }

60

61 pred pre_changeDirToUp[s:State] {

62 some s.called

63 s.maint < 2

64 no s.goingUp

65 no prevs[s.current] & s.called

66 }

67 pred post_changeDirToUp[s,s’: State] {

93

68 some s’. goingUp

69 s’. maint = s.maint.plus [1]

70

71 s’. current = s.current

72 (s.called - s’. current) in s’. called

73 s’. current not in s’. called

74

75 }

76 pred changeDirToUp[s,s’: State] {

77 pre_changeDirToUp[s]

78 post_changeDirToUp[s,s’]

79 }

80

81 pred pre_moveUp[s:State] {

82 some s.called

83 some s.goingUp

84 some nexts[s.current] & s.called

85 }

86 pred post_moveUp[s,s’: State] {

87 s’. current = min[nexts[s.current] & s.called]

88 s’. current not in s’. called

89

90 s’. maint = s.maint

91 s’. goingUp = s.goingUp

92 (s.called - s’. current) in s’. called

93 }

94 pred moveUp[s,s’: State] {

95 pre_moveUp[s]

96 post_moveUp[s,s’]

97 }

98

99 pred pre_moveDown[s:State] {

100 some s.called

101 no s.goingUp

102 some prevs[s.current] & s.called

103 }

104 pred post_moveDown[s,s’: State] {

105 s’. current = max[prevs[s.current] & s.called]

106

107 s’. current not in s’. called

108 s’. maint = s.maint

109 s’. goingUp = s.goingUp

110 (s.called - s’. current) in s’. called

111 }

112 pred moveDown[s,s’: State] {

94

113 pre_moveDown[s]

114 post_moveDown[s,s’]

115 }

116

117 pred pre_defaultToGround[s:State] {

118 no s.called

119 min[Floor] not in s.current

120 }

121 pred post_defaultToGround[s,s’: State] {

122 s’. current = min[Floor]

123 no s’. goingUp

124 s’. maint = s.maint

125 (s.called - s’. current) in s’. called

126 s’. current not in s’. called

127 }

128 pred defaultToGround[s,s’: State] {

129 pre_defaultToGround[s]

130 post_defaultToGround[s,s’]

131 }

132

133

134 pred pre_idle[s:State] {

135 no s.called

136 s.current = min[Floor]

137 }

138 pred post_idle[s,s’: State] {

139 s’. maint = 0

140 s’. current = s.current

141 s’. goingUp = s.goingUp

142 (s.called - s’. current) in s’. called

143 s’. current not in s’. called

144 }

145 pred idle[s,s’: State] {

146 pre_idle[s]

147 post_idle[s,s’]

148 }

149

150 // helper to define valid transitions

151 pred ops [s,s’: State] {

152 changeDirToDown[s,s’] or

153 changeDirToUp[s,s’] or

154 moveUp[s,s’] or

155 moveDown[s,s’] or

156 defaultToGround[s,s’] or

157 idle[s,s’] or

95

158 maintain[s,s’]

159 }

160

161 // ********************** MODEL DEFINITION *******************//

162 fact {

163 all s:State | s in initialState iff init[s]

164 all s,s’: State | s->s’ in nextState iff ops[s,s’]

165 // equality pred: two states with the same features are equivalent

166 all s, s’: State |

167 s’. current = s.current and

168 s’. maint = s.maint and

169 s’. goingUp = s.goingUp and

170 s’. called = s.called

171 implies s = s’

172 }

173

174 // ********************** SIGNIFICANCE AXIOMS ******************//

175 pred reachablityAxiom {

176 all s:State | s in State.(initialState <: *nextState)

177 }

178 pred operationsAxiom {

179 some s,s’: State | changeDirToDown[s,s’]

180 some s,s’: State | changeDirToUp[s,s’]

181 some s,s’: State | moveUp[s,s’]

182 some s,s’: State | moveDown[s,s’]

183 some s,s’: State | defaultToGround[s,s’]

184 some s,s’: State | idle[s,s’]

185 some s,s’: State | maintain[s,s’]

186 }

187 pred significanceAxioms {

188 reachablityAxiom

189 operationsAxiom

190 }

191 run significanceAxioms for exactly 6 Floor , exactly 7 State

192

193 // ********************** PROPERTIES *********************//

194 // *********************** SAFETY ************************//

195 assert safety {

196 // current is only one floor

197 ctl_mc[ag[{s: State| one s.current }]]

198 }

199 check safety for exactly 6 Floor , exactly 7 State

200 // ******************* FINITE LIVENESS *****************//

201 assert finiteLiveness {

202 // eventually reaches a maintenance state

96

203 ctl_mc[af[{s: State| s.maint = 0}]]

204 }

205 check finiteLiveness for exactly 6 Floor , exactly 7 State

206 // **************** INFINITE LIVENESS *******************//

207 assert infiniteLiveness {

208 // a floor called is always eventually reached as current

209 // AG(floorCalled => AF (floorCurrent))

210 all f:Floor | ctl_mc[ag [imp_[called.f, af [current.f]]]]

211 }

212 check infiniteLiveness for exactly 6 Floor , 8 State

A.3 Traffic Light Controller

1 open util/integer

2 open util/boolean

3 open ctlfc[State]

