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Abstract	

For	well	over	a	century	reaction	time	has	provided	researchers	with	a	method	to	

quantify	information	processing	speed.	Defined	as	the	interval	of	time	between	the	

presentation	of	a	stimulus	to	the	onset	of	a	response,	reaction	time	as	a	proxy	of	the	speed	of	

central	nervous	system	events	has	allowed	researchers	to	reveal	underlying	mechanisms	of	

information	processing	control.	The	differences	in	reaction	time	between	individuals	is	an	

interesting	phenomenon	that	is	sometimes	disregarded	as	biological	noise	but	could	reveal	

further	insight	into	the	determinants	of	central	nervous	system	speed	of	processing.	The	

primary	aim	of	this	work	was	to	explore	the	factors	that	contribute	to	such	between-subject	

variability	in	young	health	adults	to	determine	if	differences	were	reflective	of	trait	differences	

or	simply	random	fluctuations	across	repeated	testing	and	task	conditions.	Specifically,	this	

study	investigated	the	performance	of	visual	and	tactile	reaction	time	tasks	over	two	sessions	

to	capture	the	day	to	day	stability	and	task	generalizability	of	reaction	time.	Genetic	samples	

and	nerve	conduction	velocity	were	also	collected	to	speculate	on	potential	biological	markers	

that	may	relate	to	reaction	time	performance.	ICC	results	demonstrated	that	reaction	time	of	

individuals	were	more	closely	related	between	days	than	between	individuals	for	a	range	of	

tasks	that	differed	in	modality	(visual	and	tactile)	and	difficulty	levels	(simple	and	choice).			

Interestingly,	reaction	time	performance	was	found	to	have	a	stronger	association	between	

tasks	of	varying	difficulty	but	not	across	task	modality.	Furthermore,	while	this	study	relied	

heavily	on	central	tendency	it	was	also	found	that	analyzing	the	distribution	of	reaction	times	

also	revealed	important	within	subject	variability.	DNA	results	found	no	association	between	

APOE	or	COMT	allele	and	reaction	time	performance.	Ulnar	nerve	conduction	velocity	at	the	
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elbow	also	was	not	associated	with	reaction	time.	The	results	from	this	thesis	support	the	

importance	of	stable,	person-specific	traits	in	determining	reaction	time	while	also	emphasizing	

the	potential	impact	of	state	factors.	Alternative	expressions	of	reaction	time,	such	as	variability	

and	distribution,	are	also	likely	to	be	important	to	understanding	between	subject	differences	

that	is	not	revealed	by	traditional	central	tendency	measures.	Outcomes	from	this	work	will	

help	to	inform	and	contribute	in	supporting	the	use	of	reaction	time	as	a	stable	predictor	of	

central	nervous	system	processing	speed	to	indicate	declining	or	improving	performance.	

Potentially,	tracking	reaction	time	performance	may	be	important	in	identifying	potential	risk	of	

injury	related	to	decreased	speed	of	processing	or	as	a	marker	of	improved	performance	in	

training.	
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Chapter	1:	Background	

1.1	Importance	of	speed	of	processing	

The	time	course	of	central	nervous	system	(CNS)	events	constitutes	an	essential	component	

of	successful	behaviour.	In	particular,	stimulus-evoked	behaviour	requires	external	stimuli	to	be	

processed	in	various	areas	of	the	brain	to	ultimately	produce	an	accurate	and	timely	response.	

The	manifestations	of	CNS	processing	speed	can	be	seen	in	a	number	of	situations	that	range	

from	daily	activities	such	as	driving	(D’Addario,	Donmez,	&	Ising,	2014;	Lee,	McGehee,	Brown,	&	

Reyes,	2002)	to	urgent	situations	that	enable	safety	and	facilitate	performance	in	skilled	tasks	

such	as	balance	control	and	sport	performance	(Bolton,	2015;	Maki	&	McIlroy,	1997).	Clinically,	

speed	of	processing	performance	may	provide	insight	to	the	integrity	of	the	CNS,	where	deficits	

in	performance	could	imply	a	diseased	or	impaired	system.	For	instance,	patients	suffering	from	

neurological	injury	commonly	suffer	from	decreased	speed	of	processing	(Stuss	et	al.,	1989),	

which	poses	as	a	detriment	to	activities	of	daily	living.	Inevitably	however,	individuals	will	

respond	differently	to	the	same	tasks,	even	when	they	are	drawn	from	the	same	population	

(Hultsch,	MacDonald,	&	Dixon,	2002).	Even	in	a	young,	healthy	population,	some	individuals	will	

react	slower	than	others	for	any	given	task.	This	unique	individual	variability	in	speed	of	

processing	performance	is	a	curious	phenomenon	that	is	sometimes	ignored	as	data	tends	to	

treat	all	individuals	through	a	homogenous	approach	by	using	central	tendency	measures	such	

as	mean	performance	across	people.	Typically,	the	standard	deviation	provides	an	indication	of	

the	variability	between	subjects	but	can	be	disregarded	as	simply	the	product	of	noise.	

Understanding	the	individual	variability	in	addition	to	conventional	methods	could	be	even	

more	revealing	of	the	specific	characteristics	that	mediate	speed	of	processing.		Understanding	
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of	between	subject	differences	in	healthy	adults	may	have	several	important	benefits.	First,	

between	subject	differences	may	reveal	information	about	how	the	CNS	processes	information	

not	seen	in	more	traditional	methods.	Second,	studying	between	subject	differences	may	have	

applications	in	assessing	individuals	at	risk	of	adverse	events	caused	by	delayed	speed	of	

processing	where	personalized	rehabilitation	interventions	based	on	their	unique	reaction	time	

performance	can	be	developed	to	facilitate	the	best	possible	outcome.	Therefore,	the	

overarching	goal	of	this	work	is	to	explore	the	significance	and	nature	of	between	subject	

differences	and	identify	the	important	person-specific	factors	that	contribute	to	such	

differences	revealed	by	central	tendency	and	dispersion	measures.	In	order	to	gain	a	better	

understanding	of	this	topic,	this	document	begins	with	a	historical	overview	of	processing	

speed	and	its	basic	principles.		

1.2	Historical	overview	

	 The	study	of	relating	the	timing	of	unobservable	neural	activity	in	the	brain	to	

measurable	events	is	known	as	mental	chronometry	(Meyer,	Osman,	Irwin,	&	Yantis,	1988)	and	

the	events	that	encompass	processing	speed	are	represented	through	reaction	time	(RT).	There	

are	several	other	terms	in	the	literature	that	are	often	used	interchangeably	with	reaction	time	

including	pre-motor	time,	response	time,	and	response	latency.	While	they	all	serve	to	define	

the	time	between	the	presentation	of	a	stimulus	to	the	onset	of	a	response,	it	should	be	noted	

that	these	terms	may	have	different	methods	of	obtaining	a	response	(e.g.	mouse	click,	verbal	

response,	onset	of	movement).	For	the	purposes	of	this	work,	reaction	time	is	operationally	

defined	as	the	time	from	the	presentation	of	a	stimulus	to	the	moment	a	response	is	initiated	

as	represented	by	the	onset	of	muscle	activity.		
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	 Attempts	to	quantify	reaction	time	can	be	traced	back	to	the	work	of	Franciscus	

Donders	in	1868	who	sought	to	understand	different	mental	processes	of	the	human	nervous	

system	by	measuring	the	timing	of	responses.	It	was	found	by	Helmholtz	that	it	was	possible	to	

quantify	the	conduction	velocity	of	a	motor	nerve,	contrary	to	the	prior	beliefs	(Brebner	&	

Welford,	1980)	.	When	it	came	to	decision	making	tasks,	Donders	believed	that	there	existed	

distinct	and	separate	stages	of	information	processing	that	occurred	in	succession.	He	therefore	

postulated	that	the	longer	it	would	take	to	produce	a	stimulus-evoked	response	the	more	

stages	were	required	for	that	particular	task.	He	sought	to	explain	information	processing	by	

subtracting	the	reaction	time	to	a	single	stimulus	(task	A)	and	the	reaction	time	to	make	the	

same	response	by	discriminating	one	of	two	stimuli	(task	B).	Termed	the	subtraction	method,	

Donders	proposed	that	the	time	it	took	the	nervous	system	to	make	a	choice	was	revealed	

simply	by	the	difference	in	reaction	times	of	these	two	tasks	(Donders,	1969).	However,	one	of	

the	criticisms	toward	Donders’	work	was	the	difficulty	and	practicality	in	devising	tasks	that	

completely	removed	a	processing	stage	from	a	reaction	time	task	(Sternberg,	1969).	Therefore,	

Sternberg	sought	to	propose	a	new	method	of	examining	reaction	time	by	dividing	information	

processing	into	three	stages:	sensory,	comparison,	and	response.	If	a	certain	factor	only	

influenced	one	of	these	stages,	then	their	effects	on	reaction	time	would	be	additive	to	other	

factors	that	only	influenced	one	processing	stage.	Therefore,	Sternberg	proposed	that	it	could	

be	revealed	which	processing	stages	were	affected	by	a	factor	using	the	additive-factors	

method.		

The	differences	in	time	during	the	performance	of	tasks	of	varying	difficulty	is	

mathematically	described	by	Hick’s	law	as	the	logarithmic	relationship	RT	=k*log2(n+1),	where	
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RT	is	the	reaction	time	of	the	task,	k	is	the	reaction	time	for	a	task	with	only	one	stimulus,	and	n	

is	the	number	of	alternative	stimuli	(Hick,	1952).	In	other	words,	the	more	potential	responses	

an	individual	must	make	to	different	stimuli	the	longer	it	takes	for	the	central	nervous	system	

to	execute	the	correct	response.	Hick’s	law	represents	just	one	example	of	how	reaction	time	

research	has	contributed	to	the	understanding	of	the	human	information	processing.	

	 With	advances	in	neurophysiological	research,	it	became	possible	to	observe	specific	

events	in	information	processing.	Researchers	had	at	their	disposal	tools	to	measure	the	

electrical	potentials	from	the	brain	that	could	serve	as	latent	indicators	of	mental	processes,	

revealing	potential	mechanisms	explaining	reaction	time	results.	This	would	help	to	clarify	past	

hypotheses	about	the	stages	of	information	processing	and	extend	our	knowledge	of	mental	

chronometry.	For	instance,	the	latency	of	the	P300	event	related	potential	was	shown	to	be	

associated	with	stimulus	evaluation	phase	of	a	reaction	time	task	(McCarthy	&	Donchin,	1981;	

Sutton,	Braren,	Zubin,	&	John,	1965)	while	Posner	(2005)	found	that	a	visual	stimulus	would	

evoke	significant	electrical	activity	in	the	primary	visual	cortex	at	approximately	60ms.	

Functional	magnetic	resonance	imaging	(fMRI)	was	a	tool	used	that	provided	evidence	of	

specific	brain	regions	associated	with	the	performance	of	certain	tasks(Connolly,	Goodale,	

Goltz,	&	Munoz,	2005;	Honey,	Bullmore,	&	Sharma,	2000;	Yarkoni,	Barch,	Gray,	Conturo,	&	

Braver,	2009),	though	by	itself	does	not	provide	sufficient	temporal	resolution.	The	marriage	of	

the	high	temporal	resolution	of	event-related	potentials	and	the	spatial	resolution	of	fMRI	

provided	new	insight	onto	the	workings	of	information	processing(Bledowski,	2006;	Linden	et	

al.,	1999;	Mulert	et	al.,	2004;	Rosen,	Buckner,	&	Dale,	1998).	However,	despite	all	the	progress	

in	the	field	and	advanced	tools	for	measurement	of	information	processing	there	are	still	some	
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unanswered	questions.	In	a	recent	review	it	was	noted	that	the	role	of	reaction	time	variability	

and	distribution	and	their	value	in	explaining	the	neural	basis	of	information	processing	is	not	

well	understood	(Medina,	Wong,	Diaz,	&	Colonius,	2015).	Furthermore,	the	stages	of	processing	

themselves	have	come	into	question,	with	early	researchers	suggesting	complete	successive	

stages	while	others	argue	for	the	capacity	for	at	least	some	parallel	processing	of	stimuli.	

Finally,	one	important	topic	that	is	not	well	understood	is	how	reaction	time	can	differ	in	real-

life	situations	and	the	determinants	of	performance	in	these	reactions.	The	importance	of	

answering	this	question	can	be	found	in		urgent	situations	where	speed	of	processing	is	an	

essential	determinant	of	behavioural	success,		such	as	balance	reactions,	obstacle	avoidance	in	

driving,	and	athletic	performance.	The	implications	of	speed	of	processing	research	has	

extended	beyond	simple	models	presented	by	the	early	work	of	Donders	and	Sternberg.	Over	

time,	there	has	been	a	shift	toward	explaining	the	mental	processes	that	occur	during	the	most	

critical	situations	and	how	they	act	as	a	protective	mechanism	or	facilitator	of	performance.	

1.3	Examples	of	speed	of	processing	in	temporally	urgent	situations		

The	detection	of	dangerous	or	threatening	stimuli	is	essential	to	human	survival	and	

demand	rapid	responses.	From	an	evolutionary	perspective,	the	ability	to	react	quickly	to	

threatening	situations	has	played	an	important	survival	role	in	avoiding	danger	(Mineka	&	

Öhman,	2002).		

For	example,	balance	recovery	is	a	class	of	behaviour	that	is	distinguished	by	temporal	

urgency	(Lakhani	et	al.,	2011).	Stepping	and	grasping	movements	in	response	to	unexpected	

perturbations	are	used	to	compensate	for	postural	instability	that	would	otherwise	result	in	

physical	harm.	These	change-in-support	reactions	are	initiated	around	100ms	yet	fascinatingly,	
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are	still	able	to	maintain	the	complexity	of	volitional	movements	(Gage,	Zabjek,	Hill,	&	McIlroy,	

2007;	Lakhani	et	al.,	2011).	Failure	to	rapidly	execute	these	reactions	has	been	identified	as	an	

important	determinant	of	fall	risk	in	healthy	older	adults	(Lajoie	&	Gallagher,	2004).		

The	importance	of	rapid	information	processing	in	response	can	also	be	seen	in	driving	

safety	and	hazard	avoidance.	Sudden	changes	in	a	dynamic	traffic	environment	require	a	driver	

to	quickly	respond	by	performing	movements	such	as	steering	the	vehicle	out	of	harm’s	way	or	

releasing	the	acceleration	pedal	and	engaging	the	brakes.	In	addition	to	motor-related	factors,	

Anstey	et.	al	(2004)	revealed	that	central	nervous	system	processing	was	one	of	the	major	

factors	contributing	driving	safety	outcomes.	Specifically,	older	adults	that	performed	poorly	in	

an	on-road	driving	performance	test	had	moderate	correlations	in	measures	of	cognition	and	

information	processing	(McKnight	&	McKnight,	1999).	The	results	from	these	types	of	studies	

are	useful	in	advancing	automobile	technology.	For	instance,	algorithms	used	in	rear-end	

collision	avoidance	systems	rely	on	understanding	driver	response	and	use	this	information	to	

provide	warning	signals	to	the	driver	(Lee	et	al.,	2002).		

In	response	to	the	presentation	of	unpleasant	images,	individuals	were	able	to	produce	

movements	quicker	compared	to	pleasant	and	neutral	images	(Coombes	et	al.,	2009;	Ohman,	

Flykt,	&	Esteves,	2001).	The	emotion	evoked	from	these	images	has	an	effect	on	the	motor	

system	that	some	claim	to	be	due	to	an	arousal-driven	corticospinal	excitability	increase	

(Hajcak	et	al.,	2007).	Other	authors	have	suggested	that	fear-inducing	stimuli	inhibits	

processing	of	irrelevant	information	coupled	with	enhanced	executive	attention	to	rapidly	

process	relevant	and	threatening	stimuli	(Finucane	&	Power,	2010).	Similar	results	are	seen	in	

the	olfactory	system	as	unpleasant	odours,	which	may	signal	unfavourable	situations	to	an	
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individual’s	well-being	that	must	be	avoided,	are	responded	to	more	rapidly	than	pleasant	

odours	(Bensafi,	Rouby,	Farget,	Vigouroux,	&	Holley,	2002;	Jacob	&	Wang,	2006).		

