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Abstract

Smart meter technology allows frequent measurements of water consumption at a
household level. This greater availability of data allows improved analysis of patterns
of residential water consumption, which is important for demand management and
targeting conservation efforts. The dataset in this thesis includes 8,000 single fam-
ily residences in Abbotsford, British Columbia from 2012–2013, and contains hourly
measurements of water consumption recorded by smart meters installed in 2010. This
work focuses on identifying outdoor consumption due to its contribution to peak de-
mand during the summer, which is important because of concerns about strain on
infrastructure in Abbotsford. This research shows that outdoor water consumption
can be robustly identified from hourly measurement of total water consumption by
determining an upper threshold on plausible indoor usage, and that this estimated
outdoor water consumption is consistent with seasonal patterns of water consumption
identified in previous work, with the timing of restrictions on outdoor watering, and
with household size. The research also includes regression tree-based models for pre-
dicting next-hour water consumption, however the predictability of this consumption
is limited. In contrast to previous work, there is little correlation between outdoor
consumption and demographic factors such as income. Outdoor consumption shows
a large amount of individual variability, with 8.6% of households accounting for 50%
of the total outdoor usage. This limits the predictability of outdoor consumption,
but also highlights the importance of identifying this consumption for each household
to allow for targeted conservation efforts.
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Chapter 1

Introduction

In this chapter, I informally introduce the problems in my thesis related to identi-
fying and predicting outdoor residential water consumption. I also summarize the
contributions of the thesis and the organization of the thesis.

1.1 Residential Water Demand and Outdoor Wa-

ter Consumption

Accurate knowledge about water demand is important for a variety of reasons includ-
ing short-term operating decisions for water utilities, long-term planning on the part
of municipalities, decisions about when to enact watering restrictions, and for tar-
geting conservation messages. In particular, it is beneficial to have information both
about the amount of water consumed and about how that water is consumed [1].
The amount of water consumed and the timing of that consumption determines the
strain on infrastructure, while the end-uses of that consumption can be used to target
conservation efforts and to make estimates about what amount of reduction might be
realistic [2].

This thesis focuses on residential water consumption in Abbotsford, British Columbia.
The main dataset is one year of water consumption measurements for each household,
recorded from September 2012 to August 2013. The dataset includes hourly water
consumption measurements for each customer, recorded by the smart meters installed
by the municipality in 2010. The increased frequency of water measurements allowed
by smart water meters (see Chapter 2) allows more detailed methods of analysis
than water meter readings collected at a monthly or bimonthly frequency for billing.
Abbotsford is most concerned about high levels of water consumption during the sum-
mer, because increased demand occurring at the same time contributes to strain on
infrastructure. This thesis focuses on identifying, predicting, and explaining outdoor
water consumption (such as water used for irrigation) during the summer months.
Understanding this consumption is important because of its contribution to periods
of high total water demand.
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1.2 Organization and Overview

In Chapter 2, I discuss general background related to water consumption and to the
machine learning models used for prediction. I also outline the problems covered
in this thesis in more detail. In Chapter 3, I discuss related work in identifying
individual uses of water from a single measurement of total consumption, forecasting
water consumption, and the determinants of both total and outdoor consumption.
Chapter 4 discusses the datasets used in the rest of the work.

The next three chapters discuss the main contributions of my thesis:

• Chapter 5 discusses an approach to estimating hourly water consumption, adapted
from previous work [2]. This approach takes advantage of the fact that outdoor
uses of water such as irrigation are high-volume compared to indoor use, and
involves identifying an upper threshold indoor water consumption, such that an
hourly consumption measurement past the threshold indicates probable outdoor
consumption. In contrast to the previous work, potential alternative thresholds
are evaluated using qualitative and quantitative evidence to determine the ideal
threshold.

• Chapter 6 discusses models for predicting next-hour outdoor water consump-
tion (estimated using the method above). The models are based on ensembles
of regression trees to allow some interpretability, and are the first models for
predicting outdoor water consumption at a fine temporal scale (hourly) and a
fine spatial scale (small neighbourhoods).

• Chapter 7 includes an analysis of the factors affecting outdoor water consump-
tion over the whole summer. In contrast to previous work, demographic factors
such as income are not strongly correlated with outdoor water consumption. I
also find significant individual variability in outdoor water consumption, with
a small number of households consuming most of the water used for outdoor
purposes. Previous work [3, 4] that focused on analysing outdoor water con-
sumption required specially installed high-resolution water meters that limit
the viable sample sizes. The approach to separating outdoor water consump-
tion described previously allows this analysis using only existing water meters,
and therefore it can be performed on a larger number of households.

Finally, Chapter 8 contains some concluding remarks and discussion of future
work.
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Chapter 2

Background

In this chapter, I briefly review the necessary background in residential water con-
sumption generally, the concerns about water consumption in Abbotsford, smart wa-
ter meters, time series forecasting as supervised learning, and ensembles of regression
trees.

2.1 Residential Water Consumption and Forecast-

ing

This thesis focuses on explaining and predicting single-family outdoor residential wa-
ter consumption. This section covers relevant facts about residential water consump-
tion, and about how forecasts are developed and for what purposes they are used.
For technical details about various types of forecasting, see Chapter 3.

Managing residential water demand is important because of strain on infrastruc-
ture, growing populations, and concerns about water pressure [1]. Additionally, res-
idential water is a significant part of the treated water supplied by municipal water
utilities [5]. In particular, it is important to manage peak demand, which is the largest
amount of water required in a fixed period of time (such as a day) [6] in situations
where the concern is not the total amount of water used, but potential strain on the
water-delivery infrastructure’s ability to deliver the required amount of water at one
time.

Cole and Stewart [2] note that improved water demand forecasting will require
accurate knowledge of the timing, location, and purposes of water use. When water is
used depends primarily on three cycles of different frequencies [7]. Residential water
consumption has a daily pattern in which consumption peaks in the morning and
in the evening, which can be attributed to activities such as bathing and cooking,
before and after work. There is relatively little consumption overnight. There is a
also weekly cycle, with different patterns of consumption on weekends and weekdays.
Additionally, in many climates there is a seasonal pattern, with larger amounts of
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water consumption during the summer months [8]. These patterns are particularly
important for managing peak demand because the timing of water consumption,
rather than only the total amount, is relevant in that case.

How and where water is consumed are also relevant for demand management and
making predictions or inferences about future water consumption. Outdoor uses of
water such as irrigation have typically been considered discretionary [4], and can be
more easily reduced in response to water shortages than necessary indoor end uses
such as toilet flushing. In comparison, indoor consumption is largely used for basic
needs and primarily determined by household size [8], although there are indoor end-
uses such as showering which are also behaviourally-influenced [4]. Where there are
concerns about water demand, it is also important to know the purposes (end-uses)
of that consumption, in order to target conservation efforts and estimate the amount
that water consumption could be reasonably reduced [2].

In addition to understanding water consumption, it is often useful to be able to
estimate the total amount of future consumption. Forecasts may be developed for
various purposes such as day-to-day management of water systems or for longer term
planning and the ideal forecasting method depends on the purpose of the forecast,
its required accuracy, and the resources (including data) which are available [6]. In
practice, very simple forecasting methods such as multiplying per-capita consump-
tion by projected population growth are common [9]. Forecasts may be of different
periodicities (for example, daily, monthly, or annual predictions) and have different
time horizons (for example, a monthly forecast of the next 12 months). Donkor et
al.’s [9] survey on forecasting methods describes three basic categories of forecasts de-
pending on the time horizon: operational forecasts for management of water systems
(which typically have hourly, daily, monthly, or annual periodicity), tactical forecasts
for revenue estimation and investment planning (monthly or annual periodicity), and
strategic forecasts for planning major infrastructure expansion (annual periodicity
and multi-year time horizon). The accuracy of the forecasts required for any of these
purposes depends on many factors such as the likely strain on infrastructure, the
amount of water available, and the costs of infrastructure expansion [6].

See [8] for an overview of patterns in residential water use in North America,
and [6] for an overview of the forecasting methods typically used by water utilities and
the trade-offs involved. Also see [10] for an overview of how urban water consumption
is modelled.

2.2 Summer Water Demand in Abbotsford

The water consumption data in this thesis is from Abbotsford, British Columbia.
During the data collection period (September 2012 to August 2013) the city had
ongoing conservation measures to reduce peak day water demand. The peak day water
demand in Abbotsford typically occurs in July or August due to increased outdoor
water consumption, and conservation measures include rebate programs, sprinkling

4



restrictions, seasonal water rates, and education about efficient irrigation [11]. The
motivation for reducing peak day consumption is to avoid requiring infrastructure
expansion which has both financial and environmental costs [12].

During July and August 2013, the city of Abbotsford enacted watering restrictions,
as they have in most years since 1995, in order to reduce the peak day demand [12].
Lawn irrigation was permitted on two days per week per household from 6:00 am to
8:00 am, determined by the street address. Even-numbered houses were permitted
to water their lawns on Wednesdays and Saturdays, and odd-numbered houses were
permitted to water their lawns on Thursdays and Sundays. These restrictions only
applied to using sprinklers for automatic irrigation. Manual watering of gardens and
trees with a spring-loaded hose and filling pools were permitted at any time.

2.3 Smart Meters

Smart water meters were installed in Abbotsford beginning in 2010, with the goals
of detecting leaks, reducing meter reading costs, and collecting data for targeting
conservation initiatives [13]. Smart meters are water meters that allowing the logging,
storage, and transmission of water consumption measurements [14]. Typically smart
meters record household water consumption at a higher frequency than the monthly
or bi-monthly frequencies required for billing, and measurements every 15 minutes or
every hour are common [14]. This increased temporal resolution allows better demand
management by showing when water is consumed, which is important for managing
peak demand [15]. Smart meters are useful for both providing real-time feedback
about water consumption habits to consumers in order to encourage conservation, as
well as useful to water utilities for water consumption purposes [16].

The water consumption measurements recorded by smart water meters can be
processed and analysed in the same way as any other signal [17]. This is useful for
short-term demand forecasting as well as giving better insight into the end-uses of
water than allowed by measurements of water consumption at the frequency required
for billing [15]. (See Chapter 3 for methods of identifying the end-uses of water from
household-level measurements of total water consumption.)