4

5 // *********************** STATE SPACE *************************//

6 abstract sig Counter {}

7 one sig f0 , f1 , f2 , f3 extends Counter {}

8

9 abstract sig Sense{}

10 one sig N_Sense , S_Sense , E_Sense extends Sense{}

11

12 // Go is for modeling which direction is allowed to go

13 abstract sig Go{}

14 one sig N_Go , S_Go , E_Go extends Go{}

15

16 // Request is to latch the traffic sensors

17 abstract sig Request {}

18 one sig N_Req , S_Req , E_Req extends Request {}

19

20 sig State{

21 sensors: set Sense ,

22 goes: set Go ,

23 req: set Request ,

24 NS_Lock: set Bool , // NS_Lock is true iff East is not allowed to go

25 // counter for fairness

26 counter: set Counter

27 }

28

29 // **************** INITIAL STATE CONSTRAINT ****************//

97

30 pred initial[s:State]{

31 !no s.sensors

32 no s.goes

33 no s.req

34 s.NS_Lock = False

35 s.counter = f0

36 }

37 // ************* TRANSITION CONSTRAINTS/OPERATIONS ************//

38 // Predicates for N_Go

39 pred N_Go_True[s:State]{

40 N_Req in s.req

41 N_Go !in s.goes

42 E_Req !in s.req

43 }

44 pred N_Go_False[s:State]{

45 N_Go in s.goes

46 N_Sense !in s.sensors

47 }

48

49 pred pre_N_Go[s:State]{

50 N_Go_True[s]

51 }

52 pred pre_N_Not_Go[s:State]{

53 !N_Go_True[s] and N_Go_False[s]

54 }

55 pred pre_N_Go_Unchanged[s:State]{

56 !N_Go_True[s] and !N_Go_False[s]

57 }

58

59 pred post_N_Go_[s’: State]{

60 N_Go in s’.goes

61 }

62 pred post_N_Not_Go[s’: State]{

63 N_Go !in s’.goes

64 }

65 pred post_N_Go_Unchanged[s,s’: State]{

66 N_Go in s’.goes iff N_Go in s.goes

67 }

68

69 pred N_Go_[s,s’: State]{

70 pre_N_Go[s]

71 post_N_Go_[s’]

72 }

73 pred N_Not_Go[s,s’: State]{

74 pre_N_Not_Go[s]

98

75 post_N_Not_Go[s’]

76 }

77 pred N_Go_Unchanged[s,s’: State]{

78 pre_N_Go_Unchanged[s]

79 post_N_Go_Unchanged[s,s’]

80 }

81

82

83 // Predicates for S_Go

84 pred S_Go_True[s:State]{

85 S_Req in s.req

86 S_Go !in s.goes

87 E_Req !in s.req

88 }

89 pred S_Go_False[s:State]{

90 S_Go in s.goes

91 S_Sense !in s.sensors

92 }

93

94 pred pre_S_Go[s:State]{

95 S_Go_True[s]

96 }

97 pred pre_S_Not_Go[s:State]{

98 !S_Go_True[s] and S_Go_False[s]

99 }

100 pred pre_S_Go_Unchanged[s:State]{

101 !S_Go_True[s] and !S_Go_False[s]

102 }

103

104 pred S_Go_[s,s’: State]{

105 pre_S_Go[s]

106 S_Go in s’.goes

107 }

108 pred S_Not_Go[s,s’: State]{

109 pre_S_Not_Go[s]

110 S_Go !in s’.goes

111 }

112 pred S_Go_Unchanged[s,s’: State]{

113 pre_S_Go_Unchanged[s]

114 S_Go in s’.goes iff S_Go in s.goes

115 }

116

117

118 // Predicates for E_Go

119 pred E_Go_True[s:State]{

99

120 E_Req in s.req

121 E_Go !in s.goes

122 s.NS_Lock = False

123 }

124 pred E_Go_False[s:State]{

125 E_Go in s.goes

126 E_Sense !in s.sensors

127 }

128

129 pred pre_E_Go[s:State]{

130 E_Go_True[s]

131 }

132 pred pre_E_Not_Go[s:State]{

133 !E_Go_True[s] and E_Go_False[s]

134 }

135 pred pre_E_Go_Unchanged[s:State]{

136 !E_Go_True[s] and !E_Go_False[s]

137 }

138

139 pred E_Go_[s,s’: State]{

140 pre_E_Go[s]

141 E_Go in s’.goes

142 }

143 pred E_Not_Go[s,s’: State]{

144 pre_E_Not_Go[s]

145 E_Go !in s’.goes

146 }

147 pred E_Go_Unchanged[s,s’: State]{

148 pre_E_Go_Unchanged[s]

149 E_Go in s’.goes iff E_Go in s.goes

150 }

151

152 // Predicates for N_Req

153 pred N_Req_True[s:State]{

154 N_Sense in s.sensors

155 }

156 pred N_Req_False[s:State]{

157 N_Go_False[s]

158 }

159

160 pred pre_N_Req[s:State]{

161 N_Req_True[s]

162 }

163 pred pre_N_Not_Req[s:State]{

164 !N_Req_True[s] and N_Req_False[s]

100

165 }

166 pred pre_N_Req_Unchanged[s:State]{

167 !N_Req_True[s] and !N_Req_False[s]

168 }

169

170 pred N_Req_[s,s’: State]{

171 pre_N_Req[s]

172 N_Req in s’.req

173 }

174 pred N_Not_Req[s,s’: State]{

175 pre_N_Not_Req[s]

176 N_Req !in s’.req

177 }

178 pred N_Req_Unchanged[s,s’: State]{

179 pre_N_Req_Unchanged[s]

180 N_Req in s’.req iff N_Req in s.req

181 }

182

183

184 // Predicates for S_Req

185 pred S_Req_True[s:State]{

186 S_Sense in s.sensors

187 }

188 pred S_Req_False[s:State]{

189 S_Go_False[s]

190 }

191

192 pred pre_S_Req[s:State]{

193 S_Req_True[s]

194 }

195 pred pre_S_Not_Req[s:State]{

196 !S_Req_True[s] and S_Req_False[s]

197 }

198 pred pre_S_Req_Unchanged[s:State]{

199 !S_Req_True[s] and !S_Req_False[s]

200 }

201

202 pred S_Req_[s,s’: State]{

203 pre_S_Req[s]

204 S_Req in s’.req

205 }

206 pred S_Not_Req[s,s’: State]{

207 pre_S_Not_Req[s]

