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Abstract 

 

This thesis investigates the effect of warm forming (up to 350⁰C) on the formability and springback 

behavior of AA3003/AA4045 brazing sheet (0.2 mm gauge) for three temper conditions: O-, H22- 

and H24-tempers. The geometry under study is referred as a surrogate heat-exchanger component 

(SHC) and contains complex features found on commercial automotive thermal management 

systems. 

 

The hardening behavior of the material was modeled with the well-known extended Nadai 

phenomenological model, which captured the thermal softening, strain rate sensitivity and negative 

hardening behavior at elevated temperatures. Tensile simulations were performed and compared 

to the experimental results, demonstrating good agreement. 

 

Four tooling configurations that consider different die designs, blank geometries, and forming 

method were developed to improve the formability and wrinkling behavior associated with the 

aggressive geometries found in the SHC. Finite element models were used to predict the results of 

the tooling configurations in the development process. The tooling configuration with the best 

formability, wrinkling behavior and process efficiency was selected. Formability improvement 

was not clearly observed with the warm forming process. However, preliminary observations show 

that the reduction in springback using warm forming was very effective. 

 

With the selected tooling configuration, more in-depth springback characterization was completed 

for a wide range of forming process parameters such as: temperature, punch load, sheet direction, 

and holding time. At room temperature, H22- and H24-tempers exhibited significantly higher 

springback compared to O-temper, which can be attributed to the higher strength of the harder 

tempers. The effect of warm forming on springback was negligible for the O-temper but significant 

for harder tempers. For H24, a springback reduction up to 88% was observed at 325⁰C relative to 

room temperature at high punch load condition. 

 

Numerical simulations were performed to predict the springback and were compared to the 

experiments. The simulations considered several different factors that affect springback behavior 
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such as through-thickness compression, thermal expansion and bi-metallic strength gradient. The 

simulation results qualitatively captured the effect of temperature on springback in the experiments 

with moderate quantitative agreement. The largest discrepancy was associated with an inability of 

the model to accurately predict the effect of punch load on springback. 

 

Overall, this study has served to characterize warm forming technology for a potential commercial 

application in the automotive heat exchanger industry. It was shown that the warm forming process 

did not offer significant benefit in terms of formability and wrinkling behavior; tooling 

optimization was more effective for formability and wrinkle control. However, warm forming was 

very beneficial in reducing springback, thus adoption of this technology should be very useful in 

applications where part dimensional accuracy is critical. 
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1 Introduction 

 

 

For decades, the automotive industry has been dominated by internal combustion engines. 

However, with more strict regulations on fuel economy and emissions, the industry is being pushed 

towards electric vehicles and hybrid electric vehicles (EVs and HEVs) that use batteries as energy 

storage systems. The batteries in EVs and HEVs require effective thermal management since 

batteries have a very narrow operating temperature range for optimal performance and cycle life 

[1]. For example, the performance of Lithium-ion cells widely used in EVs and HEVs degrades at 

temperature beyond 65⁰C or below 0⁰C [2]. Therefore, automotive manufacturers integrate 

thermal management systems within their vehicles’ battery pack design. For high energy density 

batteries, an active liquid cooling system is used for the most efficient results [3]. Typically, the 

battery pack comprises stacks of rectangular cells with cooling plates sandwiched in between the 

cells. The battery cooling plate (Figure 1) consists of very shallow serpentine channels through 

which a coolant is pumped to extract heat from the battery cells. 

 

 

Figure 1: A typical battery cooling plate by Dana Canada Corporation [4] 
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The favored material choice for the battery cooling plate has been aluminum alloy sheet because 

aluminum alloys have high strength-to-weight ratio, good thermal conductivity and good corrosion 

resistance. The most common way of utilizing aluminum alloys in the manufacture of the battery 

cooling plate is in the form of brazing sheets [5]. An aluminum alloy brazing sheet is a laminate 

composite structure consisting of an AA3XXX core alloy that provides structural strength and an 

AA4XXX clad alloy with lower melting temperature as a filler metal. During the brazing process, 

the clad alloy melts and joins the two halves of the battery plates together via a process of wetting 

and capillary action.   

 

Unfortunately, brazing sheet materials can exhibit poor formability and excessive springback; this 

is particularly the case for brazing sheet with harder tempers (e.g. H22 or H24) which are higher 

strength and more durable compared to softer, more easily formed O-temper sheet. These 

limitations are normally overcome using complex forming operations using multi-stage 

progressive die systems that are expensive. The current work is focused on utilizing warm forming 

techniques to improve the formability and springback behavior of aluminum alloy brazing sheet, 

ideally reducing the complexity of the required tooling systems. A small-scale component that is 

fully representative of the commercial battery plate is developed which will provide useful insights 

regarding warm forming at a component-level. Forming experiments are performed with several 

different tooling configurations and a wide range of process parameters are considered for the 

springback control. Numerical models are also developed to simulate and provide greater insight 

into the experiments.  

 

A description of the research results is provided starting in chapter 2 of this thesis. The balance of 

this chapter serves to introduce the current state of the art in terms of warm forming and simulation 

of forming processes. 

 

1.1 Warm Forming 

Generally, sheet metal forming is carried out at ambient temperature. In the automotive industry, 

low carbon steel has been a common material of choice due to its excellent formability at ambient 

temperature, reasonable strength and low cost. The application of aluminum alloys has been 
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limited because of their relative poor formability despite their high strength-to-weight ratio and 

corrosion resistance. In order to overcome the formability challenge, warm forming emerged as a 

promising solution in the 1970s, as it was discovered that an aluminum-magnesium alloy could 

achieve a total elongation of 300% at about 250⁰C [6]. Warm forming refers to the process of 

forming sheet metals at elevated temperatures below the recrystallization temperature. Warm 

forming improves the formability of aluminum alloys by strain rate hardening [7]. At elevated 

temperatures, aluminum alloys exhibit increased positive strain rate sensitivity that prevents 

localized necking by improving the uniformity of strain distribution and stabilizing any 

inhomogeneities [8,9]. The effect of warm forming can be further enhanced by applying a 

temperature gradient, but isothermal forming is often preferred due to the complexity of non-

isothermal tooling design. An additional benefit of warm forming is improved springback behavior 

due to decreased flow stress at elevated temperatures [10]. The reduction in flow stress is driven 

by the enhanced dynamic recovery mechanism at elevated temperatures [11]. A typical warm 

forming tooling schematic, in this case for non-isothermal warm forming, is shown in Figure 2. 

  

 

Figure 2: Warm forming tooling schematic[12] 

 

The increase in formability and improvement in springback characteristics that arise from warm 

forming could allow for parts with greater complexity to be formed and increase the usage of 

aluminum alloys in the automotive industry.  
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1.2 Formability 

Although aluminum alloys have seen some adoption in the automotive industry due to their high 

strength-to-weight ratio, their usage is limited due to their poor formability at room temperature in 

comparison to convention steel. The formability of sheet metal is measured based on what is 

known as the forming limit which is defined as the strain state at which a localized thinning 

initiates [13]. The two most important factors affecting the formability of sheet metal are the strain 

hardening exponent and strain rate sensitivity [14].  Initially, very little laboratory formability data 

for aluminum alloys existed, thus Hecker [15] performed a variety of process experiments (i.e. 

deep drawing, bending, flanging and stretching) on aluminum alloys at room temperature and 

compared the results to those of low carbon steel. It was found that all of the aluminum alloys 

tested (3003-O, 5052-O, 6061-T4 and etc.) had lower forming limits relative to steel. In addition, 

aluminum alloys exhibited lower Lankford coefficients and strain hardening capacity compared to 

low carbon steel. It was concluded that aluminum alloys have very poor stamping performance in 

all modes of sheet metal forming. According to Davies et al. [16], studies regarding the 

phenomenon of superplasticity at elevated temperature in different metals including aluminum 

alloys goes all the way back to the 1920s. Under certain conditions, significant elongations up to 

1000% have been documented.  More recently, there have been numerous studies reported in the 

literature showing improvement in formability by utilizing warm forming. Many of the early 

studies were done on 5000-series Al-Mg alloys. Ayres [17] measured the ductility of AA5182-O 

sheet and found that elongation is greatly enhanced by dynamic recovery at elevated temperatures. 

He observed that the ductility is a strong function of strain rate at elevated temperature and 

obtained 175% elongation at 250⁰C compared to 27% at ambient temperature. The majority of the 

increased elongation was from an increase in the post uniform deformation within the diffuse 

necking regime. Shehata et al. [6] performed uniaxial tensile tests and found that the ductility of 

aluminum-magnesium alloys was greatly enhanced up to five times at 300⁰C. The total elongation 

was shown to increase with decreasing strain rate and a reduction in flow stress with increasing 

temperature was also demonstrated. Their results are shown in Figure 3. Hot pressing tests were 

also performed and it was shown that the maximum cup height increased significantly at elevated 

temperatures. One useful effect observed in the hot pressing test was a rather small effect of raising 

temperature beyond 150⁰C up to 500⁰C. In addition, the effect of punch speed was not significant 
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as expected. This behavior indicates that warm forming could be implemented with fairly low 

temperatures and at conventional press speeds. 

 

  
(a) (b) 

Figure 3: (a) Effect of strain rate on failure strain (b) Effect of temperature on failure strain [6] 

 

Ayres et al. [8] performed tensile tests and cup forming tests at elevated temperatures for AA5182-

O. It was found that at elevated temperatures, the magnitude of strain hardening diminishes and 

the effect of strain rate hardening dominates. At 200⁰C, the forming limit of the plane strain 

condition was measured as twofold greater than that of room temperature. It was also observed 

that at the elevated temperatures, the cups made with slower punch speed had a wider and higher 

strain distribution at failure as seen in Figure 4. More recently, Li and Ghosh [10] performed 

uniaxial tensile tests on AA5182, AA5754 and AA6111-T4 aluminum alloys in the temperature 

range of 200⁰C to 350⁰C. The elongations increased significantly with increasing temperature and 

decreasing strain rate. The majority of the elongations at elevated temperatures were in the post-

uniform regime and were attributed to higher strain rate hardening at elevated temperature. 
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Figure 4: Strain distribution at failure at different temperatures and punch speeds [8] 

 

Li and Ghosh [18] extended their investigation by studying biaxial warm forming on the same 

aluminum alloys in the temperature range of 200⁰C to 350⁰C under both isothermal and non-

isothermal conditions. The part depth increased with the tooling temperature (Figure 5) but it was 

found that applying a thermal gradient (50⁰C) between the die and the punch resulted in greater 

formability. The cold punch promoted drawing rather than stretching of the part leading to a greater 

part depth. It was also found that the forming limit strains for the three alloys formed at 250⁰C 

were comparable to A-K steel formed at room temperature. At 350⁰C, the forming limit strains 

were 2-3 times greater than that of A-K steel formed at room temperature. Lastly, the effect of 

warm forming was considerably greater for strain hardening alloys compared to precipitation 

hardening alloys. Naka et al. [12] explored the effect of forming speed and temperature on the 

deep drawability of cylindrical cups with 5083-O aluminum alloy. The tests were done non-

isothermally with the punch cooled to room temperature and the rest of the tooling heated up. It 

was found that the limiting draw ratio (LDR) increased drastically with increasing die temperature 

and decreased with increasing forming speed. The temperature increase lowered the deformation 

resistance of the flange due to a reduction in flow stress. The increase in punch speed lowers the 

LDR because the fracture strains at elevated temperatures are reduced to the fracture strain at room 

temperature due to strain rate hardening. Bolt et al. [19] investigated the effect of temperature by 
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forming box-shaped and conical rectangular geometries with AA1050, AA5754 and AA6016 

series aluminum sheet in the temperature range of 100⁰C to 250⁰C. The maximum increases in 

cup height of 25% at 175⁰C and 65% at 250⁰C were observed for the box shaped and conical 

rectangular geometries, respectively. The temperature range used in the experiment did not have 

detrimental effects on the strength of the material after forming which was validated by checking 

the hardness of the as-formed parts. 