	 The	capacity	to	demonstrate	superior	athletic	performance	provides	an	interesting	

challenge	to	central	nervous	system	processing.	The	CNS	must	be	able	to	recognize	sport-

specific	situations	in	a	fast-paced,	dynamic	environment.	The	elite	perceptual-cognitive	skill	

required	for	sport	and	the	speed	at	which	they	are	executed	is	arguably	a	distinct	characteristic	

that	separates	expert	athletes	from	novices.	In	volleyball	and	basketball	players,	experts	had	

the	ability	to	more	quickly	identify	game	and	non-game	situations	in	their	respective	sports	

(Allard	&	Starkes,	1980).	A	meta-analysis	exploring	the	perceptual-cognitive	skills	in	sport	

revealed	an	increase	in	performance	in	response	accuracy	and	response	time	for	experts	

compared	to	non-experts	(Mann	&	Williams,	2007)	while	this	difference	is	even	more	

pronounced	in	athletes	that	participate	in	interceptive	sports	(Voss,	Kramer,	Basak,	Prakash,	&	

Roberts,	2010).	Some	authors	also	suggest	that	at	least	some	of	the	cognitive	performance	

attained	from	athletic	training	is	transferable	to	everyday	tasks	such	as	multitasking	during	

navigation	of	trafficked	roads	(Chaddock,	Neider,	Voss,	Gaspar,	&	Kramer,	2011;	Faubert,	2013).		

	

1.4	Neurophysiological	determinants	of	processing	speed	

A	simplistic	model	of	the	stimulus-response	pathway	consists	of	an	input	(stimulus)	that	

is	integrated	and	processed	by	the	central	nervous	system	to	reach	a	decision	based	on	the	

stimulus.	The	decision	is	then	executed	(response)	by	the	appropriate	effectors.	All	instances	of	

processing	speed	can	be	fundamentally	described	in	terms	of	the	systematic	communication	of	
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neurons	in	this	pathway.	Biologically,	this	can	be	divided	into	two	components:	conduction	time	

and	synapse	time.		

Conduction	time	refers	to	the	time	it	takes	for	an	electrical	signal	to	propagate	across	all	

the	axons	in	a	given	pathway.	One	way	of	altering	conduction	time	is	to	change	the	length	of	

the	neural	pathway,	which	is	determined	by	the	characteristics	of	the	task.	The	longer	a	signal	

must	travel,	the	more	time	must	be	accounted	for	to	reach	its	final	destination.	For	instance,	all	

other	factors	remaining	the	same,	a	motor	signal	travelling	from	the	brain	to	the	muscles	in	the	

leg	will	take	longer	than	if	the	signal	were	to	reach	the	upper	limb	because	of	the	pathway	

length	differences.	Furthermore,	conduction	time	can	be	altered	by	changes	in	axonal	

conduction	velocity	where	the	degree	of	myelination	will	determine	how	fast	a	signal	can	

propagate	down	an	axon	(Kandel	et	al.,	2012).	A	reduction	in	the	myelination	of	axons	slows	

down	the	conduction	of	signals	and	in	extreme	cases,	can	lead	to	severe	impairments	in	

behaviour.	For	instance,	patients	suffering	from	multiple	sclerosis,	a	neurodegenerative	

autoimmune	disease	that	results	in	the	breakdown	of	myelin,	are	known	to	have	decreased	

reaction	times	compared	to	healthy	controls	(Elsass	&	Zeeberg,	1983;	Jennekens-Schinkel,	

Sanders,	Lanser,	&	Van	der	Velde,	1988;	Reicker,	Tombaugh,	Walker,	&	Freedman,	2007).	

Finally,	conduction	time	is	also	determined	by	the	diameter	of	the	axon.	Larger	diameter	axons	

tend	to	conduct	signals	more	rapidly	due	to	the	lower	resistance	to	electrical	current.	For	

instance,	sensory	fibers	in	peripheral	nerves	are	classified	by	their	diameter.	Type	I	fibers	have	

the	largest	diameter	(12-20	µm)	and	a	conduction	velocity	of	72-120	m/s.	Type	II	fibers	are	

characterized	by	a	smaller	diameter	(6-12	µm)	and	a	conduction	velocity	ranging	from	36-72	

m/s	(Kandel	et	al.,	2012).	
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Synapse	time	is	related	to	the	time	taken	to	transform	the	electrical	signal	coming	from	

an	axon	into	a	chemical	signal	to	communicate	across	the	synaptic	cleft	to	a	neighbouring	

neuron.	It	encompasses	all	the	events	from	the	initiation	of	neurotransmitter	release	from	the	

synaptic	vesicle	to	the	summation	of	the	postsynaptic	potentials	at	the	axon	hillock.	Any	delay	

in	the	time	to	produce	an	action	potential	in	the	post-synaptic	neuron	will	slow	down	

processing	time.	The	time	it	takes	to	produce	an	action	potential	will	be	determined	by	the	rate	

at	which	the	post-synaptic	membrane	potential	is	increased	to	reach	threshold.	For	instance,	

the	generation	of	an	action	potential	occurs	through	the	attachment	of	neurotransmitters	onto	

receptors	on	the	post-synaptic	neuron.	If	there	were	an	increase	in	receptor	density,	this	would	

allow	more	neurotransmitters	to	bind	and	generate	action	potentials	as	the	faster	

accumulation	of	these	signals	will	allow	the	membrane	threshold	to	be	reached	sooner	to	

trigger	an	action	potential	down	an	axon.	It	is	also	possible	that	the	properties	of	the	receptors	

themselves	can	have	different	levels	of	sensitivity	to	a	neurotransmitter	resulting	in	higher	or	

lower	membrane	depolarization.	The	more	sensitive	a	receptor	is,	the	greater	the	change	in	

membrane	potential.	This	model	serves	as	a	basic	foundation	for	linking	modulators	of	reaction	

time	to	the	potential	biological	mechanisms.	

  

1.5	Modulators	of	reaction	time		

	 	The	extensive	list	of	factors	that	influence	reaction	time	can	be	divided	into	those	that	

are	task	dependent	(e.g.	task	difficulty)	and	those	that	are	person-specific	(e.g.	individual	

factors).	Task-dependent	factors	refer	to	the	design	of	the	stimulus-response	paradigm.	These	

conditions	provide	an	environmental	description	of	the	reaction	process	to	be	completed.	
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These	factors	can	often	be	manipulated	and	isolated	in	an	experimental	setting	to	observe	the	

influence	on	reaction	time.	For	instance,	selecting	the	type	of	reaction	time	experiment	(i.e.	

simple,	choice,	recognition)	is	a	task-specific	factor	that	will	change	reaction	time	based	on	the	

number	of	bits	of	information	in	each	task.	Other	task	specific	factors	known	to	influence	

reaction	time	include	stimulus	intensity	(Luce,	1986),	stimulus	modality	(Brebner	&	Welford,	

1980),	and	stimulus	cueing	(Bertelson,	1967).	Table	1.1	summarizes	several	factors	that	have	

been	most	extensively	studied.	

The	current	study	is	focussed	on	between-subject	differences	and	person-specific	

factors	as	these	reflect	unique	attributes	and	characteristics	that	are	distinct	to	each	individual.	

Person-specific	factors	can	be	further	subdivided	into	time-stable	factors,	which	are	defined	as	

fixed,	long	term	characteristics	of	an	individual	that	are	consistent	or	change	slowly	over	a	time	

scale	of	years.	This	may	also	be	referred	to	as	trait	factors.	In	contrast,	there	are	also	time	

varying	factors,	variables	that	can	change	quickly	with	a	day	to	day	influence	on	reaction	time	

that	is	dependent	on	the	situation	the	individual	finds	themselves	in.	For	example,	quality	of	

sleep	the	night	before	can	affect	performance	the	following	day	(Langner,	Steinborn,	

Chatterjee,	Sturm,	&	Willmes,	2010).	Time	varying	factors	are	also	known	as	state	

characteristics.	

Given	the	same	task	conditions,	a	group	of	individuals	will	vary	in	their	reaction	time	

response	based	on	their	distinct	characteristics.	Saville	et	al.	(2012)	found	that	across	visual	and	

auditory	modalities,	individual	differences	of	the	onset	of	P3b	event-related	potential	and	

reaction	time	were	consistent	and	thought	to	be	characterised	by	stable,	pervasive	factors,	

independent	of	the	task.	Furthermore,	reaction	times	are	consistent	on	a	week-to-week	basis,	
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suggesting	that	the	determinants	of	performance	are	reliable	over	time	and	based	on	

characteristics	specific	to	the	individual	that	do	not	change	over	the	short	term	(Resch	et	al.,	

2013;	Saville	et	al.,	2011)	These	are	considered	to	be	the	factors	that	will	contribute	to	

individual	differences	in	reaction	time	performance.	Table	1.1	provides	a	list	of	some	of	the	

factors	known	to	influence	reaction	time	independent	of	the	characteristics	of	the	task	and	

specific	to	the	person.		

Table	1.1:	List	of	factors	and	representative	studies	that	have	been	shown	to	influence	reaction	
time	categorized	as	task-dependent	or	person-specific.		
	

Task	dependent	 Person-specific	

Stimulus	intensity	(Luce,	1986)	 Attention	(Stuss	et	al.,	1989;	Weissman,	Roberts,	

Visscher,	&	Woldorff,	2006)	

Stimulus	modality	(Brebner	and	

Welford,	1980)	

Arousal	(Lakhani	et	al.,	2011;	Lakhani,	Miyasike-

daSilva,	Vette,	&	McIlroy,	2013)	

Stimulus	cueing	(Bertelson,	1967)	 Genetics	(Saville	et	al.,	2012;	Szekely	et	al.,	2011)	

Number	of	stimuli	and	responses	

(Donders,	1969;	Sternberg,	1969)	

Personality	(Corcoran,	1972;	Robinson	&	Tamir,	

2005)	

Central	vs.	Peripheral	vision	of	stimulus	

(Brebner	and	Welford,	1986)	

Physical	fitness	(Spirduso,	1975)	

	 Gender	(Adam	et	al.,	1999;	Dane	&	Erzurumluoglu,	

2003;	Noble,	1964)	

	 Age	(Hultsch	et	al.,	2002)	

	 Intelligence	(Jensen	&	Munro,	1979;	Reed	&	

Jensen,	1992;	Vernon,	1983)	

	

As	noted	the	current	thesis	is	focussed	on	between-subject	differences,	and	the	

relationship	between	person	specific	factors	and	reaction	time.	The	rationale	for	this	focus	is	to	
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explore	this	understudied	topic	as	it	may	be	valuable	in	identifying	the	unique	person-specific	

factors	that	contribute	to	individual	variability	in	performance	that	cannot	be	explored	in	more	

traditional	studies	that	look	at	comparing	between	different	groups	and	tasks.	Exploring	these	

factors	may	assist	in	defining	possible	biological	markers	for	individuals	at	risk	of	decreased	

speed	of	processing	with	age	or	following	neurologic	injury.	The	following	sections	describe	

factors	that	can	be	considered	to	significantly	contribute	to	between-subject	differences	that	

are	person-specific.			

1.5.1	Attention	

	 Reaction	time	performance	has	often	been	related	to	an	individual’s	level	of	attention	

to	stimuli.	It	should	be	noted	that	attention	can	also	be	associated	with	the	specific	task	

conditions	so	it	could	be	considered	both	task-dependent	as	well	as	person-specific.	The	

concept	of	attention	can	be	described	as	allocating	cognitive	resources	to	process	relevant	

stimuli	while	suppressing	irrelevant	stimuli	(Posner,	2011).	Its	contribution	to	influencing	

reaction	time	performance	has	been	observed	through	deficits	in	the	attention	network.	Stuss	

et.	al	(1989)	found	that	deficits	in	attention	caused	by	head	injuries	resulted	in	slower	

performance	on	RT	tests	compared	to	control	subjects.	Consistency	of	performance	was	also	

analyzed	and	revealed	that	head	injured	patients	had	significantly	greater	variability	in	reaction	

time.	This	led	the	authors	to	believe	that	while	head	injured	patients	could	perform	well	on	a	

task,	their	ability	to	maintain	the	level	of	performance	was	compromised	due	to	deficits	in	

sustaining	attention.	Weissman	et.	al	(2006)	attempted	to	develop	a	system-wide	

understanding	of	how	attention	might	influence	reaction	time	by	observing	changes	in	regional	

brain	activity	due	to	momentary	lapses	in	attention.	Of	particular	interest	was	observing	the	
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activation	of	frontal	areas	of	the	brain	thought	to	regulate	and	control	attention.	The	findings	

suggest	before	stimulus	presentation,	decreased	BOLD	response	in	frontal	areas	were	

associated	with	longer	reaction	times.	Furthermore,	it	was	found	that	during	slower	reaction	

times,	the	default-mode	network,	areas	of	the	brain	thought	to	be	associated	with	task-

irrelevant	stimuli	(i.e.	daydreaming)	had	reduced	task-induced	deactivation,	indicating	an	

inability	to	disregard	processing	of	irrelevant	stimuli.	In	this	case,	the	results	suggest	that	

attention	can	be	a	person-specific	factor	since	performance	trial	to	trial	can	vary	under	identical	

conditions.	It	was	proposed	that	the	characteristics	of	the	individual’s	attention	network	were	

determining		the	variability	(Raichle	et	al.,	2001)	

1.5.2	Arousal	

Similar	to	attention,	arousal	could	be	considered	both	a	task-dependent	and	person-

specific	factor	that	can	influence	reaction	time.	The	autonomic	nervous	system	(ANS)	is	

responsible	for	controlling	activities	of	the	body	that	occur	unconsciously,	such	as	breathing,	

regulation	of	blood	pressure,	or	sweat	responses	(Silverthorn,	2010).	Physiological	arousal	

levels	are	linked	to	autonomic	nervous	system	activity	and	may	be	a	factor	in	influencing	

information	processing.	Studies	have	shown	there	to	be	an	optimal	range	of	arousal	that	

produces	the	most	benefits	to	reaction	time	performance	as	indicated	by	the	parabolic	

relationship	between	the	two	variables		

(Bagherli,	Vaez-Musavi,	&	Mokhtari,	2011;		Damanpak,	Mokhtari,	&	Vaezmousavi,	2015).	