208 S_Req !in s’.req

209 }

101

210 pred S_Req_Unchanged[s,s’: State]{

211 pre_S_Req_Unchanged[s]

212 S_Req in s’.req iff S_Req in s.req

213 }

214

215 // Predicates for E_Req

216 pred E_Req_True[s:State]{

217 E_Sense in s.sensors

218 }

219 pred E_Req_False[s:State]{

220 E_Go_False[s]

221 }

222

223 pred pre_E_Req[s:State]{

224 E_Req_True[s]

225 }

226 pred pre_E_Not_Req[s:State]{

227 !E_Req_True[s] and E_Req_False[s]

228 }

229 pred pre_E_Req_Unchanged[s:State]{

230 !E_Req_True[s] and !E_Req_False[s]

231 }

232

233 pred E_Req_[s,s’: State]{

234 pre_E_Req[s]

235 E_Req in s’.req

236 }

237 pred E_Not_Req[s,s’: State]{

238 pre_E_Not_Req[s]

239 E_Req !in s’.req

240 }

241 pred E_Req_Unchanged[s,s’: State]{

242 pre_E_Req_Unchanged[s]

243 E_Req in s’.req iff E_Req in s.req

244 }

245

246 // Predicates for NS_Lock

247 pred NS_Lock_True[s:State]{

248 N_Go_True[s] or S_Go_True[s]

249 }

250 pred NS_Lock_False[s:State]{

251 (N_Go_False [s] and S_Go !in s.goes) or (S_Go_False [s] and N_Go !

in s.goes)

252 }

253

102

254 pred pre_NS_Lock[s:State]{

255 NS_Lock_True[s]

256 }

257 pred pre_NS_Not_Lock[s:State]{

258 !NS_Lock_True[s] and NS_Lock_False[s]

259 }

260 pred pre_NS_Lock_Unchanged[s:State]{

261 !NS_Lock_True[s] and !NS_Lock_False[s]

262 }

263

264 pred NS_Lock_[s,s’: State]{

265 pre_NS_Lock[s]

266 s’. NS_Lock = True

267 }

268 pred NS_Not_Lock[s,s’: State]{

269 pre_NS_Not_Lock[s]

270 s’. NS_Lock = False

271 }

272 pred NS_Lock_Unchanged[s,s’: State]{

273 pre_NS_Lock_Unchanged[s]

274 s’. NS_Lock=s.NS_Lock

275 }

276

277

278 // *********************** FAIRNESS CONSTRAINTS

*************************//

279 // Modeling fairness constraints

280 fun N_fair []: State{

281 State - (sensors.N_Sense & goes.N_Go)

282 }

283 fun S_fair []: State{

284 State - (sensors.S_Sense & goes.S_Go)

285 }

286 fun E_fair []: State{

287 State - (sensors.E_Sense & goes.E_Go)

288 }

289

290 // combines 3 fcs into 1 fc by checking that all 3 fcs occur

infinitely often thru a counter

291 fact fairness {

292 all s,s’: State | s->s’ in nextState implies ((s in N_fair [] and s

.counter=f0) implies s’. counter=f1 else

293 (s in S_fair [] and s.counter=f1) implies s’. counter=f2 else

294 (s in E_fair [] and s.counter=f2) implies s’. counter=f3 else

295 s.counter=f3 implies s’. counter=f0 else

103

296 s’. counter=s.counter)

297 // don ’t have to keep track of immediate next state fcs when

counter=f3

298 // because it doesn ’t matter in the context of infinitely often

299 }

300 pred fair[s:State] {

301 s.counter = f3

302 }

303

304 // *********************** MODEL DEFINITION *************************//

305 fact modelDefinition{

306 // init state constraints

307 all s:State| initial[s] iff (s in initialState)

308 // transition constraints

309 all s,s’: State| s->s’ in nextState iff (

310 N_Go_[s,s’] or

311 N_Not_Go[s,s’] or

312 N_Go_Unchanged[s,s’] or

313 S_Go_[s,s’] or

314 S_Not_Go[s,s’] or

315 S_Go_Unchanged[s,s’] or

316 E_Go_[s,s’] or

317 E_Not_Go[s,s’] or

318 E_Go_Unchanged[s,s’] or

319

320 N_Req_[s,s’] or

321 N_Not_Req[s,s’] or

322 N_Req_Unchanged[s,s’] or

323 S_Req_[s,s’] or

324 S_Not_Req[s,s’] or

325 S_Req_Unchanged[s,s’] or

326 E_Req_[s,s’] or

327 E_Not_Req[s,s’] or

328 E_Req_Unchanged[s,s’] or

329

330 NS_Lock_[s,s’] or

331 NS_Not_Lock[s,s’] or

332 NS_Lock_Unchanged[s,s’]

333)

334 // fairness constraints

335 all s:State | s in fc iff fair[s]

336 // equality predicate: states are records

337 all s,s’: State| (s.sensors = s’. sensors and s.goes = s’.goes and s.

req = s’.req and s.NS_Lock = s’. NS_Lock) implies s = s’

338 }

104

339

340

341 // ***************** SIGNIFICANCE AXIOMS ********************//

342 pred reachablityAxiom {

343 all s:State | s in State.(initialState <: *nextState)

344 }

345 pred operationsAxiom {

346 some s,s’: State | N_Go_[s,s’]

347 some s,s’: State | N_Not_Go[s,s’]

348 some s,s’: State | N_Go_Unchanged[s,s’]

349 some s,s’: State | S_Go_[s,s’]

350 some s,s’: State | S_Not_Go[s,s’]

351 some s,s’: State | S_Go_Unchanged[s,s’]

352 some s,s’: State | E_Go_[s,s’]

353 some s,s’: State | E_Not_Go[s,s’]

354 some s,s’: State | E_Go_Unchanged[s,s’]