 

Figure 5: Effect of temperature on part depth for different aluminum alloys [18] 

 

Takuda et al. [20] performed non-isothermal cylindrical deep drawing experiments with an 

aluminum alloy sheet A5182-O. The tests were conducted at room temperature and at warm 

conditions with the die and blank holders at 250⁰C and the punch kept at room temperature. Test 

specimens formed at each condition are shown in Figure 6. 
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(a)  (b)  

Figure 6: (a) Deep drawn cup at room temperature (b) Deep drawn cup at elevated temperature [20] 

 

At room temperature, fracture occurred at the punch corner, but the cup was successfully drawn 

fully for the warm condition. The punch cooled the corners rapidly increasing the flow stress thus 

preventing strain localization at the corners and distributing the strain along the sidewalls. Kaya 

[21] did an experimental study on AA5754-O and AA5052-H32 and the main objective was to 

determine the effects of various process parameters on cylindrical cup deep drawing at elevated 

temperatures. It was found that a PTFE based lubricant performed very well at elevated 

temperature conditions. The lubrication helped in attaining higher punch velocities. The 

temperature increase reduced the amount of sheet thinning at the cup bottom corner whereas a 

punch velocity increase had the opposite effect (Figure 7). The temperature increase also helped 

in achieving the maximum punch velocity. There also has been efforts to numerically simulate the 

warm forming process to predict the experimental results. Takuda et al. [20] performed a 2-D 

thermo-mechanical finite element analysis (FEA) to simulate a non-isothermal cylindrical cup 

deep drawing experiment. The flow curves were obtained from uniaxial tension tests and modeled 

with a power law hardening law. The simulation was able to predict the thickness profile of the 

blank, capturing the necking response around the punch corner at room temperature. The FEA was 

also capable of predicting the successful drawn cup at elevated temperatures. The comparison 

between the experimental and simulated results showed the reliability and effectiveness of the 

finite element method that incorporates plastic deformation and temperature together. 
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Figure 7: Effect of temperature and punch velocity on sheet thinning of AA5754-O [21] 

 

Van den Boogaard et al. [22] simulated cylindrical cup deep drawing of AA5754-O aluminum 

alloy using coupled thermo-mechanical finite element method and the Bergstrom [23] constitutive 

model that accounted for thermal softening and strain rate sensitivity. Three different yield 

functions (von Mises, Hill-48 [24] and Vegter [25]) were implemented and compared with the 

experimental results. The von Mises model underestimated the shear deformation which is the 

main deformation mode in cup deep drawing. All yield functions predicted too much thinning at 

the bottom of the cup, especially using the Hill-48 model due to poor prediction of flow stress 

within the biaxial regime. It was concluded that the yield function has a significant impact on 

numerical simulations of cylindrical cup deep drawing. It was also shown that the Bergstrom 

model was able to capture the flow stress behavior between room temperature and 200⁰C at 

intermediate strain rates. At higher temperatures, the response started to deviate before the 

maximum stress was reached and under predicted the overall response. Abedrabbo et al. [26] 

modeled an AA3003-H111 aluminum sheet with a temperature-dependent Barlat YLD96 [27] 

anisotropic yield function and temperature- and strain rate-dependent modified power law. The 

material model was validated with thermo-mechanical simulations of limiting dome height tests 

and it was shown that the model accurately predicted the deformation behavior and the failure 

locations. Palumbo and Tricarico [28] performed warm deep drawing experiments and thermo-

mechanical finite element analysis considering AA5754-O. It was found that punch speed and the 

thermal gradient between the blank holder and punch have significant impact on the formability. 
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The limiting draw ratio increased up to 44% with respect to the room temperature condition. The 

finite element simulation was modeled with a Von Mises yield surface and physics-based 

Bergstrom hardening model and it successfully predicted the experimental results.  

 

Tari et al. [29] simulated warm forming of AZ31B magnesium alloy sheet by incorporating the 

elevated temperature constitutive behavior of the material. The yield surface was modelled with a 

modified CPB-type yield function [30], [31] and the hardening behavior was captured with 

Cowper-Symonds strain hardening model and extended Nadai model [32]. The simulation was 

able to provide qualitative predictions of punch load and strain distribution for elevated 

temperature limiting dome height and deep drawing experiments. Ghavam et al. [33] performed a 

numerical simulation of non-isothermal deep drawing with an AA3003 aluminum alloy. The 

material was modelled with the Barlat YLD2000 yield criterion [34] to capture the anisotropic 

behavior and the Bergstrom hardening rule to predict the temperature and strain rate dependence. 

The simulation accurately predicted the punch load-displacement response at different process 

parameters including temperature, punch speed, binder force and lubrication condition. Bagheriasl 

et al. [35] also successfully predicted the mechanical behavior of an AA3003 aluminum alloy at a 

component level by using the Barlat YLD2000 yield criterion and the Bergstrom hardening rule. 

Both the punch force and failure locations were captured accurately. Kurukuri et al. [36] predicted 

the constitutive behavior of AA3003 sheet under warm forming conditions with three different 

hardening laws: extended-Nadai, Bergstrom and Nes [37] models. The models were compared and 

assessed with the ability to capture work hardening behavior and strain rate jump response. All 

three models were capable of describing the work hardening behavior with great accuracy. For the 

strain rate jump response, the Nes model had the best accuracy due to its strong physics-based 

nature.  

 

There also have been studies regarding warm forming of high strength aluminum alloys such as 

AA7075. Dicecco et al. [38] used two different localization detection methodologies to construct 

forming limit curves (FLC) of AA6013-T6 at room temperature and 250⁰C. The two methods 

yielded very different results at 250⁰C, emphasizing the need for a validated method for generating 

warm FLCs. Both methods were able to capture the formability increase at elevated 250⁰C. Wang 

et al. [39] performed tensile and limiting dome height tests on AA7075-T6. The tensile tests show 
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that temperature did not have an effect on the mechanical behavior of AA7075 below 140⁰C. 

Above this temperature, the flow stress decreased and elongation increased with increasing 

temperature. The limiting dome height increased significantly with increasing temperature and at 

220⁰C, the limiting dome height was greater than that of AA5182-O at room temperature which is 

known to have good formability. A dramatic loss in strength was observed, however, for tests 

above 220⁰C, emphasizing the importance of limiting temperature in warm forming of 

precipitation hardening alloys. Kumar et al. [40] investigated warm forming of AA7020-T6 alloy 

sheet by performing tensile, Swift-cupping and cross-die tests. The tensile test results show that 

the yield strength and ultimate tensile strength decreased with increasing temperature due to 

dissolution of GP zones and η’ precipitates. At high temperatures, the fracture strain, limiting dome 

ratio and cup depth increased as a result of dynamic recovery which stabilized the deformation and 

annihilated dislocations. The strength of T6 temper material decreased up to 30% with warm 

forming compared to the as-received condition.  

 

There have been a limited number of studies conducted on aluminum brazing sheets, the material 

of interest in the current study. Bagheriasl et al. [41] performed limiting dome height experiments 

on a 0.5mm thick AA3003 brazing sheet at elevated temperatures and different punch speeds. 

Forming limit diagrams were developed at different temperatures and it was found that the limit 

strain increased significantly at temperatures above 100⁰C. The limit strain for plane strain 

conditions at 250⁰C increased by 229% compared to that of room temperature. The formability 

increased with decreasing punch speed but the effect was not as significant as increasing the 

temperature. McKinley et al. [42] investigated the effect of warm forming on the formability of 

AA3003 brazing sheet by performing non-isothermal cylindrical cup deep drawing experiments. 

The cups were formed with 228.6 mm diameter circular blanks with 0.5 mm thickness in a die set 

with temperatures ranging from 25⁰C to 300⁰C. The cup could not be drawn successfully when 

the tooling temperature was below 150⁰C. The cups formed successfully at the temperatures above 

200⁰C. It was also observed that the acceptable blank holder force increased with increasing die 

temperature, indicating improved formability. Furthermore, tensile test at 250⁰C showed a 200% 

increase in the failure strain and a very large post-uniform elongation. Jain et al. [43] performed 

limiting dome height experiments on the AA3003 brazing sheet used in the current study for three 

different temper conditions in the temperature range of 25⁰C to 250⁰C at two forming speeds. A 
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maximum of 30% increase in dome height was observed at 250⁰C compared to the height at 25⁰C. 

All three tempers exhibited formability increase with increasing temperature but the effect was 

reduced for harder temper materials. An increase in forming speed from 0.4 mm/s to 1.6 mm/s 

decreased the formability by up to 9% at 250⁰C. 

 

1.3 Springback 

Bending and stretching operations are sheet metal forming processes used widely in the automotive 

industry to manufacture components such as body panels. One of the biggest challenges faced by 

these processes is springback, a geometrical discrepancy in the formed part between the fully 

loaded (within the tooling) and unloaded states (after removal from tooling). Springback is caused 

by the elastic recovery of the internal stress after the forming load is removed. A schematic of 

springback phenomenon in stretch forming process is shown in Figure 8. An equal and opposite 

moment M changes the radius of curvature from R to Rf  once the load is removed and forms an 

equilibrium with the residual stress distribution that satisfies the force and moment balance [44]. 

 

Figure 8: Applied moment vs curvature during forming and springback [44] 
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1.3.1 Influence of Process Parameters on Springback 

The amount of springback is affected by several process parameters such as the applied tension, 

geometry of the component, the bending radius and the mechanical properties of the material. The 

work done by Panthi et al. [45] showed the influences of different parameters on springback in a 

typical sheet metal bending process. It was shown that springback increased with increasing yield 

strength and decreasing elastic modulus. This was also validated in the v-bending experiments 

done by Mori et al. [46]. More springback was observed when the tensile strength-to-elastic 

modulus ratio increased, as shown in Figure 9. 

 

 

Figure 9: Effect of tensile strength-to-elastic modulus on springback [46] 

 

Verma et al. [47] did an analytical study on simple bending of high strength steel and found that 

sheet thickness has a great impact on springback. An increase in sheet thickness led to reduced 

springback. The trend was also shown experimentally in the air bending process performed by 

Garcia-Romeu et al. [48]. In U-bending experiments done by Samuel [49], springback increased 

with increasing punch radius and decreasing die radius. This is in an agreement with work done 

by Yoshida et al. [50] and Ouakdi et al. [51]. Samuel [49]  also studied the effect of friction on 

springback. It was observed that springback decreased with an increase in the coefficient of friction. 

A draw-bending simulation performed by Li et al. [52] exhibited the same results regarding the 

coefficient of friction. Many researchers have reported that texture-based anisotropy and 

deformation-induced anisotropy (Bauschinger effect) affect springback. Verma et al. [47] 
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evaluated the effect of normal anisotropy on the amount of springback. A numerical simulation 

was done with the Hill-48 yield surface and isotropic hardening and it was shown that springback 

increased with normal anisotropy. Dongjuan et al. [53] developed an analytical model for the U-

bending process to predict springback using the Hill-48 yield surface. The model took into account 

the effect of deformation history, thinning and neutral surface shift with three different material 

hardening types (kinematic, isotropic and combined). It was concluded that springback is 

underestimated when isotropic hardening is applied and overestimated when kinematic hardening 

is applied. It was suggested to use the combined hardening law for the most accurate results. An 

increase in springback with increasing normal anisotropy was also observed. Gau et al. [54] 

experimentally investigated the Bauschinger effect on springback predictions for different steels 

and AA6111-T4. It was observed that the Bauschinger effect is negligible for the steels studied 

but significant for AA6111-T4. Figure 10 shows the Bauschinger effect for AA6111-T4 where ‘B’ 

indicates bending and ‘R’ indicates reverse-bending.  Springback decreased considerably with 

cyclical loading. 

 

 

Figure 10: The Bauschinger effect on springback [54] 

 

1.3.2 Springback Reduction Methods 

Springback inhibits the dimensional accuracy required for subsequent downstream assembly 

processes such as welding and brazing operations. Springback is more severe for aluminum alloys 

than steel alloys of similar strength because aluminum alloys have an elastic moduli that is one 

third that of steel. In general, there are two “standard” strategies to prevent springback: 1) 
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increasing sheet tension to reduce internal bending moment and 2) compensating by over-

specifying the bend angle [55]. There are numerous studies in the past that attempted to determine 

the controlling factors for springback and methods to reduce springback. An early study by Baba 

et al. [56] investigated the effect of time and magnitude of stretching in stretch-forming of a metal 

sheet. The obtained results showed a reduction in springback with increasing tensile force and the 

springback was minimized when the sheet was stretched after bending was done. Liu [57] studied 

the effect of restraining force by forming flanged channels on special equipment that applied the 

restraining force directly on the sheet with a hydraulic actuator. It was found that increased 

restraining force decreased angular springback and side wall curl. However, the magnitude of 

restraining force that could be applied was limited due to onset of fracture of the vertical side walls. 