Recent	evidence	has	suggested	that	there	is	a	potential	link	between	reaction	time	

performance	and	autonomic	nervous	system	activity	in	postural	control.	When	the	nervous	

system	is	threatened	with	postural	instability,	speeded	reactions	are	often	accompanied	by	
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increased	autonomic	activity	measured	by	an	electrodermal	response	from	the	fingers	(Lakhani	

et	al.,	2011;	Sibley,	Lakhani,	Mochizuki,	&	McIlroy,	2010).	Interestingly,	the	speeded	reactions	

are	not	restricted	to	stimulus-relevant	responses.	Lakhani	et	al.	(2011),	using	a	tilting	chair	

paradigm,	compared	reaction	times	of	a	balance	perturbation	to	auditory	stimuli.	Results	

indicated	that	regardless	of	congruency	between	stimulus	and	response,	reaction	times	were	

always	faster	in	the	perturbation	condition.	Response	latencies	were	determined	by	the	

stimulus	characteristics,	which	were	also	accompanied	by	increased	ANS	activity.	In	a	separate	

study,	Lakhani	(2013)	provided	further	evidence	for	the	importance	of	arousal	in	speeded	

reactions	when	he	sought	to	pair	auditory	stimuli	with	balance	perturbations	to	condition	the	

nervous	system	to	produce	faster	responses	and	greater	autonomic	activity	to	auditory	stimuli	

alone.	Immediately	following	20	trials	of	paired	auditory	stimuli	and	perturbations,	only	an	

auditory	stimulus	was	presented,	unknowingly	to	the	participant.	The	first	post-pairing	trial	had	

a	significantly	faster	reaction	time	and	greater	autonomic	activity	when	compared	to	the	5th	

post-pairing	trial.	Arousal	as	a	person-specific	factor	may	be	embedded	in	the	change	in	arousal	

that	varies	from	person	to	person.	In	some	cases,	there	may	be	non-responders	who	do	not	

experience	as	great	an	increase	in	arousal	as	others.	This	is	sometimes	explained	as	individuals	

varying	in	their	personality	type,	which	influences		their	arousal	response	to	stimuli	(Griffiths	&	

Dancaster,	1995).	While	the	mechanisms	behind	how	speeded	reactions	are	achieved	remains	

unclear,	these	studies	have	emphasized	the	potential	importance	of	autonomic	activity	in	

potentially	influencing	information	processing	speed.		
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1.5.3	Intelligence	

Individual	differences	in	human	intellect	have	been	proposed	to	be	linked	to	

mechanisms	involving	the	capacity	for	speed	of	processing.	Much	of	the	early	work	on	this	topic	

is	attributed	to	Sir	Francis	Galton,	however	due	to	limitations	in	the	techniques	and	instruments	

used	to	measure	intelligence,	as	well	as	the	absence	of	statistical	inference	methods	such	as	

analysis	of	variance,	his	experiments	were	considered	unsuccessful	at	the	time(Jensen,	2002).	It	

was	later	found	that	there	did	in	fact	exist	a	negative	relationship	between	IQ	and	reaction	time	

and	that	tasks	of	greater	complexity	demonstrated	a	stronger	relationship	(Deary,	Der,	&	Ford,	

2001;	Jensen	&	Munro,	1979;	Vernon,	1983).	However,	it	remains	unclear	why	the	speed	of	a	

response	to	environmental	stimuli	is	related	behaviours	that	demonstrate	intelligence	such	as	

logic	and	reasoning.	

1.5.4	Personality	

	 Depending	on	the	task,	specific	personality	traits	have	been	related	to	reaction	time	

performance.	Personality	can	be	defined	as	the	psychological	structures	that	shape	an	

individual’s	behaviour	and	perceptions.	Personality	traits	are	generally	characterized	as	being	

stable	and	consistent	regardless	of	the	context	of	the	environment	Naturally,	researchers	have	

studied	whether	or	not	the	psychological	makeup	of	an	individual	has	a	profound	influence	on	

speed	of	processing.	A	popular	personality	theory	has	been	to	divide	an	individual’s	personality	

into	‘traits’	or	“internal	attributes	or	behavioural	dispositions	reflective	of	underlying	

biopsychological	constructs”	and	relate	them	to	other	measures	of	cognition	(Lox,	Ginis,	&	

Petruzzello,	2006).	The	literature	shows	that	these	traits	each	have	a	distinct	difference	

between	each	other	when	it	comes	to	speed	of	processing.	For	instance,	introverts	perform	
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faster	in	tasks	considered	monotonous	and	require	long	periods	of	sustained	attention	while	

extroverts	are	quicker	in	more	active	tasks	(Corcoran,	1972).	Neuroticism,	a	trait	connected	to	

variable	behaviour	and	cognition	is	positively	correlated	to	reaction	time	variability	(Robinson	&	

Tamir,	2005).	Certainly,	the	psychological	attributes	of	an	individual	have	an	effect	on	the	

biological	processes	of	information	processing.	

1.5.5	Physical	fitness		

Studies	have	clearly	revealed	that	exercise	provides	benefits	in	not	just	physical	health,	

but	also	in	a	number	of	CNS	functions	(Hillman,	Erickson,	&	Kramer,	2008).	The	effects	of	

physical	activity	on	the	central	nervous	system	implies	that	fitness	levels	are	an	important	

factor	in	measurements	of	cognition	such	as	reaction	time.	Reaction	times	of	athletes,	

compared	to	non-athletes,	can	be	significantly	faster,	possibly	due	to	their	higher	levels	of	

physical	activity	(Spirduso,	1980).		The	relationship	between	physical	activity	and	improved	

reaction	time	performance	carries	over	in	old	age	where	physical	activity	seems	to	provide	a	

protective	effect	to	age	related	cognitive	decline	(Baylor	&	Spirduso,	1988;	Spirduso,	1975).	

Specifically,	long-term	changes	in	the	structure	of	various	brain	regions	(Chaddock	et	al.,	2010;	

Erickson	et	al.,	2011)	have	been	proposed	as	a	potential	mechanism	to	explain	these	benefits.	

1.5.6	Genetics	

	 Molecular	genetics	provides	another	approach	to	linking	behavioural	measures	of	

information	processing	to	its	neurophysiological	origins.	While	genes	do	not	directly	account	for	

behaviour,	they	do	provide	a	blueprint	for	the	coding	of	proteins	that	can	significantly	influence	

how	the	CNS	functions	and	potentially	influence	the	speed	of	processing.	The	influence	of	
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genetics	may	well	be	expressed	through	a	range	of	possible	factors	that	might	influence	

reaction	including	the	factors	listed	above	(e.g.	personality,	arousal,	attention).			

	 Results	from	twin	studies	have	revealed	that	at	least	part	of	information	processing	

performance	is	heritable	(Beaujean,	2005;	McGue,	Bouchard,	Iacono,	&	Lykken,	1990;	Spinath,	

Angleitner,	Borkenau,	Riemann,	&	Wolf,	2002).	However,	this	does	not	provide	information	on	

which	specific	genes	have	an	effect	on	speed	of	processing.	Thus,	studies	exploring	candidate	

genes	have	provided	a	base	for	potential	sources	of	reaction	time	performance.	Potential		

candidate	genes	including	those	that	code	for:	catechol-O-methyltransferase	(COMT),	D4	

dopamine	receptor	(DRD4)	and	apolipoprotein	E	(APOE)	are	discussed	in	more	detail	in	the	next	

sections.	

1.5.6.1	COMT	

The	rs4680	(val158met)	genetic	variant	is	a	well	studied	single	nucleotide	polymorphism	

of	the	COMT	gene,	which	codes	for	the	catechol-O-methyltransferase	responsible	for	

metabolising	catecholamines.	The	Met	variant	is	associated	with	slower	enzyme	action	than	the	

Val	variant,	which	causes	dopamine	to	be	present	in	the	synapse	for	longer	periods	of	time	

(Grossman,	Szumlanski,	Littrell,	Weinstein,	&	Weinshilboum,	1992),	suggesting	that	COMT	

function	influences	synapse	time.	Its	association	with	levels	of	dopamine	in	the	frontal	lobe	

have	therefore	been	connected	to	cognitive	functions	such	as	performance	of	executive	

function	(Barnett,	Jones,	Robbins,	&	Müller,	2007;	M	F	Egan	et	al.,	2001),	and	memory	(Wang	et	

al.,	2013).	However,	previous	studies	have	found	conflicting	results	on	the	association	of	this	

gene	with	information	processing	speed	suggesting	better	performance	with	both	Met	carriers	

(Stefanis	et	al.,	2005)	and	Val	carriers	(Haraldsson	et	al.,	2010;	Saville	et	al.,	2014).The	reason	
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for	this	debate	likely	stems	from	the	fact	that	Haraldsson	et	al.	(2010)	used	an	antisaccade	task,	

which	is	meant	to	test	the	ability	to	inhibit	a	response	that	is	usually	compatible	with	the	

stimulus	while	producing	an	incompatible	response	while	Saville	et	al.	(2014)	similarly	used	an	

inhibition	response	task	in	the	form	of	an	n-back	test.	Stefanis	et	al.	(2005)	however	utilized	a	

task	that	did	not	require	response	inhibition.	Behaviour	such	as	balance	control	or	obstacle	

avoidance	require	responses	that	are	consistent	with	the	stimulus	and	therefore	it	is	

hypothesized	that	Met	carriers	are	the	faster	performers	for	tasks	that	have	high	stimulus-

response	compatibility.	

	1.5.6.2	DRD4	

The	DRD4	gene	codes	for	the	D4	dopamine	receptor.	Variants	of	the	gene	are	associated	

with	attention	impairments	and	the	DRD4-7	repeat	allele	in	attention	deficit	hyperactivity	

disorder	(ADHD)	patients	is	the	most	commonly	studied	polymorphism	(Li,	2006).	Its	link	to	

attention	has	been	shown	in	clinical	populations	of	patients	with	ADHD	where	the	7-repeat	

allele	is	associated	with	poorer	performance	on	a	sustained	attention	reaction	time	task.	

Specifically,	more	errors	were	made	and	larger	moment-to-moment	variability	was	observed	

(Johnson	et	al.,	2008).	It	is	proposed	that	these	behavioural	symptoms	are	a	result	of	a		

decreased	sensitivity	to	dopamine	molecules	in	carriers	of	the	7-repeat	allele	(Szekely	et	al.,	

2011).	In	terms	of	reaction	time,	a	decreased	sensitivity	would	result	in	a	neurotransmitter	

molecule	producing	a	decreased	amount	of	excitatory	post-synaptic	potential	when	binding	to	

the	receptor.	The	decreased	rate	of	potential	change	means	it	would	take	longer	to	reach	

membrane	threshold	to	propagate	an	action	potential.	
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1.5.6.3	APOE		

Apolipoprotein	E	(APOE)	has	emerged	as	one	of	the	most	well-studied	gene	in	the	CNS.	

While	APOE	is	also	produced	in	the	periphery,	its	production	in	the	CNS	occurs	mostly	by	

astrocytes.	The	APOE	gene	codes	for	apolipoprotein	E,	which	serves	as	a	transporter	of	

cholesterol	by	binding	to	neurons	with	APOE	receptors..	In	humans,	there	are	three	major	

isoforms	that	differ	by	1	or	2	amino	acids	at	position	112	and	158:	APOE	2,	APOE	3,	and	APOE4.	

APOE	2	has	cysteine-112	and	cysteine-158,	APOE	3	has	cysteine-112	and	arginine-158,	and	

APOE	4	has	arginine-112	and	arginine-158	(Liao,	Yoon,	&	Kim,	2016).	The	APOE	4	allele	has	

been	identified	and	viewed	as	the	strongest	risk	factor	for	developing	Alzheimer’s	disease	

(Beffert	et	al.,	1998;	Kanchibhotla	et	al.,	2013).	One	of	the	distinct	characteristics	of	the	CNS	in	

an	individual	with	Alzheimer’s	disease	is	the	accumulation	of	amyloid	β.	It	is	hypothesized	that	

there	is	a	link	related	to	the	interaction	between	amyloid	β	and	APOE	that	underlies	the	

development	of	Alzheimer’s	disease	that	alters	the	accumulation	and	clearance	of	amyloid	β.	In	

relation	to	speed	of	processing,	it	has	been	shown	that	slowed	reaction	time	in	both	the	fastest	

and	slowest	components	of	the	distribution		is	characteristic	of	individuals	with	Alzheimer’s	

disease	(Gordon	&	Carson,	1990).	Therefore	APOE	4	may	be	an	important	biomarker	for	

decreased	reaction	time	in	younger	adults.	

In	the	brain,	cholesterol	constitutes	an	important	element	of	myelin,	the	white	matter	

substance	that	insulates	axons	for	the	purpose	of	increasing	the	speed	of	electrical	signals	

down	an	axon.	The	importance	of	maintaining	the	integrity	of	white	matter	is	seen	in	diffusion	

tensor	imaging	results	that	reveal	structural	differences	in	white	matter	of	healthy	adults	was	

associated	with	working	memory	decline	and	cognitive	instability	(Charlton,	Schiavone,	Barrick,	
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Morris,	&	Markus,	2010;	Fjell,	Westlye,	Amlien,	&	Walhovd,	2011).	The	role	of	APOE	may	be	

initially	thought	to	play	a	factor	considering	its	function	as	a	lipoprotein.	However,	APOE	variant	

may	not	be	related	to	the	speed	of	axonal	signal	propogation.	For	instance,	evidence	from	

APOE	knockout	mice	reveal	that	in	the	periphery,	there	was	a	reduced	number	of	unmyelinated	

axons	only	and	myelinated	axons	remained	at	normal	levels	(Fullerton,	Strittmatter,	&	

Matthew,	1998).	Therefore,	while	APOE	is	related	to	cholesterol	transport,	its	effect	on	

conduction	velocity	in	myelinated	axons	of	the	brain	does	not	provide	a	mechanism	for	reduced	

reaction	times.		Rather,	it	is	possible	that	APOE	can	have	influence	on	reaction	time	through	its	

effect	on	synaptic	acetylcholine	release.	One	study	demonstrated	APOE	4	in	12-month	old	mice	

had	reduced	acetylcholine	release	in	the	hippocampus(Dolejší	et	al.,	2016).	Reduced	

acetylcholine	release	in	the	synapse	may	indicate	that	delayed	reactions	are	due	to	a	decrease	

in	the	amount	of	neurotransmitter	binding	to	receptors	on	a	post-synaptic	cell.	This	would	

possibly	lead	to	a	reduction	in	the	rise	of	membrane	potential	to	reach	action	potential	

threshold.	Considering	that	this	can	occur	over	synapses	over	an	entire	network,	between	

subject	variability	can	be	accounted	for	biologically	at	the	level	of	the	synapse.	

	

1.6	Between	subject	variability	

	 As	noted	earlier,	the	focus	of	the	current	study	is	directed	to	advancing	understanding	

of	the	sources	of	between	subject	variability	in	speed	of	processing.	Dispersion	of	data	points,	

also	known	as	statistical	variability,	is	an	inherent	characteristic	of	behavioural	data,	including	

reaction	time.	The	challenge	is	that	variability	can	and	has	been	expressed	in	two	main	ways:	1)	

within	subject	variability	that	occurs	from	trial	to	trial	typically	defined	as	the	standard	
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deviation	and	2)	traditional	central	tendency	measures	such	as	the	mean	and	median.	Trial	to	

trial	variation	in	reaction	time,	may	appear	initially	to	be	associated	with	unaccountable	

biologic	randomness,	however	some	have	made	a	clear	argument	for	the	biologic	importance	

of	such	variation	as	described	in	the	linear	approach	to	threshold	with	ergodic	rate	model	

(LATER)	(Noorani	&	Carpenter,	2016;	Reddi	&	Carpenter,	2000).	The	LATER	model	provides	a	

fundamental	description	of	the	mechanism	for	how	reaction	times	can	vary.	In	essence,	

reaction	time	is	a	process	that	proceeds	to	completion	of	some	signal	threshold	(ST)	that	

initiates	the	response.	The	time	to	reach	this	threshold	is	determined	by	two	variables:	the	

initial	value	of	the	signal	(S0)	and	the	rate	the	signal	rises	(r).	The	baseline	value	of	the	signal	(S0)	

will	dictate	how	much	the	signal	must	rise	to	achieve	threshold.	The	higher	the	initial	S0,	the	

less	time	it	takes	to	produce	a	response	and	the	faster	the	reaction	time.	The	linear	rate,	r,	at	

which	this	signal	rises	will	also	determine	reaction	time.	If	‘r’	is	allowed	to	vary,	then	the	time	it	

takes	to	reach	the	threshold	signal	will	change	depending	on	the	slope	of	the	linear	rise.	Figure	

1.1	shows	a	depiction	of	this	model	(Noorani	&	Carpenter,	2016).	Biologically,	this	means	that	

varying	reaction	time	is	a	product	of	factors	that	influence	this	model.	For	example,	conduction	

velocity	and	synapse	delay	both	affect	the	rate	at	which	the	signal	rises	to	reach	threshold.	The	

role	of	genetics,	specifically	APOE	in	its	function	of	supporting	the	development	of	myelin,	and	

DRD4	and	COMT	in	their	functions	at	the	synapse	may	be	important	markers	of	variability	that	

work	through	the	mechanisms	described	in	the	LATER	model.		
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Figure	1.1:	A	depiction	of	the	LATER	Model.	Following	a	stimulus,	the	time	it	takes	to	make	a	
response,	or	reach	a	threshold	ST	is	determined	by	the	rate,	r,	of	the	signal	and	initial	value	of	
the	signal	S0.	Altering	one	of	these	variables	will	lead	to	different	reaction	time	results	
(Adapted	from	Noorani	&	Carpenter,	2016).	
	