See [14] for a basic description of how smart meters function and [15] and [16] for
a summary of the ways smart meters are used to encourage water conservation and
for management of water systems.

2.4 Times Series Forecasting as Supervised Learn-

ing

The water consumption data collected from Smart Meters can be thought of as a
time series: a series of measurements of a quantity at regular points in time. The
measurement of the variable y at time t is denoted yt:
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y1, y2, ...yt−2, yt−1, yt.

Often, the goal is to predict future values of the time series. Predicted values of
the time series are written as ŷt. Predictions for a time series may also take into
account other variables, x1, ..., xn. In the time series literature, previous values of the
series yt−k are referred to as lagged values and x1, ..., xn are referred to as exogenous
variables.

Time series prediction can be formulated as a supervised learning problem [18].
Supervised learning takes a set of features and fits a model which maps the features to
outputs. The rest of this thesis uses the terminology common in the machine learning
literature, referring to both lagged values of y and exogenous variables as features.
Given the past k values of y, the relationship of the output to the features can be
written as:

yt = f(yt−1...yt−n, x1, ..., xn).

Where f is a function that maps the features to the output yt. The formalization
above is given for simplicity, but the model may use non-consecutive previous values
of y. Once the task is modelled as a supervised learning problem, yt can be predicted
using standard machine learning techniques. The goal of supervised learning is to
find a function f̂ which approximates f such that the differences between the true
values yt and the predicted values ŷt are minimized:

ŷt = f̂(yt−1...yt−n, x1, ..., xn).

The vector of all of the features, yt−1...yt−n, x1, ..., xn, is referred to as an observa-
tion and is subsequently denoted as X for simplicity:

ŷ = f̂(X).

It is possible to choose f̂ such that it closely predicts correct outputs for the data
used to fit the model, but does not generalize well to unseen data. To avoid over-
fitting to the data used to fit the model, the observations are typically divided into
at least two sets. The training set is used to fit the model, and the testing set is used
to evaluate its performance. When a limited number of observations are available,
cross-validation is typically used to evaluate the model, which involves partitioning
the dataset into several folds, and using one fold as test data and the rest as training
data on each iteration.

See [18] for more background on supervised learning for time series prediction, [19]
for background on supervised learning generally, and [20] for background on evaluating
machine learning algorithms.
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2.5 Regression Trees

Regression trees are an interpretable machine learning method that involves parti-
tioning the feature space into rectangular regions and predicting a simple function for
each region. The description given here is of regression trees built using the CART
algorithm [21], and the explanation is adapted from [19], which can be referred to for
more detail.

When building a regression tree, the feature space is divided into regions by cre-
ating recursive binary partitions over a single variable at a time. See Figure 2.1
for an example of this partitioning. The value in each region Rm is predicted as a
constant cm. Consider the case with two continuous-valued features, x1 and x2 as
a simple example of this partitioning. Figure 2.1 shows a potential partition of the
feature space and its associated tree. Each time the input is partitioned, it is split
into two halves, with one half containing the observations {X|xj < si} and the other
containing {X|xj ≥ si}.

R1

R2

R3 R4

x1

x2

s1

s2

s3
x1<s2

x2<s2

c1 x1<s3

c3 c4

c2

Figure 2.1: Example of input space partitioning for regression trees

The predicted value for an observation X is simply a constant associated with the
region that contains it:

f̂(X) =
M∑

m=1

cmI(X ∈ Rm).

Where I(X ∈ Rm) has value 1 when X is contained in Rm and value 0 otherwise.
Using the sum of squares error for the predictions in a single region,

∑
i∈{i|Xi∈Rm}(yi−

cm)2, the optimal value for cm is the mean value of the observations that fall in the
region,

cm = mean(yi | Xi ∈ Rm).
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The regions are partitioned using a greedy algorithm, splitting based on a single
feature at a time. Each time a region is partitioned, the variable xj and the threshold
value s at which to split are chosen to minimize the sum of errors in the new regions,

min
j,s

 ∑
i∈{i|xij<s}

(yi − cj,s)2 +
∑

i∈{i|xij≥s}

(yi − cj,s)2
 .

Regions are partitioned recursively until some stopping condition is met. Stop-
ping criteria can include a maximum depth for the tree or a minimum number of
observations per region.

While regression trees are visually interpretable, it is also possible to quantify
the influence that each feature has on reducing the error of the prediction. For each
internal node of the tree, t, the reduction in the error by splitting the initial region R1

into new regions R2 and R3 (compared to the error if R1 had not been partitioned)
can be calculated as:

i2j =
∑

i∈{i|Xi∈R1}

(yi − c1)2 −
∑

i∈{i|Xi∈R2}

(yi − c2)2 −
∑

i∈{i|Xi∈R3}

(yi − c3)2.

This value is averaged over all internal nodes t ∈ J in a tree T that split on a
feature xj to give the variable importance for xj,

I 2
j (T ) =

∑
t∈J

i2t .

2.6 Ensembles of Regression Trees

A single regression tree is easy to interpret visually, but using multiple trees to make
a prediction can improve the prediction accuracy. In this section I describe boosted
regression trees using the LSBoost algorithm [22], which involves fitting subsequent
trees to the errors of the trees already in the model in order to iteratively improve
performance. As in the previous section, the description is adapted from [19].

In the LSBoost algorithm applied to regression trees, at each step, a regression
tree is fit to the residuals, ri = yi − ŷi of the model at the previous step. The basic
algorithm for fitting an ensemble model with B regression trees is as follows:

1. Set f̂(x) = 0 and ri = yi for all i

2. For b=1 to B:

Fit a tree f̂ b to the observations, using ri as the output variable

Update f̂(X) = f̂(X) + f̂ b(X)
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Update the residuals ri = ri − f̂ b(Xi)

3. The final model is f̂(X) =
∑B

b=1 f̂
b(X)

While ensembles of regression trees are less easily visually interpreted than indi-
vidual regression trees, the variable importances for the ensemble can be calculated
by averaging the variable importances for each tree Tb in the ensemble:

I2j =
1

B

B∑
b=1

I2j(Tb)

2.7 Problem Description

As discussed previously, outdoor water consumption is a major component of peak
usage. Additionally, reducing outdoor consumption is an important part of reducing
peak demand because water consumption for irrigation is more discretionary than
most indoor end-uses of water. Because Abbotsford is concerned with strain on
infrastructure, and because water demand is highest in July and August, I focus
primarily on analysing outdoor water consumption in these months. The main dataset
in this thesis is hourly water consumption data for 2012 and 2013 (see Chapter 4)
which was recorded by the smart water meters installed in Abbotsford beginning in
2010. There are three problems considered: identifying outdoor water consumption,
predicting next-hour outdoor water consumption, and explaining the determinants of
this consumption over the entire summer.

The first problem is identifying outdoor water consumption. Although various
methods of separating the end-uses of water exist (see Chapter 3) the hourly resolu-
tion of the water consumption measurements in the dataset prevent the use of more
complicated methods of disaggregation. I adapt Cole and Stewart’s [2] work on iden-
tifying outdoor water consumption from hourly measurements. This method involves
finding a threshold for hourly usage past which it is implausible that all of the usage is
for indoor purposes. I validate this threshold based primarily on the cyclical patterns
of water consumption discussed in this chapter, and on water consumption patterns
in relation to Abbotsford’s watering restrictions.

After the outdoor consumption is identified, it can be treated as time series data
and used for developing a forecast of future outdoor water consumption. I develop
models to predict the next-hour outdoor water consumption for small neighbourhoods,
based on previous water consumption and on demographic data. Hourly forecasts are
primarily useful for operational management of water systems. The models are based
on ensembles of regression trees, in order to allow them to be interpreted.

Lastly, although the predictive models can allow some insight into the determi-
nants of water consumption at the hourly level, these determinants may vary at differ-
ent time scales. I also analyse the relationships between outdoor water consumption
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over the whole summer and demographic and household variables (such as income,
lot size, and the presence of a swimming pool), as well as discuss the variability of
water consumption between consumers.

2.8 Summary

In this chapter, I described the necessary background related to residential water
consumption and supervised learning. I also described the problems covered in the
rest of this thesis in more detail.

In the next chapter, I present related work on the three problems described in this
chapter: identifying outdoor water consumption, forecasting future water consump-
tion, and explaining this outdoor water consumption.
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Chapter 3

Related Work

In this chapter I discuss the previous work related to the problems in this thesis:
identifying, predicting, and explaining outdoor water consumption. Because not all
of the prediction and explanatory work is focused exclusively on outdoor prediction,
I also discuss prediction and explanation of total water consumption where relevant.

3.1 Disaggregating Household Water Consumption

Non-intrusive methods of recording water consumption, such as smart water meters
or traditional metering, produce a single measurement per time period per meter.
This has the drawback that, while total consumption is known, it is not known which
uses contribute to that total or when those uses occur. The obvious solution for this
is to install separate meters for each water-consuming appliance, but this is costly,
time-consuming, and less acceptable to consumers [1]. A second approach, typically
called non-intrusive disaggregation, is to take a single (or a smaller number) of meters,
typically outside the house, and from the patterns of consumption, separate different
end-uses or fixture categories from each other algorithmically. The approaches pos-
sible vary by the recording frequency of the meter used. High frequency recordings
(such as multiple measurements per minute) allow much more complex approaches
than is possible with data typically collected by smart meters in practice. Fifteen
minute or hourly frequency of measurements is more common, in order to reduce
storage and transmission costs [14].

Various methods of disaggregation have been developed, depending on the type of
meter used for recording. The most common type of meters used to collect data for
disaggregation are flow meters [23], which measure the volume of water consumption.
Typically flow meters require measurements at 5 second intervals and categorize end-
uses by classifying distinct flow patterns from different end-use events [1]. There are
various tools available for this kind of disaggregation such as TraceWizard [24], and
Identiflow [25]. While flow meters are the most common because they may be installed
outside of the house, other methods of sensing exist. These include acoustic [26] and
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pressure sensing [27, 28], but these both require higher-frequency sampling than do
flow meters, and therefore have higher storage and processing cost. In addition,
combined approaches exist [29, 30].

