
Digital Craft | In Search of a Method of Personal Expression Within the Digital

by

Wade Brown

A thesis
presented to the University of Waterloo

in fulfilment of the
 thesis requirement for the degree of

Master of Architecture
in

Architecture

Waterloo, Ontario, Canada, 2018
© Wade Brown 2018

ii

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy
of the thesis including any required final revisions, as accepted by my
examiners.

I understand that my thesis may be made electronically available to the
public.

iii

ABSTRACT

Our relationship with the digital has fundamentally changed within the past
decade. A mesh of outside interests have been efficiently folding themselves into
our lives. These exist as either a legion of hosted “free” web services touting the
promise of a new-found collective intimacy, or a set of tightly coupled IOT(Internet
of Things) applications that are slowly being pulled away from our fully capable
hardware—all causing us to rely heavily on a virtual infrastructure that demands
to host our work and place us at arm’s length of tools that we no longer own or
control.

This new bargain includes a view into our work and habits so that we can be
better understood, tokenized, categorized, mapped, and finally monetized. While
many today may be OK with this relationship, I’ll be frank, it unsettles me. I believe
something fundamental is lost in this unravelling long-distance relationship.

This thesis is a response. It pushes for a more intimate connection with technolo-
gy within the backdrop of digital design and its many processes. In The Craftsman,
Richard Sennett writes: “Making is Thinking,” and in his text he explores the close
relationship between head and hand for a small set of traditional craftsmen: a
cook, a musician and a glass blower. To elevate the digital within today’s architec-
tural practice, I feel its use must also be seen as craft. But how might a relation-
ship between head and hand manifest itself? Is there some similarity in thinking
between Sennett’s craftsmen and the processes of successful digital design?

I propose to investigate the mechanisms of digital Making, and hence digital
Thinking through three design problems, inspired by the works of Neri Oxman,
deskriptiv, Michael Hansmeyer, as well as the methods of D’Arcy Thompson, Shin-
ichi Maruyama, Pina Bausch, and Frei Otto. By mindfully observing my exploration
of these from a digital perspective, I believe it will be possible to get a sense of
what makes craft possible within this realm.

iv

ACKNOWLEDGEMENTS

While this journey was a solitary one, I must thank the following for their assis-
tance and care:

Anne Bordeleau, my supervisor, while the material had sizeable technical breadth,
you were able to help me bring it into focus for all those who might want to follow
this path.

David Correa, who’s frank feedback was very much appreciated, I am thankful for
your perspective when grounding this work.

Rick Haldenby, for saying “yes,” and for promoting this point of view for anyone
who will listen. We hear you, and we will pass it on.

v

DEDICATION

To my wife Lisa, without your love and support none of this would be possible.

vi

Fig 1 - Diatom Flex

vii

Table of Contents

ii	 Author’s Declaration
iii	 Abstract
iv	 Acknowledgements
v	 Dedication
vii	 Table of Contents
viii	 List of Figures

2	 Introduction

8	 Understanding the Organic

66	 pina - A Choreography of Affect

108	 Of Materiality
	
178	 Conclusions

182	 Bibliography

188	 Appendix
	

viii

List of Figures

Page	 Figure		 Description

ii 	 Fig. 1		 Diatom Flex

Understanding the Organic

7 	 Fig. 2 		 Fractal Arches

9 	 Fig. 3 		 Alarm Clock Image

11 	 Fig. 4 		 Foraminifera Spiral
(D’Arcy Thompson 1951, 857)

13 	 Fig. 5 		 Balanus Barnacle
(https://meowmeow0508.files.wordpress.com/2011/06/7e3bd-
2d182c368059950276c.jpg)

13 	 Fig. 6 		 Anglerfish Ovary
(https://www.nigms.nih.gov/education/life-magnified/Pages/7_lt_hayden_an-
glerfishova.aspx)

13 	 Fig. 7		 Fibonacci’s Mashrabiya - Oxman
(http://matter.media.mit.edu/tools/details/stalasso#prettyPhoto)

15 	 Fig. 8		 Mashrabiya Pattern

15 	 Fig. 9 		 Mashrabiya Pattern - Cell Arrangement

15 	 Fig. 10		 Mashrabiya Pattern - Nolli Map

15 	 Fig. 11		 Mashrabiya Pattern - Pore Arrangement

15 	 Fig. 12		 Mashrabiya Pattern - Open Pore

15 	 Fig. 13		 Mashrabiya Pattern - Voronoi Diagram

15 	 Fig. 14		 Grasshopper Analysis Script

16 	 Fig. 15		 Mashrabiya Pattern - Size & Arrangement

17 	 Fig. 16		 Victorian Diatom Arrangement
(http://studylib.net/doc/5722970/photography-through-the-microscope-da-
vid-linstead)

ix

17 	 Fig. 17		 Campolydiscus hibernicus
(http://www.psmicrographs.co.uk/diatom-frustules--campylodiscus-sp--/sci-
ence-image/80017290)

17 	 Fig. 18		 Triangular-shaped Diatom SEM Image
 (https://fineartamerica.com/featured/5-diatom-sem-steve-gschmeissner.html)

17 	 Fig. 19 		 Diatom SEM Image - Steve Gschmeissner
 (http://healerdimitri.com/wp/wp-content/uploads/2015/05/42-dia-
tom-sem-steve-gschmeissner.jpg)

17 	 Fig. 20 		 Diatom Triceratium SEM - Steve Gschmeissner
(https://fineartamerica.com/featured/26-diatom-sem-steve-gschmeissner.
html)

17 	 Fig. 21 		 SEM Diatom - Thalassiosira
(http://bioinformatics.psb.ugent.be/plaza/versions/pico-
plaza/organism/view/Thalassiosira+pseudonana)

19 	 Fig. 22 		 Cocconeidacean valve decomposition

21 	 Fig. 23 		 Diagram - Analysis of Pore Structure Hierarchy

23 	 Fig. 24 		 Superformula - Johan Gielis

23 	 Fig. 25 		 Superformula Grasshopper Script

24 	 Fig. 26 		 Superformula Evolution Diagram

25 	 Fig. 27 		 Superformula Iteration & Algorithmic Flex

27 	 Fig. 28 		 Fortran Punch Card Image - Joseph Huffman
(http://blog.joehuffman.org/content/binary/PunchedCard.jpg)

27 	 Fig. 29 		 Superformula Grasshopper script - extended

29 	 Fig. 30 		 Diatom Form Algorithm and Evolution Sequence

31 	 Fig. 31 		 Complexity and Symmetry Flex

31 	 Fig. 32 		 Representational Flex - Diatom Model Domain (a|b)

33 	 Fig. 33 		 Flex of Diatom Representational Algorithms

34 	 Fig. 34 		 Standard Diatom Model Iteration - Size & Iterative Depth

x

35 	 Fig. 35 		 Grasshopper L-System Script

35 	 Fig. 36		 L-Systems Iterations - Perspective View
	
35 	 Fig. 37 		 Renders - Algorithm Results 6 Iterations

36 	 Fig. 38 		 SEM Frustule Papillae Arrangement
(Stefano, Journal of Nanoscience & Nanotech 2005 Vol 5, p22)

37 	 Fig. 39 		 L-Systems Algorithm Flex Iterations

39 	 Fig. 40 		 Subdivided Columns - Michael Hansmeyer
(http://www.michael-hansmeyer.com/projects/columns.html)

39 	 Fig. 41 		 Reaction-diffusion simulation(2D)
(https://www.chromeexperiments.com/experiment/gray-scott-simulation - Dec
22 2016)

39 	 Fig. 42 		 Reaction-diffusion form (Gray-Scott, 2 Million Voxels)
(http://www.michael-hansmeyer.com/projects/voxels.html)

41	 Fig. 43		 Grasshopper Script Render

41 	 Fig. 44 		 3D Reaction Diffusion Mimic Script

41 	 Fig. 45		 Form Section

41 	 Fig. 46		 Form Tectonics

43 	 Fig. 47		 Scaffold - Grasshopper Script Result

43 	 Fig. 48		 RealFlow Form Generation on Diatom Script Scaffold

45 	 Fig. 49		 RealFlow Form Simulation

47 	 Fig. 50		 Lighted Snapshot of Realflow Diatom Form Result

49 	 Fig. 51		 Coulomb Field Application in Action

50	 Fig. 52		 Papillae & Form Development through Silica Deposit by Simulation

51 	 Fig. 53 		 Coulomb Field Application Menu System

53 	 Fig. 54 		 Coupling Experimental Setup

53 	 Fig. 55		 First Coupling

55 	 Fig. 56 		 Successful Coupling

xi

57	 Fig. 57 		 Undersharing - Uniform Path Fabric - Each looking out for themselves

57 	 Fig. 58 		 Full Sharing - Random Static Charges

57 	 Fig. 59		 Full Sharing - Organized Charges

pina - A Choreography of Affect

65 	 Fig. 60 		 Particle Swarm

67 	 Fig. 61		 Mandelbulb Slice Voxelization

71 	 Fig. 62 		 Wandernd -”Hiking”(desktriptiv 2013)
(https://www.facebook.com/deskriptiv/photos
/a.361140117291283.85420.221944777877485/688018441270114/?-
type=3&theater)

71 	 Fig. 63		 Schichten-”Layers”(desktriptiv 2013)
(https://www.behance.net/gallery/12957793/schichten)

71 	 Fig. 64		 Guaddel(desktiptiv 2014)
(https://www.behance.net/gallery/13734827/Quaddel)

71 	 Fig. 65		 Gewoge-”Waving”(desktriptiv 2013)
(https://www.behance.net/gallery/13418207/gewoge)

71 	 Fig. 66		 2-Manifold Output SimpSymm - (deskriptiv 2014)
(https://www.behance.net/gallery/16138367/SimpSymm)

71 	 Fig. 67		 Flow 1 (deskriptiv 2014)
(https://www.behance.net/gallery/17617243/FlieSSend)

73 	 Fig. 68		 Eyebeam Museum
(Lynn and Rappolt 2008, p328)

73 	 Fig. 69		 NOAH Set for the Film DIVIDE
(Lynn and Rappolt 2008) p353)

73 	 Fig. 70		 Riemann Chair - Wade Brown & Galen Jones 2013

73 	 Fig. 71		 Robotic Arm Cutting Blobwall Brick
(Lynn and Rappolt 2008), p276)

73 	 Fig. 72		 Vitra Ravioli Chair
(Lynn and Rappolt 2008, p141)

75 	 Fig. 73		 Allison’s Moment - Wade Brown 2007

xii

75 	 Fig. 74		 Nude #1 - Maruyama 2012
(http://www.shinichimaruyama.com/ Nude#1-2012)

75 	 Fig. 75		 Water Movie - Maruyama 2013
(http://www.shinichimaruyama.com/portfolio/permalink/385025/4ab-
8f78a666a04)

75 	 Fig. 76		 Kusho #1 - Maruyama 2013
(http://www.brucesilverstein.com/other-works/kusho/7)

75 	 Fig. 77		 Kusho - Maruyama 2013
(http://www.brucesilverstein.com/other-works/kusho/7)

76 	 Fig. 78		 pina - Movie poster - Wim Wenders

79	 Fig. 79		 Andrey Berezin & Ruth Amarante in pina - Movie scene - Wim Wenders

81	 Fig. 80		 Flocking - Processing Investigation

83 	 Fig. 81 		 Tensor Field - Processing Investigation

85 	 Fig. 82 		 Particle Language Investigation

87 	 Fig. 83 		 Realflow Pina Particle Sequence

87 	 Fig. 84 		 Realflow Pina Particle Perspective

89 	 Fig. 85 		 Tight-Meshed Frames of Simulation

91 	 Fig. 86 		 Loose-Mesh Frames from Simulation

93 	 Fig. 87 		 Snapshot Print Failures

93 	 Fig. 88 		 Supporting Material Removal Frustration

95 	 Fig. 89 		 Whirl 1 - 3D Print+Model

95 	 Fig. 90 		 Whirl 2 - 3D Print+Model

95 	 Fig. 91 		 Plunging Moment - 3D Print+Model

97 	 Fig. 92 		 Snapshots in Time - Spacial Moments

99 	 Fig. 93 		 VIVE/TiltBrush VR Experiences

xiii

Of Materiality

109 	 Fig. 94 		 Pneumatic Laser Output

111 	 Fig. 95	 	 Makerbot - Replicator
(https://www.shoppersshop.com/2012pics/makerbot_the_replicator.jpg)

111 	 Fig. 96		 RepWrap Mendel
(https://mybuildlog.wordpress.com/2014/02/21/reprappro-mendel-tricolor)

111 	 Fig. 97	 	 Formlabs - Form 2
(https://3dprint.com/wp-content/uploads/2014/09/form2.jpg)

111 	 Fig. 98		 Delta Rostock
(http://rwgresearch.com/wp-content/uploads/2013/03/Delta-3D-Print-
er-Rostock-RWGresearch-5.jpg)

111	 Fig. 99		 Hagia Sofia Model - Group Project 2012
(Stephane Gaulin-Brown, Patrick Verkley, Safira Lakhani, Monty DeLuna, Rachel
Bruijns,W. Brown)

113 	 Fig. 100		 Solar Sinter - Markus Kayser
(https://inhabitat.com/the-solar-powered-sinter-3d-printer-turns-desert-sand-
into-glass)

113 	 Fig. 101		 Genki - Arki
(http://genkei.jp/arki)

113 	 Fig. 102		 Geeetech Delta Rostock G2s Printer
(https://www.geeetech.com/delta-rostock-mini-g2s-pro-diy-kit-with-autoleve-
ling-p-936.html)

115	 Fig. 103		 Delta Assembly Mayhem

116 	 Fig. 104 	 Impacter Tool Provided for Assembly
(http://tv-vision.ru/magazin/product/nabor-otvyortok-impacter-me-6036)

117 	 Fig. 105 	 Geeetech Delta Rostock G2s Printer - During Assembly

119 	 Fig. 106 	 Geeetech Delta Rostock G2s Printer Moving Parts

121 	 Fig. 107 	 Simplify3D Software - Diatom RealFlow Output Test

123 	 Fig. 108 	 Repartier RealFlow Output Test

xiv

123 	 Fig. 109 	 Arduino IDE and Mega2560 Firmware Config

125 	 Fig. 110		 First Output - From Formless to Form

127 	 Fig. 111 	 Test Print w. Stringing - Bracelet Model(Hegglin 2013)

127 	 Fig. 112 	 Collision Offset Result

129 	 Fig. 113 	 Test Piece Output

129 	 Fig. 114		 Model Test Piece(Matsumoto 2016)

129 	 Fig. 115		 Output Test 20% Infill

129 	 Fig. 116		 Test Model

129	 Fig. 117		 Bracelet Output

129 	 Fig. 118		 Bracelet Model (Hegglin 2013)

129 	 Fig. 119		 Lamp Output

129 	 Fig. 120		 Lamp Model(NervousSystem 2013)

133 	 Fig. 121		 Roof Form Finding - Frei Otto
	 (www.frieottofilm.com)

133 	 Fig. 122		 Soap Bubble/Optimal Surface Calculation - Frei Otto
		 (Photo by IL-Bach/Klenk 1987)

133 	 Fig. 123		 Roof Optimization, Multihalle, Manheim - Frei Otto

133 	 Fig. 124		 Wool Thread Network Optimization - Frei Otto
		 (Image from Structure of Vagueness -L. Spuybroek)

135 	 Fig. 125		 Simple Pneumatic Test Script - Kangaroo - Gerstheimer + Brown

135 	 Fig. 126		 Bladder Restriction - Brown + Gerstheimer

135 	 Fig. 127		 Bladder Creation - Gerstheimer

137 	 Fig. 128		 Frei Otto Filament Grasshopper Script

137 	 Fig. 129		 Filament Convergent Solution

139 	 Fig. 130		 Kangaroo 2 - Based Patterning

xv

139 	 Fig. 131		 Pneumatic Volume Grasshopper Script

140 	 Fig. 132		 Grasshopper Pneumatic Simulation

141 	 Fig. 133		 Manual Pneumatic Chamber Creation

143 	 Fig. 134		 UNIVERSAL Models - Laser Cutter Investigation

145 	 Fig. 135		 Laser Cutter Operating

147 	 Fig. 136		 Testra Driver Software Interface

147 	 Fig. 137		 Emission - Open Laser Head w. Collimator

149 	 Fig. 138		 Early Laser Fusion Investigations

149 	 Fig. 139		 First successful Pressure Test

149	 Fig. 140		 Laser Refinement and Testing

151 	 Fig. 141		 Various Collimated Tests - PWM & Power/Speed

151 	 Fig. 142		 Open Beam Laser Tests (No Collimation)

153 	 Fig. 143		 Existing Testra Controller - Transition Connectors

155 	 Fig. 144		 Bill Gates’ Famous Letter to Computer Hobbyists

157 	 Fig. 145		 LaserWeb Interface - Pneumatic Path View

157 	 Fig. 146		 Path G-Code Listing - Laserweb

159 	 Fig. 147		 GRBL Controller Version - Connected Block Schematic

161 	 Fig. 148		 Assembled GRBL-based Proof of Concept

161 	 Fig. 149		 End-Stop Noise Filter Arduino Uno

161 	 Fig. 150		 15A -24V Power Supply

161 	 Fig. 151		 Raspberry Pi

161 	 Fig. 152		 Stepper Driver

163 	 Fig. 153		 Smoothie Solution - Connected Block Schematic

165 	 Fig. 154 	 DIN Rail System in Hammond Case

xvi

165 	 Fig. 155 	 Plasma-Cutting of Interface Ports in Case

165 	 Fig. 156 	 Signalling & Power Connection

165 	 Fig. 157 	 DIN Terminating Blocks

167 	 Fig. 158 	 Smoothie Controller - Fitting and Assembly

167 	 Fig. 159		 Smoothie Soldering Repair

167 	 Fig. 160		 Shrink-wrap & In-line Voltage Reduction(24V->5V)

169 	 Fig. 161		 Pneumatic Chamber Results - Smoothie Controller

171 	 Fig. 162		 Multiple-Line-Offset Pressure Reinforcing

173 	 Fig. 163		 Pneumatic Structures

175	 Fig. 164		 Render + Pneumatic Structures

1

“The roots of our understanding of architecture lie in our childhood,
in our youth; they lie in our biography. Students have to learn to work
consciously with their personal biographical experiences of architec-
ture.”(Zumthor 2006, 57)

2

Introduction

In my previous career in information technology I was entangled within the predes-
tined train-wreck described by Moore’s law. My much beloved two-times improve-
ment seen each silicon development cycle was soon to become a thing of the past.
And the industry didn’t disappoint; the computing market shifted to become appli-
cation and network-centric as the horsepower well had run dry−drowning spectac-
ularly in heat dissipation issues. Intel’s tick/tock development cycle was re-branded
to include a new “optimization” phase, but we all knew it was inserted to pacify
critics of the loosening historic yearly delivery cycle. Tablets, phones, and watches
boasting battery-life, connectivity, and convenience replaced the “twice as fast as
last year” press releases while the silicon fab-houses worked tirelessly to pipeline
and parallelize their offerings. It was the ultimate bait-and-switch. My now 8-year
old Mac Book Pro is still nearly as powerful as the current release of Apple’s “Less
is More” interpretation of the same off-tune Miesian koan.

Within a similar time-span, a mesh of outside interests have been folding them-
selves into our lives. Our applications and data have been mindfully pulled from
our grasp as they are led processionally towards the hosted and the virtual. Many
revel in this new-found access to “free” products and services in exchange as the
cloud anticipates their needs−an embodiment of the “share everything” mantra my
hippy parents promoted during the 60’s. While there certainly are some benefits of
participating in a grand collective, I believe there is a significant cost in this distanc-
ing of ourselves from the applications and data we’ve become so accustomed to
touching.

Architectural practice is not immune to the draw of the virtual. And in an effort to
increase uptime, maintain operational consistency, reduce cost, and manage risk
pertaining to intellectual property, many practices have moved their assets and
tools to “the cloud.” While I feel this might make basic business sense, I also feel that
the loss of a low-level connection to the tools and data reduces the quality of the
work after seeing this first-hand during my time at a local corporate practice.

This thesis is my response. I believe a more intimate connection to the digital is
necessary for it to be more effective within an Architectural practice. In The Crafts-
man, Richard Sennett writes: “Making is Thinking,” and in his text he explores the
close relationship between head and hand for a small set of traditional craftsmen: a

3

“When design technique is influenced by craft, a funda-
mental displacement occurs. Since design customarily
retreats from the material into the abstract world of
drawing, while craft maintains a one-on-one relationship
with matter” (Spuybroek 2016, 23)

4

cook, a musician and a glass blower. Each succeeds in elevating their work to craft
by forming unique relationships with their media and the tools of their respective
trades. In this thesis I look to understand digital craft, and ask such questions as:
how might a relationship between head and hand manifest itself in this context? Is
there some similarity in thinking between Sennett’s craftsmen and the processes of
digital design? Are there differences?

I propose to investigate the mechanisms of digital Making, and hence digital Think-
ing through three design problems, inspired by the works of Neri Oxman, deskriptiv,
Michael Hansmeyer, as well as the methods of D’Arcy Thompson, Shinichi Maruy-
ama, Pina Bausch, and Frei Otto. By mindfully observing my exploration of these
from a digital perspective and comparing my personal experiences to Sennett’s
craftsmen, I believe it will be possible to get a sense of what makes craft possible
within the digital realm.

Within the first phase of my investigation, Geometry and the Organic, I will be
mapping the formal logic of an aquatic algae cell(the diatom Coscinodiscus wail-
esii). Asserting there is much to learn from existing life, I will be borrowing from the
methods of D’Arcy Thompson and Neri Oxman to assist me in the re-imagining of
its encoding using Rhino w/Grasshopper scripting and other external digital tools.

Within the second phase, pina - A Choreography of Affect, I will investigate the
processes involving dynamic digital form generation inspired by the work of Pina
Bausch. As a choreographer of the well known Tanztheater Wuppertal, pina worked
to understand the thoughts that activate and motivate her dancers. In this inves-
tigation, my impressions of a segment performed by Ruth Amarante & Andrey
Berezin seen in the documentary pina will be the seed for an agent-based formal
investigation implemented using multiple software systems.

Within the third and final phase, Of Materiality, I will look to understand how ma-
teriality can inform digital design. This phase will focus more on the creation and
activation of digital Making hardware. Initially, a 10” Delta-Rostock design 3D PLA/
PVC printer will be constructed and commissioned to bring a physical presence to
digital work produced in the first phase of this thesis. In the second portion of this
investigation, a proof of concept pneumatic structural design will be implemented
digitally in Rhino3D/Grasshopper based upon the wool networks optimizations of
Frei Otto and a polyethylene welding process involving the customization of a CO2
laser cutter system.

Throughout each phase, I will be mindfully documenting my thought processes as

6

I work through to each design goal. In The Craftsman, Richard Sennett references
a lesson he feels Hanna Arendt wants to pass on to him, “people who make things
usually don’t understand what they are doing.”(Sennett 2008, 1) By extensively
documenting the work here, I believe some patterns will emerge. It is through this
reflection that I feel the mechanisms of craft within digital design will be made
visible.

7

Fig 2. - Fractal Arches

8

Understanding the Organic

9

Fig. 3 - Alarm Clock Image

10

Introduction - An Analysis of the Organic

“Nature does nothing uselessly.”
							 (Arist. Pol. 1, 1253a.8)

Our son had an alarm clock. One night he let the light on his night-stand get a bit
too close to the clock’s perforated speaker grille. The result(Fig 3 - opposite) I found
remarkable. Its surface had, under the heat of the light, responded by shrinking
non-uniformly based on proximity to the bulb of the lamp. Surprisingly, he rejected
the clock immediately, saying that it made him feel odd; I think the term he used
was “weird.” There was nothing I could do to make him to continue to use it. Digging
into the issue, I found that his reaction is more common than I thought - It seems
that many people exhibit an irrational, almost ingrained, fear of irregularly-spaced
holes known as Trypophobia. Looking back, I see that my own reaction at his age
may have been similar as a fear-response at a more instinctive level, but after twen-
ty five more years of life-experience, I’ve learned to revel in change. I see the event
as a wonderful happen-stance and would like to investigate forms of this type.

It seems that if one is to investigate organic life within the realm of their morphol-
ogy, one must first lay an offering at the altar dedicated to D’Arcy Thompson. While
his treatise, On Growth and Form(Thompson 1951), is quite substantial and smells
of age, it’s dog-eared state gives me a sense of how valuable his work has been.
This work is, quite literally, at the top most papers and books on the subject of Form
and Mathematical Biology, quite an admirable status really.

The spectacular whorled foraminifera captures his ideas, and best suggests the
conflict that exists between the effect of Darwinism and Thompson’s growing the-
sis; that there is a general ideology behind the physical morphology of living things
which works with adaptation, and yet exists quite separately. The foraminifera’s
shape is seen repeatedly in different organisms and in different environments. Their
response to their environment encoded within the uniqueness of materiality and
through a common generative mathematical relationship.

In searching for another life form to investigate, I propose that another aquatic or-

11

Fig 4. - Operculina complanata (Foraminifera Spiral)

12

ganism, the Diatom(algae cell), is a good choice. I’ve always had a fascination with
electron micrograph images showing intricate micro-assemblies. The Diatom is of
great interest to material scientists today as its operating (nano)scale and material-
ity is similar to chip manufacturers working in silicon(ZHANG 2012, 3836-3849).

Within this phase of my investigation I would like to pursue answers to two funda-
mental questions: How is the diatom valve(end-wall filter) organized? What digital
approaches best match the form’s morphology?

To answer this, I will distill some of the more basic mathematical relationships that
exist within the Diatom Coscinodiscus wailesii by Initially performing some basic
analysis on its material arrangement. It is my hope that a parametric model of its
form can be developed and implemented within a set of Rhino/Grasshopper scripts
once some basic organisational relationships can be distilled from some sample
images. I will document each of my algorithmic and software experiments, providing
a range of behaviour as the model characteristics are flexed.

13

Fig 7. - Fibonacci’s Mashrabiya

Fig 6. - Anglerfish Ovary Section

Fig 5. Balanus Barnacle

14

Precedent - Fibonacci’s Mashrabiya

Neri Oxman is a design researcher within the MIT Media Lab where she leads the
Mediated Matter research group(Neri Oxman). Her team utilizes organisational
relationships found within living matter to fuel their development of technologies
in the areas of digital fabrication, industrial design and architecture. Benefits from
many productive collaborations; Christoph Bader of deskriptiv(deskriptiv 2016),
Bjork, and notably with 3d Printer Manufacturer Stratasys(Stratasys 2016) are
just a few. Neri Oxman’s TED talk on Material Ecology(Oxman 2015) speaks to a
possible future where architecture could be living and does inspire me to think of
the possibilities in this area. Could designers “program” behaviour into materials?
This is quite exciting to me.

The team’s Fibonacci’s Mashrabiya is a work that combines both the morphology of
the Balanus barnacle(polyp) with the logarithmic spiral seen in an anglerfish ovary
cross section in a generative sense. The goal of the traditional mashrabiya is to cre-
ate a unique space protected from unwanted light, sound, and airflow. This project
was set to allow for a configurable and unique way to “shape the form of light and
heat moving through it”(Oxman 2015). Materially, the screen is made by applying
a CNC milling process to an acrylic sheet and then later applying urethane rubber
and resin composites.

To understand this further I felt it necessary to pull the pattern apart using a Rhino
grasshopper script. I did a standard edge-detection and dissected the pattern into
a number of layers; some were area-bounding, others more represented networks.
I was particularly interested in the subdivided area of each cell, their location and
relative size to one another but the networks are of note...

When the cell walls were defined by the process I applied, an interesting thing
surfaced; the resultant graph looked a lot like a Voronoi network. Voronoi networks
are used to determine things like “nearest hospital to a location,” or “area served by
a fire house” when planning a city’s layout for emergency services. In a biological
sense however, the “service” portion of the cell that’s been created would normally
be connected to some form of metabolic regulation. It could be the cell’s water in-
take, food hole, out-hole, you name it... but the goal of the Site for the cell is for this
location to be the most efficient place for distribution of materials within the cell.
Since nature has had a long time working on efficiencies, it only makes sense that
this network be optimized.

While it is not quite exact, for the most part Oxman’s Mashrabiya does mimic the

15

Fig 14. - Grasshopper Analysis Script

Fig. 8 - Mashrabiya Pattern Fig 9. - Mashrabiya Pattern - Cell Arrangement

Fig 10. - Mashrabiya Pattern - Nolli Fig 11. - Mashrabiya Pattern - Pore Arrangement

Fig 12. - Mashrabiya Pattern - Open Pore Fig 13. - Mashrabiya Pattern - Voronoi Diagram

16

cell structure and organisation of contiguous biological entities solely at a mac-
ro-scale. To further understand the system and truly see that it is Fibonacci-In-
spired, I felt it necessary to do some further analysis of cell area. Again, this was
made quite quickly with another Grasshopper script result(Fig. 15 - below) and
the result is significant. When I display the areas in relation to each other, it’s pret-
ty clear the system does in fact grow based on a similar system documented by
D’arcy Thompson in his discussion of the Formaninifera(Thompson 1951, 850).
The spine of the pattern increasing as in a logarithmic spiral and with an increase in
area based roughly on the addition of areas of the cells around them.

Fig. 15 - Mishrabiya Pattern - Size & Arrangement Analysis

17

V

Fig. 19 Diatom Sem Image

Fig. 16 - Victorian Diatom Arrangement

Fig. 18 - Triangular Diatom Sem Image

Fig.17 - Campylodiscus hibernicus

Fig. 20 - Diatom Triceratium SEM Fig. 21 - Diatom SEM Thalassiosira

18

The Diatom

The Diatom is a very tiny(2-500µm) single-celled organism, and a boon to re-
searchers on a number of fronts. This form of aquatic phytoplankton(algae) is not
strictly plant or animal but borrows characteristics from both, and is relatively new
on the evolutionary time-scale(Stoermer and Smol, J P (John P) 1999). Diatoms
are filter-feeders but do also photosynthesise, thus their environment is generally
near the surface where light is more prevalent. They’re size and proliferation make
them the ideal place to look when trying to identify environmental effects due to
pollution. The Diatom’s morphology is also of acute interest to nano-technologists
as they hope to understand structural formation at a scale similar to silicon micro-
chips... in an effort to build nano-machines for a number of tangible benefits at that
scale(Bradbury 2004, e306).

These organisms protect themselves by creating a silica-based porous shell shaped
like a drum(De Stefano 2005, 15-24). The frustule(or valve), located at the ends
of the form, come in many shapes and sizes but always provide the same function,
permeability and protection for controlled fluid flow(supporting nutrient exchange).
The side of the diatom is called the “girdle” region and its function is to support the
rest of the structure as the organism grows and it may show some perforation to
support flow.

This investigation is to focus specifically on the morphology of the frustule seen in
the cocconeidacean valvocopulae(valve or end wall). Unlike our son and his Trypo-
phobia, I am intrigued by the layered distribution of silica in this form. While I can’t
expect to fully understand biological processes that are not yet even understood
themselves by botanists(De Stefano 2005, 15-24), I feel I can reasonably mimic
what I see algorithmically. My goal is to get a “sense” of the valve’s organisation and
recreate a model from what I experience.

19

Fig. 22 - Cocconeidacean valve morphological decomposition

20

Analysis

I felt, as in the Oxman Mashrabiya, that a breakdown of the valve plate detail might
lead to some basic formal understanding. Because it’s a three-dimensional struc-
ture, I needed to be careful when dissecting the scan; some of the lower layering
was out of view and I found it easy to miss-categorize some of my observations due
to complexity of the structure.

Grasshopper again became an invaluable tool. I identified and traced the solid paths
of silica and reduced what I had seen into various levels of similarity. The level I
was most interested in was basically the interior, or top-most visible layer. This the
location of most flow and much of what was left was silica structure, even only in
two-dimensions. With the holes defined, I could develop a form by plotting their
position, size and frequency as long as I was able to discover their organisational re-
lationships, as encoded by the diatom DNA and in response to this organism’s local
environment.

While loosely organised radially, this diatom species frustule has obvious bilateral
symmetry with the mirror axis being vertical. The roughly spherical openings(pores)
change in size both in radial distance from a centre and from the axis symmetry. I
would classify this a pennate, but lightly so.

It’s interesting to note, that when the areas of radiating pores is measured, the
morphological relationship of radiating pores along a growth line(from inside to out)
seems very much one of exponential decay. Visually the size of the pore decrease
exponentially the further out from the centre/axes of symmetry for the diatom.
Grasshopper to the rescue here; I wrote a script to evaluate the areas of the radi-
ating pores and plotted the result in the diagram(opposite). The area histograms,
while they do vary in scale with the pore arrangement, confirm my suggested ob-
servation that the sizes do decay exponentially(D’Arcy Thompson would be proud).
I took what I consider the “cleanest” graphs to represent the phenomena appearing
closest to the meridian of the diatom. The others, while representative, provide less
pores and subsequently offer more chance for error. Overall, I believe the relation-
ship is sound.

While this might be a stretch, another basic assumption from the morphology I have
made is that as the pores reduce in size, their number increases by a factor of 2.
That is, their number grows exponentially the further out from the combined cen-
tral/vertical symmetric axis. It appears to me that the pores themselves multiply as
a cell would the further out they appear. This sample doesn’t have many radiating

21

Fig. 23 - Diagram - Analysis of pore structure hierarchy

22

cycles(possibly 3-4) but it is my feeling that this is the case with the limited visual
data available and I’m going to proceed forward with this reaching assumption as
see what might come from it.

So I will be moving forward with a handful of assumptions; the organism is organ-
ised symmetrically about a centre(radial) and has some bilateral symmetry(mirrors
using a vertical axis), the pores increase in number exponentially based on the
distance from the centre/axis and decrease in area from the same reference. This
is one slice of a very complex, but well documented, system that is “in motion.” The
SEM image has captured the silica structure at a point within the diatom’s life cycle,
so this may represent only an intermediate state of its response to environment.
Also , visually, the silica aggregate seems somewhat smooth and uniform having
minimal discontinuity within the valve, and with portions of the system connecting
to a lower layer in the same manner.

23

Fig. 24 - SuperFormula
 Johan Gielis

cos

a
()mf

4
+

n₂
sin

b
()mf

4)(
n₃

1
n1

r (f) =

Fig. 25 - Superformula Grasshopper Script

24

Encoding - Superformula & Iterations

Reaching in back through to D’Arcy Thompson again, many of forms of life he
studied were at their core based on variations on processes using polar or spherical
symmetries. The circle (and harmonics based on the circle) can be seen in many
plants and I believe that this geometric organisational principle plays a substantial
role in the morphology of the Diatom.

In an effort to find a unified Cartesian method for generating a number of basic
shapes that appear in nature(circles, squares, triangles), mathematician Gabriel
Lamé developed a formula(Lamé 1818) based on the Cartesian formula for the
ellipse. His creation, the Superellipse, can additively generate these basic shapes
through the parametrization of exponent(n) on each axis(a,b) respectively and is an
extension of the basic ellipse formula in Cartesian space. This was taken further by
extending Lamé’s work and disengaged the axes in an effort to extend the func-
tion’s abilities to generate distinct form(allowing for polar harmonics)(Gielis 2003,
333). Geilis’ addition of a “mode” for the function in radial form further extended
the function to discriminate based on the type of symmetry needed.

To better understand Gielis’ formula, I felt that a grasshopper script could be gener-
ated to produce a sense of the range of shapes produced by altering the symmetric
mode(m) and by testing values for axes exponents(n2,n3). Changing parameter
“n1” had little or no change on the output other than scale so I left it pretty much
alone. I wanted symmetric output, so I left the axes equivalent to one another(a=b)
for this initial exploration. Rhino-Grasshopper allows for a real-time instrumenta-
tion of the Formula. The script-system resolves itself whenever the parameters are
changed, producing sets of solutions simultaneously.

x
a

n

+ y
b

n

= 1
x
a

2

+ y
b

2

= 1
x
a

m

+ y
b

n

= 1

Cartesian Ellipse
Formula

Superellipse Formula - Lamé SuperFormula - Gielis
Cartesian Form

Fig. 26 - Superformula Evolution

25

n2=n3=0.5 n2 = n3 = 1 n2 = n3 = 100 n2 = n3 = 300 n2 = n3 = 500

m = 0

m = 1

m = 2

m = 3

m = 4

m = 5

m = 6

Fig. 27 - Superformula Iteration & Algorithmic Flex

26

As seen opposite, the output for n1/n2 equal to one or greater results in useful
radially symmetric form. The system reduces to essentially a group of nested circles
at all values of m=0(reducing the equation to that of a simple circle) for all angles in
zero to two-Pi.

For exponent values less than zero(n2=n3=0.5) the formula produces somewhat
asymmetric cases with discontinuities for odd values of m. This needs further study
to truly resolve whether the cause is my implementation or the formula itself. It
seems quite odd to me that the system is not differentiable at polar zero. At this
point I would suspect that my script does not take into account a boundary condi-
tion correctly.

The special case at m=1. The system is symmetric about one shortened axis but
the result is that it is symmetric about two, as if the axes were extended infinitely.
The curves themselves extend out in the direction of the axis, resulting in an overall
asymmetric shape. This case is interesting in that it is as if symmetry is “pushing” its
way into existence in these trials.

In trials m=2-6 the curves exhibit the type of behaviour I can use. These cases
reflect the macro-organisation of forms seen in many types of diatom. I can ex-
trapolate to see how radial symmetry can develop using Gielis’ formula for even
higher-ordered species. In the case of the Cocconeidacean valve, I think m=2 and
n2=n3=1is the closest match. This configuration is a good place to begin when
developing a morphological generative model for the form.

Encoding

Extending the grasshopper model with these parameters will initially allow for the
formation of a scaffold that I believe best represents the regions where silica is de-
posited as a structural network. If I treat the output this way, I can further-develop
the form to better represent the flowing mesh-based surfaces seen in the scan.

Graphic scripts in Rhino-Grasshopper are interpreted by the system at all times
during the creation process. If you place a component on the work surface and
connect it to sources of data or other portions of an already existing script, data will
flow to the new component and the entire script will resolve to a new set of states.
This development process can be relatively fast in the beginning, but as the system
grows in complexity, resolution times can drop off quickly. It’s possible for the sys-
tem to essentially lock-up and become unresponsive as it plugs through the work at

27

Fig. 29 - Superformula Grasshopper Script - wb

Fig. 28 - FORTRAN Punch Card - Joseph Huffman

28

hand.

Being aware of the complexity of the developing algorithm is inherent in any soft-
ware developer’s toolbox, and establishing that sensitivity for a growing algorithm
can be difficult. My first hands-on experience with computers was back in 1979.
Our high school was a relatively new building designed in the late 60s and some-
one had the fore-thought to establish a good cooperative relationship with IBM at
the time. They had built a section of the school to support one of their early small
mainframes. The IBM model 1130 offered some text-based input at the console but
mainly took its input through a card reader, and all output was printed. It had eight
kilobytes of Core memory and sported a 1 Megabyte hard disk system.

I know I’m dating my self here, but I remember the excitement of sitting at the
keypunch, copying my instructions and data over to cards at those consoles, one
punch at a time. We were never allowed to program “on the fly,” as our teacher felt
that this only produced lazy, inefficient code(and programmers). Algorithms had to
be documented in pseudo-code first(flow-charted), then translated to FORTRAN
statements, then to cards. The process could easily take a few days in preparation
for a “run.”

Because the mainframe was right next door, we could walk our code over when
we wanted and submit it as part of the hourly processing run; If we were lucky, we
might be able to get a run or two in a day... Or if they were generous, the operators
would let us run them ourselves. This was a privilege not easily obtained. Trust was
hard to acquire because this was serious business... Data Processing was a career
path that had a hardness to it that’s difficult to describe. We sweated “up-time”
even back then. The fallout of screwing around might have meant a down machine
and that meant less throughput. We learned early-on the mantra of information
technologists everywhere; uptime and access and throughput is everything. I can’t
imagine the other students, at other schools in the region, who got one run per
week - board couriers moving card boxes on Sundays - endless stacks of trac-
tor-paper - bubble cards.

Even back then, If you didn’t think your algorithms through, it might take more time
than was necessary to do the work at hand. Approval of the operators was par-
amount to access...so you thought-through and developed a feeling for the com-
plexity of your work. Otherwise, your job would be dropped if it was thought to be
“spinning” as your “cpu clicks” counter rolled over, and you might not be given the
access you wanted later, just when you really needed it.

29

Generate shape
from superformula

Generate rings from
point tree

Dub-divide network

Create 3D Voronoi
from network

Generate volumes
based on voronoi

Reduce volume to
point definitions

Generate meshes
from points

Cull meshes outside
of ring set

Smooth meshes

Fig. 30 - Diatom Form Algorithm and Evolution Sequence

30

Today, every change to the my grasshopper scripts incurs a cost in time. I get anx-
ious when the change produces a perceived lock-up; my fingers hovering over the
Ctrl-”c” keys so that the issue may not kill the whole system if my error in judge-
ment causes all available resources to be taken. After a while I calm down, when
the systems begins to finally behave predictably; Change.....wait five seconds...
screen update; change.... wait 10 seconds...screen update; change....wait 20 sec-
onds....ctrl-”c”...<esc>...<esc>....”whew,” its back; won’t do things that way again.
Rinse and repeat.

My algorithm first begins with the Gielis framework chosen, and divides each con-
centric iteration into a set of resolvable points. A resolution greater than 60 seems
to produce some of the best results. I quickly learned that if I chose a value over
300, the machine was never coming back from whatever hole it was dropping into,
so I kept my number closer to 120 for sanity’s sake.

After points comes lines. A network is produced that is further subdivided expo-
nentially due to my assumptions during analysis. This portion of the algorithm
simply adds more differentiating as the iterations extend outward. My goal was to
essentially develop a loose mesh over this network and the best method I could find
involves our old friend from Neri Oxman’s Mashrabiya, the Voronoi network.

I believed that if I could generate a sub-network joined from the centres of each
contained area from my generated scaffold network, I could build a set of areas
that uniformly span my original network. Now, this is where things really get tricky...
I found that if I offset my area boundaries in the negative direction by 5% or more,
I would end up with a set of areas that are smaller than the first, but still centred by
their original centroids. If I convert these boundaries to points, and duplicate this set
of points and offset them in the Z-direction a bit, I have the framework for a tight
mesh system.

At this point all I needed to do was remove any duplicate points generated in the
process, generate the surface meshes using the Weaverbird plug-in, cull all outside
meshes due to the Voronoi process and then smooth using the CatMulClark Weav-
erbird component to the get smoothness necessary.

Each iteration(and there were thousands during design) took anywhere from ten
seconds to ten-plus minutes to resolve, thus turning this into a very painful process
that could benefit from optimization. As an interpreted programming language,
Grasshopper scripts are just that; scripts that run on top of a framework of code
that is handled on-the-fly so its compiled optimization can’t benefit from any look-

31

Fig. 31- Complexity and Symmetry Flex

Fig. 32- Representational Flex - Diatom Model Domain(a|b)

32

ahead or historical demand the algorithm presents. If the algorithms had been
transferred into a compiled language(C, Java...etc), I could expect two orders of
magnitude of time improvement.

Further to this, when the number of iterations is increased, the resultant output
behaves as expected(Complexity and Symmetry Flex - Fig. 31 opposite). The time
to generate each more complex form increases exponentially to the point of me
questioning whether the process will complete(ten-plus minutes). The algorithm did
produce form that was expected for each symmetric mode and I’m quite satisfied
with the result. While far from exact, the model’s output did produce forms that
were structurally similar to the valve’s morphology; symmetrically arranged voids
that mimic an aspect of the materiality of the silica.

If the algorithm is flexed further however, by altering both the domain of the major
and minor axes(Representational Flex (a|b) - Fig 32 Opposite), some fairly nonsen-
sical results can be created. The resultant forms seem to fold in on themselves and
do not vary much other than in scale. In my view, the results aren’t as important as
the method. I think it’s necessary to explore all the parameters without any pre-
tence or expectation. Seeded by my impressions of the diatom’s form and symmet-
ric capability, the flexing of this generative system offers a wealth of results that
may prove useful anyway.

33

Fig. 33 - Flex of Diatom Representational Algorithms

34

Fig. 34 - Standard Diatom Model Iterations - Size and Iterative Depth Flex

Appearance - Representation & Flex

Satisfied that I can mimic a portion of the diatom’s perceived organisation, this in-
vestigation becomes more interesting when I flex its representational logic and not
just the parameterisation surrounding symmetry. If you recall, I exploited a voronoi
process to create the mesh that inevitably generated the form. While developing
this method, many mistakes were made and this resulted in some surprising formal
directions(seen opposite).

It’s one thing to generate form in a vein of what you expect but quite another to dis-
cover a strange and wonderful new morphology. There are nine parameters in form
generation using the Superformula, plus a further four used in final representa-
tion(mesh generation and smoothing). When I flex the latter, the existing diatom
model becomes quite distorted, and in transformative ways that are reminiscent of
some of D’Arcy Thompson’s observations within related species and his Transfor-
mations of Related Forms.

Taken to extremes, each investigation reveals wonderful variance within an organic
base set of encoding. It’s as if I can almost evolve form myself in a relatively expe-
dient way(ok, each took a while, but not as long as in true evolution). Some can be
quite macabre, others I find very intriguing; I like the freedom they represent. Our
son, of course, finds them all very disturbing...

35

Fig. 35 - Grasshopper L-System Script

Fig. 36 - L-Systems Iterations - Perspective

Fig. 37 - Algorithm Results - 6 Iterations Renders

36

Arrangement - L-System

Digging a bit deeper into the morphology of the Cocconeidacean diatom frustule,
I’ve been thinking so far in terms of the placement of voids in a uniform silica
matrix. This method has allowed me use a few boolean tricks to see the form in a
subtractive way and has had positive but limited success. I’m not so sure, however,
that life encodes necessarily in terms of what is not there but more so in terms of
what is there(additive over subtractive).

Diatom Papillae are sites of silica production in the diatom valve. In this area,
metabolic processes draw silica ions from surrounding solution and activate their
deposition in an encoded response to environment(Cox, Willis, and Bentley 2012,
450-459). Unsure of how this could actually be performed, I moved to construct a
simple encoding experiment to see if the resultant form might resemble our frustule
in some way.

My first thought was to look at the process of phyllotaxis in plants for a theoret-
ical framework to build from. Centric diatoms must start at a “centre” and grow
outward in some manner(much like many other plant-like species); possibly an
L-systems approach might be of use. If I interrupt the process and take portions of
it(slices) at significant moments, it might be possible to see the frustule valve itera-
tions “grow” from these moments.