The best results were observed when the restraining force was introduced in the middle of a 

forming cycle rather than from the beginning. This process divides the forming cycle into two 

distinct stages of drawing and stretching. The key factor for this process was the timing at which 

the restraining force is applied and the timing was dependent on the mechanical properties of the 

material. Schmoeckel et al. [58] also studied the effect of varying blank holder pressure. The 

experimental and numerical results both show that a sudden increase in the blank holder pressure 

at the end of forming cycle decreased the shape deviations greatly. This type of approach has been 

widely used to remedy springback problems for the past century [59]. The increased sheet tension 

reduces the stress gradient through the thickness of the sheet hence decreasing the bending moment 

that causes springback. However, this approach is limited by the formability of the material as high 

sheet tension can cause fractures. Furthermore, there has been lot of effort to develop die design 

methods that account for springback. Karafillis et al. [60] utilized finite element analysis to obtain 

the traction distribution in the fully loaded part which is the driving force for springback. Then the 

same traction distribution was used to perform inverse elastic simulation on the undeformed part 

to iteratively calculate the optimal die shape. This method was termed the “force descriptor 

algorithm” and the flowchart can be seen in Figure 11 (b). The results showed that the algorithm 

was very effective and showed high accuracy compared to conventional experimental trial and 

error die design procedures. Similarly, Gan et al. [61] developed a new die design method termed 

the “displacement adjustment method (DA)” which is based on an iterative finite element method. 

The concept of this method is to move the die surface nodes in the opposite direction of springback 

as seen in Figure 11 (a). DA was tested under different forming simulations in 2D and 3D and the 
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results were compared with the force descriptor algorithm. Overall, the DA method converged 

faster and had higher accuracy, but sometimes had oscillations in the iterative solution. Also, the 

DA method converged for non-symmetric parts that the force descriptor algorithm failed to. It was 

confirmed experimentally that the DA is an effective method of designing die shapes without 

traditional trial and error methods. There are also more advanced DA method such as the “smooth 

displacement adjustment” method developed by Weiher et al. [62] and “surface controlled 

overbending” method developed by Lingbeek et al. [63]. 

 

 

Figure 11: (a) Flowchart of DA method (b) Flowchart of force descriptor algorithm [61] 

 

Although these die design strategies require less rigorous tooling optimizations based on 

experience and trial-and-error, they are still time-consuming and cost-intensive. An alternative 

method to reduce springback and the focus of the current thesis is warm forming. 
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1.3.3 Springback at Elevated Temperatures 

There have been numerous studies conducted on warm forming itself but only a limited number 

of studies has been done on the springback behavior of aluminum alloys at elevated temperatures. 

Moon et al. [64] investigated the effect of tool temperature on the reduction of springback of 

aluminum 1050 sheet. A non-isothermal u-bend test with punch temperatures of -10⁰C and 25⁰C 

and die temperatures of 25⁰C, 100⁰C, and 200⁰C were performed. It was observed that the 

springback increased with increasing ram speed and the sensitivity to ram speed increased with 

increasing die temperature. Also, springback was significantly reduced (~20%) with increasing die 

temperature due to lowered flow stress at elevated temperatures. Yanagimoto et al. [65] performed 

isothermal warm forming of a rail-shape geometry (Figure 12) with AA6061-T4. The tests were 

performed at a temperature range of 20⁰C and 250⁰C and it was shown that springback decreased 

dramatically with increasing temperature up to 60%. Also, isothermal bending was done on the 

same material which showed similar results. 

 

 

Figure 12: Rail-shape geometries formed at different forming temperatures [65] 

 

Kim et al. [66] performed thermo-mechanical finite element simulation of a draw bending process 

to study the springback characteristics of AA5754-O. The magnitude of springback was greatly 

reduced at forming temperatures above 200⁰C due to decreased material strength at elevated 

temperatures. It was also observed that increases in blank holder force and friction help in reducing 
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springback because high sheet tension lowers the through-thickness stress gradient. The punch 

speed was found to have negative impact on springback above 200⁰C due to strain rate sensitivity. 

Osturk et al. [67] investigated the springback behavior of a hardened AA5083-H111 using a 60⁰ 

angle v-bend test at various temperatures ranging from -50 to 300⁰C. It was observed that there 

was no difference in springback for 0, 25 and 100⁰C. Springback increased between 100 and 200⁰C 

and then it decreased up to 300⁰C. At 300⁰C, springback decreased 75% compared to room 

temperature condition. At -50⁰C, springback increased slightly. Also, an increase in frictional force 

with temperature was seen, thus use of lubricant was recommend at elevated temperatures. Greze 

et al. [68] studied the springback behavior of AA5754-O at elevated temperatures by performing 

a split-ring test. The split-ring test consists of deep drawing of a cylindrical cup and cutting a ring 

at a height of 15 mm from the cup bottom. Then the ring is split open by cutting and the opening 

of the ring is measured to quantify the springback as shown in Figure 13. The drawing operations 

were performed isothermally. It was determined that the stress gradient in the cup walls decreased 

with increasing temperature. A springback reduction of 67% was observed when the forming 

temperature increased from 25⁰C to 200⁰C. Numerical simulations were performed using an 

elastic-viscoelastic material model with the von Mises yield surface. The simulations were able to 

predict the force-displace curves accurately but the springback was over-predicted significantly. 

Laurent et al. [69] performed a similar study in which the cups were formed non-isothermally and 

split-ring tests were done on AA5754-O sheet. During the forming experiment, the punch 

temperature was held constant at room temperature and the rest of the tooling were heated up to 

100, 150 and 200⁰C. The effect of temperature was relatively small for 100 and 150⁰C but 

significant reduction (20.45%) was observed at 200⁰C. An isotropic material model with the 

Hockett-Sherby [70] hardening and power law strain rate dependency was used to simulate the 

split-ring tests which produced fairly good predictions.  
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Figure 13: Ring opening at several different temperatures in the range of 25-200⁰C [68] 

 

Takata [71] conducted hat-shaped bending of AA5182 through warm forming. The results showed 

that the springback of the hat-shape geometry formed with the aluminum alloy at elevated 

temperatures was comparable to that of mild steel formed at room temperature. Wang et al. [72] 

characterized the springback behavior of AA5754-H111 through simple bending at elevated 

temperatures. The springback angle was reduced by 66% when the forming temperature was 

increased from 20⁰C to 250⁰C. It was concluded that the decrease in through-thickness tangential 

stress gradient led to the reduction in springback. Also, finite element analysis was used to 

calculate the average through-thickness tangential stress gradient and it was observed that there is 

a linear relationship between these values and the springback angle. Verma et al. [73] studied the 

springback behavior of AA3003 brazing sheet by warm forming a simple hat channel and found 

that the reduction in springback (hat channel side wall angular deviation) for three different 

tempers was in the range of 91-95% when forming at 250⁰C, compared to room temperature, as 

shown in Figure 14. 
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Figure 14: Springback reduction in hat channel side wall of three tempers at elevated temperatures [73] 

 

1.4 Current Work 

A considerable amount of work has been reported in the literature to study the formability and 

springback behavior of aluminum alloys at room temperature. However, the number of studies 

regarding these topics at elevated temperature is limited, especially for the springback behavior. 

Furthermore, there have been very few studies conducted on AA3XXX brazing sheet at elevated 

temperatures, the focus of current research, to investigate the formability and springback 

characteristics. In addition, the majority of previous studies were done using simple geometries 

such as u-channels or cup draws in controlled laboratory experiments. Therefore, the objective of 

this study is to characterize the effects of warm forming at a component-level to observe whether 

the trends are scalable from simple geometries and to evaluate the feasibility of scaling up warm 

forming technology to real-life production.  

 

The focus of this research is on an aluminum brazing sheet with an AA3003 core alloy and an 

AA4045 clad alloy with a proprietary braze promoting coating on the surface, provided by Dana 

Canada. The sheet was studied in the O-, H22- and H24-temper conditions. The current work 

investigates the effect of warm forming on formability and springback of 0.2 mm thick aluminum 

brazing sheet by forming complex parts with specially designed features that simulate vehicle 

battery cooling plates as opposed to the simple hat channels studied by Verma et al. [73]. 
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Currently, some material formability and springback challenges are encountered during the 

manufacture of battery cooling plates. However, it is evident that warm forming has great potential 

as a method to dramatically reduce springback and increase formability from previous studies [33], 

[35], [41]–[43], [73]. If successful, this advanced manufacturing technology will enable to use of 

harder aluminum brazing sheets with improved handling characteristics and strength. The harder 

tempers may also exhibit improved corrosion resistance due to their resulting post-braze 

microstructure [74]. Hence, the warm forming technology could significantly contribute to the 

manufacture of next generation automotive heat exchangers with improved performance, 

durability and cost. 

 

The remainder of this thesis is structured as follows. Chapter 2 introduces the material and the 

component to be studied in this work. It also describes the experimental set-up and different tooling 

configurations used in the forming experiment. Chapter 3 describes the material modelling effort 

and set-up for the forming numerical simulations. Chapter 4 deals with the formability challenges 

associated with forming a complex part with aggressive geometries that are found in actual battery 

cooling plates. It presents the tooling configuration development process and the forming 

experiment results. Chapter 5 details the springback characterization of the component and 

investigates the effects of numerous experimental parameters. The springback simulation set-up is 

described in Chapter 6 and the predictions are compared to the experimental results. Chapter 7 

draws conclusions and makes recommendations for future work. 
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2 Experiments 

 

 

2.1 Materials 

The brazing sheet considered in the current research is a multi-layer aluminum composite structure 

that consists of an AA3003 core and approximately 10% AA4045 clad on one side. The surface of 

the clad layer is coated with Dana Canada’s proprietary Ni-based brazing promotor. The AA3003 

core is a high manganese content aluminum alloy in which manganese is added for solid solution 

strengthening. The AA4045 alloy is an Al-Si hypo-eutectic alloy with a lower melting temperature 

than the core alloy. The typical chemical composition of each alloy is summarized in Table 1. The 

purpose of the core alloy is to provide structural strength and the clad layer serves as a filler metal 

in the brazing process. A cross section of the brazing sheet is shown in Figure 15. The transition 

from the clad to the core can be easily identified by the presence of Si nodules in the clad [74]. 

 

 

Figure 15: Cross section of a typical AA3003 core and AA4045 clad brazing sheet [74] 

 

The three temper conditions studied are O-, H22- and H24-tempers. The O-temper is the fully 

annealed condition while H22- and H24-temper conditions are strain hardened and partially 

annealed to 25% and 50% of the full hardness respectively. The sheet is quite thin at 0.2 mm which 
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contrasts with previous studies that considered the same sheet material but with a thicker gauge 

(0.5 mm) and dual-sided clad layers [33], [35], [36], [41], [42] used in engine heat exchangers. 

 

Table 1: Chemical composition in wt.% of Al alloys used in the brazing sheet (bal. Al) [75] 

Alloy Si Fe Cu Mn Others 

AA3003 0.18 0.33 0.64 0.86 ≤0.08 

AA4045 9.19 0.10 0.11 - ≤0.08 

 

2.2 Material Characterization 

The material considered in this study was characterized by Verma et al. [73] through tensile tests 

at elevated temperatures for the O-, H22- and H24-temper conditions. The tests were performed at 

temperatures of 25⁰C, 150⁰C, 200⁰C and 250⁰C and strain rates of 0.002 s-1 and 0.02 s-1, along the 

rolling, transverse and diagonal directions. The tests were conducted on an Instron universal test 

machine located at the CanmetMATERIALS facility. The lateral and axial strain measurements 

were obtained using a MTS biaxial video extensometer. The tensile geometry used is shown in 

Figure 16. The test specimens were cut with EDM instead of CNC machining or jet cutting as it 

provided the best edge quality results, as required for tensile testing of such thin gauge material. 

 

 

Figure 16: Tensile geometry with dimensions in inches 

 

The effect of material temper at room temperature is shown in Figure 17. The difference in strength 

between the tempers is evident, with harder tempers having higher strength. The yield strength of 

H22 and H24 are 163% and 272% greater than that of O-temper respectively. A higher level of 

strain hardening is observed in the O-temper as the H22 and H24 are already strain hardened 
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materials. Also, the O-temper sheet exhibited the highest elongation while H22 showed the lowest 

ductility.  

 

Figure 17: Engineering stress-strain curves for O-, H22- and H24-tempers at room temperature at 0.02 /s. Measured data 

due to Verma [73] 

 

Figure 18, Figure 19, and Figure 20 show the effect of temperature and strain rate on the tensile 

behavior of the O-, H22- and H24-temper sheet, respectively. Overall, all three tempers exhibited 

a similar behavior in that the total elongations increased and strength decreased at elevated 

temperatures.  