355

356 some s,s’: State | N_Req_[s,s’]

357 some s,s’: State | N_Not_Req[s,s’]

358 some s,s’: State | N_Req_Unchanged[s,s’]

359 some s,s’: State | S_Req_[s,s’]

360 some s,s’: State | S_Not_Req[s,s’]

361 some s,s’: State | S_Req_Unchanged[s,s’]

362 some s,s’: State | E_Req_[s,s’]

363 some s,s’: State | E_Not_Req[s,s’]

364 some s,s’: State | E_Req_Unchanged[s,s’]

365

366 some s,s’: State | NS_Lock_[s,s’]

367 some s,s’: State | NS_Not_Lock[s,s’]

368 some s,s’: State | NS_Lock_Unchanged[s,s’]

369 }

370 pred significanceAxioms {

371 reachablityAxiom

372 operationsAxiom

373 }

374 --run significanceAxioms for exactly 17 State

375

376 // *********************** PROPERTIES *************************//

377 // safety property

378 assert MC{

379 // light in cross directions never on at same time

380 ctlfc_mc[ag[not_[goes.E_Go & goes.(N_Go + S_Go)]]]

381 }

382 check MC for exactly 17 State

105

A.4 Feature Interaction in a Telephone System

1 open ctl[State]

2 open util/boolean

3

4 // *********************** STATE SPACE *************************//

5 // Feature ={CW ,CF} is the set of features.

6 abstract sig Feature {}

7 one sig CW ,CF extends Feature {}

8

9 // Each phone number can have some features.

10 //If a number has call -forwarding (CF), fw points to forwarded number

.

11 sig PhoneNumber{

12 feature: set Feature ,

13 fw: set PhoneNumber

14 }

15 fact { // facts about types (PhoneNumber)

16 // any PN can only have 0 or 1 PN as its fw number

17 all n:PhoneNumber| lone n.fw

18 // CF is a feature of PN only if the PN has a fw number set

19 all n:PhoneNumber| CF in n.feature iff some n.fw

20 // no number is forwarded to itself thru other numbers

21 no (iden & (^fw))

22 }

23

24 // Used to model the global states.

25 sig State{

26 // Numbers that are idle ,

27 idle: set PhoneNumber ,

28 // (a->b) in busy iff a wants to talk to b, but b is not idle

29 busy: PhoneNumber -> PhoneNumber ,

30 // (a->b) in calling iff a is trying to call b

31 calling: PhoneNumber -> PhoneNumber ,

32 // (a->b) in talking iff a is talking to b

33 talkingTo: PhoneNumber -> PhoneNumber ,

34 // (a->b) in waitingFor iff a is waiting for b

35 waitingFor: PhoneNumber -> PhoneNumber ,

36 // (a->b) in forwardedTo iff a is forwarded to b

37 forwardedTo: PhoneNumber -> PhoneNumber

38 }

39

40 // ***************** INITIAL STATE CONSTRAINTS ********************//

41 pred initial[s:State]{

42 s.idle = PhoneNumber

106

43 no s.calling

44 no s.talkingTo

45 no s.busy

46 no s.waitingFor

47 no s.forwardedTo

48 }

49

50 // ***************** TRANSITION CONSTRAINTS/OPERATIONS

********************//

51

52 pred pre_idle_calling[s: State]{

53 some n,n’: PhoneNumber | n in s.idle and n != n’

54 }

55 pred post_idle_calling[s,s’: State]{

56 some n,n’: PhoneNumber |

57 ((s’.idle = ((s.idle) - n)) and

58 (s’. calling = s.calling + (n->n’)))

59

60 s’. talkingTo = s.talkingTo

61 s’.busy = s.busy

62 s’. waitingFor = s.waitingFor

63 s’. forwardedTo = s.forwardedTo

64 }

65 pred idle_calling[s,s’: State]{

66 pre_idle_calling[s]

67 post_idle_calling[s,s’]

68 }

69

70 pred pre_calling_talkingTo[s:State]{

71 some n,n’: PhoneNumber | n->n’ in s.calling and n’ in s.idle

72 }

73 pred post_calling_talkingTo[s,s’: State]{

74 some n,n’: PhoneNumber |

75 (s’.idle = s.idle - n’) and

76 (s’. calling = s.calling - (n -> n’)) and

77 (s’. talkingTo = s.talkingTo + (n -> n’))

78

79 s’.busy = s.busy

80 s’. waitingFor = s.waitingFor

81 s’. forwardedTo = s.forwardedTo

82 }

83 pred calling_talkingTo[s,s’: State]{

84 pre_calling_talkingTo[s]

85 post_calling_talkingTo[s,s’]

86 }

107

87

88 pred pre_talkingTo_idle[s:State]{

89 some n,n’: PhoneNumber | n -> n’ in s.talkingTo

90 }

91 pred post_talkingTo_idle[s,s’: State]{

92 some n,n’: PhoneNumber |

93 (s’. talkingTo = s.talkingTo - (n->n’)) and

94 (s’.idle = s.idle + (n + n’))

95

96 s’.busy = s.busy

97 s’. calling = s.calling

98 s’. waitingFor = s.waitingFor

99 s’. forwardedTo = s.forwardedTo

100 }

101 pred talkingTo_idle[s,s’: State]{

102 pre_talkingTo_idle[s]

103 post_talkingTo_idle[s,s’]

104 }

105

106 pred pre_calling_busy[s:State]{

107 some n,n’: PhoneNumber | n->n’ in s.calling and n’ not in s.idle

108 }

109 pred post_calling_busy[s,s’: State]{

110 some n,n’: PhoneNumber |

111 (s’. calling = s.calling - (n->n’)) and

112 (s’.busy = s.busy + (n->n’))