Understanding	of	the	sources	of	variation	is	considered	an	important	step	in	advancing	

understanding	in	the	control	of	behaviour	even	though	the	primary	focus	comparing	across	

tasks	and	groups	is	with	respect	to	difference	in	central	tendency	(means/median).		The	

importance	of	variability	is	highlighted	not	only	by	the	nature	of	the	distribution	of	within	

subject	trial	to	trial	variability	but	also	the	considerable	reaction	time	variability	seen	within	

otherwise	homogenous	group	of	individuals	suggests	a	potentially	important	person-specific	

contribution	to	speed	of	processing	(between	subject	differences).	For	example,	Hultsch	et.	al	

(2002)	examined	reaction	time	differences	between	individuals	of	the	same	age	group	on	a	

single	task	and	found	that	while	the	older	adults	group	show	larger	standard	deviations,	
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individual	differences	are	pervasive	throughout	all	age-specific	populations,	including	young	

healthy	adults.	The	implications	for	understanding	the	source	for	such	between	subject	factors	

is	important	because	between	subject	variability	may	provide	additional	insight	to	speed	of	

processing	not	seen	in	more	traditional	methods.	For	example,	it	may	explain	why	certain	

individuals	are	slower	or	faster	than	others	in	the	same	everyday	tasks	which	may	link	to	

performance	metrics	and	or	injury	risk.	Exploring	the	markers	that	account	for	between	subject	

variability	may	also	be	relevant	in	predicting	risk	of	injury	or	cognitive	decline	due	to	decreased	

speed	of	processing.	For	instance,	baseline	performance	of	reaction	time	predicted	cognitive	

outcomes	5	years	later	in	a	population	of	older	adults	(Bielak,	Hultsch,	Strauss,	Macdonald,	&	

Hunter,	2010).	

	 Between	subject	variability	could	be	accounted	for	from	two	sources	as	mentioned	in	

Section	1.5	and	Table	1.1:		1)	task-related	factors	specific	to	the	attributes	of	a	particular	

reaction	time	process	and	2)	person-specific	factors	that	are	connected	to	the	characteristics	of	

an	individual	that	are	not	associated	to	a	specific	task.	The	challenge	in	observing	person-

specific	factors	influencing	between	subject	differences	is	they	could	also	be	dependent	on	

time-varying	or	time	stable	variables.	Person-specific,	time	varying	variables	are	defined	as	

factors	that	fluctuate	moment	to	moment	on	a	short	term	basis	(e.g.	trial	to	trial	and	day	to	

day).	In	contrast,	time	stable	variables	are	factors	that	are	person-specific	as	well	but	are	fixed	

in	their	influence	on	a	long	term	basis	(e.g.	months	and	years)	such	as	age,	gender,	and	

genetics.	As	an	example	of	time-varying	differences,	quality	of	sleep	and	stress	levels	which	can	

change	day	to	day	are	significant	when	it	comes	to	affecting	reaction	time	performance	

(Langner	et	al.,	2010;	Panayiotou	&	Vrana,	2004;	Philip	et	al.,	2004).	Indeed,	between	subject	
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differences	could	be	associated	with	differences	in	arousal	and	attention	that	could	vary	both	

within	and	between	people	depending	on	the	situation.	As	a	result,	to	understand	the	

biological	determinants	of	reaction	time	one	must	first	determine	the	stability	of	repeated	

testing	within	a	person	under	similar	conditions.	If	between	subject	differences	simply	reflect	

these	time-varying	factors	that	fluctuate	and	change	between	people	at	different	times,	then	

the	test-test	reliability	should	be	poor	in	comparison	to	between	subject	variability.	

Interestingly,	reliability	studies	of	reaction	time	suggest	that	measures	are	moderately	

consistent	between	weeks	and	seasons	implying	that	differences	are	reproducible	over	many	

sessions	and	that	they	are	indicative	of	time-stable	person	specific	factors	(Eckner	et	al.,	2011;	

Resch	et	al.,	2013;	Saville	et	al.,	2011)	.	However,	these	studies	utilize	either	simple	visual	or	

go/no/go	(response	inhibition)	reaction	time	tasks.	The	stability	in	reaction	time	tasks	that	

require	multiple	available	motor	responses	or	different	modalities	is	not	as	well	documented.	

Furthermore,	most	reliability	studies	of	reaction	time	however	measure	reaction	time	using	

imprecise	methods	such	as	button	presses	that	incorporate	movement	time	into	the	

measurement.	Using	more	precise	methods	such	as	EMG	onset	would	allow	for	confirmation	

that	reaction	time	is	more	representative	of	a	central	process.	Furthermore,	while	it	appears	

that	reaction	time	is	a	reliable	measure,	there	are	few	studies	that	look	also	at	the	reliability	of	

dispersion	metrics	and	will	therefore	also	be	confirmed	in	this	work.			

	 Assuming	person	specific	and	time-stable	factors	in	reaction	time	are	important	

determinants	of	between	subject	variability,	and	given	that	the	modulators	of	reaction	time	

appear	nonspecific	to	task/modality,	then	it	follows	that	between	subject	differences	are	

generalizable	across	tasks	within	a	person.	There	are	few	studies	that	explore	comparisons	
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between	visual	and	auditory	tasks	(Agrawal	&	Kumar,	1993;	C.	W	N	Saville	et	al.,	2011;	Seli,	

Cheyne,	Barton,	&	Smilek,	2012)	while	tactile	tasks	have	not	yet	been	explored.	As	such,	the	

reliability	of	the	reaction	times	across	repeated	testing	should	be	comparable	across	different	

task	conditions,	including	tactile	and	choice	reaction	time	tasks.	Therefore,	in	addition	to	

testing	the	consistency	of	within	a	person,	one	must	also	understand	the	generalizability	of	

reliability	across	task	difficulty	and	stimulus	modality	to	confirm	the	idea	that	if	an	individual	is	

slow	in	one	task	they	will	also	be	slow	in	other	tasks.	

	 Despite	the	evidence	suggesting	the	importance	of	between-subject	differences,	the	

characterization	of	between	subject	differences	have	not	been	widely	explored	as	typical	

reaction	time	results	are	reported	as	the	mean	and	standard	deviation	(Whelan,	2008).		Some	

authors	support	using	a	distribution	analysis	approach	as	it	may	reveal	information	that	

measures	of	central	tendency	are	not	powerful	enough	to	show	(Hervey	et	al.,	2006;	Ratcliff,	

1979).	Analysis	of	the	distribution	in	addition	to	other	measures	of	central	tendency	may	help	

to	uncover	and	explain	individual	differences	as	biologically	significant	information	worth	

exploring.	For	example,	if	one	argues	that	within	subject	variability	is	a	product	of	time-varying	

factors	that	fluctuate	moment	to	moment	for	a	task	and	are	not	related	to	characteristics	of	the	

individual	then	measures	of	dispersion	should	be	independent	of	the	person	as	opposed	to	the	

expected	differences	between	subjects	in	central	tendency.	In	contrast,	within	subject	

variability	may	reflect	a	unique	characteristic	of	the	individuals,	such	as	in	ADHD	patients	with	

impaired	attention	(Castellanos	&	Tannock,	2002;	Johnson	et	al.,	2008)	or	in	a	healthy	

population	that	compares	standard	deviations	of	reaction	time	and	electrocortical	measures	

(Saville	et	al.,	2011)	and	as	such	may	parallel	the	between	subject	differences	expected	in	
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central	tendencies.	The	proposed	work	will	adopt	the	approach	of	exploring	the	between	

subject	differences	in	both	central	tendency	and	dispersion	measurements	to	explore	trait	

specific	relationship	to	reaction	time.				

1.7	Rationale		

	 To	observe	underlying	central	nervous	events,	reaction	time	provides	a	proxy	to	the	

speed	at	which	information	is	processed.	Its	use	as	a	behavioural	measure	is	critical	to	relate	

our	actions	of	daily	life.	The	individual	differences	present	in	reaction	time	data	suggest	that	

there	potentially	exist	important	biological	traits	linked	to	an	individual’s	reaction	time	that	are	

task-independent	and	relatively	stable	over	time.	To	explore	the	individual	(person-specific)	

contributions	to	reaction	time	and	CNS	speed	of	processing,	specifically	those	that	are	time-

stable,	the	current	study	will	adopt	complementary	approaches.	First	the	study	will	confirm	the	

consistency	of	between	subject	differences	across	different	testing	days	and	evaluate	the	

generalizability	of	reaction	time	performance	over	different	modalities	and	days.	Collectively,	

test-retest	reliability	and	generalizability	of	between	subject	differences	across	tasks	would	

provide	support	for	the	importance	of	individual	characteristics	in	contributing	to	reaction	time	

performance.	Second,	the	current	study	is	interested	in	exploring	the	possible	association	

between	reaction	time	and	specific	genetic	polymorphisms.	The	candidate	genes	APOE	and	

COMT	have	been	selected	for	this	study	because	they	have	been	previously	related	to	

performance	in	other	cognitive	tasks	while	also	speculated	to	have	important	functions	in	

determining	conduction	and	synapse	time.	However,	it	is	acknowledged	that	this	is	not	a	

definitive	list	of	genes	that	can	influence	reaction	time	and	that	the	results	reported	in	this	

work	will	require	a	larger	sample	to	match	previous	literature.	Outcomes	from	this	work	will	
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serve	to	help	inform	and	contribute	to	possible	interventions	that	predict	and	explain	

individuals	at	risk	for	injury	due	to	decreased	speed	of	processing	or	possible	between	subject	

variation	in	age-related	or	pathology	related	changes.	

1.8	Study	objectives	and	hypotheses	 	

	 The	specific	objectives	of	this	work	are	to	1)	confirm	the	test-retest	reliability	of	reaction	

time	within	subjects	across	different	days,	2)	to	determine	the	generalizability	of	reaction	time	

across	tasks	and	within	subjects,	and	3)	identify	the	possible	biomarkers	of	individual	

differences	that	relate	to	reaction	times.		

Objective	1:	It	is	hypothesized	that	similar	to	previous	literature,	test-retest	reliability	

over	2	weeks	for	mean	reaction	time	in	both	visual	and	tactile	modalities	will	be	moderate	(r=	

0.6-0.8)	supporting	the	view	that	a	significant	determinant	of	between	subject	variability	is	

associated	with	person	specific	characteristics	that	are	task-independent.		

Objective	2:	It	is	hypothesized	that	there	will	be	a	positive	correlation	between	tactile	

and	visual	reaction	times	across	subjects,	also	indicating	that	relative	performance	is	task-

independent	and	that	the	factors	influencing	one	task	will	have	a	similar	influence	on	one	

another.				

Objective	3:	It	is	anticipated	that	genetics	may	be	an	important	marker	for	reaction	time	

performance.	Although	the	primary	aim	of	this	work	is	to	investigate	the	stability	and	

generalizability	of	reaction	time,	there	is	an	exploratory	interest	in	the	relationship	between	

reaction	time	performance	and	candidate	genes	that	have	a	proposed	biological	role	in	

contributing	to	synapse	and	conduction	times.	Therefore,	the	results	from	this	study	are	not	

meant	to	be	definitive	in	their	conclusions	given	the	small	sample	size	of	this	study.	However,	
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future	work	looking	into	the	genetic	factors	influencing	reaction	time	may	want	to	use	the	

methods	and	results	presented	as	a	guide.		It	is	hypothesized	that	reaction	time	will	be	

significantly	slower	in	individuals	carrying	one	of	the	specific	candidate	genes	(APOE	4,	or	COMT	

Val	alleles)	reinforcing	the	view	that	a	portion	of	the	between	subject	variability	is	associated	

with	these	biologic	differences.	While	APOE	might	not	be	related	to	conduction	velocity	of	

axons,	it	is	still	an	important	component	of	reaction	time	and	therefore	peripheral	nerve	

conduction	velocity	was	measured	to	observe	potential	differences	that	could	account	for	

between	subject	variability	of	reaction	time.	
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Chapter	2:	Materials	and	Methods	
2.1	Participants	

This	study	recruited	19	young	healthy	adults	(age	range	18-31	years;	median	age	21),	11	

females	and	9	males	(Table	2.1).	All	participants	were	graduate	or	undergraduate	students	at	

the	University	of	Waterloo.	A	health	status	form	was	used	for	participants	to	self-report	their	

eligibility	for	the	study.	None	of	the	participants	reported	suffering	from	any	neurological	or	

musculoskeletal	disorder	at	the	time	of	the	experiment	that	would	have	affected	their	ability	to	

complete	the	reaction	time	tasks.	All	subjects	provided	informed,	written	consent	for	this	study	

which	was	approved	by	a	research	ethics	committee	at	the	University	of	Waterloo.	

Information	about	the	participants	was	obtained	through	the	completion	of	

questionnaires	to	account	for	and	measure	other	possible	contributing	factors	to	reaction	time	

performance.	Prior	to	completing	reaction	time	tasks,	participants	completed	the	Godein	

leisure-time	scale	(Godin	&	Shephard,	1997),	the	Eysenck	personality	questionnaire	(Eysenck,	

Eysenck,	&	Barrett,	1985)	that	measured	their	level	of	physical	activity,	and	personality.	A	

higher	score	on	the	respective	questionnaires	indicated	a	personality	characterized	by	higher	

neurotic	behaviour	(Eysenck	et	al.,	1985)	and	physical	activity	(Godin	&	Shephard,	1997).	The	

purpose	of	these	questionnaires	was	to	screen	for	the	relationship	between	these	stable	traits	

and	reaction	time.	Specifically,	individuals	with	higher	neuroticism	scores	were	more	variable	in	

their	reaction	times	(Robinson	&	Tamir,	2005)	and		individuals	that	were	more	physically	active	

were	viewed	as	having	faster	reaction	times	(Baylor	&	Spirduso,	1988;	Spirduso,	1975)		In	

addition,	information	was	recorded	regarding	state	factors	on	each	of	the	two	sessions	that	

could	significantly	contribute	to	performance.	Participants	were	asked	to	provide	information	

on	their	quality	of	sleep	(Buysse	et	al.,	1989),	and	stress	levels	(Cohen,	Kamarck,	&	
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Mermelstein,	1983)	on	the	day	of	each	session	because	of	their	role	in	moment	to	moment	

influence	that	may	have	contributed	to	large	between	day	variability	within	a	subject	(Bagherli	

et	al.,	2011;	Langner	et	al.,	2010)	.	Individual	results	from	each	questionnaire	are	presented	in	

Table	2.1.	
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Table	2.1:	Participant	demographics	and	results	of	the	sleep	questionnaire,	perceived	stress	scale,	neuroticism	score	for	the	Eysenck	
personality	scale,	and	the	Godin	leisure-time	exercise	questionnaire.		
	