 

Figure 18: Engineering stress-strain curves of O-temper at different temperatures and strain rates. Measured data due to 

Verma [73] 
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Figure 19: Engineering stress-strain curves of H22-temper at different temperatures and strain rates. Measured data due 

to Verma [73] 

 

Figure 20: Engineering stress-strain curves of H24-temper at different temperatures and strain rates. Measured data due 

to Verma [73] 

 

Verma [73] reported that the degree of strain hardening decreased with temperature for all temper 

conditions. The harder temper materials even exhibited negative hardening behavior at elevated 

temperatures since the degree of strain hardening was very low to begin with at room temperature. 

At elevated temperatures, both H22 and H24 reached the ultimate tensile strength immediately 

after yielding and entered the diffuse necking regime with very little strain hardening. The strain 

rate sensitivity increased as temperature increased. At room temperature, the strain rate effect was 



26 

 

negligible but higher strain rates lead to increased stress levels at elevated temperatures indicating 

a positive strain rate sensitivity. The experimental results in different material directions showed 

a similar behavior which indicates a low level of in-plane anisotropy. Due to the limitation in the 

tensile experimental set-up, reliable Lankford coefficients (R-values) could not be determined. 

Future tensile tests should be performed with more advanced strain measurement such as digital 

image correlation system rather than a video extensometer to accurately capture the anisotropy 

behavior. 

 

2.3 Component Geometry 

As reviewed in Chapter 1, most of the formability and springback characterizations reported in the 

literature utilized simplified geometries such as u-channels. These geometries are preferred for the 

ease of experimental design/set-up and obtaining measurement data. Furthermore, the existing 

literature contains numerous similar studies with experimental results and procedures that could 

be referred to and compared against. For example, Verma [73] selected a u-shape that was an 

approximation of the battery plate channel cross-section and contains sufficient bending strain to 

promote a measurable degree of springback. Although these geometries are easier to use in 

laboratory studies, there is a possibility that such results are not fully representative of industrial 

heat exchanger components. Hence, a more representative surrogate heat-exchanger component 

(hereafter referred as the SHC) was developed, as shown in Figure 21. 
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Figure 21: Surrogate heat-exchanger component (SHC) 

 

The developed part contains key features of an actual full-scale battery plate such as the cooling 

channels and inlet and outlet (I/O) ports; however, the plate contains fewer, channels that are 

smaller in length than a commercial battery plate such as that shown in Figure 1. On the SHC, the 

core side is located at the top surface while the clad side is on the bottom surface (brazing surface). 

Also, the SHC is formed with the rolling direction of the sheet aligned with the length of the 

component. The purpose of the study of the SHC reported in this thesis is to assess the potential 

benefit in terms of improved formability and reduced springback using a warm forming process at 

a component level without the need to manufacture a full-scale warm-formed battery plate. The 

SHC is also symmetric which enables brazing studies using a single tooling set and subsequent 

durability testing to examine the effects of warm forming on brazeability and corrosion resistance 

(as part of related work outside of this thesis). 

 

2.4 Experimental Set-up 

The developed SHC was formed using a custom tooling assembly, developed as part of this 

research, mounted within an Instron 1331 mechanical testing apparatus (Figure 22). During the 

forming cycle, the punch remained stationary and the die moved upwards. The hydraulic frame is 

equipped with a load cell and has a force capacity of 100kN which was more than sufficient to 
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form the SHC. The Instron frame allowed for precise control of the displacement and load acting 

on the bottom die set which was crucial for the extremely thin gauge material used in the current 

work. 

 

Figure 22: Custom tooling assembly on the Instron frame 

 

The CAD of the assembly is shown in Figure 23. The alignment of the tooling assembly is guided 

by a four-post ball bearing die set. Other components included in the assembly are the forming 

dies, heating/cooling blocks and insulation blocks. The forming dies are heated using eight 200W 

cartridge heaters, with thermocouples providing feedback to a temperature controller. The 

cartridge heaters are embedded in separate heating blocks rather than the forming dies themselves 

to allow for easy interchangeability of the forming dies. The blanks are pre-heated in the forming 

dies prior to forming via thermal conduction. In order to isolate the heat from the load cell, 

insulation blocks and chilled water cooling blocks were utilized. The insulation block is made out 

of ZIRCAL-95, a high density calcium silicate hydrate mix that can withstand temperatures up to 

1000⁰C and compressive stress up to 450 MPa. The thermal conductivity of this material is 0.31 

and 0.27 W/m·K at 200 and 400⁰C respectively [76]. The chilled water was supplied at 10⁰C. 
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Figure 23: CAD of the custom tooling assembly. SHC shown in yellow. 

 

The most important process parameter was the blank temperature since this work aims to study 

the effect of warm forming on formability and springback. Other parameters considered are 

material temper, lubrication, forming speed, punch load and sheet direction.  

 

2.4.1 Tooling Configurations 

The forming experiments considered a succession of four different tooling configurations, 

developed over the course of this research, that consider different die and blank geometries and 

forming methods. The different tooling configurations will be hereinafter referred as TC1 to TC4. 

CAD drawings of the different tooling configuration (TC) female dies are shown in Figure 24. The 

male dies are shown in Section 3.3. 

   



30 

 

 Stage 1 Stage 2 

TC1 

 

N/A 

TC2 

  

TC3 

  

TC4 

 

N/A 

 

Figure 24: CAD of female dies for the different Tooling Configurations (TC) 

 

The detailed forming process and tooling development are described in Chapter 4. Overall, the 

forming experiments utilized two different methods. TC1 and TC4 considered a single-stage 

forming operation in which the final part is formed with a single forming operation without any 

intermediate forming operations. TC2 and TC3 considered multi-stage forming operations in 

which the part is formed in two stages. For TC1 to TC3, rectangular blanks were used to form the 

parts. An office paper trimmer was used to cut rectangular blanks (76.2 mm x 63.5 mm) from the 

coils since other cutting methods, such as water jet cutting and electrical discharge machining 
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(EDM), were not necessary for such thin material gauge (0.2 mm). In addition, the paper trimmer 

was more representative of the shear tool used to produce blanks in commercial fabrication of 

battery plates. The width of the blank was designed to be longer on one side to test the formability 

under different material flow conditions (side draw-in) as shown in Figure 25. The material flow 

for the longer side would be considerably more restricted compared to the shorter side. Dowel pins 

were used to locate the blank in the tooling prior to forming. 

 

 

Figure 25: Rectangular blank for TC1 to TC3 

 

For TC4, a “developed blank geometry” was used, as shown in Figure 26. The blank geometry 

was designed to have optimized material flow. The blank design process is described in Chapter 

4. 
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Figure 26: TC4 blank geometry 

 

The rationale behind the development of these different tooling and blank geometries is detailed 

in Chapter 4 of this thesis; however, the primary factors were wrinkle control and avoidance of 

necking/fracture. The general sequence of tooling design changes can be summarized as follow: 

 

 Parts formed using TC1 exhibited cracking at the I/O port-cooling channel junction.  

 Cracking was somewhat mitigated in TC2 using a pre-form operation (Stage 1) to “gather” 

material in the I/O port region prior to final forming in the second stage. The part exhibited 

excessive wrinkling after the first stage which could not be pulled out during the second 

stage.  

 TC3 included the channel geometry in the first stage to reduce wrinkling.  

 TC4 introduced geometric modifications to the I/O port-cooling channel intersection to 

reduce the “sharpness” of the local radii thereby reducing necking/fracture in that region. 

In addition, a developed blank was used to ease material flow into the I/O port feature while 

still maintaining a sufficient flange width for brazing. Finally, a “down flange” was added 

to the sides of the tooling (running parallel to the cooling channels) to restrain the blank 

during forming and reduce springback. 
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As noted, these tooling developments are described in detail in Chapter 4. 

 

The geometric features that all tooling configurations share are shown in Figure 27. The locating 

dowel pins align the top and bottom die sets together and are also used to position the blanks in 

the tool prior to forming. The dies have slotted bolt holes through the centerline to prevent 

misalignment due to thermal expansion at elevated temperatures. The slotted holes will allow the 

dies to expand outwards freely while keeping the axes of the dies, the two datum center lines 

(shown in red), constant at any temperature. In addition, the die sets were designed with 10% die 

clearance relative to the sheet thickness. The dies were fabricated through CNC machining using 

AISI4140 steel. Due to the limited numbers of parts formed, the tools were not hardened nor were 

they coated. 

 

 

Figure 27: Common geometric tooling features on all tooling configurations 

 

Two lubricants were considered in the experiments, referred to as “Teflon” and “Fuchs”. The 

Teflon lubricant is a PTFE-based high performance dry lubricant rated for high temperature and 

pressure applications. The Teflon lubricant is supplied in an aerosol can and was sprayed onto the 

blank prior to forming. The Fuchs lubricant is Forge Ease Al278 mixed with an alcohol and is 

specifically designed for warm forming applications. The Fuchs lubricants was applied to the 

blanks prior to forming using a roller brush. For the forming process with TC1 and TC2, the top 

die was manually positioned using the hand-held controller of the Instron tensile frame. In order 
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to make the forming process more robust and reliable, the actuator stroke was changed to 

displacement-control using a closed-loop system for TC3 and TC4. In order to heat the blank, the 

heated dies were partially closed initially such that both the top and bottom dies are in contact with 

the blank surface. After the predetermined heating time of 40 seconds has passed, the top die was 

displaced further to form the component. This procedure was repeated twice for TC2 and TC3 as 

the blank formed in the first stage would be subsequently formed in the second stage. 

 

2.4.2 Thermal Validation 

In order to ensure that the blanks reached the target temperatures prior to forming, two 

thermocouples were attached to a test blank in two different locations to record the temperature 

history during the heating cycle. The first location was at the middle of the blank and the second 

location was at the input/output port (I/O port), as seen in Figure 28. A data acquisition system 

was used to record the temperature history (Figure 29) from which it was determined that the blank 

successfully reached the target temperatures within 40 seconds; thus, the heating time prior to 

forming was selected to be 40 seconds. 

 

  
(a) 

 

(b) 

Figure 28: Thermocouple at the (a) I/O port (b) middle of the blank 
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(a) 

 

 

(b) 

 
Figure 29: Temperature history at the (a) I/O port (b) middle of the blank. The target temperatures are indicated in the 

legend. 

 

2.4.3 Micro-hardness Tests 

One of the major concerns related to warm forming is recrystallization caused by elevated forming 

temperatures. Vickers hardness tests were performed to determine if there was indeed any 

recrystallization and adverse effects on the strength of the material. Sample blanks were heated to 

temperatures ranging from 25 to 350⁰C and cold mounted into pucks made of epoxy resin. The 

pucks were cold mounted since the hot mounting technique exposes the specimens to elevated 

temperature and pressure, which could potentially affect the results. The pucks were ground and 

polished using SiC abrasive papers with grit values ranging from 220 to 2400. A Wilson 402MVD 

hardness tester was used which has a built-in microscope that allows users to view the actual 

diamond indent and measure the diagonals. The indents were made on the material thickness with 

100 gf and the force was applied for 15 seconds. The minimum spacing between indentations was 

greater than 2.5 times the indent diagonal [77] to separate the strain hardening effect of prior 

indents. The results are summarized in Figure 30. Each sample was indented seven times and the 

error bars correspond to the standard deviations. The test results show that there was no significant 

decrease in the hardness with the increasing heating temperatures. 
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Figure 30: Vickers hardness results after heating cycle at different temperatures 

 

2.5 Friction Characterization 

Friction is one of the most important process parameters in metal forming; thus it must be 

characterized experimentally to produce accurate numerical simulations. In the current work, two 

lubricants were considered initially: Teflon and Fuchs. However, the Fuchs lubricant was omitted 

from the friction characterization as it had negligible performance difference from the Teflon spray 

which had cleaner surface quality and superior application method. According to work done by 

Noder [78], the COF for Teflon and Fuchs were comparable up to 20 mm sliding distance which 

is significantly higher than the sliding distances in the current work. The coefficient of friction 

(COF) of the Teflon lubricant was determined using the Twist Compression Test (TCT) apparatus 

shown in Figure 31.  
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Figure 31: Twist compression test (TCT) apparatus 

 

The TCT is a tribological test developed by Schey [79] that can closely simulate actual metal 

forming conditions, such as interfacial pressure and sliding speed. It uses an annular tool which is 

pressed against a fixed sheet specimen at a specified pressure and then rotated. A load cell is used 

to measure the torque transmitted by the frictional force. The coefficient of friction is calculated 

with the following formula: 

 

 𝐶𝑂𝐹 =
𝑇

𝑟𝑃𝐴
 (1) 

 

Where T is the transmitted torque, r is the annular tool mean radius, P is the applied pressure and 

A is the cross-sectional area of the annular tool.  