Lindenmayer-Systems, known as L-Systems, are methods of describing encoding
through the use of a formal grammar involving “rule rewriting” at each growth
stage and their use was first developed by an Hungarian theoretical biologist
named Aristid Lindenmayer (Prusinkiewicz 1996) in 1968. Lindenmayer sug-
gests that a plant grows using a simple recursive algorithm which is applied at
each growth node as it responds to its environment. In each iteration these “loose”
instructions rewrite their response to the local environment either by applying the
same rules or altering them by ratcheting up/down counters controlling growth

Fig. 38 - SEM Frustule Papillae arrangement

37

Trial One - Slices in Elev + Plan Result Trial Two - Slices in Elev + Plan Result

Trial Three - Slices in Elev + Plan Result Trial Four- Slices in Elev + Plan Result

Fig. 39 - L-Systems Algorithm Flex Iterations

38

paths or other development characteristics. And all this is using a handful of simple
instructions.

I chose to use Grasshopper again because it does support recursion through its
“Hoopsnake” component add-on. It took a bit of time to get used to how this is
implemented(remember Grasshopper is always trying to resolve a solution). Ideally
there as to be a set of variables that are passed from one iteration to another, some
are for control, others define locality of action. I wrestled with the mechanisms of
how to control each iteration of execution more than the data and instructions of
“making.”

My algorithm is simple. For each point in a set of points:

	 Find a random “next”point(within an allowable growth distance toward a “goal”)
	 Draw a circle with a specific radius dependent upon iteration count at this point
	 Pick 8 randomized points on this circle
	 Draw a line from my current iteration to each new point on the circle
	 Apply this algorithm to each new point(passing “next” position to now be “current”)
				
The Grasshopper Hoopsnake component halts execution at each iteration. I did not
put a limit on how much recursion was allowed because this control was available
by default. I would normally include a counter to limit this but running it in single
steps was sufficient for my needs. A runaway recursive process will kill any machine
as it gobbles up all available resources and cpu... and this would break most of the
IT tenets I mentioned before(uptime, availability and definitely throughput). If I let
it run freely, it will most definitely lock up the machine and any unsaved changes
would likely be lost. I have a handle on this one.[Always follow the Tenets! Main-
taining availability requires backing up repeatedly. This one is so in-grained I hardly
think about it anymore.] My workflow here consists of:

	 Change algorithm
	 Save
	 Enable solver
	 Run(step..)
	 Disable solver
	 Bake

The results(opposite) show some promise. Diatom Valves grow from inside to out-
(Seckbach 2011)and this leads to the valve permeability becoming less and less
as we get close to its outside layer. It makes sense that as papillae become more
dense, their activity also becomes more dense, resulting in more silica deposition.

39

Fig. 42 - Grey-Scott Reaction Diffusion Voxelization - Michael Hansmeyer

Fig. 41 Grey-Scott Reaction Diffusion Simulation(2D)

Fig. 40 - Folded Columns - Michael Hansmeyer

40

Patterning here is defined by the use of a circle and by injecting some randomness
into the algorithm at each iteration/level. This is a very rough model but can explain
a portion of the morphology I see as I understand some of the processes at play.

Fluidity - Grey/Scott Reaction Diffusion

While trying to understand the somewhat alien forms seen in many diatom SEM
images, it became clear that a major portion of the environment that this organism
experiences was not being investigated. All diatoms exist within a freshwater or
marine system, so water and nutrient flow is a major driver for the development of
their morphology. What of the processes of concentration and flow?

Buried deep within my “images quod inspirare” directories is an area given to Mi-
chael Hansmeyer. His work on generative form has also taken its cues from organic
life but in a more fundamental way than those of Oxman and Menges. In some of
his more famous investigations, Hansmeyer applies topological “folding” to produce
his macabre columns and grottoes(Fig. 40 opposite) when the folding process is
taken to incorporate symmetry at the finest of scales. His digital grottoes foreshad-
ow the birth of a new renaissance in form generation - and exciting because any-
thing may be possible.

The flowing form generated by his Grey-Scott Reaction Diffusion investigation(op-
posite) is a voxelized view of the concentrations of reactants and products seen in
the chemical reaction model simulation. First proposed by Alan Turing in A Diffusion
Reaction Theory of Morphogenesis in Plants(Turing 1992), he suggests that as the
laws of physical chemistry govern the concentrations of chemicals they then govern
the resultant forms, not unlike the pure mathematical relationships seen in D’Arcy
Thompson’s work.

As a model for Grey-Scott Reaction diffusion reaction might embody this view in a
more demonstrable sense; specifically two chemicals interacting at a rate defined
by their relative concentrations, which obviously changes as the reaction produces
products(and these products inhibit the reaction). This is the reason why zebras
have their stripes(Liu and L. 2006, 011914) and also why diatoms of the same
species have such varied forms. Their encoded response to their environment is at
a macro level; leaving the reaction to sort out the details at a micro level(Cox 2010,
297-306).

41

Fig. 44 - 3D Reaction Diffusion Mimic Script

Fig. 45 - Form Section

Fig 43 - Grasshopper Script Render

Fig. 46 - Form Tectonics

42

While Hansmeyer’s algorithm involves a discrete 3D simulation of the Reaction-Dif-
fusion model(plus a large voxelization), I felt that this would be a sizeable and over-
ly complex process to duplicate. It may have been a stretch, but the form reminded
me of the result of field interactions of three or more attractors within a linear field
using the grasshopper “Nudibranch” plug-in(Tsiliakos and Egan 2013). A grasshop-
per script to model this system was easy enough to set up, and with repeated trials
and adjustments to the parameterisation, a similar 3d structure was the result.

Form Algorithm:

	 Define a 3D Region
		 Generate numerical series from Zero to Upperbound
		 Duplicate series Two more times
	 	 Create list of 3D points by mapping each list item to every other
	 Generate Three random Attractor points and locate them randomly outside the 3D Region
	 Measure the field strength at all points in defined region
	 Create potential surfaces
		 For each set of strengths
			 Create a set of 3D points experiencing a chosen strength	
			 Create and smooth iso-surface made from this set
	 For each iso-surface
		 Extrude Surface in Z direction a defined Distance	

The complexity of the algorithm is a significant issue(On^3+). Each iteration for a
10x10x10 (1000 point) region can take upwards of 30 seconds to resolve. Much
of this comes from the iso-surface creation included within Nudibranch and the
Weaverbird’s CatmullClark smoothing plug-in(Piacentino 2009). Both are black
boxes(equals not well documented) so it is very difficult to optimize this method.

43

Fig. 47 - Scaffold - Grasshopper Script Result

Fig. 48 - RealFlow Form Generation on Diatom Script Scaffold

44

Fluidity - Realflow Proof of Concept

Thinking additively, as in the L-Systems investigation of arrangement but at a larger
scale, what if the formal system at play structurally in the Diatom is based on a set
of pathways that form a network, or scaffolding, which produces and distributes the
ions needed to bring dissolved silica from the surrounding environment?

I would need to “grow” this framework using my existing grasshopper script and
then give it some dimensionality. With this in place, facilitating the attraction of silica
using fluid-based dynamic may produce a form likened to the diatom valve mor-
phology.

After some research, doing this within grasshopper proved to be a dead-end. Fluid
dynamics is possible within the software but it is far from interactive and even the
simplest models and simulations would take more time than I have for this investi-
gation... Enter Realflow(from NextLimit Technologies).

Made for the video industry, Realflow is a virtual particle simulator. It’s capabilities
work at many scales, and its physics engine is able to simulate with astonishing
accuracy, many types of material interactions(granular, fluid, kinematic..etc.). It’s
workflows allow for the use of externally generated meshes(from grasshopper)
and in this case, it’s physics engine can utilize the GPU(a pair of Nvidia GTX980s)
for hosting it’s solvers. This allows for a substantial boost in performance(2x2048
cores vs. 4 cores of my Intel Core i7 CPU). And while it’s not entirely correct to
compare these two processors equally(Intel general-purpose cores running at
4GHz versus Nvidia vectorized cores operating at 1.3GHz), there is definite benefit
in numbers; 4096 cores net about a 10x improvement in performance from within
the Realflow system over execution on PC CPU alone.

This software is formidable. Like many of these types of packages, it usually takes
going through an example(or five) until the logic of its operation comes through.
Luckily I’m not alone, many others have been in a similar situation and they’ve left
a set of wonderful walk-throughs(Dieuwer 2014) on Youtube to assist. These are
invaluable.

Each Realflow simulation happens within a defined hub area where all the chosen
components within the hub are able to communicate with each other. The tool
offers different emitter types and properties can be enabled by simply dragging and

45

Fig. 49 - Realflow Form Simulation

46

dropping them within the workspace and connecting them as I would in Grasshop-
per via virtual wires. The system readily tells you what nodes can receive what type
of connections by enabling a wire connect or not.
In my first simulation, I imported my Diatom scaffold mesh and gave it attractive
characteristics. I then created a fluid particle emitter pointed downward at the
setup and configured it to produce particles with the default characteristic of
water(viscosity,surface tension..etc.) at room temperature. The emitter would be
configured to produce particle agents at a rate reasonable for the scope of this
investigation(neither a drip nor a fire-hose) and would function for long enough to
surround the imported mesh.

The kinematic engine within Realflow works with standard forces. When I first fired
this up, the simulation blew agents out the bottom of the area. I had forgotten to
contain the flow as I would in real life. I had to quickly model a containment box and
enable collision management so that it would repel the water and not “leak.”

Included within the package is a Keyframer(if you recall, this was made for the
video industry). This mechanism allows the user to view the state of the simulation
at any time and also allows for the choreographic control of any element in the sys-
tem. It’s through the Keyframer that I enabled the emitter initially and then disabled
it after a few seconds so that my virtual water would not overflow the container.

Through iteration I began to see that more control was necessary. The water was
moving too quickly(it “sloshed” everywhere), so I added a “drag” component to slow
it down. The water seemed to not adhere to itself all that well, so I attempted to
decrease it’s viscosity and surface tension to help. In the end, I added a “sheeting”
component to give it the consistency I felt it needed.

To give the particles form, a meshing process was added post-simulation to create
the appearance of a water surface. I kept its parameters fairly close to default as
altering these would send the system into very long delays during computation of
each simulation frame. Here, as I saw previously in my Grasshopper Diatom form
calculations, precision costs significantly - and the complexity curve is clearly not
linear. I would put it closer to exponential... Alter the mesh triangle size even a small
amount can send the system into itself for twenty-plus seconds per frame. When
the simulation is two thousand frames(for a minute and a half of video roughly)
this can push computation time into hours. At one end of the configuration lies the
chunky and imprecise intersection of metaballs(a form defined by a basic spherical
mesh surrounding a single point) while the other is a thin, wispy formlessness.

47

Fig. 50 - The Reveal - Lighted Snapshot of Realflow Diatom Form Result

48

In the end, once enough of the particles had adhered to the scaffold(and them-
selves), the resultant form was scripted to be lifted out of the bath of particles and
allowed to settle above. This proved quite problematic as the kinetic energy of the
system would not reduce despite the use of a dampening(or Drag) component. I
reached out to the internet for others who had unsuccessfully used this Realflow
component and found mainly successes. It seems that while this same component
kept the energy of the system low enough to stop the simulation from losing its
agents, it also inhibited its ability to resolve completely to a solid non-moving result.
I suspect its precision became too high for the system to resolve into a specific
state consistently. And while it resulted in forms close to the diatom form I had
hoped to see, I believe I’d hit a limit in this approach and was left with an interesting
form, but one a bit far from what I had hoped.

49

Fig. 51 - Coulomb Field Application in Action

50

Investigation into the Morphology of Diatom Valvocopula

 Nanostructures within diatom frustules can be quite complex. The diatom Cocconeidacean Monoraphid has been amply studied, and its valve
structure heavily photographed. The image below(Fig1) shows the inside of one of the valve structures of this diatom. Its symmetry is initially bilateral, but
this continues to change at smaller scales as it divides.

 The main structural material used in these organisms is silica and this interconnected system of linkages is created by the organism’s papillae. These
organelles grow these linkages using a reaction-di�usion process to establish changes in charge between each other. This alters the ph of the immediate
areas and allows for silica to come out of solution from the surrounding water. It is as if the papillae “guide” the silica into place.

 The tool used was written in Processing and essentially sets up a system of charges, both static and dynamic, which follow Coulomb’s law of attrac-
tion. It is my hope at this stage, that by altering some simple parameters such as charge strength, charge populations, and cooperative charge e�ects that
the paths of these mobile charges may couple. The result of which, within the processes of active paillae, would draw silica into the area for deposit.

 This is sizeable over-simplifcation of the processes actually seen in nature, however the results seen in my test runs, o�er two possible explanations
for the connection: Coupling can come from simply placing two small static charges close enough to one another...the resulting ions(moving charges) will
begin to couple around both and dwell. The other possible explanations is that each static charge source must be ampli�ed to capture local ions to cause
them to couple and dwell. Without further study, it would be di�cult to determine if either o�er a close explanation. While the �rst provides the clearest
results, the second seems most probable. Either way, a bridge was created in both situations within the simulation.

 If this tool were to be used to further this investigation, the reaction would need to be modelled(involving a reaction-di�usion algorithm) of the
silica in solution. Greater control of charge placement and mobilities within solution would be necessary. Also, the iterative approach used to solve Cou-
lomb’s force is very simpli�ed and would need to be improved to deal with interaction when the distance is very small. The current algorithm works to
ensure the system does not create energy when an interaction occurs but its controls are rudimentary and could use improvement.

Papillae

Fig 1. Valvocopula - Stefano, Journal of Nanoscience
& Nanotechnology - Vol5, p22, 2005

+
-

+

+
+

+
+

+

+

+

-

-

-

FRESULT

Coulomb’s Force acting from all charges

Diatom - Processing Coulomb Field Application

Nanostructures within a diatom frustule can be quite complex. The valve of the
Cocconeidacean Monoraphid has been amply studied and its structure heavily pho-
tographed. The image below shows the inside of a sample; its symmetry is initially
bilateral, but as we saw previously, this continues to change at smaller and smaller
scales as it divides outward from a central radiating point. Like a plant, there are
vascular elements that grow within the form as it develops. The active external site
for this growth is called the “papillae.”

The main structural material used in these organisms is silica and its interconnect-
ed system of linkages is created by these papillae. These organelles “grow” the
diatom’s valve shell using a reaction-diffusion process modulated by the organism’s
morphological encoding. The process guides the distribution and rates of ph-
change within the organism to allow for silica to be deposited out of solution from
the surrounding water(Cox Eileen J. 2011).

To mimic this at the papillae scale(1-100µm), a software tool was developed and
written in Processing to essentially set up a system of charges, both static(papillae
site) and dynamic(free ions), which follow Coulomb’s law of attraction. It is my hope
at this stage that by altering some simple parameters such as charge strength,
charge populations, and cooperative charge effects, that the paths of these mobile
charges may couple. The result of which, within the processes of active papillae,
would draw silica into an area for deposit(the greater the coupling, the better the

Fig. 52 -Papillae & Form Development through Silica Deposit by Simulation

51

 c points display		 p output pdf of screen	 + add static charge
 f freeze simulation	 r ribbon toggle		 - remove static charge
 i invert background	 s static charge display
m menu			 t turn on point trails
 o output mesh to dxf	 z Z-dimension toggle

mouse + right button 	 perspective rotate
mouse wheel 		 zoom
mousewheel + shift 	 fast zoom		

Menu System w.
Parameter Sliders

Simulation 3D Window
(Rotatable + Perspective)

Mobile Charges

Static Charges
Particle Ribbon
Trails

Fig. 53 - Coulomb Field Application Menu System

52

accumulation).
This real-time system utilizes an Agent-based architecture to simulate a series of
individual charged particles, some fixed and some free, within a confined 3-dimen-
sional arena. Charges are placed randomly when the software is initialized(the
quantity and positions can be hard-coded). Their charge value is also randomly
positive or negative and acceleration follows a simplified form of Coulomb’s law.
When the agents find themselves outside the arena, they are removed from the
simulation and a new agent is allocated and placed within the simulation area.

Each charge affects all other charges according to Coulomb’s force law. This may
be attenuated through the “hive” menu slider. The number of agents, the type/
length/width of trails, and the static charge field multiplier through the sliders as
well. The simulation is highly parametrized and many of its values are also accessi-
ble through keyboard commands(Seen opposite).

The entire area can be rotated and field of view changed while the simulation is
running. This gives the observer a chance to alter the parameters based on what
they see. All views are centred at a cartesian point(0,0,0) which is located at the
centre of the simulation window.

The quantity of agents within the simulation can be altered at any time through the
top menu slider(0 to 1000). This proved to be the single-most sensitive control for
the entire system. The algorithm is as follows:

	 For each charge
		 Compute the Acceleration due to all static charges(Q1q2/r2)
		 Add in the acceleration due to all other moving charges(q1q2/r2)
		 Add resultant acceleration to charge’s velocity
		 Add resultant velocity to charge’s position
		 Add position to charge’s trail list
			 If position outside arena de-rez agent/spawn random new
	 Clear simulation viewspace
	 For each static charge
		 Draw large sphere at its location
	 For each ion
		 Draw point at its location
		 For all points in trail list
			 Either(add to ribbon)[r] or (add to line)[r] or (draw point)[c]
			 Draw shape(ribbon/line)[t]

53

Fig. 55 - First Coupling

Fig. 54 - Coupling Experimental Setup

54

It doesn’t take long to overwhelm the computing power of my simulation machine
if the number of agents is large(>500), specially if trails are enabled. The computa-
tional time function for this algorithm is:

	 f(m,n) 	= (mn +n2) + (m + nL)	
		 = O(n2)

	 where,	 n = number of ions
		 m = number of static charges
		 L = length of ion trail

As each point must “touch” every other point for each iteration(n2), this drives
the computational complexity of the algorithm(O(n2) using big “O” notation). This
notation was invented by the German number theoretician Edmund Landau(Hardy
2008) and it refers to the tendency(or “Order”) that an algorithm may exhibit as its
behaviour moves to infinity. As this algorithm increases its agency, it grows at a rate
similar to others in the Quadratic class.

This way of looking at complexity is invaluable when designing a generative algo-
rithm. Just as the Systems Admin cares that your job doesn’t run all day, monop-
olizing the machine, we would like to see a converged result in our lifetime when
working on our own. This way of thinking, of assessing complexity continually, has to
become second nature when programming or scripting.

O(n2) is not horrible, but still not great for large values of n. At 500 ions, that’s
5002 = 250,000 calculations per iteration. Minimum. There are other concerns
too. Every full iteration triggers a true tabula rasa when it comes to representation.
This means that all geometry needs to be re-drawn(as a projection of 3-space)
within the bounds of the defined 2-space window boundary so that the agents true
motion can be visualized. This takes a material amount of time when the geometry
is complex.

Early on this became a concern, so I incorporated a way to decrease the complexity
of the trail types(dot/line/ribbon selector(+width)) sent to the graphics hardware
to allow for more agents if needed during simulation settings. I found, as an opti-
mization, that if all geometry was sent to the system as a contained Processing
“Shape,” output was much faster. Less calls to the graphics routines resulted in a
higher frame rate and more fluid motion.

55

Sharing

Static
Charge
Magnitude

Fig. 56 - Successful Coupling

56

Coupling - Easing Into Materiality

My goal throughout this process was to find a way to give a sense of material
“bridging” between papillae during their simulated function. I needed to “create”
mass between emission sites and the best way I felt this could be done was to
encourage the “ions” to dwell within a defined region between these organelles.
Dwelling causes a greater chance for silica to come out of solution and deposit. The
greater the deposit probability, the greater my chances for some bridging to occur.

While coupling did occur sporadically throughout many simulation runs, I felt it
was important to be more intentional in my investigation. What settings produce
the best bridging? And further to this, what characteristics of “coupling” were best
when producing form?

I ran a set of tests to give me a sense of how this simulated system might behave.
Again, this is an approximation of a simplified model to produce form using a
Coulomb(charge) field as its source for affect. I would alter as my parameters, two
things: the strength of the static charges in relation to the more mobile ions, and the
amount of information sharing that would occur between all agents participating.
The results are seen opposite. Coupling occurred in three situations:

Low Static Charge Multiple/Mid-High Sharing(empathy)

In this case all charges have the same magnitude and the system couples more
easily with greater sharing. Without the greater force of larger static charges
to dominate, their location and unmoving character drives the behaviour of the
swarm. The resultant trail pattern creates more of a mat of trails that fill out the
region between charges well. This is a very positive result.

Medium Static Charge Multiple/Low Sharing

While there is some tendency for ions to leave their associated static “home”
charges, it seems to be fleeting and of low probability. The bridging behaviour I’m
looking for is weak-absent but there is some coupling and more of it as sharing is
increased. This behaviour does not develop further as sharing is increased. Not a
great result.

High Static Charge Multiple/Low-Med Sharing

The larger magnitudes of the static charges clearly takes over here and drives this

57

Fig. 57 - Undersharing - Uniform Path Fabric - Each looking out for
themselves

Fig. 58 - Full Sharing - Random Static Charges - Resulting in Re-
duction of Differentiation

Fig. 59 - Full Sharing - Organized Charges Leading to Bridging and
Path Differentiation

58

arrangement to hold on to charges firmly and locally. It seems that the energy em-
bodied in the system supports some escaping to the neighbouring charge, however
the ions dwell at each for a long time before they may transition. This configuration
creates strong affinity and doesn’t benefit from any flocking parametrization. The
fabric created between the static charges is thin and not great for a bridge due to
the low frequencies of transitions.

Results - Processing Coulomb Field Application

Of the three types of coupling seen, the last was best. The others were either too in-
frequent for any lasting form to be created or too focussed on static site dwelling to
be of much use. It’s clear that a delicate balance of charge magnitude and flocking
behaviour is necessary within this simulation to produce a fabric of trails between
any two static sites. In a true physical system, the static field decays as 1/r2 and
there is no choice as to whether each ion’s affect is shared; the system resolves all.

The driving characteristic for form seems to be the unmoving nature of the static
charges. Their acceleration information(or lack thereof) is “shared” throughout the
system and has an effect that defines the form ultimately. The ions may move about
randomly and react to each other but it is the constant calming effect of the static
charge sites that ultimately causes moving charges to dwell.

If their locations are randomized, the result(Fig. 57 -opposite) generates an intrigu-
ing form that we can make much from. This is ultimately a dynamic process and
this alone has its merits. We can read much into the energy of the forms created.
Ultimately, when some organisation is brought to bear, bridging at the scale needed
does happen and could produce form similar to the silica bridging in the SEM image
of the papillae site(Fig. 52). While there are some parallels to the form resembling
something of a Eucharistic adoration , these are purely coincidental.

	 If this tool were to be used to further this investigation, the reaction would
need to be modelled(involving a reaction-diffusion algorithm) of the silica in solu-
tion. Greater control of charge placement and mobilities within solution would be
necessary. Also, the iterative approach used to solve Coulomb’s force is very sim-
plified and would need to be improved to deal with interaction when the distance
is very small. The current algorithm works to ensure the system does not create
energy when an interaction occurs but its controls are rudimentary and could use
improvement. Round-off and imprecision within the algorithm could be handled
more precisely using improved math libraries.

59

Results - Understanding the Organic

In this section, a set of geometric and agent-based digital methods were used to
approximate the form of the Diatom Coscinodiscus wailesii valve area at various
scales. These efforts involved encoding arrangements of various features and
they approached each problem in a slightly different way: symmetric principles
were leveraged as a scaffold to host a more solid framework of material and voids,
L-Systems logic was used to investigate a possible arrangement mechanism for
the papillae(growth) sites in the mantle, a geometric simplification of a Grey/Scott
Reaction Diffusion algorithm was employed to see if there was similarity at a low
level to the SEM images at a very small scale, the Realflow application was em-
ployed to see if principles of fluidity played a roll in the diatom’s final overall form,
and finally an agent-based method was employed to simulate processes at a much
smaller scale when producing silicon bridging within the organism. The investigation
followed a relatively intuitive path and was successful in approximating some of the
geometric relationships inherent in the Diatom’s form.

Arrangement at a macro-scale of material and void utilized a mechanism that
modulated symmetry. The flex of the algorithm produced similar form but with less
or more complexity, and it was easy to overwhelm the abilities of my simulation sys-
tem. I was repeatedly reaching the upper-bound of its capabilities due to the com-
plexity of my implementation. I was relatively happy with the results, and while time
could be spent in optimisation of the system or altering the algorithm for better
approximation to the Diatom’s specific form, I felt I was able to come close enough
to satisfy my curiosity.

Structure in the diatom begins with the arrangement of the papillae as they are the
source of inflow of the structural material of the organism. The SEM images I refer-
enced were of dead diatom organisms caught at a particular time in their life-cycle.
As the papillae arrangement develops it can’t but help to affect the overall organ-
isation of the silica bridging. Using a plant-based L-Systems growth algorithm for
site growth seemed a good method for mapping the papillae site distribution. Using
a parametrised recursive algorithm, coupled with an attractor, it was possible to
generate a few useful iterations. The diatom’s papillae distribution may be governed
by a similar mechanism. As with much in this effort, I suspect there is more at work
in it’s arrangement and I suspect it is likely to be seen when the system is better
coupled to the organisation’s environment.

60

The Diatom lives within an aquatic environment, so flow of resources must play a
sizeable role in its form generation. One of my precedents, Michael Hansmeyer’s
Grey/Scott Reaction Diffusion investigation, seemed to offer a continuous sheet-
based result that could appear similar at a small scale for the diatom valve form.
While the true mechanisms of this physical systems require an iterative solution
of the differential equations that define the reaction, I felt it must be possible to
approximate its result through an analogue. The results were relatively successful,
but yet again complexity reared its ugly head in even my overly simplified solution.
It was again easy to overwhelm the system when it’s precision was even minimally
defined. While the results are encouraging, more optimization is certainly necessary
if I am going to tease out a useful solution that approximates the true form.

My last attempt to generate a fluid form was a bit of a reach. I had attempted to
use a number of Grasshopper plugins to “grow” the smooth silica form based
upon my organisational framework but most could not work with the networked
scaffold I generated from the first phase of this investigation. I tried simplification
techniques(and optimizations) but the input easily overwhelmed any of the plugins
and methods I made use of. At this point, having some experience with Next-Limit’s
RealFlow fluid simulator, I broke from the saddle of self-generated form and at-
tempted to simulate the flow and attraction of a fluid around my framework using
their system. This direction worked, producing a consistent mesh that I could finally
print using the 3D printer assembled later in this section. Now the meshes had their
issues, working through the parameters of the simulation it was very challenging
finding just the right values that would stabilize into a usable form. The system’s
kinetic energy would be difficult to dampen. All the same, several manifold forms
were produced and finally a consistent print was possible.

Finally, having done some programming back in the dark ages of computing was
little help when it came to picking up Java. The Processing language is a bit of
a walled garden for development for Java beginners. A simplified set of libraries
is provided to perform common input and output without shouldering the entire
burden of the Java language. It’s a great stepping-stone to object-oriented language
development and the interactive development environment(IDE) was simple and
easy to use for a relative beginner to modern languages.

I bring this up because the object-oriented mentality is very useful when thinking of
software agents. They could be implemented in most any language, but Processing
and Java in particular are very well suited to the concept. I found that creating an
Agent object that included it’s abilities and characteristics was as easy as invoking
a method in a “let there be light” way. It’s very powerful. Within the Diatom Coulomb

61

investigation it was important to have these software agents essentially create and
destroy themselves as they passed out of bounds of the simulation region. Tight
coupling of the environment to the graphics capabilities resulted in a very convinc-
ing and interactive simulation.

At it’s heart, my goal of the investigation using agents was to create a recognisable
bridging form between the non-moving papillae sites. To do this, I felt I needed to
create coupling events. It was through this mechanism that consistent form would
be laid down and after some time, a mass that appeared to be bridging. As I’ve
said before, this is far from the processes that likely happen within the diatom mor-
phology at this level, but it is a likely formal analogue.

It is notable that the “sharing” portion of the agent parametrization was applied
across the entire population and it took a large number of iterations to understand
how coupling might manifest. My charted results highlights coupling incidences
while varying non-moving charge magnitude and sharing(empathy) shows, in my
view, that the best coupling happens when a “fabric” of paths is generated between
points rather than the more aggressive “thinner” connection seen when there is no
sharing at all. Later, when the charges were arranged in a configuration resembling
the papillae SEM arrangement and the parameters were set to those similar to
the successful coupling settings, bridging did appear to happen in a predictive and
positive way. Agency appears to be a very good method for generating sometimes
difficult form that can’t be easily defined through geometric means.

62

Conclusions

Getting a “feel” for any algorithm is hard. Obtaining more useful feedback than a
simple “wrong” or “right” can be a godsend even in the best of times. In building an
analogue of a diatom’s fustule creating a system of feedback proved to be especial-
ly difficult as there are more than nine major parameters for its base implementa-
tion, plus a handful more for meshing and display. The best I could do to get a feel
for its behaviour was to flex each parameter or parameter pair as a basis of behav-
iour and sense this affect on the system’s response. The investigation shows how
this was done and while the process was quite frustrating, the results were very
positive.

It was possible to get a “feeling” for how the system as a whole behaved: the grow-
ing algorithm, its implementation, the software platform it was living within, and the
machine it was run on. They all fed me information, whether direct or more subtly,
while the system was being grown. I could do this because I was able to form a
relationship with each layer. I learned what was considered ”normal” at each stage
and as I was able to add new elements and measure the new system’s behaviour.

As a list, some of the feedback I experienced might be considered quite typical or
basic: Does it crash? Does it slow the system to a crawl? Others were more com-
plex: Does the system respond in a way that was expected? What are the limits to
its behaviour? If the input values are taken out of bounds, what happens? Any good
surprises? Bad ones?

To test a system, we move the inputs and hope for a real-time response. This is not
always possible however, sometimes the scripting system takes tens of seconds to
resolve and while very frustrating, it was very telling of the system. Coping mech-
anisms are developed to save work when we stress a system...constant saves,
multiple backups, thinning out the test machine so as to minimize boot times when
the parametrization crashes the whole system. There are so many ways of coping,
or managing the situation.

The system broke often. This is actually a sizeable understatement as sometimes
it seemed to be perpetually broken. I spent a significant amount of time going over
added logic to understand why systems failed or how a small change could bring
the house down. These failures were instrumental in affording me the ability to
iteratively gain understanding at a very low level of the system. Rather than simply

63

focussing on the nine major parameters that governed the solution for a geomet-
ric investigation, there were uncountably many internal parameters that pushed
and pulled this system into existence. This internal crawling through the works was
difficult but key to gaining my understanding of the behaviour of the system as a
whole. Much of this knowledge became ingrained when “feeling” out the behaviours
of added layers of functionality.

The question of algorithmic correctness and optimization is constantly on my mind
when developing a solution such as this. Can I obtain the same results by thinking
of the solution in another way? Are there other implementation choices that might
improve output? It seems that every test-stress cycle triggers thoughts of “how
could I do this better?” While not expecting perfection, measured improvement
directed by existing behaviour should be possible.

How can I bridge the gap between idea and implementation? Like growing a pearl,
the solution is added to, layer by layer. Each level being tested for stability and resil-
iency. At each iteration, behaviours grow out of the system. How does it effect the
sound of my computer when running? I have a CPU and Disk monitor window open
all the time, looking for memory consumption, cpu behaviour, heat dissipation...
amongst others.

As the Grasshopper scripting environment was for the most part a closed system.
I really had no idea on the specifics of each module’s implementation. I simply had
to put trust into the script’s ability to function as advertised. For many of the wired
functional blocks, it was relatively easy to stress their operation until they would
fail. Many were quite resilient but some add-on components offered a very limited
band of functionality when used. This proved to be a major factor when pushing the
system forward. It required that I try many add-ons that purported to offer similar
functionality(meshing being a major pain point). None offered their source for their
components, so I was not able to understand how they might be failing. Being an
open community, it is survival of the fittest in the truest sense of the word. Badly
behaving components are not recommended for distribution on various Grasshop-
per script sites as people find these issues. Only the adept and communicative con-
tributors seem to succeed. The community is strong, and it’s strength comes from
being interactive with your user-base. Some build great followership, and in doing so
are able to eventually market their work.

Throughout this section I became aware of a number of inputs helping me to
understand the capabilities and limitations of my implementations. I reached for
mental analogues often to help me build a form that approximated the diatom at

64

several scales. It was important to watch and listen to what each software solution
was telling me. Each was the manifestation of my understanding of the problem
at hand and a demonstration of my ability to implement the logic necessary. Each
experiment resulted in a tool being built to help answer my questions concerning
the diatom’s formal organisation.

I developed relationships at many levels within the work and became acutely aware
of how the machine as a system responded to my changes. I instinctively grew a
sense of how to minimize its loading so that the investigation could continue quickly
and not be at risk to loss. I matched the development of the algorithms with a sense
of delicacy when making changes, inherently “knowing” what directions would
cause complexity in execution, hindering things. Each implementation was a con-
struct made from my vision and from the resistances created by its manifestation in
software and hardware. In gaining “feeling” for the development, a deeper aware-
ness developed in my understanding. Many of my activities became automatic to
me−avoiding the pitfalls while encoding my perception of the formal logic became a
very fluid exercise. I was very happy to see my first bridge between head and hand
built. And at my best reckoning it only took me about 2000 hours.

65

Fig. 60 - 2D Particle Swarm

66

pina - A Choreography of Affect

67

Fig. 61 - Mandelbulb Slice Voxelization

68

Introduction

In my first year here at UW Architecture Don McKay boomed in one of his many,
now infamous, Arch-100 lessons, “Don’t spend your life form-finding, you’ll blow
your brains out!” This was in the context of investigations surrounding some of
the more iconic architecture and furniture types. Don had been through this meat
grinder himself and was astutely warning us of the well worn yet rocky shores of
this pursuit; Hadid’s parametric curves, Gehry’s intricate flowing-yet-discontinuous
facades, and the iconic Eames lounge chair being examples of when it works and
is accepted. His warning was a reminder of the long list of those who didn’t find
acceptance, who produced and are lost in history; the assumption being that they
were wasting their time looking for that “style,” one that would be lauded and forev-
er remembered.

At the time, his warnings made good sense. Sometimes though I think Don might
just raise his voice to wake people from their daily slumber, to shock so as to wake.
Imparting impulse, if even perceived, can have motivating effects individually and
collectively. Don’s impetus, I suspect, was to make us all agents of change in one
way or another.

In looking for a solution at the tiniest of scales, I enlisted software agents to help me
build silica bridging between ion production sites as part of the Diatom investiga-
tion in the previous section. It was a good introduction to application construction
using the Java language and the solution was able to successfully show formally
that bridging is possible at that scale. It was my first jump into application program-
ming after using Rhino3D/Grasshopper scripting for much of the geometric investi-
gation and was fairly straight-forward. I used many built-in libraries provided by the
environment and it was a good proof of concept. The guiding principle for much of
the entire simulation was one-dimensional, with sharing(empathy) between all the
agents facilitated while they all experience the same static forces based on their
positions.

“My Ariel, chick,
That is thy charge. Then to the elements

Be free, and fare thou well!”
Prospero, The Tempest - William Shakespeare

70

While this offered a unique perspective to a problem difficult to solve through
geometric means, it was also my goal in this section to try something quite a bit
outside my normal experience; What if I was able to allow for greater dimensionality
of interaction? I thought to investigate form generation through my interpretation of
a choreographed work of modern dance.

I was recently exposed to the work of Pina Bausch and was quite taken by some of
the scenes in a movie production about her by Wim Wenders in 2011 named pina.
In the documentary, a number individuals from her dance company each performed
works that they felt best conveyed Bausch’s most compelling work. They also spoke
about why they were so taken with her and the effect she’s had on each of their
lives.

The segment performed by Ruth Amarante & Andrey Berezin had the greatest
effect on me. They’re scene with each other in Wenders’ documentary is intense
and magnetic. As this thesis is about the tool and tool-making in as much as it is
about digital design, I will look to find form within their work seen in pina by extend-
ing my work done in the Diatom-Coulomb as a proof of concept to include a larger
sandbox of agents. With the number increased, I hope to see greater form definition
and more dynamic results. Within this section, I will look to understand how form
is created using agents, and what impact this has on tool-making to successfully
manage larger populations with greater interaction.

71

Fig. 67 - Flow 1 (deskriptiv 2014)

Fig. 64 - Guaddel(desktiptiv2014)

Fig. 63 - Schichten-”Layers”(desktriptiv2013)

Fig. 62 - Wandernd -”Hiking”(desktriptiv 2013)

Fig. 65 - Gewoge-”Waving”(desktriptiv 2013)

Fig. 66 - 2-Manifold Output SimpSymm - (deskriptiv 2014)

72

Precedent - deskriptiv

Christop Bader and Dominik Kolb are two researchers(MS candidates) that now
reside in the Mediated Matter group at MIT with Neri Oxman. They were previous-
ly at the university of Weingarten, in Germany, where they were completing their
undergraduate and graduate degrees in computer science. Their work in application
development is considered state of the art within the realm of generative form and
design. They later formed a design collective, called “deskriptiv” for the marketing of
their work.

Much of their efforts has only been seen through its use in form development. Some
of their artwork and proof-of-concept images has been published on many sites
and blogs(Behance, flickr, CA(Creative Applications), and IN(Inspiration Now)) and
until recently they’ve published very little otherwise. This is why that it was quite
a surprise to me that In December 2016 Christoph Bader and Neri Oxman were
published in Computer-Aided Design, offering with what I suspect the first of many
combined submissions describing Bader’s previous work.

“Recursive symmetries for geometrically complex and materially heterogeneous
additive manufacturing”(Bader and Oxman 2016, 39-47) is the long-awaited
description of how form is developed geometrically utilizing recursion and various
modes of symmetry in his co-written application, SimpSymm, with Dominik Kolb
while at Weingarten(not sure why Kolb is not mentioned in the paper as co-devel-
oper). The magic of their implementation is their effort in creating manifold output
in this project. A 2-Manifold object(surface) is one that is essentially “water-tight.”
This is important when translating the form into something that a 3D printer can
use to fabricate as a solid object has no break in its surface definition.

When searching for exemplar generative method, the work of deskriptiv shines
above all others for me. They successfully tap into an organic spirit while coming at
the solution from many different poles, sometimes using software agents or exploit-
ing recursive and symmetric method.

73

Fig. 68 -	Eyebeam Museum
	 Greg Lynn FORM 2001

Fig. 69 - NOAH Set for the Film DIVIDE
	 Greg Lynn FORM 2004

Fig. 71 - Robotic Arm Cutting Blobwall Brick 	
	 Greg Lynn FORM

Fig. 72 - Vitra Ravioli Chair
	 Greg Lynn FORM 2003

Fig. 70 - Riemann Chair - Wade Brown & 	
	 Galen Jones 2013

74

Precedent - Greg Lynn

Greg Lynn completed his MArch at Princeton in 1988 and worked in Peter Eisen-
man’s office(Lynn and Rappolt 2008). Lynn is considered a pioneer in the use of
computation and digital tools in architecture and has an extensive catalogue of
projects by his office, Greg Lynn Form. He has taught at Columbia, Yale and is cur-
rently teaching at UCLA and was the winner of the Golden Lion at the 2008 Venice
Biennale for his installation.

I have to admit, when I began seeing Lynn’s name as a source for inspiration in the
world of Digital Architecture it surprised me. Much of his work is published in the
mid-90s up to 2008 and then it stops for the most part. His formal investigations
begin with the era of the b-spline and caps off at the beginning of the digital ba-
roque. FORM was doing very important work in its day and I feel it’s necessary to
investigate digital’s ability to connect to people. Greg Lynn would always focus on
this in is projects and I think that the importance of this can’t be understated.

It’s easy to design virtually if there’s no constraints in materiality, space, or scale(is
that all?). The work can still be quite undefined in form, but if it never leaves the
laboratory of the digital world, it loses its value architecturally. I think this stigma
follows digital investigation wherever it goes. A digital design process is just that,
a process, and not a system all to itself. It’s too easy to stop designing when the
form “looks” correct; and I believe many do(in error). This design process must hit
the real world in some way some time, and Greg Lynn always ensured this was the
case.

His work may be a bit dated (the era of splines,surfaces, folding)(Lynn and Rap-
polt 2008) but his methods are still valid. Today’s design culture takes its queues
from materiality(a.k.a Oxman Material Ecology) and this is strongly rooted in the
real world. Greg Lynn’s design method utilized digital algorithms for form finding
but also depended on digital fabrication as part of the process. CNC, Laser cutters,
and 3D printing were early at the time for small shops but were very much integral
to industrial growth at the time. It’s only now that these tools are becoming more
available to smaller shops(or even for a home workshop). In third year of Architec-
ture at UW we applied some of these techniques(Brown and Jones 2013), I’d like
to build upon this using some of what I’ve seen in Lynn’s work to this investigation.

75

Fig. 73 - Allison’s Moment - Wade Brown 2007

Fig. 74 - Nude #1 - Maruyama 2012

Fig. 76 - Kusho #1 - Maruyama 2013Fig. 75 - Water Movie - Maruyama 2013

Fig. 77 - Kusho - Maruyama 2013

76

Precedent - Shinichi Maruyama

Born in Nagano Japan in 1968, Shinichi Maruyama studied at Chiba Universi-
ty. After graduating, he spent the next two years working for a large commercial
photographic company in the world, Amana Japan, picking up method. Later, as a
freelance photographer, he spent four years photographing Tibet and discovering
his style expression. His interest in stop-motion photography developed when he
began his time with the Hakuhodo Photo Creative in 1998(Naqvi 2010). There, he
had access to high-speed strobe equipment was able to further develop his interest
in capturing the moment.

As a photographer, Maruyama is concerned all about the moment. Whether it’s
only a fraction of a second, or a collection of seconds, his focus has been about our
perception of our own existence. He plays with time on opposite ends of perception;
offering a view into affect on the boundaries of perception.

For the singular moment, he says in his artist statement; “I know something fantas-
tic is happening. “a decisive moment”, but I can’t fully understand the event until I
look at these captured after-images.”(Maruyama - opposite) He paints in ephem-
eral space as the sumi ink he uses in Kusho is thrown; each painting is unique. In a
fraction of a second he connects us with the mechanisms of our perception, giving
us a view into our own uniqueness. There is tremendous energy of focus in the
“moment” he highlights.

For the works in Nude, Maruyama creates a construct of 10,000 layered moments
and highlights its collection in memory. This space would otherwise be outside of
our perception(almost its own heterotopia) because we get the chance to respond
to the collection in its entirety at once. The choreographed motion creates a form
that embodies the dance in its entirety, and while dependent upon each collected
frame, can create something entirely new.

I am fascinated by these works. Maruyama looks for the moment using photogra-
phy. I would like to explore this similarly, but through the use of digital tools. I believe
formal investigation at this level has value in an encoded result that is dynamic, yet
static and ephemeral.

77

Fig. 78 - pina - Movie poster - Wim Wenders

78

Dynamism - Affect/Object/Vitalism

Like Le Corbusier’s Modular system, where he proposed a physical generator for
his projects based upon the dimensions of the human body, I decided to try some-
thing different by beginning with a piece of interpretive dance choreographed by
the highly accomplished Pina Bausch. It is through her work that I hope to under-
stand form generation using a choreography, or encoded modulation, of affect in an
agent-based environment.

From her obituary in the NY Times:

The documentary pina by the director, Wim Wenders, was for me a very powerful
introduction to an innovative pioneer in modern dance. The story moves through
notable segments by members of her dance company; each offering their take on
Bausch’s unique style, while at the same time offering thoughts on their time with
her. I was drawn specifically to the segment focusing on Ruth Amarante and Andrey
Berezin(Wenders et al. 2011), both long-standing members of Bausch’s Tanztheat-
er Wuppertal.

In this short piece(Fig. 77), Ruth is walking slowly forward, as if in a daze. She stops
when she recognizes the male dancer(Andrey), and then falls forward without
any effort to catch herself. He intervenes at the last moment and begins to lift her
-- Slowly and carefully she then begins to walk backwards at the same time(some-
thing that must require a tremendous amount of effort and skill) until she is upright.

“Pina Bausch, the German choreographer who combined potent drama and dreamlike
movement to create a [new] powerful form of dance theater that influenced genera-
tions of dancemakers, died on Tuesday in Wuppertal, Germany. She was 68.”

“Ms. Bausch was quoted as saying she was ‘not interested in how people move but in
what moves them.’ “

“I look for something else,” she said. “The possibility of making them feel what each
gesture means internally. Everything must come from the heart, must be lived.”

					 (Wakin 2009)

“You don’t start dancing. You dance.”
		 	 William Forsythe

79

Fig. 79 - Andrey Berezin & Ruth Amarante in pina - Movie scene - Wim Wenders

80

She then resets and picks another direction..with the cycle continuing, becoming
more risky each iteration, until the end of the segment. The site is mixed in grade
and cover, and the music(The Here and After)(Miyake 2011) is hypnotic and quite
appropriate to the piece.

I think the easy interpretation of this piece is that it is of someone lost, caught in a
senseless struggle, experiencing the same situation over and over again. My inter-
pretation of the piece is a bit different than this - I think it’s more about someone
pushing themselves through a difficult time. It’s about courage, perseverance, and
strength. I feel it signifies an internal struggle within the dancer as she tries to main-
tain some form of stability in her life, even while skilfully moving backwards within it.

The male dancer who catches her is part of her unconscious, and might represent
a father or trusted person; I might call him a manifestation of her superego in a
Freudian-sense. She gives herself entirely to this process when she stops support-
ing herself, almost daring harm to come. It’s about boundaries, resolution through
repetition and variation, and the stamina of someone in crisis. While she repeats
the cycle three times within the segment, she chooses to change its parameters,
almost as if she is provoking a solution... Any solution.

The Implementation

I began to think of a system that would generate software agents who’s physical
behaviour would emulate symbolically(with some influence of the literal situation)
what I felt was happening inside the dancer’s head during one cycle of the dance.
Pina, in her own words was “not interested in how people move, but in what moves
them”(Wakin 2009). I needed groups of agents to work together to flow and artic-
ulate themselves within the changing emotional(emotive) landscape.

This would require a system with rigid spacial controls, instrumentation surrounding
the generation of fields and agent flow, a mechanism to share(empathetic activa-
tion), and a comprehensive key-framing mechanism to allow for a review of state at
any time throughout the cycle. Further to this, each trial would need to be remem-
bered offline to document the work and replayed if necessary.