3.1.1 Identifying Seasonal Water Consumption

All of the above systems require relatively high-resolution data, and, other than flow
meters, additional equipment beyond what is already installed by water utilities for
billing purposes. However, for less detailed disaggregation, simpler approaches may
be sufficient. In particular, it is possible to estimate outdoor water consumption more
easily because it is high-volume in comparison to indoor uses [1]. Although this two-
category disaggregation is less detailed than an appliance-level disaggregation, it can
still give important insights into how water is being used and how it can be conserved.
Outdoor consumption is a good target for conservation efforts because, unlike many
categories of indoor use where consumption depends on appliance efficiency, such as
clothes washing and toilet flushing, the amount of water used outdoors can be more
easily reduced by consumer choices.

Many previous methods of identifying outdoor water consumption have used the
monthly or bi-monthly data typically used for billing. They involve subtracting base
use, defined as monthly usage during the winter, from consumption measurements
during the summer in order to estimate outdoor consumption [31–34]. This requires
the assumption that indoor use has no seasonal pattern, which is not true for all end
uses, such as shower water consumption [35]. Gato et al. [36] introduce a variation
on this approach, which uses temperature and rainfall thresholds to identify base use
as weather-insensitive use.

Related methods involve using linear regression models to find the sensitivity
of consumption to temperature variation, with the assumption that temperature-
sensitive use is likely to be primarily outdoor consumption [37, 38]. This gives an
estimate of how outdoor consumption is distributed spatially, but does not provide a
real disaggregation of consumption.

Castledine et al. [39] produce an estimated disaggregation of outdoor water con-
sumption based on clustering daily water usage and taking into account the presence
of watering restrictions. Cole and Stewart [2] estimate outdoor consumption by estab-
lishing an hourly threshold past which consumption could not reasonably be primarily
for indoor uses. This is the only previous method of disaggregation I am aware of
which produces an hourly estimate at the household level. The approach I take is
similar, although I establish and test the threshold differently (see Chapter 5).

3.2 Forecasting Water Consumption

Forecasting water consumption is important for various purposes. Short-term fore-
casts are used primarily for operation and management, while longer-term forecasts
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are used for planning and infrastructure design [40]. House-Peters et al. [10] suggest
that it is important to develop reliable demand forecast models, especially for peak
demand. Some previous work focuses on predicting peak consumption at the weekly
level [40,41]. However, despite outdoor consumption being an important determinant
of the variability in peak demand, few studies have predicted it directly. Taylor et
al. [42] predict outdoor water consumption at a monthly timescale for various cities
in Australia, but no other previous work that I am aware of predicts outdoor water
consumption at a finer temporal or spatial scale.

I discuss relatively short-term (monthly and sub-monthly) prediction methods
for total water consumption below, with an emphasis on the size of the area for
which forecasting is being performed, the temporal scale of the forecast, the modelling
method, and the features used. Table 3.1 shows a non-exhaustive comparison for
previous work along these axes. See [9] for a more complete review of forecasting
approaches.

The majority of previous work produces forecasts for an entire city. It is therefore
not directly comparable to this work because larger areas tend to have more pre-
dictable water consumption [43]. However, some previous work forecasts at somewhat
smaller spatial scales. Herrera et al. [44] predict consumption for a hydraulic sector
containing approximately 5000 consumers. Adamowski and Karapataki [41] predict
over neighbourhoods of unspecified size, and Jain et al. [45] predict consumption for
a university campus with approximately 6,500 students. The most similar work in
scale to this work is by Walker et al. [46], which predicts hourly water consumption
at the individual household level.

Initial work on forecasting water consumption used time series or regression mod-
els. More recent work has used a variety of machine learning models, including arti-
ficial neural networks (ANN), support vector regression (SVR), and random forests.
Herrera et al. [44] find that random forest models produce comparable results to
other methods such as SVR and multivariate adaptive regression splines (MARS),
and superior results to the ANN models evaluated.

In summary, there is no work on explicitly predicting outdoor consumption which
uses a fine temporal scale (such as hourly) or produces forecasts for a small area.
While previous work on predicting total water consumption includes forecast models
at a wide variety of temporal scales, the majority of this work uses large spatial scales
(such as an entire city or large neighbourhood). The previous work on predicting
short-term water consumption at a smaller spatial scale (household level) has limited
accuracy. The models I discuss in Chapter 6 predict outdoor consumption at both a
much finer temporal scale (hourly) and a finer spatial scale (small neighbourhoods)
than previous work on predicting outdoor consumption.
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3.3 Explaining Outdoor Residential Water Con-

sumption

Identifying the determinants of outdoor water consumption is important for demand
management purposes [2]. In this section I describe the previous work on explain-
ing the determinants of outdoor water consumption. Some previous work has focused
explicitly on outdoor consumption, and other work has used the sensitivity to temper-
ature as an indicator of likely outdoor consumption, and then determined the factors
that contribute to this sensitivity. I also include some work on the determinants of
total water consumption where relevant.

The influence of various factors may depend on the timescale studied. Miaou [54]
finds that weather is the primarily determinant of short-term variation in water con-
sumption, while demographic characteristics are important at longer timescales.

3.3.1 Weather

Previous work has shown that water consumption is dependent on weather. Although
generally this work analyses total consumption, outdoor use is thought to be the
primary driver of this consumption. Results on the influence of weather have varied
by location. For example, Mayer et al. [8] found greater per-capita water consumption
in locations with hotter climates.

In addition, the influence of weather is not likely to be constant across the year.
For example, Akuoku et al. [55] find that total water consumption is only dependant
on temperature past a threshold value. Similar findings were reported by Gato et
al. [36] and Maidment and Miaou [43].

The impact of weather on water consumption also appears to vary by location and
the particular water usage patterns in the city studies. Balling et al. [56] find that
residential water consumption in Pheonix is not as variable as expected in response to
weather conditions, which they hypothesize is because of appliances such as automatic
sprinklers which are not adjusted in response to changing weather conditions.

3.3.2 Income

Previous work has generally shown outdoor water consumption to be positively cor-
related with higher income (although this was not true in the Abbotsford dataset;
see Chapter 7). Loh et al.’s [3] end-use study in Australia finds that income is highly
correlated with outdoor consumption but not with indoor consumption. Additionally,
Syme et al. [34] similarly find that outdoor consumption is correlated with income.
However, Willis et al. [4] show that within middle-to-upper income houses, no signif-
icant differences in outdoor water consumption are detected, so this may vary based
on the range of incomes studied. This previous work on explaining outdoor con-
sumption used specially installed higher-frequency smart meters [3, 4], which limits
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the sample sizes that can be used, or produced a rough estimate of summer outdoor
water demand from billing data by subtracting winter consumption [34]. Addition-
ally, Corbella et al. [57] suggest that the dependence on income may not be direct
sensitivity to price, but rather vary based on lifestyle factors such as the ownership of
water-using appliances and pools. Similarly, Harlan et al. [58] find that the influence
of income on total water consumption was not significant once other factors such as
irrigable outdoor space and house size were considered. Mayer et al. [8] show that for
various North American cities, the end-use of water most correlated with income is
irrigation.

Some additional work has studied the demographic factors that related to the
sensitivity of total water consumption to changes in temperature and precipitation.
This sensitivity to temperature is used as a measure of outdoor consumption. Balling
et al. [37] find that in Phoenix census tracts with a large percentage of high-income
households are most sensitive to changes in weather conditions. Polebitski et al. [59]
also show that for their study in Seattle, the ratio of summer to winter consumption,
as well as total summer consumption are significantly influenced by income.

3.3.3 Property and Building Factors

In addition to demographic factors, previous work has shown that water consumption
is related to property factors such as lot size, the amount of irrigable outdoor space,
and the type of vegetation. In contrast to most of the previous work, there is not a
strong relationship between lot size and outdoor water consumption in this research
(see Chapter 3).

Breyer et al. [38] compare the temperature sensitivity of water consumption in
Portland to that in Phoenix and find that water consumption is most sensitive to
outdoor space in Portland, and most sensitive to vegetation type in Phoenix. Willis
et al. [4] find that irrigation increases with lot size. In contrast, Loh and Coghlan’s
end use study in Western Australia found no correlation between irrigable outdoor
space and outdoor water consumption [3]. They hypothesize this is due to inefficient
irrigation practices. Syme et al. [34] show that at the household level larger lot sizes
increase water consumption. Polebitski et al. [59] find that lot size is an important
explanatory factor for seasonal water demand.

3.4 Summary

In this chapter, I described the previous work on identifying, predicting, and explain-
ing outdoor water consumption. Most previous work on identifying outdoor water
consumption either requires high-frequency water consumption data or assumes that
all winter consumption is for indoor use and all increases in summer consumption are
related to outdoor water consumption. Additionally, little previous work focuses on
predicting disaggregated outdoor consumption.
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In the next chapter, I present a method of estimating outdoor water consumption
from hourly smart meter data, based on Cole and Stewart’s approach [2].
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Chapter 4

Data and Preprocessing

In this section I discuss the datasets used in the rest of the thesis (see Chapters 5, 6,
and 7) and the preprocessing done on the data. The main dataset consists of hourly
smart meter recordings of water consumption from Abbotsford, British Columbia.
Secondary datasets are weather information, the National Household Survey results
for Abbotsford, and per-household property assessment information from BCAssess-
ment. I describe all of them below, followed by a brief description of how they were
combined.

4.1 Smart Meter Water Consumption Data

The primary dataset used is hourly water consumption measurements from the city
of Abbotsford, British Columbia. It also contains billing information with an address
for each customer. The water consumption data was preprocessed by Steven Wang
(see Acknowledgements) and I briefly describe the preprocessing here.

The initial dataset contained water consumption data for more than 20,000 cus-
tomers. First, the dataset was limited to single-family residential units. Of the single
family residential units, records for 873 customers were removed due to network issues
that caused periods of no recorded consumption, followed by a very high measure-
ment representing the aggregate value for the previous hours. There were 8229 single-
family residential households remaining. The water consumption measurements span
the time period from September 1, 2012 to August 31, 2013. The dataset was not
recorded in local (Pacific) time, and therefore was adjusted by 7 hours to match the
local time.