 

Recently, the TCT apparatus was upgraded by George [80] to perform testing at elevated 

temperatures corresponding to conditions during warm forming. A detailed description of the 

warm friction TCT procedures is provided by Noder et al. [78]. This elevated temperature test 
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capability was employed in the current work to evaluate the lubricant performance under the warm 

forming conditions considered in the SHC forming experiments. The annular tool material used 

was AISI 4140 steel which is identical to the tool material used in the forming experiments. The 

test matrix is summarized in Table 2 below.  

 

Table 2: Twist compression test matrix showing number of specimens tested for each condition. 

  Core Clad 

Temperature Dry Teflon Dry Teflon 

25 3 3 3 3 

240 3 3 3 3 

310 3 3 3 3 

 

Since the sheet metal has two different surfaces on the core and clad, the TCT was performed on 

both surfaces using dry and lubricated conditions at 25, 240 and 310⁰C.  The sliding speed was set 

to be constant at 1 mm/s for all conditions for smooth data acquisition. Due to the very thin gauge 

of the sheet, the interfacial pressure was set relatively low especially for the elevated temperature 

conditions otherwise the specimens wrinkled excessively. The interfacial pressure was set at 10, 

5, and 1 MPa for temperatures of 25, 240 and 310⁰C, respectively.  

 

 

Figure 32: Twist compression test result for clad surface lubricated with Teflon at 25⁰C 

 

Figure 32 shows the test results for the clad surface lubricated with Teflon at room temperature. 

The coefficient of friction was obtained by taking the average of the values in the sliding distance 
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range of 2 to 4 mm for the three repeats. A summary of the TCT experiments is shown in Figure 

33. 

 

Figure 33: Effect of temperature on COF at dry and lubricated conditions 

 

It was concluded that the COF can be approximated as a linear function of temperature. Also, 

under dry conditions, the core side had a significantly higher COF compared to the clad side. This 

difference is attributed to the fact that the clad side is coated with Dana’s proprietary Ni-based 

braze promoter. The exact nature of the coating is proprietary but the coefficient of friction 

between mild steel and pure Nickel was found to be 0.49 [81]. When the surfaces were lubricated 

with the Teflon spray, the difference in COF between the core and clad surfaces was no longer 

observed. Therefore, only a single linear fit was used to represent the COF for lubricated 

conditions. The equations describing the COF as a function of temperature in ⁰C are as follows: 

 

 𝐶𝑂𝐹𝐶𝑜𝑟𝑒,𝑑𝑟𝑦(𝑇) = 0.002036𝑇 + 0.8163 (2) 

 𝐶𝑂𝐹𝐶𝑙𝑎𝑑,𝑑𝑟𝑦(𝑇) = 0.002222𝑇 + 0.1478 (3) 

 𝐶𝑂𝐹𝑇𝑒𝑓𝑙𝑜𝑛(𝑇) = 0.0006803𝑇 + 0.1294 (4) 
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3 Numerical Model 

 

 

3.1 Constitutive Models 

In order to accurately model the warm forming process, the effect of temperature and strain rate 

on flow stress must be considered in the constitutive model used to simulate the mechanical 

properties of the brazing sheet. As shown previously through the material characterization study 

by Verma et al. [73], the stress-strain curves of the brazing sheet decreased as the temperature 

increased and as the strain rate decreased. In current work, the material was assumed to be isotropic 

since the R-values could not be determined; thus, a Von Mises yield surface was used. Two 

phenomenological hardening models, referred to as the Voce hardening [82] and Extended Nadai 

models [83], were considered as potential candidates to describe the hardening behavior. These 

models will be validated by performing tensile simulations in the next section. 

 

3.1.1 Voce Hardening Model 

The Voce hardening model is a widely used phenomenological model developed by Voce [82] 

which accounts for the flow stress saturation hardening behavior exhibited by aluminum alloys. 

The original Voce model was not a function of temperature and strain rate. Therefore, the strain 

rate effect was incorporated by including a logarithmic strain rate term. The temperature effect 

was accounted by fitting the model at each temperature condition since the temperature stays 

constant during each forming experiment. The Voce hardening model is as follows: 

 

 𝜎 = (𝜎𝑠𝑎𝑡 + (𝜎𝑦 + 𝜎𝑠𝑎𝑡)𝑒
(

𝜀𝑝

𝜀𝑐
)
) (1 + 𝐴 log (

𝜀̇

𝜀0̇
) ) (5) 

 

Where, 𝜎𝑠𝑎𝑡 is the saturation stress, 𝜎𝑦 is the yield stress, 𝜀𝑐 is the strain constant controlling the 

rate of saturation, 𝜀𝑝 is the plastic strain, A is the strain rate parameter, 𝜀̇ is the strain rate and 𝜀0̇ 
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is the reference strain rate. The experimental tensile stress-strain curves were used to obtain the 

model parameters through non-linear regression using MATLAB for two temperature conditions 

of 25⁰C and 250⁰C. The model parameters are listed in Table 3. 

 

Table 3: Voce hardening model parameters 

Material 

Temper 

Temperature 

(⁰C) 
𝜎𝑠𝑎𝑡 

(MPa) 

𝜎𝑦 

(MPa) 

𝜀𝑐 A 𝜀0̇ 
(s-1) 

O 25 168.9 65.9 17.8 -0.00388 0.002 

O 250 57.3 43.03 40.4 0.236 0.002 

H22 25 178.3 151.7 36.8 0.000503 0.002 

H22 250 86.4 82.3 585.4 0.223 0.002 

H24 25 237.9 206.2 17.3 0 0.002 

H24 250 106.6 103.6 404.7 0.233 0.002 

 

The extrapolated flow stress curves (true stress versus effective plastic strain) for the three tempers 

are plotted against the experimental tensile data up in Figure 34 through Figure 39. The measured 

data is shown to ultimate tensile strength since necking occurs after this point and the stress state 

is no longer uniaxial. 

 

 

 

Figure 34: Voce hardening model for O-temper at 25⁰C. Measured data due to Verma [73] 
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Figure 35: Voce hardening model for O-temper at 250⁰C. Measured data due to Verma [73] 

 

 

Figure 36: Voce hardening model for H22-temper at 25⁰C. Measured data due to Verma [73] 

 

 

Figure 37: Voce hardening model for H22-temper at 250⁰C. Measured data due to Verma [73] 
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Figure 38: Voce hardening model for H24-temper at 25⁰C. Measured data due to Verma [73] 

 

 

Figure 39: Voce hardening model for H24-temper at 250⁰C. Measured data due to Verma [73] 

 

The Voce hardening model captured the initial hardening and saturation behavior relatively well 

for all three tempers at room temperature condition. However, the harder tempers at 250⁰C 

displayed only a very small amount of hardening prior to ultimate tensile strength which limited 

the range of data used in the non-linear regression. This could potentially produce inaccurate flow 

behavior which will be assessed in Section 3.2 through comparison between tensile simulations 

using the constitutive fits to the measured tensile data. 

 

3.1.2 Extended Nadai Model 
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Another model considered in the numerical simulations is the very well-known phenomenological 

model based on the Nadai hardening law with strain rate and temperature effects [83]. 

 

 𝜎 = 𝐶(𝜀𝑝 + 𝜀0)𝑛 (
𝜀̇

𝜀0̇
)

𝑚

 (6) 

 

For the extended Nadai model, parameters C, n and m are functions of absolute temperature as 

follows: 

 

 𝐶(𝑇) = 𝐶0 + 𝑎1 [1 − exp (𝑎2

𝑇 − 273

𝑇𝑚
)] (7) 

 
𝑛(𝑇) = 𝑛0 + 𝑏1 [1 − exp (𝑏2

𝑇 − 273

𝑇𝑚
)] 

 

(8) 

 𝑚(𝑇) = 𝑚0exp (𝑐
𝑇 − 273

𝑇𝑚
) (9) 

 

Where 𝜀0̇ is the reference strain rate and 𝑇𝑚 is the melting temperature in Kelvin. The rest of the 

parameters are identified by performing non-linear regression on the experimental data. The model 

was slightly modified as the power law strain rate dependency resulted in non-physical and 

extremely high flow behavior for higher strain rate conditions. Therefore, the strain rate term was 

replaced with a logarithmic strain rate term with temperature dependence as shown below: 

 

 𝜎 = 𝐶(𝜀𝑝 + 𝜀0)𝑛 (1 + 𝐵 log (
𝜀̇

𝜀0̇
) ) (10) 

 𝐵(𝑇) = 𝐵0 + 𝑐1 [1 − exp (𝑐2

𝑇 − 273

𝑇𝑚
)] (11) 

 

The following Table 4 to Table 6 contain the model parameters obtained through non-linear 

regression in MATLAB by simultaneously fitting different strain rate and temperature conditions 

for the three tempers.  
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Table 4: Extended Nadai Model parameters for O-temper 

𝑇𝑚 (𝐾) 800 𝑎1 4751 𝑏2 -0.717 

𝜀0̇ (𝑠−1) 0.002 𝑎2 0.137 𝐵0 0.000994 

𝜀0 0.000994 𝑛0 0.272 𝑐1 -0.506 

𝐶0 (𝑀𝑃𝑎) 289.4 𝑏1 -0.843 𝑐2 1.32 

 

Table 5: Extended Nadai Model parameters for H22-temper 

𝑇𝑚 (𝐾) 800 𝑎1 -905.1 𝑏2 -3.110 

𝜀0̇ (𝑠−1) 0.002 𝑎2 -0.642 𝐵0 -0.0287 

𝜀0 0.0104 𝑛0 0.105 𝑐1 448.1 

𝐶0 (𝑀𝑃𝑎) 239.8 𝑏1 -0.218 𝑐2 -0.00122 

 

Table 6: Extended Nadai Model parameters for H24-temper 

𝑇𝑚 (𝐾) 800 𝑎1 -460.5 𝑏2 -4.76 

𝜀0̇ (𝑠−1) 0.002 𝑎2 -2.51 𝐵0 -0.0171 

𝜀0 0.0617 𝑛0 0.1806 𝑐1 894.4 

𝐶0 (𝑀𝑃𝑎) 335.5 𝑏1 -0.342 𝑐2 -0.000735 

 

Conventionally, only the experimental data prior to ultimate tensile strength could be used to 

obtain the material model parameters as deformation is no longer uniform and diffuse and localized 

necking occur. At elevated temperatures, aluminum alloys exhibit improved uniformity of strain 

distribution due to increased positive strain rate sensitivity that prevents localized necking [8,9]. 

The mechanism behind warm forming, strain rate hardening, strongly delays the onset of localized 

necking increasing the diffuse necking regime. As shown by the tensile test results, the high 

temperature specimens immediately entered the diffuse necking regime due to lack of strain 

hardening at elevated temperatures but localized necking did not occur until a significant amount 

of strain has accumulated. According to Ghosh [84], a very small amount of strain gradient is 

maintained in the diffuse necking stage and necking may not be visually apparent until a significant 

amount of strain has accumulated, thus the deformation is quasi-stable in nature and practically 

uniform. It was also observed during the tensile test that significant necking did not occur. In 

diffuse necking, the extension of the neck is often similar to the specimen width [85]. Since the 

width of the specimen (0.5”) is similar to the length of the gauge (0.75”), the majority of the gauge 

section is in the diffuse necking regime resulting in a small strain gradient within the gauge. 

Therefore, it was assumed that the tensile data for harder tempers after ultimate tensile strength 

are practically uniform and data up to 10% strain were used to fit the Extended Nadai Model. The 
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following Figure 40 to Figure 42 show the flow stress prediction of the Extended Nadai Model for 

the three tempers at different temperatures and strain rates. 

 

Figure 40: Extended Nadai Model for O-temper at different temperatures and strain rates. Measured data due to Verma 

[73] 

 

Figure 41: Extended Nadai Model for H22-temper at different temperatures and strain rates. Measured data due to 

Verma [73] 
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Figure 42: Extended Nadai Model for H24-temper at different temperatures and strain rates. Measured data due to 

Verma [73] 

 

The model represented the hardening behavior quite well for different temperature and strain rate 

ranges for all of the tempers. Also, the model was able to capture the negative hardening effect 

that was observed for harder tempers at elevated temperatures. The largest discrepancy between 

the experiment and model occurred when the temperature was at 150⁰C for H22- and H24-tempers 

as the temperature was an intermediate value at which the transition in hardening behavior from 

positive to negative occurs. 

 

3.2 Tensile Simulations 

In order to validate the material models, tensile simulations were performed and compared with 

the experimental results of Verma [73]. 