I looked at these requirements ,and though that while it is certainly possible to
implement within Processing, it might take considerable effort. To evaluate the work
effort required, I figured that I might try to produce a simple flocking simulation to
give a taste of the work needed for even a simple portion of the effort. The scientist

81

Fig. 80 Flocking - Processing Investigation

82

in me thought to test whether this was possible using a small sample first.

Flocking - A Processing Proof of Concept

With a small sample(2000 or so agents) and by simply giving each a small amount
of directed energy, I let the system follow its encoded logic. Processing has a
method for managing flocking within a limited sense. I used its Boid library(within
the Punktiert Physics engine) to create a population and allow a small amount of
sharing within a sphere of influence, and I let it run(Fig. 78). The result took quite a
while to resolve itself and while it showed promise, the simulation took seemingly
forever to show its nature. Unhappy with the result, I decided to leave Punktiert’s
Processing’s library behind and try this on my own.

Flocking - Investigation of A Flow-Field Tensor-Based System within Processing

Not willing to let things go at this stage, I shifted my point of view. Rather than
deal with empathy through a sharing of affect directly, I felt there must be a way
to encode it within space itself. From my past exposure to the mathematics of
space-time, a Tensor fits this bill exactly. It’s definition is just that, a mathematical
way to describe a vectorized character of space at any defined point. As agents
encounter this character they can respond as their own abilities allow by altering
their own states and possibly altering space itself for any agents that follow. Sounds
easy right? I found it a simple extension of the flocking investigation but it became
evident, as I implemented my thinking, this was a much larger problem looking for
an even larger solution.

To simplify the process, I elected to implement this test using spherical coordinates
as it makes it easier to generate the tensor field using harmonic functions. The area
of influence initially was intended to only be a surface defined by a simple harmonic
function(initially defined by a sphere). The application’s results(opposite) incorpo-
rated upwards of ten thousand agents and a tensor sector resolution of 120 per
direction.

Unsurprisingly, this quickly overwhelmed the Processing environment. While I was
able to alter the tensor configuration through an interactive process to improve
things, the system also became too complex too quickly to manage no matter the
number of agents. My efforts to simplify became a bit disheartening and I decided
to stop this direction of investigation.

83

Fig. 81 - Tensor Field - Processing Investigation

84

Then there’s the encoding of space itself. This became a significant hurdle. The
agents would certainly navigate the environment they are placed within, but how
could space itself be changed to coax agent behaviour in a consistent and man-
ageable way. At 2000 lines of code, and four classes(SVector,AffectNode,Agent,
and Flowfield), my decisions in implementation became an issue for me on multiple
fronts. The addition of necessary functionality surrounding key-framing and saving/
replay would prove to make the code unmanageable. Each added function took
greater and greater effort to implement. I had definitely bitten off too much in mak-
ing this attempt.

It’s here that I encountered a clear understanding of the cost of making implemen-
tation decisions and the impact of their complexity within the realm of program-
ming. As with algorithmic complexity, this implementation was quickly heading into
the area of exponential complexity(O(nn)). Or at least it felt this way, because I felt
it necessary to re-touch each area of the code as every new function was added.
Question answered; with two unsuccessful attempts, I chose to move with a com-
mercial package to realize the Pina investigation. I hang my head, having had such
great hope for the composed solution and having learned a substantial lesson.

Realflow - A Commercial Agent-Based Physics Engine

While the encoding of affect within space is intriguing, there must be a better way
to investigate it. From my previous work into fluid simulation using commercial
packages, I elected to build my simulation within Realflow. It is a keyframe-based
agent-driven system that allows for a choreography of custom particle emitters
and forces. It’s ease of availability to students(free 1-year student license from it’s
author, NextLimit) was a boon for me and it showed promise.

To fully utilize Realflow’s abilities, I had to first work though it’s capabilities and
create a vocabulary of expression. I began working with it’s many emitter types
and physics solver engines(Standard, Dyverso, Hybrido). Based on the application,
some were better for flocking while others were better for larger more macro-based
situations(shattering monolithic structures..etc). One major benefit as mentioned
before, Realflow’s solvers can take advantage of my pc’s nvidia GPUs for simula-
tion, allowing for sessions involving tens(or hundreds) of thousands of agents in re-
al-time. The best fit for my investigation was the Dyverso Solver for this reason. This
was a boon to my work as more agents interacting quickly allowed me to make ad-
justments and re-run the simulations with new settings. This systems configuration

85

Emitter Trials - Cross-section/Randomness Emitter Trial - Gravity Field + Collision

Field Trials without SheetingField Trials with Sheeting

Fig. 82 - Particle Language Investigation

86

was head and shoulders above working within the Processing Java environment.

I began emitter trials with differing sectional profiles and modulated the random-
ness of the agents character upon being released. Realflow offers the ability to
manage the density of agents within the section during each release period. They
could be configured to get in each other’s way more often or to “go with the flow”
using a laminar component(Emitter Trials - opposite) once released.

Adding external field-based characteristics was the next logical step, including
gravity-like acceleration using the square sectional emitter. This is where I began
to included external mesh object collision(elastic and inelastic) by including a floor
plane. I then moved through force attractors and Coriolis forces, and finally adding
collision ability(elastic and inelastic) of varying degree between agents. Sheeting
and grouping was added last as more flocking information sharing was explored.

All of these interactions are collected within the Realflow keyframe engine and can
be interrupted, altered, and played backwards if needed. The tool writes each frame
as a separate file in any number of file formats chosen to help(.abc, .sd, .bdc, .obj,
.bin, .txt..etc.). The abc(Alembic) and txt(Raw) formats allow for direct access to the
location, velocity, and neighbouring agents of all actors in the scene for each frame.
Faster-moving agents are represented in a whiter colour that is normalized across
the entire participating population. If Realflow is configured to create a particular
file-type it will write them in the project directory; the more formats chosen, the
more work the system does, so it makes sense to limit what is written to a bare
minimum. I learned early on that the “.sd” format is sufficient for realflow to main-
tain the simulation, anything more should be added only if necessary. If needed,
other formats can be used to create animations or simply to export the system’s
state into modelling software such as Autodesk Maya, 3D Studio Max, or Rhino.

Matching force-type(mapping) to my impression of the dancer’s changing state
took me a bit of time. As the source(diviner) for the session, I chose to represent
the lead dancer’s state as an emitter of particles(agents) that followed along a bent
spline-like a vortex. I felt that by using a spline as an emitter, this was the best and
simplest way to represented the unnatural perception of time, an expression that
the dancer may be experiencing in a non-linear way, having a non-linear reaction
within her environment, resulting in a lossy non-uniform and unbalanced vortex.
After some trials, I was able to create a truly compelling restrained vortex emitter
that seemed to keep things together while clearly under stress(like the mind of the
dancer).

87

Fig. 84 - Realflow Pina Particle Perspective

Fig. 83 - Realflow Pina Particle Sequence

88

I also thought if the vortex of particles was focussed downward it might appear to
offer some form of perceived stability. It is through the motion and modulation of
an added molasses-like dampening, threshold-based sheeting(allowing for a col-
lective stability), gravity, inter-particle and external collision, and finally a real/imag-
inary-like separation of the ground-plane, where my feeling of what transpires in a
cycle happens. The simulation was very computationally intensive and needed two
coupled high-end GPUs(NVIDIA GTX980s) to make the workflow interactive.(Note:
Since purchasing and using these premium cards for this investigation, NVIDIA has
since replaced them with the new GTX1080 cards that are capable of 4X improve-
ment in performance for the same price. This is an ongoing-risk/benefit of a rela-
tionship with outside technology.)

	 I split the universe here into the conscious(above) and unconscious(below).
Much of what happens occurs above the plane within the conscious, but some does
happen when she essentially “turns off” consciously, as she falls and is caught. The
result is partially hidden below but still the processes that manage inter-particle
communication allow for their interaction above and below the separating plane.
The particles below continue in their own way but experience affect from all within
their scope, as seen in this version of the simulation.

As the emitter matches the dancer’s movements, it leaves behind active agents, all
reacting to each other and the conscious/unconscious dividing surface. They blow
through each other, are caught-up in each other’s concerns and situations,they get
pulled along, they get flung away or discarded. All the while, the emitter moves/cre-
ates/disturbs. It is the only motive source within the simulation; all other actions/
reactions are secondary effects.

The resultant form at any moment is the sum of all previously captured moments,
much like Maruyama’s nude series but also incorporating the ephemeral nature
of his Kusho and Water dance series. Initially, much of the collection of agents is
quite consistent and the form easily understood. It doesn’t take long for the mass of
points to reduce into a something that I have a hard time interpreting. While this is
ok, tectonically this might be a bit difficult to realize. I was hoping that by including
each moment additively, something new would come through(as in nude) and I got
this. The resultant collection of points defines a moment of complete disarray as
multiple organising principles consume each other. It’s marvellous and very con-
fusing, just as I suspect the dancer’s state exudes. Her outward calculated effect
betrays a seething mix of opposing affective emotion.

While I create something new within this investigation, the source at some point be-

89

Fig. 85 - Tight-Meshed Frames of Simulation

90

comes secondary to the effects seen. The particles take on a life of their own, and
adding more creates a floating maelstrom that masks the old. This is why I chose to
look at only one cycle of the dance, because it was enough. The “old” is the affec-
tual output of the agent stream and the “new” is the effective collective response,
and while this seemingly gets a bit muddled as the segment progresses, it was what
I had hoped to see by design.

Realizing The Tectonic

This digital investigation has been very virtual up till now. At some points within any
digital design session I feel it’s important to either produce perspective renders in-
volving useful materiality characteristics(and lighting situation), or to physical mod-
els. Both require some further processing as part of the tool chain. It’s important to
close the loop in my design process and engage as many senses as possible.

Up till now I’ve been working with groups of agents as defined points, all visually
creating a field of changing form, that seems consistent solely based on the their
sheer number. We can see this effect in flocking birds in the fall and the undulating
perceived form that their movement provides. Unfortunately points alone do not
make a form; they can only abstractly represent what that form may be. If we had
infinite points, the form may ultimately be well-defined, but we simply don’t. It’s at
this time in the process that I have to describe the concept of “meshing. “

To define a form, one way to look at it night be to create a set of rules to describe
what is “inside” and what is outside” for the set of regions within the domain where
this form resides. Points help, but we get into the issue of resolution and having
enough of them again. If I take each point being an indicator of what can be consid-
ered “inside” then I might be able to use its location to host a sphere(an object with
a simple geometrically-defined “inside” and “outside”) of sufficiently small radius so
as to not conflict with its neighbouring points(and their spheres). The result might
approximate a form but it would still be made up of discrete objects. This rep-
resentation is known as a “metaball” representation and while this may look more
closely like a form, it’s not there yet.

What if we take the radii of the sphere’s used and increase them until their perim-
eters overlap? Visually, the spheres collectively might appear to be an object, but
geometrically the collection of spheres have a mix of “inside” and “outside” regions

91

Fig. 86 - Loose-Mesh Frames from Simulation

92

within the set of intersecting surfaces, some regions being more “inside” than oth-
ers. I would say that at this stage, if the inside surfaces are removed and the result-
ant surface definitions being divided into either smaller rectangles or triangles, we
then have what might be called a surface “mesh.”

We could even further approximate a better coverage of the spheres by stretching
this surface to best cover all the points by individually altering each points’ sphere
radii. The resultant surface could range from one that is more pointed and exact
through to one that is round-ish and “blobby,” yet cover the set of points completely.
This is a rough description of the meshing functionality that exists within the Real-
flow system. There are many other methods, some faster than others, but for this
investigation I feel it important to speak to what Realflow is capable of.

Meshing is very important within the process of realization of form digitally. Without
it, my simulations involving software agents would find it challenging to find physical
form, be it within a detailed visual render or when output to a 3d printer. Both re-
quire that an “object” have form and this form usually must be defined by a surface
mesh or more current NURBS definitions as being manifold(a.k.a “watertight”).

Using the meshing processing within Realflow is relatively easy; one need only add
the particle meshing module to the simulation graph and enable it’s output file type
to be processed(usually .bin or .obj) during a run. Because this can be very compu-
tationally intensive, I used this functionality sparingly and only when I need to look
to produce for render or 3d print. The surface tension and viscosity of the perceived
surface mesh can be altered to best create the coverage necessary. I used these
parameters to do a best fit; the results were quite good and I was able to produce
meshes that represented the agent population.

93

Fig. 87 - Snapshot Print Failures Fig. 88 - Supporting Material Removal Frustration

94

3D Printing

To successfully 3D fabricate any output, I needed to begin to understand the
strengths and weaknesses of the printer I’ve assembled as a part of this investiga-
tion. Through iteration in the past few months I generated a number of wins and
spectacular failures. The printer I’ve built melts a corn-based PVA filament and de-
posits it in a precise fashion on a roughly 8” circular bed. It does so layer by layer(in
~0.1mm increments) until a recognizable object is produced. An average print job
takes 16-24 hours and requires considerable supervision. I’ve taken four separate
snapshots of the above simulation for this submission and it has taken 3 continuous
weeks to produce what you see here. Each is a moment that I feel is significant;
each I’ve felt needs be seen in greater detail by printing or render.

While I am building in what is essentially an organic material, I recognise that this
process is highly modulated by complexity and materiality. The melting point of the
base material needs to be modulated throughout the process to ensure the print
can complete. If the material is too cold initially it won’t adhere to the base of the
printer table. If it’s too hot the material will leave wispy trails, clog up the nozzle, and
expand physically, impeding the mechanical movement of the print head.

Learning from mistakes has been a large part of my process in capturing these
wonderful snapshots of the falling and swirling forms successfully. One particular
moment(opposite) “sings” to me and it’s been a wonderful learning/frustrating
process. The iterative output seen on the left was caused by a number of failures,
both in the mechanical systems and in my chosen mesh parameters. Because of
the intricacy and discontinuity of this generated form my printer tried to shake itself
apart throughout much of this phase. I was constantly armed with a wrench and
some loc-tite, hoping to catch issues on the fly and to rescue it from walking off its
table.

The base design of the printer included the ability to incorporate two extruder
heads. Each can ideally work within the same print to offer two material colours,
or in my case, the promise of PVA support material. This material, when soaked in
water, will dissolve, leaving the PLA plastic material behind. Ideally, this would afford
the production of parts that require internal support during a printing cycle and
would open up the machine’s capabilities dramatically. Unfortunately, The second
print head alignment became an issue within the print of the vortex(opposite) as
it would collide with PLA that had expanded near the end of a print line run. The

95

Fig. 91 - Plunging Moment - 3D Print+Model

Fig. 89 - Whirl 1 - 3D Print+Model

Fig. 90 - Whirl 2 - 3D Print+Model

96

effect being that the entire print head would be jarred and slip from its position or
the entire piece itself would dislodge from the build platform entirely. After a handful
of attempts, it became necessary to remove the head so that prints would com-
plete. I have to leave the 2-head print system alignment for another day when the
output time line is less critical. It’s commissioning is no simple task.

This decision required that I use PLA as support material and that implied that
there would be a lengthy process of support removal. Although the support process
is governed by the slic3r software used within the Repartier host, there are some
configuration parameters that allow for a rectilinear grid, a honeycomb pattern,
or simple pillars to be used. All will do the job and all can be somewhat difficult to
remove if not done while the print is still warm. PLA can become as hard as con-
crete when given a chance to cool down. The successful print seen in the images
completed in the early hours of a night pass. I had to use a pair of pliers and cutters
to remove the majority of support material. It seems timing post-print has quickly
become another parameter to having a successful plot.

In addition to the mesh generation of Realflow, it became necessary to simplify and
correct mesh-related issues outside of its generation. There were many instances
where there were errors during generation, leaving holes and naked edges that
would give Repartier issues when slicing. Rhino’s mesh tools leave something to be
desired, and as a NURBS system this was not wholly unexpected. I learned quickly
to use the tool MeshLab for these types of issues. Built for the 3D scanning indus-
try, it is a marvel at mesh repair and for re-meshing a model in preparation for 3D
printing. It’s simplification algorithms make it easier on slicing algorithms to deter-
mine the mesh surface clearly and this can be a boon on more complex models, like
the ones produced within this investigation(.ie those not modelled from primitives).

While far from perfect, and only inches in size, the 3D printed models were able
to give me some ideas concerning the form and its characteristics. There really is
nothing like a physical model to help convey real-life properties of a wholly virtual
set of ideas. The toolchain is a bit exhaustive and a little specialized, but after a
few iterations, I was able to forget about the tool and delve into the form and its
concerns. The tools became an enabler and faded more into the background of this
investigation.

Toolchain:

	 VLC/AdobePremiere- ->Realflow(Encoding Paths/Emitters)-->Rhino/MeshLab --
		 --> Repartier Host(Slic3r)-->Delta 3D Printer

97

Fig. 92 - Snapshots in Time - Spacial Moments

98

Renders & VR-Based Visualization

The 3D perspective is a powerful tool for communication. I chose to produce a
render image of the vortex created by agents as they spin and bounce off of the
ground plane when the dancer passes from a conscious state to occupying the un-
conscious. It’s a reverberation of her mental state reflecting off of a place she can’t
see directly. Adding a central light may have been a stretch, because the majority of
the action happening here is at the vortex’s edges; there the emotional energy is at
its highest. She holds this together however, and that in my mind requires a level of
control that comes from a central place. The render was meant to show this control,
and it’s stasis - a measure of demonstrated ability for all to see.

All of this is manufactured. It starts with my interpretation of the mental state of the
dancer and ends here with the visual constructions seen opposite. Clearly the views
show a situation that is ephemeral and I feel what we see is meant to capture, ad-
ditively, the result of her mentally moving through a process of crisis management. I
chose a transparent material, not to re-enforce the fluidity of the situation, but more
to allow each piece to offer up its place in this collective torment.

I’m not proposing that a building be built to embody the characteristics of the
investigation. In an Architectural program that can be the default question of all
formal investigation. I started this portion of my work wanting to pull on the human
element to seed a generative system of investigation using digital methods. I will
use what I find here in my future career as an Architect to find a way to express the
human element within my designs. In this exercise, I’m left with a simple gesture and
sometimes that is simply enough.

I can’t build this thing because of its temporary nature. Also, because much of the
form is not connected. Without physical connection it might be hard to build. While
this didn’t stop Diller Scofidio and Blur(Diller Scofidio + Renfro 2002)

99

Fig. 93 - VIVE/TiltBrush VR Experiences

100

VR-Based Visualization

OK. I’ve been dying to take some of the model work in this investigation and ac-
tually climb into it. I can’t easily build it. It’s not very easy to print a 3d model of it.
Perspective views are good and can be insightful. But nothing compares to actually
being inside.

I had been using a toolchain for VR-based visualization that was fairly time consum-
ing when trying to activate a design from Autodesk’s Revit:

 Revit-->3d StudioMax(grouping/materiality/scale)-->Unreal 2 Game engine(Collision/Hosting)

This would work for most any model but it could take an hour or more to go
through these steps. 3D StudioMax was necessary to produce the “.vbd” file that
unreal needed for it to recognize the mesh as an “asset” that could be included in
a game instance. I would normally start a project by using a based template that
included a first-person avatar and I would build upon this. Time consuming, but at
least the output could be simply an portable executable that would allow anyone
with an Oculus or HTC Vive to walk through the design.

Once Google got into this business with their “Cardboard” product things have
begun to get quite exciting. As a showcase product, they produced Tilt Brush. It’s a
fully interactive 3D immersive VR drawing program. My first experience with it with
my Vive was transformative; placed in a dark-ish open space, I was able to pull from
a pallet of tools to draw in ink,paper, vibrant neon light...you name it. Their addition
of procedural brushes reminded me of some advanced Photoshop tools. This real
was a game-changer for me.

It wasn’t until late fall when the folks at Google added the ability to import external
meshes into the environment. It was limited to a maximum size, but I knew I could
use Meshlab to reduce the size of my meshes to fit, or at least a portion. I took one
of the more cone-shaped tower models that I was able to output through to the 3D
printer and with just a little bit of simplification, was able to import it into Tilt Brush.
Finally, I was able to see what the space inside was like. At maximum size, the
perceivable height was probably 20 or so meters. I was reminded of some investi-
gations by Greg Lynn in his NOAH work for the film DIVIDE(Lynn 2004).

101

Since Google’s Tilt Brush, a number of interactive tools have come onto the scene.
Kodon is billed as a 3D sculptural tool where an artist and add and remove material
from a primitive-created mesh or from a small imported mesh. It’s still alpha soft-
ware, so there are lots of bugs, but it shows tremendous potential. These tools are
getting close to allowing a person to interact directly within a virtual space on their
project. I see a native Revit tool that will allow an architect to design within this
space not far off. There’s already a direct interface “service” called “Iris Prospect”
that ties directly into Revit and it allows for some parameter alteration of the model
in place. Similar tools are floating to the surface for Max and Rhino. Very exciting.

102

Results

In this section, it was my intention to investigate form creation through the mecha-
nism of software agency. Initially, I had hoped to apply this method to the problem
of papillae bridge formation within a diatom fustule(valve), then extend this to an
entirely new problem involving a formal interpretation of a moment or two within a
modern dance segment choreographed by Pina Bausch.

Concerning the second portion of my Agency investigation, I had a very difficult
time looking for form within the pina dance segment I loved so much. It’s not that
the segment wasn’t full of inspiration, or wasn’t delightful in its own way, but deriv-
ing form from an imperception(its affect) is new territory for me as. Affect is that
which exists before a response, this includes awareness. As Pina Bausch looked to
understand what moved her dancers, I decided to engage at this level and interpret
this myself, hoping to pass something on to my own.

Form generated from my perception of the mental state of a dancer requires some
form of language, and like Pina, would need some method to guide and record my
agent’s performance. I began a couple experiments to test the waters: One investi-
gating the mechanisms of flocking, and the other of altering space itself.

The flocking simulation was fairly straightforward and Processing’s Punkiert library
afforded “Boid” classes that would help to manage a population of agents. The
physics engine made small work of the effort however these libraries were easy to
overwhelm. It didn’t take much for the resultant simulation to become chunky. Boids
within Processing worked in a limitied sense and really only with small populations.

I chose to extend the test and write my own system to manage flocking behaviour.
This effort turned into a significant work. To simplify the investigation, I elected to
make an assumption: Space imbues affect. If I could encode affect within space
itself, maybe I could entice the agent’s environment to guide their behaviour. It was
stretching a few things, but I think it is essentially sound. I then made a another
simplifying assumption as well; working within spherical coordinate would simplify
everything. From defining an “Affect Space” to easier agent status calculations, this
method might make the test a bit easier to implement.

Affect Space is essentially an implementation of a Tensor field(a vector quality

103

defined within space) that I would drop agents into. It took quite an effort to imple-
ment a system that would manage a population of agents that could exist within its
system, and while the results showed promise there were a few hurdles that proved
to be insurmountable.

The system became very difficult to control, even with a small number of agents.
I had implemented the system in such a way to cause agents to essentially take
themselves out of play if their position was outside the region defined. This process
would then cause the system to “re-spawn” a new agent and place them randomly
within the defined affect space, a strategy used in the Diatom-Coulomb simulation.
This became an issue when inconsistencies within the tenor field would affect the
agents in too great a manner.

Issue in defining “Affect” within the tensor field became the governing problem.
As I had for the purposes of the investigation hard-coded the harmonic functions
defining this quality. The system became simply too difficult to manage. It was with
great sadness that I decided the experiment had run its course. While the system
was significantly better able to handle more agents than the built in processing
libraries, there still weren’t enough and they became too difficult to handle. I made
the decision to apply RealFlow to the same problem.

NextLimit’s Realflow proved to be a dream, offering all that I had hoped when it
came to managing agents. Their key-framing environment would allow me to first
define a “language” based upon affectual components, and it would allow me to
modulate these affects within an environment that could host ten-times as many
agents. RealFlow as it seems was written to use the GPU(Graphics Processing
Unit) of my PC to accelerate calculations. As GPUs are made of specialized hard-
ware designed to manage a tremendous number of parallel calculations, it was a
boon to my work that I could essentially make use of the equivalent throughput of
a supercomputer to manage the agents I create. This sped up simulation time and
precision considerably.

After working through a few exercises to become familiar with NextFlow’s pro-
gramming(which utilizes a graphical interface), I looked to produce a language of
affect that I could draw on during this sections effort. Working through all of Re-
alFlow’s force sets, I chose to choreograph physically the path the dancer, Ruth
Amarante, takes while she emotionally emits particles caught up within the vortex
of her thoughts. The result proved to be interactive and quite engaging. Realflow
would allow me imbue spirit through modulation of affect. The resultant form,
made from 200,000+ agents is able to self-interact and resulted in a number of it-

104

erative animations. When a parametric meshing process was applied to the agents,
a moving, self-interacting form was produced. It was significant moments from this
that I chose to pull from when looking for form.

Much of the output of this work resulted in form that was discontinuous and very
ephemeral. It put my 3D printing process through great pains to reproduce. The
printer had to be re-tightened and calibrated between every print because the
vibration was so bad. There were very few continuous sections within the optimized
mesh and this caused the printer to have to raise and lower itself repeatedly for
every layer to capture all the detail.

The forms could also be experienced through render and VR-based visualization. I
was able to optimize the mesh from several moments and import them into Goog-
le’s TiltBrush and Unreal-based VR environments.

Conclusions

This section of my thesis was thoroughly the most engaging for me. To delve into
software development and alternate inspirations for digital form was really reward-
ing. I had hoped to get some sense of what was involved in the software agency
seen in deskriptiv’s work and I got this in spades. It is really difficult to build a soft-
ware system, let alone build one that needs to be so interactive and dynamic.

This investigation highlights an important part of digital tool making, the trial. I built
two software tools(Boid and TensorFlow) to see whether it made sense to build this
functionality from scratch. Both were learning investigations and neither ended up
being used for the final form development because of complexity and implementa-
tion issues. If time permits, this type of low-level investigation is absolutely neces-
sary in distilling the true nature of the problem. While there may not always be time
in a architectural practices to follow paths this way, I believe its instrumental(liter-
ally) in gaining understanding at a digital level. I wouldn’t label them as failures in
any way, more but forks in the road. No paths are bad paths. It’s simply important to
best fit the right tool for the right job. I learned here that these tools need a tremen-
dous amount of improvement to perform as I had hoped, more improvement than I
was able to provide at this stage of my technical competency.

RealFlow’s system was the best way to handle the larger number of agents within

105

a physics-based environment. It’s GPU-accelerated physics solver allowed me to
reach a level of formal precision that I felt necessary while imbuing the intended
spirit within the form. There were issues of control and feedback, but I was able to
adjust.

It was far more rewarding to be the author of all controlling logic of the tool during
the Boid and TensorFlow tests. In building each tool, I was able to work within a sim-
ilar framework as I did for the Diatom geometric formal investigation, but with one
difference. In each I had greater understanding of the low-level operation of most
of the formal algorithms. The Boid investigation utilized some libraries within Java
and the results pointed me to a more direct, home-grown implementation being
necessary with TensorFlow. With the later, I built all functionality from the ground up,
only depending on basic graphic libraries for its function. The reward was instant,
I was able to increase my agent-count dramatically when having greater control.
And while ultimately I had to put its development on hold, it points the direction for
future development of that approach, which I feel is ultimately sound. It’s important
to take risks and reap the benefits of lessons learned; this being a great example of
this.

108

Of Materiality

109

Fig. 94 - Pneumatic Laser Output

110

Introduction - Material Investigation

To design in a material is to form a relationship with it. Too often we as architects
and designers spend much of our time working within a virtuality, a place derived
from a reality but with its very own and separate character−a tabula rasa. A case
could be made that we all see ourselves within a space derived from our own very
personal perception of what is real(and what we see as true), but very seldom can
this model push back and inform; after all, our perception can only be a subset of
the actual true reality, and how often do we surprise ourselves within a model we
live within.

An object’s materiality presents the real essence of its physical character. Given the
chance, its organisation and elemental composition create an analog computer that
can resolve any potential physical situation. As in Newton’s laws -- “Action/Reac-
tion, Opposites are Equal,” Richard Sennett’s Craftsmen develop their craft as their
material forms them while they form their materials. His chef works tirelessly to be
able to cleave a single grain of rice(Sennett 2008,167), meanwhile the rice grain
works on the cleaver, while the cleaver works on the chef. No matter the tool, the
material of the crafts imparts its lessons on the craftsman.

In this section, I will be searching for an understanding of how materiality informs
design from within a digital framework. This section is in two parts: the first docu-
ments the selection, assembly, and commissioning of a Delta-based 3D printer, the
second documents a pneumatic formal investigation as part of a group project in
Digital Fabrication during the summer of 2016, I documented my experience work-
ing with 6mm polyethylene as it was formed into iterative models of a self-support-
ing pneumatic structure. As with previous sections, a digital investigation requires
that we build tools using software and hardware. This section does both, and asks:
what does materiality contribute to the design process? How does it affect the
relationship between head and hand of the digital craftsman?

111

Fig. 96 - RepWrap Mendel
Fig. 95 - Makerbot - Replicator

Fig. 98 - Delta Rostock

Fig. 97 - Formlabs - Form 2

Fig. 99 - Hagia Sofia Model - Group Project 2012

112

Making

My first hands-on exposure to 3D printing was at a friend’s place. It was the first
iteration of Makerbot’s Thing-O-Matic back in 2010. Their printer was 100% open
source and was hand assembled by him. It had its issues(bed levelling, extruder
clogging, speed, model detachment, horrible software...) but this machine could
extrude virtually any model that could exist within a four inch cubic volume. These
additive machines seemed quite simple really(they are essentially a computer-con-
trolled glue gun). It wasn’t until my third wide-eyed visit that I asked the question,
“why is this thing on your stove in the kitchen?” He said the PVC filament stunk to
high heaven and it was the only way it could function in the house(with the vent
running).

The Thing-O-Matic was one of many printers that floated on a collective dream, “a
printer that could print itself”(RepWrap Mendel). This was never actually realized,
but the dream does continue. While these machines are mainly made of plastic,
there are metal parts(extruders & mechatronics) and the electronics(control) that
are simply too complex and varied in materiality and scale. But it is a nice dream.

For this project, I wanted to learn from my friend’s lessons in building and maintain-
ing the Thing-O-Matic. I had also purchased a Makerbot Replicator-2 myself as well
back in 2012. I had high hopes for it, but in the end it was as unusable a printer for
me as the Thing-O-Matic was for my friend. They both were able to produce but not
without many hours of supervision and countless failed prints. I ended up giving my
printer to him for parts. The hobby market was simply not ready for prime time...

With two attempts making, it would have been easy to toss in the towel. There are
better commercial options out there, but I couldn’t help but think that they were
heavily overpriced. The Stratasys Dimension printer that the UW School of Archi-
tecture uses in their shops is dependable but very expensive(capital and operating).
To print the 8” dome for a model of the Hagia Sofia needed for a group project
in 2012, we had an outlay of $800. Broken into halves due to size, each half of
the dome took roughly 13 hours to print. The end result came out perfectly, but
the cost was staggering. New, these “closed system” printers cost approximately
$35K($12K used) and have a sizeable on-going cost as there is a filament dis-
solving bath system to maintain and the inflated charges of proprietary filament
cartridges.
After four years, I decided to look again to the market to see if things had im-

113

Fig. 101 - Genki -Arki

Fig. 100 - Solar Sinter - Markus

Fig. 102 - Geeetech Delta Rostock G2s Printer

114

proved for the home user and this project. Makerbot had since been purchased by
Stratasys and more than doubled their prices(and now offering “closed” multiple
offerings), Kickstarter began funding a host of new 3D additive systems(Formlabs’
Form 2 resin system, which “pulls” the new piece from a laser solidified polymer
bath, being a notable addition), the Delta Rostock design seems to have come into
its own with many variations(many still open source), and scale has been pushed
with the printer from Genki(with a $5000 price tag but a cubic meter build volume
from Japan). Markus Kayser’s Solar Cutter has also evolved to become his Solar
Sinter printing in silica using the sun’s energy. These systems have seen a coming
of age.

Choosing

Looking for a more cost-effective option than anything Makerbot, I was intrigued
by the Delta design(pictured opposite). Its inverted-tripod arrangement for control
uses the physics of the lever to move the extruder heads very quickly, and the use
of a Bowden extruder(filament feeding stepper-motor separated from hot extruding
end) dramatically reduces the mass of the actual extruder platform.

Reduced mass equals less momentum(Newton’s second law - F=m*a -> F=m*dv/dt
-> F*dt = m*dv) and this results in less of an impulse(F*dt) needed to be produced
by the steppers to move the platform.

Although a more standard (a.k.a Makerbot) Cartesian gantry system is easier to
setup and calibrate, the steppers in that system will always have the mass of both
gantries to deal with, resulting in more energy needed, and thus more time per
move. As this design is quite innovative, and for reasons stated above, I opted to
investigate a kit from Digitmakers in Richmond Hill.

I read the reviews.

I saw the annotated walk-throughs(Painless360 2015).

I saw that there was lots of availability(Digimakers).

I liked that the price was right($338US/$499Can).

I liked that it was based on the Arduino Mega2560(open-source processor with
open-source Java Integrated Development Environment(IDE)).

I was sold.

115

Fig. 103 - Delta Assembly Mayhem

116

The Build

This is a kit. I gave serious thought to stretching an existing design(realizing a
not-so-uncommon dream to have the cubic-meter build volume of the Arki), but
the time simply wasn’t there within this investigation, nor was this its focus. I had to
keep reminding myself that this was about the path not the size of the hill.

Instructions didn’t accompany the package. Neither was there a direct support line
to Geeetech themselves, rather just a pointer to shared forums. Both seem to be
the trend lately. Following a link off of the sales page, it took a few minutes for me
to find myself in front of the assembly pdf. It included many photos and instructions
that referred both to their website and Youtube walkthroughs to enhance the pro-
cess. It’s clear that this is a continuously evolving design. For the most part, there
were only a few issues. Funny, I remember when a booklet and phone number were
standard when buying most sizeable products; I guess this doesn’t scale, at least
not at this price-point.

All small components came in numbered bags. I spent much of my time just trying
to keep things organised as the bags were ordered by part type, not stage of as-
sembly. I could see that if there wasn’t some form of organisation, this would quickly
reduce to chaos... and based on the dependability of the instructions, the probability
of damage, because of mating incorrect components, was high enough. This had to
be done slowly, and carefully.

Officially the cheapest tool in the world

Fig. 104 - Impacter Tool Provided for Assembly

117

 Fig. 105 - Geeetech Delta Rostock G2s Printer - During Assembly

118

The kit came with a multi driver, and is in my experience, the cheapest tool in the
world. If there was one single-most effective way to further the cause of chaos, this
tool is it. I’ve scoured markets far and wide to ensure that I have the right tools for
most jobs(finding the best in as far as the electronic markets in Akihabara, Tokyo)
and I can spot the truly evil ones. This one truly leads the pack...

A bad tool, is almost guaranteed to:

break - causing damage to yourself or the assembly
bend - ruining the part(negating and future chance at adjustment/disassembly)
slip - damaging your work surface, yourself, or the assembly

Despite good intentions, and even the best instructions, things don’t always go
together as planned. I can see that when creating a bill of materials, capturing the
sequencing correctly can be a challenge, specially when the assembler applies their
experience and know-how of the way things “should” go together when doing their
part. How an assembler thinks should be taken into account...

My issue during this process is that bad tools ruin the machine during assembly. In
this specific case, the tools supplied have to be used because the fasteners seem
non-standard and only able to marginally mate at the best of times with what’s
provided. This thing is a jigsaw with bad-fitting interchangeable pieces, and I am as-
sembling it with boxing gloves on. Frustrating at best. Fitting requires assembly and
partial disassembly, over and over; meanwhile, the provided tool is working hard to
distance its mate as much as possible through wear. At limit, I had to find fasteners
(proper ones) and customize them to meet the immediate need. I consider this a
partial fail of the system(and assembler); I’m part of this, and sometimes I find it
difficult to get my head around the thinking of other designers.

Things that impress me about this physical design:

Metal bushings and linear bearings have been used
There’s room for minor adjustment in many areas, but not too much
The result is rigid and very stable
Connectors are idiot-proof and are keyed uniquely based on function
Fastener torque settings are unnecessary - snug is usually good enough
Many parts could be replaced with other off-the-shelf common units

119

 Fig. 106 - Geeetech Delta Rostock G2s Printer Moving Parts

120

Things that do not:

Some critical areas have too much play
Wire management has not been thought through
The dual-head design is very difficult to adjust and calibrate
Use of some custom fasteners is problematic and unnecessary
Bed levelling is mechanically quite difficult

Despite the issues, the printer’s build went well. No reviewer vocalized similar
experiences. I suspect they simply didn’t vocalize these annoyances and consid-
ered them par for the course on such a cheap printer; I’m not usually so forgiving
and would normally put my own build video together and share it so others might
benefit.

There were three outstanding design features that struck me as quite exceptionally
implemented in this design: the extruder system, the print head platform system
and the axis actuation system. Each I consider very well though-out and I think it
necessary to discuss their merits here.

The filament extruder is doubled up to allow for either dissolvable support filament
delivery or to simply have another colour or type of material within the same print
session. A standard extrude consists of a stepper-driven worm-gear, a stiff flexi-
ble pipe for the filament to travel through, a hot end(electrically heated nozzle), a
temperature thermistor(to measure the heat level of the nozzle), and a small fan to
keep the cold-end of the nozzle cool.

This extruder system separates the feeder from the hot nozzle to reduce mass at
the platform and it is the stiff plastic filament guide-pipe that makes this possible; it
contains the applied pressure from the feeding stepper so that the filament can be
delivered in a very precise manner(during a print, the filament is pushed and pulled
back when needed and is at all times metered out to meet demand). This configu-
ration is known in the industry as a Bowden extruder and Geeetech has chosen to
use all metal parts on the hot and cold ends to ensure dependability.

The print head platform is all aluminium, lightweight, and particularly rigid, with a
somewhat isolated area at its centre for a separate hot extruder end. The platform
was initially made of 3D printed plastic in previous iterations(from the Repwrap
printer printing the printer days), because of the heat levels at the centre and the
forces exerted on it, this proved to be quite problematic over time. With six ball-
hinge connections all pulling on this part at great rates, it didn’t take long for the

121

 Fig. 107 - Simplify3D Software - Diatom RealFlow Output Test

122

plastic version to be literally pulled apart even under nominal loads. The aluminum
version added very little difference in weight, could easily deal with the stresses,
and as an added bonus wicks, away any extra heat transferred from the extruder
through the fasteners and radiatively.

The platform is moved by aluminum rods that are connected to a pair of linear
bushings which slide on steel rods. These bushings are moved by a drive-belt that
is held in place by a couple aluminum pulleys, one of which is driven by a stepper.
As the belt moves the bushing assembly, this changes the resultant distance of the
control arms to the platform. Modulate these from three equiangular directions,
and the platform can be put at any place within the build platform and at any height
with alarming speed. An all-metal choice here was the best. With even small vari-
ances in the assembly’s configuration, the positioning of the platform can be very
precise. These parts also experience minimal wear with the vibration caused by the
constant repetition of printing, layer by layer.

Printing - Software

Something that is always forgotten with many hardware systems is the software
that is needed to make it go. Often, this is the part of using the product that makes
or breaks the whole experience and it’s hardly given even a second thought when
sizing the solution. Most don’t think much about the printer driver for your stand-
ard paper-based printer, but a bad driver can render the device useless if it doesn’t
support your workflow. In this case, the printer came with nothing. Yes, you heard
that right; this printer leaves you to your own devices - opting instead to point you at
a few public-domain options... The rest is up to you. In a sense, this was perfect for
this investigation because it didn’t tie me to any one software manufacturer and I
could choose the best fit, not tied to any one architecture. For a more inexperienced
user, this could spell disaster.

Functionally, this software needs to:

	 Take an air-tight 3D model(usually in STL or OBJ format)
	 Determine if any of portions of the model need support
	 Adding removable “feet” to the model (as necessary)
	 Slice the result into layers
		 Distil paths for the print head to follow per layer
	 Convert the these paths into “G-code” used to move the print heads
	 While printing it must

123

Fig. 109 - Arduino IDE and Mega2560 Firmware Config

 Fig. 108 Repartier RealFlow Output Test

124

		 Manage rate of G-code execution
		 Manage temperatures of the extruder ends
		 Manage temperature of the print bed
		 Manage flow rates of extruder heads

This is quite a lot to do well! Some of the more popular software options available
are: Printrun, Repartier, ReplicatorG, and Simplify3D. Windows 10 comes with its
own host software built-in, but it’s very limited in its support of only smaller com-
mercial cartesian gantry printers. I opted to give Simplify3D and Repartier both a
try. Simplify3D has great user reviews but costs($150US/$200CAN), and as a
more hands-off solution, I am interested to see if it’s mac-like “just works” reputa-
tion holds. Conversely, Repartier is fully open-source and depends on the Cura &
Slic3r slicing engines(both very configurable). It supports most open 3D printers on
the market and is very configurable(possibly being a bit complex to use).

Simplify3D Host

I purchased this directly off of their web site. I was able to download it and install
within minutes. The software is subscription-based, which means a login is neces-
sary for each time its run. The site says this is to ensure quality levels and that all
updates are installed as they are offered. I’m not that naive. It’s hard to make money
in an industry where others are giving away their software...this is a form of DRM
plain and simple. Installing the software on another machine, with the same creden-
tials, results in a block. Strike one for me unfortunately...I like to run what I purchase
on my desktop and laptop sometimes. This conflicts with that and pushes me into
the direction of open-source pretty quickly.

Functionally the software is pretty boilerplate, it supports a large number of print-
ers. Mine wasn’t in the list but their printer configurator builds a profile with relative
ease after a few questions. It’s object slicer seems to do a reasonable good job.
One small hiccup though; it caused my delta printer to home quite hard(thought
I’d damaged it after a few very hard “bangs” making its attempts). One email to
support(yes, I actually got a person!) and things were squared away quickly. Nice
software!

Repartier Host

Repartier host software is also downloaded from the repartier.com website but
is completely free. No login required. No DRM. It installs easily and includes a few

125

Fig. 110 - First Output - From Formless to Form

126

slicing options, setting itself up to allow for remote control(and viewing if your pc
sports a webcam) if wanted. The software is quite similar to Simplify3D’s function-
ally but allows for much finer control of the printer and slicing algorithms(Slic3r and
Cura).

This software is open source, and this can be a blessing and a curse; while mac-
ro-control parameters are configurable within the software(like Simplif3D), many
of the more basic controls(like printer characteristics/capabilities/rates) are only
changeable via a Java IDE(Interactive Development Environment) and live inside
the printer’s firmware. Once changes at this level are made, the result must be
compiled and uploaded to the printer’s controller(an Arduino Mega2560) over
USB.

This sounds like a lot. It is. But in the end, it gives you much more control over the
printer. I found after flipping back an forth between each program, that the Repar-
tier host was the best for use with the Delta Rostock G2s. Speed was the same for
both and at the limits of the controller and mechanical setup of the its implementa-
tion. I was able to take advantage of this added control to print some models much
more easily than with the Simplify host.

Calibration - Machine Commissioning

I found this to be a relatively powerful phase of the project. It is alchemy. Like the
grotto, form first begins with formlessness - or in this case form(extruded spool
of polylactic acid(PLA) filament) begets formlessness(molten PLA) which begets
form(machine output plus its impressions upon me).

The machine struggles to do what I ask as it generates its first proto-formations,
like a prima materia searching for its cause. As one issue presents itself(is the
extruder feed-worm-gear pressure enough?), another pops up(fillament nozzle
temperature - too high? too low?). It is the very antithesis of chaos, all the while
the universe working against it; always trying to render it to entropy in its goal to
democratize the energy involved as much as possible.

The machine encodes, reacts, and the material responds in its own unique way. I’m
seeing crap come out of the nozzle. It’s initially not adhering to the build platform,
and without a basis to push against, it looks like the organisation I was looking for
can’t find itself. The output just flails around, being dragged by the movement of the
nozzle. Constraints are an important part of form making here. Once the extruded

127

Fig. 111 - Test Print w. Stringing - Bracelet Model(Hegglin 2013)

Fig. 112 - Collision Offset Result

128

proto-form connects with the surface, work can begin satisfying the telos of this
effort.

This is a learning process, and one that asks to look at the intersection of a number
of influences:

Operational Parameters

Model		 - Slicing Parameters(infill rate)
Basis 		 - Where is zero? Auto Zero Process ok/Not-ok?
Head		 - G-code feed rate?
		 - Z-hop amount(backfeed rate)
		 - Head alignment(
Bed 		 - Best temperature(60C)
		 - Levelling
		 - Best adhesion(What type? Kapton tape? Painter’s tape? Glass?)
Filament 	 - Type?(PLA/ABS/PET/Nylon)
		 - Best temperature?
		 - Rates of flow?

To calibrate, the goal is to convince the machine to do as asked. It’s good to start
small and build upon a foundation of successes(and failures). It’s very scientific. In
this case, I need to first get the extruder extruding in a deterministic way. The sys-
tem is resisted by the variability of the extruding process, caused by both the rates
of the feeding stepper and by the heat level of the extruder head. If the head is too
cold, the filament feeding system will grind away at the unmoving filament and wear
at it, making a success less likely because there will be less to grip on when the
resistance decreases. So a higher nozzle temperature is better than lower because
the it’s easier to reduce this temp than to cut and reload the feeder due to a thin-
ning filament source.

There is a caveat on the high-temp side as well however, if the temperature is too
high, the filament will begin to burn. And a burnt filament means: turning the whole
thing off, opening a window, explaining to my wife that I’m not burning the house
down as the smoke works its way upstairs through the cold air return of the fur-
nace and finally, waiting the 10 minutes for the nozzle to cool so that I can handle it
and use a file/drill/needle to push the burnt slag out of the head before I can begin
again. This portion is an exercise in patience as balance is found.

Results? Optimum nozzle temperature range is 95C to 105C. Common practice
from the manufacturer is that PLA works best at 95C. This is crap, at the very least

129

Fig. 118 - Bracelet Model (Hegglin 2013)

Fig. 116 - Test Model

Fig. 114 - Model Test Piece (Matsumoto 2016)

Fig. 120- Lamp Model(NervousSystem 2013)

Fig. 113 - Test Piece Output

Fig. 115 - Output Test 20% Infill

Fig. 117 - Bracelet Output

Fig. 119 - Lamp Output

130

for my setup. I have to depend on temperature thermistors and their analog to dig-
ital conversion to be in calibration on their own, so I take my numbers with a grain
of salt. Within the realm of this investigation, absolute numbers are not necessary;
workable parameters are however. 95C equals a slower slaggy extrusion, where
105C equals thin, sticky and usable with the possibility of some even thinner wisps
of PLA following the extrusion after each run(removable after processing by hand).