113

114 s’.idle = s.idle

115 s’. talkingTo = s.talkingTo

116 s’. waitingFor = s.waitingFor

117 s’. forwardedTo = s.forwardedTo

118 }

119 pred calling_busy[s,s’: State]{

120 pre_calling_busy[s]

121 post_calling_busy[s,s’]

122 }

123

124 pred pre_busy_waitingFor[s:State]{

125 some n,n’: PhoneNumber |

126 (n->n’) in s.busy and

127 CW in n’. feature and

128 n’ not in PhoneNumber .(s.waitingFor)

129 // PN is not already being waited for , i.e.,

130 // can have only one call in CW queue , otherwise stay busy

131 }

108

132 pred post_busy_waitingFor[s,s’: State]{

133 some n,n’: PhoneNumber |

134 (s’.busy = s.busy - (n->n’)) and

135 (s’. waitingFor = s.waitingFor + (n->n’))

136

137 s’. forwardedTo = s.forwardedTo

138 s’.idle = s.idle

139 s’. calling = s.calling

140 s’. talkingTo = s.talkingTo

141 }

142 pred busy_waitingFor[s,s’: State]{

143 pre_busy_waitingFor[s]

144 post_busy_waitingFor[s,s’]

145 }

146

147 // caller on CW hangs up

148 pred pre_waitingFor_idle[s:State]{

149 some n,n’: PhoneNumber | n -> n’ in s.waitingFor

150 }

151 pred post_waitingFor_idle[s,s’: State]{

152 some n,n’: PhoneNumber |

153 (s’. waitingFor = s.waitingFor - (n -> n’)) and

154 (s’.idle = s.idle + n)

155

156 s’. calling = s.calling

157 s’. talkingTo = s.talkingTo

158 s’.busy = s.busy

159 s’. forwardedTo = s.forwardedTo

160 }

161 pred waitingFor_idle[s,s’: State]{

162 pre_waitingFor_idle[s]

163 post_waitingFor_idle[s,s’]

164 }

165

166 pred pre_waitingFor_talkingTo[s:State]{

167 some n,n’: PhoneNumber | n -> n’ in s.waitingFor

168 }

169 pred post_waitingFor_talkingTo[s,s’: State]{

170 some n,n’: PhoneNumber |

171 (s’. waitingFor = s.waitingFor - (n -> n’)) and

172 (s’. talkingTo = s.talkingTo + (n -> n’))

173

174 s’.idle = s.idle

175 s.busy = s’.busy

176 s.forwardedTo = s’. forwardedTo

109

177 s.calling = s’. calling

178 }

179 pred waitingFor_talkingTo[s,s’: State]{

180 pre_waitingFor_talkingTo[s]

181 post_waitingFor_talkingTo[s,s’]

182 }

183

184 pred pre_busy_forwardedTo[s:State]{

185 some n,n’: PhoneNumber | n -> n’ in s.busy and CF in n’. feature

186 }

187 pred post_busy_forwardedTo[s,s’: State]{

188 some n,n’: PhoneNumber |

189 (s’.busy = s.busy - (n -> n’)) and

190 (s’. forwardedTo = s.forwardedTo + (n -> n’.fw))

191

192 s’.idle = s.idle

193 s’. talkingTo = s.talkingTo

194 s’. calling = s.calling

195 s’. waitingFor = s.waitingFor

196 }

197 pred busy_forwardedTo[s,s’: State]{

198 pre_busy_forwardedTo[s]

199 post_busy_forwardedTo[s,s’]

200 }

201

202 pred pre_forwardedTo_calling[s:State]{

203 some n,n’: PhoneNumber | n -> n’ in s.forwardedTo

204 }

205 pred post_forwardedTo_calling[s,s’: State]{

206 some n,n’: PhoneNumber |

207 (s’. forwardedTo = s.forwardedTo - (n->n’)) and

208 (s’. calling = s.calling + (n -> n’))

209

210 s’.idle = s.idle

211 s’.busy = s.busy

212 s’. talkingTo = s.talkingTo

213 s’. waitingFor = s.waitingFor

214 }

215 pred forwardedTo_calling[s,s’: State]{

216 pre_forwardedTo_calling[s]

217 post_forwardedTo_calling[s,s’]

218 }

219

220 pred pre_busy_idle[s:State]{

221 some n,n’: PhoneNumber | n -> n’ in s.busy and no n’. feature

110

222 }

223 pred post_busy_idle[s,s’: State]{

224 some n,n’: PhoneNumber |

225 (s’.busy = s.busy - (n -> n’)) and

226 (s’.idle = s.idle + n)

227

228 s.talkingTo = s’. talkingTo

229 s.waitingFor = s’. waitingFor

230 s.forwardedTo = s’. forwardedTo

231 s.calling = s’. calling

232 }

233 pred busy_idle[s,s’: State]{

234 pre_busy_idle[s]

235 post_busy_idle[s,s’]

236 }

237

238 // ***************** MODEL DEFINITION ********************//

239

240 fact md{

241 // init state constraint

242 all s:State | s in initialState iff initial[s]

243 // transition constraints

244 all s,s’: State|

245 s->s’ in nextState iff

246 (idle_calling[s,s’] or calling_talkingTo[s,s’] or

talkingTo_idle[s,s’] or

247 calling_busy[s,s’] or busy_waitingFor[s,s’] or busy_forwardedTo

[s,s’] or

248 busy_idle[s,s’] or waitingFor_idle[s,s’] or

waitingFor_talkingTo[s,s’] or

249 forwardedTo_calling[s,s’])

250 // equality predicate: states are records

251 all s,s’: State|(

252 ((s.idle = s’.idle) and (s.calling = s’. calling) and

253 (s.talkingTo = s’. talkingTo) and (s.busy = s’.busy) and

254 (s.waitingFor = s’. waitingFor) and (s.forwardedTo = s’.

forwardedTo)) implies (s =s’))