 

3.2.1 Tensile Model Set-up 

The tensile simulations were performed using the non-linear implicit dynamic formulation within 

the LS-DYNA [86] commercial finite element code. The tensile specimen used in the 

characterization experiment was meshed using Type 2 selective reduced integrated solid elements. 
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The gauge section was meshed with elements with a length of 0.3 mm and four elements were 

meshed through the thickness. The overall mesh is shown in Figure 43. 

 

 

Figure 43: Tensile specimen mesh 

 

Only one-quarter of the model was simulated with symmetry boundary conditions prescribed along 

the x-z and y-z planes.  A velocity boundary condition was imposed on the node set at the gripped 

end of the specimen (Figure 44) to pull the specimen towards the positive y-direction while the 

displacement in the other two directions (x and z) were constrained. The tensile load was obtained 

by summing the nodal reaction forces for the node set. Since LS-DYNA material library does not 

contain built-in Voce hardening and extended Nadai models, the piecewise linear plasticity 

material model (*MAT-24) was used for the simulations. This material model is a simple isotropic 

model that uses von Mises yield criterion and takes an arbitrary stress versus strain curves as input. 

The constitutive hardening behaviors predicted by the Voce hardening and extended Nadai models 

were simply entered as point-wise stress-strain curves for each strain rate and temperature. The 

software then performs a linear interpolation between curves to account for local strain rate. The 

simulations are isothermal, so interpolation based on temperature was not necessary. A typical 

input set of stress-strain curves for the material model is shown in Figure 45.  

 

 

 
Figure 44: A node set at the top of tensile specimen 
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Figure 45: Typical input curves for piecewise linear plasticity model. O-temper behavior predicted with the extended 

Nadai model at 250⁰C at different strain rates 

 

The material model accepts a set of true stress versus effective plastic strain curves for a range of 

different strain rates. The hardening behaviors at strain rates outside of the experimental range 

(0.002 s-1 and 0.02 s-1) are captured by extrapolating the material models developed in the previous 

section. It is important to capture the strain rate effect outside of the experimental range as local 

strain rates in tensile and metal forming simulations could be outside of the range. The flow stress 

at intermediate strain rates are evaluated by interpolating between the set of curves. Simulations 

were performed for each temperature condition in which different sets of stress-strain curves were 

used as input. 

 

3.2.2 Voce Hardening Model Results 

The tensile simulation results for the Voce Hardening Model are summarized in Figure 46, Figure 

47 and Figure 48 for the O-, H22- and H24-tempers, respectively. 
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Figure 46: Voce hardening model tensile simulation results for O-temper 

 

Figure 47: Voce hardening model tensile simulation results for H22-temper 

 

 

Figure 48: Voce hardening model tensile simulation results for H24-temper 
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For the O-temper condition, the model under-predicted the experimental results at room 

temperature. However, the response was greatly under-predicted at elevated temperatures due to 

the model predicting the flow saturation prematurely. 

 

For the harder temper materials, the response was under-predicted at room temperature but over-

predicted at elevated temperature. It was concluded that the flow stress saturation behavior of the 

model is not adequate to capture the negative hardening behavior of the material. Overall, the 

model did not predict the tensile response of the experiment accurately for all three tempers. 

 

3.2.3 Extended Nadai Model Results 

The stress-strain curves of experimental and simulated tensile tests using the Extended Nadai 

model are shown in Figure 49 to Figure 51 for the three tempers. The predictions using the 

Extended Nadai model were able to accurately capture the tensile response of the three tempers at 

different temperature and strain rate. Also, the model was capable of capturing the negative slope 

of the stress-strain curves at elevated temperatures. There was still a slight over-prediction in the 

slope of the hardening response of the harder tempers at 250⁰C. Figure 52 shows the maximum 

principal strain of the tensile gauges of H24-temper at 25⁰C and 250⁰C at a crosshead displacement 

of 7mm. The room temperature condition shows shear localization while the elevated temperature 

condition shows a uniform strain distribution in the majority of the gauge section. This result 

shows that the model captured the strain rate hardening effect which is the main driving mechanism 

serving to stabilize the material during warm forming. Overall, the Extended Nadai model 

performed considerably better than the Voce hardening model thus it was adopted in the 

subsequent forming and springback simulations. 
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Figure 49: Extended Nadai model tensile simulation results for O-temper 

 

Figure 50: Extended Nadai model tensile simulation results for H22-temper 
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Figure 51: Extended Nadai model tensile simulation results for H24-temper 

 

  
(a) 

 

(b) 

Figure 52: Maximum principal strain at 7mm displacement for H24 at (a) 25⁰C (b) 250⁰C 

 

3.2.4 Dynamic Explicit vs Implicit Scheme 

The tensile simulations were performed with an implicit time integration scheme since the time 

step size of a dynamic explicit scheme is limited by the Courant criterion which implies that the 
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time step size must be smaller than the time for a stress wave to travel across the smallest element 

in the finite element mesh. Since the element size in the tensile mesh is extremely small (0.05 mm), 

the computation time would be too large to use an explicit scheme. The implicit scheme is not 

bounded by the Courant criterion thus a much larger time step size can be used which decreases 

the total computation time required. However, typical forming simulations are performed with a 

dynamic explicit scheme to avoid convergence problems with the implicit scheme associated with 

the strong level of non-linearity due to contact and material softening. Forming simulations often 

implement mass scaling, which arbitrarily increases the density of the mesh to increase time step 

size for reduced computation cost. Therefore, a tensile simulation was performed with the explicit 

dynamic scheme with a mass scaling factor of 107 to assess the resulting accuracy. The tensile 

simulation results are shown in Figure 53 and which serve to demonstrate that the explicit dynamic 

formulation with mass scaling produces the same result as the implicit formulation. 

 

Figure 53: Tensile simulation performed with dynamic explicit versus implicit schemes 

 

3.3 Forming Simulation Models 

The forming simulations were run with the non-linear dynamic explicit formulation in LS-DYNA. 

The blank material is 0.2 mm thick and modeled with 4-node quadrilateral shell elements (Type16 

fully integrated) [86] with four in-plane and seven through-thickness integration points (Gaussian 

quadrature). The tooling was modeled as rigid quadrilateral shells; therefore the mesh only had to 

be dense enough to capture the local curvature of the tooling; thus it was ensured that each radius 
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feature was traversed by at least 6 elements.  Since the experiment was done under isothermal 

conditions, a regular structural analysis without a thermal (heat transfer) component was sufficient. 

The single-stage forming simulation (TC1 and TC4) consisted of three components which are the 

punch, die and blank, as shown in Figure 54 and Figure 55.  

 

  

  
 

Figure 54: TC1 model. Initial mesh (top) and deformed mesh at the end of the simulation (bottom) 
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Figure 55: TC4 model. Initial mesh (top) and deformed mesh at the end of the simulation (bottom) 

 

The multi-stage forming simulations (TC2 and TC3) have an additional die and punch for the first 

stage of the forming process, as shown in Figure 56 and Figure 57. In the multi-stage forming, the 

deformed mesh and predicted stresses, strains and thickness reductions from the first stage are 

used to initialize the second stage forming simulation. For the TC2 and TC3 forming simulations, 

the second stage tooling mesh is identical to that used for the tooling in the TC1 single stage 

forming simulation. 

 

Punch 

Die 

Blank 

Symmetry 

plane 

50.8 mm 
101.6 mm 



57 

 

  

  
 

Figure 56: First stage of TC2 model. Initial mesh (top) and deformed mesh at the end of the simulation (bottom) 

 

  

  
Figure 57: First stage of TC3 model. Initial mesh (top) and deformed mesh at the end of the simulation (bottom) 
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The blank was initially meshed with a 1 mm element size but adaptive meshing was utilized during 

the simulation. The adaptive meshing automatically refines the mesh to smaller sized elements 

based on the local sheet curvature. Elements are refined locally when the total angle change relative 

to surrounding elements exceeded 5 degrees. This feature reduces the computation time as only 

the regions that require high mesh density are meshed with small element sizes. The curvature-

based adaptivity approach detects proximity to local sharp tooling features at which strain 

gradients tend to be high, requiring finer meshing. The highest refinement reduced the element 

size down to 0.0625 mm from the initial 1 mm, which corresponds to five levels of local 

refinement. For TC4, due to irregular shape of the blank (Figure 26), adaptive meshing was not 

implemented to have better control on discretization. Instead, the blank was meshed with a 0.15 

mm element size. 

 

For TC1 to TC3, the extended Nadai model developed in the previous section was not available at 

the time of tooling development. Therefore, a previously developed material model due to Ghavam 

et al. [33] for aluminum brazing sheet was utilized instead. This material model was implemented 

within a User Defined Material Model (UMAT) subroutine created for O-temper brazing sheet 

with a thicker gauge of 0.5 mm. The material model implemented the Bergstrom hardening model 

[22] and Barlat Yld2000 yield criterion [34]. For simulation of the TC4 tooling for springback 

analysis, the UMAT was abandoned since it only considered O-temper sheet and the extended 

Nadai model, presented in Section 3.1.2, was adopted. 

 

There were several different boundary conditions imposed on this model. Only one-half of the 

model was simulated due to the symmetry boundary condition along the x-y plane. Since the 

springback behavior might be asymmetrical, a full model was simulated when the springback 

result was required. The punch was constrained in all directions except translation in the y-axis. 

The die was constrained in all directions.  A sinusoidal velocity motion with a peak velocity of 1 

mm/s was imposed on the punch for a displacement in the positive y-direction until the gap 

between the punch and die is equal to the thickness of the blank (0.2 mm). The sinusoidal wave 

form was used to minimize inertial effects when initial contact is made between the blank and 

tooling. If the effect of punch load had to be considered, the punch was displaced further and the 

forming simulation was terminated when the required punch load was achieved. Two penalty-
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based surface-to-surface contact boundary conditions were imposed between the blank and two 

tooling components (die and punch). Both the static and dynamic coefficients of friction between 

the blank and the rest of tooling were defined as the value obtained in the friction characterization. 

The coefficient of friction was approximated as a linear function of temperature according to 

Equation (2), (3) and (4) and summarized in Table 7 

 

Table 7: Coefficients of friction for core and clad layers at dry condition and Teflon lubricant at different temperatures 

Temperature 25⁰C 250⁰C 300⁰C 350⁰C 

Core (dry) 0.87 1.32 1.43 1.53 

Clad (dry) 0.20 0.70 0.81 0.93 

Teflon lubricant 0.15 0.30 0.33 0.37 

 

In order to reduce computation time, the forming simulations utilized the mass scaling technique 

with a factor of 107.  Simulations were also run using mass scaling factor of 104and no differences 

were observed as shown in Table 8. 

 

Table 8: Effect of mass scaling 

 Model 1 Model 2 

Mass Scaling 

Factor 
107 104 

Run Time 

(Hours) 
9 306 

Kinetic Energy 

(N-mm) 
0.514 0.139 

Internal Energy 

(N-mm) 
3404 3282 

Maximum Von 

Mises Stress 

(MPa) 

244.3 245.2 

Maximum 

Effective Strain 
0.318 0.328 

 

The kinetic energy, internal energy and external work were also monitored to ensure that dynamic 

effects were negligible within the simulations. If the kinetic energy is significantly small compared 

to the internal energy and external work, then mass scaling is considered acceptable in the 

simulation. 



60 

 

 

 

4 Forming Process Development 

 

 

This chapter presents the numerical and experimental results used to develop the warm forming 

process and describes the procession of different tooling configurations considered to improve part 

formability and limit springback. This chapter focuses primarily on the formability improvements, 

while Chapter 5 addresses springback control. Formability of the Surrogate Heat-exchanger 

Component (SHC) is assessed primarily in terms of visible cracking in the experimentally formed 

parts and visual assessment of the degree of wrinkling. In the corresponding models, excessive 

thinning was used to indicate potential for onset of cracking and wrinkling was often evident in 

the deformed part geometry. For TC4, the forming limit curves developed Jain [43] were also 

considered in assessing part formability. 

 

4.1 Tooling Configuration 1 (TC1) 

4.1.1 Model Predictions 

For TC1, a single operation was considered to form the SHC using the tooling shown in Figure 

24. Numerical simulations were performed to assess the formability of the SHC at both room 

temperature and 250⁰C for O-temper condition brazing sheet (Figure 58). The numerical 

simulations revealed a formability issue around the input/output (I/O) port due to tight radii as seen 

in Figure 59 and Figure 60 for forming at 25⁰C and 250⁰C, respectively. The models predicted 

localization at the radius and associated excessive thinning as is evident in the figures. 
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Figure 58: Macro contour plot of percent thickness reduction for TC1: O-temper, 25⁰C forming temperature 

  
Figure 59: Contour plot of percent thickness reduction for TC1: O-temper, 25⁰C forming temperature 

  
Figure 60: Contour plot of percent thickness reduction for TC1: O-temper, 250⁰C forming temperature 

 

The I/O port feature remained a formability challenge even at elevated temperatures and it was 

likely that warm forming alone would not be sufficient to form the I/O port in a single step. This 

issue was intensified when the harder H22- and H24-tempers are introduced. 