Additionally, there are two problems with missing or duplicated data. First, there
are 96 hours total missing for each consumer, due to maintenance. Second, there is
missing and duplicate data related to Daylight Savings Time. For each customer,
there are duplicate records at 1:00am on November 4th 2012, and a missing record at
1:00am on March 10, 2013. The duplicate records were averaged to produce a single
new value, which was used as the water consumption for that hour.
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In total, there are missing records for 97 hours: 1 hour associated with daylight
savings time, and 4 days which are missing due to hardware maintenance. Table 4.1
shows the exact hours missing due to maintenance. Note that the maintenance period
beginning on March 9th is also 24 hours long, but there is an additional missing record
associated with the time change.

Table 4.1: Time periods of data missing due to maintenance

Start End
2013/Feb/16 17:00 2013/Feb/17 16:00
2013/Mar/9 17:00 2013/Mar/10 17:00
2013/Mar/30 17:00 2013/Mar/31 17:00
2013/Jul/27 18:00 2013/Jul/28 17:00

The missing data were estimated using regression tree models. A model was
trained for each customer on the non-missing data. The features for the model were
the water consumption measurements for 1 hour previous, 2 hours previous, and the
hour exactly a week previous. The trained model was used to estimate and fill in the
missing values, using previously predicted values as input in cases where there were
contiguous missing values.

4.2 Weather

Seasonal water consumption is weather sensitive [8,36,59,60]. This secondary dataset
includes daily measurements of temperature and rainfall for the same period as the
water consumption data, September 1, 2012 to August 31, 2013. Abbotsford has a
temperate climate, with generally heavy rainfall but less during summer. Table 4.2
shows the temperature and rainfall by month. Note that average winter temperatures
are above freezing.

4.3 National Household Survey

The National Household Survey1 (NHS) includes demographic information collected
in an optional addition to the 2011 Census, distributed to a subset of households.
It contains demographic information such as income information and average family
size. The variables used are shown in Table 4.3.

The NHS data is only publicly available at the census dissemination area level.
A dissemination area is a contiguous geographic area consisting of multiple census
blocks, typically containing 400 to 700 people. See Section 4.5 for a description of
how this was combined with the other data available at the household level.

1http://www12.statcan.gc.ca/nhs-enm/2011/dp-pd/prof/index.cfm
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Table 4.2: Monthly average temperature and total rainfall in Abbotsford, September
2012–August 2013

Month Mean Temperature Total Rainfall
September 2012 15.5 ◦C 5.5 mm
October 2012 10.5 ◦C 306.3 mm
November 2012 6.6 ◦C 240.2 mm
December 2012 3.3 ◦C 184.2 mm
January 2013 2.5 ◦C 152.2 mm
February 2013 5.0 ◦C 103.4 mm
March 2013 7.1 ◦C 206.4 mm
April 2013 9.1 ◦C 157.6 mm
May 2013 13.7 ◦C 101.4 mm
June 2013 16.2 ◦C 85.0 mm
July 2013 19.4 ◦C 1.6 mm
August 2013 19.1 ◦C 57.0 mm

Table 4.3: Variables from National Household Survey data

Variable Description
income median household total income in dissemination area ($)
family size average family size in dissemination area

4.4 Property Assesment Data

Information about property values and household characteristics was provided by
BCAssesment2. The data provided was from 2012. This information is available
at the household level with addresses, and contains property values, lot sizes, and
building characteristics such as number of bedrooms, and whether the household has
a pool. Table 4.4 shows the variables used from this dataset.

Table 4.4: Variables from property assessment data

Variable Description
lot size lot size (acres)
bedrooms number of bedrooms
value assessed value of house ($)
pool code true if pool is present

2https://www.bcassessment.ca/
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4.5 Combining Datasets

Water consumption data was retained both at the individual household level for
identifying outdoor consumption and aggregated into small neighbourhoods for pre-
diction. The household-level water consumption data was combined by address with
the property assessment data only.

The water consumption data for prediction was also aggregated by census dissem-
ination areas, both to allow it to be linked with the NHS data, and because individual
water consumption at the hourly and daily levels is extremely variable [46]. For each
customer, the address was converted to a latitude and longitude, which was used in
combination with the boundary file for census dissemination areas provided by Statis-
tics Canada to map each household to a dissemination area. After this mapping was
obtained, the water consumption data for each dissemination area was averaged over
its households, to allow a comparison between differently-sized dissemination areas.
Figure 4.1 shows the average summer water consumption by dissemination area.

The water consumption data spans 158 dissemination areas, each containing from
1 to 178 consumers. Because small neighbourhoods retain much of the unpredictabil-
ity associated with individual consumption, for the prediction task only, I removed
all dissemination areas with fewer than 50 single-family households. The resulting
set is 77 dissemination areas containing 6789 households.
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Figure 4.1: Summer water consumption by dissemination area

4.6 Summary

In this chapter, I described the datasets used in the rest of this thesis, and the data
cleaning and preprocessing that was performed. In the next chapter, I discuss a
method of estimating outdoor water consumption from the hourly household-level
data available.
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Chapter 5

Identifying Outdoor Water
Consumption

As discussed in Chapter 2, identifying outdoor consumption is important for planning
and demand management because it consists of high volumes of consumption during
relatively short periods, is more easily reducible than indoor consumption, is more
variable between households, and contributes proportionally more to peak usage than
to average usage. The City of Abbotsford is particularly concerned with identifying
and explaining outdoor consumption because of strain on infrastructure during the
summer. In this chapter, I describe a method of estimating the amount of water con-
sumption used by a household for outdoor purposes, based on hourly measurements
of total water consumption.

Many previous methods of identifying outdoor consumption are not well-suited
to disaggregating the data collected from smart meters in practice, which is often
recorded at a lower frequency than allowed by the smart meter hardware itself, in
order to reduce storage and transmission costs [14]. Although there are disaggrega-
tion methods that can accurately identifying individual end uses, they rely on much
higher frequency data such as recording consumption every 5s [1], and are therefore
less useful when data was not collected specifically for these purposes. On the other
hand, older methods that estimate outdoor consumption by subtracting winter use
(see Chapter 3) typically use monthly or bimonthly measurements and cannot be used
to determine exactly when within a week or at which times of day outdoor water con-
sumption occurs. Additionally, these older methods make the assumption that all
seasonal differences in water consumption are due to increased outdoor consumption
during the summer. The method of estimating outdoor water consumption described
in this section is similar to Cole and Stewart’s approach [2], which identifies outdoor
consumption from hourly data by setting a maximum plausible threshold for indoor
use. This approach relies on the fact that outdoor consumption, such as that used
for irrigation and pool filling, is typically high-volume compared to water used for
indoor purposes such as bathing, cooking and toilet flushing, and therefore complex
disaggregation techniques are less necessary [1]. Additionally, this indoor consump-
tion follows different temporal patterns [8], which can be used to establish a rough

22



threshold.

5.1 Cyclical Patterns in Water Consumption

Water consumption follows three cyclical patterns: seasonal, weekly and daily [7].
The seasonal cycle is associated largely with differences in outdoor water consumption
during the summer. I briefly describe these cycles here, because they are used in the
next section to contrast the patterns of indoor and outdoor consumption.

The seasonal pattern is associated with greater total water consumption during the
summer months, but this pattern may not hold for some end uses, such as showering
[35]. Water consumption in the Abbotsford dataset is highest in July and August
(see Figure 5.1), despite restrictions on irrigation during these months. This seasonal
pattern is likely to be caused by a combination of outdoor consumption and increased
indoor consumption due to additional occupancy after the end of the school year.
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Figure 5.1: Total water consumption for single-family residences by month

There is also a weekly cycle, associated with different consumption patterns on
weekends and weekdays. This pattern is much more stable in the winter than in the
summer. Figure 5.2 shows a clear weekly pattern with the exception of the week
of Christmas (December 25). In contrast, there is no clear weekly pattern in the
summer consumption (see Figure 5.3). This is an additional reason why it is useful to
analyze outdoor consumption in summer: to determine the reasons for this variability,
including whether it is due to outdoor consumption or additional indoor consumption.

Finally, there is a daily cycle, with peaks in the morning and afternoon caused by
repeated water consumption habits, such as bathing and toilet flushing [61]. These
peaks occur in Abbotsford at 8:00am and 7:00pm (see Figure 5.4).
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Figure 5.2: Total water consumption for single-family residences in December and
January

5.2 Approach

The majority of outdoor water consumption is for two purposes: irrigation and pool
filling. Because both of these are very high-volume uses, it is less necessary to use
complicated disaggregation techniques requiring high frequency data [1]. Given that
outdoor uses require considerably more water in short periods, there should be an
hourly consumption threshold that indicates that consumption is unlikely to consist
solely of indoor end-uses such as running faucets and flushing toilets. For example, an
hourly consumption value in the range of 600 L (litres), more than twice the typical
daily per-capita indoor consumption of 262 L [8], is almost certainly used at least
partially for outdoor purposes. Therefore, I estimate that all consumption below a
particular threshold is used for indoor purposes, and consumption above this range
is for outdoor purposes. Formally, after finding a threshold t, I estimate the indoor
and outdoor consumption, per-hour and per-household, as:

youtdoor = max (ytotal − t, 0), (5.1)

yindoor = min (ytotal, t). (5.2)

This threshold is established by finding a plausible upper limit on hourly indoor
consumption across all households, and analysing when water is used. I validate
this by comparing with household characteristics. For example, outdoor consump-
tion should not be as significantly correlated with number of occupants as is indoor
consumption.
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Figure 5.3: Total daily water consumption for single-family residences in July and
August

The existence of such a threshold rests on two primary assumptions:

1. Outdoor water consumption is higher-volume than typical indoor usage.

2. Outdoor consumption followings different temporal patterns than indoor use,
for example occurring more frequently in the summer.