Subject	 Age	 Sex	
Quality	of	
Sleep	1	
(hours)	

Quality	of	
Sleep	2	
(hours)	

Perceived	
Stress	Score	1		

(	/40)	

Perceived	
Stress	Score	2		

(	/40)	

Neuroticism	
Score	(	/12)	

Godin	
Exercise	
Score	

1	 26	 M	 7	 7	 5	 16	 8	 30	
2	 25	 F	 7	 7	 14	 9	 4	 36	
3	 31	 F	 7.5	 7	 16	 19	 7	 36	
4	 23	 M	 7.5	 7	 14	 10	 3	 26	
5	 20	 F	 6	 5	 18	 22	 8	 54	
6	 27	 M	 8	 8.5	 27	 8	 2	 35	
7	 23	 M	 8	 9	 18	 4	 3	 29	
8	 25	 M	 6	 7	 10	 13	 3	 67	
9	 18	 F	 9	 7	 12	 13	 1	 15	
10	 21	 F	 6.5	 6.5	 15	 17	 2	 73	
11	 20	 M	 6	 6	 13	 9	 3	 72	
12	 20	 F	 6	 7	 25	 17	 7	 47	
13	 21	 F	 8	 7.5	 21	 15	 11	 40	
14	 20	 F	 8	 9	 20	 25	 1	 49	
15	 22	 M	 9	 9	 10	 7	 2	 36	
16	 21	 F	 7	 7	 27	 13	 10	 57	
17	 18	 F	 7	 7	 15	 18	 4	 51	
18	 21	 F	 7	 6	 23	 18	 6	 18	
19	 27	 M	 8	 8	 22	 25	 7	 45	
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2.2	Protocol	

To	test	hypothesis	1	of	reaction	time	stability	over	repeated	testing	sessions,	subjects	

were	tested	over	2	days.		To	test	hypothesis	2	of	reaction	time	generalizability,	reaction	time	

tasks	of	varying	difficulty	(simple	and	choice)	and	modality	(visual	and	tactile)	were	tested	and	

compared	across	measures	and	within	and	between	days.	

2.2.1	Training	and	testing	sessions	

Participants	attended	a	total	of	3	sessions	for	this	experiment.	The	first	served	as	a	

practice	session	to	familiarize	the	participant	with	the	behavioural	tasks	as	studies	have	shown	

that	reaction	time	is	higher	in	the	initial	trials	of	a	task	due	to	learning	effects	(Ando,	Kida,	&	

Oda,	2002;	Mowbray	&	Rhoades,	1959).	While	one	study	suggests	that	at	least	10	practice	trials	

should	be	used	in	a	tactile	simple	reaction	time	task	(Günendi,	Taskiran,	&	Beyazova,	2005),	

there	is	no	standard	number	of	practice	trials	that	will	ensure	complete	absence	of	learning	

effects	in	reaction	time.	The	tasks	used	in	this	experiment	were	designed	with	the	intent	to	

have	high	stimulus-response	compatibility	to	reduce	the	amount	of	learning	and	thus	the	

number	of	practice	trials	required.	Therefore,	participants		completed	at	a	minimum	20	trials	

for	each	condition	in	the	first	session.	Results	were	recorded	and	visually	inspected	to	observe	

if	performance	has	plateaued,	indicating	that	learning	had	been	reduced.	Behavioural	results	of	

interest	were	taken	from	sessions	2	and	3	which	began	with	20	practice	trials	of	each	condition.	

Time	between	sessions	1	and	2	occurred	within	1-3	days	while	the	time	between	sessions	2	and	

3	occurred	within	7-9	days	of	each	other	to	observe	week	to	week	stability.	In	each	session,	

participants	completed	4	blocks	of	reaction	time	tasks;	two	simple	and	two	choice	reaction	

tasks	for	each	modality	for	a	total	of	8	reaction	time	blocks	per	session.	The	order	of	blocks	
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were	randomized	before	the	beginning	of	the	collection.	20	trials	were	collected	per	block	since	

inter-trial	intervals	are	between	1-6	seconds	and	many	trials	can	be	collected	in	a	short	period	

of	time	without	inducing	fatigue	in	subjects.	One	of	sessions	2	and	3	had	a	collection	start	time	

in	the	A.M.	while	the	other	session	had	a	start	time	in	the	P.M.	to	account	for	the	possibility	of	

time	of	day	as	a	state	factor.		

	

2.2.2	Reaction	time	tasks	

Participants	completed	each	task	while	seated	on	a	height	adjustable	table	so	that	their	

dominant	arm	reached	90	degrees	of	shoulder	abduction.	The	starting	position	for	the	reaction	

time	tasks	was	90	degrees	of	elbow	flexion.	Participants	received	tactile	stimulation	while	

seated	via	an	electrical	pulse	at	an	intensity	of	1.5X	perceptual	threshold	delivered	through	ring	

electrodes	onto	the	middle	and	index	fingers	of	the	non-dominant	hand.	Visual	stimuli	in	the	

form	of	right	and	left	arrows	was	delivered	on	a	computer	screen	in	a	lit	room	positioned	in	

front	of	the	participant.	

Tactile	condition:		Prior	to	the	beginning	of	the	tasks,	instructions	were	provided	

indicating	that	stimuli	from	the	index	finger	are	responded	with	elbow	flexion	using	the	biceps	

muscle,	and	stimuli	from	the	middle	finger	are	responded	with	elbow	extension	using	the	

triceps	muscle.	After	the	ring	electrodes	were	attached,	stimulus	intensity	was	determined	for	

each	finger	individually	by	first	sending	low	voltage	single	pulses	and	increasing	the	amplitude	

until	the	participant	has	perceived	the	stimulus.	Participants	were	then	asked	to	perform	both	

simple	(SRT)	and	choice	reaction	time	tasks	(CRT).	In	SRT,	participants	received	tactile	stimuli	to	

only	the	middle	or	only	the	index	finger	of	the	supinated	non-dominant	hand.	In	these	trials,	
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there	was	always	one	stimulus	and	one	corresponding	response.	In	the	CRT	task,	participants	

were	exposed	to	two	possible	stimuli	with	two	possible	responses.	The	probability	of	for	each	

stimulus	to	occur	in	a	trial	was	at	50%.		After	the	completion	of	each	response,	participants	

returned	their	arm	to	the	original	starting	position	at	90	degrees	of	elbow	flexion.	Successive	

trials	were	separated	by	a	random	foreperiod	of	1-6	seconds	to	eliminate	possible	anticipation	

of	the	stimulus.	

Visual	condition:	Visual	stimuli	were	presented	on	a	computer	screen	as	an	arrow	

pointing	to	the	right	on	the	right	side	of	the	screen,	or	as	a	left	arrow	pointing	to	the	left	on	the	

left	side	of	the	screen.	Responses	were	designed	to	maintain	stimulus-response	compatibility	

with	respect	to	the	spatial	location,	similar	to	that	of	the	tactile	stimuli.	Instructions	were	given	

to	respond	with	an	elbow	flexion	at	the	biceps	muscle	for	arrows	pointing	to	the	left.	Arrows	

pointing	to	the	right	were	asked	to	be	responded	to	by	an	elbow	extension	movement	at	the	

triceps.	Trials	in	each	block	were	separated	by	a	random	foreperiod	of	1-6	seconds.	

In	choice	reaction	time	tasks,	participants	were	exposed	to	blocks	of	visual	or	tactile	

stimuli,	each	having	two	possible	stimuli	and	two	possible	responses.	That	is,	in	visual	blocks,	

participants	were	presented	with	left	and	right	arrows	and	responded	with	an	elbow	flexion	or	

extension.	In	tactile	blocks,	participants	were	presented	with	stimulation	to	the	index	and	

middle	finger	and	responded	with	an	elbow	flexion	or	extension.	In	simple	reaction	time	tasks,	

participants	were	exposed	to	only	one	possible	stimuli	and	one	corresponding	response	which	

was	predetermined	and	described	to	the	participant	before	the	beginning	of	a	testing	block.		
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2.2.3	Nerve	conduction	velocity	test	

A	nerve	conduction	velocity	test	was	conducted	on	the	non-dominant	arm	as	a	possible	

marker	of	between	subject	differences	that	contributes	to	reaction	time	performance.		A	

stimulating	electrode	was	placed	on	top	of	the	ulnar	nerve	to	produce	a	motor	evoked	

potential	recorded	using	EMG	at	the	abductor	digiti	minimi	muscle	(Figure	2.1).	The	distance	

between	the	stimulating	electrode	and	the	recording	electrode	was	measured	in	order	to	

calculate	conduction	velocities.	The	ulnar	nerve	was	stimulated	at	1.5X	motor	threshold	for	10	

trials	with	random	foreperiods	of	1	to	6	seconds	between	trials.	

	

2.3	Measurements	

2.3.1	Electromyography	

	Electromyography	(EMG)	was	collected	from	the	biceps	brachii	muscle	and	the	triceps	

for	the	reaction	time	task,	and	from	the	abductor	digiti	minimi	muscle	for	the	conduction	

velocity	test	(Figure	2.1).	The	skin	over	these	muscles	were	cleaned	with	Nuprep	and	alcohol	to	

reduce	dirt,	oil,	and	dead	skin	cells	that	may	have	impeded	the	signal.	Silver/silver	chloride	

electrodes	were	placed	over	each	muscle	belly.	Data	was	collected	at	a	frequency	of	1000	Hz.		

EMG	data	was	filtered	using	a	2nd	order	dual	pass	Butterworth	filter	from	30-300Hz	and	

full	wave	rectified.	Reaction	times	and	conduction	velocities	were	obtained	by	a	custom-made	

Labview	program.	EMG	onset	was	defined	as	when	the	amplitude	exceeds	3	standard	

deviations	of	the	previous	100ms	of	activity	for	more	than	25	milliseconds.	Trials	where	there	

appears	to	be	significant	pre-stimulus	EMG	activity	or	co	contraction	of	the	recorded	muscles	

were	eliminated	due	to	effect	that	muscular	tension	has	on	shortening	reaction	times	(Araki	&	
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Choshi,	2006;	Etnyre	&	Kinugasa,	2002).	Errors	were	denoted	as	the	occurrence	of	pattern	of	

EMG	activity	that	was	not	consistent	with	the	stimulus	(e.g.	initial	muscle	contraction	was	

observed	ion	the	wrong	muscles).	These	trials	were	removed	from	the	analysis.	
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Figure	2.1:	A	sample	time	series	trace	for	the	collection	of	one	trial	of	reaction	time	and	
conduction	time.	A:	A	sample	trace	of	the	reaction	time	task	depicting	a	biceps	EMG	response	
following	the	presentation	of	a	tactile	or	visual	stimulus.	Reaction	time	is	calculated	as	the	
period	of	time	between	the	onset	of	a	stimulus	to	the	onset	of	an	EMG	response.	B:	A	sample	
trace	of	the	nerve	conduction	velocity	task.	Following	ulnar	nerve	stimulation	at	the	elbow,	an	
EMG	response	is	elicited	at	the	abductor	digiti	minimi	muscle.	Conduction	time	is	calculated	as	
the	period	of	time	between	the	onset	of	a	stimulus	to	the	onset	of	an	EMG	response.	To	
calculate	conduction	velocity,	the	distance	between	the	elbow	and	the	proximal	EMG	electrode	
is	divided	by	the	conduction	time.	 	
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2.3.2	Genotyping	

	Saliva	samples	were	collected	in	anonymized	spit	cards	and	genotyped	for	

apolipoprotein	E	(APOE)	polymorphisms	(rs429358,	rs7412)	and	catechol-o-methyl	transferase	

(COMT)	Val158Met	polymorphisms	(rs4680).	While	this	study	initially	intended	to	genotype	the	

DRD4	7-repeat	allele,	assays	were	not	available	at	the	time	the	study	was	conducted.		DNA	

samples	were	amplified	using	polymerase	chain	reaction	with	TaQMan	single	nucleotide	

genotyping.	This	process	was	used	to	amplify	specific	DNA	sequences	and	using	fluorescence	to	

quantify	the	amount	of	the	sequence	of	interest.	A	solution	of	DNA,	primers,	Taq	polymerase,	

free	nucleotides,	and	probes	containing	fluorescent	dyes	(FAM	and	VIC)	were	combined.	The	

solution	is	then	heated	to	94°C	to	allow	for	the	DNA	to	unwind.	This	is	followed	by	a	cooling	

stage	that	reaches	60°C	that	is	then	heated	to	72°C	to	allow	for	the	annealing	of	primers	and	

the	attachment	of	nucleotides	to	single	strand	DNA	by	Taq	polymerase.	These	steps	are	then	

repeated	for	20-40	cycles	to	obtain	multiple	copies	of	DNA.	The	probes	with	fluorescent	dye	are	

annealed	to	their	respective	sequence	and	emit	a	fluorescent	signal	once	they	have	been	

cleaved	by	Taq	polymerase.	The	recording	of	this	fluorescent	signal	allows	for	the	quantification	

of	which	sequence	is	present	in	the	DNA	sample.	Table	2.1	provides	a	summary	of	the	VIC/FAM	

labelling	system	used	and	Table	2.2	shows	the	corresponding	gene	variants.	

Table	2.1:	VIC/FAM	labelling	system	for	APOE	429358,	APOE	7412,	and	COMT	4680	
Gene	 Signal	 Base	

APOE	429358	 VIC	
FAM	

C	
T	

APOE	7412	 VIC	
FAM	

C	
T	

COMT	4680	 VIC	
FAM	

A	
G	
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Table	2.2:	List	of	possible	gene	variants	for	APOE	and	COMT	
Gene	 Base	 Variant	

APOE	

TT/CC	
CC/CC	
CT/CC	
CT/CT	
TT/TT	
TT/CT	

3/3	
4/4	
3/4	
2/4	
2/2	
2/3	

COMT	
AA	
AG	
GG	

Met/Met	
Met/Val	
Val/Val	

	

2.4	Statistical	analyses	

Reaction	time	was	used	as	the	primary	dependent	variable.		In	total	there	were	80	trials	

collected	on	each	task	per	person	over	the	two	sessions	for	a	total	of	320	trials.	Trials	were	

excluded	if	there	was	an	error	in	responding	with	the	correct	movement.	Individual	error	rates	

were	found	to	range	from	0	–	8.75%	of	all	trials	for	the	choice	tactile	task,	and	0-6.25%	for	the	

choice	visual	task.		Note	that	trials	in	which	an	error	occurred	were	removed	only	from	choice	

reaction	time	trials	(no	errors	coded	in	simple	reaction	time).	

	

2.4.1	Primary	analysis	 	

To	address	objective	1,	test-retest	reliability	scores	of	mean	and	standard	deviation	of	

reaction	time	was	determined	by	calculating	the	intra	class	correlation	between	days	for	all	

tasks	(simple	visual,	choice	visual,	simple	tactile,	choice	tactile).	The	minimum	required	sample	

size	for	this	study	(12	subjects)	was	based	on	recommendations	outlined	by	Walter	et.	al	(1998)	

for	test-retest	reliability	studies	for	an	alpha	level	of	.05	with	80%	power.	
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To	address	objective	2	a	Pearson	product	moment	coefficient	correlation	was	calculated	

to	observe	the	potential	relationship	between	performance	of	simple	and	choice	reaction	time	

tasks	within	the	same	modality	as	well	as	across	different	modalities.		This	was	conducted	to	

determine	whether	between	subject	variability	was	consistent	and	generalizable	across	

different	tasks.	Statistical	significance	was	set	at	an	alpha	level	of	0.05.	

To	address	objective	3,	to	explore	possible	contributions	of	genetics	as	biological	

markers	of	speed	of	processing	and	their	potential	roles	in	determining	conduction	and	synapse	

time	in	speed	of	processing	as	described	in	objective	3,	separate	two-way	mixed	ANOVAs	were	

calculated	to	determine	differences	in	mean	and	standard	deviation	of	reaction	time	between	

carriers	of	each	allele	for	COMT	and	APOE.	Statistical	significance	was	set	at	an	alpha	level	of	

0.05.		