255 }

256

257 // ***************** SIGNIFICANCE AXIOMS ********************//

258 pred reachablityAxiom {

259 all s:State | s in State.(initialState <: *nextState)

260 }

261 pred operationsAxiom {

262 some s,s’: State | idle_calling[s,s’]

111

263 some s,s’: State | calling_talkingTo[s,s’]

264 some s,s’: State | talkingTo_idle[s,s’]

265 some s,s’: State | calling_busy[s,s’]

266 some s,s’: State | busy_waitingFor[s,s’]

267 some s,s’: State | busy_forwardedTo[s,s’]

268 some s,s’: State | busy_idle[s,s’]

269 some s,s’: State | waitingFor_idle[s,s’]

270 some s,s’: State | waitingFor_talkingTo[s,s’]

271 some s,s’: State | forwardedTo_calling[s,s’]

272 }

273 pred significanceAxioms {

274 reachablityAxiom

275 operationsAxiom

276 }

277 run significanceAxioms for exactly 6 State , exactly 4 PhoneNumber

278

279 // ***************** PROPERTIES/CHECK ********************//

280 pred ap_safety [s:State] {

281 // no PN is both being waited for and being forwarded to

282 no s.waitingFor.PhoneNumber & s.forwardedTo.PhoneNumber

283 }

284 assert safety { ctl_mc[ag [{s:State | ap_safety[s]}]] }

285 check safety for exactly 6 State , exactly 4 PhoneNumber

112

Appendix B

Non-Alloy Model for Comparison

B.1 Musical Chairs in NuSMV

1 MODULE main

2

3 DEFINE

4 numPlayers := 3;

5 numChairs := numPlayers - 1;

6

7 ------------------- STATE VARIABLES ------------------------

8

9 VAR

10

11 mode : {start , walking , sitting , end};

12

13 -- bool represents whether player is still in the game.

14 -- 0 represents no players in chairs

15 players : array 1.. numPlayers of boolean; -- don ’t need 0 here

16

17 -- bool represents whether chair is still in the game

18 chairs : array 1.. numChairs of boolean;

19

20 -- mapping of chairs to players

21 occupied : array 1.. numChairs of 0.. numPlayers;

22

23

24 ASSIGN

25

26 -------------------- INIT STATE ----------------------

113

27

28 init(mode) := start;

29

30 -- needs to be as many init(players) as numPlayers

31 init(players [1]) := TRUE;

32 init(players [2]) := TRUE;

33 init(players [3]) := TRUE;

34

35 -- needs to be as many init(chairs) as numChairs

36 init(chairs [1]) := TRUE;

37 init(chairs [2]) := TRUE;

38

39 --------------- TRANSITION CONSTRAINTS ------------------------

40

41 TRANS

42 case

43 mode = start & count(players [1], players [2], players [3]) >1:

44 next(mode) = walking &

45

46 next(players [1]) = players [1] &

47 next(players [2]) = players [2] &

48 next(players [3]) = players [3] &

49 next(chairs [1]) = chairs [1] &

50 next(chairs [2]) = chairs [2] ;

51

52 mode = walking :

53 next(mode) = sitting &

54

55 -- no one is sitting in walking state

56 occupied [1] = 0 &

57 occupied [2] = 0 &

58

59 next(players [1]) = players [1] &

60 next(players [2]) = players [2] &

61 next(players [3]) = players [3] &

62 next(chairs [1]) = chairs [1] &

63 next(chairs [2]) = chairs [2] ;

64

65 mode = sitting :

66 next(mode) = start &

67

68 (chairs [1] -> (occupied [1]!=0)) &

69 (chairs [2] -> (occupied [2]!=0)) &

70

114

71 -- in sitting mode , only chairs in game are occupied by players

in game

72 -- occupiers of chairs currently in game are players who are

currently in the game

73 (occupied [1]!=0 -> (players[occupied [1]] <-> chairs [1])) &

74 (occupied [2]!=0 -> (players[occupied [2]] <-> chairs [2])) &

75

76 -- chairs cannot be occupied by the same player except null (0)

in sitting mode

77 ((occupied [1]!=0 & occupied [2]!=0) -> (occupied [1]!= occupied [2]))

&

78

79 -- eliminate player if player doesn ’t occupy any chairs

80 ((occupied [1]!=1 & occupied [2]!=1) ? !next(players [1]) : next(

players [1])=players [1]) &

81 ((occupied [1]!=2 & occupied [2]!=2) ? !next(players [2]) : next(

players [2])=players [2]) &

82 ((occupied [1]!=3 & occupied [2]!=3) ? !next(players [3]) : next(

players [3])=players [3]) &

83

84 -- leave chair outside game if already outside

85 ((! chairs [1]) -> next(chairs [1])=FALSE) &

86 ((! chairs [2]) -> next(chairs [2])=FALSE) &

87 -- eliminate 1 chair: count of number of chairs in current round

is

88 -- 1 more than count of chairs in next round

89 count(chairs [1], chairs [2]) = next(count(chairs [1], chairs [2])) +

1;

90

91 mode = start & count(players [1], players [2], players [3]) =1:

92 next(mode) = end &

93

94 next(players [1]) = players [1] &

95 next(players [2]) = players [2] &

96 next(players [3]) = players [3] &

97 next(chairs [1]) = chairs [1] &

98 next(chairs [2]) = chairs [2] ;

99

100 TRUE:

101 next(mode) = mode &

102 next(players [1]) = players [1] &

103 next(players [2]) = players [2] &

104 next(players [3]) = players [3] &

105 next(chairs [1]) = chairs [1] &

106 next(chairs [2]) = chairs [2] ;

115

107

108 esac &

109

110 ---------------------- SPECS TO CHECK -------------------------------

111

112 SPEC

113 -- chair in game is always occupied in sitting mode

114 AG((mode=sitting -> chairs [1] -> occupied [1]!=0) &

115 (mode=sitting -> chairs [2] -> occupied [2]!=0))