This method is adapted from Cole and Stewart’s [2] approach. Their method also
involves selecting a threshold, but if hourly consumption exceeds some threshold then
all consumption in that hour is counted as outdoor consumption, under the assump-
tion that a significant amount of that consumption is for outdoor purposes. This
is sufficient for drawing conclusions about outdoor water consumption on average,
but also produces sharp jumps in outdoor consumption around the threshold. (For
example, with a 300 L threshold, an hour with 290 L total consumption would con-
tribute nothing to outdoor usage, and an hour with 310 L total consumption would
be counted as entirely outdoor usage.) This produces an estimate that does not make
sense at the household level, and also would make prediction difficult, which is why
I used the approach described previously.

I validate this threshold in large part based on the seasonal patterns of water
consumption. At the correct threshold, there should be little outdoor usage for the
winter months, although because Abbotsford’s climate is temperate, there may still
be small amounts of outdoor consumption over the winter. I begin to develop a
threshold by looking at plausible indoor uses. I also validate this threshold by showing
its relationship to the times when irrigation is allowed in Abbotsford during July and
August and how indoor consumption estimated in this way relates to household size.
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Figure 5.4: Average water consumption per hour over the entire year, summed over
all households

5.3 Hourly Consumption Volumes

Total water consumption in the study dataset is 731 L/household/day for single-
family units, or about 240 L/person/day. Typical indoor water consumption is 261
L/person/day in North America [8]. Therefore, consumption significantly past this
range in a single hour indicates this water is probably used at least partially for
high-volume outdoor purposes.

Individual indoor end uses typically require smaller volumes of water than outdoor
uses such as irrigation, but they may be combined, especially during the morning and
afternoon peaks in consumption. Tables 5.1 and 5.2 show volumes of water used
for typical indoor uses, adapted from two versions of the Residential End Uses of
Water study in 1999 [8] and 2016 [62]. The shower water consumption includes both
typical flow rate and typical duration of a shower. Faucet consumption is given as
a flow rate because the volume per use varies by activity. Typical faucet usage was
8.1 minutes/day in both versions of the study. Note that water consumption for
dishwashers and clothes washers has significantly decreased between 1999 and 2016;
data from both years are included for reference because rates of ownership of more
efficient appliances in Abbotsford are unknown.

Figure 5.5 shows the hourly consumption in each range. Consumption is concen-
trated in the lower ranges: most consumption is the result of many households using
small amounts of water per hour, rather than more infrequent but higher-volume
consumption. This indicates that, taken over the whole year, most consumption is
for (low-volume) indoor purposes which is consistent with Abbotsford’s temperate
climate.

26



Table 5.1: Volumes of typical indoor end-uses (1999)

End Use Volume
Faucet 4.9 L/min
Toilet 13.2 L/flush
Shower 65 L/shower
Clothes Washer 154 L/load
Dishwasher 37 L/load

Table 5.2: Volumes of typical indoor end-uses (2016)

End Use Volume
Faucet 4.9 L/min
Toilet 9.8 L/flush
Shower 62 L/shower
Clothes Washer 117 L/load
Dishwasher 23 L/load

Figure 5.6 shows the water consumption in larger ranges. These ranges represent,
roughly, low-volume indoor uses (<100 L), multiple or higher-volume indoor uses
(100 to 300 L), some outdoor consumption (300 to 600 L) and primarily outdoor
consumption (>600 L). This is consistent with Table 5.1 and 5.1, which show most
individual indoor end-uses require well under 100 L of water. Note that there is only
a relatively small percentage of water use identified (over the whole year) as outdoor
consumption, which is consistent with previous work [8] that shows this percentage
to be around 20% in temperate climates.

5.4 Seasonal Patterns and Developing a Threshold

As in previous work on identifying outdoor consumption without high-frequency mea-
surements (see Chapter 3), I largely rely on making comparisons between summer and
winter consumption. The approach taken here differs from most of the previous work
in that it produces an hourly estimate of outdoor consumption and does not assume
that all differences in summer and winter consumption are the result of increased
outdoor consumption during the summer.

Abbotsford’s temperate climate means that it is possible for there to be some
water use in the winter, but it should be considerably less frequent than during
the summer months. In this section I compare the consumption for the months of
July and August, when Abbotsford enforces watering restrictions due to potential
water shortages, to December and January, which are typically the coldest months in
Abbotsford. Figure 5.7 shows the differences in consumption during these periods.
Lower-volume usage is relatively consistent between summer and winter, up to the
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Figure 5.5: Percentage of consumption by hourly volume range

150 L to 200 L volume range. This is consistent with the idea that this is primarily
indoor use. I chose a threshold of 300 L/hour as the point past which usage is
likely to be for outdoor purposes, because summer consumption may include some
extra indoor use due to extra occupancy. There is a tradeoff between recognizing
all outdoor use and not miscategorizing somewhat higher-volume indoor use (such as
washing machines or many lower-volume uses occuring simultaneously). The 300 L
threshold makes this tradeoff conservatively, capturing much outdoor use with little
indoor use, although some lower-volume outdoor consumption may be missed. In the
300–350 L/hour range, the ratio between indoor and outdoor volume ranges is 2.4,
which suggests this range contains significant amounts of outdoor consumption.

5.5 Sensitivity of the Threshold

In this approach, any disaggregation threshold is inherently approximate. I evaluate
thresholds on both sides of 300 L to determine how sensitive the approach is to changes
in the threshold. Ideally, a good threshold will result in indoor usage that is relatively
constant over the year, and outdoor usage that peaks in summer. Additionally,
outdoor usage should not be significantly correlated with the number of household
occupants, whereas indoor usage should be significantly correlated with the number of
occupants. I evaluate 200 L, 300 L, and 400 L as potential thresholds t for separating
indoor and outdoor consumption as described by Equations 5.2 and 5.1. If small
changes to the threshold result in large changes to the outcome, this would make the
approach untenable given that there is no ground truth with which to evaluate the
threshold. However, as described below, there are only small changes, so it is simply
a matter of making the tradeoff described previously between capturing all outdoor
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Figure 5.6: Percentage of consumption by hourly volume, large ranges

consumption and capturing only outdoor consumption. I validate the threshold by
showing how the indoor and outdoor consumption estimated with a given threshold
relates to seasonal patterns, the days when irrigation is permitted, and the number
of bedrooms per household.

Small variations in indoor consumption are expected between summer and winter,
but indoor consumption should still be relatively constant over the year. Figure 5.8
shows the estimated indoor consumption given each threshold. A higher threshold
results in a more pronounced seasonal pattern because more outdoor consumption is
misclassified as indoor consumption. Note that for thresholds, the consumption over
the year is relatively constant compared to total consumption. Figure 5.9 shows the
estimated outdoor consumption at each threshold. For the lowest threshold (200 L),
a significant amount of outdoor consumption is identified during the winter months,
but both the 300 L and 400 L thresholds show relatively little outdoor consumption
during the winter. The 400 L threshold shows the least outdoor consumption in
winter, but captures less of the outdoor consumption during the summer.

During the summer of 2013, Abbotsford enacted watering restrictions during July
and August. These watering restrictions state that residents can water their lawns
using sprinkler systems only between the hours of 6:00 am and 8:00 am on desig-
nated days. These watering restrictions prohibit sprinkler use outside of the desig-
nated times, but other outdoor water uses are permitted. Even numbered houses
are restricted to watering on Wednesdays and Saturdays; odd numbered houses are
restricted to watering on Thursdays and Sundays. The figures below show the con-
sumption per-day, separated by odd and even house numbers. At the lowest thresh-
old, significant amounts of water consumption near the 7:00 am peak are identified
as outdoor usage, but the increased high-volume water consumption is likely due to
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Figure 5.7: Percentage of consumption by hourly volume, summer and winter
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Figure 5.8: Estimated outdoor con-
sumption by month
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Figure 5.9: Estimated indoor con-
sumption by month

simultaneous indoor end-uses at this time. At the highest threshold, significantly less
outdoor consumption is identified. Note that this outdoor consumption peaks slightly
later than the peak for total consumption, so it is plausible that there is also some
outdoor use at this time, timed to avoid evaporation.

Finally, outdoor consumption should be relatively similar regardless of the number
of occupants in the house, because it does not scale in the way that indoor consump-
tion does, although there may be some relationship to outdoor consumption through
greater house and lot size. Similarly, indoor consumption should depend on house-
hold size. I use the number of bedrooms to estimate occupancy, because average
number of people per house is not available at the household level. Figures 5.16–5.18
show the relationship between number of bedrooms and outdoor water consumption
at each threshold. The lowest threshold categorizes significant amounts of winter con-
sumption as outdoor use for all households, while the highest threshold identifies less
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Figure 5.10: Odd-numbered houses, 200 L
threshold
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Figure 5.11: Odd-numbered houses, 300 L
threshold
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Figure 5.12: Odd-numbered houses, 400 L
threshold
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Figure 5.13: Even-numbered houses, 200 L
threshold
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Figure 5.14: Even-numbered houses, 300 L
threshold
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Figure 5.15: Even-numbered houses, 400 L
threshold
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outdoor consumption in the summer without significantly decreasing the amount of
outdoor consumption identified in the winter. At the middle threshold, the outdoor
consumption is relatively constant for all numbers of bedrooms, which is consistent
with the idea that outdoor consumption should vary less by household size than indoor
consumption. Figures 5.19–5.21 show the relationship between number of bedrooms
and indoor consumption, which for all household sizes is more consistent over the year
than outdoor consumption. Note that on average, households with more bedrooms
have higher indoor water consumption.

The previous discussion shows that while the threshold is relatively robust to
changes, raising or lowering the threshold from 300 L means potentially miscategoriz-
ing more indoor use or not identifying significant amounts of outdoor use. Therefore,
I use a 300 L threshold for identifying outdoor water consumption in the rest of the
thesis. Based on Equation 5.1, the outdoor consumption at each hour (in litres) is
now defined as:

youtdoor = max (ytotal − 300, 0). (5.3)

5.6 Peak and Average Consumption

While the total amount of outdoor consumption identified is relatively low, this es-
timation of outdoor water consumption is still useful because outdoor consumption
contributes proportionally more to peak consumption than to average consumption.
Figure 5.22 shows the indoor and outdoor consumption at the peak hour and on
average. Note that indoor consumption is also greater at the peak hour because
the average hour includes overnight consumption, which is low in all volume ranges.
Figure 5.23 shows the consumption on the peak day. While outdoor consumption is
relatively low, even on the peak day, the greater variability in outdoor consumption
between the average and peak days means that it is useful to be able to estimate this
consumption.