This next leads us to head movement and its issues. As described before, there are
two heads in the system. Both move in unison as they are both attached to the
same head platform. If one of the heads is off by even a portion of a millimetre it
can catch on the work being produced by the other head and jar either the work or
the control systems mechanical calibration. Both are disastrous(see opposite - Off-
set Results); if enough sheer force is exerted on the PLA extruded form, it may de-
tach from the build surface and the process has to be restarted from the beginning,
but if the form resists more strongly, a collision will cause the steppers to lose track
of the location of the extruder platform(as they essentially slip a gear), rendering all
future positioning requests moot because its lost its place in the process.

Either way, both require a restart with the latter needing a full homing recalibration
of the entire system(10+ minutes minimum), and both result in a disfigured form.
If the collision happens close to object completion, it could mean that a multi-hour
reprint will be necessary. Again, precious time is eaten up by this situation...and its
management is an exercise in patience.

In the end, I found that I could configure the heads to be raised a few millimetres
during transition to a new extrusion location, so that the heads essentially rise
above the work when not extruding. They are then lowered when necessary. This
reduced the time the heads were close to the work and so reduced incidents of
collision. This didn’t remove them altogether, because the process of laying down
traces of PLA isn’t always consistent(the material expands inconsistently creating
“bumps”).

This issue has been dramatically reduced using this strategy but it did have a cost.
The speed of the platform can be substantial. As I highlighted earlier, the mass of
the platform is low and this allows for a very nimble operation. The system as a
whole depends upon a number of moving parts, each fastened together using
standard and non-standard fastener types. The “bouncing” produced by my config-
uration of the head platform path and the speed of the device’s g-code execution
can cause the whole machine to literally shake apart. I’ve had the head system
detach itself from its arms solely because the fasteners used vibrate themselves out
of their mates. When I felt that the system was close to its final configuration(ad-

132

justment-wise) I took the step to use lock-tite(blue) to hold it together under normal
use.

In an effort to test the system, I opted to print a few items:

a single-walled square(Matsumoto 2010)
a quarter-inch partially-filled square two inches on side(wb)
a complex small three dimensional mesh form(Hegglin 2013)
a larger (4”x4”x8”) complex mesh form(RosenKrantz and Louis-Rosenberg 2012)

Starting simple and working to more complex forms, the machine and software
were tweaked iteratively. Things improved until the machine was printing reliably.
One issue that plagues the system now is that the system leaves small hairs on
edges throughout the print. Called “stringing” or “oozing” successive retraction
adjustment for the filament extruder is apparently the solution. This solution did not
work for me during this investigation, but it was realtively simple to remove them
manually.

To realize any digital form, I felt it was necessary to produce models. Throughout the
efforts here, virtual form was created and I’ve documented the work with many ren-
dered images. As with any iterative design process, the more senses you engage,
the tighter the feedback is in the work; and the more feedback, the more accu-
rate can be a decision/response as part of the design. Digital design can produce
iteration very easily, but as Lars Spuybroek states in his essay, The Digital nature
in Gothic, (concerning visual media)”There you see everything and believe noth-
ing.”(Spuybroek 2011, 39) It was important to build a 3D printer to understand the
digital way of making. And for all its flaws, the printer commissioning was a success.
I was able to gain considerable understanding as to how this technology works and
why it can be problematic in its current implementation. I also learned much about
how important the right tool is for the right job.

133

Fig. 124- Wool Thread Network
Optimization - Frei Otto

 Fig. 123 - Roof Optimization, Multihalle,
Manheim, Frei Otto

Fig. 122 - Soap Bubble/Optimal Surface
Calculation - Frei Otto

Fig. 121 - Roof Form Finding - Frei Otto

134

Precedent - Frei Otto

Analog computation is not a new concept. Antoni Gaudi is renowned for his use
of chains and weights when form-finding the catenary vaulting and roof of the
famed Sagrada Familia. Frei Otto continued this method of investigation, looking
for optimal structure in his now infamous soap bubble experiments. His impetus, by
his own admission, came from a position of “serving the poor” by thinking of ways
of doing more with less. Having been interred during World War II an allied camp in
France, he was exposed to tent structures throughout his experience.

Soap bubbles resolve themselves through dynamic forces(gravity/surface tension)
to a system of equilibrium. They offer a minimal surface as a solution when the
work is done.

In wool fibre experiments that he did with Marek Kolodziejczyk at his 33Institute for
Lightweight Structures (ILEK), Stuttgart, 1991, similar forces are realized in two
dimensions to take a sub-optimal path network(produced by stringing wool fibres
across a circle Fig. 123 opposite) and resolve the best network using surface ten-
sion again as the fibres are coated in water. As the system works to find a solution,
the existing tension of the threads is used to modulate the result. While mathemat-
ics has evolved to solve this type of problem today without physical models, this
method was able to find an optimal solution from a set of possible solutions on its
own. Each time it is run, a different optimal solution prevails...

I find his influence substantial as Otto hacks physical systems to help him find his
solution. As an architect and structural engineer, he builds working analogous tools
to resolve larger physical systems. I would consider him an exemplar designer and
architect in his methods.

Understood his models were just that, and could not always gather and deal with
all issues. In his wooden grid structures, he built-in added springs to cover those
variable he couldn’t model precisely. The result was a structure that was resilient
and performed well within expected behaviour(deflection under load).

135

Fig. 127 - Bladder Creation
Gerstheimer

Fig. 126 - Bladder Restriction - Brown + Gerstheimer

Fig. 125 - Simple Pneumatic Test Script - Kangaroo - Gerstheimer + Brown

136

Case Study – Pneumatic Structure Proof of Concept (Group Project)

For our term project in a Computer Fabrication elective(Arch 684) taken this past
summer, Geoff Gerstheimer, Mark Longo, and myself elected to design and build
a pneumatic structure through generative means. The work was split as follows:
Presentation(Mark), Generative algorithms(Myself and Geoff), Manual Modelling(
Geoff and Myself), Laser Fabrication(myself). For the purposes of this investiga-
tion, I ‘ll speak to the work I touched and will give credit to Geoff, where necessary.

Our investigation began by looking into Rhino Grasshopper components that could
be used for building a pneumatic envelope. Geoff was initially able to create and an-
imate our first air bladder by initially lofting a solid box manually and then by using
the Grasshopper Weaverbird(Giulio Piacentino 2009) add-on library to create a
triangulated mesh from it with varying degree.

The resultant form was fed into a newer add-on component that performs physical
simulation using various force types called Kangaroo(Piker 2015). The version we
used is the new updated version two of Kangaroo that deals with force elements
in a much more fundamental way that version one. Because of its newness, this
required a lot of trial and error to understand the add-on’s new methods for simu-
lation. Fields are now replaced by components that modulate the change expected
on the objects used, switching from an “affect” point of view to one of “effect.” This
threw us for a loop in the beginning because it felt counter-intuitive, but after a few
trials the simulation seemed easier to manage this way.

We chose initially to use a “Pressure” component and an “Angle Change” constraint
on the edges of the mesh to first cause the envelope to expand and hold form
based on the mesh’s resistance to alter its internal angles. Kangaroo offers a few
different types of solvers(Normal/With Momentum(bouncy)/Zombie(keeps all data
till end)) and we chose to go with the “Bouncy” solver as it seemed to be most life-
like in its results.

This simulation seemed to nail the effect we were hoping to see, but to ensure the
system behaved best we also chose to add a mesh edge “Stretch” constraint(ap-
plying Hooke’s law to the mesh edge system) to ensure that the envelope held its
form while under external load. It seemed that the system was more resilient with
two constraints during testing. Without the second constraint, the bladder could not
expand under pressure to relieve applied forces.

So a large egg roll-like bladder doesn’t make for an interesting space; at least I

137

Fig. 128 - Frei Otto Filament Grasshopper Script

Fig. 129 - Filament Convergent Solution

138

don’t believe so. To convince the form to arc over any occupants it needs to be
divided and articulated in some manner. The problem could be assessed from a
couple of directions; I could optimally arrange the enclosed pneumatic areas, or
I could optimize the separators(networks of lines) that divide these regions. An
enclosed chamber resists bending, so an offset arrangement of chambers might be
able to hold itself up and resist its own weight when inflated while creating an inter-
esting space underneath. The method we chose to accomplish this was inspired by
Frei Otto and his wool fibre experiments. Why not find an optimal dividing network
of lines and let the chambers sort themselves out?

Otto’s investigation began with a circle and an n2 network mapping of all points to
all other points. I elected to simplify our investigation so that we might be able to
create a single arched area that occupies the length of the material space. A set of
lines was drawn across the space and my algorithm was applied to the grouping.

Using Grasshopper and Kangaroo again, I affixed the endpoints of all lines, divided
them into a fixed number of segments, and applied similar rules to that of the pneu-
matic chamber work previously(Hooke’s law & edge angle constraint). To entice a
more life-like behaviour, I added a line-line attraction constraint and then added a
further line-point attraction condition to refine the system.

There was limited success of the script in this state. Every time I ran the system, a
different solution was found but some appeared overly simple and not very interest-
ing. I decided to add more lines, increase the precision of the simulation, and also
add attraction/repulsion points to allow me to “seed” the system and guide towards
certain, more interesting, solutions.

Complexity issues reared their ugly heads again. It was easy to overload the system
to the point of inactivity. I learned quickly(mainly due to the interactive nature of
Grasshopper and its scripting system) that operating with 17 line segments and a
precision of 50(lines divided into 50 representing points=49 line segments) was
pretty much the interactive limit of this method.

Interestingly, with this configuration the system would come up with a different solu-
tion through most runs. Many were similar, but not exact. I can only attribute this to
changing round-off within the Kangaroo solver as I would normally expect the same
solution each time. All the same, what we found provided at least a class of solution
that met our needs; this not being much different from Frei Otto’s own results.
There were solutions that were optimal from a network solution standpoint but not
usable for a pneumatic solution. Some did not create enough chambering to be

139

Fig. 130 - Kangaroo 2 - Based Patterning

Fig. 131 - Pneumatic Volume Grasshopper Script

140

Fig. 132 - Grasshopper Pneumatic Simulation

useful for this investigation and I culled these from our set of useful arrangements.
Others created chambers that spanned side-side and if they were too large, they
too were culled. We needed solutions that had smaller and offset results for this to
work(common sense). Air delivery path openings were added manually post-simu-
lation to ensure the system was inflatable. The realities of a physical system began
to enter the work at this point.

Once this was completed, I elected to combine our pneumatic simulation work with
the path-based optimization results. It is here that things got interesting. I had hit
the upper-bound in interactiveness with the path investigation alone. Adding pneu-
matics into the fray proved to be an issue. An executive decision had to be made;
rather than simulate the entire system real-time(Which would have been more
correct), I chose to take the sets of paths found in the last part of my work as static
input to the system for the next phase.

To allow them to be dynamic(and effected by each other while path-finding) would
have bogged the system down too much to be of any use. I pushed forward to see
if it was possible to simulate the creation of a divided pneumatic system with the
paths set provided. The resultant grasshopper script(opposite - lower) and in-
put(opposite upper) were combined. The simulation was able to resolve a pneumat-
ic volume if the paths were used as an additional repulsive constraint on the initial
pneumatic system used at the beginning of this investigation. The results(above)
were positive, and quite reassuring.

141

Fig. 133 - Manual Pneumatic Chamber Creation

142

Making

We chose to test our efforts using a readily available 6mm polyethylene plastic
sheeting(moisture barrier) used in building construction everywhere. I also felt,
from my PVC 3D printing trials, that the polyethylene would off less smell when
melting and less smell meant we could work with it more closely within the shop.

My first trials began simply. I bought an iron, and some parchment paper, and a
metal ruler. The silicone in the parchment paper protected the wooden workbench
below from the melted poly during these tests. The setting on the iron was at its
highest(cotton) and steam was not used. I felt that if I was able to run the iron along
the straight edge provided by the steel ruler, I might be able to modulate and adjust
enough for any curve to get a bond to happen between two pieces of poly.

It took a few attempts to get it right, but I was able to get a line to appear fairly
quickly. When I pulled on the test strip, the poly was well melted and did not rip or
tear when stressed manually and began to feel quite optimistic about this process.
Moving forward, I thought it a good test to try to create a few enclosed geometric
shapes and see if they could hold any pressure. We had a smaller aquarium air
pump that could be used and a large(185psi) air compressor for extreme tests.

After manually melting each of the primitive shapes, I attempted to push air into
them using a small cut nozzle area that I had melted as an inlet for each shape(pic-
tured opposite - bottom right). My compressor had a large-ish manually controlled
nozzle that I felt would slip into an entrance this size. This proved to be problematic
at the best of times. Any thin entranceway would constrict immediately when any
high-pressure air was added(thank you Bernoulli!). So I had to remove the manual
raceway if this was going to have a chance of working.

Once this issue was managed, the bladders were able to accept and maintain a
shape as long as very small pressure was used. They were riddled with leaks and
any area with a sharp change in curvature(a.k.a. any corner) easily popped under
minor stress.

The idea seemed sound, but there was very little consistency and the use of corners
was a definite nono. I needed to find a better process to melt the poly and also one
that would allow much faster production and more versatile shape generation.
The breaks in bonding also kept us from finding what stretching the poly could
actually take under pressure. Enter the laser cutter...

143

Fig. 134 - UNIVERSAL Models - Laser Cutter Investigation

144

A Tool and its Hack - Emission Technologies

Welcome to the 1970s.

In 1st year undergrad it became clear, amongst the band-aided masses of our
sleep-deprived class, that a laser cutter was “the tool” for model making. Crafting
models by hand was imprecise and despite taking all precautions, the chances of
cutting yourself was quite high. After model #3 I knew I needed to find a better way.
If I looked left and then right in the studio, most had experienced a negative run-in
with their Exacto in one way or another.

I found that the quality of my manual cutting work was ok, but it was clear that I
was more often making copies of the same floor plan or wall section over and over,
and that their manual variation was creating issues. I’d seen that the school had a
couple well-loved laser machines, and while they were certainly available, access
was limited generally to business hours and this was not at all convenient for those
of us who didn’t skip daily classes or book laser time two weeks ahead “in case” it
was necessary as so many did. I knew I had to investigate getting one of these tools
for my home shop.

I was one of those kids lucky enough to go through the Toronto Science Centre in
its heyday. Today it’s but a shell of its former glory(although Moriyama’s presence is
still felt in many areas) as budgets shrank and it seemed to me at least, imagination
took a long vacation. In 1974 it was *the place* to go for any wide-eyed techni-
cally-minded child and school boards bussed them in by the thousands each year.
The displays were mainly hands-on and their presentations were enthralling. Other
than the obvious A/C high-voltage Tesla display, and the newness of being able to
actually touch a computer, I can’t tell you how amazing it was to see their large C02
laser cut through a real brick.

This was the stuff of science fiction, and Star Wars wouldn’t be out for another
3 years. I was taken. This same year, the father of my then best friend came in to
show off a HeNe laser in our grade four class. He was a visiting Physics prof at UW
and it was “career day.” You have to understand the time. There were no tiny diode
laser pointers, hand-held calculators or Internet yet..most people were just making
the change to cheaper colour TVs from their old trusty black and white sets. This
was real in your face science fact. To have one of these to experiment with was
quickly added to my now ten year old bucket list. I think everyone in class added it
to theirs’ as well.

145

Fig. 135 - Laser Cutter Operating

146

First place I looked for a cutter was the Canadian distributor for the machines the
school used. The Universal reseller was then in Mississauga and I made an appoint-
ment to learn about their products and understand the cost. They gave me an hour
and it was very helpful. When the price list made it to the table my jaw dropped. I
couldn’t believe it. A 60W 18”x24” table would cost $35K,130W 24”x60” $75K!
This seemed ridiculous to me. I asked that they open the case and show me what
made them worth this amount of cash. There was a lot of hand-waving, and a lot of
“proprietary this” and “proprietary that”, but much of what was I saw inside was air.
It was pretty clear to me that these were heavily overpriced and that I should find a
way to pull all the fud(fear/uncertainty/doubt) out of these tools. Looking at other
manufacturers in Canada(Trotec, Epilog..etc.) I found more of the same. This market
seemed either ready for a revolution or I simply didn’t understand its complexity. I
aimed to find out.

I searched through a few laser cutting fora(cnczone, sawmillcreek, instructables,
hackaday, openbuilds...etc.) and came across a machine maker in Florida who had
been selling his particular design to material pattern cutters all over the world. His
plans were inexpensive and Jerry Condon, of Emission Technologies, was willing
to deal with me in Canada. He sold me the plans(US$2K) and explained to me the
bunk that is the current laser cutter/engraving industry. His help was instrumental
in assisting me to build and assemble his flavour of cutter for myself.

I ordered a 6’ long 130Watt CO2 laser tube, liquid chiller and power supply from
a supplier in China(Can$4K), ordered optics from Spectra Physics in Califor-
nia(US$1K), steppers and gantry parts from Jerry in Florida(US$2K). I had the
housing welded out of stainless by a Mennonite fabricator in Wallenstein($CAN3K)
who had done some work for me before. The brains of the unit was an off-the-
shelf stepper controller($US1.5K) from Testra in Arizona. As luck would have it,
this was the exact controller used in those Universal cutters I started my journey
with. End cost ~Can$12K for a 130W CO2 24”x48” cutting table. I contacted the
folks at Universal to have a talk about pricing and value, they didn’t seem open to
the conversation(surprise, but understandable I guess). They had been pulling the
wool over peoples eyes for a long time, and no one likes change. Since building the
machine, costs for laser tubes have dropped considerably(CamFive130W CO2 ~
US$1.1K) with many going to solid state lasers and the benefits these diode packs
offer. I’m guessing a bit of a mini-revolution has been happening these past few
years. Access has changed.

After assembly and testing, I’ve become quite adept at maintaining this tool. It cuts
most anything that 130W will allow. At a light wavelength of 10.6µm, this means

147

Fig. 136 - Testra Driver Software Interface

Fig. 137 - Emission - Open Laser Head w. Collimator

148

anything organic is fair game. It’s been used by many groups from our year in un-
dergrad for large jobs or for those needing a tool off hours or those who just want
to save some cash. There are issues with the mirror mounts drifting over time but
this has been manageable.

The laser has been instrumented to do two things, cut or raster with the most
common use being the former. It is relatively simple to set the system to cut; set all
paths within a single layer in Autocad, or Adobe Illustrator and then assign a speed,
power level, and laser pulse value to the layer. Download the vectorized paths to the
cutter(ensuring a path thickness of 0.0mm), and run with the a layer’s properties.
Easy. When running a raster, the image must be on its own layer again and then all
the same values are assigned to that layer(except that a non-zero path thickness is
set) and then the cutter will move through the image scan line by scan line, modu-
lating the laser at whatever dpi(dots per inch) was configured. Smaller dpi equals a
less detailed image but faster output as it has less data and area to cover.

It became very clear, early on, that a raster plot was not the way to go for this inves-
tigation. Firstly, I needed to ensure a clean continuous annealed region to ensure
the consistency of the pneumatic bladder and raster output lacked this ability con-
sistently. Secondly, it would simply take too long at higher(and necessary) dpi levels.
This was a deal-breaker for the chosen method; if it was slower than our manual
process, it was out.

Vector paths would work well if we could find the proper power/speed/dpi balance
that would melt, but not cut or burn. This would prove to be an interesting balance
to find. The laser system is composed of a static laser tube, coupled with small 1”
mirrors that focus the laser’s beam to enter a collimating tube before it hits the ma-
terial surface when positioned at any location on the 24”x48” table. This final stage
takes an invisible infra-red beam with the sectional profile of a dime and refocuses
it to a profile of 0.1mm(at best).

There is a difference when configuring dpi in vector mode with the laser system.
The dpi parameter is controlled by a physical wire that uses pulse width modula-
tion(pwm) to affect the laser’s power supply. When the pulse is “0”(0 Volts) the
laser stays quiet and does not fire, and when it’s “1”(+5 Volts) it fires. The pwm
line voltage changes at a rate consistent to give the laser the ability to meet the dpi
needed during raster operations, but during vector mode, the pwm value need only
be used to maintain the output power at an average level needed for its operation.

This is an important concept to include here because the laser system is not a

149

Fig. 138 - Early Laser Fusion Investigations

Fig. 140- Laser Refinement and Testing

Fig. 139 - First successful Pressure Test

150

blank check. Only so much energy is given to the CO2 gas by the laser’s power sup-
ply per second of operation. If I pulse the laser too quickly, I can exhaust the output
by withdrawing too much too fast. I need to care about pulsing as much as I care
about overall power; the two are intimately linked.

I performed a number of tests, all were about producing one plastic welded line. I
began with low power and worked the config up until there was too much, then I
paired back the pwm parameter until the line appeared like a dashed weld. Then
I upped this parameter and slowed the laser down until it either melted through
or smoked too much. All the while ensuring the optics weren’t negatively affect-
ed(smoke deposit reduces reflected power and heats up the $125 gold-plated
mirror to the point of failure). Also throughout this process Air Assist(a nozzle
function) was disabled as it cooled down the plastic too much and hindered the
whole experiment. Normally this function could be used to clean out the area being
cut and remove any gasses, but I felt this could be done manually. At the end of
this process, a consistent, clean, and very strong line was produced. The process
showed much promise.

The test shape throughout this calibration-phase evolved as did our parameters for
the laser. Our first shapes were purely circular and crude and had too many cor-
ners/edges and this proved to be an issue in creating integrity with the final enve-
lopes...so, corners were out. I also rounded off the test air-entryway and also added
a second/offset curve to reduce stress on the inflated volume. I quickly discovered
that if p-lines were used, their endpoints were still seen by the laser encoding soft-
ware and this always caused the laser to “dwell” long enough the system to “punch
through.” Not a catastrophic issue because the area around the hole was sealed,
but not a clean solution. I moved to used connected splines from that moment on.
No internal points reduced punching.

The resultant shape(left) had the added benefit of closing the in-bound air aperture
when under pressure as well. This proved to be of great benefit when building more
complex geometries later in the investigation. I found that the greater the contained
pressure, the better the seal; a great side-effect.

Collimation or no Collimation

One added parameter became necessary when doing pressure tests on the pneu-
matic cells I was creating. They would fail at relatively low psi(5-ish) due to mate-
rial issues. The 6mil poly would itself fatigue in areas where the melting had been
applied. The characteristic of the material only became present after the laser had

151

Fig. 142 - Open Beam Laser Tests (No Collimation)

Fig. 141 - Various Collimated Tests - PWM & Power/Speed

152

changed the state of the plastic. It was as if the added heat had weakened the plas-
tic generally. The parameter that needed to change was beam diameter.

If I could affect a larger section of the plastic, its combined strength might be
enough to hold greater pressure. Initially I simply defocused the beam from .1mm
to 2mm or 3mm. The change was dramatic(chamber pressure good till 20psi) but
I questioned, what if I could make it larger? Would the benefit increase with beam
diameter linearly? A decrease in focus meant greater beam diameter hitting the
poly which meant greater power needed. This quickly became problematic to tune.
Although there was limited benefit, the system became unstable quickly. I opted for
one final change.

What if I removed collimation completely? It’s dime-sized beam is the best possible
output from the laser tube natively. And there would also be a power benefit by not
using the final stage lensing. My trials are documented lower left(opposite). Open
beam tests would produce a wonderfully beaded edge that seemed to have no
upper bound on pressure(tested to well above 100 psi).

There were a couple major issues however; the process consumed the poly around
the area and deposited it at the joint in a bead. While this was good for the joint,
it wasn’t good for the whole process. I needed to “print” a network of connected
chambers and having the process cut them out from the plastic fabric was not
going to be of benefit.

The second issue was a major one; the poly could easily catch fire during the weld.
This was a show stopper. While parameters were good for slowly changing curves,
where the curve had the highest rate of change, the laser controller would not ap-
propriately reduce the pwm frequency enough and the system would be over-pow-
ered. With a native beam, this resulted in the plastic catching fire in numerous
places. Fire being a bad thing, I looked back at previous steps and saw this effect in
all the runs.

Due to its vintage, the controller clearly has an issue in tight curves. I suspect its
spline approximation is not so wonderful either(bezier implementations were quite
new in the 70s). While this is not an issue in cutting or raster operation, I clearly hit
an implementation snag for this investigation. I needed uniform power application
at all points on the curve.

153

Fig. 143 - Existing Testra Controller - Transition Connectors

154

Controller - Original System - a.k.a “The Elephant in the Room”

The original controller was manufactured by the Testra Corporation in Tempe Arizo-
na. Best I can see, one very gruff designer built a very simple four-channel stepper
controller to manage CNC operations in most any situation. Doing a patent search
lead me to see this design was based on many dating back to the cold war era.

The insides are mainly TTL(1970s) technology and this was coupled with a well
developed printer driver that is able to manage output from Autodesk software,
managing vector layers and rasters well for its time. Testra is still selling this same
exact product that they began producing back in the 70s, and surprisingly, still
unchanged. This is the root of my issue.

Ist problem - When attempting to emboss a relatively small raster image on acrylic
recently, I had to rely on the unit’s now geriatric designer to support me in a mem-
ory upgrade. He had designed the controller to use (then state of the art) 30pin
simm memory (with parity). These chips were scarce even when they were current,
being designed mainly for the embedded controller and high-end server market.
Basically not many were made. The (then current) memory controller would only
allow for 24-bits of address space with an 8-bit word, leaving each sim offering
16Megs of storage. And with the controller only using 2 slots, that left the controller
only supporting 32Megs worth of raster images and that’s not very large(at 8-bits
per pixel intensity). It seemed a memory upgrade would only buy a bit more time
for the aging controller. After all, there aren’t many Intel 286 or 386 computers in
service still these days; manufacturers aren’t scrambling over themselves to sup-
port this market.

2nd problem - The software driver is tied to the O/S. Testra has stopped releasing
new drivers in 2009. Being tied to an older piece of driver software can be nothing
but problematic when trying to interface with it using current apps. Crashes and
odd artefacts have become more common as we begin to push the boundaries of
what the system was designed to do.

3nd problem - The software handles complex curves the way complex curves were
handled in the late 70s, as a number of short poly-lines(and not using splines). That
means that curves can get choppy when they change quickly. This creeps into the
output as holes. The laser “dwells” at the poly-line endpoints during processing just
long enough add heat at these points more than while it’s tracing out a line. This
becomes a substantial issue when trying to control the cutting process closely as
noted previously. There’s a “hole” in the travelling pwm algorithm.

155

Fig. 144 - Bill Gates’ Famous Letter to Computer Hobbyists

156

Looking to Industry, even Universal has moved to a more current, software-based,
solution rather than relying entirely on an embedded system. Based on these ongo-
ing issues, and a severe reluctance to depend upon a proprietary closed solution,
I decided to embrace a more open-source answer to managing the laser. While
basic functionality is still acceptable for cutting, a refresh is needed for rasters and
the annealing process I’m investigating here.

LaserWeb

The Maker movement’s effects have been felt in all areas of digital fabrication. Its
influence has not been welcome more than in the area of computer programs.
Democratizing software has been the very antithesis of Bill Gates’ beliefs since he
first broke away from the free software movement of the 70s in his now infamous
“Open Letter to Hobbyists”(Gates 1976, 2).

In his letter, he called those who share software “thieves,” and asked that those who
sold his work to others to pay up. While his position made sense when thinking of
those who invest their time and effort to implement business solutions, it was I think
directed at the wrong audience. There was no GNU GPL at the time and those
who enthusiastic to innovate in the computer industry were busy borrowing from
the successes of each other to push the movement forward in an open contract of
sharing. It surprises me to think that Gates, who benefited massively from this as-
sociation with hobbyists, would then turn coat and accuse them of being criminals.
Was it OK to innovate only for a few?

Today, intellectual property laws allow for solutions to be essentially “locked up,”
making it illegal to repair your own iphone(Moody 2015) or John Deer trac-
tor(Masnick 2015). While both benefited heavily from open innovation in their
humble beginnings, each starting in someone’s garage, borrowing technology(Deer
- a broken saw blade, Wozniak - the Silicon Homebrew Computer Club) and know-
how from those around them. Having to be tied to embedded systems, using closed
protocols, is protectionist and has walled off access to the engraving and cutting
markets. I experienced this first-hand in my meetings with Universal when shopping
for my machine. As I felt then, I still do now; the cost and veiling of these solutions
inhibits innovation. When substantial value is offered by the right solution, the mon-
ey will follow. Until then, I feel sharing should be the default operating mode, fuelling
innovation through access.
This is a very long-winded soap-box lecture on my stance. Laserweb embodies the

157

G0 X691.2153 Y6.0400
G1 F1200 X691.2153 Y6.0400 Z0.0000
G1 F1200 X686.7868 Y7.3386 Z0.0000 S1.00
G1 F1200 X691.2153 Y6.0400 Z0.0000 S1.00
G1 F1200 X686.7868 Y7.3386 Z0.0000 S1.00
G1 F1200 X691.2153 Y6.0400 Z0.0000 S1.00
G1 F1200 X686.7868 Y7.3386 Z0.0000 S1.00
G1 F1200 X691.2153 Y6.0400 Z0.0000 S1.00
G1 F1200 X686.7868 Y7.3386 Z0.0000 S1.00
G1 F1200 X691.2153 Y6.0400 Z0.0000 S1.00
G1 F1200 X686.7868 Y7.3386 Z0.0000 S1.00
G1 F1200 X691.2153 Y6.0400 Z0.0000 S1.00
G1 F1200 X686.7868 Y7.3386 Z0.0000 S1.00
G1 F1200 X691.2153 Y6.0400 Z0.0000 S1.00
G1 F1200 X686.7868 Y7.3386 Z0.0000 S1.00
G1 F1200 X691.2153 Y6.0400 Z0.0000 S1.00
G1 F1200 X686.7868 Y7.3386 Z0.0000 S1.00

Fig. 145 - LaserWeb Interface - Pneumatic Path View

Fig. 146 - Path G-Code Listing - Laserweb

158

type of thinking I think is necessary for a healthier engraving industry, open access
and an open development system. Based on the GPL, all Laserweb code is availa-
ble on GitHub(van der Walt 2016a) and anyone can join the effort. The project was
initiated by Peter van der Walt, a Systems Engineer in Durban, South Africa. The
project has gone through many iterations as the momentum has grown. The project
is in its fourth major iteration, with each major version including more functionality
and breadth of support for controlling hardware as more developers join the effort.
The current operating version is Laserweb 3. It supports control of both laser/
CNC/and 3D printing. Openbuilds describes it as a:

“Node.js based, Windows/Linux/Mac/Raspberry Pi/Vagrant supported, host
software for Lasercutters/Engravers running Marlin/Smoothieware/Grbl/La-
saurGrbl with integrated parametric Gcode generators, Raster support, as well as
Raster and Vector Engraving. SVG and DXF supported for cutting, PNG, BMP, JPEG
support for raster engraving.” (van der Walt 2016b)

This solution is ultimately democratized as the hardware, software, and know-how
are no longer locked up. The Laserweb project offers even more, a vibrant Maker
community(van der Walt 2016) that collectively responds to user issues, driving
them to completion through directed education. This drives down cost and increas-
es quality as solutions are vetted across a wide audience, and ensuring changes
to the product are heard and incorporated with buy-in and support of actual users.
Win, win, win...etc. You get the picture.

Laserweb has been written to be hosted on many flavours of Linux, and more
importantly for this investigation, it can be hosted on the tiny $35 Raspberry Pi
microcomputer. Running a fully supported version of Linux(Raspian), the Pi is a
Quad-Core ARM-based 64-bit computer running at 1.2 GHz. To give you a sense of
how things compare, the original Apple Macintosh was a 32-bit(Motorola 68000)
Computer running at 8 MHz. The Pi is literally 300 times faster than the first Mac.
And at $2500US adjusted price for each Macintosh, that results in each Raspberry
Pi being equal to approximately $750,000 worth of 1984 home computing, and it
fits in your pocket.

As a Node.js solution, Laserweb resides as a web application served up by the Pi,
so it can be controlled remotely. Our existing solution using Testra is embedded
and depends upon a dedicated Windows-7 machine connected through to the
controller over a Serial RS232a connector as a printer port. The Testra max’s out
at 64Kb/s while the laserweb solution uses either USB or Ethernet; both having
transfer rates in the MB/s range. A newer, faster, interface allows for interactive
fetching of g-code instructions from Laserweb as needed, and this puts it head and
shoulders above the one-shot printer driver used by the Testra.

159

Fig. 147 - GRBL Controller Version - Connected Block Schematic

X-Axis

Y-Axis

160

Controller - GRBL Version - Thought Into Action

The G-code created by Laserweb has to be translated into mechanical action
somehow. Here we enter the realm of motors, signals and switches. Grbl(simply
short for “Gerbil”) is an open-source CNC implementation written in an optimized
version of the “C” language(Jeon). It was initially authored by Simen Svale Skogs-
rud, a designer in Norway at Bengler(bengler.no) who specializes in what he calls
“broad spectrum tinkering”(Skogsrud 2017). Grbl is implemented to run on the
simple Arduino Uno project system.

The laser system needs precise movement of the stepper motors to locate the op-
tics that direct the infrared beam’s energy through to the material surface. The op-
tics are located on moving linear bearings that make up a gantry which slides with
minimal friction over the activity field(defined by a Cartesian X and Y coordinate).

The stepper motors react to electrical pulses which turn the motor either left or
right in precise steps, allowing for movement within a very small fraction of an inch.
In absence of a pulse controlling movement, the system also can lock an axis in
place by activating the magnets within the motors, restricting movement of either
gantry(like the brakes in a car).

Limit sensors inform the system when it reaches its extremes in absolute position.
To optimize hardware, the system uses only one limit switch per axis as it knows the
length of each axis(X-48”/Y-24”). As the system counts off it’s distance from one
of each axes’ extremes, it can know when the non-monitored end is reached(within
precision limits)

Configuration of this system is done through the Arduino Interactive Development
Environment(IDE). Most parameters that apply to the physical implementation of
steppers and laser control are managed via the Grbl’s “config.h” file. Changes made
here are compiled through the IDE and uploaded to the flash memory of the Ardui-
no Uno through my PC’s USB port.

Initially, using only a painted piece of plywood, I assembled the circuit for testing.
I elected to try to match the connectors existing in the system to make swapping
back easy. This proved to be problematic as these connectors are no longer readily
available. Simple non-locking pin connectors were used in their place temporarily.

161

Fig. 148 - Assembled GRBL-based Proof of Concept

Fig. 152 - Stepper Driver

Fig. 150 - 15A -24V Power SupplyFig. 149- End-Stop
Noise Filter

Fig. 151 - Raspberry Pi

162

It was found early-on in the testing that triggering the end-stops cleanly was an
issue due to some system-generated high-frequency noise on the signal wires. I
had used re-purposed Cat-5 Ethernet twisted-pair wire to limit interference but it
seemed the switch itself did not transition cleanly. I assembled a low-pass noise
filter(Image-Opposite) to siphon off these errant signals to quiet the system down.
This worked quite well and I was able to get the system to find “home” cleanly dur-
ing its initial power-up calibration(gcode -G28).

The Arduino Uno control board does not have the ability to drive the stepper motors
itself(each requiring up to 3 amps of current) so stepper drivers, activated by a
5Vlogic pulse, were used to pass on the current needed. This relieved the uno of
need to match the power demands of stepper loads and reduced the cost of the
controller substantially and this allowed the Uno to be powered by USB current.

Testing GRBL, at the then-current code revision 0.9, was quite a challenge. Despite
the claims of the developers, I found its performance to be choppy and very hard on
the hardware. One of GRBL’s great contributions to this area is its claimed ability
to drive steppers cleanly while looking forward at programmed movements, like
G-code pipelining. An intelligent controller would take into account planned changes
by buffering movement requests; slowing change so as to be forgiving on the struc-
ture/belts/motors while offering efficiency.

What I experienced was all too often abrupt changes to the gantry motion, resulting
in a jarring that required me to re-tighten its fasteners often. The optics that the
gantry is charged in moving, also became out of alignment only after a few steps.
The optical mounts did not do well under high-stress. While they can hold the mir-
rors quite securely, the screws used to adjust alignment did not do well under the
differential stress of high-G movements. It didn’t take long for the laser system to
become a hazard.

Barring any code updates, I felt it useful to look at Open alternate driver solutions.
There were a few(Ramps, Smoothie, Mach3, Marlin ..etc.) but many were still based
on the arduino and I suspected that the speed of Arduino implementations may
have been an issue. I elected to look at alternate controllers and the Smoothieboard
project quickly rose to the surface. Based on the ARM 32-bit Cortex-M3 running at
120MHz, it leaves the Arduino Uno(8-bit 16MHz) in the dust.

163

Fig. 153 - Smoothie Solution - Connected Block Schematic

X-Axis

Y-Axis

164

Controller - Smoothieboard Refinement

The Smoothie Project was started as a fork in the GRBL project. As anyone can do,
the developers of Smoothie felt that Arduino was inherently limited but wanted to
base their work on the successes of GRBL. At the time I was search for a G-code
interpreter and stepper driver, Smoothie was still in development. As a 32-bit
120KHz machine, it promised at least a 30X improvement in processing ability and
native ability to drive larger steppers with greater precision(steps/microsteps).

While coming with a greater capacity to drive larger steppers, the Smoothie tops
out at 2A for its stepper drivers, so I still had to utilize my driver hardware. The
Smoothie board I ordered came with 4 channels, allowing for a Z axis, plus one
other axis(R1 perhaps for rotation). The Ver 1.0 Smoothie is considered a gen-
eral-purpose controller; offering the ability to power 3D printers and larger CNC
applications.

Implementing the smoothie was as easy as swapping out the hardware and config-
uring the card to understand the specifics of my Laser table. There’s no need for an
IDE and compilation step to configure, an on-board sd-card is accessible via USB
or Ethernet, or can even be ejected and configured using a separate sd-card loader.
It’s config.txt file can be directly edited and current boot image swapped out for
fixes or updates. As a larger card, it requires more power and there was ample with
my current supply.

Smoothie has an integrated buffering on their limit switch channels, so no more
false positives or barnacled high-pass filters. I elected to buy a board unpopulated
with connectors. There’s enough interfacing on board for many applications. I felt I
could save some cash by only soldering on what was needed($130US). All the log-
ic is in place for all functions. If I need to re-purpose or add another needed channel
to the system(a CO2 laser coolant flow sensor perhaps).

If you think I’m a convert at this point, you might be right. This board has been
thought through. I am very happy to see such a smart Open-Source product being
offered to the market.

165

Fig. 155 - Plasma-Cutting of Interface
Ports in Case

Fig. 154- DIN Rail System in Hammond Case

Fig. 156 - Signalling & Power Connection

Fig. 157 - DIN Terminating Blocks

166

Controller Final Build and Implementation

As this was going to live in my workshop(a relatively dirty environment), I figured it
made sense to ensure the controller was housed and cooled properly. That meant,
a sealed steel commercial cabinet from Hammond Electronics in Guelph, industrial
connectors, fusing, and filtered active fan. I was able to source the cabinet from Tor-
bram Electric Supply in Waterloo. They stock some of the more common Hammond
components. The cabinet is thick, enamel-coated steel and required hardened steel
drill-bits for the industrial connectors’ positioning and the use of a plasma cutter
for larger holes(opposite).

In this environment vibration can be an issue if other equipment is operating, so I
elected to use an industrial DIN-rail system to facilitate connectivity. DIN allows for
each wire to be fastened using a recessed, tightened, screw so there is little chance
of wiring becoming an issue while in production or maintenance. The Hammond
case comes equipped with an offset mount -plate for components. I chose to mount
the DIN rail down the centre and organized connectors on one side of the cabinet
for easy access. Torbram stocks DIN rail components as well but these were much
cheaper in small quantities from Sayal Electronics in Cambridge.

Throughout the build process, it has been important to ensure that moving back
to the working, older, controller be possible if there is a failure with the new. To help
with this process, I made an additional connector set to allow the older controller
to connect to the newer termination system. It was a bit of duplication, but instilling
resilient capacity to the laser cutting system will ensure that it will always be availa-
ble, barring a fundamental failure of the laser or mechanical systems.

The Laserweb system is web-based. It will be necessary and helpful sometimes
to walk up to the machine and print a file. Also, control for the system should have
some locally positioned instrumentation to allow for laser power changes, job man-
agement, cooling alarms/emergency shutdown ...etc. I’ve included a fused 110V
switched power connector mounted in the case to support a future touch-panel
that I will mount on the exterior of the machine.

With the control cabinet permanently on the lower portion of the laser table, it can
be accessible when needed but to connect through to the Raspberry Pi computer
inside the box, a wired Ethernet connector is needed because of the RF insulating
capability of the metal case. Without it, the shop’s wifi signal will not be able to

167

Fig. 158 - Smoothie Controller - Fitting and Assembly

Fig. 159- Smoothie Soldering Repair

Fig. 160 - Shrink-wrap &
In-line Voltage Reduction(24V->5V)

168

reach the Pi.

Internally, the components were arranged to allow for maximum air movement for
cooling, ease of access for maintenance and wire management, and specially to
separate power components from computer components.

There also has to be a sensitivity to inductive interference caused by close prox-
imity of input to output wiring. As I mentioned before, all internal signal wiring is
twisted to minimize crosstalk as is done in Ethernet cabling. Twisting ensures that if
an electromagnetic pulse effects the wire at one point, the effect is negated by the
wiring being in an opposite configuration an inch or so down the signal path. This
trick works for high frequency signal induction and is necessary in all conductive
network cabling to ensure quality signalling.

Separation of analog and digital signals also ensures there is less chance for in-
ductive affects to cause an issue. With power components(Power supply, stepper
drivers) split from digital processing components(Raspberry Pi, Smoothie) I accom-
plish this within the box. To take this further, inductive effects can be minimized by
minimizing how much untwisted lines are bundled together. This is done within the
box by allowing analog wiring to be run point-point.

The smoothie’s arrival gave me a chance to dust off my soldering skills. I probably
should have practiced a bit more before moving straight to the empty production
board. I made several mistakes, which also allowed me to dust off my repair and
de-soldering skills. I had to repair a trace and refresh the tips on my 20+ year-old
Weller soldering station. Thank you Sayal Electronics. Radio Shack is long gone...
There are definitely less places that support the home maker-space these days.
Long gone are Waterloo Electronics, Orion Electronics is now a travel agency, and
once a Mecca of used computer gear/parts/supplies, KW Surplus now sells food
and clothing; their once-proud electronic surplus relegated to a dusty corner of one
or two forgotten display cases.

Shrink-wrap tube became my friend in this implementation. With all connectors be-
ing custom, internal termination also benefited from some proper isolation. Shrink-
wrap tubing comes in many sizes and colours and is really the best way to ensure
wires stay in place and don’t affect one another. Size and slip the rubber piece over
the area that needs to be insulated/reinforced, apply a bit of heat from a heat gun/
hair dryer/torch and the tubing shrinks around the area tightly. Best invention ever.

169

Fig. 161 - Pneumatic Chamber Results - Smoothie Controller

170

Output - Smoothieboard Successes

After some minor teething, the system fired up with little issue. End-stop calibration,
pwm laser modulation and power setup took a bit of time. The Smoothie system
allows for almost any output pin to be modulated via pwm. This really is something.
I could modulate the output pins of almost any of the stepper driver lines to control
an host of peripherals. This card really is something.

Smoothie does two things that GRBL didn’t do, and it does them really well:

It’s look-ahead and state optimization are head and shoulders above
the GRBL. I could hear the difference immediately. The steppers were
almost singing while they moved. The Smoothie has the ability to mod-
ulate the signal, using larger steps and smaller microsteps, to ramp up
and down the speed of the gantry in an incredibly smooth way(hence
“smoothie”). I am amazed how much better the movement happens. It’s
seems more intentional and less forced. Curves are smoother as well. I
suspect with better control, comes better geometric output.

Pwm optimization of the laser is finally configured to follow the curves
and is modulated to allow for uniform energy release along the curve.
There are no more holes and energy transfer doesn’t bunch up in tight
corners or curves. The resultant pneumatic envelopes seem more con-
sistent and hold greater pressure. They’re not perfect, but this process
has improved noticeably.

Smoothie does a few things more poorly as well. There may certainly be fixes
for these but at the time of this investigation, these were my pain points:

Smoothie does hiccup sporadically when beginning a run. It forgets its
location and attempts to re-home after it has homed already. This caus-
es the gantry to try to move itself past the endstops and off the rail. It’s
a very disconcerting thing to watch and a real pain to fix. This behaviour,
wouldn’t normally bother me but the gantry ceramic bushings are ef-
fected when forced inappropriately. The more this happens, the sooner I
may have to replace them. They are already beginning to crumble.

Seek and calibration speeds have been difficult to manage. This will re-

171

Fig. 162 - Multiple-Line-Offset Pressure Reinforcing

172

quire more time with the machine. It can be too aggressive when chang-
ing speed modes. I will have to consult with the community to see if this
is a laserweb issue or if it belongs more within the Smoothie’s category.

Results - Pneumatic Structure Proof of Concept

6mm Polyethylene is a fairly rugged material to work with. It’s tough and
resistant to tearing and puncture within its normal operating temperatures.
Thankfully, it’s relatively inexpensive and quite easy to obtain. Throughout this
investigation, our roll of 6mm poly was in the driver’s seat. And while it was
always relatively easy to cut, coaxing it to melt to itself was no small feat. Too
little heat and it might wrinkle and fuse poorly or not at all, too much and it
separates, melting to itself while creating a bead or catching fire - spewing
black smoke up to the optics of the cutter(incurring a lengthy cleaning cycle
or lens replacement). Air assist was of help initially to keep the optics cleaner,
but the air provided cooled the poly too much to be of use.

The air chambers we wished to create were arranged in such a way as to
span across the length of the material. To accomplish this I used the Kanga-
roo add-on from within the Rhino/Grasshopper environment, modelling a
similar system of paths that ribs might take across the space. Each path was
a collection of points and lines that could be altered parametrically in their
span. The lines were allowed to stretch(forming a figure) within limits but
would always remain consistent within themselves. When attractive forces
were applied to each path while repulsive areas were defined within the line
environment, the system would be left to resolve its best configuration. These
forces were themselves parametrised and were placed arbitrarily based on
my input and intuition. It was through a number of iterations that a set of pos-
sible solutions was found.

While initial attempts to fuse the polyethylene were completed manually, it
was through the laser annealing process produced in this investigation that
allowed a more reliable result. Through iterative trials with the laser cutter, I
was able to determine what settings were best at producing a clean seal. It
was only through successive pressure tests and adaptations that a reinforc-
ing process was developed to reduce the strain on the material during use.
It seemed that once the polyethylene was heated, the regions of adhesion
were significantly weaker than the original material and this required a more

173

Fig. 163 - Pneumatic Structures

174

gradual approach to dealing with pressurization and the forces involved. The
solution was to add offset paths that enclosed the existing paths in a spline-
like manner.