  

4.1.2 TC1 Experimental Results 
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The simulation results were validated by performing a forming experiment with the experimental 

parameters shown in Table 9. The experiment was conducted with the softest and hardest material 

tempers at 25⁰C and 250⁰C with three lubrication conditions. The results for the forming 

experiment using the TC1 arrangement is also summarized in Table 9 and formed parts are shown 

in Figure 61. 

  

 

Figure 61: TC1: O-temper formed at 250⁰C at dry condition (left) and with Teflon (right) 

 

As predicted by the simulations, the SHC could not be formed under any of the conditions, even 

with the softest temper since fracture occurred at the tight radii at the I/O port, as shown in Figure 

62. It was concluded that modifications to the tooling configuration and/or the forming process are 

necessary in order to overcome the formability challenges associated with the SHC. 

 

Table 9: TC1 forming experiment results (O = formed successfully X = fracture occurred) 

Material 

Temper 
Temperature None Teflon Fuchs 

H24 
RT X X X 

250 X X X 

O 
RT X X X 

250 X X X 
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Figure 62: TC1: O-temper formed with Teflon lubrication at 250⁰C. A fracture runs along the I/O port radius, parallel to 

the red line drawn on the image. 

 

4.2 Tooling Configuration 2 (TC2) 

4.2.1 Geometry Selection 

In order to improve the part formability, a two-step forming process in which the majority of the 

I/O port is formed in the first step and then the rest is formed in the second step, was developed as 

shown in Figure 63.  The pre-form (PF) profile is formed first as a large protrusion with large 

feature radii. The pre-form operation serves to “gather material” around the I/O port feature and 

distributes the strain across the entire section of the initial curvature rather than promoting high 

localized strains around the tight radii in the final form (FF) profile. In the final form operation, 

the pre-form profile is compressed into the final shape of the I/O port. Both PF and FF profiles are 

designed to have a similar arc length thus most of the stretching is accomplished in the PF stage 

and only bending occurs in the FF stage. 

 

 

Figure 63: Multi-stage forming schematic 
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Initially, several different PF geometries were simulated to assess the effect of the multi-stage 

forming approach. It was important to ensure that the thickness reductions in both stages are low 

to ensure that fracture does not occur. Figure 64 shows two distinct PF geometries in which 

geometry A is more aggressive with larger curvatures and arc length compared to geometry B. 

 

 

 
Figure 64: PF geometry A (red) and B (yellow) and FF geometry (grey) 

 

The simulation results for the two PF geometries are summarized in Figure 65 and Figure 66. The 

PF geometry had significant impact on the formability of the FF operation. The general trend 

observed was that lower strains during the PF stage tended to promote higher strain in the FF stage. 

For geometry B, the maximum thickness reduction in the PF stage was only 2.5%; however, severe 

sheet thinning of 42% resulted during the FF stage. For geometry A, the PF geometry had adequate 

deformation (10% thinning) such that both the PF and FF stages contributed to moderate thickness 

reduction. It became apparent from the simulations that there is a finite amount of strain to be 

distributed between the two forming stages and that fracture occurs when high strains were 

required in the FF stage. Therefore, the design approach was to apply as much strain as possible 

in the PF stage without fracture.  
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PF 
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FF 
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Figure 65: Contour plot of percent thickness reduction for TC2 using geometry A: O-temper, 250⁰C forming 

temperature. PF (left) and FF (right) 

 
 

 
 

Figure 66: Contour plot of percent thickness reduction for TC2 using geometry B: O-temper, 250⁰C forming 

temperature. PF (left) and FF (right) 

 

Furthermore, the thickness reduction behavior was found to a strong nonlinear function of the 

forming history. Two different geometries with a similar thickness reduction in the PF stage could 

have totally different thickness reductions after the FF stage. For example, two similar PF 

geometries C and D in (Figure 67) had a similar thickness reduction values of 5.92% and 5.97% 

in the PF stage as shown in Figure 68 and Figure 69. However, their final thickness reduction 

values in the FF stage was completely different with values of 34.1% and 13.2%. This again shows 

that the final thickness reduction value depends very heavily on the PF geometry and the forming 

history. 
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Figure 67: PF geometry C (yellow) and D (red) and FF geometry (grey) 

 

 
 

 
 

Figure 68: Contour plot of percent thickness reduction for TC2 using geometry C: O-temper, 250⁰C forming 

temperature. PF (left) and FF (right) 

 
 

 
 

Figure 69: Contour plot of percent thickness reduction for TC2 using geometry D: O-temper, 250⁰C forming 

temperature. PF (left) and FF (right) 
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After a set of trial-and-error simulations, a PF geometry with the best formability performance was 

selected as a baseline geometry. The purpose of the baseline geometry was to serve as a reference 

against which the formability improvement can be assessed in a simple parametric/systematic 

study. For this study, the PF geometry is defined by a surface generated from three curvature 

profiles, as shown in Figure 70. The three profiles were created using thirteen geometrical 

parameters (Figure 70) defined within SolidWorks CAD program. Each profile was defined 

relative to the FF geometry with parameters comprising the vertical offset distance and location of 

the inflection point, as shown in Figure 70. The curvatures were generated by utilizing splines 

which are commonly used to create complex curves and controlled by tangency weight and 

direction as shown in Figure 72 and Figure 73. 

 

 

Figure 70: CAD of the three curvature profiles generating the PF geometry surface, defined relative to the FF geometry 
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Figure 71: Thirteen geometrical parameters defining the three curvature profiles and four chosen parameters (A, B, C, 

and D) 

  
Figure 72: Effect of tangency weight on spline 

  
Figure 73: Effect of tangency direction on spline 
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The selection procedure consisted of varying each parameter to three different design levels (low, 

mid and high) and evaluating the thickness reductions at both the PF and FF stages. In order to 

simplify the selection process, four parameters (herein denoted as A, B, C and D) with the most 

influence on the thickness reduction were selected for a full factorial study. The four chosen 

parameters and their design levels are shown in Figure 71 and Table 10. 

 

Table 10: Design levels for the four chosen parameters 

Parameters Low Mid High 

A 40⁰ 45⁰ 50⁰ 

B 15 mm 17 mm 19 mm 

C 14 mm 15 mm 16 mm 

D 12 mm 14 mm 16 mm 

 

Parameter A controls the angle of the side wall in the curvature profile 2, B and C control the top 

and bottom tangency weights of the curvature profile 3, and D controls the overall length of the 

PF geometry, respectively. In total, there were 34 design iterations as there were three design levels 

for each of the four parameters. The effects of the four chosen parameters on the thickness 

reductions of PF and FF at the different design levels are shown in Figure 74. 

 

Figure 74: Effect of the four selected parameters on PF and FF thickness reduction % 

 

The factorial study revealed that the minimum thickness reductions occurred at: A at low, X2 at 

mid, X3 at low and X4 at mid-parameter levels.  Through the factorial study, the maximum 

thickness reductions were changed to 7.0% and 10.3% for the PF and FF stages, respectively, 
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which represents an improvement compared to the thickness reduction predicted for the baseline 

geometry (6.8% and 12.2% thickness reduction for the PF and FF stages, respectively). 

 

4.2.2 TC2 Experimental Results 

4.2.2.1 Formability 

New tooling was fabricated (referred to as the TC2 configuration, shown in Figure 24) using the 

selected PF geometry and the SHCs were formed again. The experimental results for the O-temper 

material are summarized in Table 11. The O-temper material exhibited excellent formability and 

fracture did not occur. The O-temper material formed successfully for both the PF and FF 

geometries at every condition considered including the dry (no lubricant) room temperature 

condition due to its high ductility. The as-formed O-temper samples are shown in Figure 75 and 

Figure 76. 

 

Table 11: O-temper experimental results for TC2 (O = formed successfully X = fracture occurred) 

Preform Final form 

  None Teflon Fuchs   None Teflon Fuchs 

RT O O O 
RT O O O 

250 O O O 

250 O O O 
RT O O O 

250 O O O 

 

 

Figure 75: O-temper PF without lubrication at 25⁰C (left) and 250⁰C (right) 

 

Figure 76: O-temper FF without lubrication at 25⁰C (left) and 250⁰C (right) 
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The initial experiments revealed that the thickness reduction in the PF stage was severe and caused 

fracture when the die sets were fully closed for harder temper materials, regardless of the forming 

temperature and lubrication condition. (Recall that the simulations for TC1-TC3 only considered 

O-temper sheet.) To alleviate this issue, the dies were only partially closed by limiting the punch 

load to a range of values in order to test different levels of strain in the PF stage. In the subsequent 

FF stage, the die sets were fully closed for all conditions. The fully closed position was determined 

by examining the force-time plot of the PF geometry as shown in Figure 77. Due to very thin gauge 

of the material, the punch load required to form the PF geometry was relatively low. At around 6 

kN, the component was fully formed and the dramatic increase in punch load is attributed to the 

compression of the formed component within the dies. 

.  

Figure 77: Force-time plot of PF geometry for H24-temper 

 

The experiment results for the H24-temper material are summarized in Table 12 and Table 13. The 

H24-temper material failed to form the PF geometry at high punch load conditions including the 

fully closed condition regardless of the temperature and lubrication conditions. However, the PF 

geometry successfully formed at room temperature at lower punch force conditions with lubricated 

conditions having higher tolerable punch force.  For elevated temperature conditions, the attainable 

punch load before fracture was much lower compared to room temperature which was expected 

due to thermal softening of the material. The maximum attainable punch loads without fracture 

during preforming were 3000N and 1250N for room temperature and elevated temperature 

conditions, respectively. The FF geometry only formed at these specific PF punch load conditions 

since the strain level in the PF was either too large or too small for other punch load conditions. 
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Table 12: H24-temper experimental results for TC2 at 25⁰C (O = formed successfully X = fracture occurred) 

H24 Preform Final form 

Load   None Teflon Fuchs   None Teflon Fuchs 

6000 RT X X X 
RT       

250       

4000 RT X X X 
RT       

250       

3000 RT X O O 
RT   O O 

250   O O 

2000 RT X O O 
RT   X X 

250   X X 

1500 RT O O O 
RT X X X 

250 X X X 

1000 RT O O O 
RT X X X 

250 X X X 

 

Table 13: H24-temper experimental results for TC2 at 250⁰C (O = formed successfully X = fracture occurred) 

H24 Preform Final form 

Load   None Teflon Fuchs   None Teflon Fuchs 

2000 250 X X X 
RT       

250       

1500 250 X X X 
RT       

250       

1250 250 X O O 
RT   O O 

250   O O 

1000 250 X O O 
RT   X X 

250   X X 

750 250 X O O 
RT   X X 

250   X X 

500 250 O O O 
RT X X X 

250 X X X 

 

The H24 PF profiles formed at different loads at each temperature can be seen in Figure 78. As 

the punch load increased, the blank formed a shape closer to the PF geometry. For the elevated 

temperature condition, the PF geometry was formed at a lower punch load hence the reason why 

the maximum load before fracture is lower at elevated temperatures. At the punch load of 4000N 

and 1500N for 25⁰C and 250⁰C respectively, the blanks start to resemble the fully-formed PF 

geometry at which point fracture occurs due to a high level of stretching. At room temperature and 

a punch load of 2000N and below (1000N and below for 250⁰C), the blanks did not undergo 

sufficient deformation thus severe stretching still occurred in the FF stage which led to fracture. 
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Figure 78: PF profile formed at 25⁰C and 250⁰C at different punch loads. Note that the FF was only successful for the PF 

geometry formed with 3000N and 1250N loads, respectively. 

 

The two PF geometries formed at room temperature and 250⁰C using loads of 4000N and 1500N, 

respectively, are compared in Figure 79. These cases correspond to the minimum load at each 

temperature for which the as-formed shape conforms well to the tooling geometry (Figure 78). It 

is observed that the crack in the PF geometry formed at elevated temperature was noticeably larger 

than that formed at room temperature. In addition, the forming temperature in the FF stage for load 

levels which did not result in cracking during the PF stage, did not have much effect on the 

formability. From these two observations, the benefit of warm forming is not particularly evident 

in terms of formability of the SHC. However, the effect of multi-stage forming was clearly 

demonstrated as the SHC formed successfully when it failed to form with the single-stage forming 

process at every condition with TC1. For both room temperature and 250⁰C, the formability 

window at which both the PF and FF form successfully were identified (3000N and 1250N for 

25⁰C and 250⁰C respectively). The SHCs formed in this formability window have sheet thinning 

that is well-balanced between the two forming stages rather than having concentrated thinning in 

one of the stages. 