5.7 Summary

In this chapter, I described a method of estimating outdoor water consumption from
hourly data by setting an upper threshold on plausible indoor consumption. I showed
that this threshold is relatively robust to changes, and chose 300 L/hour as a threshold
for the remaining work. I also showed that the contribution of outdoor consumption
to total consumption is relatively greater for peak periods of use than it is for average-
use periods.

In the next chapter, I take the estimate of outdoor consumption produced using
this method and create a model to predict hourly outdoor water consumption.
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Figure 5.16: Outdoor consumption, 1 and 2
bedroom houses
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Figure 5.17: Outdoor consumption, 3 bedroom
houses
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Figure 5.18: Outdoor consumption, 4-plus bed-
room houses
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Figure 5.19: Indoor consumption, 1 and 2 bed-
room houses
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Figure 5.20: Indoor consumption, 3 bedroom
houses
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Figure 5.21: Indoor consumption, 4-plus bed-
room houses
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Figure 5.22: Peak and average hour consumption
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Figure 5.23: Peak and average day consumption
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Chapter 6

Predicting Outdoor Water
Consumption

In this chapter, I present a model for predicting outdoor hourly water consump-
tion, and discuss the challenges of this prediction task by comparing to a model
for prediction of total outdoor consumption. The prediction task described in this
chapter differs from previous work in that it attempts to predict disaggregated out-
door rather than total consumption, and additionally predicts over a smaller spatial
scale than does most previous work. Previous work has found similar difficulties with
predictability for single-household consumption [46].

Accurate prediction of outdoor water consumption would be useful for short-term
management in that it could be used to better estimate the effects of variations
in weather and of restrictions on short-term water consumption. I focus on hourly
prediction because, although daily prediction would be more useful for managing
water restrictions, daily consumption appears to be more unpredictable. I use a model
based on ensembles of regression trees in order to maintain some interpretability of
the models because knowing the determinants of hourly water consumption would be
useful for planning. Previous work has found good results with ensembles of trees for
predicting total water consumption [44].

6.1 Problem Definition and Model Structure

The prediction task is essentially time series prediction and can be formulated as a su-
pervised learning task (see Chapter 2). Previous measurements of water consumption
and additional features are used to predict the next hour’s water consumption.

I develop models for predicting outdoor hourly water consumption for individual
dissemination areas. The water consumption is normalized by dividing by the number
of households in the dissemination area so that the models will not have to take into
account the varying sizes of disseminations areas, and only the 77 dissemination areas
with greater than 50 single-family residences are included. Only summer consumption
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(July and August) is predicted because this is when there is the greatest concern about
water demand in Abbotsford.

Formally, the prediction task is:

ŷt = f̂(yt−1, yt−2, yt−3, yt−168, x1, ..., xn)

Where ŷ is the predicted value for next-hour water consumption, f is the model
for prediction, yt−1, yt−2, yt−3, yt−168 are hourly values of actual water consumption
for the previous 3 hours and the same hour the previous week and x1, ..., xn are other
features given in Table 6.1. Note that the values of y for the models predicting outdoor
consumption are estimated using the method described in Chapter 5. Weather and
date variables are at a daily frequency and are repeated for each of the relevant
24 hours. Property and demographic features are per dissemination area. Water
consumption values for the previous several hours, as well as the same hour one week
previous, were found to be good predictors of hourly water consumption in previous
work [44,46].

Table 6.1: Model features

Category Feature Description

weather
rainfall (current) rainfall amount
rainfall (last 3) rainfall amount for previous 3 days
rain occurrence (current) true for days when rain occcured
rain occurrence (last 3) true when rain occurred over last 3 days
temperature (current) daily high temperature
temperature (previous) high temperature for previous day

date
weekday true for weekday
watering true for days when sprinklers are permitted

property

lot size average lot size
bedrooms average number of bedrooms
value average value of houses
pools percentage of houses with pool

demographic
income median household income
household size average household size

The models are gradient-boosted ensembles of regression trees trained using the
LSBoost algorithm [19] which is implemented in the MATLAB function LSBoost1.
(See Chapter 2 for a description of boosted regression trees.)

Because water consumption varies between weekends and weekdays, two outdoor
models are developed in order to determine if it improves accuracy to use separate
models for predicting weekends and weekdays. In addition, a model is trained to
predict total consumption for comparison.

1https://www.mathworks.com/help/stats/framework-for-ensemble-learning.html
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1. The Outdoor1 model predicts outdoor consumption and uses all features given
in Table 6.1.

2. The Outdoor2 model consists of two separate ensembles for predicting outdoor
water consumption on weekends (Outdoorweekend) and weekdays (Outdoorweekdays).
The weekday feature is omitted.

3. The Total model predicts total water consumption using all features.

6.2 Model Training and Evaluation

There are two goals in developing models: to improve model accuracy, and to give
an unbiased estimate of how the model will perform on unseen data. The models are
developed in several steps:

1. 10 dissemination areas are selected randomly and reserved for testing combina-
tions of model parameters, so that the model parameters are not overfit to the
set used for evaluating performance.

2. For each set of parameters, combinations of parameters are trained using cross-
validation over dissemination areas. For each combination of parameters, 10
models are developed, each with 1 dissemination area left out to evaluate per-
formance. Good parameters are chosen based on performance.

3. Based on the model parameters chosen, models are trained and evaluated using
leave-one-out cross-validation [20] over the dissemination areas. This step uses
the 67 dissemination areas that were not used to choose the model parameters.
On each iteration, a model is trained on 66 of the 67 dissemination areas. On
each iteration, the accuracy is calculated using the left-out dissemination area
as testing data. These results are discussed in Section 6.4.

Absolute errors are given in the results section for each model. The absolute error
is calculated as:

|yt − ŷt|.

The mean absolute error (MAE) is the average of the absolute errors:

1

n

n∑
i=1

|yi − ŷi|.
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6.3 Parameter Selection

Based on the reserved set of 10 dissemination areas discussed previously, I chose values
for two parameters that are likely to produce good performance on the remaining
dissemination areas. I optimized over two parameters: maximum number of splits
per tree, and the number of trees per ensemble. The maximum number of splits
is the total number of non-leaf nodes in the tree. Figure 6.1 shows the accuracy
over these parameters, for the Outdoor1 model. While the strictly optimal value
for the maximum number of splits is 2, the accuracy is relatively sensitive to the
number of trees in the ensemble. I instead chose 1 split and 80 trees per ensemble
because the performance is not significantly affected by the ensemble size past that
point, suggesting those parameters will result in more stable performance for the final
models. While it would have been ideal to perform parameter selection within the
main cross-validation step and choose the optimal value on each iteration, it was
prohibitively slow.

I chose the same parameters for all models. The maximum number of splits is also
not strictly optimal for the other models, however it was similarly close-to-optimal
and chosen because the accuracy was less sensitive to variation in the ensemble size
and therefore likely to transfer better to the remaining data.
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Figure 6.1: MSE for number of trees and maximum number of splits used as model
parameters

6.4 Results

In this section I compare results for all models, and although the predictive accuracy
is not high, the comparison with total consumption gives insights into why this is the
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case.

While the outdoor models show a general ability to predict the direction of con-
sumption, they do not perform well at predicting the magnitude of consumption,
especially for high values. Previous work with predicting individual consumption had
similar difficulties with predicting the magnitude of peaks [46]. Figure 6.2 shows the
predicted outdoor consumption for the largest dissemination area. Note that the pre-
diction of peaks is often one sample late, because as discussed in the next section, the
model predicts largely based on the previous hour’s consumption. Figure 6.3 shows
the predicted total consumption for the same dissemination area. Although overall
performance is better for total consumption, the model still fails to predict the mag-
nitude of the morning and afternoon consumption peaks accurately, and sharp peaks
in consumption are typically not predicted accurately.
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Figure 6.2: Prediction of Outdoor1 compared to actual value for the largest dissemi-
nation area in the first 3 days of July. The orange line is the predicted consumption
value and the blue line is the actual value.

Tables 6.2–6.4 show the errors in kilolitres for each model type. The tables should
be interpreted in the light of the fact that the model predicts mean water consump-
tion per household in a dissemination area. Although the model errors are small in
absolute terms, they become more significant in terms of the average hourly values
of 0.0045 kL (4.5 L) for outdoor water consumption and 0.0353 kL (35.3 L) for total
water consumption. Note that for both types of consumption, the average errors are
significantly higher than the median, suggesting that the poor performance is in large
part due to large errors rather than many small errors.

The overall error for both the Outdoor1 and Outdoor2 models are similar, de-
spite performance being significantly worse on the weekends. A potential reason that
separate models are not useful is discussed in the next section.

41



Hour
10 20 30 40 50 60 70

C
on

su
m

pt
io

n 
P

er
 H

ou
se

ho
ld

 (
kL

)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 6.3: Prediction of Total compared to actual value for the largest dissemination
area in the first 3 days of July. The orange line is the predicted consumption value
and the blue line is the actual value.

Weekends and watering days when sprinkling is permitted have high errors for all
models. This suggests that this variability is hard to predict.

Table 6.2: Absolute errors for Outdoor1 (kL)

average median 75th percentile 90th percentile
overall 5.054× 10−3 2.819× 10−3 6.453× 10−3 1.212× 10−2

weekdays 4.877× 10−3 2.752× 10−3 6.281× 10−3 1.178× 10−2

weekends 5.558× 10−3 3.027× 10−3 7.010× 10−3 1.330× 10−2

watering 5.407× 10−3 3.040× 10−3 6.890× 10−3 1.281× 10−2

no watering 4.612× 10−3 2.572× 10−3 5.938× 10−3 1.134× 10−2

The prediction accuracy varies significantly by hour. Figures 6.4–6.7 show the
MAE by hour. Note that in all cases the error is highest at the morning peak,
which probably is related to more variability in consumption during these times. In
addition, even predicting total water consumption for the summer is more difficult
than it would be for winter consumption due to higher variability, which explains the
relatively low accuracy.