It was determined that the rib paths must be enclosed single loops. We found
that if the paths were made of multiple polylines, their endpoints would cause
the laser to dwell, if even for a split second at each of these points. Reducing
end points reduced blow-through of the material during adhesion, and thus
reduced the chance of leaks being formed by the annealing process.

Further issues of laser power modulation in tight curves force me to look at
the controller architecture. Due to its age, and lack of documentation con-
cerning configurability, I decided to look for alternatives. A replacement solu-
tion that seemed the best fit was an open-source solution named LaserWeb
that was hosted on a RaspberryPi computer coupled with an Arduino CNC
controller.

I built a test rig, and was able to setup the LaserWeb(Version 3) system.
After running a few tests, I determined that the CNC controller board was
not a good fit and replaced it with a more advanced controller known for its
smoother operating control of the laser’s stepper motors. With the system ar-
chitecture set, I decided to move to a more production-grade implementation
and move the components to a shop-grade enclosure with proper cooling and
interface protection.

The end result was a more consistent controlling system that offers a web-
based interface. It runs off of inexpensive components and an open operating
system(Linux). The controller offers greater control and parametrization of the
process, and also affords the ability to customize itself for other materials(and
processes) more easily.

175

Fig. 164 - Render + Pneumatic Structures

176

Conclusions - Pneumatic Structure Proof of Concept

As with Sennett’s Chef, this portion of the investigation highlighted the en-
tire range of relationships a craftsman might have with their tool. In the first
section, I searched for an understanding of the language and characteristics
of digital making in the build and commissioning of a delta-based 3D printer
where I was introduced to the process and implementation of making in PLA
plastic for use in the first two investigations. In the second section, the inves-
tigation started with a goal determined by a group project to produce set of
analogue experiments in pneumatic structural design. The material, 6mm pol-
yethylene, and the process of plastic welding, guided a number of the parame-
ters within the design of the tool system used to fabricate the tests.

The pneumatic chamber design process was based upon Frei Otto’s wool-
thread experiments in network optimization. Using Rhino3D/Grasshopper
and a hierarchical implementation of the Kangaroo physics solver, I was able
to simulate the form we were trying to fabricate. As with anything virtual, the
project took a whole new direction when we started to work with the 6mm
polyethylene directly.

The materiality of the poly re-shaped my thinking of how fusing processes
work. While direct feedback was very possible during refinement, iterative
change was seen by the adjustment of parameters of the controller’s hard-
ware systems and while these changes were difficult to realize initially(con-
fig file changes/process updates, mechanical and vacuum adjustments), I
became quite adept at making them quickly as the refinement processes
evolved. My goal was to have the capacity to reproduce the paths and pro-
cess correctly every time it was needed. I was able to reach a point of not
really thinking about the changes that were needed; I had reached a point of
simply adjusting the system by “feel,” minimizing the effort while anticipating
the outcome intuitively.

There are better processes for melting plastic in a uniform manner(heat roll-
ers, pin-based systems, etc.) but this system affords me the ability to change
the curves easily and quickly, and it is more consistent. It is also a hack of a
laser cutting system; the originally configured tool was not meant to do this.
I had to get into its head-space for the results to go from mind to hand, from
hand to tool, and finally from tool to material. As I slowly improved the control

177

system, the design intent was better realized. With less pin-holing in the out-
put, the pneumatic system could literally hold it’s air almost indefinitely. And
once welded properly, it’s resilience was surprising. Taking the pressure up to
100+psi without issue became the new normal. I had learned how to work
with the digital system and the material to achieve and surpass design goals.

The process of making is messy. Through countless iteration, the laser system
began to show its tolerance for stress; the mirrors constantly would go out of
alignment due to vibration caused by motion trials, the collimation system’s
lenses had to be cleaned continuously due to the smoke of melting plastic, the
gantry rails and gaskets are all but worn due to improper end-stop settings
and errors in movement−all necessary when pushing new boundaries in pro-
cess learning. Sennett states, “[a craftsman] must dwell in error to understand
working procedures.” (Sennett 2008, 162) This state of material indecision
and learning is necessary to support change.

178

Conclusions

In this thesis, my investigation has travelled from head to hand, from hand to tool,
from tool to material and back again. Beginning this work, I was naively looking to
understand what was involved in unifying head and hand in the realm of the digital.
I’ve since discovered that there is so much more to consider. Much is the same, but
craft within the digital asks for more. It asks the craftsman to focus not only on the
use of their tools, but more so on the development of these tools.

Tool and tool making is a craft all its own. In digital design, creation of the tool is a
process akin to mind-melding with the processes/materials of making coupled with
the technological implementation of what Sennett refers to as “transitional ob-
jects”(Sennett, 2009,159). I would agree with his take on this. The virtual models/
processes and sketch-physical models stand in for analogues of mental ideals.
They’re disconnected from the real world in their perfection and only are able to
land when making takes place.

The digital modelling of the diatom was a pure mathematical abstraction until the
limited real-world demand that its surface be manifold(continuously closed). Driv-
en to ensure the model was makable, the process of design looked to incorporate
those explorations that could allow it to exist in the physical world. The tools of
making were instrumental in this.

Yes, there are be many phases of making. The digital designer must develop an
intimate relationship with the tools of digital making, be they virtual or physical. In
each sense, I began to develop prehension(a feeling of anticipation) while making.
I began to anticipate next steps without thinking about them. These feelings were
more clear when I built/designed the tool myself compared to configuration of
an existing tool. Both types worked on me, the designer, but when I already had a
mental connection to the construct, be it digital or physical, because I created it, the
connection was clearer.

At many instances the system I had implemented resisted scaling due to complexity
issues. Whether it was the addition of more than seven levels of differentiation in
the diatom Grasshopper model, or the number of distinct line segments that made
up the paths in the pneumatic form simulation, or the O(n2) assumption of the Di-
atom Coulomb agent implementation, each offered direct resistance during imple-
mentation. The result at every turn was an understanding that the direction I had
chosen would go no further, and that I needed to think of another direction to go to

179

fulfill my design intent. Resistance spurred ambiguity, and ambiguity spawned imag-
ination. I found this to be a repeatable theme, constantly hitting execution walls. The
result spawned better more-optimized code, better choices for design directions, as
they uncovered weaknesses in my thinking.

In every project, I developed a sense of what Sennett referred to as “minimum
force” thinking(Sennett 2009, 165). Initially, it may have been due to finding the
path of least work, but later it became something that manifested without thinking.
Minimum force later on became a set of tasks done in an order because it was the
most efficient way to an end. I’d stopped thinking about how to prepare path files
for the laser system during my pneumatic investigation and only remember the
results during our many iterative changes. The tasks of making became quick and
efficient because the design iteration process demanded it.

Some of the formal tests embody a philosophy Sennett calls “fit for purpose” proce-
dures or tools(Sennett 2019, 162) where he feels it’s important to “dwell in error”
because that is the only way to truly understand a system that you are developing.
My TensorFlow investigation took more than a month to realize and its development
helped me to fully realize at a low level what was necessary for me to bridge head
and hand when managing a large number of software agents effectively. I lived
within my mental model of an agent management system for more than a month
before I came to understand what was necessary to complete the design task. It
helped me to make better decision(defer this development until greater program-
ming skill has been acquired) but more so, I gained a marvellous in-depth under-
standing of when to terminate a design decision. The result allowed me to find and
configure a better tool for the task. The digital designer needs to let go of directions
that are unfruitful and identify quickly when this condition exists.

Miles Davis is quoted as saying “Be Wrong Strong.” As a master craftsman, his work
embodied innovation and improvisation. Hacking, the art of using a tool for other,
than its designed intent(sometimes for more nefarious purposes), is important to
the digital craftsman. It embodies Deleuze’s sense of multiplicities and is a very
powerful methodology. Craftsman innovate with what they have at their disposal.
Their head and hands, adept at making, are able to feel new possibilities when
faced with a new problem. Their knowledge of their system affords them an ability
to solve problems quickly and without prior restraint. Again, I’m but a digital crafts-
man in training, but when I needed a digital system that would melt plastic, my close
experience with my laser cutting system pointed me to think that it might be able
to melt plastic if configured and changed properly. The result, involving successive
improvements to the process, was a minor hack. I wouldn’t have even thought of it
had I not known this tool well.

180

As a budding digital craftsman, I see that I’m at the very beginning of an exciting
journey. The digital craftsman still must put in their time(10,000 hours) to fully
understand their craft; the machine does not move this any faster. In fact, I see the
digital designer today having to be a master of an uncountably large number of
tools and systems. For this investigation alone, I had to become very capable with
the tools in this list:

Where there was no tool, no way to connect, I had to design and build one. This is
the true bridge between head and hand for a digital designer. The tool is the con-
nection. It embodies the thinking of design goal and does so in a language that
anticipates the characteristics of the material. It takes the virtual construct and
translates its intent to the material. In this sense the digital designer must get close
to each, and she must learn to speak the languages of each. While Sennett’s chef
speak to his craft through his hands using his knife as a tool, his craft also works on
him−communicating it’s materiality, communicating its language. The digital design-
er, while embodying much of what Sennett’s craftsman do, must also take this roll
as well.

Software		 Hardware

Rhino			 Switching Power Supplies
Grasshopper		 Steppers + Drivers
Realflow			 Electrical Wiring and Bus Systems
Maxwell			 RaspBerry Pi
Java/Processing		 GPU configs - SLI
Mandelbulb		 Cable management
Z-Brush			 HTC Vive
meshlab			 PVA/PLC Processes
ImageJ			 Multimeter/Weller Soldering Station
Handbrake		 Arduino	
Kodon			 SmoothieBoard
TiltBrush			 Signal Filtration & Buffering
3DS Max
Maya
Unreal
LaserWeb
Repartier
Simplify3D

182

Bibliography

Alanus, de Insulis,-1202. 2007. Les Proverbez D’Alain, edited by Thomas Maillet, Tony Hunt. Paris:
Champion.

Al-Dakoki, Ali. “Digitmakers.Ca Website.” https://digitmakers.ca/product/3d-printer-delta-rostock-
mini-g2s-diy-kit-with-auto-leveling/., accessed Jan 5, 2016.

Aristotle. 1988. The Politics, edited by Stephen Everson. Cambridge, England]; Cambridge Cam-
bridgeshire]: Cambridge University Press.

Bader, Christoph and Kolb Dominik. “Profile - Descriptive - Facebook.” https://www.facebook.com/
deskriptiv/about/?ref=page_interna., last modified Jan 19, accessed Jan 14, 2017.

Bader, Christoph and Kolb Dominik. “Deskriptiv - Behance.” https://www.behance.net/deskriptiv.,
last modified Nov 15, accessed Dec, 2015.

Bader, Christoph. “Inspiration Now - Deskriptiv.” http://www.inspiration-now.com/double-
mesh-by-deskriptiv/., last modified Feb 25, accessed Jan, 2017

Bader, Christoph. “CA - descriptiv.” http://www.creativeapplications.net/tag/deskriptiv/., last modi-
fied Nov 11, accessed Dec, 2016.

Bader. “Flickr - descriptiv.” https://www.flickr.com/photos/deskriptiv/., accessed Jan, 2016.

Bader, Christoph and Neri Oxman. 2016. “Recursive Symmetries for Geometrically Complex and
Materially Heterogeneous Additive Manufacturing.” Computer-Aided Design 81: 39-47.

Bradbury, Jane. 2004. “Nature’s Nanotechnologists: Unveiling the Secrets of Diatoms.” PLOS Biology
2 (10): e306.

Brown, Wade and Galen Jones. “Riemann Chair”. April 2013.

Cox Eileen J., “Morphology, Cell Wall, Cytology, Ultrastructure and Morphogenetic Studies” in The
Diatom World, ed. Joseph Seckbach et al.(Springer Netherlands, 2011), p38.

Cox, Eileen J. 2010. “Discrete Free-Boundary Reaction- Diffusion Model of Diatom Pore Occlusions.”
Plant Ecology and Evolution 143 (3): 297-306.

Cox, Eileen J., Lisa Willis, and Katie Bentley. 2012. “Integrated Simulation with Experimentation is a
Powerful Tool for Understanding Diatom Valve Morphogenesis.” BioSystems 109 (3): 450-459.

De Stefano, Luca. 2005. “Nanostructures in Diatom Frustules: Functional Morphology of Valvocop-
ulae in Cocconeidacean Monoraphid Taxa.” Journal of Nanoscience and Nanotechnology 5 (1):
15-24.

183

deskriptiv. 2016.“A Unified Approach to Grown Structures.” https://www.behance.net/
 gallery/21605971/Neri-Oxman-Wanderers., accessed Nov 30, 2016, https://
 www.youtube.com/watch?v=9HI8FerKr6Q.

Dieuwer, F. “Realflow 2013 Tutorial: Flooding an Aquarium
.” https://www.youtube.com/
watch?v=r_XE_8WWJxQ., last modified February 8, accessed Jan 23, 2016.

Diller Scofifio + Renfro. “Blur Building - Diller & Scofidio.” http://www.dsrny.com/projects/
blur-building., accessed Jan 28, 2016.

Gates, Bill. 1976. “Open Letter to Hobbyists.” HomeBrew Computer Club Newsletter Volume 2 Issue
1, January 31, 2.

Gielis, Johan. 2003. “A Generic Geometric Transformation that Unifies a Wide Range of Natural and
Abstract Shapes.(INVITED SPECIAL PAPER)(Author Abstract).” The American Journal of Botany
90 (3): 333.

Giulio Piacentino. “Weaverbird – Topological Mesh Editor.” http://www.giuliopiacentino.com/weaver-
bird/., last modified August 31,2011.

Hardy, G. H. An Introduction to the Theory of Numbers. 6th ed. / [revised by D.R. Heath-Brown and
J.H. Silverman]. ed. (Oxford ; New York: Oxford University Press,2008) p7-8.

Hegglin, Roman. “Bracelet - Voronoi Style.” http://www.thingiverse.com/thing:192211., last mod-
ified Nov 28, accessed jan 6, 2016.Licensed under Creative Commons Attribution 3.0 License
https://creativecommons.org/licenses/by-sa/3.0

MakerBot Industries, LLC. “Makerbot Thingiverse.” http://www.thingiverse.com/., accessed
 Jan 20, 2016.

Hopkins, Jeffrey, Dalai Lama, Tenzin Gyatso, and Richard Gere. 2005. Meaning of Life. Somerville,
MA: Wisdom Publications. http://replace-me/ebraryid=10407976.

Jeon, Sonny. “Grbl Source.” https://github.com/grbl/grbl/wiki., accessed Jan 12, 2017.

Lamé, G. 1818. Examen Des Différentes Méthodes Employées Pour Résoudre Les Problèmes De
Géométrie.

Liu, R. T. and L. 2006. “Two- Stage Turing Model for Generating Pigment Patterns on the Leop-
ard and the Jaguar.” Physical Review.E, Statistical, Nonlinear, and Soft Matter Physics 74 (1):
011914.28-47: John Wiley & Sons, Inc.

Lynn, Greg. “Noah - Divide.” http://glform.com/environments/divide-film/., accessed May 05, 2017.

Lynn, Greg and Mark Rappolt. 2008. Form. 1st ed. New York: Rizzoli.

https://creativecommons.org/licenses/by-sa/3.0

184

Masnick, Mike. “John Deer Owns the Software in Your Tractor.” https://www.techdirt.com/arti-
cles/20150421/23581430744/gm-says-that-while-you-may-own-your-car-it-owns-software-
it-thanks-to-copyright.shtml., last modified April 23, accessed Feb 17, 2016.

Matsumoto, Dave. “Single Walled Test Piece.” http://www.thingiverse.com/thing:1637., last modi-
fied Jan 22, accessed Jan 6, 2016. Licensed under Creative Commons Attribution 3.0 License
https://creativecommons.org/licenses/by-sa/3.0

Maruyama, Shinichi. “Maruyama - Artist’s Statement
.” http://www.shinichimaruyama.com/
statement., accessed Jan 17, 2017.

Moody, Glyn. “Apple Testifies Against “Right to Repair”.” https://www.techdirt.com/arti-
cles/20170215/02473736716/apple-wants-to-stop-you-fixing-your-iphone-ipad-source-says-
it-will-testify-against-right-to-repair-legislation.shtml., accessed Feb 15, 2017.

Miyake, Jun. 2011. Pina - Soundtrack - the here and After Lisa papineau. 380 Grad.

Naqvi, Asif. “Shinichi Maruyama - Early Bio
.” http://livingdesign.info/2010/09/27/shinichi-
maruyama-writing-in-the-sky-kusho-water-sculpture/., last modified Sept 27, accessed Jan 21,
2017.

Oxman,Neri . “Neri Oxman.” http://www.materialecology.com/neri-oxman., accessed Nov 30,
2016.

Oxman, Neri. “Design at the Intersection of Technology and Biology.” https://www.ted.com/talks/
neri_oxman_design_at_the_intersection_of_technology_and_biology., last modified Oct 29,
accessed Nov 14, 2015, https://www.youtube.com/watch?v=CVa_IZVzUoc.

NextLimit. “NextLimit
.” http://www.realflow.com/., accessed Jan 25, 2016.

Painless360. “RC Reviews – Geeetech Rostock G2s Pro 3D Printer (from Banggood.Com) “
https://www.youtube.com/watch?v=aMmevEwiDts., last modified Nov 6, accessed Jan 3, 2016.

Piacentino, Giulio. “Weaverbird Grasshopper Plugin
.” http://www.giuliopiacentino.com/ 	
 weaverbird/., accessed Jan 24, 2016.

Piker, Daniel. “Kangaroo3d - Interactive Physics/Constraint Solver.” http://www.food4rhino.com/
app/kangaroo-physics., last modified 18 March, accessed May 10, 2016.

Pina : Film Documentary. By Wim Wenders. Perf. Pina Bausch/Tanztheater Wuppertal. Inter Na-
tiones, 2011. DVD

Prusinkiewicz, Przemyslaw, 1952-. 1996. The Algorithmic Beauty of Plants. New York: Springer-Ver-
lag.

https://creativecommons.org/licenses/by-sa/3.0

185

RosenKrantz, Jessica and Louis-Rosenberg, Jesse(Nervous System). “Cellular Lamp.” http://www.
thingiverse.com/thing:19104., last modified March 13, accessed Jan 9, 2016.Licensed under
Creative Commons Attribution Noncommercial ShareAlike 3.0 https://creativecommons.org/
licenses/by-nc-sa/3.0

Seckbach, J. (J. 2011. The Diatom World. Dordrecht: Springer.)

Sennett, Richard, 1943-. 2008. The Craftsman. New Haven: Yale University Press.

Skogsrud, Simen. “Simen Svale Skogsrud.” https://bengler.no/simen., accessed April 16, 2017

Spuybroek, Lars. 2011. Sympathy of Things : Ruskin and the Ecology of Design. Rotterdam]: V2 		
 Publishing : NAi Publishing.

Stoermer, Eugene F., 1934- and Smol, J P (John P). 1999. The Diatoms Applications for the Envi-
ronmental and Earth Sciences. Cambridge, UK ; New York, NY, USA: Cambridge University Press.
(pp 8-18)

Stratasys. 2016.“Bjork Performs in Neri Oxman Designed 3D Printed Mask.” http://blog.
 stratasys.com/2016/06/30/3d-printed-mask-bjork/., accessed Nov 14, 2016, http://blog.

Thompson, D’Arcy Wentworth. 1951. On Growth and Form. Cambridge: Univ. Press.

Tsiliakos, Marios and Egan, John. “Nudibranch - Digital [Sub]Stance
.” https://digitalsubstance.
wordpress.com/category/nudibranch/., last modified Feb 19, accessed Jan 20, 2016.

Turing, Alan Mathison, 1912-1954. 1992. Morphogenesis. Amsterdam ; New York : New York, 	
 NY, U.S.A.; Amsterdam ; New York: North-Holland ; Distributors for the U.S. and Canada], Elsevier 		
 Science Pub. Co; North-Holland.

van der Walt, Peter. “GitHub LaserWeb Repository.” https://github.com/LaserWeb/LaserWeb4., last
modified September 25, accessed August 12, 2017.

van der Walt, Peter. “laserWeb 3 Description.” http://www.openbuilds.com/projectresources/laser-
web-laser-controller-software.191/)., last modified Feb 15, accessed Jan 10, 2017.

Wakin, Daniel J. 2009. Pina Bausch, a German Iconoclast Who Reshaped Dance, Dies at 68.(Obitu-
ary)(Photograph). The New York Times, July 1, 2009, Vol.158(54723), p.A31.

ZHANG. 2012. “Bio-Manufacturing Technology Based on Diatom Micro- and Nanostructure.” Chi-
nese Science Bulletin 57 (30): 3836-3849. doi:10.1007/s11434-012-5410-x. http://lib.cqvip.
com/qk/86894X/201230/43339470.html.

Zumthor, Peter. 2006. Thinking Architecture. 2., expanded ed. ed. Basel [u.a.]: Birkhäuser.

188

Appendix

190

Processing Code - Agent-Based Coulomb Field Particle Simulation

Agent-based dynamic simulation of a charge system with parameterization of magnitudes, agent
count and interaction. Program was influenced by the examples in Generative Design by Hartmut
Bohnaker.
Menu Library used - ControlP5(Andraes Sclegel - http://www.sojamo.de/libraries/controlP5/)
Image Export Library - TileSaver(Marius Watz - http://workshop.evolutionzone.com - Used by
Bohnaker in Generative Design)

Particle Sim - Main - Processing Code

/*
Agent-Based Coulomb Particle Simulator - Wade Brown - V2_1
Modules:	Main
		 GUI
		 Particle Class
		 TileSaver
 */
/** Interfaces
 *
 * MOUSE
 * position x/y + right drag : perspective view
 * mouse wheel : slow zoom
 * shift + mouse wheel : fast zoom
 *
 * KEYS
 * c 	 : cancel point output
 * f 		 : toggle freeze simulation
 * m 		 : toggle menu open/close
 * o 	 : output meshes to dxf
 * p		 : output to png
 * r 	 : ribbon
 * s 	: display static charges
 * space 	 : reset sim as set
 * t 	 : trail type toggle
 * z 	 : disable z-accel calc
 * - 	 : remove static charge
 * + 	 : add static charge
 * arrow up	 : zoom in
 * arrow down	 : zoom out
 */
import controlP5.*;//external menu library
import processing.dxf.*;
import java.util.Calendar;
// ------ particles ---
int numParticles = 100;//active number of dynamic agents
int maxNumParticles = 500;//Upper limit of agent counr

http://www.sojamo.de/libraries/controlP5/
http://workshop.evolutionzone.com

191

int numStaticParticles = 2;//start value of static agents
int maxNumStaticParticles = 10;//max number of static agents
int particleTrailLength = 50;//active length of trail
int maxParticleTrailLength = 500;//max length of trail
ArrayList particles;//array of agents
boolean spaceTrue, zDim = true;
// ------ agents ------
int spaceSizeX = 600, spaceSizeY = 400, spaceSizeZ = 200; //based field size
int maxSpaceSizeZ = 500;//upper bound on Z for field bounding box
int staticChargeMultiplier = 10; //scale factor to enhance static charges
float baseCharge = -1.602e-19;//charge of an electron in C
float maxHiveFactor = 1.0, hiveFactor = 0.64;//interaction factor for dynamic charges
boolean cull = false, displayStatic = true;
// ------ ControlP5 ------
ControlP5 controlP5;
boolean showGUI = false;//don't show menu at start
Slider[] sliders;//array of sliders used in Menu system
Range[] ranges;
// ------ mouse interaction ------
int offsetX = 0, offsetY = 0, clickX = 0, clickY = 0, zoom = -450;
float rotationX = 0, rotationY = 0, targetRotationX = 0, targetRotationY = 0, clickRotationX, clickRo-
tationY;
boolean freeze = false, zoomEnhance = false, trails = false, ribbon = true;
int trailWidth = 5;//based trail width for ribbon mode
boolean plus = false, minus = false;//plus/minus default values for adding/removing static charges
float rotator = 0.01;
 //-------- Output stuffs ----------------
boolean exportDXF = false;//mesh output
boolean saveOneFrame = false;//pdf out
int qualityFactor = 3;//pdf out
TileSaver tiler;
boolean bG = true;
void setup(){
 size(1280,800,P3D);//large 3D window interface
 setupGUI(); //enable base config of P Controls
 frameRate(60);
 colorMode(RGB);
 initParticleSystem();//create and fill agent data structures with charges
 tiler=new TileSaver(this);
}
void draw(){
 //numParticles = 200;
 //particleTrailLength = 140;
 particleSim();
}
void particleSim(){
 // for high quality output
 if(tiler==null) return;

192

 tiler.pre();
 if (exportDXF) {
 beginRaw(DXF, "output.dxf");
 }
 if (spaceTrue) {//control to re-initialize system upon reset
 initParticleSystem();//create and fill agent data structures with charges
 spaceTrue = false;//reset reset
 }
 hint(ENABLE_DEPTH_TEST);//recommended to enable efficient 3D operation(may be reduntant)
(untested)
 smooth();//possibly redundant in Processing 3.0
 lights();//needed for 3D display
 pushMatrix(); //push current coord system on stack
 // ------ set view ------
 translate(width/2, height/2, zoom);//offset "0" to middle of screen
 //point(0,0,0);//test point-PLO
 // ------- Input Works -------
 if (mousePressed && mouseButton==RIGHT) { //mouse system operation for 3D viewing
 offsetX = mouseX-clickX;
 offsetY = mouseY-clickY;
 targetRotationX = min(max(clickRotationX + offsetY/float(width) * TWO_PI, -HALF_PI), HALF_
PI);
 targetRotationY = clickRotationY + offsetX/float(height) * TWO_PI;
 }
 rotationX += (targetRotationX-rotationX)*0.25;
 rotationY += (targetRotationY-rotationY)*0.25;
 rotateX(-rotationX);
 rotateY(rotationY+rotator);
 //rotator += 0.01;
 stroke(150,150,255,255);//box colour an opacity
 strokeWeight(1); //thin it out
 noFill();
 if (bG) {
 background(255);}
 else {
 background(0);}
 //clear screen each iteration
 box(spaceSizeX*2,spaceSizeY*2,spaceSizeZ*2);//playfield
 pushMatrix();//save current ref frame on stack
 drawParticles();//draw agents
 popMatrix();//return to box world
 popMatrix();//return to flat workd
 noLights();//prepare for menu draw
 if (exportDXF) {
 endRaw();
 exportDXF = false;
 }
 drawGUI();//menu me

193

 // draw next tile for high quality output
 tiler.post();
}
// ------ interactions ------
//toggles for key sequences
void keyPressed() {
 if (keyCode == UP) zoom += 20;
 if (keyCode == DOWN) zoom -= 20;
 if (keyCode == SHIFT) zoomEnhance = true;
}
void keyReleased() {
 if (key=='f' || key=='F') freeze = !freeze;//f=freeze
 if (key=='+') {//+=add a stat charge
 plus = true;
 addStaticParticle();
 }
 if (key=='-') {//-=get rid of a stat charge
 minus = true;
 removeStaticParticle();
 }
 if (key=='p' || key=='P') tiler.init(timestamp()+".png",qualityFactor);
 if (key=='c' || key=='c') cull = !cull;//point draw toggle
 if (key=='t' || key=='T') trails = !trails;//t=trails
 if (key=='i' || key=='i') bG = !bG;//toggle background
 if (key=='o' || key=='O') exportDXF = true;
 if (key=='r' || key=='R') ribbon = !ribbon;//r=ribbons
 if (key=='s' || key=='S') displayStatic = !displayStatic; //show static charges
 if (key=='z' || key=='Z') zDim = !zDim;
 if (key=='m' || key=='M') {//m=menu
 showGUI = controlP5.getGroup("menu").isOpen();
 showGUI = !showGUI;
 }
 if (key == ' ') spaceTrue = true;//space=re-randomize
 if (keyCode == SHIFT) zoomEnhance = false;//shift = superzoom
 if (showGUI) controlP5.getGroup("menu").open();
 else controlP5.getGroup("menu").close();
}
void mousePressed(){//enable rptate on right mouse click
 clickX = mouseX;
 clickY = mouseY;
 clickRotationX = rotationX;
 clickRotationY = rotationY;
}
String timestamp() {
 return String.format("%1$ty%1$tm%1$td_%1$tH%1$tM%1$tS", Calendar.getInstance());
}
void mouseWheel(MouseEvent event) {//mouse wheel zoom
 float count = event.getCount();

194

// float step = -10.0; //old - PLO
 count *= -1;
 if (zoomEnhance)
 {zoom += 50*count;}//fast zoom
 else
 {zoom += 10*count;}//slow zoom
 }

195

Particle Sim - GUI - Processing Code

void setupGUI() {//menu setup - position/colour/size/variables
 color activeColor = color(0, 130, 164);
 controlP5 = new ControlP5(this);
 //controlP5.setAutoDraw(false);
 controlP5.setColorActive(activeColor);
 controlP5.setColorBackground(color(170));
 controlP5.setColorForeground(color(50));
 controlP5.setColorCaptionLabel(color(50));
 controlP5.setColorValueLabel(color(255));
 ControlGroup ctrl = controlP5.addGroup("menu", 15, 25, 35);
 ctrl.setColorLabel(color(255));
 ctrl.close();
 sliders = new Slider[10];
 ranges = new Range[10];
 int left = 0;
 int top = 5;
 int len = 200;
 int si = 0;
 int ri = 0;
 int posY = 0;
 //"sliders" - variable name used in quotes - create new by copy and offset/change name in quotes
to var name/adjust values to match max/min/defaults
 sliders[si++] = controlP5.addSlider("numParticles", 1,maxNumParticles, numParticles , left,
top+posY+0, len, 15);
 posY += 30;//slider for particle count
 sliders[si++] = controlP5.addSlider("particleTrailLength", 1, maxParticleTrailLength, particleTrail-
Length,left, top+posY+0, len, 15);
 posY += 30;//slider for trail length
 sliders[si++] = controlP5.addSlider("trailWidth", 0, 20, 5, left, top+posY, len, 15);
 posY += 30;//slider for trail width
 sliders[si++] = controlP5.addSlider("staticChargeMultiplier", 0, 100, 25, left, top+posY, len, 15);
 posY += 30;//slider for charge scaling
 sliders[si++] = controlP5.addSlider("spaceSizeZ", 0, maxSpaceSizeZ, 200, left, top+posY, len, 15);
 posY += 30;//slider for arena resizing
 sliders[si++] = controlP5.addSlider("hiveFactor", 0, maxHiveFactor, 0.64, left, top+posY, len, 15);
 posY += 30;//slider for interaction between dynamic charges
 for (int i = 0; i < si; i++) {
 sliders[i].setGroup(ctrl);
 sliders[i].setId(i);
 sliders[i].getCaptionLabel().toUpperCase(true);
 sliders[i].getCaptionLabel().getStyle().padding(4,3,3,3);
 sliders[i].getCaptionLabel().getStyle().marginTop = -4;
 sliders[i].getCaptionLabel().getStyle().marginLeft = 0;
 sliders[i].getCaptionLabel().getStyle().marginRight = -14;
 sliders[i].getCaptionLabel().setColorBackground(0x99ffffff);

196

 }
 for (int i = 0; i < ri; i++) {
 ranges[i].setGroup(ctrl);
 ranges[i].setId(i);
 ranges[i].getCaptionLabel().toUpperCase(true);
 ranges[i].getCaptionLabel().getStyle().padding(4,3,3,3);
 ranges[i].getCaptionLabel().getStyle().marginTop = -4;
 ranges[i].getCaptionLabel().setColorBackground(0x99ffffff);
 }
}
void drawGUI() {
 controlP5.show();
 controlP5.draw();
}
// called on every change of the gui
void controlEvent(ControlEvent theControlEvent) {
 //needed to reset trail drawing during operation to reduce abhorrent behaviour during transition
 //(else trail loops created during resize of path)
 if (theControlEvent.isController()) {
 if (theControlEvent.getController().getName().equals("particleTrailLength")) {
 for (int i = 0; i < numParticles ; i++) {//get all particles
 Particle p = (Particle) particles.get(i);
 p.indexStart = p.trailIndex;//reset length of trail points, else very bad(Venkman bad)
 }
 }
 }
 }

197

Particle Sim - Particle Class - Processing Code

// All that is particle
void drawParticles() {
 //re-initialze particles after they go into E-space(bad)
 for (int i = 0; i < numParticles ; i++) {
 Particle p = (Particle) particles.get(i);//Bounds check
 if ((p.pos.x <= -spaceSizeX) || (p.pos.x >= spaceSizeX) ||
 (p.pos.y <= -spaceSizeY) || (p.pos.y >= spaceSizeY) ||
 (p.pos.z <= -spaceSizeZ) || (p.pos.z >= spaceSizeZ)){//Particle out of bounds
 p.pos.x = random(-spaceSizeX,spaceSizeX); p.vel.x = 0.0; p.acc.x = 0.0;//fill them with naughts
 p.pos.y = random(-spaceSizeY,spaceSizeY); p.vel.y = 0.0; p.acc.y = 0.0;
 if (zDim) {p.pos.z = random(-spaceSizeZ,spaceSizeZ); p.vel.z = 0.0; p.acc.z = 0.0;}
 p.indexStart = p.trailIndex;//reset length of trail points
 }
 if (!freeze) p.updateParticle();//if "f" state chosen
 p.displayParticle();
 }
 }
 void initParticleSystem() {
 // lets start this baby...
 // Populate arraylist initially with particles(agents)
 // top-filled with static charges
 // bottom-filled with dynamic
 particles = new ArrayList();
 PVector p;
 for (int i = 0; i < numStaticParticles; i++) {//setup a static particles
 p = new PVector(random(-spaceSizeX,spaceSizeX),random(-spaceSizeY,spaceSizeY),ran-
dom(-spaceSizeZ,spaceSizeZ));//put them in the park
 boolean pState = true;//it is static
 float charge;
 if (randomBoolean()) {
 charge = staticChargeMultiplier * -baseCharge;} //negative - scaled
 else {
 charge = staticChargeMultiplier * baseCharge;//positive - scaled
 }
 particles.add(new Particle(p , pState, charge));//add it to top of list
 }
 for (int i = 0; i < maxNumParticles; i++) {//setup a whack of mobile particles
 p = new PVector(random(-spaceSizeX,spaceSizeX),random(-spaceSizeY,spaceSizeY),ran-
dom(-spaceSizeZ,spaceSizeZ));//in the park
 boolean pState = false;//dynamic
 float charge;
 if (randomBoolean()) {
 charge = -baseCharge;} //negative
 else {
 charge = baseCharge; //positive

198

 }
 particles.add(new Particle(p , pState, charge)); //add to list after the statics
 }
 }
 void addStaticParticle(){//adds static when "+" pressed...could make initparticlesystem redundant
 plus = false;//reset flag
 PVector p = new PVector(random(-spaceSizeX,spaceSizeX),random(-spaceSizeY,space-
SizeY),random(-spaceSizeZ,spaceSizeZ));
 boolean pState = true;
 float charge;
 if (randomBoolean()) {
 charge = staticChargeMultiplier * -baseCharge;}
 else {charge = staticChargeMultiplier * baseCharge;}
 particles.add(0, new Particle(p , pState, charge));
 numStaticParticles++;//update static particle count
 }
 void removeStaticParticle(){//opposite of adding them
 minus = false;//reset flag
 particles.remove(0);//arraylist call to remove at position "0"
 numStaticParticles--;//update static particle count
 }
public boolean randomBoolean(){// random boolean function
 return (Math.random() < 0.5);
}
void list() {//dumps particle list (for debug)
 for (int i = 0; i < numParticles; i++) {
 Particle current = (Particle) particles.get(i);
 println("Particle: ", i);
 println("Position: ", current.pos.x, current.pos.y, current.pos.z);
 println("Velocity: ", current.vel.x, current.vel.y, current.vel.z);
 println("Acceleration: ", current.acc.x, current.acc.y, current.acc.z);
 println("Charge: ", current.charge);
 println("State: ", current.s, "\n");
 }
}
// Particle class defining active agents with Field System
class Particle {
 //baggage
 PVector pos; //Position in m
 PVector vel; //Velocity in m/s
 PVector acc; //Acceleration in m/s^2
 float charge; //Charge in Coulombs
 boolean s; //Stationary
 float k = 9.09E9; //permitivity constant
 float m = 9.109E-31; //mass of an electron
 PVector[] trail = new PVector[particleTrailLength];//trail data struct
 int trailIndex, indexStart;//keep track of index,start for trail management
 Particle(PVector _location, boolean _state, float _charge) {

199

 //Constructor
 acc = new PVector(0,0,0);//acceleration
 vel = new PVector(0,0,0);//speed
 pos = new PVector(0,0,0);//location
 pos = _location;//pass the info
 s = _state;//pass the info
 charge = _charge;// ditto
 trail = new PVector[maxParticleTrailLength];//define and init trail array
 for (int i = 0; i < trail.length;i++) {
 trail[i] = new PVector(0,0,0);//create and populate trail data structure
 }
 }
 void updateParticle() {//short and sweet - where the real work is done
 calcForces();//update force values
 this.vel.add(acc);//add vectors
 this.pos.add(vel);//add vectors
 }
 void calcForces() {
 // the meat - Field system 1
 // calculate forces amd accumulate
 PVector accTotal = new PVector(0,0,0);
 for (int i = 0; i < particles.size(); i++) {
 Particle other = (Particle) particles.get(i);
 if (this.s == true) {} // I'm static, no field effect.
 else {//ensure vector direction for accel
 float dir;
 float distX = this.pos.x - other.pos.x;
 float distY = this.pos.y - other.pos.y;
 float distZ = this.pos.z - other.pos.z;
 float r1 = sqrt(sq(distX) + sq(distY));
 float theta = atan(distY / distX);
 float phi = atan(distZ / r1);
 float r = sqrt(sq(distX) + sq(distY) + sq(distZ));
 float acc = k * this.charge * other.charge / (m * sq(r)); //Coulomb
 if (this.acc.mag() > 1) { this.acc.mult(1/this.acc.mag());} //overall acc limiter
 if (!other.s) {acc = acc * hiveFactor;} //limiter for moving charges
 if (abs(distX) != distX) { //fix for Cos(-)=Cos(+)
 dir = -1;}
 else {
 dir = 1;}
 if (abs(distX) >= 10) {accTotal.x += dir * acc * cos(theta);}//danger below 10(Venkman)
 if (abs(distY) >= 10) {accTotal.y += dir * acc * sin(theta);}//values grow too quickly to man-
age
 if (abs(distZ) >= 10 && zDim) {accTotal.z += acc * sin(phi);}//change interaction distance to
mitigate inifinties
 }
 this.acc = accTotal;//add it up!
 }

200

 }
 void displayParticle() {
 //put it
 //displays points/trails/ribbons
 if ((this.s == true) && (displayStatic == true)) {//Static Charges
 this.charge = staticChargeMultiplier*baseCharge;
 pushMatrix();//push ref frame
 noStroke();//ghost it
 translate(this.pos.x,this.pos.y,this.pos.z);//translate point
 sphereDetail(10,10);//define sphere geom for static charge
 fill(150,150,0,192);//light yellow
 sphere(20);//put spheres
 popMatrix();//pop frame
 }
 else {
 if (!freeze) { //if freeze state, don't update trail
 trail[trailIndex%particleTrailLength].set(pos);//Store trail point
 this.trailIndex++;//increment index for points
 if ((trailIndex - indexStart) > particleTrailLength) indexStart = trailIndex - particleTrailLength; //
adjust indexes if poss out of bounds
 }
 stroke(map(this.acc.mag(),0,0.2,0,100),map(this.acc.mag(),0,0.2,0,100),0);//Point colour
yellow based on accel
 strokeWeight(5);//fatten it up
 if (cull) { point(this.pos.x , this.pos.y ,this.pos.z);} // Output point
 if(trails) {//if "t" pressed
 strokeWeight(2);//thin trails
 for (int j = trailIndex ; j >= indexStart ; j--){
 if (trailIndex >= indexStart) {
 stroke((map(j,indexStart,trailIndex,0,255)),0,0, 127);//disappearing trails
 point(trail[j%(particleTrailLength)].x ,trail[j%(particleTrailLength)].y, trail[j%(particleTrail-
Length)].z);//output trail points
 }
 }
 }
 if (ribbon) {//ribbon me
 displayParticleRibbon();}
 noStroke();
 }
 }
 void displayParticleRibbon() {
 //algorithm from Generative Design
 fill(192,0,0,192);//red transparent
 noStroke();
 beginShape(QUAD_STRIP);//ribbon
 for (int j = trailIndex-1 ; j > indexStart ; j--) {//pick a point in trail
 PVector v1 = PVector.sub(trail[j%particleTrailLength],trail[(j+1)%particleTrailLength]);//create a
vector in plane

201

 PVector v2 = PVector.add(trail[(j+1)%particleTrailLength],trail[j%particleTrailLength]);//create a
second in plane
 PVector v3 = v1.cross(v2); //create a vector perp to plane
 v2.set(v3);//store it
 //v2 = v1.cross(v3);
 //v1.normalize();
 v2.normalize();//resize it to unity
 //v3.normalize();
 //v1.mult(theWidth);
 v2.mult(trailWidth);//widen trail
 //v3.mult(theWidth);
 vertex(trail[j%particleTrailLength].x+v2.x,trail[j%particleTrailLength].y+v2.y,trail[j%particleTrail-
Length].z+v2.z);//make ribbon 1-2
 vertex(trail[j%particleTrailLength].x-v2.x,trail[j%particleTrailLength].y-v2.y,trail[j%particleTrail-
Length].z-v2.z);//make ribbon 2-3
 }
 endShape();//make it!
 }
}

202

Particle Sim - TileSaver - Processing Code

// M_3_4_01_TOOL.pde
// GUI.pde, Mesh.pde, TileSaver.pde
//
// Generative Gestaltung, ISBN: 978-3-87439-759-9
// First Edition, Hermann Schmidt, Mainz, 2009
// Hartmut Bohnacker, Benedikt Gross, Julia Laub, Claudius Lazzeroni
// Copyright 2009 Hartmut Bohnacker, Benedikt Gross, Julia Laub, Claudius Lazzeroni
//
// http://www.generative-gestaltung.de
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// TileSaver.pde - v0.12 2007.0326
// Marius Watz - http://workshop.evolutionzone.com
//
// Class for rendering high-resolution images by splitting them into
// tiles using the viewport.
//
// Builds heavily on solution by "surelyyoujest":
// http://processing.org/discourse/yabb_beta/YaBB.cgi?
// board=OpenGL;action=display;num=1159148942
class TileSaver {
 public boolean isTiling=false,done=true;
 public boolean doSavePreview=false;
 PApplet p;
 float FOV=60; // initial field of view
 float cameraZ, width, height;
 int tileNum=10,tileNumSq; // number of tiles
 int tileImgCnt, tileX, tileY, tilePad;
 boolean firstFrame=false, secondFrame=false;
 String tileFilename,tileFileextension=".png";
 PImage tileImg;
 float perc,percMilestone;
 // The constructor takes a PApplet reference to your sketch.
 public TileSaver(PApplet _p) {
 p=_p;
 }
 // If init() is called without specifying number of tiles, getMaxTiles()
 // will be called to estimate number of tiles according to free memory.
 public void init(String _filename) {

203

 init(_filename,getMaxTiles(p.width));
 }
 // Initialize using a filename to output to and number of tiles to use.
 public void init(String _filename,int _num) {
 tileFilename=_filename;
 tileNum=_num;
 tileNumSq=(tileNum*tileNum);
 // Reset tile counters to start over correctly
 tileX = 0;
 tileY = 0;
 width=p.width;
 height=p.height;
 cameraZ=(height/2.0f)/p.tan(p.PI*FOV/360.0f);
 p.println("TileSaver: "+tileNum+" tilesnResolution: "+
 (p.width*tileNum)+"x"+(p.height*tileNum));
 // remove extension from filename
 if(!new java.io.File(tileFilename).isAbsolute())
 tileFilename=p.sketchPath(tileFilename);
 tileFilename=noExt(tileFilename);
 p.createPath(tileFilename);
 // save preview
 if(doSavePreview) p.g.save(tileFilename+"_preview.png");
 // set up off-screen buffer for saving tiled images
 tileImg=new PImage(p.width*tileNum, p.height*tileNum);
 // start tiling
 done=false;
 isTiling=false;
 perc=0;
 percMilestone=0;
 tileInc();
 }
 // set filetype, default is TGA. pass a valid image extension as parameter.
 public void setSaveType(String extension) {
 tileFileextension=extension;
 if(tileFileextension.indexOf(".")==-1) tileFileextension="."+tileFileextension;
 }
 // pre() handles initialization of each frame.
 // It should be called in draw() before any drawing occurs.
 public void pre() {
 if(!isTiling) return;
 if(firstFrame) firstFrame=false;
 else if(secondFrame) {
 secondFrame=false;
 // since processing version 1.0.8 (revision 0170) the following line has to be removed,
 // because updating of the projection works now imediately.
 // tileInc();
 }
 setupCamera();

204

 }
 // post() handles tile update and image saving.
 // It should be called at the very end of draw(), after any drawing.
 public void post() {
 // If first or second frame, don't update or save.
 if(firstFrame||secondFrame|| (!isTiling)) return;
 // Find image ID from reverse row order
 int imgid=tileImgCnt%tileNum+(tileNum-tileImgCnt/tileNum-1)*tileNum;
 int idx=(imgid+0)%tileNum;
 int idy=(imgid/tileNum);
 // Get current image from sketch and draw it into buffer
 p.loadPixels();
 tileImg.set(idx*p.width, idy*p.height, p.g);
 // Increment tile index
 tileImgCnt++;
 perc=100*((float)tileImgCnt/(float)tileNumSq);
 if(perc-percMilestone>5 || perc>99) {
 p.println(p.nf(perc,3,2)+"% completed. "+tileImgCnt+"/"+tileNumSq+" images saved.");
 percMilestone=perc;
 }
 if(tileImgCnt==tileNumSq) tileFinish();
 else tileInc();
 }
 public boolean checkStatus() {
 return isTiling;
 }
 // tileFinish() handles saving of the tiled image
 public void tileFinish() {
 isTiling=false;
 restoreCamera();
 // save large image to TGA
 tileFilename+="_"+(p.width*tileNum)+"x"+
 (p.height*tileNum)+tileFileextension;
 p.println("Save: "+
 tileFilename.substring(
 tileFilename.lastIndexOf(java.io.File.separator)+1));
 tileImg.save(tileFilename);
 p.println("Done tiling.n");
 // clear buffer for garbage collection
 tileImg=null;
 done=true;
 }
 // Increment tile coordinates
 public void tileInc() {
 if(!isTiling) {
 isTiling=true;
 firstFrame=true;
 secondFrame=true;