2.4.2	Secondary	analysis	

	 A	secondary	analysis	was	set	out	to	determine	if	peripheral	conduction	velocity	is	also	

associated	with	the	APOE	gene	as	there	is	speculation	it	may	influence	conduction	velocity,	one	

of	the	neurophysiological	determinants	of	reaction	time.	APOE	genotyping	would	be	

complemented	by	conduction	velocity	results	to	also	investigate	the	efficacy	of	using	peripheral	

nerve	conduction	velocity	to	predict	central	conduction	velocity.	Therefore,	a	Pearson	product	

moment	correlation	coefficient	was	calculated	to	observe	the	possible	association	between	

conduction	velocity	and	reaction	time.	Statistical	significance	was	set	at	an	alpha	level	of	0.05.	
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Chapter	3:	Results		

3.1	Reaction	time	performance	across	tasks	

	 Figure	3.1	displays	mean	reaction	times	across	the	different	tasks.	Note	that	

participants’	performance	for	each	task	includes	the	results	from	session	1	and	session	2.	

Overall,	choice	reaction	times	were	significantly	slower	than	simple	reaction	times	(CRT	–	310.3	

ms;	SRT	237.9	ms;	F(1,18)	=	286.05,	p	>	.0001).		Overall,	there	were	no	statistically	significant	

differences	when	comparing	reaction	times	evoked	by	an	auditory	versus	a	visual	stimulus	

(Auditory	–	280.2	ms;	Visual	–	268.1	ms;	F(1,18)	=	2.29,	p	=	0.15).		However,	as	evident	in	Figure	

3.1,	there	was	a	significant	interaction	effect	between	tasks	(simple/choice)	and	modality	

(auditory/visual)	(F(1,18)	=	87.66,	p>	0.0001).	A	post-hoc	Tukey’s	honestly	significance	difference	

test	revealed	tactile	reaction	time	was	faster	than	the	visual	modality	for	simple	reaction	time	

while	tactile	reaction	times	were	slower	than	visual	reaction	times	in	the	choice	task	condition	

(p	<	0.05).		
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Figure	3.1:	Average	reaction	times	across	both	post-training	sessions	across	all	participants	for	
tactile	and	visual	reaction	time	tasks.	Error	bars	display	the	standard	deviation.	Asterisk	
denotes	a	statistical	significance	(p>.05).		
	
3.2	Between	day	consistency		

Between	day	intra	class	correlations	(ICC)	of	reaction	time	means	for	each	task	are	

presented	in	Table	3.1.	The	range	of	each	task	indicates	the	large	between	subject	variability	

that	is	present	in	this	sample	of	young,	healthy	adults.	ICC	values	were	0.82,	0.77,	0.78,	and	

0.82	for	CRT	tactile,	SRT	tactile,	CRT	visual,	and	SRT	visual,	respectively.	In	addition,	ICCs	on	the	

coefficient	of	variation	for	the	same	set	of	tasks	were	found	to	be	0.25,	0.54,	0.57,	and	0.53.	

Figure	3.2	provides	a	graphical	representation	of	day	to	day	changes	in	reaction	time	for	each	

subject	on	each	of	the	4	tasks	ordered	by	subject	in	ascending	order	of	speed,	displaying	the	

both	the	spread	of	unique	performance	differences	across	individuals	as	well	as	within-

individual	reaction	time	differences	over	the	two	testing	periods.	In	addition,	Table	3.2	
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summarizes	all	individuals’	between	day	differences	for	each	task	and	demonstrates	the	

inconsistent	pattern	of	reaction	time	changes	for	within	subject	variability	across	tasks.	For	

instance,	Subject	1’s	between	day	differences	for	the	choice	visual	task	reaction	time	

performance	was	faster	on	day	1	than	it	was	on	day	2	(28.6	ms	faster	day	1).	However,	the	

opposite	trend	is	seen	for	the	simple	visual	task	(73.1	ms	faster	on	day	2).	

In	addition	to	the	ICCs	that	summarize	the	test-retest	reliability	for	all	participants,	a	

secondary	informal	analysis	was	conducted	to	better	understand	why	certain	individuals	varied	

more	between	sessions	than	others	as	well	as	highlight	the	large	within	subject	variability	of	

reaction	times	from	moment	to	moment.	In	order	to	observe	the	portion	of	participants	with	

the	largest	differences	between	days	for	each	task,	the	top	5	participants	(75th	percentile)	with	

the	largest	reaction	time	difference	between	days	were	analyzed	to	see	how	different	parts	of	

the	distribution	changed.	Individual	trials	from	both	sessions	were	then	sorted	from	fastest	to	

slowest.	Individual	examples	of	this	analysis	is	summarized	in	Figure	3.3.	Visual	inspection	

approximated	that	distribution	changes	occurred	either	through	a	large	increase	in	the	slowest	

trials	only	or	through	a	large	increase	in	all	parts	of	the	distribution.	
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Table	3.1:	Summary	of	performance	for	all	participants.	Mean,	standard	deviation,	and	range	
are	calculated	separately	for	day	1	and	day	2	for	each	task.	Separate	intraclass	correlations	
were	calculated	using	the	mean	and	coefficient	of	variation.	

Task	 Mean	(ms)	±	SD	 Range	(ms)	
ICC	

!	 CV	

CRT	Tactile	
1	 320.7	±	44.5	 165.4	

0.82	 0.25	
2	 331.5	±	60.6	 215.4	

SRT	Tactile	
1	 204.3	±	35.9	 109.3	

0.77	 0.54	
2	 215.7	±	41.7	 165.2	

CRT	Visual	
1	 292.5	±	29.2	 137.4	

0.78	 0.57	
2	 296.7	±	37.5	 164.9	

SRT	Visual	
1	 267.1	±	46.0	 214.4	

0.82	 0.53	
2	 264.4	±	35.4	 142.7	
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A)	Choice	reaction	time	-	tactile	stimulus	

	
B)	Simple	reaction	time	-	tactile	stimulus	

	
C)	Choice	reaction	time	-	visual	stimulus	

	

D)	Simple	reaction	time	-	visual	stimulus		

	

Figure	3.2:	Mean	reaction	time	for	day	1	and	day	2	for	each	individual	participant.	Participants	
are	ordered	from	fastest	to	slowest	based	on	their	performance	on	the	first	day	for	A)	Choice	
tactile,	B)	Simple	tactile,	C)	Choice	visual	and	D)	Simple	visual	tasks.	
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A)	

	

B)	

	

Figure	3.3:	The	top	5	subjects	for	each	task	with	the	largest	difference	between	days	had	their	
reaction	time	performance	expressed	as	individual	trials	ordered	from	fastest	to	slowest.	The	
above	graphs	depict	a	summary	of	how	differences	between	days	are	characterized.	A)	The	
fastest	trials	do	not	change	between	days	and	the	large	difference	is	due	to	differences	in	the	
slowest	tail	of	the	distribution.	B)	Systematic	differences	in	reaction	time	across	all	trials.	
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Table	3.2:	Individual	differences	in	average	reaction	time	(ms)	from	day	1	to	day	2	across	all	
tasks.	A	negative	value	indicates	that	performance	was	faster	on	day	1.	
	

	 Average	change	in	reaction	time	(ms)	from	day	1	and	day	2	

Subject	 CRT	visual	 SRT	visual	 CRT	tactile	 SRT	tactile	

1	 -28.6	 73.1	 -29.1	 8.8	

2	 26.3	 0.3	 4.9	 16.2	

3	 -27.7	 -6.0	 -23.0	 -8.5	

4	 0.7	 -30.1	 -6.1	 -47.4	

5	 -37.2	 -3.0	 -20.6	 -20.1	

6	 15.4	 31.8	 20.0	 13.5	

7	 -21.8	 10.0	 -35.7	 4.7	

8	 -17.6	 7.9	 -2.2	 -26.9	

9	 -37.9	 -37.5	 -55.7	 -59.5	

10	 -8.4	 -17.6	 -5.9	 -50.1	

11	 20.0	 23.2	 45.4	 7.9	

12	 -15.8	 0.7	 -18.0	 -29.0	

13	 -19.3	 -34.7	 -3.6	 -6.7	

14	 -8.1	 -12.3	 -48.6	 -6.9	

15	 33.4	 20.6	 20.9	 33.5	

16	 25.8	 9.8	 -20.7	 -13.8	

17	 -1.1	 4.2	 38.4	 -24.7	

18	 6.6	 10.2	 -73.5	 10.7	

19	 15.5	 1.4	 8.0	 -18.7	
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3.3	Association	of	reaction	times	between	tasks		

To	reveal	the	association	of	reactions	between	tasks	Pearson	product	moment	

correlation	coefficients	were	conducted	for	each	combination	of	task	(Table	3.3).	The	data	

shows	that	there	are	positive	relationships	when	comparing	any	two	tasks.	Within	modality	

comparisons	all	reached	significance	of	p<.05	(Table	3.3A,	C).	The	correlation	coefficients	range	

from	r=	0.62-0.87	for	tactile	comparisons	and	visual	comparisons.	However,	comparisons	did	

not	all	reach	significance.	Of	the	16	cross-modality	comparisons	calculated,	4	did	not	reach	

significance.	Furthermore,	the	range	of	significant	correlation	coefficients	were	weaker	than	

the	within	modality	comparisons	(r=	0.39	–	0.62)	(Table	3.3B).	
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Table	3.3:	Pearson	product	moment	correlation	coefficients	for	all	task	comparisons.	The	
number	on	the	task	name	indicates	the	session	the	task	was	completed	in.	P-values	are	shown	
beneath	the	correlation	coefficient	(n=	19).	
	
A)	Within-tactile	comparisons	

	

B)	Cross-modal	comparisons	

	
C)	Within-visual	comparisons	

Task	 CRT	tactile	1	 CRT	tactile	2	 SRT	tactile	1	 SRT	tactile	2	

CRT	tactile	1	
-	

0.87	
<.0001	

0.73	
0.0004	

0.62	
0.0046	

CRT	tactile	2	 0.87	
<.0001	 -	

0.70	
0.0011	

0.64	
0.0030	

SRT	tactile	1	 0.73	
0.0004	

0.69	
0.0011	 -	

0.81	
<.0001	

SRT	tactile	2	 0.62	
0.0046	

0.64	
0.0030	

0.81	
<.0001	 -	

Task	 CRT	Tactile	1	 CRT	Tactile	2	 SRT	Tactile	1	 SRT	Tactile	2	

CRT	Visual	1	 0.39	
0.10	

0.35	
0.14	

0.52	
0.024	

0.24	
0.32	

CRT	Visual	2	 0.46	
0.046	

0.54	
0.017	

0.51	
0.027	

0.45	
0.054	

SRT	Visual1	 0.49	
0.031	

0.54	
0.016	

0.60	
0.0070	

0.41	
0.083	

SRT	Visual	2	 0.43	
0.066	

0.62	
0.0047	

0.55	
0.014	

0.61	
0.0058	

Task	 CRT	Visual	1	 CRT	Visual	2	 SRT	Visual	1	 SRT	Visual	2	

CRT	Visual	1	
-	

0.80	
<.0001	

0.73	
0.0004	

0.62	
0.0046	

CRT	Visual	2	 0.80	
<.0001	 -	

0.69	
0.0011	

0.64	
0.0030	

SRT	Visual1	 0.86	
<.0001	

0.86	
<.0001	 -	

0.81	
<.0001	

SRT	Visual	2	 0.67	
0.0017	

0.87	
<.0001	

0.81	
<.0001	 -	
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3.4	Genetics	

	 To	assess	the	genetic	contribution	of	APOE	and	COMT	polymorphisms	to	reaction	time,	

separate	two-way	mixed	ANOVAs	were	conducted	with	factors	of	polymorphism	(between	

factor)	and	task	(within	factor).	The	performance	of	each	polymorphism	is	shown	in	Figure	3.4.	

The	observed	genotype	frequencies	are	presented	in	Table	3.5.	In	this	study	and	population,	

there	was	no	significant	difference	for	APOE	polymorphism	(F(4,13=0.58,	p=0.6782)	nor	was	

there	an	APOE	x	Task	interaction	(F(12,39)	=	0.33,	p	=	0.98).	In	addition	to	the	APOE	results,	nerve	

conduction	velocity	results	revealed	that	there	was	no	significant	correlation	associated	with	

any	of	the	reaction	time	tasks	(Table	3.4).	Analysis	on	COMT	shows	there	was	a	significant	

difference	for	polymorphism	at	a	95%	level	of	significance	(F(2,14)==3.35,	p=.0412).	However,	a	

Tukey	post-hoc	analysis	showed	no	significant	difference	between	any	COMT	group.	There	was	

no	significant	COMT	x	Task	interaction	(F(12,42)	=	0.62,	p	=	0.71)	.	Individual	genetic	and	nerve	

conduction	velocity	results	are	summarized	in	Table	3.6.	Reference	values	from	Table	3.7	show	

that	the	majority	of	the	conduction	velocity	results	are	within	the	range	of	previous	literature.	

	

Table	3.4:	Pearson	product	moment	correlation	coefficients	comparing	nerve	conduction	
velocity	to	reaction	time	performance	in	all	tasks.	P-values	are	shown	beneath	the	correlation	
coefficient.	

Task	 Correlation	
	(r)	(n=	19)	

P	-	value	

CRT	Tactile	 	-0.04	
	

0.88	

CRT	Visual	 -0.01	
	

0.95	

SRT	Tactile	 -0.10	
	

0.68	

SRT	Visual	 0.01		
	

0.97	
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Table	3.5:	Summary	of	the	number	of	carriers	of	each	allele	for	the	APOE	and	COMT	genes.	
Note	that	one	participant’s	sample	was	unable	to	be	genotyped	for	APOE	allele	and	is	not	
included	in	the	count.		
	 APOE	 COMT	

	 2/3	 2/4	 3/3	 3/4	 4/4	 AA	 AG	 GG	
n	 1	 2	 11	 3	 1	 3	 10	 6	
	

	

Table	3.6:	Individual	genetic	(APOE	and	COMT)	and	nerve	conduction	velocity	results.	Note	that	
for	subject	12	the	sample	was	unable	to	be	genotyped	for	APOE	allele.	
	

Subject	 APOE	 COMT	 Conduction	velocity	(m/s)	

1	 3/3	 AG	 59.3	±	5.3	
2	 2/3	 GG	 48.6	±	5.4	
3	 4/4	 AG	 52.8	±	4.4	
4	 3/3	 AG	 51.6	±	5.0	
5	 2/4	 GG	 52.5	±	3.7	
6	 3/3	 AG	 50.3	±	4.4	
7	 2/4	 AG	 42.2	±	3.0	
8	 3/4	 AG	 47.6	±	6.4	
9	 3/3	 AA	 28.7	±	3.5	
10	 3/3	 AG	 47.1	±	3.1	
11	 3/4	 GG	 48.7	±	3.9	
12	 -	 GG	 38.7	±	3.0	
13	 3/3	 GG	 43.8	±	4.5	
14	 3/3	 AA	 32.5	±	1.4	
15	 3/4	 AA	 47.3	±	4.5	
16	 3/3	 AG	 50.7	±	2.3	
17	 3/3	 GG	 38.1	±	2.4	
18	 3/3	 AG	 39.1	±3.1	
19	 3/3	 AG	 40.0	±	4.4	
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Table	3.7:	Reference	ulnar	nerve	conduction	velocities	cited	in	previous	literature.	All	values	
presented	in	the	table	are	reported	as	the	mean	±	standard	deviation	with	the	exception	of	the	
McKnight	study	that	reported	median	values.	