116 SPEC

117 -- players in game always > 0

118 AG(count(players [1], players [2], players [3]) >0)

119 SPEC

120 -- end mode only has 1 player and 0 chairs

121 AG(mode=end -> (count(players [1], players [2], players [3])=1 & count(

chairs [1], chairs [2]) =0))

122 SPEC

123 -- there can be 1 player only in start or end games

124 AG(count(players [1], players [2], players [3])=1 -> (mode=start | mode=

end))

125 SPEC

126 -- players = chairs + 1

127 AX(AG(count(players [1], players [2], players [3]) = count(chairs [1],

chairs [2]) + 1))

116

Appendix C

Alloy Models From Other Works for
Comparison

C.1 Traffic Light by Vakili [42]

1 module TrafficLightController

2

3 open util/boolean

4 open temporal_logics/ctlfc[State]

5

6 // There are 3 sensors

7 abstract sig Sense{}

8 one sig N_Sense , S_Sense , E_Sense extends Sense{}

9

10 // Go is for modeling which direction is allowed to go

11 abstract sig Go{}

12 one sig N_Go , S_Go , E_Go extends Go{}

13

14 // Request is to latch the traffic sensors input.

15 abstract sig Request {}

16 one sig N_Req , S_Req , E_Req extends Request {}

17

18 sig State{

19 input: set Sense ,

20 output: set Go ,

21

22 req: set Request ,

23 NS_Lock: Bool // NS_Lock is true iff East is not allowed to go

117

24 }

25

26 pred initial[s:State]{

27 no s.output

28 no s.req

29 s.NS_Lock = False

30 }

31

32 // setting the initial states

33 fact{ all s:State| initial[s] iff (s in initialState)}

34

35

36 // Predicates for N_Go

37 pred N_Go_True[s:State]{

38 N_Req in s.req

39 N_Go !in s.output

40 E_Req !in s.req

41 }

42

43 pred N_Go_False[s:State]{

44 N_Go in s.output

45 N_Sense !in s.input

46 }

47

48 pred N_Go_[s,s’: State]{

49 N_Go_True[s] implies N_Go in s’. output else (N_Go_False[s] implies

N_Go !in s’. output else (N_Go in s.output iff N_Go in s’. output

))

50 }

51

52 // Predicates for S_Go

53 pred S_Go_True[s:State]{

54 S_Req in s.req

55 S_Go !in s.output

56 E_Req !in s.req

57 }

58

59 pred S_Go_False[s:State]{

60 S_Go in s.output

61 S_Sense !in s.input

62 }

63

64 pred S_Go_[s,s’: State]{

65 S_Go_True[s] implies S_Go in s’. output else (S_Go_False[s] implies

S_Go !in s’. output else (S_Go in s.output iff S_Go in s’. output

118

))

66 }

67

68 // Predicates for E_Go

69 pred E_Go_True[s:State]{

70 E_Req in s.req

71 E_Go !in s.output

72 s.NS_Lock = False

73 }

74

75 pred E_Go_False[s:State]{

76 E_Go in s.output

77 E_Sense !in s.input

78 }

79

80 pred E_Go_[s,s’: State]{

81 E_Go_True[s] implies E_Go in s’. output else (E_Go_False[s] implies

E_Go !in s’. output else (E_Go in s.output iff E_Go in s’. output

))

82 }

83

84 // Predicates for N_Req

85 pred N_Req_True[s:State]{

86 N_Sense in s.input

87 }

88

89 pred N_Req_False[s:State]{

90 N_Go_False[s]

91 }

92

93 pred N_Req_[s,s’: State]{

94 N_Req_True[s] implies N_Req in s’.req else (N_Req_False[s] implies

N_Req !in s’.req else (N_Req in s.req iff N_Req in s’.req))

95 }

96

97 // Predicates for S_Req

98 pred S_Req_True[s:State]{

99 S_Sense in s.input

100 }

101

102 pred S_Req_False[s:State]{

103 S_Go_False[s]

104 }

105

106 pred S_Req_[s,s’: State]{

119

107 S_Req_True[s] implies S_Req in s’.req else (S_Req_False[s] implies

S_Req !in s’.req else (S_Req in s.req iff S_Req in s’.req))

108 }

109

110 // Predicates for E_Req

111 pred E_Req_True[s:State]{

112 E_Sense in s.input

113 }

114

115 pred E_Req_False[s:State]{

116 E_Go_False[s]

117 }

118

119 pred E_Req_[s,s’: State]{

120 E_Req_True[s] implies E_Req in s’.req else (E_Req_False[s] implies

E_Req !in s’.req else (E_Req in s.req iff E_Req in s’.req))

121 }

122

123 // Predicates for NS_Lock

124 pred NS_Lock_True[s:State]{

125 N_Go_True[s] or S_Go_True[s]

126 }

127

128 pred NS_Lock_False[s:State]{

129 (N_Go_False [s] and S_Go !in s.output) or (S_Go_False [s] and N_Go

!in s.output)

130 }

131

132 pred NS_Lock_[s,s’: State]{

133 NS_Lock_True[s] implies s’. NS_Lock = True else (NS_Lock_False[s]

implies s’. NS_Lock = False else s.NS_Lock=s’. NS_Lock)

134 }

135

136 fact TransitionRelation{

137 // all s,s’: State| (s.input = s’. input and s.output = s’. output and

s.req = s’.req and s.NS_Lock = s’. NS_Lock) implies s = s’

138 all s,s’: State| s’ in nextState[s] iff (N_Go_[s,s’] and S_Go_[s,s’]

and E_Go_[s,s’] and N_Req_[s,s’] and S_Req_[s,s’] and E_Req_[s

,s’] and NS_Lock_[s,s’])