6.5 Interpretability

Ensembles of regression trees were selected as a model because of their relative in-
terpretability compared to, for example, neural network models. However, ensembles
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Table 6.3: Absolute errors for Outdoor2 (kL)

average median 75th percentile 90th percentile
overall 5.050× 10−3 2.795× 10−3 6.431× 10−3 1.212× 10−2

weekdays 4.867× 10−3 2.741× 10−3 6.222× 10−3 1.185× 10−2

weekends 5.570× 10−3 2.998× 10−3 6.966× 10−3 1.301× 10−2

watering 5.406× 10−3 3.000× 10−3 6.868× 10−3 1.277× 10−2

no watering 4.603× 10−3 2.557× 10−3 5.874× 10−3 1.136× 10−2

Table 6.4: Absolute errors for Total (kL)

average median 75th percentile 90th percentile
overall 1.172× 10−2 8.648× 10−3 1.626× 10−2 2.584× 10−2

weekdays 1.150× 10−2 8.497× 10−3 1.600× 10−2 2.536× 10−2

weekends 1.238× 10−2 9.074× 10−3 1.706× 10−2 2.726× 10−2

watering 1.211× 10−2 8.871× 10−3 1.672× 10−2 2.667× 10−2

no watering 1.124× 10−2 8.377× 10−3 1.565× 10−2 2.486× 10−2

of trees lose the easy visual interpretability of single decision tree models. Instead,
they can be interpreted using the variable importance, which sums the change in
mean-square error for each predictor summed over the number of splits in the model,
divided by the number of trees [19]. The predictorImportance feature in MATLAB
implements this functionality 2.

In this section, I discuss the variable importances for the models used for predicting
consumption for the largest dissemination area. Figures 6.8–6.10 show the variable
importances for each model. As is typical [19], they are scaled such that the maximum
variable importance is equal to one. In every case, the previous hour’s consumption,
yt−1, is the most relevant variable. The second most relevant variable for every model
is yt−168, with a relative importance of 0.3240 for Outdoor1, 0.2728 for OutdoorWeekday,
0.5172 for OutdoorWeekend and 0.1670 for Total. Both yt−1 and yt−168 are excluded from
the figures in order to better show the relative importances of the other variables.

Note that while some explanation is possible, the relative importance of correlated
variables may be understated based on which was selected first in the model. For
example, the differences in the importance of yt−2 and yt−3 between different models
may not be significant. However, the variable importances can still give insights into
model performance.

The importance of the previous hour and previous week water consumption in de-
termining water consumption also provides a potential explanation for why modelling
weekends and weekdays separately does not significantly help the predictive accuracy
of the model. Because the strongest determinants of water consumption, yt−1 and
yt−168, are the same for each model, having separate models only has the effect of
reducing the amount of training data available.

2https://www.mathworks.com/help/stats/compactregressionensemble.predictorimportance.html
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Figure 6.4: MAE per hour for Outdoor1

While the importance of other variables is very small compared to the previous
values of water consumption, some variables show up consistently for all models.
Weather-related features appear in all models, and although their importance is very
minor compared to yt−1 and yt−168, an influence from both temperature and rainfall
is consistent with previous work on total water consumption [8, 36, 59, 60]. House
value appears in the explanatory variables for all models, and median income ap-
pears for OutdoorWeekend and OutdoorWeekday. Although previous work has focused
on the influence of income on both total water consumption [63] and seasonal water
consumption [59], the inclusion of house value in all models is consistent with the
idea that income has only an indirect influence through factors such as larger house
sizes and greater ownership of water-using appliances and pools [57]. Household size
or number of bedrooms also appear as slightly important in all models, although
previous work has found household size is only strongly correlated with indoor water
consumption [8].

6.6 Discussion

It is not clear that the accuracy of the models presented are sufficiently high to be
useful in practice for day-to-day management of water systems, or that the models are
sufficiently accurate to justify collecting the amount of additional data required be-
yond previous water consumption values. The models discussed require demographic
data and property data, as well as previous temperature and rainfall information and
weather forecasts. While the model does provide some ability to forecast next-hour
outdoor consumption, the accuracy of any method has to be balanced against the
resources required to create a forecast, including collecting the required data [6], and
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Figure 6.5: MAE per hour for Total

particularly for short-term forecasts used for operational purposes, the additional
data required creates practical difficulties [9]. The regression tree models were chosen
in order to allow interpretability, but the only features that are highly important
in reducing model error are previous values of water consumption. It may be the
case that accuracy could be improved by adding additional features or by choosing
a different machine learning method, but to be practically useful the benefits of the
modelling method would need to be balanced against the resources required for the
forecast.

Additionally, it would be more useful to be able to predict outdoor water con-
sumption further in advance, such as 24 hours ahead, or to be able to predict daily
consumption (ideally several days ahead). This would be useful for making changes
to watering restrictions [2]. I found in preliminary work that daily consumption is
very difficult to predict as compared to hourly consumption, and this seems to be
related to the fact that previous-day and current-day consumption are less correlated
than previous-hour and current-hour consumption.

If more data were available, it would also be informative to further aggregate
the data in order to determine how large neighbourhoods must be for outdoor water
consumption to be accurately predicted. However, given the number of single-family
residences in the study and the single-year timespan for the water consumption mea-
surements, significant aggregation would not leave enough data for training a model.
There also appears to be significant individual variability in outdoor water consump-
tion (see Chapter 7), which likely constrains predictability except for very large neigh-
bourhoods because the average outdoor water consumption for a dissemination area
can be significantly affected by a small number of consumers. Previous work has
found that even for entire cities, population size influences the accuracy of predic-
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Figure 6.6: MAE per hour for Outdoorweekday

tion for total water consumption [43], and the difficulty of predicting outdoor water
consumption for small neighbourhoods is consistent with that observation.

6.7 Summary

In this chapter, I presented a model for predicting outdoor water consumption, how-
ever it is not clear if the model’s accuracy is sufficiently high to be useful for day-to-day
management of water systems. I also discussed some of the predictive factors in the
models developed.

In the next section, I discuss the explanatory factors for outdoor water consump-
tion over the entire summer.
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Figure 6.7: MAE per hour for Outdoorweekend
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Figure 6.8: Relative variable importance for Outdoor1. The values for yt−1 and yt−168
are not shown.

47



Relative Importance
0 0.002 0.004 0.006 0.008 0.01

y t-2    

temperature (current)

rainfall (current)

household size  

rain occurrence (current)

y t-3    

pools  

temperature (prev)

value  

rainfall (last 3)

median income  

rain occurrence (last 3)

watering

bedrooms  

Figure 6.9: Relative variable importance for Outdoorweekday. The values for yt−1 and
yt−168 are not shown.
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Figure 6.10: Relative variable importance for Outdoorweekend. The values for yt−1 and
yt−168 are not shown.
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Chapter 7

Explaining Outdoor Water
Consumption

The City of Abbotsford is particularly interested in the determinants of outdoor water
consumption. Explainable variation in outdoor water consumption between house-
holds or between neighbourhoods can be used for demand management and planning
watering restrictions [2]. In this chapter, I explain how outdoor water consumption
(estimated as described in Chapter 5) during the study period in Abbotsford is related
to weather, household income, lot size, and pool ownership. I also show that there is
a large amount of variability between households, with a relatively small percentage
of households consuming the majority of water used outdoors.

7.1 Statistical Methods

In the following analysis, linear regression is used to model the relationship between
outdoor water consumption and demographic and property variables. The correlation
coefficient (r) shows the strength of the linear relationship between variables. Inter-
preting the correlation coefficient requires several assumptions about the underlying
data: the residuals (model errors) should have zero mean and constant variance, and
be normally distributed and independent [64]. It was determined by visual observa-
tion of the data that these assumptions do not hold for all of the data in this chapter;
the correlation coefficients from linear regression are given regardless for comparison
with previous work, and it is noted where they may not be reliable. To strengthen the
results, Spearman’s rank correlation coefficient (ρ) is also used to show the strength
of a monotonic (rather than linear) relationship between two variables and does not
require the same assumptions.
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7.2 Temperature and Rainfall

Previous work has shown that water consumption depends on temperature and rain-
fall (see Chapter 3), and that the sensitivity of water consumption to variation in
weather is not consistent across the year but is highest during the summer [36,59,60].
The analysis in this section is restricted to the summer because only a single year of
data is available, so it is hard to otherwise separate the effects of changes in weather
from unrelated seasonal effects over the year. Further, I only consider the highest-
usage months (July and August) because the watering restrictions in these months
make it difficult to directly compare the effects of temperature and rainfall relative
to the other summer months.
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Figure 7.1: Rainfall and outdoor water consumption for all households in July and
August 2013

Because a major source of outdoor water demand is irrigation, it is expected that
outdoor water consumption will decrease with rainfall. There are clear decreases in
outdoor consumption when rainfall occurs, as shown in Figure 7.1. Despite similar
average temperatures (19.4 ◦C and 19.1 ◦C), the total outdoor consumption for July
2013 was 1037 kL. compared to 698 kL a day in August 2013. This can be explained
by the significantly higher and more frequent rainfall in August (57 mm over 9 days) as
compared to in July (1.6 mm on a single day). Although total rainfall in both months
is relatively low, the drop in outdoor consumption during August is consistent with
previous work that suggests the occurence of rainfall (at a weekly timescale) has more
effect on water consumption than the amount of rainfall [41].

There is a weak positive correlation (ρ = 0.401, r = 0.409) between tempera-
ture and outdoor water consumption during July and August. Figure 7.2 shows the
temperature and total water consumption for July and August 2013, and Figure 7.3

51



Ju
ly

 1

Au
g 

1

Au
g 

30

0

5

10

15

20

25

Te
m

pe
ra

tu
re

 (C
)

0

500

1000

1500

2000

Co
ns

um
pt

io
n 

(k
L)

Figure 7.2: Daily high temperature and outdoor water consumption for all households
in July and August 2013

shows the correlation between temperature and outdoor water consumption. Correla-
tion with temperature for water consumption has varied between climates in previous
work. A study in Portland showed greater correlation with temperature than with
rainfall [60], and a study in Pheonix showed greater correlation with rainfall [37]. The
low correlation with temperature in Abbotsford is expected because the temperate
climate means that water consumption will respond less to evaporation, and because
outdoor temperatures were not highly variable during the period analyzed.