205

 tileImgCnt=0;
 }
 else {
 if(tileX==tileNum-1) {
 tileX=0;
 tileY=(tileY+1)%tileNum;
 }
 else
 tileX++;
 }
 }
 // set up camera correctly for the current tile
 public void setupCamera() {
 p.camera(width/2.0f, height/2.0f, cameraZ,
 width/2.0f, height/2.0f, 0, 0, 1, 0);
 if(isTiling) {
 float mod=1f/10f;
 p.frustum(width*((float)tileX/(float)tileNum-.5f)*mod,
 width*((tileX+1)/(float)tileNum-.5f)*mod,
 height*((float)tileY/(float)tileNum-.5f)*mod,
 height*((tileY+1)/(float)tileNum-.5f)*mod,
 cameraZ*mod, 10000);
 }
 }
 // restore camera once tiling is done
 public void restoreCamera() {
 float mod=1f/10f;
 p.camera(width/2.0f, height/2.0f, cameraZ,
 width/2.0f, height/2.0f, 0, 0, 1, 0);
 p.frustum(-(width/2)*mod, (width/2)*mod,
 -(height/2)*mod, (height/2)*mod,
 cameraZ*mod, 10000);
 }
 // checks free memory and gives a suggestion for maximum tile
 // resolution. It should work well in most cases, I've been able
 // to generate 20k x 20k pixel images with 1.5 GB RAM allocated.
 public int getMaxTiles(int width) {
 // get an instance of java.lang.Runtime, force garbage collection
 java.lang.Runtime runtime=java.lang.Runtime.getRuntime();
 runtime.gc();
 // calculate free memory for ARGB (4 byte) data, giving some slack
 // to out of memory crashes.
 int num=(int)(Math.sqrt(
 (float)(runtime.freeMemory()/4)*0.925f))/width;
 p.println(((float)runtime.freeMemory()/(1024*1024))+"/"+
 ((float)runtime.totalMemory()/(1024*1024)));
 // warn if low memory
 if(num==1) {

206

 p.println("Memory is low. Consider increasing memory settings.");
 num=2;
 }
 return num;
 }
 // strip extension from filename
 String noExt(String name) {
 int last=name.lastIndexOf(".");
 if(last>0)
 return name.substring(0, last);
 return name;
 }
}

208

Flocking Proof of Concept - Processing Code

// Flocking proof of concept using Punkiert and based upon Daniel Shiffman's Flocking and Boid
examples
//
/** Interfaces
 *
 * MOUSE
 * position x/y + right drag : perspective view
 * mouse wheel : slow zoom
 * shift + mouse wheel : fast zoom
 *
 * KEYS
 * f : toogle freeze simulation
 * arrow up : zoom in
 * arrow down : zoom out
 */
int spaceSizeX = 1600, spaceSizeY = 800, spaceSizeZ = 200 ; //based field size
//int maxSpaceSizeZ = 500;//upper bound on Z for field bounding box
// ------ mouse interaction ------
int offsetX = 0, offsetY = 0, clickX = 0, clickY = 0, zoom = -450;
float rotationX = 0, rotationY = 0, targetRotationX = 0, targetRotationY = 0, clickRotationX, clickRo-
tationY;
boolean freeze = false, zoomEnhance = false, trails = true, ribbon = false;
int trailWidth = 5;//based trail width for ribbon mode
boolean plus = false, minus = false;//plus/minus default values for adding/removing static charges
import punktiert.math.Vec;
import punktiert.physics.*;
VPhysics physics;
public void setup() {
 size(1600,1200,P3D);//large 3D window interface
 float fov = PI/3;
 float cameraZ = (height/2.0)/tan(fov/2.0);
 perspective(fov,float(width)/float(height),cameraZ/100,cameraZ*100.0);
 //sphereDetail(5,10);
 //size(800, 600);
 //noStroke();
 fill(0, 255);
 //physics = new VPhysics(width, height);
 Vec boxMin = new Vec(float(-width+10),float(-height+10),float(-spaceSizeZ+10));
 Vec boxMax = new Vec(float(width-10),float(height-10),float(spaceSizeZ-10));
 physics = new VPhysics(boxMin,boxMax,true);//define range
 int amount = 2000;//number of particles
 for (int i = 0; i < amount; i++) {
 Vec pos = new Vec(random(-width,width), random(-height,height), random(-spaceSizeZ,space-
SizeZ));
 float rad = random(5,10);
 // Code to allow the system to have flocking characteristics

209

 VBoid p = new VBoid(pos);
 p.swarm.setSeperationScale(rad*.5);//separation region
 p.setRadius(rad);//separation distance(spherical coords)
 p.addBehavior(new BCollision());//they can collide elastically
 p.trail.setInPast(1000);//set trail length
 // Code to "kick" particles into managing a light vortex...shake things up
 //Vec vel = new Vec(0.0,1.0,0.0);
 //p.addVelocity(vel);
 //p.addBehavior(new BVortex(p, 1000, 10000));
 //p.addBehavior(new BVortex(p, 1, 2));//add vortex behaviour to each
 physics.addParticle(p);
 }
 //Create Vortex
 //Vec pos = new Vec(0,0,0);
 //Vec vel = new Vec(0,-10,0);
 //VParticle p = new VParticle(pos);
 //p.addBehavior(new BAttraction(pos,vel,1000,-1000));
 //physics.addParticle(p);
}
void draw(){
 pushMatrix(); //push current coord system on stack
 // ------ set view ------
 translate(width/2,height/2, zoom);//offset "0" to middle of screen
 //point(0,0,0);//test point-PLO
 // ------- Input Works -------
 if (mousePressed && mouseButton==RIGHT) { //mouse system operation for 3D viewing
 offsetX = mouseX-clickX;
 offsetY = mouseY-clickY;
 targetRotationX = min(max(clickRotationX + offsetY/float(width) * TWO_PI, -HALF_PI), HALF_PI);
 targetRotationY = clickRotationY + offsetX/float(height) * TWO_PI;
 }
 rotationX += (targetRotationX-rotationX)*0.25;
 rotationY += (targetRotationY-rotationY)*0.25;
 rotateX(-rotationX);
 rotateY(rotationY);
 //stroke(150,150,255,50);//box colour and opacity
 stroke(128,128,255,25);
 strokeWeight(1); //thin it out
 noFill();
 background(0);//clear screen each iteration
 //box(2*width,2*height,2*spaceSizeZ);//playfield
 pushMatrix();//save current ref frame on stack - go to particle RefWorld
 //drawParticles
 //background(0);
 if (!freeze) physics.update();
 //for (VParticle p : physics.particles) {
 for (int i = 0; i< physics.particles.size(); i++) {
 VBoid boid = (VBoid) physics.particles.get(i);

210

 //ellipse(p.x, p.y, p.getRadius()*2, p.getRadius()*2);
 //noStroke();
 strokeWeight(1);
 stroke(63);
 fill(0,0,0,63);
 //lights();
 pushMatrix();//Welcome to PointSpace
 translate(boid.x,boid.y,boid.z);
 //sphere(boid.getRadius()*2);
 box(boid.getRadius()*2);
 popMatrix();
 stroke(200,0,0,75);
 noFill();
 beginShape();
 for (int j=0; j < boid.trail.particles.size(); j+= 10) {
 VParticle t = boid.trail.particles.get(j);
 //stroke(200,0,0,75);
 //strokeWeight(j/10);
 //point(t.x,t.y,t.z);
 //strokeWeight(1);
 vertex(t.x,t.y,t.z);
 }
 endShape();
 //popMatrix();//Leaving PointSpace
 }
 popMatrix();//return to box world
 popMatrix();//return to flat workd
 noLights();//prepare for menu draw
 //drawGUI();//menu me
}
 // ------ interactions ------
 //toggles for key sequences
 void keyPressed() {
 if (keyCode == UP) zoom += 20;
 if (keyCode == DOWN) zoom -= 20;
 if (keyCode == SHIFT) zoomEnhance = true;
 }
 void keyReleased() {
 if (key=='f' || key=='F') freeze = !freeze;//f=freeze
 //if (key=='+') {//+=add a stat charge
 // plus = true;
 // addStaticParticle();
 //}
 //if (key=='-') {//-=get rid of a stat charge
 // minus = true;
 // removeStaticParticle();
 //}
 //if (key=='t' || key=='T') trails = !trails;//t=trails

211

 //if (key=='r' || key=='R') ribbon = !ribbon;//r=ribbons
 //if (key=='m' || key=='M') {//m=menu
 // showGUI = controlP5.getGroup("menu").isOpen();
 // showGUI = !showGUI;
 //}
 //if (key == ' ') spaceTrue = true;//space=re-randomize
 if (keyCode == SHIFT) zoomEnhance = false;//shift = superzoom
 //if (showGUI) controlP5.getGroup("menu").open();
 //else controlP5.getGroup("menu").close();
 }
 void mousePressed(){//enable rptate on right mouse click
 clickX = mouseX;
 clickY = mouseY;
 clickRotationX = rotationX;
 clickRotationY = rotationY;
 }
 void mouseWheel(MouseEvent event) {//mouse wheel zoom
 float count = event.getCount();
 // float step = -10.0; //old - PLO
 count *= -1;
 if (zoomEnhance)
 {zoom += 50*count;}//fast zoom
 else
 {zoom += 10*count;}//slow zoom
 }

214

Processing Code - Agent-Based Tensor Field Simulation

Generative agent-based form development simulation using an harmonic tensor field. AffectNodes
can be added/removed from the simulation through a rudimentary interface; their affect can create
an effect on the existing circular/manifold tensor field. Agents can be added/removed dynamically.
The tensor field can be displayed or hidden during simulation. Agents that leave the playfield are
de-rezed and re-allocated, and placed randomly on the field manifold surface. Trails modes are: none,
spline,ribbon. Agents can be displayed or hidden.

Modules: 	 Main
		 SVector Class
		 Gui
		 FlowField Class
		 FieldInteraction Class
		 ParticleAgent Class
		 AffectNode Class
	
Flowfield - Module Main

// Flowfield 	 - Tensor Field Agent Simulation
//		 - Module Main
//		 - Written By Wade Brown

import controlP5.*;//external menu library

// ------ particles ------
int numParticles = 100;//active number of dynamic agents
int maxNumParticles = 500;//Upper limit of agent counr
int numStaticParticles = 1;//start value of static agents
int maxNumStaticParticles = 10;//max number of static agents
int particleTrailLength = 50;//active length of trail
int maxParticleTrailLength = 200;//max length of trail
ArrayList particles;//array of agents
boolean spaceTrue;
// ------ agents ------
int maxNumAgents = 20000;
int numAgents = 500;
int maxPathLength = 1000;
int pathLength = 50;
boolean agentF = true;
boolean simulationF = true;
int trailWidth = 1;//based trail width for ribbon mode
// ------ Workfield Settings ------
int spaceSizeX = 600, spaceSizeY = 600, spaceSizeZ = 600; //based field size
// ------ ControlP5 ------
ControlP5 controlP5;
boolean showGUI = false;//don't show menu at start

215

Slider[] sliders;//array of sliders used in Menu system
Range[] ranges;
// ------ mouse interaction ------
int offsetX = 0, offsetY = 0, clickX = 0, clickY = 0, zoom = -450;
float rotationX = 0, rotationY = 0, targetRotationX = 0, targetRotationY = 0, clickRotationX, clickRo-
tationY;
boolean freeze = false, zoomEnhance = false, ribbon = false;
boolean plusF = false, minusF = false;//plus/minus default values for adding/removing static charg-
es
boolean keyPressedF = false;
int translationX = width/2;
int translationY = height/2;
boolean runOnceF = true;
int trails = 0;
// ------ Node interaction ------
boolean nodeDisplayF = false;
boolean upArrowF = false;
boolean downArrowF = false;
boolean leftArrowF = false;
boolean rightArrowF = false;
boolean nodeF = false;
ArrayList nodeList = new ArrayList();
int currentNode;
boolean enterF = false;
boolean shiftF = false;
boolean deleteF = false;
boolean randomF = false;
int pathM = 0;
boolean dispFieldF = false;
boolean addKickFa = false;
boolean addKickFb = false;
boolean affectF = false;
boolean displayNodeAffectF = false;
// ------ Flow Field ------
int resolution = 60 ;
float alphaStep = TWO_PI/resolution, betaStep = TWO_PI/resolution;
FlowField main = new FlowField(resolution);
FlowField support = new FlowField(resolution);
//setup list of autonomous agents
ArrayList agentList = new ArrayList();
void settings() {
 //fullScreen(P3D);
 size(1280,1280,P3D);
}
void setup(){
 //size(1280,1280,P3D);
 //Re-creates the default perspective
 float fov = PI/3.0;

216

 float cameraZ = (height/2.0) / tan(fov/2.0);
 perspective(fov, float(width)/float(height),cameraZ/10.0, cameraZ*10.0);
 // Base Screen setup
 background(0);
 frameRate(60);
 colorMode(RGB);
 setupGUI(); //enable base config of ControlP5 Controls
 // ------ set view ------
 //translate(width/2, height/2, zoom);//offset "0" to middle of screen
 //point(0,0,0);//test point-PLO
 // Setup Field Environment
 support.initFieldSupport();
 main.initFieldManifold(support); //populate the surface field tensor values
 //Drop in a whack of agents into the system
 println("| Initialize Agents");
 for (int i = 0; i < numAgents; i++) {
 float a,b;
 a = random(0,TWO_PI);
 b = random(0,TWO_PI);
 particleAgent agent = new particleAgent(support.innerRadius*2,a,b);
 ////random velocity for new agents
 //float c,d;
 //c = random(0,TWO_PI);
 //d = random(0,TWO_PI);
 //agent.velocity.setSV(c,d,random(-0.01,0.01));//give it a random velocity in spherical coords
 //particleAgent agent = new particleAgent(support.innerRadius*(sin(a)*cos(b)),a,b);//alternate
agent location on manifold type 1
 agentList.add(agent);
 }
 initNodePositionTest(nodeList);//init tensor nodes
}
 void draw() {
 background(0);//clear screen each iteration
 hint(ENABLE_DEPTH_TEST);//recommended to enable efficient 3D operation(may be redunt-
ant)(untested)
 lights();//needed for 3D display
 pushMatrix(); //push current coord system on stack
 // ------- Input Works -------
 if (mousePressed && mouseButton==RIGHT) { //mouse system operation for 3D viewing
 offsetX = mouseX-clickX;
 offsetY = mouseY-clickY;
 targetRotationX = min(max(clickRotationX + offsetY/float(width) * TWO_PI, -HALF_PI), HALF_
PI);
 targetRotationY = clickRotationY + offsetX/float(height) * TWO_PI;
 }
 if ((mousePressed && mouseButton==RIGHT) && (keyPressedF && keyCode==SHIFT)) { //
mouse system operation for 3D viewing
 offsetX = mouseX-clickX;

217

 offsetY = mouseY-clickY;
 translationX -= (offsetX*-(zoom*4/3)*.05/(zoom));
 translationY -= (offsetY*-(zoom*4/3)*.05/(zoom));
 }
 if (runOnceF) {
 translationX = width/2;
 translationY = height/2;
 runOnceF = false;
 }
 if (zoom != 0.0) {//check for infinities
 translate(translationX, translationY, zoom);
 //println(translationX, translationY);
 }
 pushMatrix();
 rotationX += (targetRotationX-rotationX)*0.25;
 rotationY += (targetRotationY-rotationY)*0.25;
 rotateX(-rotationX);
 rotateY(rotationY);
 stroke(150,150,255,25);//box colour and opacity
 strokeWeight(1); //thin it out
 noFill();
 //background(0);//clear screen each iteration
 box(spaceSizeX*2,spaceSizeY*2,spaceSizeZ*2);//playfield
 pushMatrix();//save current ref frame on stack
 //update the agent at its location within the flowField
 strokeWeight(3);
 stroke(255,0,0,100);
 if (simulationF) {//main sim loop
 for (int k = 0; k < numAgents; k++) {
 particleAgent agent = (particleAgent) agentList.get(k);
 agent.update(main.field[int(agent.location.theta/alphaStep)][int(agent.location.phi/beta-
Step)],
 support.field[int(agent.location.theta/alphaStep)][int(agent.location.phi/beta-
Step)]);
 if (agentF) { agent.display(); }
 }
 }//main sim loop
 //Alter Main field using random walk(averaging)
 if (randomF) {randomField();}//keypress "r"
 //Display Tensor Field
 if (dispFieldF) {displayField();}//keypress "f"
 //Display affect nodes
 if (nodeDisplayF) {
 strokeWeight(5);
 stroke(0,0,255,200);
 for (int i = nodeList.size()-1; i >= 0 ; i--) {//walk through arraylist of nodes FIFO
 AffectNode node = new AffectNode();
 node = (AffectNode) nodeList.get(i);

218

 point(node.location.SVtoPV().x,node.location.SVtoPV().y,node.location.SVtoPV().z);
 //println(i);
 //if (i==0) {
 // println("node 2:");
 // println("Polar:", node.location.r, node.location.theta, node.location.phi);
 // println("Cartesian:", node.location.SVtoPV().x,node.location.SVtoPV().y,node.location.
SVtoPV().z);
 //}
 }
 }
 //enter config mode
 if (nodeF) {
 selectNode();//display and allow "+" or "-" moves through existing nodes
 moveNode();//move current node using cursor keys
 changeNodeList();//add/remove nodes
 if (affectF) { //change type/size/strength
 alterNodeConfig();
 affectF = !affectF; }
 }
 //Display agent paths
 if (pathM != 0) { // display path
 stroke(0,255,0,50);
 strokeWeight(1);
 for (int k = 0; k < numAgents; k++) {
 particleAgent agent = (particleAgent) agentList.get(k);
 agent.displayPath(pathM);//path mode select
 }
 }
 popMatrix();
 popMatrix();//return to box world
 popMatrix();//return to flat workd
 noLights();//prepare for menu draw
 drawGUI();//menu me(drawn last to appear on top of everything)
}

220

Flowfield - Module SVectorClass

// Flowfield 	 - Tensor Field Agent Simulation
//		 - Module SVectorClass
//		 - Written By Wade Brown
/**
 * A class to describe a two or three dimensional vector using spherical coordinates.
 *
 * Initially based on the pVector class included with basic Processing libraries
 */

public class SVector {
 /** The r component of the vector. */
 public float r;
 /** The theta component of the vector. */
 public float theta;
 /** The phi component of the vector. */
 public float phi;
 /** Array so that this can be temporarily used in an array context */
 //protected ArrayList[] path;
 /**
 * Constructor for an empty vector: r, theta, and phi are set to 0.
 */
 public SVector() {
 }
 ///**
 //* Constructor for a 3D vector in polar coordinates
 //*
 //*/
 //Public SVector(SVector v) {
 // this.r = v.r;
 // this.theta = v.theta;
 // this.phi = v.phi;
 // }
 /**
 * Constructor for a 3D Spherical vector.
 *
 * @param r the r coordinate.
 * @param theta the theta coordinate.
 * @param phi the phi coordinate.
 */
 public SVector(float r, float theta, float phi) {
 this.r = r;
 this.theta = theta;
 this.phi = phi;
 }
 /**

221

 * Constructor for a 2D vector in polar coordinates: phi coordinate is set to 0.
 *
 * @param r the r coordinate.
 * @param theta the theta coordinate.
 */
 public SVector(float r, float theta) {
 this.r = r;
 this.theta = theta;
 this.phi = 0.0;
 }
 /**
 * Set r, theta, and phi coordinates.
 *
 * @param r the r coordinate.
 * @param theta the theta coordinate.
 * @param phi the phi coordinate.
 */
 public void setSV(float r, float theta, float phi) {
 this.r = r;
 this.theta = theta;
 this.phi = phi;
 }
 /**
 * Set r, theta, and phi coordinates from a Spherical Vector3D object.
 *
 * @param v the SVector object to be copied
 */
 public void setSV(SVector v) {
 this.r = v.r;
 this.theta = v.theta;
 this.phi = v.phi;
 }
 /**
 * Set the r, theta (and maybe phi) coordinates using a float[] array as the source.
 * @param source array to copy from
 */
 public void setSV(float[] source) {
 if (source.length >= 2) {
 r = source[0];
 theta = source[1];
 }
 if (source.length >= 3) {
 phi = source[2];
 }
 }
 /**
 * Get a copy of this vector.
 */

222

 public SVector getSV() {
 return new SVector(r, theta, phi);
 }
 public float[] getSV(float[] target) {
 if (target == null) {
 return new float[] { r, theta, phi };
 }
 if (target.length >= 2) {
 target[0] = r;
 target[1] = theta;
 }
 if (target.length >= 3) {
 target[2] = phi;
 }
 return target;
 }
 /**
 * Calculate the magnitude (length) of the vector
 * @return the magnitude of the vector
 */
 public float magSV() {
 return (float) r;
 }
 /**
 * Add a vector to this vector
 * @param v the vector to be added
 */
 public void addSV(SVector v) {
 if (v != null) {
 float x,y,z,x1,y1,z1;
 x = r * cos(theta) * sin(phi);
 y = r * sin(theta) * sin(phi);
 z = r * cos(phi);
 x1 = v.r * cos(v.theta) * sin(v.phi);
 y1 = v.r * sin(v.theta) * sin(v.phi);
 z1 = v.r * cos(v.phi);
 r = sqrt(sq(x+x1) + sq(y+y1) + sq(z+z1));
 theta = atan2((y + y1), (x + x1));
 phi = acos((z + z1) / r);
 }
 }
 public void addSV(float r, float theta, float phi) {
 float x,y,z,x1,y1,z1;
 x = this.r * cos(this.theta) * sin(this.phi);
 y = this.r * sin(this.theta) * sin(this.phi);
 z = this.r * cos(this.phi);
 x1 = r * cos(theta) * sin(phi);
 y1 = r * sin(theta) * sin(phi);

223

 z1 = r * cos(phi);
 this.r = sqrt(sq(x+x1) + sq(y+y1) + sq(z+z1));
 this.theta = atan2((y + y1), (x + x1));
 this.phi = acos((z + z1) / this.r);
 }
 /**
 * Add two vectors
 * @param v1 a vector
 * @param v2 another vector
 * @return a new vector that is the sum of v1 and v2
 */
 public SVector addSV(SVector v1, SVector v2) {
 //println("Calling AddSV", 200,200);
 float x1,y1,z1,x2,y2,z2;
 x1 = v1.r * cos(v1.theta) * sin(v1.phi);
 y1 = v1.r * sin(v1.theta) * sin(v1.phi);
 z1 = v1.r * cos(v1.phi);
 x2 = v2.r * cos(v2.theta) * sin(v2.phi);
 y2 = v2.r * sin(v2.theta) * sin(v2.phi);
 z2 = v2.r * cos(v2.phi);
 //println("AddSV v1: ",x1,y1,z1);
 //println("AddSV v2: ",x2,y2,z2);
 SVector target = new SVector(sqrt(sq(x1+x2) + sq(y1+y2) + sq(z1+z2)),
 atan2((y1 + y2),(x1 + x2)),
 acos((z1 + z2) / sqrt(sq(x1+x2) + sq(y1+y2) + sq(z1+z2))));
 return target;
 }
 /**
 * Add two vectors into a target vector
 * @param v1 a vector
 * @param v2 another vector
 * @param target the target vector (if null, a new vector will be created)
 * @return a new vector that is the sum of v1 and v2
 */
 public SVector addSV(SVector v1, SVector v2, SVector target) {
 float x1,y1,z1,x2,y2,z2;
 x1 = v1.r * cos(v1.theta) * sin(v1.phi);
 y1 = v1.r * sin(v1.theta) * sin(v1.phi);
 z1 = v1.r * cos(v1.phi);
 x2 = v2.r * cos(v2.theta) * sin(v2.phi);
 y2 = v2.r * sin(v2.theta) * sin(v2.phi);
 z2 = v2.r * cos(v2.phi);
 if (target == null) {
 target = new SVector(sqrt(sq(x1+x2) + sq(y1+y2) + sq(z1+z2)),
 atan2((y1 + y2), (x1 + x2)),
 acos((z1 + z2) / sqrt(sq(x1+x2) + sq(y1+y2) + sq(z1+z2))));
 } else {
 target.setSV(sqrt(sq(x1+x2) + sq(y1+y2) + sq(z1+z2)),

224

 atan2((y1 + y2), (x1 + x2)),
 acos((z1 + z2) / sqrt(sq(x1+x2) + sq(y1+y2) + sq(z1+z2))));
 }
 return target;
 }
 /**
 * Subtract a vector from this vector
 * @param v the vector to be subtracted
 */
 public void subSV(SVector v) {
 float x,y,z,x1,y1,z1;
 x = this.r * cos(this.theta) * sin(this.phi);
 y = this.r * sin(this.theta) * sin(this.phi);
 z = this.r * cos(this.phi);
 x1 = v.r * cos(v.theta) * sin(v.phi);
 y1 = v.r * sin(v.theta) * sin(v.phi);
 z1 = v.r * cos(v.phi);
 this.r = sqrt(sq(x-x1) + sq(y-y1) + sq(z-z1));
 this.theta = atan2((y - y1), (x - x1));
 this.phi = acos((z - z1) / this.r);
 }
 public void subSV(float r, float theta, float phi) {
 float x,y,z,x1,y1,z1;
 x = this.r * cos(this.theta) * sin(this.phi);
 y = this.r * sin(this.theta) * sin(this.phi);
 z = this.r * cos(this.phi);
 x1 = r * cos(theta) * sin(phi);
 y1 = r * sin(theta) * sin(phi);
 z1 = r * cos(phi);
 this.r = sqrt(sq(x-x1) + sq(y-y1) + sq(z-z1));
 this.theta = atan2((y - y1), (x - x1));
 this.phi = acos((z - z1) / this.r);
 }
 /**
 * Subtract one vector from another
 * @param v1 a vector
 * @param v2 another vector
 * @return a new vector that is v1 - v2
 */
 public SVector subSV(SVector v1, SVector v2) {
 float x1,y1,z1,x2,y2,z2;
 x1 = v1.r * cos(v1.theta) * sin(v1.phi);
 y1 = v1.r * sin(v1.theta) * sin(v1.phi);
 z1 = v1.r * cos(v1.phi);
 x2 = v2.r * cos(v2.theta) * sin(v2.phi);
 y2 = v2.r * sin(v2.theta) * sin(v2.phi);
 z2 = v2.r * cos(v2.phi);
 SVector target = new SVector(sqrt(sq(x1-x2) + sq(y1-y2) + sq(z1-z2)),

225

 atan2((y1 - y2), (x1 - x2)),
 acos((z1 - z2) / sqrt(sq(x1-x2) + sq(y1-y2) + sq(z1-z2))));
 return target;
 }
 public SVector subSV(SVector v1, SVector v2, SVector target) {
 float x1,y1,z1,x2,y2,z2;
 x1 = v1.r * cos(v1.theta) * sin(v1.phi);
 y1 = v1.r * sin(v1.theta) * sin(v1.phi);
 z1 = v1.r * cos(v1.phi);
 x2 = v2.r * cos(v2.theta) * sin(v2.phi);
 y2 = v2.r * sin(v2.theta) * sin(v2.phi);
 z2 = v2.r * cos(v2.phi);
 if (target == null) {
 target = new SVector(sqrt(sq(x1-x2) + sq(y1-y2) + sq(z1-z2)),
 atan2((y1 - y2), (x1 - x2)),
 acos((z1 - z2) / sqrt(sq(x1-x2) + sq(y1-y2) + sq(z1-z2))));
 } else {
 target.setSV(sqrt(sq(x1-x2) + sq(y1-y2) + sq(z1-z2)),
 atan2((y1 - y2), (x1 - x2)),
 acos((z1 - z2) / sqrt(sq(x1-x2) + sq(y1-y2) + sq(z1-z2))));
 }
 return target;
 }
 /**
 * Multiply this vector by a scalar
 * @param n the value to multiply by
 */
 public void multSV(float n) {
 r *= n;
 }
 /**
 * Multiply a vector by a scalar
 * @param v a vector
 * @param n scalar
 * @return a new vector that is v1 * n
 */
 public SVector multSV(SVector v, float n) {
 return multSV(v, n, null);
 }
 /**
 * Multiply a vector by a scalar, and write the result into a target SVector.
 * @param v a vector
 * @param n scalar
 * @param target SVector to store the result
 * @return the target vector, now set to v1 * n
 */
 public SVector multSV(SVector v, float n, SVector target) {
 if (target == null) {

226

 target = new SVector(v.r*n, v.theta, v.phi);
 } else {
 target.setSV(v.r*n, v.theta, v.phi);
 }
 return target;
 }
 /**
 * Multiply each element of one vector by the elements of another vector.
 * @param v the vector to multiply by
 * -- Not sure this is of real use -- wb
 */
 public void multSV(SVector v) {
 r *= v.r;
 theta *= v.theta;
 phi *= v.phi;
 }
 /**
 * Multiply each element of one vector by the individual elements of another
 * vector, and return the result as a new SVector.
 */
 public SVector multSV(SVector v1, SVector v2) {
 return multSV(v1, v2, null);
 }
 /**
 * Multiply each element of one vector by the individual elements of another
 * vector, and write the result into a target vector.
 * @param v1 the first vector
 * @param v2 the second vector
 * @param target SVector to store the result
 */
 public SVector multSV(SVector v1, SVector v2, SVector target) {
 if (target == null) {
 target = new SVector(v1.r*v2.r, v1.theta*v2.theta, v1.phi*v2.phi);
 } else {
 target.setSV(v1.r*v2.r, v1.theta*v2.theta, v1.phi*v2.phi);
 }
 return target;
 }
 /**
 * Divide this vector by a scalar
 * @param n the value to divide by
 */
 public void divSV(float n) {
 r /= n;
 }
 /**
 * Divide a vector by a scalar and return the result in a new vector.
 * @param v a vector

227

 * @param n scalar
 * @return a new vector that is v1 / n
 */
 public SVector divSV(SVector v, float n) {
 return divSV(v, n, null);
 }
 public SVector divSV(SVector v, float n, SVector target) {
 if (target == null) {
 target = new SVector(v.r/n, v.theta, v.phi);
 } else {
 target.setSV(v.r/n, v.theta, v.phi);
 }
 return target;
 }
 /**
 * Divide each element of one vector by the elements of another vector.
 */
 public void divSV(SVector v) {
 r /= v.r;
 theta /= v.theta;
 phi /= v.phi;
 }
 /**
 * Multiply each element of one vector by the individual elements of another
 * vector, and return the result as a new SVector.
 */
 public SVector divSV(SVector v1, SVector v2) {
 return divSV(v1, v2, null);
 }
 /**
 * Divide each element of one vector by the individual elements of another
 * vector, and write the result into a target vector.
 * @param v1 the first vector
 * @param v2 the second vector
 * @param target SVector to store the result
 */
 public SVector divSV(SVector v1, SVector v2, SVector target) {
 if (target == null) {
 target = new SVector(v1.r/v2.r, v1.theta/v2.theta, v1.phi/v2.phi);
 } else {
 target.setSV(v1.r/v2.r, v1.theta/v2.theta, v1.phi/v2.phi);
 }
 return target;
 }
 /**
 * Calculate the Euclidean distance between two points (considering a point as a vector object)
 * @param v another vector
 * @return the Euclidean distance between

228

 */
 public float distSV(SVector v) {
 float x1,y1,z1,x2,y2,z2;
 x1 = r * cos(theta) * sin(phi);
 y1 = r * sin(theta) * sin(phi);
 z1 = r * cos(phi);
 x2 = v.r * cos(v.theta) * sin(v.phi);
 y2 = v.r * sin(v.theta) * sin(v.phi);
 z2 = v.r * cos(v.phi);
 float dx = x1 - x2;
 float dy = y1 - y2;
 float dz = z1 - z2;
 return (float) sqrt(dx*dx + dy*dy + dz*dz);
 }
 /**
 * Calculate the Euclidean distance between two points (considering a point as a vector object)
 * @param v1 a vector
 * @param v2 another vector
 * @return the Euclidean distance between v1 and v2
 */
 public float distSV(SVector v1, SVector v2) {
 float x1,y1,z1,x2,y2,z2;
 x1 = v1.r * cos(v1.theta) * sin(v1.phi);
 y1 = v1.r * sin(v1.theta) * sin(v1.phi);
 z1 = v1.r * cos(v1.phi);
 x2 = v2.r * cos(v2.theta) * sin(v2.phi);
 y2 = v2.r * sin(v2.theta) * sin(v2.phi);
 z2 = v2.r * cos(v2.phi);
 float dx = x1 - x2;
 float dy = y1 - y2;
 float dz = z1 - z2;
 return (float) sqrt(dx*dx + dy*dy + dz*dz);
 }
 /**
 * Calculate the dot product with another vector
 * @return the dot product
 */
 public float dotSV(SVector v) {
 return r*v.r*(sin(theta)*(sin(v.theta)*cos(phi-v.phi)+cos(theta)*cos(v.theta)));
 }
 public float dotSV(float r, float theta, float phi) {
 return this.r*r*(sin(this.theta)*(sin(theta)*cos(this.phi-phi)+cos(this.theta)*cos(theta)));
 }
 public float dotSV(SVector v1, SVector v2) {
 return v1.r*v2.r*(sin(v1.theta)*(sin(v2.theta)*cos(v1.phi-v2.phi)+cos(v1.theta)*cos(v2.theta)));
 }
 /**
 * Return a vector composed of the cross product between this and SVector v.

229

 */
 public void crossSV(SVector v) {
 float x1,y1,z1,x2,y2,z2;
 x1 = r * cos(theta) * sin(phi);
 y1 = r * sin(theta) * sin(phi);
 z1 = r * cos(phi);
 x2 = v.r * cos(v.theta) * sin(v.phi);
 y2 = v.r * sin(v.theta) * sin(v.phi);
 z2 = v.r * cos(v.phi);
 float cross_r = y1 * z2 - y2 * z1;
 float cross_theta = z1 * x2 - z2 * x1;
 float cross_phi = x1 * y2 - x2 * y1;
 this.r = cross_r;
 this.theta = cross_theta;
 this.phi = cross_phi;
 //return crossSV(v, null);
 }
 /**
 * Perform cross product between this and another vector, and store the
 * result in 'target'. If target is null, a new vector is created.
 */
 public SVector crossSV(SVector v, SVector target) {
 float x1,y1,z1,x2,y2,z2;
 x1 = r * cos(theta) * sin(phi);
 y1 = r * sin(theta) * sin(phi);
 z1 = r * cos(phi);
 x2 = v.r * cos(v.theta) * sin(v.phi);
 y2 = v.r * sin(v.theta) * sin(v.phi);
 z2 = v.r * cos(v.phi);
 float cross_r = y1 * z2 - y2 * z1;
 float cross_theta = z1 * x2 - z2 * x1;
 float cross_phi = x1 * y2 - x2 * y1;
 if (target == null) {
 target = new SVector(cross_r, cross_theta, cross_phi);
 } else {
 target.setSV(cross_r, cross_theta, cross_phi);
 }
 return target;
 }
 public SVector crossSV(SVector v1, SVector v2, SVector target) {
 float x1,y1,z1,x2,y2,z2;
 x1 = v1.r * cos(v1.theta) * sin(v1.phi);
 y1 = v1.r * sin(v1.theta) * sin(v1.phi);
 z1 = v1.r * cos(v1.phi);
 x2 = v2.r * cos(v2.theta) * sin(v2.phi);
 y2 = v2.r * sin(v2.theta) * sin(v2.phi);
 z2 = v2.r * cos(v2.phi);
 float cross_r = y1 * z2 - y2 * z1;

230

 float cross_theta = z1 * x2 - z2 * x1;
 float cross_phi = x1 * y2 - x2 * y1;
 if (target == null) {
 target = new SVector(cross_r, cross_theta, cross_phi);
 } else {
 target.setSV(cross_r, cross_theta, cross_phi);
 }
 return target;
 }
 /**
 * Normalize the vector to length 1 (make it a unit vector)
 */
 public void normalizeSV() {
 float m = magSV();
 if (m != 0 && m != 1) {
 divSV(m);
 }
 }
 /**
 * Normalize this vector, storing the result in another vector.
 * @param target Set to null to create a new vector
 * @return a new vector (if target was null), or target
 */
 public SVector normalizeSV(SVector target) {
 if (target == null) {
 target = new SVector();
 }
 float m = magSV();
 if (m > 0) {
 target.setSV(r/m, theta, phi);
 } else {
 target.setSV(r, theta, phi);
 }
 return target;
 }
 /**
 * Limit the magnitude of this vector
 * @param max the maximum length to limit this vector
 */
 public void limitSV(float max) {
 if (magSV() > max) {
 normalizeSV();
 multSV(max);
 }
 }
 /**
 * Calculate the angle of rotation for this vector (only 2D vectors)
 * @return the angle of rotation

231

 */
 public float heading2DSV() {
 return theta;
 }
 /**
 * Calculate the angle between two vectors, using the dot product
 * @param v1 a vector
 * @param v2 another vector
 * @return the angle between the vectors
 */
 public float angleBetweenSV(SVector v1, SVector v2) {
 float x1,y1,z1,x2,y2,z2;
 x1 = v1.r * cos(v1.theta) * sin(v1.phi);
 y1 = v1.r * sin(v1.theta) * sin(v1.phi);
 z1 = v1.r * cos(v1.phi);
 x2 = v2.r * cos(v2.theta) * sin(v2.phi);
 y2 = v2.r * sin(v2.theta) * sin(v2.phi);
 z2 = v2.r * cos(v2.phi);
 double dot = x1 * x2 + y1 * y2 + z1 * z2;
 double v1mag = sqrt(x1 * x1 + y1 * y1 + z1 * z1);
 double v2mag = sqrt(x2 * x2 + y2 * y2 + z2 * z2);
 return (float) acos((float)(dot / (v1mag * v2mag)));
 }
 /**
 * Convert vector in spherical coordinates to cartesian
 * SVector -> PVector
 */
 public PVector SVtoPV() {
 float x,y,z;
 x = this.r * cos(this.theta) * sin(this.phi);
 y = this.r * sin(this.theta) * sin(this.phi);
 z = this.r * cos(this.phi);
 PVector result = new PVector(x,y,z);
 return result;
 }
 /*
 * Plot SVector
 */
 public void plotSV() {
 PVector vOut;
 vOut = this.SVtoPV();
 point(vOut.x, vOut.y, vOut.z);
 }
}//class definition

234

Flowfield - Module Gui

/*
* Flowfield 	 - Tensor Field Agent Simulation
*		 - Module Gui
*		 - Written By Wade Brown
*
*	 Gui scaffold code using the ControlP5 Library. Menu items added/removed to
* suit the needs of this investigation.
*
* Interfaces
*
* MOUSE
* position x/y + right drag : perspective view
* mouse wheel : slow zoom
* shift + mouse wheel : fast zoom
*
* KEYS
*	 m 	 	 : toggle menu open/close
*	 p 	 	 : path display
*	 r 	 : ribbon
*	 arrow up 	 : zoom in
*	 arrow down 	 : zoom out
*	 =		 : Enable affect node
*	 d/D		 : display Affect Nodes
*	 a/A		 : agent display
*	 s/S		 : freeze/run simulation
*	 f/F		 : tensor field display
*	 r/R		 : random walk to alter tensor field
*	 .		 : toggle affect node change mode
*			 arrows	 : move activated affect node(phi/theta)
*			 - 	: remove affect node
*			 + 	: add affect node	
*/

		
void setupGUI() {//menu setup - position/colour/size/variables
 color activeColor = color(0, 130, 164);
 controlP5 = new ControlP5(this);
 //controlP5.setAutoDraw(false);
 controlP5.setColorActive(activeColor);
 controlP5.setColorBackground(color(170));
 controlP5.setColorForeground(color(50));
 controlP5.setColorCaptionLabel(color(50));
 controlP5.setColorValueLabel(color(255));
 ControlGroup ctrl = controlP5.addGroup("menu", 15, 25, 35);
 ctrl.setColorLabel(color(255));
 ctrl.close();

235

 sliders = new Slider[10];
 ranges = new Range[10];
 int left = 0;
 int top = 5;
 int len = 200;
 int si = 0;
 int ri = 0;
 int posY = 0;
 //"sliders" - variable name used in quotes - create new by copy and offset/change name in quotes
to var name/adjust values to match max/min/defaults
 sliders[si++] = controlP5.addSlider("numAgents", 1,maxNumAgents, numAgents , left, top+po-
sY+0, len, 15);
 posY += 30;//slider for particle count
 sliders[si++] = controlP5.addSlider("pathLength", 1, maxPathLength, pathLength,left, top+posY+0,
len, 15);
 posY += 30;//slider for trail length
 sliders[si++] = controlP5.addSlider("trailWidth", 0, 20, 1, left, top+posY, len, 15);
 posY += 30;//slider for trail width
 sliders[si++] = controlP5.addSlider("spaceSizeZ", 0, spaceSizeZ, spaceSizeZ, left, top+posY, len,
15);
 posY += 30;//slider for arena resizing
 for (int i = 0; i < si; i++) {
 sliders[i].setGroup(ctrl);
 sliders[i].setId(i);
 sliders[i].getCaptionLabel().toUpperCase(true);
 sliders[i].getCaptionLabel().getStyle().padding(4,3,3,3);
 sliders[i].getCaptionLabel().getStyle().marginTop = -4;
 sliders[i].getCaptionLabel().getStyle().marginLeft = 0;
 sliders[i].getCaptionLabel().getStyle().marginRight = -14;
 sliders[i].getCaptionLabel().setColorBackground(0x99ffffff);
 }
 for (int i = 0; i < ri; i++) {
 ranges[i].setGroup(ctrl);
 ranges[i].setId(i);
 ranges[i].getCaptionLabel().toUpperCase(true);
 ranges[i].getCaptionLabel().getStyle().padding(4,3,3,3);
 ranges[i].getCaptionLabel().getStyle().marginTop = -4;
 ranges[i].getCaptionLabel().setColorBackground(0x99ffffff);
 }
}
void drawGUI() {
 controlP5.show();
 controlP5.draw();
}
// called on every change of the gui
void controlEvent(ControlEvent theControlEvent) {
 //needed to reset trail drawing during operation to reduce abhorrent behaviour during transition
 //(else trail loops created during resize of path)

236

 if (theControlEvent.isController()) {
 if (theControlEvent.getController().getName().equals("numAgents")) {
 updateAgentCount();
 }
 //if (theControlEvent.getController().getName().equals("particleTrailLength")) {
 //for (int i = 0; i < numParticles ; i++) {//get all particles
 // Particle p = (Particle) particles.get(i);
 // p.indexStart = p.trailIndex;//reset length of trail points, else very bad(Venkman bad)
 // }
 // }
 }
}
/** Interfaces
 *
 * MOUSE
 * position x/y + right drag : perspective view
 * mouse wheel : slow zoom
 * shift + mouse wheel : fast zoom
 *
 * KEYS
 * m : toogle menu open/close
 * f : toggle freeze simulation
 * space : re-randomize with current settings
 * t : trail
 * r : ribbon
 * - : remove static charge
 * + : add static charge
 * arrow up : zoom in
 * arrow down : zoom out
 */
// ------ interactions ------
//toggles for key sequences
void keyPressed() {
 keyPressedF = true;
 if (keyCode == UP) {upArrowF = true;} else { upArrowF = false; }
 if (keyCode == DOWN) {downArrowF = true;} else { downArrowF = false; }
 if (keyCode == RIGHT) {rightArrowF = true;} else { rightArrowF = false; }
 if (keyCode == LEFT) {leftArrowF = true;} else { leftArrowF = false; }
 //if (keyCode == SHIFT) {zoomEnhance = true; shiftF = true;} else {shiftF = false;}
 if (key == SHIFT) {zoomEnhance = true; shiftF = true;} else {shiftF = false;}
 if (keyCode == ENTER) {enterF = true;} else { enterF = false; }
 if (keyCode == DELETE) {deleteF = true;}
}
void keyReleased() {
 keyPressedF = false;
 if (key=='=') affectF = !affectF;
 if (key=='d' || key=='D') displayNodeAffectF = !displayNodeAffectF;
 if (key=='n' || key=='N') nodeDisplayF = !nodeDisplayF;//n=node display

237

 if (key=='p' || key=='P') {pathM += 1; pathM = pathM%4;}//p=path display/mode
 if (key=='a' || key=='A') agentF = !agentF;//agent display
 if (key=='f' || key=='F') dispFieldF = !dispFieldF;//f=field
 if (key=='s' || key=='S') simulationF = !simulationF;//s=simulation
 if (key=='.') nodeF = !nodeF;//.=toggle Affect Node mode
 if (key=='+') {plusF = true;} else {plusF = false;}
 if (key=='-') {minusF = true;} else {minusF = false;}
 if (key=='r' || key=='R') randomF = !randomF;//r=randomF walk to alter tensor
 if (key=='m' || key=='M') {//m=menu
 showGUI = controlP5.getGroup("menu").isOpen();
 showGUI = !showGUI;
 }
 if (key == DELETE) {deleteF = true;}
 if (key == ' ') spaceTrue = true;//space=re-randomize
 if (showGUI) controlP5.getGroup("menu").open();
 else controlP5.getGroup("menu").close();
}
void mousePressed(){//enable rptate on right mouse click
 clickX = mouseX;
 clickY = mouseY;
 clickRotationX = rotationX;
 clickRotationY = rotationY;
}
void mouseWheel(MouseEvent event) {//mouse wheel zoom
 float count = event.getCount();
// float step = -10.0; //old - PLO
 count *= -1;
 if (zoomEnhance)
 {zoom += 50*count;}//fast zoom
 else
 {zoom += 25*count;}//slow zoom
}

238

Flowfield - Module FlowField Class

// Flowfield 	 - Tensor Field Agent Simulation
//		 - Module Flowfield Class
//		 - Written By Wade Brown