139 }

140

141 // Modeling fairness constraints:

142

143 fun N_fair []: State{

144 State - (input.N_Sense & output.N_Go)

120

145 }

146

147 fun S_fair []: State{

148 State - (input.S_Sense & output.S_Go)

149 }

150

151 fun E_fair []: State{

152 State - (input.E_Sense & output.E_Go)

153 }

154

155 fact{

156 fc1 = N_fair

157 fc2 = S_fair

158 fc3 = E_fair

159 }

160

161 fun bound[R:State ->State ,X:State]

162 :State ->State{

163 X <: R

164 }

165

166 fun id[X:State]

167 :State ->State{

168 bound[iden ,X]

169 }

170

171 fun loop[R: State ->State]

172 :State{

173 State .(^R & id[State])

174 }

175

176 assert MC{

177 CTLFC_MC[not_ctlfc[ECF[output.E_Go & output .(N_Go + S_Go)]]]

178 }

179 check MC for 7 State

C.2 Span Tree by Macedo et al. [29]

1 module examples/algorithms/opt_spantree

2

3 open util/ordering[Lvl] as lo

4 open util/ordering[State]

121

5 open util/graph[Process] as graph

6

7 sig State {

8 Next : one State

9 }

10 lone sig Loop in State {}

11

12 fact {

13 Next = next + last -> Loop

14 }

15

16 sig Process {

17 adj : set Process ,

18 lvl: Lvl lone -> State ,

19 parent: Process lone -> State ,

20 }

21

22 one sig Root extends Process {}

23

24 sig Lvl {}

25

26 fact processGraph {

27 graph/noSelfLoops[adj]

28 graph/undirected[adj]

29 Process in Root.*adj

30 }

31

32 pred Init[t:State] {

33 no lvl.t

34 no parent.t

35 }

36

37 pred Nop[t,t’: State] {

38 lvl.t = lvl.t’

39 parent.t = parent.t’

40 }

41

42 pred MayAct[p : Process , t : State] {

43 no lvl.t[p]

44 (p = Root || some lvl.t[p.adj])

45 }

46

47 pred Act[p : Process , t,t’ : State] {

48 no lvl.t[p]

49 (p = Root) => {

122

50lvl.t’[p] = lo/first

51no parent.t’[p]

52 } else {

53some adjProc: p.adj {

54 some lvl.t[adjProc]

55 lvl.t’[p] = lo/next[lvl.t[adjProc]]

56 parent.t’[p] = adjProc

57 }

58 }

59 all p1 : Process -p | lvl.t[p1] = lvl.t’[p1] and parent.t[p1] =

parent.t’[p1]

60 }

61

62 pred Fairness {

63 all t : *Next[ordering/first] | ((some p : Process | MayAct[p,t])

=>

64 (some t1 : t.*Next , p : Process | Act[p,t1 ,Next[t1]]))

65 }

66

67 fact Trace {

68 Init[first]

69 all t : *Next[ordering/first] | (some p : Process | Act[p, t, Next[

t]]) || Nop[t,Next[t]]

70 }

71

72 pred IsSpanTree[t : State] {

73 Process in Root .*~(parent.t)

74 graph/dag [~(parent.t)]

75 }

76

77 pred SuccessfulRun {

78 some t : *Next[ordering/first] | IsSpanTree[t]

79 }

80

81 pred Liveness {

82 some Loop => some t : *Next[ordering/first] | IsSpanTree[t]

83 }

84

85 pred Safety {

86 all t : *Next[ordering/first] | no p : Process | p in p.^(parent.t)

87 }

88

89 assert BadLiveness {

90 Liveness

91 }

123

92

93 assert GoodLiveness {

94 Fairness => Liveness

95 }

96

97 assert GoodSafety {

98 Safety

99 }

100

101 // Span (1) scenario

102 check BadLiveness for 3 but 10 State

103 // Span (2) scenario

104 check GoodLiveness for 3 but 10 State

105 // Span (3) scenario

106 check GoodSafety for 3 but 10 State

124

	List of Tables
	List of Figures
	Introduction
	Thesis Overview and Contributions
	Case Studies
	Thesis Organization

	Background
	Temporal Logic Model Checking
	Transitive-Closure-based Model Checking (TCMC)
	Alloy
	TCMC in Alloy
	Summary

	Modelling a Transition System in Alloy
	Declaring the State Space
	State Equivalence
	No Invariants

	Defining Initial States and Operations
	Pre- and Post-conditions
	Distinct Operations

	Model Definition
	Transition Relation: DisjMethod vs. ConjMethod

	Summary

	Generating an Instance
	Scope
	Spurious Instance Problem
	Significance Axioms
	Significant Scope
	Summary

	Scoped-TCMC Methodology
	Types of Properties
	Safety Properties
	Finite Liveness Properties
	Infinite Liveness Properties
	Existential Properties
	Summary

	Case Studies
	Musical Chairs
	Style Guidelines
	Significance Axioms
	Scoped-TCMC Methodology

	Elevator System
	Style Guidelines
	Significance Axioms
	Scoped-TCMC Methodology

	Traffic Light Controller
	Style Guidelines
	Significance Axioms
	Scoped-TCMC Methodology

	Feature Interaction in a Telephone System
	Style Guidelines
	Significance Axioms
	Scoped-TCMC Methodology

	Scalability
	Summary

	Comparison to NuSMV and BMC
	NuSMV
	BMC in Alloy
	Summary

	Related Work
	Conclusion
	References
	APPENDICES
	Alloy Models: TCMC Case Studies
	Musical Chairs
	Elevator System
	Traffic Light Controller
	Feature Interaction in a Telephone System

	Non-Alloy Model for Comparison
	Musical Chairs in NuSMV

	Alloy Models From Other Works for Comparison
	Traffic Light by Vakili Va16
	Span Tree by Macedo et al. electrum2016