	

	
	 	

Study	 Conduction	Velocity	(m/s)	

Azma	et.	al	2007	 62.65	±	7.62	

Kimura	&	Butzer	1975	 55.9±5.1	

Thomas,	Sears,	Gilliat	1959	 56.2±4.6	

McKnight	et.	al	2010	 58.25		(males)	58.04	(female)	
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A) APOE	allele	

		

B) COMT	Allele	

	

Figure	3.4:	Mean	reaction	time,	and	standard	deviation	of	all	tasks	comparing	all	participants	
grouped	by	A:	APOE	allele	and	B:	COMT	allele		
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Chapter	4:	Discussion	

4.1	Summary	of	findings	

	 Overall,	this	thesis	looked	to	further	understand	between	subject	differences	as	a	

product	of	two	variables:	stable,	person-specific	characteristics	(trait)	and	transient,	time-

varying	factors	(state).	The	main	findings	suggest:	

1) Reaction	time	results,	expressed	as	the	mean	supports	hypothesis	1	in	that	the	

intraclass	correlation	(ICC)	is	consistent	with	the	findings	of	previous	literature	for	

tactile	and	visual	tasks	as	well	as	simple	and	choice	tasks.	

2) Hypothesis	2	is	not	supported.	While	mean	reaction	time	is	generalizable	when	

comparing	performance	between	task	challenges	within	a	modality	(i.e.	simple	vs.	

choice	reaction	time),	it	does	not	carry	over	across	modalities	(i.e.	visual	vs.	tactile).	

3) Hypothesis	3	is	not	supported	as	there	is	no	present	evidence	for	association	

between	reaction	time	performance	and	the	proposed	genetic	biomarkers	to	

influence	conduction	velocity	or	synapse	time.	

4) In	addition,	the	study	reinforced	the	view	that	other	expressions	for	speed	of	

processing	besides	central	tendency	should	be	considered.	

4.2	Within-subject,	between	day	stability	of	reaction	time	performance		

The	unique	finding	in	the	present	study	demonstrate	that	ICCs	of	reaction	time	over	1	

week	were	within	the	range	of	previous	results	in	the	literature	across	tasks	of	varying	difficulty	

(simple	and	choice)	and	also	across	different	modalities	(visual	and	tactile).	Testing	average	

reaction	times	on	different	days	over	a	1-week	time	period	and	at	different	times	in	the	day	

revealed	stable	reaction	time	performance	within-subjects	compared	against	between	subject	
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differences.	On	average	individuals	maintained	similar	performance	regardless	for	specific	task	

conditions	despite	being	tested	over	multiple	sessions.	This	finding	resulted	in	similar	

consistency	to	previous	experiments	focussed	on		simple	visual	reaction	time	tasks	to	explore	

reliability	across	days	and	months	(Eckner	et	al.,	2011;	Resch	et	al.,	2013;	Saville	et	al.,	2011).		

The	findings	of	the	current	study	are	novel	in	that	it	extends	the	observation	to	other	

modalities	(i.e.	haptic)	and	task	challenges	(choice	reaction	times)	where	the	literature	has	

been	primarily	focused	on	simple	visual	tasks.	

However,	while	the	results	are	encouraging	and	appear	to	reflect	the	stable	nature	of	

reaction	time,	the	interpretation	of	these	results	should	also	consider	the	limitations	of	the	ICC	

calculation,	specifically	the	variables	used	to	estimate	the	ICC’s	magnitude.	In	essence,	as	

described	by	Weir	(2005)	the	ICC	is	an	index	of	relative	consistency,	that	is	a	ratio	of	the	

between	subject	variability	relative	to	the	total	variability	and	the	magnitude	can	be	misleading	

based	on	heterogeneity	of	the	subjects.	Therefore,	a	high	ICC	may	be	a	result	of	larger	between	

subject	variability	in	reaction	time	compared	to	the	variability	within	a	subject.	This	means	that	

while	this	study	observed	ICCs	that	appear	to	suggest	high	reliability	due	to	trait	characteristics,	

there	is	nevertheless	important	contributions	from	state	factors	causing	reaction	time	to	

fluctuate	that	may	go	unnoticed.	For	instance,	breaking	down	the	day	to	day	differences	from	

each	individual	across	all	tasks	provides	insight	into	the	role	of	state	factors.	Table	3.2	shows	

that	the	magnitude	and	direction	of	changes	in	average	reaction	time	performance	between	

days	are	not	always	constant	across	all	tasks.	While	an	individual	may	be	faster	at	a	specific	task	

one	day,	the	opposite	pattern	may	be	seen	in	another	task.	Further	breakdown	of	individual	

reaction	time	trials	(Figure	3.3)	also	indicate	potential	fluctuations	in	the	fastest	and	slowest	
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reactions	can	occur	from	day	to	day.		In	fact,	the	literature	clearly	reveals	the	important	state	

dependent	influences	on	speed	of	processing	including	arousal,	stress,	and	attention	(Lakhani	

et	al.,	2013;	Langner	et	al.,	2010;	Panayiotou	&	Vrana,	2004;	Weissman	et	al.,	2006).		

This	is	not	to	suggest	that	reaction	time	is	determined	exclusively	by	state	factors	or	

that	the	ICC	of	reaction	time	is	not	a	reliable	measurement	but	rather	the	intent	is	to	

acknowledge	the	profound	influence	that	state	factors	have	on	reaction	time.	What	the	ICC	

does	well	is	reveal	that	reaction	times	within	a	participant	are	more	closely	related	than	times	

between	individuals	despite	day	to	day	differences.	In	fact,	additional	ICC	analysis	conducted	on	

the	stability	of	different	measures	of	reaction	time,	including	the	median,	fastest	10	trials,	and	

the	slowest	10	trials	found	that	ICCs	were	similar	to	values	found	using	the	mean	of	all	trials.	

So,	while	mean	reaction	time	can	be	biased	and	is	typically	observed	as	a	non-normal	

distribution	(Whelan,	2008),	the	between	subject	variability	is	present	not	just	through	the	

mean	which	includes	all	trials	and	can	be	biased,	but	also	through	different	expressions	of	the	

data.	

4.3	Generalizability	

It	was	originally	hypothesized	that	relative	performance	would	be	similar	across	tasks	

because	of	a	common	speed	of	processing	trait	shared	by	all	sensory	modality	networks	within	

an	individual.	This	study	implemented	multiple	tasks	that	varied	in	difficulty	(simple	and	2-

choice	tasks)	as	well	as	in	modality	(visual	and	tactile)	to	observe	an	individual’s	relative	

performance.	Therefore,	even	though	there	would	be	absolute	differences	between	tasks	of	

varying	difficulty	or	modality,	it	was	expected	that	individuals	who	were	slow	or	fast	in	one	task	

would	demonstrate	a	similar	level	of	performance	in	a	different	task	and	serve	as	a	reflection	of	
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trait	specific	differences	in	speed	of	processing.	Within	modalities,	simple	and	choice	reaction	

times	were	relatively	consistent	across	subjects	(moderate	to	high	correlations)	suggesting	the	

hypothesis	was	supported	when	comparing	across	task	difficulty.	This	finding	is	in	agreement	

with	Agrawal’s	(1992)	and	Seli	et.	al	(2012)	assessment	of	generalizability	between	reaction	

time	task	difficulty.		It	is	noteworthy	that	these	studies	compared	modalities	as	well	(visual	

versus	auditory)	and	revealed	a	significant	association.		In	contrast,	we		observed	a	lack	of	

association	between	visual	and	tactile	modalities.	It	should	also	be	noted	that	the	previous	

studies	revealed	the	weaker	associations	when	comparing	modalities	as	opposed	to	task	

difficulty.	

There	are	several	possible	explanations	that	may	account	for	the	differences	in	reaction	

times	between	visual	and	tactile	modalities	seen	in	the	present	study		as	compared	to	the	

similarities	seen	in	previous	literature.	First,	the	differences	between	tactile	and	visual	tasks	

may	be	attributable	to	differences	in	relative	stimulus	intensity.	This	experiment	attempted	to	

standardize	stimulus	intensity	by	using	a	voltage	that	was	1.5X	a	subjective,	perceived	threshold	

for	tactile	tasks	and	a	standardized	visual	stimuli	situated	in	identical	locations.	It	was	assumed	

that	the	stimulation	of	sensory	neurons	would	be	the	same	for	each	trial	across	participants.	

However,	there	was	no	way	of	measuring	and	ensuring	the	precise	magnitude	of	the	sensory	

volley	or	number	of	sensory	fibers	activated	of	each	trial,	especially	in	the	tactile	condition.		As	

a	result,	it	is	possible	that	the	absolute	intensity	of	stimulus	was	different	for	subjects	due	to	

differences	in	perceptual	judgements	.		Variation	in	absolute	stimulus	intensity	has	the	

potential	to	impact	reaction	times	due	to	the	inverse	relationship	between	stimulus	intensity	

and	reaction	time	(Lakhani	et	al.,	2011;	Vaughan,	Costa,	&	Gilden,	1966).	To	control	for	this	in	
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the	future	it	may	be	beneficial	to	choose	a	stimulus	intensity	based	on	each	individual’s	

stimulus	response	curve.	As	the	intensity	increases,	reaction	time	decreases	eventually	reaching	

a	plateau	(Luce,	1986)	providing	a	range	of	possible	scores.	Using	this	stimulus-response	curve	

as	a	guide,	a	consistent	stimulus	intensity	comparable	to	all	participants	can	be	selected	based	

on	a	percentage	of	the	entire	range	rather	than	based	on	a	perceptual	judgment	threshold	(e.g.	

the	stimulus	intensity	delivered	to	each	participant	will	correspond	to	the	median	reaction	time	

in	the	stimulus-response	curve).	

A	second	possible	explanation	for	modality	specific	differences	may	link	back	to	stable	

trait	differences	linked	to	person	specific	differences	in	processing	specific	sensory	information.		

Sensory	processing	networks	may	have	the	capability	to	develop	independently	of	one	another,	

resulting	in	specialized	networks.	Indeed,	evidence	that	information	processing	is	not	

equivalent	across	sensory	modalities	can	come	from	ontogenetic	and	phylogenetic	examples.	

While	they	may	not	provide	direct	evidence	to	explain	why	the	speed	of	processing	across	

modalities	is	so	different,	it	does	highlight	the	concept	that	the	development	of	processing	

networks	is	unique.	The	independent	relationship	between	the	speed	of	processing	of	one	

sensory	modality	to	another	is	important	to	understand	because	it	changes	the	predictive	

outcomes	of	speed	of	processing	behaviour	For	instance,	the	Colavita	effect	demonstrates	that	

responses	to	the	simultaneous	presentation	of	visual	and	auditory	or	tactile	stimuli	are	biased	

towards	visual	information	in	adults	(Koppen,	Levitan,	&	Spence,	2009;	Posner,	Nissen,	&	Klein,	

1976;	Rock	&	Victor,	1964).		Furthermore,	use-dependent	plasticity	in	certain	modalities	might	

cause	structural	changes	in	the	development	of	specific	neurons	to	increase	firing	efficiency.	

Thus,	the	speed	of	processing	capabilities	of	neurons	that	are	used	would	be	disproportionately	
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faster	for	that	modality.	Tasks	probing	the	same	sensory	modality	would	see	a	correlation	in	

speed	for	simple	and	choice	reactions	because	they	share	a	common	network	with	the	same	

speed	of	processing	capabilities.	This	is	evident	in	certain	populations	such	as	video	game	

players	and	musicians	who	are	required	to	frequently	respond	to	visual	or	auditory	stimuli	and	

develop	a	‘specialized’	ability	for	processing	visual	stimuli	relative	to	other	modalities	resulting	

in	faster	reactions	(Dye,	Green,	&	Bavelier,	2009;	Landry	&	Champoux,	2017).	Finally,	

adaptation	to	sensory	impairment	also	illustrates	the	unique	development	of	sensory	

processing.	Individuals	with	congenital	deafness	compensate	for	their	lack	of	auditory	stimuli	

processing	by	using	areas	Heschl’s	gyrus	to	process	other	intact	senses	such	as	

somatosensation	or	vision	(Finney,	Fine,	&	Dobkins,	2001;	Karns,	Dow,	&	Neville,	2012).		The	

interpretation	of	performance	on	a	given	task	can	only	be	expected	to	extend	to	other	tasks	of	

the	same	modality	and	the	interpretation	of	performance	of	one	modality	may	tell	a	different	

story	than	performance	on	another	modality.		As	a	result,	despite	efforts	to	correlate	tactile	

and	visual	reaction	times,	direct	comparisons	between	different	modalities	may	be	difficult	to	

assess	because	of	the	independent	development	of	their	respective	processing	networks.	

Further	research	is	required	to	determine	how	specific	trait	variables	may	have	separate	

influences	on	modality-specific	processing.	

4.4	Genetic	variability		

The	within	subject	consistency	of	reactions	times	across	days	and	across	some	task	

conditions	(e.g.	simple	versus	choice)	led	indirectly	to	the	view	that	there	may	exist	important	

trait	specific	determinants	of	reaction	time.		This	was	further	explored	by	conducing	a	

preliminary	investigation	into	the	relationship	between	reaction	time	and	specific	genetic	
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variants	that	may	be	associated	with	neural	speed	of	processing.		The	results	did	not	support	

the	hypothesis	of	the	proposed	relationship	between	APOE	and	COMT	variants	and	reaction	

time	for	this	specific	study	and	sample	population.	In	addition,	the	related	hypothesis	of	the	

association	between	conduction	velocity	of	the	ulnar	nerve	and	APOE	variant	was	not	

supported	in	this	study.	

There	are	several	possible	explanations	for	the	absence	of	a	relationship.	First,	the	small	

sample	size	undoubtedly	limits	the	interpretation	of	the	results	but	may	serve	as	a	guide	for	

future	research	into	the	genetic	contributions	of	speed	of	processing.	Therefore,	non-significant	

results	from	this	work	should	not	be	interpreted	as	an	indication	of	a	reduced	role	of	genetics	in	

driving	reaction	time.	Typically	such	studies	require	samples	on	the	scale	of	hundreds	of	

participants	(Saville	et	al.,	2014;	Stefanis	et	al.,	2005;	Szekely	et	al.,	2011).		A	second	

explanation	for	an	absence	of	association	is	that	these	specific	variants	do	not	relate	to	speed	

of	processing.	The	current	experiment	chose	to	analyze	genes	that	were	1)	known	to	be	

associated	with	cognitive	function	and	2)	related	to	potential	synapse	and	conduction	time	

changes.	It	was	hypothesized	that	APOE’s	function	as	related	to	conduction	velocity	would	

impact	speed	of	processing	where	the	e4	variant	would	result	in	slower	reaction	times	across	

tasks.	It	was	also	proposed	that	COMT’s	function	in	metabolizing	dopamine	would	have	an	

effect	on	synapse	time	and	the	val/val	variant,	which	results	in	increased	dopamine	

metabolization	would	be	associated	with	slower	RTs	compared	to	the	met/met	variant.		While	

there	was	no	statistical	significance	it	is	interesting	to	note	however	that	the	met/met	variant	

was	faster	in	tactile	tasks	compared	to	the	met/val	and	val/val	variants.	This	trend	is	in	line	with	

previous	research	that	suggests	met/met	carriers	perform	better	in	cognitive	tasks	that	do	not	
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test	for	response	inhibition	(Saville	et	al.,	2014;	Stefanis	et	al.,	2005).	Biologically,	more	

dopamine	present	in	the	frontal	cortex	for	met/met	carriers	would	suggest	more	

neurotransmitter	readily	available	at	the	synapse,	increasing	the	membrane	potential	leading	

to	less	time	needed	to	reach	action	potential	threshold.	In	contrast,	this	mechanism	would	lead	

to	more	errors	in	a	response	inhibition	paradigm	where	the	intent	is	to	withhold	a	response.	

Therefore,	it	is	important	to	consider	the	stimulus-response	relationship	of	any	task	when	

attempting	to	relate	processing	performance	to	any	gene.	