// Class defines tensor fields and manifold shape for initialization

public class FlowField {// A flow field is a two-dimensional array of PVectors.
 SVector[][] field;
 int resolution;
 float alphaStep,betaStep;
 float innerRadius,outerRadius;
 public FlowField(int _r) {//Constructor
 resolution = _r;//Choose a precision
 alphaStep = TWO_PI/_r;//Divide XY space up into equal regions
 betaStep = TWO_PI/_r;//Divide YZ space up into equal regions
 field = new SVector[int(_r)+1][int(_r)+1];//Define the space metric
 innerRadius = 200;//Vector harmonic function offset variable
 outerRadius = 1;//Flow function magnitude
 }
 void initField() {//Create and initialize flow data structure
 println("| Init Field");
 int x = 0;
 for (float i = 0; i < TWO_PI ; i+= alphaStep) {
 int y = 0;
 for (float j = 0; j < TWO_PI ; j+= betaStep) {
 SVector a = new SVector(outerRadius,i,j);
 SVector b = new SVector(outerRadius,i+betaStep,j);
 field[x][y] = new SVector() ;
 field[x][y].setSV(field[x][y].subSV(a,b));
 y++;
 }
 x++;
 }
 }
 void initField2() {//Create and initialize flow data structure
 println("| Init Field 2");
 float rad = outerRadius;
 float t = 0.0;
 float p = 0.0;
 float factor = 1;
 int x = 0;
 for (float i = 0; i < TWO_PI ; i+= alphaStep) {
 int y = 0;
 for (float j = 0; j < TWO_PI ; j+= betaStep) {
 rad = rad + random(-1,1);

239

 t = t + random(-alphaStep*factor, alphaStep*factor);
 p = p + random(-betaStep*factor, betaStep*factor);
 field[x][y] = new SVector(rad,t,p);
 y++;
 }
 x++;
 }
 }
 void initField3() {//Create and initialize flow data structure - RANDOM
 println("| Init Field 3");
 int x = 0;
 for (float i = 0; i < TWO_PI ; i+= alphaStep) {
 int y = 0;
 for (float j = 0; j < TWO_PI ; j+= betaStep) {
 //field[x][y] = new PVector(cos(i)*sin(j), sin(i)*sin(j), cos(j)).setMag(radius);
 //SVector a = new SVector(outerRadius,i,j);
 //SVector b = new SVector(outerRadius,i+betaStep,j);
 field[x][y] = new SVector() ;
 SVector randVector = new SVector(-outerRadius + 2 * random(outerRadius), random(TWO_
PI), random(TWO_PI));
 field[x][y].setSV(randVector) ;
 y++;
 }
 x++;
 }
 }
 void initFieldManifold(FlowField manifold) {//Create and initialize flow data structure - Vectors
tangent to mainfold surface and aligned
 println("| Init field on manfold");
 int x = 0;
 for (float i = 0; i < TWO_PI - alphaStep ; i+= alphaStep) {
 int y = 0;
 for (float j = 0; j < TWO_PI - betaStep ; j+= betaStep) {
 SVector a = new SVector(manifold.field[x][y].r,manifold.field[x][y].theta, manifold.field[x][y].
phi);
 SVector b = new SVector(manifold.field[(x+1)%resolution][y].r,manifold.field[(x+1)%resolu-
tion][y].theta, manifold.field[(x+1)%resolution][y].phi);
 a.subSV(b);
 a.normalizeSV();
 a.limitSV(.0005);//limit initial field tensor
 //a.limitSV(0.001);//put upper bound on initial tensor field
 //a.multSV(random(0.0,1.0));
 field[x][y] = new SVector();
 field[x][y].setSV(a);
 y++;
 }
 x++;
 }

240

 }
 void initFieldSupport() {//Create and initialize flow surface
 println("| Init field support");
 int x = 0;
 for (float i = 0; i < TWO_PI - alphaStep ; i+= alphaStep) {
 int y = 0;
 for (float j = 0; j < TWO_PI - betaStep ; j+= betaStep) {
 SVector a = new SVector(innerRadius*2, i, j);//surface function
 //SVector a = new SVector((innerRadius*(sin(i)+cos(j))), i, j);//surface function
 field[x][y] = new SVector() ;
 field[x][y].setSV(a);
 y++;
 }
 x++;
 }
 }
public SVector lookup(float _alpha, float _beta) {// Access Flow-field data
 float alpha = _alpha%TWO_PI;
 float beta = _beta%TWO_PI;
 return(field[int(resolution/TWO_PI*alpha)][int(resolution/TWO_PI*beta)]);
 }
 }

242

Flowfield - Module FieldInteraction

// Flowfield 	 - Tensor Field Agent Simulation
//		 - Module FieldInteraction
//		 - Written By Wade Brown

// Module used to bring agents and tensor fields together for interaction. Would normally use a
Class if it were not for the need to bring two classes together. This system seems to work without
breaking the object structure of Java.

void displayField() {// Dump flow data graphically
 //println("| Display Field");
 stroke(255,60,60,50);
 line(0,0,0,50,0,0);
 line(0,0,0,0,50,0);
 line(0,0,0,0,0,50);
 int x = 0;
 for (float i = 0; i <= TWO_PI-alphaStep ; i+= alphaStep) {
 int y = 0;
 for (float j = 0; j <= PI-betaStep ; j+= betaStep) {
 stroke(255,255,255,60);
 strokeWeight(1);
 SVector a = new SVector(main.field[x][y].r,main.field[x][y].theta, main.field[x][y].phi);
 SVector b = new SVector(support.field[x][y].r,support.field[x][y].theta,support.
field[x][y].phi);
 SVector c = new SVector();
 c.setSV(a);
 c.normalizeSV();
 c.multSV(5);
 line(b.SVtoPV().x,b.SVtoPV().y,b.SVtoPV().z,c.SVtoPV().x + b.SVtoPV().x, c.SVtoPV().y +
b.SVtoPV().y, c.SVtoPV().z + b.SVtoPV().z);
 stroke(255,255,255,50);
 strokeWeight(2);
 point(b.SVtoPV().x,b.SVtoPV().y,b.SVtoPV().z);
 y++;
 }
 x++;
 }
 }
 void updateAgentCount() {
 // match agentList length to number of agents
 if (agentList.size() < numAgents) {//lengthen the list
 for (int i = agentList.size(); i < numAgents; i++) {
 float a,b;
 a = random(0,TWO_PI);
 b = random(0,TWO_PI);
 particleAgent agent = new particleAgent(support.innerRadius*2,a,b);

243

 agentList.add(agent);
 }
 }
 else if (agentList.size() > numAgents) {//shorten the list
 for (int i = agentList.size()-1; i > numAgents-1; i--) {
 agentList.remove(i);
 }
 }
 }
 void initNodePositionTest(ArrayList nodes){
 SVector a = new SVector(1,0,0);//define affect field value
 a.addSV(support.field[int (PI/6/alphaStep)][int(PI/betaStep)]);//bring to manifold surface
 AffectNode n = new AffectNode(a,5,10,false,1);//generate affect node
 nodes.add(n);//add node to modelist
 //SVector b = new SVector(1,0,0);
 //b.addSV(support.field[int (PI/alphaStep)][int (PI/betaStep)]);
 //AffectNode m = new AffectNode(b,30,5,true);
 //nodes.add(m);
 SVector c = new SVector(1,0,0);
 c.addSV(support.field[0][int (PI/4/betaStep)]);
 AffectNode o = new AffectNode(c,4,1,true,1);
 nodes.add(o);
 SVector d = new SVector(1,0,0);
 d.addSV(support.field[int ((3/4*PI)/alphaStep)][int (PI/betaStep)]);
 AffectNode p = new AffectNode(d,6,3,false,1);
 nodes.add(p);
 }
 void pathDisplay() {//Method - Display Agent Path
 strokeWeight(1);
 noStroke();
 fill(0,255,0,50);
 for (int k = 0; k < numAgents; k++) {
 particleAgent agent = (particleAgent) agentList.get(k);
 agent.displayPath(pathM);
 }
 }
 void nodeDisplay(boolean current) {
 strokeWeight(5);
 if (current) {
 stroke(255,255,50,100);
 } else {
 strokeWeight(5);
 stroke(0,0,255,100);
 }
 for (int i = nodeList.size()-1; i >= 0 ; i--) {//walk through arraylist of nodes FIFO
 AffectNode node = new AffectNode();
 node = (AffectNode) nodeList.get(i);
 point(node.location.SVtoPV().x,node.location.SVtoPV().y,node.location.SVtoPV().z);

244

 }
 }
 void selectNode() { //find and select current node
 //println("selectNode");
 //int currentNode = 0;
 //displaynodes
 for (int i = nodeList.size()-1; i >= 0 ; i--) {
 AffectNode node = new AffectNode();
 node = (AffectNode) nodeList.get(i);
 if (node.current) {
 stroke(255,255,50,255); }//yellow centre point
 else { //else blue
 stroke(0,0,255,255);//blue centre point
 }
 point(node.location.SVtoPV().x, node.location.SVtoPV().y, node.location.SVtoPV().z);
 if (node.current == true) {
 currentNode = i;
 if (plusF) { // make next node up current
 plusF = !plusF;
 node.current = false; //current node is marked not current
 currentNode ++;
 if (i==nodeList.size()-1) { currentNode = 0;}
 AffectNode nodeUp = new AffectNode();
 nodeUp = (AffectNode) nodeList.get(currentNode); //get next positive node member
 nodeUp.current = true;
 nodeList.set(currentNode, nodeUp);
 //println("plus");
 } else if (minusF) {
 minusF = !minusF;
 node.current = false; //current node is marked not current
 currentNode --;
 if (i==0) { currentNode = nodeList.size()-1;}
 AffectNode nodeDown = new AffectNode();
 nodeDown = (AffectNode) nodeList.get(currentNode); //get next positive node member
 nodeDown.current = true;
 nodeList.set(currentNode, nodeDown);
 //println("minus");
 //addnode
 } else {
 //println("none");
 }
 //println("CurrentNode",currentNode);
 }
 }
 }
 void moveNode() { //movr current selected node using cursor keys while in config mode
 //println("moveNode");
 AffectNode node = new AffectNode();

245

 node = (AffectNode) nodeList.get(currentNode);
 //if ((node.current == boolean(currentNode)) && (node.current == true)) { //doublecheck
that it is the current node that we are operating on
 if ((node.current == true)) {
 if (upArrowF) { // move node up
 upArrowF = !upArrowF;
 node.location.phi += betaStep;
 if ((shiftF==true) && (upArrowF==true)) { node.location.phi += 5 * betaStep; shiftF =
!shiftF; upArrowF = !upArrowF; }
 if (node.location.phi >= TWO_PI) { node.location.phi = node.location.phi%TWO_PI; }
 }
 if (downArrowF) { // move node down
 downArrowF = !downArrowF;
 node.location.phi -= betaStep;
 if (shiftF) { node.location.phi -= 5 * betaStep; shiftF = !shiftF; upArrowF = !upArrowF; }
 if (node.location.phi < 0) { node.location.phi = TWO_PI - abs(node.location.phi); }
 }
 if (rightArrowF) { // move node right
 rightArrowF = !rightArrowF;
 node.location.theta += alphaStep;
 if (shiftF) { node.location.theta += 5 * alphaStep; shiftF = !shiftF; upArrowF = !upArrowF; }
 if (node.location.theta >= TWO_PI) { node.location.theta = node.location.phi%TWO_PI; }
 }
 if (leftArrowF) { // move node left
 leftArrowF = !leftArrowF;
 node.location.theta -= alphaStep;
 if (shiftF) { node.location.theta -= 5 * alphaStep; shiftF = !shiftF; upArrowF = !upArrowF; }
 if (node.location.theta < 0) { node.location.theta = TWO_PI - abs(node.location.theta); }
 }
 }
 nodeList.set(currentNode, node);
 //println("--|", currentNode, boolean(currentNode), node.location.r,node.location.theta, node.
location.phi, node.current);
 }
 void changeNodeList() {
 if (enterF == true) {
 //println("EnterF");
 //println("addNode");
 SVector a = new SVector(1,0,0);//define affect field value
 a.addSV(support.field[0][0]);//bring to manifold surface
 AffectNode n = new AffectNode(a,5,10,false,1);//generate affect node
 nodeList.add(n);//add node to modelist
 enterF = false;
 }
 if (deleteF == true) {
 //println("DeleteF");
 //println("removeNode");
 if (nodeList.size() > 1) {

246

 nodeList.remove(currentNode);
 currentNode = nodeList.size()-1;
 AffectNode node = new AffectNode();
 node = (AffectNode) nodeList.get(currentNode);
 node.current = true;
 nodeList.set(currentNode, node);
 deleteF = false;
 }
 }
 }
 //void alterNodeConfig() {//change type/size/strength "Affect"
 // AffectNode node = new AffectNode();
 // node = (AffectNode) nodeList.get(currentNode);
 // //map 1
 // float posTheta,posPhi;
 // for (int h = 1; h <= node.size ; h++) {
 // for (float i = -PI; i >= PI ; i += alphaStep) {
 // posTheta = map(i,-PI,PI, -alphaStep*node.size+thetapos, AlphaStep*node.size+thetapos);
 // posPhi = map(j,-PI ,PI , -betaStep*node.size+phipos, betaStep*node.size+phipos);
 // pos = size * cos(i) + sin(j);
 // }
 // }
 //}
 void randomField() {
 int posAlpha = int(random(resolution)), posBeta = int(random(resolution));
 int posAlphaPrev,posBetaPrev;
 int dir = 0;
 SVector a = new SVector(), b = new SVector(), c = new SVector(), d= new SVector();
 for (int i = 0; i < 1000; i ++) {
 dir = int(random(7));
 posAlphaPrev = posAlpha; posBetaPrev = posBeta;
 if (dir == 0) {
 posAlpha += 1;if (posAlpha >= resolution) posAlpha = posAlpha%resolution;}//mod the
result
 else if (dir == 1) {
 posAlpha += 1;if (posAlpha >= resolution) posAlpha = posAlpha%resolution;//mod the
result
 posBeta += 1;if (posBeta >= resolution) posBeta = posBeta%resolution;}//mod the result
 else if (dir == 2) {
 posBeta += 1;if (posBeta >= resolution) posBeta = posBeta%resolution;}//mod the result
 else if (dir == 3) {
 posAlpha -= 1;if (posAlpha < 0) posAlpha = resolution-1;//mod the result
 posBeta += 1;if (posBeta >= resolution) posBeta = posBeta%resolution;}//mod the result
 else if (dir == 4) {
 posAlpha -= 1;if (posAlpha < 0) posAlpha = resolution-1;}//mod the result
 else if (dir == 5) {
 posAlpha -= 1;if (posAlpha < 0) posAlpha = resolution-1;//mod the result
 posBeta -= 1; if (posBeta < 0) posBeta = resolution-1;}//mod the result

247

 else if (dir == 6) {
 posBeta -= 1; if (posBeta < 0) posBeta = resolution-1;}//mod the result
 else if (dir == 7) {
 posAlpha += 1;if (posAlpha > resolution) posAlpha = posAlpha%resolution;//mod the result
 posBeta -= 1; if (posBeta < 0) posBeta = resolution-1;}//mod the result
 //add the SVector based on path to the tensor field
 a.setSV(support.field[posAlpha][posBeta].r,support.field[posAlpha][posBeta].theta, support.
field[posAlpha][posBeta].phi);//get original support tensor
 b.setSV(support.field[posAlphaPrev][posBetaPrev].r,support.field[posAlphaPrev][posBetaP-
rev].theta,support.field[posAlphaPrev][posBetaPrev].phi); //next pos suport tensor
 //c.setSV(main.field[posAlpha][posBeta].r,main.field[posAlpha][posBeta].theta, main.field[pos-
Alpha][posBeta].phi); //get field tensor
 //d.subSV(b,a);//determine direction SVector
 b.subSV(a);
 d.setSV(b);
 //println(i,a.magSV(),b.magSV(),d.magSV());
 //println(i,posAlpha,posBeta,posAlphaPrev,posBetaPrev);
 ////d.normalizeSV();//cap at mag(1)
 d.multSV(0.01);//limit
 //c.addSV(d);//add the SVector to existing
 //main.field[posAlpha][posBeta].setSV(c); //replace tensor field with altered version
 //case 0 - upup
 if ((posAlpha+1) >= resolution) {//posAlpha out of bounds
 main.field[(posAlpha+1)%resolution][posBeta].addSV(d);
 //main.field[(posAlpha+1)%resolution][posBeta].normalizeSV();
 }
 else {main.field[posAlpha+1][posBeta].addSV(d);
 //main.field[posAlpha+1][posBeta].normalizeSV();
 }
 //case 1 - upright
 if (((posAlpha+1) >= resolution) || ((posBeta+1) >= resolution)) {//either out of bounds
 main.field[(posAlpha+1)%resolution][(posBeta+1)%resolution].addSV(d);
 //main.field[(posAlpha+1)%resolution][(posBeta+1)%resolution].normalizeSV();
 }
 else {main.field[posAlpha+1][posBeta+1].addSV(d);
 //main.field[posAlpha+1][posBeta+1].normalizeSV();
 } //all good
 //case 2 - right
 if ((posBeta+1) >= resolution) {//posBeta out of bounds
 main.field[posAlpha][(posBeta+1)%resolution].addSV(d);
 //main.field[posAlpha][(posBeta+1)%resolution].normalizeSV();
 }
 else { main.field[posAlpha][posBeta+1].addSV(d);
 //main.field[posAlpha][posBeta+1].normalizeSV();
 }//all good
 //case 3 - downright
 if (((posAlpha-1) <= 0) && ((posBeta+1) >= resolution)) {//both out of bounds
 main.field[resolution-1][(posBeta+1)%resolution].addSV(d);

248

 //main.field[resolution-1][(posBeta+1)%resolution].normalizeSV();
 }
 else if ((posAlpha-1) <= 0) {//posAlpha out of bounds
 main.field[resolution-1][posBeta+1].addSV(d);
 //main.field[resolution-1][posBeta+1].normalizeSV();
 }
 else if ((posBeta+1) >= resolution){//posBeta out of bounds
 main.field[posAlpha-1][(posBeta+1)%resolution].addSV(d);
 //main.field[posAlpha-1][(posBeta+1)%resolution].normalizeSV();
 }
 else { main.field[posAlpha-1][posBeta+1].addSV(d);
 //main.field[posAlpha-1][posBeta+1].normalizeSV();
 }//all good
 //case 4 - downdown
 if (posAlpha <= 0) { //alpha out of bounds
 main.field[resolution-1][posBeta].addSV(d);
 //main.field[posAlpha+1][posBeta].normalizeSV();
 }
 else { main.field[posAlpha-1][posBeta].addSV(d);
 //main.field[posAlpha-1][posBeta].normalizeSV();
 }//all good
 //case 5 - downleft
 if (((posAlpha-1) <= 0) && ((posBeta-1) <= 0)) { //both out of bounds
 main.field[resolution-1][resolution-1].addSV(d);
 //main.field[resolution-1][resolution-1].normalizeSV();
 }
 else if ((posAlpha-1) <=0) { //posAlpha out of bounds
 main.field[resolution-1][posBeta-1].addSV(d);
 //main.field[resolution-1][posBeta-1].normalizeSV();
 }
 else if ((posBeta-1) <= 0) {//posBeta out of bounds
 main.field[posAlpha-1][resolution-1].addSV(d);
 //main.field[posAlpha-1][resolution-1].normalizeSV();
 }
 else { main.field[posAlpha-1][posBeta-1].addSV(d);
 //main.field[posAlpha-1][posBeta-1].normalizeSV();
 }//all good
 //case 6 - leftleft
 if ((posBeta-1) <= 0) { //posBeta out of bounds
 main.field[posAlpha][resolution-1].addSV(d);
 //main.field[posAlpha][resolution-1].normalizeSV();
 }
 else { main.field[posAlpha][posBeta-1].addSV(d);
 //main.field[posAlpha][posBeta-1].normalizeSV();
 }//all good
 //case 7 - leftup
 if (((posAlpha+1) >= resolution) && ((posBeta-1) <=0)) {//both out of bounds
 main.field[posAlpha%resolution][resolution-1].addSV(d);

249

 //main.field[posAlpha%resolution][resolution-1].normalizeSV();
 }
 else if ((posAlpha+1) >= resolution) {//posAlpha out of bounds
 main.field[posAlpha%resolution][posBeta-1].addSV(d);
 //main.field[posAlpha%resolution][posBeta-1].normalizeSV();
 }
 else if ((posBeta <= 0)) {//posBeta out of bounds
 main.field[posAlpha+1][resolution-1].addSV(d);
 //main.field[posAlpha+1][resolution-1].normalizeSV();
 }
 else {main.field[posAlpha+1][posBeta-1].addSV(d);
 //main.field[posAlpha+1][posBeta-1].normalizeSV();
 }//all good
 }
 }
void alterNodeConfig() {//change type/size/strength
 ArrayList<PVector> currentAffectField;
 currentAffectField = new ArrayList();
 AffectNode node = (AffectNode) nodeList.get(currentNode);
 int posAlpha,posBeta;
 if (node.current == true) {
 for (int i = 2; i <= node.size; i++){//ring up based on .size
 for (float j = 0 ; j <= TWO_PI; j += (TWO_PI/10)){
 //Oscillate to create rings of affect
 posAlpha = int((i * cos(j)) + node.location.theta/alphaStep);
 if (posAlpha >= resolution) { //check boundaries
 posAlpha=posAlpha%resolution;}
 else if (posAlpha < 0) {
 posAlpha = resolution - abs(posAlpha);}
 posBeta = int((i * sin(j)) + node.location.phi/betaStep);
 if (posBeta >= resolution) { //check boundaries
 posBeta=posBeta%resolution;}
 else if (posBeta < 0) {
 posBeta = resolution - abs(posBeta); }
 SVector a = new SVector(node.location.r, node.location.theta, node.location.phi);
 SVector b = new SVector();
 //PVector p1 = new PVector();
 //PVector p2 = new PVector();
 //PVector p3 = new PVector();
 //p1.set(a.SVtoPV());
 //p2.set(b.SVtoPV());
 //p3.set(p1.sub(p2));
 //float r, theta, phi;
 //r = sqrt(sq(p3.x) + sq(p3.y) + sq(p3.z));
 //theta = atan2(p3.y , p3.x);
 //println("z,y:",p3.z,p3.y, acos(p3.z / p3.y));
 //phi = acos(p3.z / p3.y);
 //SVector result = new SVector(r,theta,phi);

250

 //result.normalizeSV();
 //result.multSV(10000);
 //println(result.r,result.theta,result.phi);
 b.setSV(support.field[posAlpha][posBeta].r,support.field[posAlpha][posBeta].theta,support.
field[posAlpha][posBeta].phi);//affect circle point
 a.subSV(b);
 //a.crossSV(b);
 SVector c = new SVector();
 c.setSV(a);
 c.limitSV(.5);
 //c.multSV(10);
 //point(support.field[posAlpha][posBeta].SVtoPV().x,support.field[posAlpha][posBeta].
SVtoPV().y,support.field[posAlpha][posBeta].SVtoPV().z);
 PVector fieldPoint = new PVector(support.field[posAlpha][posBeta].SVtoPV().x,support.
field[posAlpha][posBeta].SVtoPV().y,support.field[posAlpha][posBeta].SVtoPV().z);
 currentAffectField.add(fieldPoint);
 //main.field[posAlpha][posBeta].addSV(c);//create effect
 main.field[posAlpha][posBeta].addSV(c);//create effect
 }//for
 }//for
 if (displayNodeAffectF) {
 for (int i=0;i<currentAffectField.size();i++) { //persistent display of node field
 PVector fieldPoint = new PVector();
 fieldPoint = currentAffectField.get(i);
 stroke(255,255,255,163);
 point(fieldPoint.x,fieldPoint.y,fieldPoint.z);
 }
 }
 else {
 currentAffectField.clear();//else flush it
 }//if
 }//if
} //alterNodeConfig
void alterNodeConfig2() {//change type/size/strength
 //println("alterNodeConfig");
 ArrayList<PVector> currentAffectField;
 currentAffectField = new ArrayList();
 AffectNode node = (AffectNode) nodeList.get(currentNode);
 int posAlpha,posBeta;
 if (node.current == true) { //doublecheck we are only acting on the "current" node
 for (int i = 1; i <= node.size; i++){//ring up based on .size
 for (float j = 0 ; j <= TWO_PI; j += (TWO_PI/60)){
 //Oscillate to create rings of affect
 posAlpha = int((i * cos(j)) + node.location.theta);
 if (posAlpha >= resolution) { //check boundaries
 posAlpha=posAlpha%resolution;}
 else if (posAlpha < 0) {
 posAlpha = resolution - abs(posAlpha);}

251

 posBeta= int((i * sin(j)) + node.location.phi);
 if (posBeta >= resolution) { //check boundaries
 posBeta=posBeta%resolution;}
 else if (posBeta < 0) {
 posBeta = resolution - abs(posBeta); }
 SVector a = new SVector(node.location.r, node.location.theta,node.location.phi);
 SVector b = new SVector(support.field[posAlpha][posBeta].r,support.field[posAlpha][posBe-
ta].theta,support.field[posAlpha][posBeta].phi);
 SVector c = new SVector();
 //point(support.field[posAlpha][posBeta].SVtoPV().x,support.field[posAlpha][posBeta].
SVtoPV().y,support.field[posAlpha][posBeta].SVtoPV().z);
 PVector fieldPoint = new PVector(support.field[posAlpha][posBeta].SVtoPV().x,support.
field[posAlpha][posBeta].SVtoPV().y,support.field[posAlpha][posBeta].SVtoPV().z);
 currentAffectField.add(fieldPoint);
 //main.field[posAlpha][posBeta].addSV(c);//create effect
 main.field[posAlpha][posBeta].setSV(c);//create effect
 }//for
 }//for
 if (displayNodeAffectF) {
 for (int i=0;i<currentAffectField.size();i++) { //persistent display of node field
 PVector fieldPoint = new PVector();
 fieldPoint = currentAffectField.get(i);
 stroke(255,255,255,63);
 point(fieldPoint.x,fieldPoint.y,fieldPoint.z);
 }
 }
 else {
 currentAffectField.clear();//else flush it
 }//if
 }//if
} //alterNodeConfig2

252

Flowfield - Module particleAgent Class

// Flowfield 	 - Tensor Field Agent Simulation
//		 - Module particleAgent Class
//		 - Written By Wade Brown

// Class needed to define agents within the system. Euler integration used to managed particle
dynamics.

public class particleAgent {
 SVector location;
 SVector velocity;
 SVector acceleration;
 ArrayList<SVector> path;
 float maxforce;
 float maxspeed;
 public particleAgent(float _r,float _alpha, float _beta) {
 acceleration = new SVector();
 velocity = new SVector();
 location = new SVector(_r,_alpha,_beta);
 path = new ArrayList();
 //Arbitrary values for maxspeed and force.
 maxspeed = 10;
 //maxforce = 10;
 }
 //Our standard “Euler integration” motion model
 void update(SVector accel, SVector surface) {
 //add old position to trail Arraylist "path"
 SVector oldLocation = new SVector();
 oldLocation.setSV(location);
 path.add(0,oldLocation);//add to beginning of list
 if (path.size() > pathLength) {//manage pathlength
 for (int i = path.size()-1; i > pathLength; i--) {
 path.remove(i);
 }
 }
 //Core of the Euler integration..."the roll-up"
 velocity.addSV(accel) ;
 velocity.limitSV(maxspeed);//cap angular speed
 location.addSV(velocity);
 // MOD location to keep within 0<-->TWO_PI so location array bounds are not exceeded
 location.theta = location.theta%TWO_PI;//mod theta to keep position within 0-2PI
 if (location.theta < 0) {location.theta = TWO_PI - abs(location.theta);}
 location.phi = location.phi%TWO_PI;
 if (location.phi < 0) {location.phi = TWO_PI - abs(location.phi);}
 //clear acceleration in preparation for recalculation at next step
 acceleration.multSV(0);

253

 // Is the agent in-bounds? If yes, kill and respawn in a random location on the manifold
 if ((abs(location.SVtoPV().x) > spaceSizeX) ||
 (abs(location.SVtoPV().y) > spaceSizeY) ||
 (abs(location.SVtoPV().z) > spaceSizeZ)) {
 location.setSV(300,random(0,TWO_PI),random(0,TWO_PI));//relocate
 velocity.multSV(0);//wipe its velocity
 path.clear();//delete its history
 }
 }
 //Newton’s second law; we could divide by mass if we wanted.
 void applyForce(SVector force) {
 acceleration.addSV(force);
 }
 //Our seek steering force algorithm
 //if looking to steer to a point
 void seek(SVector target) {
 SVector desired = new SVector();
 desired.subSV(target,location);
 desired.normalizeSV();
 desired.multSV(maxspeed);
 SVector steer = new SVector();
 steer.subSV(desired,velocity);
 steer.limitSV(maxforce);
 applyForce(steer);
 }
 void display() {
 //Displays a point represented by the current vector location
 pushMatrix();
 point(location.SVtoPV().x, location.SVtoPV().y, location.SVtoPV().z);
 popMatrix();
 }
 void displayPath(int displayMode) {
 if (displayMode == 1) { //line
 if (path.size() > 2) { // path not too short
 beginShape();
 for (int i = 1; i < path.size()-1 ; i++) {
 vertex(path.get(i).SVtoPV().x, path.get(i).SVtoPV().y, path.get(i).SVtoPV().z);
 }
 }
 endShape();
 } else if (displayMode == 2) { //spline
 if (path.size() > 2) { // path not too short
 beginShape();
 for (int i = 1; i < path.size()-1 ; i++) {
 if (i == 1) {curveVertex(path.get(i).SVtoPV().x, path.get(i).SVtoPV().y, path.get(i).SVtoPV().z
);
 curveVertex(path.get(i).SVtoPV().x, path.get(i).SVtoPV().y, path.get(i).SVtoPV().z);}
 curveVertex(path.get(i).SVtoPV().x, path.get(i).SVtoPV().y, path.get(i).SVtoPV().z);

254

 if (i == path.size()-2) {curveVertex(path.get(i).SVtoPV().x, path.get(i).SVtoPV().y, path.
get(i).SVtoPV().z);
 curveVertex(path.get(i).SVtoPV().x, path.get(i).SVtoPV().y, path.get(i).
SVtoPV().z);}
 }
 }
 endShape();
 } else if (displayMode == 3) { //quad strip
 noStroke();
 fill(0,255,0,50);
 if (path.size() > 2) { // path not too short
 beginShape(QUAD_STRIP);
 for (int i = 1; i < path.size()-1 ; i++) {
 vertex(path.get(i).SVtoPV().x, path.get(i).SVtoPV().y, path.get(i).SVtoPV().z);
 vertex(path.get(i).SVtoPV().x+trailWidth, path.get(i).SVtoPV().y + trailWidth, path.get(i).
SVtoPV().z);
 }
 }
 endShape();
 noFill();
 }
 }
}

256

Flowfield - Module AffectNodeClass

// Flowfield 	 - Tensor Field Agent Simulation
//		 - Module AffectNode Class
//		 - Written By Wade Brown

// Needed to define AffectNode data structure

public class AffectNode {//affect node class
 SVector location;
 float size;//~amplitude
 float strength;//~magnitude
 ArrayList<SVector> affect;//resultant affect SVector(ideally perp to manifold surf normal)
 ArrayList<SVector> affectLocation;//surface SVector location
 boolean current;//Live flag
 int type;//Type=1(replace),Type=2(Additive),Type=3(Subtractive),Type=4(Multiplicative)
 public AffectNode() {//constructor
 }
 public AffectNode(SVector _location, float _size, float _strength, boolean _current, int _type) {//
constructor
 location = new SVector();
 location.setSV(_location);
 size = _size;
 strength = _strength;
 affect = new ArrayList();
 affectLocation = new ArrayList();
 current = _current;
 type = _type;
 }
 //Future
 void displayNode() {
 }
 void NodePosition(){
 float aPhi=0.0;
 float aTheta=0.0;
 if (upArrowF) { aPhi +=alphaStep;}
 if (downArrowF) { aPhi -=alphaStep;}
 if (leftArrowF) { aTheta -=betaStep;}
 if (rightArrowF) { aTheta +=betaStep;}
 }
}

258

Smoothieboard Config File - Laser Controller Ver 2

#Smoothie/Pi Config file - 20160910 - wb
#
#
#
Smoothieboard configuration file, see http://smoothieware.org/configuring-smoothie
NOTE Lines must not exceed 132 characters, and '#' characters mean what follows is ignored
Robot module configurations : general handling of movement G-codes and slicing into moves

Basic motion configuration
default_feed_rate 30480 # Default speed (mm/minute) for G1/G2/G3 -
moves(20in/s)
default_seek_rate 45720 # Default speed (mm/minute) for G0
moves(30in/s)
mm_per_arc_segment 0.0 # Fixed length for line segments that divide arcs,
0 to disable
#mm_per_line_segment 5 # Cut lines into segments this size
mm_max_arc_error 0.01 # The maximum error for line segments that
divide arcs 0 to disable
 # note it is invalid for both the above be 0
 # if both are used, will use largest segment length based on
radius

Arm solution configuration : Cartesian robot. Translates mm positions into stepper positions
See http://smoothieware.org/stepper-motors
alpha_steps_per_mm 80 # Steps per mm for alpha (X) stepper
beta_steps_per_mm 80 # Steps per mm for beta (Y) stepper
gamma_steps_per_mm 1600 # Steps per mm for gamma (Z) stepper

Planner module configuration : Look-ahead and acceleration configuration
See http://smoothieware.org/motion-control
acceleration 3000 # Acceleration in mm/second/second.
#z_acceleration 500 # Acceleration for Z only moves in mm/s^2, 0 uses
acceleration which is the default. DO NOT SET ON A DELTA
junction_deviation 0.05 # See http://smoothieware.org/motion-control#-
junction-deviation
#z_junction_deviation 0.0 # For Z only moves, -1 uses junction_deviation, zero
disables junction_deviation on z moves DO NOT SET ON A DELTA

Cartesian axis speed limits
x_axis_max_speed 46000 # Maximum speed in mm/min
y_axis_max_speed 46000 # Maximum speed in mm/min
z_axis_max_speed 300 # Maximum speed in mm/min

Stepper module configuration

259

Pins are defined as ports, and pin numbers, appending "!" to the number will invert a pin
#Â See http://smoothieware.org/pin-configuration and http://smoothieware.org/pinout
alpha_step_pin 2.0 # Pin for alpha stepper step signal
alpha_dir_pin 0.5 # Pin for alpha stepper direction, add '!' to reverse
direction
alpha_en_pin 0.4 # Pin for alpha enable pin
alpha_current 1.5 # X stepper motor current
alpha_max_rate 30480.0 # Maximum rate in mm/min

beta_step_pin 2.1 # Pin for beta stepper step signal
beta_dir_pin 0.11 # Pin for beta stepper direction, add '!' to reverse
direction
beta_en_pin 0.10 # Pin for beta enable
beta_current 1.5 # Y stepper motor current
beta_max_rate 30480.0 # Maxmimum rate in mm/min

gamma_step_pin 2.2 # Pin for gamma stepper step signal
gamma_dir_pin 0.20 # Pin for gamma stepper direction, add '!' to reverse
direction
gamma_en_pin 0.19 # Pin for gamma enable
gamma_current 1.5 # Z stepper motor current
gamma_max_rate 300.0 # Maximum rate in mm/min

Extruder module configuration
See http://smoothieware.org/extruder
extruder.hotend.enable true # Whether to activate the extruder module at all. All
configuration is ignored if false
extruder.hotend.steps_per_mm 140 # Steps per mm for extruder stepper
extruder.hotend.default_feed_rate 600 # Default rate (mm/minute) for moves
where only the extruder moves
extruder.hotend.acceleration 500 # Acceleration for the stepper motor mm/secÂ²
extruder.hotend.max_speed 50 # Maximum speed in mm/s

extruder.hotend.step_pin 2.3 # Pin for extruder step signal
extruder.hotend.dir_pin 0.22 # Pin for extruder dir signal (add '!' to reverse
direction)
extruder.hotend.en_pin 0.21 # Pin for extruder enable signal

Extruder offset
#extruder.hotend.x_offset 0 # X offset from origin in mm
#extruder.hotend.y_offset 0 # Y offset from origin in mm
#extruder.hotend.z_offset 0 # Z offset from origin in mm

Firmware retract settings when using G10/G11, these are the defaults if not defined, must be
defined for each extruder if not using the defaults
#extruder.hotend.retract_length 3 # Retract length in mm
#extruder.hotend.retract_feedrate 45 # Retract feedrate in mm/sec
#extruder.hotend.retract_recover_length 0 # Additional length for recover

260

#extruder.hotend.retract_recover_feedrate 8 # Recover feedrate in mm/sec (should be
less than retract feedrate)
#extruder.hotend.retract_zlift_length 0 # Z-lift on retract in mm, 0 disables
#extruder.hotend.retract_zlift_feedrate 6000 # Z-lift feedrate in mm/min (Note mm/min
NOT mm/sec)

delta_current 1.5 # First extruder stepper motor current

Second extruder module configuration
#extruder.hotend2.enable true # Whether to activate the extruder module at all.
All configuration is ignored if false
#extruder.hotend2.steps_per_mm 140 # Steps per mm for extruder stepper
#extruder.hotend2.default_feed_rate 600 # Default rate (mm/minute) for moves
where only the extruder moves
#extruder.hotend2.acceleration 500 # Acceleration for the stepper motor, as of 0.6,
arbitrary ratio
#extruder.hotend2.max_speed 50 # mm/s

#extruder.hotend2.step_pin 2.8 # Pin for extruder step signal
#extruder.hotend2.dir_pin 2.13 # Pin for extruder dir signal (add '!' to reverse
direction)
#extruder.hotend2.en_pin 4.29 # Pin for extruder enable signal

#extruder.hotend2.x_offset 0 # x offset from origin in mm
#extruder.hotend2.y_offset 25.0 # y offset from origin in mm
#extruder.hotend2.z_offset 0 # z offset from origin in mm

#epsilon_current 1.5 # Second extruder stepper motor current

Laser module configuration
See http://smoothieware.org/laser
laser_module_enable false # Whether to activate the laser module at all
laser_module_pwm_pin 2.5 # This pin will be PWMed to control the laser.
 # Only pins 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 1.18, 1.20, 1.21, 1.23,
1.24, 1.26, 3.25 and 3.26
 # can be used since laser requires hardware PWM, see
http://smoothieware.org/pinout
#laser_module_ttl_pin 	 1.30 # This pin turns on when the laser turns on,
and off when the laser turns off.
#laser_module_maximum_power 1.0 # This is the maximum duty cycle that will
be applied to the laser
#laser_module_minimum_power 0.0 # This is a value just below the minimum
duty cycle that keeps the laser
 # active without actually burning.
#laser_module_default_power 0.8 # This is the default laser power that will be
used for cuts if a power has not been specified. The value is a scale between
 # the maximum and minimum power levels specified above

261

#laser_module_pwm_period 20 # This sets the pwm frequency as the period
in microseconds

Temperature control configuration
See http://smoothieware.org/temperaturecontrol

First hotend configuration
temperature_control.hotend.enable true # Whether to activate this ("hotend")
module at all.
temperature_control.hotend.thermistor_pin 0.23 # Pin for the thermistor to read
temperature_control.hotend.heater_pin 2.7 # Pin that controls the heater, set to nc if a
readonly thermistor is being defined
temperature_control.hotend.thermistor EPCOS100K # See http://smoothieware.org/
temperaturecontrol#toc5
#temperature_control.hotend.beta 4066 # Or set the beta value
temperature_control.hotend.set_m_code 104 # M-code to set the temperature for this
module
temperature_control.hotend.set_and_wait_m_code 109 # M-code to set-and-wait for this
module
temperature_control.hotend.designator T # Designator letter for this module
#temperature_control.hotend.max_temp 300 # Set maximum temperature - Will
prevent heating above 300 by default
#temperature_control.hotend.min_temp 0 # Set minimum temperature - Will prevent
heating below if set

Safety control is enabled by default and can be overidden here, the values show the defaults
See http://smoothieware.org/temperaturecontrol#runaway
#temperature_control.hotend.runaway_heating_timeout 900 # How long it can take to heat up,
max is 2040 seconds.
#temperature_control.hotend.runaway_cooling_timeout 0 # How long it can take to cool down
if temp is set lower, max is 2040 seconds
#temperature_control.hotend.runaway_range 20 # How far from the set temperature it
can wander, max setting is 63Â°C

PID configuration
See http://smoothieware.org/temperaturecontrol#pid
#temperature_control.hotend.p_factor 13.7 # P (proportional) factor
#temperature_control.hotend.i_factor 0.097 # I (integral) factor
#temperature_control.hotend.d_factor 24 # D (derivative) factor

#temperature_control.hotend.max_pwm 64 # Max pwm, 64 is a good value if driving
a 12v resistor with 24v.