7.3 Variability Between Households

Previous work has shown that outdoor water consumption is significantly more vari-
able between households than is indoor consumption [8]. In the study dataset, a
small percentage of households account for the majority of outdoor water consump-
tion, while many households use insignificant amounts of outdoor water.

Figure 7.4 shows the distribution of outdoor water consumption (over the entire
year) per household. The diagram is restricted to the houses with less than 100 kL of
outdoor consumption (98.5 % of households) in order to show patterns at the smaller
consumption levels typical of most households. Most households used relatively small
amounts of outdoor water and the median consumption is 4.84 kL. Additionally, many
households use almost no outdoor water: 1783 households used less than 1 kL of water
over the entire year. There are 126 households (1.53%) not shown in the figure which
used more than 100 kL of outdoor water, and 31 households (0.38%) which used more
than 200 kL of outdoor water. The maximum outdoor water consumption for a single
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Figure 7.3: Correlation between temperature and daily outdoor water consumption
in July and August 2013

household is 1024 kL, about 210 times the median consumption.

In comparison, indoor water consumption is much less variable between house-
holds. Figure 7.5 shows the indoor consumption for all single-family households.
The maximum indoor consumption for a household is only 7.9 times the median con-
sumption. Similarly, the ratio between the median and the 95th percentile value is 2.4
compared to 10.9 for outdoor consumption. The relatively low variability of indoor
consumption is consistent with the idea that indoor usage is primarily determined
by the number of people in the household. Even with some additional variation in
indoor usage, such as due to water-conserving behaviours or appliance stock, less
between-household variation is expected than with outdoor consumption [8].

By ordering the households by their total consumption, it is possible to show how
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Figure 7.4: Histogram of outdoor wa-
ter consumption
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Figure 7.5: Histogram of indoor water
consumption
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Figure 7.6: Cumulative consumption for first n households, ordered by amount of
outdoor water consumption and showing the number of consumers responsible for
25%, 50% and 95% of consumption

much water consumption is explained by the higher-consumption households. Figure
7.6 shows the cumulative consumption for the first n households ordered by outdoor
consumption. 25% of outdoor water is used by the 174 households with the highest
consumption. 704 households (8.6%) are responsible for 50% of the outdoor con-
sumption, and just over half of households (4305) consume 95% of the water used for
outdoor purposes, with the remaining households using almost insignificant amounts
of outdoor water. The contribution of the highest-consumption households to to-
tal outdoor usage is an important consideration for demand management and also
partially explains the difficulty of predicting outdoor consumption for small neigh-
bourhoods described in Chapter 6.

The 3 households that consumed the most outdoor water were checked manually
using both the property information and Google Maps1 to confirm that they are
residential properties and that their consumption seems consistent with the property.
Only one of these households has a pool or a particularly large lot size, but all have
some irrigable landscaping. This is consistent with the following analysis, which shows
only a weak correlation between lot size and outdoor water consumption. The water
consumption patterns of these households are consistent with using large volumes of
water for irrigation.

1maps.google.com
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7.4 Explanatory Factors at the Dissemination Area

Level

Previous work has shown that factors such as income [59] and lot size [38] affect
seasonal water consumption at a neighbourhood level. I analyse the relationship be-
tween outdoor water consumption at the census dissemination area level (see Chapter
4) and income, lot size, and rates of pool ownership. This analysis is restricted to dis-
semination areas with greater than 50 single-family residences because the variability
in individual consumption described previously would otherwise bias results for areas
with few households.

In general, household income correlates positively with water consumption but
typically the effects are small [63]. However, this correlation may not be a direct
effect of income, but rather caused by differences in lifestyle such as greater owner-
ship of water-using appliances and pools [57], and in that case less variation would
be expected when incomes are sufficiently high that lifestyle factors are more ho-
mogeneous. In the water consumption data for Abbotsford, there is essentially no
correlation (ρ = 0.122, r = 0.0939) between income and outdoor water consump-
tion for single-family residential units, as shown in figure 7.7. This may be due to
limitations in the demographic data available: the median income is for the entire
dissemination area rather than single-family residences.
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Figure 7.7: Correlation between income and outdoor water consumption by dissemi-
nation area

Previous work shows a correlation with between total water consumption and lot
size [65]. There is a weak correlation (ρ = 0.0745, r = 0.423), shown in figure 7.8,
between lot size at the dissemination area level and outdoor water consumption. (The
linear regression model overestimates the correlation due to the presence of outliers.)
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This may be due to the fact that not all households use outdoor water as shown
previously. Additionally, with a few exceptions, lot sizes between dissemination areas
are relatively consistent, and the amount of irrigable land and type of landscaping
are not known, which have been shown previously to effect water consumption [38].
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Figure 7.8: Correlation between lot size and outdoor water consumption by dissemi-
nation area

Figure 7.9 shows the correlation (ρ = −0.0396, r = 0.145) between the percentage
of pools in a dissemination area and outdoor water consumption. The lack of corre-
lation is consistent with previous work that shows pools contribute a relatively small
amount to overall water consumption [3]. Additionally, only 139 (1.6%) of households
in the dataset have pools. Water consumption for pool filling should not be a sig-
nificant determinant of outdoor water consumption at the dissemination area level,
given that most neighbourhoods have few pools, and even the largest percentage of
pools in a dissemination area is only 9%.

While there are differences in per-household summer water consumption across
dissemination areas (see Figure 4.1), the differences in outdoor water consumption
are not strongly correlated with income, lot size, or rates of pool ownership as shown
above. Additionally, the dissemination areas with the highest per-household water
consumption contain few households, suggesting much of the variation at the dissem-
ination area level is due to the variability in individual consumption levels.

7.5 Explanatory Factors at the Household Level

The major outdoor end-uses of water are irrigation and pool filling, and it is useful
to know how characteristics affecting these end-uses vary by household.
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Figure 7.9: Correlation between pool ownership and outdoor water consumption by
dissemination area

While rates of pool ownership do not significantly affect outdoor water consump-
tion at the dissemination area level, there are significant differences in water con-
sumption between individual households with and without pools. As shown in Figure
7.10, typical water consumption is much higher for households that have pools. The
median consumption is 24.7 kL for households with pools and 4.7 kL for households
without pools. Additionally, there is greater variability in water consumption for
these households. These differences are obscured at the household level because of
the relatively low rates of pool ownership in Abbotsford.

Assuming households used water for irrigation proportionally to lawn size, there
should be some correlation between outdoor water consumption and lot size. How-
ever, there is essentially no correlation (at the household level) in the dataset. Because
many households do not use significant amounts of outdoor water, the analysis is re-
stricted to the 703 highest-consumption households which account for 50% of outdoor
water consumption. Figure 7.11 shows almost no correlation (ρ = 0.0817, r = 0.144)
between lot size and outdoor water consumption even for the households that use large
amounts of outdoor water, where it might be expected that lot size would be a good
measurement of irrigation needs. The lack of correlation may be because lot size is
relatively consistent between households, with almost all households having relatively
small lots. Additionally, no information about ground cover or type of landscaping is
available, which has been shown to affect water consumption for irrigation [38].
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Figure 7.10: Variability of outdoor water consumptions for households with and with-
out pools, showing the 5th, 25th, 50th, 75th, and 95th percentiles of consumption

7.6 Summary

In this section I showed some of the determinants of outdoor water consumption in
Abbotsford, British Columbia. As in previous work, water consumption was shown
to be sensitive to the occurrence of rainfall, and to vary somewhat based on tem-
perature. Additionally, outdoor water consumption is extremely variable between
households, but is not strongly related to demographic or property variables (besides
the presence of a pool at the household level). This individual variability is an im-
portant consideration for demand management, and for the predictability of outdoor
water consumption. In the next section I summarize the contributions of my thesis
and discuss related work.
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Figure 7.11: Correlation between lot size and outdoor water consumption by house-
hold, for households that use in the top 50 % of outdoor water consumption
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Chapter 8

Conclusion and Future Work

This work has shown that outdoor water consumption can be identified using a sim-
ple upper threshold on probable indoor water consumption. Identifying outdoor con-
sumption is important for demand management and reducing peak demand. Outdoor
consumption estimated using this method contributes significantly to peak day de-
mand, when compared to the contribution of outdoor use to average day consumption.
I also showed that this threshold is relatively robust, and produces a reasonable es-
timate of outdoor consumption even if it is slightly modified, allowing for choosing
a trade-off between identifying more outdoor water consumption and not miscate-
gorizing indoor consumption. This method is useful because it uses data already
collected by smart meters, and does not require additional equipment or higher-
frequency recording.

The models developed for predicting outdoor consumption show some ability to
forecast next-hour water consumption, but the accuracy leaves room for improvement.
Short-term prediction of outdoor water consumption appears to be a difficult problem,
because of its variability compared to total consumption. Additionally, outdoor water
consumption varies significantly between households. This also contributes to the
difficulty in predicting consumption for small neighbourhoods, because the average is
significantly affected by individual behaviour.

Finally, the variability of outdoor water consumption between households and the
lack of correlation between outdoor water consumption and demographic variables are
important considerations for targeting conservation efforts. Because a small number
of households consume very large amounts of outdoor water, significant reductions in
demand could be achieved by targeting these households directly. In contrast, efforts
targeted by demographic factors or by neighbourhood would likely be less useful. The
ability to estimate outdoor consumption per household can therefore be an important
tool for managing peak demand.
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8.1 Future Work

While outdoor water consumption in Abbotsford is not affected by the demographic
factors evaluated in this work, it is not clear if there are other factors which contribute
to household-level variability in outdoor water consumption. Future work could focus
on evaluating more variables such as the amount of irrigable area for each house, and
factors such as attitudes to conservation.

The main limitations of this work involve the accuracy of the predictive models.
While short-term predictions of outdoor water consumption appear to be a difficult
problem, such predictions would be useful for day-to-day management and planning
watering restrictions. Future work could involve more spatial aggregation to deter-
mine how large neighbourhoods must be to allow accurate prediction. In particular,
daily prediction of water consumption would be more useful for planning watering
restrictions, and this is an important problem for future research.
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