Genetic	variation	found	between	individuals	can	facilitate	our	understanding	of	the	

biological	mechanisms	that	determine	an	individual’s	unique	speed	of	processing	capabilities.	

From	a	single	nucleotide	polymorphism,	the	function	and	properties	of	our	central	nervous	

system	can	be	altered.	The	fundamental	physiology	of	conduction	velocity	and	synapse	time	

that	mediate	speed	of	processing	can	be	revealed	behaviourally	as	reaction	time	performance.	

The	role	of	our	genetic	blueprint,	although	not	a	major	objective	for	the	present	work,	was	an	

important	exploratory	interest	in	understanding	the	potential	biological	mechanisms	that	

influence	reaction	time.	The	preliminary	findings	warrant	further	investigation	through	the	

recruitment	of	more	subjects.	

It	was	also	found	that	ulnar	nerve	conduction	velocity	was	not	associated	with	RT,	

suggesting	that	at	least	peripheral	CV	does	account	for	much	of	the	differences	in	between	

subject	differences	in	reaction	time.		The	current	study	relied	on	peripheral	conduction	

velocities	due	to	accessibility	and	speculation	that	peripheral	CV	would	reflect	central	CV.	In	

reality,	some	of	the	processes	linked	to	the	production	and	development	of	myelin	may	differ	

for	oligodendrocytes	and	Schwann	cells	(Brinkmann	et	al.,	2008).	Future	work	may	consider	a	
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more	direct	method	for	measuring	central	conduction	velocities	using	transcranial	magnetic	

stimulation	(TMS)(Fietzek	et	al.,	2000;	Samii,	Luciano,	Dambrosia,	&	Hallett,	1998).	Central	

conduction	velocity	would	be	obtained	by	calculating	the	difference	between	the	latency	of	a	

motor	evoked	potential	elicited	by	TMS	and	the	approximated	peripheral	conduction	time	from	

the	muscle	to	the	spinal	cord	

Furthermore,	it	may	also	be	argued	that	variability	in	processing	speed	may	be	less	

attributed	to	conduction	time	and	more	to	synapse	time.	The	earlier	sections	of	this	thesis	

described	conduction	time	and	synapse	time	as	the	two	fundamental	processes	that	determine	

reaction	time.	However,	the	proportion	of	reaction	time	performance	associated	with	synapse	

time	is	greater	than	conduction	time.	The	conduction	velocity	of	an	alpha	motor	neuron	

measures	at	72-100	m/s	(Kandel	2013).	Therefore,	the	time	it	takes	for	a	motor	neuron	to	

activate	a	muscle	in	the	foot	1	meter	away	takes	approximately	10-13	ms.	While	the	conduction	

velocity	in	the	brain	is	slower	due	to	the	smaller	diameter	of	CNS	axons	(Aboitiz	et	al.	1992,	

Liewald	et	al.	2014),	the	distance	an	electrical	signal	has	to	travel	within	the	brain	is	shorter.	

Furthermore,	connections	between	neurons	require	chemical	synaptic	transmission	that	result	

in	delays	ranging	from	0.3ms	–	2	ms	in	mammals	(Yamada	1992,	Bennett	2004,	Kandel	2013)	

and	relative	would	be	expected	to	be	larger	relative	to	the	conduction	time	of	the	respective	

axon.	

There	are	a	number	of	other	candidate	genes	that	may	be	associated	with	reaction	time	

performance	in	addition	to	ones	proposed	in	this	work.	For	instance,	the	brain	derived	

neurotrophic	factor	gene	(BDNF)	and	the	kidney	and	brain	associated	protein	(KIBRA)	were	also	

genotyped	in	this	study	but	were	not	included	in	the	primary	analysis	because	their	association	
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with	reaction	time	was	not	as	strongly	supported	as	APOE	and	COMT.	Nonetheless,	one	of	the	

roles	of	BDNF	is	to	support	synaptic	plasticity	and	the	development	and	growth	of	neurons	

(Huang	&	Reichardt,	2001).	Its	role	in	cognition	may	be	an	indication	that	it	is	related	to	speed	

of	processing	as	well.	Specifically,	the	Val66Met	polymorphism	has	been	reported	to	be	related	

to	memory	and	learning	where	the	Met	allele	was	associated	poorer	memory	performance	

(Michael	F.	Egan	et	al.,	2003)	and	a	more	rapid	decline	in	cognitive	abilities	for	Alzheimer’s	

patients	(Boots	et	al.,	2017)	and	older	adults	(Ghisletta	et	al.,	2014).	KIBRA’s	interaction	with	

various	other	proteins	in	the	central	nervous	system	has	also	been	reported	to	be	associated	

with	memory	recall.	Studies	investigating	the		single	nucleotide	polymorphism	rs17070145	have	

found	that	the	T	allele	is	related	to	better	performance	on	memory	recall	tasks	(Kauppi,	Nilsson,	

Adolfsson,	Eriksson,	&	Nyberg,	2011;	Papassotiropoulos	et	al.,	2006).	

4.4.1	Epigenetics	influence	

	 In	addition	to	the	influence	of	single	nucleotide	polymorphisms,	the	role	of	epigenetics	

adds	another	layer	to	the	biological	determinants	of	speed	of	processing	behaviour.	The	

epigenome	refers	to	the	modulation	of	DNA	gene	expression	through	histone	modifications	and	

DNA	methylation	that	result	in	a	facilitation	or	suppression	of	gene	transcription.	So	while	the	

specific	DNA	sequence	is	fixed,	the	epigenome	is	much	more	dynamic	and	can	be	altered	based	

on	certain	environmental	factors.	For	instance,	rats	who	were	given	high	frequency	of	licking	

and	grooming	(high	LG)	by	their	mothers	within	the	first	week	of	being	born	were	shown	to	

have	an	altered	epigenome	at	the	glucocorticoid	receptor	in	the	hippocampus	compared	to	rats	

who	received	a	low	frequency	of	licking	and	grooming	(low	LG)	(Weaver	et	al.,	2004).	This	result	

is	linked	to	a	decrease	in	DNA	methylation	of	the	glucocorticoid	receptor	promotor	region.	
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Behaviourally,	high	LG	rats	responded	to	stress	with	lower	hypothalamic-pituitary-adrenal	

activity	compared	to	low	LG	rats,	suggesting	that	that	maternal	behaviour	has	the	ability	to	

modify	behaviour	through	epigenetic	changes.	Similarly,	a	growing	body	of	literature	suggest	

that	gene	expression	as	a	result	of	environmental	factors	through	epigenetic	mechanisms	are	

important	(Franklin	&	Mansuy,	2010;	Zhang	&	Meaney,	2010)	and	may	have	profound	impact	

on	cognitive	development	(Fagiolini,	Jensen,	&	Champagne,	2009;	Gräff	&	Mansuy,	2009).	

Furthermore,	differences	in	speed	of	processing	have	even	been	related	to	the	efficiency	of	

DNA	methylation	in	children	(Voelker,	Sheese,	Rothbart,	&	Posner,	2017).	Future	research	will	

be	challenged	with	exploring	the	link	between	specific	environmental	factors	and	cognitive	

health.	The	implications	of	understanding	the	epigenome	has	the	potential	to	dictate	our	

behaviour	despite	what	our	DNA	sequence	might	say.	Clinically,	the	profile	an	individual,	

including	environmental	interactions	and	diet	choices	can	serve	as	a	biomarker	that	is	equally	

as	important	as	genotyping	DNA	samples	for	speed	of	processing	related	risk	assessment.	

Identification	of	these	biomarkers	are	important	for	informing	preventative	interventions	such	

as	drug	therapy	and	lifestyle	changes.		

4.5	The	utility	of	distribution	analysis		

	 Reaction	time	data	is	commonly	represented	using	central	tendency	measures	that	

describe	the	entire	distribution	of	data	points.	Statistics	such	as	the	mean	and	median	are	

valuable	in	describing	scores	that	occur	near	the	middle	of	the	distribution.	Typical	dispersion	

metrics	such	as	the	standard	deviation	also	aim	to	describe	the	entire	distribution	by	indicating	

the	spread	of	these	scores.	However,	examining	the	different	parts	of	the	distribution	as	
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separate	units	may	be	worthwhile	in	providing	more	in-depth	interpretation	into	speed	of	

processing.		

Despite	the	results	pointing	to	a	high	intra	class	correlation	of	mean	reaction	time,	there	

were	still	certain	individuals	that	appeared	to	perform	inconsistently	day-to-day,	possibly	

masked	by	the	large	between	subject	variability	given	the	limitations	of	ICC	as	described	in	

Section	4.2.	Therefore,	a	secondary	informal	analysis	was	conducted	to	better	understand	why	

these	individuals	appeared	to	vary	more	than	others.		Five	participants	from	each	task	with	the	

largest	difference	between	days	were	analyzed	to	see	how	different	parts	of	the	distribution	

changed.	This	analysis	revealed	that	there	are	various	distributions	that	can	lead	to	changes	in	

central	tendency	each	having	a	different	impact	on	our	interpretation	of	speed	of	processing	

mechanisms.	This	type	of	analysis	allows	for	the	examination	of	the	biological	significance	of	

different	portions	of	the	distribution.	Rather	than	treating	the	entire	distribution	of	individual	

trials	as	coming	from	the	same	source,	the	best	performance	and	worst	performance	may	be	

indicative	of	different	speed	of	processing	mechanisms.	The	first	is	characterized	by	a	larger	

shift	in	the	slowest	trials	driving	the	reaction	times	changes.	This	mechanism	may	be	indicative	

of	moment-to-moment	state	changes	that	more	frequently	alter	the	slowest	reactions	without	

altering	the	best	performance	level.	Therefore,	changes	in	mean	reaction	time	from	day	to	day	

were	due	to	a	few	aberrant	trials.	In	fact,	previous	studies	have	linked	the	worst	performance	

on	cognitive	tasks	as	a	better	predictor	of	variables	such	as	general	intelligence	(Larson	&	

Alderton	1990,	Baumeister	&	Kellas,	1968).	The	neurophysiological	causes	for	changes	in	the	

slowest	reactions	may	be	a	result	of	lapses	in	attention	influencing	reaction	time	performance,	

similar	to	the	mechanisms	described	above	by	Weissmann	(2006).	From	the	perspective	of	the	
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LATER	model	Noorani	and	Carpenter	(2003)	attributes	the	slower	reactions	as	a	change	in	the	

rate	of	rise	for	a	decision	signal.	In	agreement	with	the	model,	evidence	from	single	trial	

magnetoencephalography	signals	from	motor	cortical	areas	relate	the	slope	of	the	signal	

preceding	a	motor	response	as	being	co-varied	randomly	with	the	variability	of	reaction	times	

(Smyrnis	et	al.,	2011).	In	other	words,	the	variability	of	trial	to	trial	reaction	time	was	explained	

by	the	rate	of	rise	of	a	pre-motor	signal.		It	is	possible	that	the	large	increase	in	reaction	time	

from	one	day	to	another	is	explained	by	larger	lapses	in	attention	moment-to-moment	on	a	

particular	session.	The	second	is	characterized	by	a	seemingly	equal	shift	in	both	the	fastest	and	

slowest	trials	driving	these	changes.	This	pattern	indicates	that	the	large	difference	in	mean	

performance	from	day	to	day	were	driven	by	changes	in	reactions	from	both	the	fastest	and	

slowest	parts	of	the	distribution.	Changes	in	both	parts	of	the	distribution	may	be	explained	by	

motivation	of	individuals	to	respond	as	quickly	as	possible.	In	particular,	it	has	been	shown	that	

trial	to	trial	variability	can	be	reduced	by	providing	feedback	on	an	individual’s	performance	

(Garrett,	MacDonald,	&	Craik,	2012).	While	participants	in	the	present	study	were	instructed	to	

respond	as	quickly	as	possible,	there	was	no	consequence	or	feedback	for	delayed	responses	

which	may	lead	to	increased	variability	in	the	fastest	reaction	times.	This	pattern	reinforces	the	

potential	impact	that	state	factors	can	have	on	the	reliability	of	reaction	time.	

4.6	Conclusions	

The	overarching	purpose	of	this	work	looked	to	develop	a	better	understanding	of	the	

factors	that	account	for	between	subject	differences	in	reaction	time.	In	summary,	the	results	

indicate	that	mean	reaction	time	is:	stable	day-to-day	for	a	variety	of	tasks,	generalizable	within	

a	modality.		This	study	did	not	support	an	association	in	performance	with		with	APOE	or	COMT	
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alleles.	However,	it	is	important	to	note	that	there	are	considerable	state	factors	contributing	

to	reaction	time	as	evident	when	looking	at	both	within	subject	day	to	day	differences	and	trial	

to	trial	variability.	Furthermore,	reaction	time	expression	may	reveal	separate	underlying	

sources	of	variability	than	central	tendency	measures.	

Similar	to	previous	findings	in	pilot	results,	this	experiment	shows	considerable	range	of	

between	subject	performance	across	all	tasks	even	after	subjects	have	been	familiarized	with	

the	tasks	in	a	practice	session,	reducing	the	likelihood	of	any	learning	effects	influencing	the	

results.	Relative	to	between	subject	variability	he	stability	of	within	subject	reaction	time	is	

upheld	for	tasks	that	present	stimuli	in	different	modalities	(visual	and	tactile)	as	well	as	for	

tasks	with	varying	difficulty	(simple	and	choice)	indicating	the	involvement	of	person-specific,	

time	stable	factors.	

In	regards	to	the	generalizability	of	reaction	time,	there	appears	to	be	a	strong	

association	between	reaction	time	in	tasks	that	are	of	the	same	modality.	Cross-modal	

comparisons	however,	do	not	display	the	same	relationship	and	is	perhaps	indicative	of	

stimulus	intensity	variability	or	independent	speed	of	processing	characteristics	for	each	

modality.	

A	larger	number	of	participants	is	required	to	more	confidently	interpret	the	

relationship	that	APOE	and	COMT	alleles	may	serve	as	factors	that	influence	conduction	time	

and	synapse	time.	In	addition,	utilizing	peripheral	nerve	conduction	velocity	may	not	provide	an	

accurate	representation	for	conduction	time	of	central	processing	speed.	

Analyzing	different	components	of	the	reaction	time	distribution	(e.g.	slowest	and	

fastest	trials)	helped	to	better	understand	how	certain	individuals	may	vary	greatly	from	one	
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day	to	another	that	was	not	captured	by	central	tendency	measurements.	The	large	range	of	

reaction	times	seen	within	an	individual’s	distribution	may	be	as	revealing	than	traditional	

central	tendency	measurements	in	terms	of	understanding	between	subject	differences.	The	

separate	sources	for	the	variability	in	different	parts	of	the	distribution	may	be	a	topic	for	

future	studies	to	investigate.	

	The	outcomes	of	this	work	indicate	the	ability	for	reaction	time	to	be	used	as	a	

biomarker	that	reflect	the	stable,	person-specific	factors	of	CNS	speed	of	processing.	

Monitoring	reaction	time	performance	across	the	lifespan,	in	addition	to	tracking	relevant	

person-specific	factors	could	potentially	assist	in	the	prediction	of	injury	risk	associated	with	

deficits	in	speed	of	processing.	However,	because	of	the	differences	in	performance	across	

modalities	shown	in	this	work,	deciding	the	characteristics	of	a	task	that	best	predict	the	

intended	outcome	will	be	a	topic	for	future	investigation.	Moving	forward,	it	will	also	be	critical	

for	future	studies	to	examine	strategies	to	‘train’	speed	of	processing	in	individuals	to	improve	

performance	once	deficits	have	been	identified.	Finally,	rather	than	ignoring	variability	

measurements	that	may	be	conventionally	viewed	as	biological	noise,	it	is	important	to	

embrace	the	mentality	that	these	expressions	of	performance	may	deepen	our	understanding	

of	the	nature	of	the	speed	of	stimulus-evoked	behaviour.	
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