Second hotend configuration
#temperature_control.hotend2.enable true # Whether to activate this ("hotend")
module at all.
#temperature_control.hotend2.thermistor_pin 0.25 # Pin for the thermistor to read
#temperature_control.hotend2.heater_pin 1.23 # Pin that controls the heater

262

#temperature_control.hotend2.thermistor EPCOS100K # See http://smoothieware.org/
temperaturecontrol#thermistor
##temperature_control.hotend2.beta 4066 # or set the beta value
#temperature_control.hotend2.set_m_code 104 # M-code to set the temperature for
this module
#temperature_control.hotend2.set_and_wait_m_code 109 # M-code to set-and-wait for this
module
#temperature_control.hotend2.designator T1 # Designator letter for this module

#temperature_control.hotend2.p_factor 13.7 # P (proportional) factor
#temperature_control.hotend2.i_factor 0.097 # I (integral) factor
#temperature_control.hotend2.d_factor 24 # D (derivative) factor

#temperature_control.hotend2.max_pwm 64 # Max pwm, 64 is a good value if driving
a 12v resistor with 24v.

temperature_control.bed.enable true # Whether to activate this ("hotend") module
at all.
temperature_control.bed.thermistor_pin 0.24 # Pin for the thermistor to read
temperature_control.bed.heater_pin 2.5 # Pin that controls the heater
temperature_control.bed.thermistor Honeywell100K # See http://smoothieware.org/
temperaturecontrol#thermistor
#temperature_control.bed.beta 3974 # Or set the beta value
temperature_control.bed.set_m_code 140 # M-code to set the temperature for this
module
temperature_control.bed.set_and_wait_m_code 190 # M-code to set-and-wait for this
module
temperature_control.bed.designator B # Designator letter for this module

Bang-bang (simplified) control
See http://smoothieware.org/temperaturecontrol#bang-bang
#temperature_control.bed.bang_bang false # Set to true to use bang bang control
rather than PID
#temperature_control.bed.hysteresis 2.0 # Set to the temperature in degrees C to use
as hysteresis

Switch modules
See http://smoothieware.org/switch

Switch module for fan control
switch.fan.enable true # Enable this module
switch.fan.input_on_command M106 # Command that will turn this switch on
switch.fan.input_off_command M107 # Command that will turn this switch off
switch.fan.output_pin 2.6 # Pin this module controls
switch.fan.output_type pwm # PWM output settable with S parameter in the
input_on_comand
#switch.fan.max_pwm 255 # Set max pwm for the pin default is 255

263

#switch.misc.enable true # Enable this module
#switch.misc.input_on_command M42 # Command that will turn this switch on
#switch.misc.input_off_command M43 # Command that will turn this switch off
#switch.misc.output_pin 2.4 # Pin this module controls
#switch.misc.output_type digital # Digital means this is just an on or off pin

Temperatureswitch
See http://smoothieware.org/temperatureswitch
Automatically toggle a switch at a specified temperature. Different ones of these may be defined
to monitor different temperatures and switch different swithxes
Useful to turn on a fan or water pump to cool the hotend
#temperatureswitch.hotend.enable true #
#temperatureswitch.hotend.designator T # first character of the temperature control
designator to use as the temperature sensor to monitor
#temperatureswitch.hotend.switch misc # select which switch to use, matches the
name of the defined switch
#temperatureswitch.hotend.threshold_temp 60.0 # temperature to turn on (if rising) or off
the switch
#temperatureswitch.hotend.heatup_poll 15 # poll heatup at 15 sec intervals
#temperatureswitch.hotend.cooldown_poll 60 # poll cooldown at 60 sec intervals

Endstops
See http://smoothieware.org/endstops
endstops_enable true # The endstop module is enabled by default and can
be disabled here
#corexy_homing false # Set to true if homing on a hbot or corexy
alpha_min_endstop 1.24^ # Pin to read min endstop, add a ! to invert if
endstop is NO connected to ground
#alpha_max_endstop 1.25^ # Pin to read max endstop, uncomment this and
comment the above if using max endstops
alpha_homing_direction home_to_min # Or set to home_to_max and set alpha_
max and uncomment the alpha_max_endstop
alpha_min 0 # This gets loaded as the current position after homing
when home_to_min is set
alpha_max 200 # This gets loaded as the current position after
homing when home_to_max is set
beta_min_endstop 1.26^ # Pin to read min endstop, add a ! to invert if
endstop is NO connected to ground
#beta_max_endstop 1.27^ # Pin to read max endstop, uncomment this and
comment the above if using max endstops
beta_homing_direction home_to_min # Or set to home_to_max and set alpha_
max and uncomment the alpha_max_endstop
beta_min 0 # This gets loaded as the current position after homing
when home_to_min is set
beta_max 200 # This gets loaded as the current position after homing
when home_to_max is set
gamma_min_endstop 1.28^ # Pin to read min endstop, add a ! to invert if
endstop is NO connected to ground

264

#gamma_max_endstop 1.29^ # Pin to read max endstop, uncomment this
and comment the above if using max endstops
gamma_homing_direction home_to_min # Or set to home_to_max and set
alpha_max and uncomment the alpha_max_endstop
gamma_min 0 # This gets loaded as the current position after
homing when home_to_min is set
gamma_max 200 # This gets loaded as the current position after
homing when home_to_max is set

alpha_max_travel 500 # Max travel in mm for alpha/X axis when homing
beta_max_travel 500 # Max travel in mm for beta/Y axis when homing
gamma_max_travel 500 # Max travel in mm for gamma/Z axis when
homing

Optional enable limit switches, actions will stop if any enabled limit switch is triggered
#alpha_limit_enable false # Set to true to enable X min and max limit switches
#beta_limit_enable false # Set to true to enable Y min and max limit switches
#gamma_limit_enable false # Set to true to enable Z min and max limit
switches

Endstops home at their fast feedrate first, then once the endstop is found they home again at their
slow feedrate for accuracy
alpha_fast_homing_rate_mm_s 50 # Alpha/X fast homing feedrate in mm/
second
alpha_slow_homing_rate_mm_s 25 # Alpha/X slow homing feedrate in mm/
second
beta_fast_homing_rate_mm_s 50 # Beta/Y fast homing feedrate in mm/
second
beta_slow_homing_rate_mm_s 25 # Beta/Y slow homing feedrate in mm/
second
gamma_fast_homing_rate_mm_s 4 # Gamma/Z fast homing feedrate in mm/
second
gamma_slow_homing_rate_mm_s 2 # Gamma/Z slow homing feedrate in mm/
second

alpha_homing_retract_mm 5 # Distance to retract from the endstop after it is
hit for alpha/X
beta_homing_retract_mm 5 # Distance to retract from the endstop after it is
hit for beta/Y
gamma_homing_retract_mm 1 # Distance to retract from the endstop after it
is hit for gamma/Z

Optional enable limit switches, actions will stop if any enabled limit switch is triggered (all are set
for delta)
#alpha_limit_enable false # Set to true to enable X min and max limit switches
#beta_limit_enable false # Set to true to enable Y min and max limit switches
#gamma_limit_enable false # Set to true to enable Z min and max limit

265

switches

Optional order in which axis will home, default is they all home at the same time,
If this is set it will force each axis to home one at a time in the specified order
#homing_order XYZ # X axis followed by Y then Z last
#move_to_origin_after_home false # Move XY to 0,0 after homing
#endstop_debounce_count 100 # Uncomment if you get noise on your
endstops, default is 100
#endstop_debounce_ms 1 # Uncomment if you get noise on your endstops,
default is 1 millisecond debounce
#home_z_first true # Uncomment and set to true to home the Z first,
otherwise Z homes after XY

End of endstop config
Delete the above endstop section and uncomment next line and copy and edit Snippets/abc-end-
stop.config file to enable endstops for ABC axis
#include abc-endstop.config

Z-probe
See http://smoothieware.org/zprobe
zprobe.enable false # Set to true to enable a zprobe
zprobe.probe_pin 1.28!^ # Pin probe is attached to, if NC remove the !
zprobe.slow_feedrate 5 # Mm/sec probe feed rate
#zprobe.debounce_count 100 # Set if noisy
zprobe.fast_feedrate 100 # Move feedrate mm/sec
zprobe.probe_height 5 # How much above bed to start probe
#gamma_min_endstop nc # Normally 1.28. Change to nc to prevent
conflict,

Levelling strategy
Example for 3-point levelling strategy, see wiki documentation for other strategies
#leveling-strategy.three-point-leveling.enable true # a leveling strategy that probes three
points to define a plane and keeps the Z parallel to that plane
#leveling-strategy.three-point-leveling.point1 100.0,0.0 # the first probe point (x,y) optional
may be defined with M557
#leveling-strategy.three-point-leveling.point2 200.0,200.0 # the second probe point (x,y)
#leveling-strategy.three-point-leveling.point3 0.0,200.0 # the third probe point (x,y)
#leveling-strategy.three-point-leveling.home_first true # home the XY axis before probing
#leveling-strategy.three-point-leveling.tolerance 0.03 # the probe tolerance in mm, anything
less that this will be ignored, default is 0.03mm
#leveling-strategy.three-point-leveling.probe_offsets 0,0,0 # the probe offsets from nozzle, must
be x,y,z, default is no offset
#leveling-strategy.three-point-leveling.save_plane false # set to true to allow the bed plane to
be saved with M500 default is false

Panel
See http://smoothieware.org/panel
Please find your panel on the wiki and copy/paste the right configuration here

266

panel.enable false # Set to true to enable the panel code

Example for reprap discount GLCD
on glcd EXP1 is to left and EXP2 is to right, pin 1 is bottom left, pin 2 is top left etc.
+5v is EXP1 pin 10, Gnd is EXP1 pin 9
#panel.lcd reprap_discount_glcd #
#panel.spi_channel 0 # SPI channel to use ; GLCD EXP1 Pins 3,5 (MOSI,
SCLK)
#panel.spi_cs_pin 0.16 # SPI chip select ; GLCD EXP1 Pin 4
#panel.encoder_a_pin 3.25!^ # Encoder pin ; GLCD EXP2 Pin 3
#panel.encoder_b_pin 3.26!^ # Encoder pin ; GLCD EXP2 Pin 5
#panel.click_button_pin 1.30!^ # Click button ; GLCD EXP1 Pin 2
#panel.buzz_pin 1.31 # Pin for buzzer ; GLCD EXP1 Pin 1
#panel.back_button_pin 2.11!^ # Back button ; GLCD EXP2 Pin 8

panel.menu_offset 0 # Some panels will need 1 here

panel.alpha_jog_feedrate 6000 # X jogging feedrate in mm/min
panel.beta_jog_feedrate 6000 # Y jogging feedrate in mm/min
panel.gamma_jog_feedrate 200 # Z jogging feedrate in mm/min

panel.hotend_temperature 185 # Temp to set hotend when preheat is selected
panel.bed_temperature 60 # Temp to set bed when preheat is selected

Custom menus : Example of a custom menu entry, which will show up in the Custom entry.
NOTE _ gets converted to space in the menu and commands, | is used to separate multiple
commands
custom_menu.power_on.enable true #
custom_menu.power_on.name Power_on #
custom_menu.power_on.command M80 #

custom_menu.power_off.enable true #
custom_menu.power_off.name Power_off #
custom_menu.power_off.command M81 #

Network settings
See http://smoothieware.org/network
network.enable false # Enable the ethernet network services
network.webserver.enable true # Enable the webserver
network.telnet.enable true # Enable the telnet server
network.ip_address auto # Use dhcp to get ip address
Uncomment the 3 below to manually setup ip address
#network.ip_address 192.168.3.222 # The IP address
#network.ip_mask 255.255.255.0 # The ip mask
#network.ip_gateway 192.168.3.1 # The gateway address
#network.mac_override xx.xx.xx.xx.xx.xx # Override the mac address, only do this if
you have a conflict

267

System configuration
Serial communications configuration (baud rate defaults to 9600 if undefined)
For communication over the UART port, *not* the USB/Serial port
uart0.baud_rate 115200 # Baud rate for the default hardware (UART)
serial port

second_usb_serial_enable false # This enables a second USB serial port
#leds_disable true # Disable using leds after config loaded
#play_led_disable true # Disable the play led

Kill button maybe assigned to a different pin, set to the onboard pin by default
See http://smoothieware.org/killbutton
kill_button_enable true # Set to true to enable a kill button
kill_button_pin 2.12 # Kill button pin. default is same as pause button 2.12
(2.11 is another good choice)

#msd_disable false # Disable the MSD (USB SDCARD), see http://
smoothieware.org/troubleshooting#disable-msd
#dfu_enable false # For linux developers, set to true to enable DFU

Only needed on a smoothieboard
See http://smoothieware.org/currentcontrol
currentcontrol_module_enable true # Control stepper motor current via the
configuration file

268

GRBL Config File - Laser Controller Ver 1

/*
 config.h - compile time configuration
 Part of Grbl

 Copyright (c) 2012-2016 Sungeun K. Jeon for Gnea Research LLC
 Copyright (c) 2009-2011 Simen Svale Skogsrud

 Grbl is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 Grbl is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/

// This file contains compile-time configurations for Grbl’s internal system. For the most part,
// users will not need to directly modify these, but they are here for specific needs, i.e.
// performance tuning or adjusting to non-typical machines.

// IMPORTANT: Any changes here requires a full re-compiling of the source code to propagate
them.

#ifndef config_h
#define config_h
#include “grbl.h” // For Arduino IDE compatibility.

// Define CPU pin map and default settings.
// NOTE: OEMs can avoid the need to maintain/update the defaults.h and cpu_map.h files and use
only
// one configuration file by placing their specific defaults and pin map at the bottom of this file.
// If doing so, simply comment out these two defines and see instructions below.
#define DEFAULTS_GENERIC
#define CPU_MAP_ATMEGA328P // Arduino Uno CPU

// Serial baud rate
// #define BAUD_RATE 230400
#define BAUD_RATE 115200

269

// Define realtime command special characters. These characters are ‘picked-off’ directly from the
// serial read data stream and are not passed to the grbl line execution parser. Select characters
// that do not and must not exist in the streamed g-code program. ASCII control characters may be
// used, if they are available per user setup. Also, extended ASCII codes (>127), which are never in
// g-code programs, maybe selected for interface programs.
// NOTE: If changed, manually update help message in report.c.

#define CMD_RESET 0x18 // ctrl-x.
#define CMD_STATUS_REPORT ‘?’
#define CMD_CYCLE_START ‘~’
#define CMD_FEED_HOLD ‘!’

// NOTE: All override realtime commands must be in the extended ASCII character set, starting
// at character value 128 (0x80) and up to 255 (0xFF). If the normal set of realtime commands,
// such as status reports, feed hold, reset, and cycle start, are moved to the extended set
// space, serial.c’s RX ISR will need to be modified to accomodate the change.
// #define CMD_RESET 0x80
// #define CMD_STATUS_REPORT 0x81
// #define CMD_CYCLE_START 0x82
// #define CMD_FEED_HOLD 0x83
#define CMD_SAFETY_DOOR 0x84
#define CMD_JOG_CANCEL 0x85
#define CMD_DEBUG_REPORT 0x86 // Only when DEBUG enabled, sends debug report in ‘{}’
braces.
#define CMD_FEED_OVR_RESET 0x90 // Restores feed override value to 100%.
#define CMD_FEED_OVR_COARSE_PLUS 0x91
#define CMD_FEED_OVR_COARSE_MINUS 0x92
#define CMD_FEED_OVR_FINE_PLUS 0x93
#define CMD_FEED_OVR_FINE_MINUS 0x94
#define CMD_RAPID_OVR_RESET 0x95 // Restores rapid override value to 100%.
#define CMD_RAPID_OVR_MEDIUM 0x96
#define CMD_RAPID_OVR_LOW 0x97
// #define CMD_RAPID_OVR_EXTRA_LOW 0x98 // *NOT SUPPORTED*
#define CMD_SPINDLE_OVR_RESET 0x99 // Restores spindle override value to 100%.
#define CMD_SPINDLE_OVR_COARSE_PLUS 0x9A
#define CMD_SPINDLE_OVR_COARSE_MINUS 0x9B
#define CMD_SPINDLE_OVR_FINE_PLUS 0x9C
#define CMD_SPINDLE_OVR_FINE_MINUS 0x9D
#define CMD_SPINDLE_OVR_STOP 0x9E
#define CMD_COOLANT_FLOOD_OVR_TOGGLE 0xA0
#define CMD_COOLANT_MIST_OVR_TOGGLE 0xA1

// If homing is enabled, homing init lock sets Grbl into an alarm state upon power up. This forces
// the user to perform the homing cycle (or override the locks) before doing anything else. This is
// mainly a safety feature to remind the user to home, since position is unknown to Grbl.
#define HOMING_INIT_LOCK // Comment to disable

// Define the homing cycle patterns with bitmasks. The homing cycle first performs a search mode

270

// to quickly engage the limit switches, followed by a slower locate mode, and finished by a short
// pull-off motion to disengage the limit switches. The following HOMING_CYCLE_x defines are
executed
// in order starting with suffix 0 and completes the homing routine for the specified-axes only. If
// an axis is omitted from the defines, it will not home, nor will the system update its position.
// Meaning that this allows for users with non-standard cartesian machines, such as a lathe (x then
z,
// with no y), to configure the homing cycle behavior to their needs.
// NOTE: The homing cycle is designed to allow sharing of limit pins, if the axes are not in the same
// cycle, but this requires some pin settings changes in cpu_map.h file. For example, the default
homing
// cycle can share the Z limit pin with either X or Y limit pins, since they are on different cycles.
// By sharing a pin, this frees up a precious IO pin for other purposes. In theory, all axes limit pins
// may be reduced to one pin, if all axes are homed with seperate cycles, or vice versa, all three
axes
// on separate pin, but homed in one cycle. Also, it should be noted that the function of hard limits
// will not be affected by pin sharing.
// NOTE: Defaults are set for a traditional 3-axis CNC machine. Z-axis first to clear, followed by X &
Y.
#define HOMING_CYCLE_0 (1<<Z_AXIS) // REQUIRED: First move Z to clear workspace.
#define HOMING_CYCLE_1 ((1<<X_AXIS)|(1<<Y_AXIS)) // OPTIONAL: Then move X,Y at the
same time.
// #define HOMING_CYCLE_2 // OPTIONAL: Uncomment and add axes mask to
enable

// NOTE: The following are two examples to setup homing for 2-axis machines.
// #define HOMING_CYCLE_0 ((1<<X_AXIS)|(1<<Y_AXIS)) // NOT COMPATIBLE WITH
COREXY: Homes both X-Y in one cycle.

// #define HOMING_CYCLE_0 (1<<X_AXIS) // COREXY COMPATIBLE: First home X
// #define HOMING_CYCLE_1 (1<<Y_AXIS) // COREXY COMPATIBLE: Then home Y

// Number of homing cycles performed after when the machine initially jogs to limit switches.
// This help in preventing overshoot and should improve repeatability. This value should be one or
// greater.
#define N_HOMING_LOCATE_CYCLE 1 // Integer (1-128)

// Enables single axis homing commands. $HX, $HY, and $HZ for X, Y, and Z-axis homing. The full
homing
// cycle is still invoked by the $H command. This is disabled by default. It’s here only to address
// users that need to switch between a two-axis and three-axis machine. This is actually very rare.
// If you have a two-axis machine, DON’T USE THIS. Instead, just alter the homing cycle for two-ax-
es.
// #define HOMING_SINGLE_AXIS_COMMANDS // Default disabled. Uncomment to enable.

// After homing, Grbl will set by default the entire machine space into negative space, as is typical
// for professional CNC machines, regardless of where the limit switches are located. Uncomment
this

271

// define to force Grbl to always set the machine origin at the homed location despite switch orien-
tation.
// #define HOMING_FORCE_SET_ORIGIN // Uncomment to enable.

// Number of blocks Grbl executes upon startup. These blocks are stored in EEPROM, where the
size
// and addresses are defined in settings.h. With the current settings, up to 2 startup blocks may
// be stored and executed in order. These startup blocks would typically be used to set the g-code
// parser state depending on user preferences.
#define N_STARTUP_LINE 2 // Integer (1-2)

// Number of floating decimal points printed by Grbl for certain value types. These settings are
// determined by realistic and commonly observed values in CNC machines. For example, position
// values cannot be less than 0.001mm or 0.0001in, because machines can not be physically more
// precise this. So, there is likely no need to change these, but you can if you need to here.
// NOTE: Must be an integer value from 0 to ~4. More than 4 may exhibit round-off errors.
#define N_DECIMAL_COORDVALUE_INCH 4 // Coordinate or position value in inches
#define N_DECIMAL_COORDVALUE_MM 3 // Coordinate or position value in mm
#define N_DECIMAL_RATEVALUE_INCH 1 // Rate or velocity value in in/min
#define N_DECIMAL_RATEVALUE_MM 0 // Rate or velocity value in mm/min
#define N_DECIMAL_SETTINGVALUE 3 // Decimals for floating point setting values
#define N_DECIMAL_RPMVALUE 0 // RPM value in rotations per min.

// If your machine has two limits switches wired in parallel to one axis, you will need to enable
// this feature. Since the two switches are sharing a single pin, there is no way for Grbl to tell
// which one is enabled. This option only effects homing, where if a limit is engaged, Grbl will
// alarm out and force the user to manually disengage the limit switch. Otherwise, if you have one
// limit switch for each axis, don’t enable this option. By keeping it disabled, you can perform a
// homing cycle while on the limit switch and not have to move the machine off of it.
// #define LIMITS_TWO_SWITCHES_ON_AXES

// Allows GRBL to track and report gcode line numbers. Enabling this means that the planning
buffer
// goes from 16 to 15 to make room for the additional line number data in the plan_block_t struct
// #define USE_LINE_NUMBERS // Disabled by default. Uncomment to enable.

// Upon a successful probe cycle, this option provides immediately feedback of the probe coordi-
nates
// through an automatically generated message. If disabled, users can still access the last probe
// coordinates through Grbl ‘$#’ print parameters.
#define MESSAGE_PROBE_COORDINATES // Enabled by default. Comment to disable.

// Enables a second coolant control pin via the mist coolant g-code command M7 on the Arduino
Uno
// analog pin 4. Only use this option if you require a second coolant control pin.
// NOTE: The M8 flood coolant control pin on analog pin 3 will still be functional regardless.
// #define ENABLE_M7 // Disabled by default. Uncomment to enable.

272

// This option causes the feed hold input to act as a safety door switch. A safety door, when trig-
gered,
// immediately forces a feed hold and then safely de-energizes the machine. Resuming is blocked
until
// the safety door is re-engaged. When it is, Grbl will re-energize the machine and then resume on
the
// previous tool path, as if nothing happened.
// #define ENABLE_SAFETY_DOOR_INPUT_PIN // Default disabled. Uncomment to enable.

// After the safety door switch has been toggled and restored, this setting sets the power-up delay
// between restoring the spindle and coolant and resuming the cycle.
#define SAFETY_DOOR_SPINDLE_DELAY 4.0 // Float (seconds)
#define SAFETY_DOOR_COOLANT_DELAY 1.0 // Float (seconds)

// Enable CoreXY kinematics. Use ONLY with CoreXY machines.
// IMPORTANT: If homing is enabled, you must reconfigure the homing cycle #defines above to
// #define HOMING_CYCLE_0 (1<<X_AXIS) and #define HOMING_CYCLE_1 (1<<Y_AXIS)
// NOTE: This configuration option alters the motion of the X and Y axes to principle of operation
// defined at (http://corexy.com/theory.html). Motors are assumed to positioned and wired exactly
as
// described, if not, motions may move in strange directions. Grbl requires the CoreXY A and B
motors
// have the same steps per mm internally.
// #define COREXY // Default disabled. Uncomment to enable.

// Inverts pin logic of the control command pins based on a mask. This essentially means you can
use
// normally-closed switches on the specified pins, rather than the default normally-open switches.
// NOTE: The top option will mask and invert all control pins. The bottom option is an example of
// inverting only two control pins, the safety door and reset. See cpu_map.h for other bit definitions.
// #define INVERT_CONTROL_PIN_MASK CONTROL_MASK // Default disabled. Uncomment to
disable.
// #define INVERT_CONTROL_PIN_MASK ((1<<CONTROL_SAFETY_DOOR_BIT)|(CONTROL_
RESET_BIT)) // Default disabled.

// Inverts select limit pin states based on the following mask. This effects all limit pin functions,
// such as hard limits and homing. However, this is different from overall invert limits setting.
// This build option will invert only the limit pins defined here, and then the invert limits setting
// will be applied to all of them. This is useful when a user has a mixed set of limit pins with both
// normally-open(NO) and normally-closed(NC) switches installed on their machine.
// NOTE: PLEASE DO NOT USE THIS, unless you have a situation that needs it.
// #define INVERT_LIMIT_PIN_MASK ((1<<X_LIMIT_BIT)|(1<<Y_LIMIT_BIT))
// Default disabled. Uncomment to enable.

// Inverts the spindle enable pin from low-disabled/high-enabled to low-enabled/high-disabled.
Useful
// for some pre-built electronic boards.
// NOTE: If VARIABLE_SPINDLE is enabled(default), this option has no effect as the PWM output

273

and
// spindle enable are combined to one pin. If you need both this option and spindle speed PWM,
// uncomment the config option USE_SPINDLE_DIR_AS_ENABLE_PIN below.
// #define INVERT_SPINDLE_ENABLE_PIN // Default disabled. Uncomment to enable.

// Inverts the selected coolant pin from low-disabled/high-enabled to low-enabled/high-disabled.
Useful
// for some pre-built electronic boards.
// #define INVERT_COOLANT_FLOOD_PIN // Default disabled. Uncomment to enable.
// #define INVERT_COOLANT_MIST_PIN // Default disabled. Note: Enable M7 mist coolant in
config.h

// When Grbl powers-cycles or is hard reset with the Arduino reset button, Grbl boots up with no
ALARM
// by default. This is to make it as simple as possible for new users to start using Grbl. When homing
// is enabled and a user has installed limit switches, Grbl will boot up in an ALARM state to indicate
// Grbl doesn’t know its position and to force the user to home before proceeding. This option
forces
// Grbl to always initialize into an ALARM state regardless of homing or not. This option is more for
// OEMs and LinuxCNC users that would like this power-cycle behavior.
// #define FORCE_INITIALIZATION_ALARM // Default disabled. Uncomment to enable.

// At power-up or a reset, Grbl will check the limit switch states to ensure they are not active
// before initialization. If it detects a problem and the hard limits setting is enabled, Grbl will
// simply message the user to check the limits and enter an alarm state, rather than idle. Grbl will
// not throw an alarm message.
#define CHECK_LIMITS_AT_INIT

// ---
// ADVANCED CONFIGURATION OPTIONS:

// Enables code for debugging purposes. Not for general use and always in constant flux.
// #define DEBUG // Uncomment to enable. Default disabled.

// Configure rapid, feed, and spindle override settings. These values define the max and min
// allowable override values and the coarse and fine increments per command received. Please
// note the allowable values in the descriptions following each define.
#define DEFAULT_FEED_OVERRIDE 100 // 100%. Don’t change this value.
#define MAX_FEED_RATE_OVERRIDE 200 // Percent of programmed feed rate (100-255).
Usually 120% or 200%
#define MIN_FEED_RATE_OVERRIDE 10 // Percent of programmed feed rate (1-100).
Usually 50% or 1%
#define FEED_OVERRIDE_COARSE_INCREMENT 10 // (1-99). Usually 10%.
#define FEED_OVERRIDE_FINE_INCREMENT 1 // (1-99). Usually 1%.

#define DEFAULT_RAPID_OVERRIDE 100 // 100%. Don’t change this value.
#define RAPID_OVERRIDE_MEDIUM 50 // Percent of rapid (1-99). Usually 50%.
#define RAPID_OVERRIDE_LOW 25 // Percent of rapid (1-99). Usually 25%.

274

// #define RAPID_OVERRIDE_EXTRA_LOW 5 // *NOT SUPPORTED* Percent of rapid (1-99).
Usually 5%.

#define DEFAULT_SPINDLE_SPEED_OVERRIDE 100 // 100%. Don’t change this value.
#define MAX_SPINDLE_SPEED_OVERRIDE 200 // Percent of programmed spindle speed
(100-255). Usually 200%.
#define MIN_SPINDLE_SPEED_OVERRIDE 10 // Percent of programmed spindle speed (1-
100). Usually 10%.
#define SPINDLE_OVERRIDE_COARSE_INCREMENT 10 // (1-99). Usually 10%.
#define SPINDLE_OVERRIDE_FINE_INCREMENT 1 // (1-99). Usually 1%.

// When a M2 or M30 program end command is executed, most g-code states are restored to their
defaults.
// This compile-time option includes the restoring of the feed, rapid, and spindle speed override
values
// to their default values at program end.
#define RESTORE_OVERRIDES_AFTER_PROGRAM_END // Default enabled. Comment to disable.

// The status report change for Grbl v1.1 and after also removed the ability to disable/enable most
data
// fields from the report. This caused issues for GUI developers, who’ve had to manage several
scenarios
// and configurations. The increased efficiency of the new reporting style allows for all data fields to
// be sent without potential performance issues.
// NOTE: The options below are here only provide a way to disable certain data fields if a unique
// situation demands it, but be aware GUIs may depend on this data. If disabled, it may not be
compatible.
#define REPORT_FIELD_BUFFER_STATE // Default enabled. Comment to disable.
#define REPORT_FIELD_PIN_STATE // Default enabled. Comment to disable.
#define REPORT_FIELD_CURRENT_FEED_SPEED // Default enabled. Comment to disable.
#define REPORT_FIELD_WORK_COORD_OFFSET // Default enabled. Comment to disable.
#define REPORT_FIELD_OVERRIDES // Default enabled. Comment to disable.
#define REPORT_FIELD_LINE_NUMBERS // Default enabled. Comment to disable.

// Some status report data isn’t necessary for realtime, only intermittently, because the values don’t
// change often. The following macros configures how many times a status report needs to be
called before
// the associated data is refreshed and included in the status report. However, if one of these value
// changes, Grbl will automatically include this data in the next status report, regardless of what the
// count is at the time. This helps reduce the communication overhead involved with high frequency
reporting
// and agressive streaming. There is also a busy and an idle refresh count, which sets up Grbl to
send
// refreshes more often when its not doing anything important. With a good GUI, this data doesn’t
need
// to be refreshed very often, on the order of a several seconds.
// NOTE: WCO refresh must be 2 or greater. OVR refresh must be 1 or greater.
#define REPORT_OVR_REFRESH_BUSY_COUNT 20 // (1-255)

275

#define REPORT_OVR_REFRESH_IDLE_COUNT 10 // (1-255) Must be less than or equal to the
busy count
#define REPORT_WCO_REFRESH_BUSY_COUNT 30 // (2-255)
#define REPORT_WCO_REFRESH_IDLE_COUNT 10 // (2-255) Must be less than or equal to the
busy count

// The temporal resolution of the acceleration management subsystem. A higher number gives
smoother
// acceleration, particularly noticeable on machines that run at very high feedrates, but may nega-
tively
// impact performance. The correct value for this parameter is machine dependent, so it’s advised
to
// set this only as high as needed. Approximate successful values can widely range from 50 to 200
or more.
// NOTE: Changing this value also changes the execution time of a segment in the step segment
buffer.
// When increasing this value, this stores less overall time in the segment buffer and vice versa.
Make
// certain the step segment buffer is increased/decreased to account for these changes.
#define ACCELERATION_TICKS_PER_SECOND 100

// Adaptive Multi-Axis Step Smoothing (AMASS) is an advanced feature that does what its name
implies,
// smoothing the stepping of multi-axis motions. This feature smooths motion particularly at low
step
// frequencies below 10kHz, where the aliasing between axes of multi-axis motions can cause
audible
// noise and shake your machine. At even lower step frequencies, AMASS adapts and provides even
better
// step smoothing. See stepper.c for more details on the AMASS system works.
#define ADAPTIVE_MULTI_AXIS_STEP_SMOOTHING // Default enabled. Comment to disable.

// Sets the maximum step rate allowed to be written as a Grbl setting. This option enables an error
// check in the settings module to prevent settings values that will exceed this limitation. The maxi-
mum
// step rate is strictly limited by the CPU speed and will change if something other than an AVR
running
// at 16MHz is used.
// NOTE: For now disabled, will enable if flash space permits.
// #define MAX_STEP_RATE_HZ 30000 // Hz

// By default, Grbl sets all input pins to normal-high operation with their internal pull-up resistors
// enabled. This simplifies the wiring for users by requiring only a switch connected to ground,
// although its recommended that users take the extra step of wiring in low-pass filter to reduce
// electrical noise detected by the pin. If the user inverts the pin in Grbl settings, this just flips
// which high or low reading indicates an active signal. In normal operation, this means the user
// needs to connect a normal-open switch, but if inverted, this means the user should connect a
// normal-closed switch.

276

// The following options disable the internal pull-up resistors, sets the pins to a normal-low
// operation, and switches must be now connect to Vcc instead of ground. This also flips the mean-
ing
// of the invert pin Grbl setting, where an inverted setting now means the user should connect a
// normal-open switch and vice versa.
// NOTE: All pins associated with the feature are disabled, i.e. XYZ limit pins, not individual axes.
// WARNING: When the pull-ups are disabled, this requires additional wiring with pull-down resis-
tors!
//#define DISABLE_LIMIT_PIN_PULL_UP
//#define DISABLE_PROBE_PIN_PULL_UP
//#define DISABLE_CONTROL_PIN_PULL_UP

// Sets which axis the tool length offset is applied. Assumes the spindle is always parallel with
// the selected axis with the tool oriented toward the negative direction. In other words, a positive
// tool length offset value is subtracted from the current location.
#define TOOL_LENGTH_OFFSET_AXIS Z_AXIS // Default z-axis. Valid values are X_AXIS, Y_AXIS,
or Z_AXIS.

// Enables variable spindle output voltage for different RPM values. On the Arduino Uno, the spindle
// enable pin will output 5V for maximum RPM with 256 intermediate levels and 0V when disabled.
// NOTE: IMPORTANT for Arduino Unos! When enabled, the Z-limit pin D11 and spindle enable pin
D12 switch!
// The hardware PWM output on pin D11 is required for variable spindle output voltages.
#define VARIABLE_SPINDLE // Default enabled. Comment to disable.

// Used by variable spindle output only. This forces the PWM output to a minimum duty cycle when
enabled.
// The PWM pin will still read 0V when the spindle is disabled. Most users will not need this option,
but
// it may be useful in certain scenarios. This minimum PWM settings coincides with the spindle rpm
minimum
// setting, like rpm max to max PWM. This is handy if you need a larger voltage difference between
0V disabled
// and the voltage set by the minimum PWM for minimum rpm. This difference is 0.02V per PWM
value. So, when
// minimum PWM is at 1, only 0.02 volts separate enabled and disabled. At PWM 5, this would be
0.1V. Keep
// in mind that you will begin to lose PWM resolution with increased minimum PWM values, since
you have less
// and less range over the total 255 PWM levels to signal different spindle speeds.
// NOTE: Compute duty cycle at the minimum PWM by this equation: (% duty cycle)=(SPINDLE_
PWM_MIN_VALUE/255)*100
// #define SPINDLE_PWM_MIN_VALUE 5 // Default disabled. Uncomment to enable. Must be
greater than zero. Integer (1-255).

// By default on a 328p(Uno), Grbl combines the variable spindle PWM and the enable into one pin
to help
// preserve I/O pins. For certain setups, these may need to be separate pins. This configure option

277

uses
// the spindle direction pin(D13) as a separate spindle enable pin along with spindle speed PWM on
pin D11.
// NOTE: This configure option only works with VARIABLE_SPINDLE enabled and a 328p processor
(Uno).
// NOTE: Without a direction pin, M4 will not have a pin output to indicate a difference with M3.
// NOTE: BEWARE! The Arduino bootloader toggles the D13 pin when it powers up. If you flash Grbl
with
// a programmer (you can use a spare Arduino as “Arduino as ISP”. Search the web on how to wire
this.),
// this D13 LED toggling should go away. We haven’t tested this though. Please report how it goes!
// #define USE_SPINDLE_DIR_AS_ENABLE_PIN // Default disabled. Uncomment to enable.

// Alters the behavior of the spindle enable pin with the USE_SPINDLE_DIR_AS_ENABLE_PIN
option . By default,
// Grbl will not disable the enable pin if spindle speed is zero and M3/4 is active, but still sets the
PWM
// output to zero. This allows the users to know if the spindle is active and use it as an additional
control
// input. However, in some use cases, user may want the enable pin to disable with a zero spindle
speed and
// re-enable when spindle speed is greater than zero. This option does that.
// NOTE: Requires USE_SPINDLE_DIR_AS_ENABLE_PIN to be enabled.
// #define SPINDLE_ENABLE_OFF_WITH_ZERO_SPEED // Default disabled. Uncomment to
enable.

// With this enabled, Grbl sends back an echo of the line it has received, which has been pre-parsed
(spaces
// removed, capitalized letters, no comments) and is to be immediately executed by Grbl. Echoes
will not be
// sent upon a line buffer overflow, but should for all normal lines sent to Grbl. For example, if a user
// sendss the line ‘g1 x1.032 y2.45 (test comment)’, Grbl will echo back in the form ‘[echo: G1X-
1.032Y2.45]’.
// NOTE: Only use this for debugging purposes!! When echoing, this takes up valuable resources
and can effect
// performance. If absolutely needed for normal operation, the serial write buffer should be greatly
increased
// to help minimize transmission waiting within the serial write protocol.
// #define REPORT_ECHO_LINE_RECEIVED // Default disabled. Uncomment to enable.

// Minimum planner junction speed. Sets the default minimum junction speed the planner plans to
at
// every buffer block junction, except for starting from rest and end of the buffer, which are always
// zero. This value controls how fast the machine moves through junctions with no regard for accel-
eration
// limits or angle between neighboring block line move directions. This is useful for machines that
can’t
// tolerate the tool dwelling for a split second, i.e. 3d printers or laser cutters. If used, this value

278

// should not be much greater than zero or to the minimum value necessary for the machine to
work.
#define MINIMUM_JUNCTION_SPEED 0.0 // (mm/min)

// Sets the minimum feed rate the planner will allow. Any value below it will be set to this minimum
// value. This also ensures that a planned motion always completes and accounts for any float-
ing-point
// round-off errors. Although not recommended, a lower value than 1.0 mm/min will likely work in
smaller
// machines, perhaps to 0.1mm/min, but your success may vary based on multiple factors.
#define MINIMUM_FEED_RATE 1.0 // (mm/min)

// Number of arc generation iterations by small angle approximation before exact arc trajectory
// correction with expensive sin() and cos() calcualtions. This parameter maybe decreased if there
// are issues with the accuracy of the arc generations, or increased if arc execution is getting
// bogged down by too many trig calculations.
#define N_ARC_CORRECTION 12 // Integer (1-255)

// The arc G2/3 g-code standard is problematic by definition. Radius-based arcs have horrible
numerical
// errors when arc at semi-circles(pi) or full-circles(2*pi). Offset-based arcs are much more accu-
rate
// but still have a problem when arcs are full-circles (2*pi). This define accounts for the floating
// point issues when offset-based arcs are commanded as full circles, but get interpreted as ex-
tremely
// small arcs with around machine epsilon (1.2e-7rad) due to numerical round-off and precision
issues.
// This define value sets the machine epsilon cutoff to determine if the arc is a full-circle or not.
// NOTE: Be very careful when adjusting this value. It should always be greater than 1.2e-7 but not
too
// much greater than this. The default setting should capture most, if not all, full arc error situations.
#define ARC_ANGULAR_TRAVEL_EPSILON 5E-7 // Float (radians)

// Time delay increments performed during a dwell. The default value is set at 50ms, which provides
// a maximum time delay of roughly 55 minutes, more than enough for most any application.
Increasing
// this delay will increase the maximum dwell time linearly, but also reduces the responsiveness of
// run-time command executions, like status reports, since these are performed between each
dwell
// time step. Also, keep in mind that the Arduino delay timer is not very accurate for long delays.
#define DWELL_TIME_STEP 50 // Integer (1-255) (milliseconds)

// Creates a delay between the direction pin setting and corresponding step pulse by creating
// another interrupt (Timer2 compare) to manage it. The main Grbl interrupt (Timer1 compare)
// sets the direction pins, and does not immediately set the stepper pins, as it would in
// normal operation. The Timer2 compare fires next to set the stepper pins after the step
// pulse delay time, and Timer2 overflow will complete the step pulse, except now delayed
// by the step pulse time plus the step pulse delay. (Thanks langwadt for the idea!)

279

// NOTE: Uncomment to enable. The recommended delay must be > 3us, and, when added with the
// user-supplied step pulse time, the total time must not exceed 127us. Reported successful
// values for certain setups have ranged from 5 to 20us.
// #define STEP_PULSE_DELAY 10 // Step pulse delay in microseconds. Default disabled.

// The number of linear motions in the planner buffer to be planned at any give time. The vast
// majority of RAM that Grbl uses is based on this buffer size. Only increase if there is extra
// available RAM, like when re-compiling for a Mega2560. Or decrease if the Arduino begins to
// crash due to the lack of available RAM or if the CPU is having trouble keeping up with planning
// new incoming motions as they are executed.
// #define BLOCK_BUFFER_SIZE 16 // Uncomment to override default in planner.h.

// Governs the size of the intermediary step segment buffer between the step execution algorithm
// and the planner blocks. Each segment is set of steps executed at a constant velocity over a
// fixed time defined by ACCELERATION_TICKS_PER_SECOND. They are computed such that the
planner
// block velocity profile is traced exactly. The size of this buffer governs how much step
// execution lead time there is for other Grbl processes have to compute and do their thing
// before having to come back and refill this buffer, currently at ~50msec of step moves.
// #define SEGMENT_BUFFER_SIZE 6 // Uncomment to override default in stepper.h.

// Line buffer size from the serial input stream to be executed. Also, governs the size of
// each of the startup blocks, as they are each stored as a string of this size. Make sure
// to account for the available EEPROM at the defined memory address in settings.h and for
// the number of desired startup blocks.
// NOTE: 80 characters is not a problem except for extreme cases, but the line buffer size
// can be too small and g-code blocks can get truncated. Officially, the g-code standards
// support up to 256 characters. In future versions, this default will be increased, when
// we know how much extra memory space we can re-invest into this.
// #define LINE_BUFFER_SIZE 80 // Uncomment to override default in protocol.h

// Serial send and receive buffer size. The receive buffer is often used as another streaming
// buffer to store incoming blocks to be processed by Grbl when its ready. Most streaming
// interfaces will character count and track each block send to each block response. So,
// increase the receive buffer if a deeper receive buffer is needed for streaming and avaiable
// memory allows. The send buffer primarily handles messages in Grbl. Only increase if large
// messages are sent and Grbl begins to stall, waiting to send the rest of the message.
// NOTE: Grbl generates an average status report in about 0.5msec, but the serial TX stream at
// 115200 baud will take 5 msec to transmit a typical 55 character report. Worst case reports are
// around 90-100 characters. As long as the serial TX buffer doesn’t get continually maxed, Grbl
// will continue operating efficiently. Size the TX buffer around the size of a worst-case report.
// #define RX_BUFFER_SIZE 128 // (1-254) Uncomment to override defaults in serial.h
// #define TX_BUFFER_SIZE 100 // (1-254)

// A simple software debouncing feature for hard limit switches. When enabled, the interrupt
// monitoring the hard limit switch pins will enable the Arduino’s watchdog timer to re-check
// the limit pin state after a delay of about 32msec. This can help with CNC machines with
// problematic false triggering of their hard limit switches, but it WILL NOT fix issues with

280

// electrical interference on the signal cables from external sources. It’s recommended to first
// use shielded signal cables with their shielding connected to ground (old USB/computer cables
// work well and are cheap to find) and wire in a low-pass circuit into each limit pin.
// #define ENABLE_SOFTWARE_DEBOUNCE // Default disabled. Uncomment to enable.

// Configures the position after a probing cycle during Grbl’s check mode. Disabled sets
// the position to the probe target, when enabled sets the position to the start position.
// #define SET_CHECK_MODE_PROBE_TO_START // Default disabled. Uncomment to enable.

// Force Grbl to check the state of the hard limit switches when the processor detects a pin
// change inside the hard limit ISR routine. By default, Grbl will trigger the hard limits
// alarm upon any pin change, since bouncing switches can cause a state check like this to
// misread the pin. When hard limits are triggered, they should be 100% reliable, which is the
// reason that this option is disabled by default. Only if your system/electronics can guarantee
// that the switches don’t bounce, we recommend enabling this option. This will help prevent
// triggering a hard limit when the machine disengages from the switch.
// NOTE: This option has no effect if SOFTWARE_DEBOUNCE is enabled.
// #define HARD_LIMIT_FORCE_STATE_CHECK // Default disabled. Uncomment to enable.

// Adjusts homing cycle search and locate scalars. These are the multipliers used by Grbl’s
// homing cycle to ensure the limit switches are engaged and cleared through each phase of
// the cycle. The search phase uses the axes max-travel setting times the SEARCH_SCALAR to
// determine distance to look for the limit switch. Once found, the locate phase begins and
// uses the homing pull-off distance setting times the LOCATE_SCALAR to pull-off and re-engage
// the limit switch.
// NOTE: Both of these values must be greater than 1.0 to ensure proper function.
// #define HOMING_AXIS_SEARCH_SCALAR 1.5 // Uncomment to override defaults in limits.c.
// #define HOMING_AXIS_LOCATE_SCALAR 10.0 // Uncomment to override defaults in limits.c.

// Enable the ‘$RST=*’, ‘$RST=$’, and ‘$RST=#’ eeprom restore commands. There are cases where
// these commands may be undesirable. Simply comment the desired macro to disable it.
// NOTE: See SETTINGS_RESTORE_ALL macro for customizing the `$RST=*` command.
#define ENABLE_RESTORE_EEPROM_WIPE_ALL // ‘$RST=*’ Default enabled. Comment to
disable.
#define ENABLE_RESTORE_EEPROM_DEFAULT_SETTINGS // ‘$RST=$’ Default enabled. Com-
ment to disable.
#define ENABLE_RESTORE_EEPROM_CLEAR_PARAMETERS // ‘$RST=#’ Default enabled. Com-
ment to disable.

// Defines the EEPROM data restored upon a settings version change and `$RST=*` command.
Whenever the
// the settings or other EEPROM data structure changes between Grbl versions, Grbl will automat-
ically
// wipe and restore the EEPROM. This macro controls what data is wiped and restored. This is
useful
// particularily for OEMs that need to retain certain data. For example, the BUILD_INFO string can
be
// written into the Arduino EEPROM via a seperate .INO sketch to contain product data. Altering this

281

// macro to not restore the build info EEPROM will ensure this data is retained after firmware
upgrades.
// NOTE: Uncomment to override defaults in settings.h
// #define SETTINGS_RESTORE_ALL (SETTINGS_RESTORE_DEFAULTS | SETTINGS_RESTORE_
PARAMETERS | SETTINGS_RESTORE_STARTUP_LINES | SETTINGS_RESTORE_BUILD_INFO)

// Enable the ‘$I=(string)’ build info write command. If disabled, any existing build info data must
// be placed into EEPROM via external means with a valid checksum value. This macro option is
useful
// to prevent this data from being over-written by a user, when used to store OEM product data.
// NOTE: If disabled and to ensure Grbl can never alter the build info line, you’ll also need to enable
// the SETTING_RESTORE_ALL macro above and remove SETTINGS_RESTORE_BUILD_INFO
from the mask.
// NOTE: See the included grblWrite_BuildInfo.ino example file to write this string seperately.
#define ENABLE_BUILD_INFO_WRITE_COMMAND // ‘$I=’ Default enabled. Comment to disable.

// AVR processors require all interrupts to be disabled during an EEPROM write. This includes both
// the stepper ISRs and serial comm ISRs. In the event of a long EEPROM write, this ISR pause can
// cause active stepping to lose position and serial receive data to be lost. This configuration
// option forces the planner buffer to completely empty whenever the EEPROM is written to prevent
// any chance of lost steps.
// However, this doesn’t prevent issues with lost serial RX data during an EEPROM write, especially
// if a GUI is premptively filling up the serial RX buffer simultaneously. It’s highly advised for
// GUIs to flag these gcodes (G10,G28.1,G30.1) to always wait for an ‘ok’ after a block containing
// one of these commands before sending more data to eliminate this issue.
// NOTE: Most EEPROM write commands are implicitly blocked during a job (all ‘$’ commands).
However,
// coordinate set g-code commands (G10,G28/30.1) are not, since they are part of an active
streaming
// job. At this time, this option only forces a planner buffer sync with these g-code commands.
#define FORCE_BUFFER_SYNC_DURING_EEPROM_WRITE // Default enabled. Comment to
disable.

// In Grbl v0.9 and prior, there is an old outstanding bug where the `WPos:` work position reported
// may not correlate to what is executing, because `WPos:` is based on the g-code parser state,
which
// can be several motions behind. This option forces the planner buffer to empty, sync, and stop
// motion whenever there is a command that alters the work coordinate offsets
`G10,G43.1,G92,G54-59`.
// This is the simplest way to ensure `WPos:` is always correct. Fortunately, it’s exceedingly rare
// that any of these commands are used need continuous motions through them.
#define FORCE_BUFFER_SYNC_DURING_WCO_CHANGE // Default enabled. Comment to dis-
able.

// By default, Grbl disables feed rate overrides for all G38.x probe cycle commands. Although this
// may be different than some pro-class machine control, it’s arguable that it should be this way.
// Most probe sensors produce different levels of error that is dependent on rate of speed. By
// keeping probing cycles to their programmed feed rates, the probe sensor should be a lot more

282

// repeatable. If needed, you can disable this behavior by uncommenting the define below.
// #define ALLOW_FEED_OVERRIDE_DURING_PROBE_CYCLES // Default disabled. Uncomment
to enable.

// Enables and configures parking motion methods upon a safety door state. Primarily for OEMs
// that desire this feature for their integrated machines. At the moment, Grbl assumes that
// the parking motion only involves one axis, although the parking implementation was written
// to be easily refactored for any number of motions on different axes by altering the parking
// source code. At this time, Grbl only supports parking one axis (typically the Z-axis) that
// moves in the positive direction upon retracting and negative direction upon restoring position.
// The motion executes with a slow pull-out retraction motion, power-down, and a fast park.
// Restoring to the resume position follows these set motions in reverse: fast restore to
// pull-out position, power-up with a time-out, and plunge back to the original position at the
// slower pull-out rate.
// NOTE: Still a work-in-progress. Machine coordinates must be in all negative space and
// does not work with HOMING_FORCE_SET_ORIGIN enabled. Parking motion also moves only in
// positive direction.
// #define PARKING_ENABLE // Default disabled. Uncomment to enable

// Configure options for the parking motion, if enabled.
#define PARKING_AXIS Z_AXIS // Define which axis that performs the parking motion
#define PARKING_TARGET -5.0 // Parking axis target. In mm, as machine coordinate [-max_trav-
el,0].
#define PARKING_RATE 500.0 // Parking fast rate after pull-out in mm/min.
#define PARKING_PULLOUT_RATE 100.0 // Pull-out/plunge slow feed rate in mm/min.
#define PARKING_PULLOUT_INCREMENT 5.0 // Spindle pull-out and plunge distance in mm.
Incremental distance.
 // Must be positive value or equal to zero.

// Enables a special set of M-code commands that enables and disables the parking motion.
// These are controlled by `M56`, `M56 P1`, or `M56 Px` to enable and `M56 P0` to disable.
// The command is modal and will be set after a planner sync. Since it is g-code, it is
// executed in sync with g-code commands. It is not a real-time command.
// NOTE: PARKING_ENABLE is required. By default, M56 is active upon initialization. Use
// DEACTIVATE_PARKING_UPON_INIT to set M56 P0 as the power-up default.
// #define ENABLE_PARKING_OVERRIDE_CONTROL // Default disabled. Uncomment to enable
// #define DEACTIVATE_PARKING_UPON_INIT // Default disabled. Uncomment to enable.

// This option will automatically disable the laser during a feed hold by invoking a spindle stop
// override immediately after coming to a stop. However, this also means that the laser still may
// be reenabled by disabling the spindle stop override, if needed. This is purely a safety feature
// to ensure the laser doesn’t inadvertently remain powered while at a stop and cause a fire.
#define DISABLE_LASER_DURING_HOLD // Default enabled. Comment to disable.

/* ---
 OEM Single File Configuration Option

 Instructions: Paste the cpu_map and default setting definitions below without an enclosing

283

 #ifdef. Comment out the CPU_MAP_xxx and DEFAULT_xxx defines at the top of this file, and
 the compiler will ignore the contents of defaults.h and cpu_map.h and use the definitions
 below.
*/

// Paste CPU_MAP definitions here.

// Paste default settings definitions here.

#endif