 

  
(a) (b) 

 

Figure 79: PF geometry formed with (a) 4000N at 25⁰C (b) 1500N at 250⁰C at dry condition 

25⁰C 

      

250⁰C 

      

1000N 1500N 2000N 3000N 4000N 6000N 

500N 750N 1000N 1250N 1500N 2000N 
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Both lubricants, Teflon and Fuchs, had similar performance and it was concluded that lubricant is 

important to ensure a successful forming operation as shown in Table 12 and Table 13. Under the 

same forming conditions, the lubricated parts formed while the unlubricated parts fractured. The 

effect of lubrication was clearly observed with the size of cracks decreasing with the use of Teflon 

lubricants as shown in Figure 80 and Figure 81. Through this experiment, the importance of 

coefficient of friction in metal forming was emphasized again.  

 

  
Figure 80: H24-temper: 4000N punch load, 25⁰C forming temperature, unlubricated (left) Teflon (right) 

 

  
Figure 81: H24-temper: 2000N punch load, 250⁰C forming temperature, unlubricated (left) lubricated (right) 

 

4.2.2.2 Springback 

Although formability did not improve with increasing temperature, qualitative observations 

showed an improvement in springback at elevated temperature conditions as shown in Figure 82. 

The SHC formed at 250⁰C had higher flatness compared to that formed at 25⁰C which had an 

upward concave curvature.  
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Figure 82: Effect of FF forming temperature on springback in the FF stage. 25⁰C (left) and 250⁰C (right). PF forming 

temperature is 25⁰C for both specimens 

 

Figure 83 shows the effect of forming temperature in the PF stage on the final SHC component. It 

was observed that as long as the FF stage is formed at elevated temperatures, the temperature at 

which the PF is formed has very little effect on the final springback. This observation suggests that 

most of the geometrical features that contribute to the springback are formed in the FF stage. 

 

 

 
Figure 83: Effect of PF forming temperature on springback in the FF stage. 25⁰C (left) and 250⁰C (right). FF forming 

temperature is 250⁰C for both specimens  

 
 

Figure 84 shows the SHCs formed with O-temper sheet at room temperature and with H24-temper 

sheet at 250⁰C. It is shown that the degree of springback for the H24-temper material which was 

formed under warm forming conditions is comparable to the O-temper material that was formed 

at room temperature. This comparison indicates that the battery plates formed with the H24-temper 

material utilizing the warm forming process can achieve comparable dimensional accuracy and 
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component flatness as that of the O-temper material. Thus, the warm forming process is promising 

from the perspective of enabling the development of more durable, higher performance and lower 

cost battery plates that cannot be mass produced today due to forming and springback constraints. 

 

 

 
 

Figure 84: Effect of material temper on springback in the FF stage. O-temper formed at RT (left) and H24 formed at 

250⁰C (right) 

 

4.2.2.3 Wrinkling 

One issue encountered with TC2 was significant wrinkling introduced during the PF stage caused 

by forming the initial I/O feature adjacent to the flat area of the blank, as can be observed in Figure 

85. Wrinkling is a phenomenon of compressive instability and is considered a major defect in sheet 

metal forming [87]. In the PF operation, sheet material is pulled into the sides of the initial I/O 

feature pre-form geometry, which puts the flat material at the end of the I/O feature into a severe 

state of compression which triggers wrinkling. Wrinkling was also visible in the numerical 

simulations, as shown in Figure 86. Components with wrinkling are scrapped in industry as they 

do not meet the part design and dimensional requirements, and could also result in wear or damage 

to the dies. The wrinkles were still visible in the final component since the FF stage was not 

sufficient to flatten the wrinkles, as shown in Figure 85. 
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Figure 85: TC2: Wrinkles after PF formed at 25⁰C (left) and subsequently formed to FF at 25⁰. H24-temper and 

lubricated with Teflon 

 

Figure 86: Wrinkles after PF stage in TC2 numerical simulation. O-temper, 250⁰C forming temperature. 

 

4.3 Tooling Configuration 3 (TC3) 

For the third tooling configuration, TC3, several changes were made to the pre-form tooling 

geometry. In order to reduce the extent of wrinkling, the PF geometry was modified to pre-form 

the channels as well, as can be seen in Figure 87. The motivation to pre-form the channels is to 

impart more tensile straining within the previously flat regions of the PF geometry, thereby 

reducing compressive stress and wrinkling tendency. In addition, by forming the cooling channels, 

the PF part will have higher stiffness which should also improve part flatness. Both effects were 

expected to prevent or reduce the tendency for wrinkling within the PF operation. Through more 

trial-and-error simulations, the I/O port geometry was changed to reduce thickness reductions to 

4.3% and 13.4% for the PF and FF stages, respectively from TC2 (7.0% and 10.3% thickness 

reduction for the PF and FF stages, respectively). Although there was more thinning in the FF 

operation, there was an overall improvement in thickness reduction (39% less thickness reduction 

in PF stage versus 30% more thickness reduction in FF stage). 
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Figure 87: TC2 (left) and TC3 PF geometry (right) 

 

Figure 88: TC2 (red) and TC3 (yellow) I/O ports 

 TC2 TC3 

 

PF 

  

FF 

  
 

Figure 89: Contour plot of percent thickness reduction for TC2 (left) and TC3 (right) for PF geometry and subsequent FF 

geometry. O-temper, 250⁰C forming temperature. Note that negative thickness reduction implies thickness increase. 
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Numerical simulations were performed to evaluate the potential for the TC3 design to reduce the 

wrinkling behavior. The tendency to wrinkle for a particular tooling model was examined in the 

models based on predicted thickness change (Figure 89). Regions with predicted thickness increase 

were considered more likely to wrinkle since wrinkling is caused by the compression of the blank. 

The thickness contour plots of the TC2 and TC3 PF geometries and also the resulting FF 

geometries are found in Figure 89. In accord with the experimental observations, the simulations 

also showed more wrinkling tendency (larger thickness increase shown by blue regions) in the 

TC2 PF geometry and the subsequent FF geometry. It was shown that the TC3 PF geometry was 

able to reduce the severity and affected area of the wrinkling behavior. The introduction of the 

channel geometry into the PF stage effectively prevented the wrinkles from propagating 

throughout the sheet reducing the maximum thickness increase from 9.3% to 5.8% in the PF stage. 

 

4.3.1 TC3 Experimental Results 

4.3.1.1 Formability 

The experimental results for the TC3 tooling configuration are summarized in Table 14. Similar 

to the TC2 results, both the PF and FF geometries formed without any challenges using the O-

temper material. Due to the I/O port geometry optimization, the PF geometry also formed without 

fracture with the H24-temper material even when the dies were fully closed but only for the 

lubricated and room temperature conditions. Figure 90 shows the PF geometry formed at room 

temperature and 250⁰C without any lubrication. The specimens fractured under both conditions 

but the size of the crack on the specimen formed at 250⁰C was larger which indicated worse 

formability. It was not known why the warm forming condition exhibited lower formability. The 

same trend was observed again in the lubricated condition, as shown in Figure 91. The PF geometry 

formed successfully with slight localization at room temperature while it fractured at 250⁰C. 
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Table 14: Experimental results for TC3 (O = formed successfully X = fracture occurred) 

  PF FF 

    None Teflon Fuchs   None Teflon Fuchs 

H24 

RT X O O 
RT   O   O 

250   O   O 

250 X X X 
RT       

250       

O 

RT O O O 
RT O O O 

250 O O O 

250 O O O 
RT O O O 

250 O O O 

 

 

Figure 90: TC3 PF geometry formed with H24-temper sheet at 25⁰C (left) and 250⁰C (right) with no lubrication 

 

Figure 91: TC3 PF geometry formed with H24-temper sheet at 25⁰C (left) and 250⁰C (right) with Teflon lubrication 

 

The effect of punch speed was examined to investigate whether the poor formability at elevated 

temperature can be attributed to a high punch speed, as shown in other previous studies [8], [12], 

[41]. Figure 92 shows the PF geometries formed at 250⁰C with the punch speeds of 0.25 mm/s and 

4 mm/s. The negative effect of the punch speed was demonstrated by slightly larger cracks on the 

specimen formed with the higher punch speed of 4 mm/s. However, the effect was not thought 

significant enough that the punch speed alone would cause the specimen to fail under warm 

forming conditions.  
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Figure 92: TC3 PF geometry formed with H24-temper sheet at 250C at 0.25 mm/s (left) and 4 mm/s (right) 

 

4.3.1.2 Wrinkling 

There was some improvement in the wrinkling behavior with the added channels in theTC3 PF 

geometry (Figure 93), but there was still a significant level of wrinkling being carried over to the 

FF geometry which might pose problems in subsequent brazing operations. It was concluded that 

the wrinkle improvement achieved with the latest tooling configuration was still inadequate. 

 

 

Figure 93: H24 wrinkling behavior for PF and FF geometries formed using TC2 (left) and TC3 (right). PF formed at 25⁰C 

and FF formed at 250⁰C, 

 

4.3.1.3 Snap-through buckling 

Another instability appeared on the formed part when the TC3 PF geometry was used as shown in 

Figure 94. A snap-through buckling, a type of buckling where a structure snaps from one state to 
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another different state [88], occurred due to high residual compressive stress in the sheet. The two 

stable equilibrium configurations are shown in the figure. The buckling effect was magnified due 

to the very thin gauge of the sheet leading to a very low critical load. 

 

 

Figure 94: TC3 snap-through buckling of H24-temper formed at 25⁰C for both PF and FF. A high residual compressive 

stress in the area shown with red arrows is thought to cause this behavior. 

 

The high residual compressive stress is thought to be caused by the difference in the arc length 

between the PF and FF I/O port geometries as illustrated in Figure 95. The arc length of the PF 

geometry was 19.62 mm while that of the FF geometry was 18.41 mm. Therefore, a longer length 

is compressed into a smaller length during the FF stage leading to high residual compressive stress. 

 

 

Figure 95: TC3 PF and FF I/O port geometry 

 

This phenomenon was not present in the TC2 multi-stage forming experiments because there was 

better match of the arc length between the two tooling stages. In the previous experiments, the 

punch load was reduced due to formability reasons which effectively reduced the arc length of the 

sheet. Therefore, the residual compressive stress within the sheet after the FF stage was decreased. 

19.62 mm 

18.41 mm 
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In order to further investigate, the TC3 PF geometry was formed with a reduced punch load 

(3000N) and subsequently formed into FF geometry as shown in Figure 96. It was shown that SHC 

formed with reduced punch load in the PF stage resulted in less snap-through response. 

 

 

Figure 96: TC3 PF formed with full punch load (left) and reduced punch load (right) at 25⁰C then formed to FF at 25⁰C 

 

The compression effect during forming was also observed in the numerical simulations, as shown 

in Figure 97. When a trial PF geometry with an arc length of 17.85 mm was formed into FF 

geometry, the I/O port was stretched rather than compressed since the arc length of FF geometry 

is 18.41 mm. Therefore, there was no compressive residual stress (thickness increase) around the 

I/O port. However, the PF geometry used in TC3 has an arc length of 19.62 mm which is 

considerably larger and led to very high compressive stress around the I/O/ port, as reflected by an 

increase in the sheet thickness by 24%, which caused the instability problem. 

  
 

Figure 97: Contour plot of percent thickness reduction of FF geometry, formed after PF with arc length of 17.85 mm  

(left) and 19.62 mm (right). O-temper, 250⁰C forming temperature. Note that negative thickness reduction implies 

thickness increase. 

 

The buckling behavior was no longer observed when the FF geometry was formed at elevated 

temperatures as shown in Figure 98. The warm forming condition reduced the flow stress and thus 
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decreased the residual compressive stress within the specimen. This improvement in net shape 

represents an important benefit of warm forming. 

 

 

Figure 98: PF formed at 25⁰C then formed to FF at 25⁰C (left) and 250⁰C (right) using TC3 

 

4.4 Tooling Configuration 4 (TC4) 

The localization around the I/O port of the SHC is due to severe stretching of the sheet caused by 

the aggressive geometry, constrained material flow and relatively poor formability of the brazing 

sheet, particularly in the harder temper conditions. In order to further optimize the manufacturing 

process, modifications to the blank and tooling design were again considered, including 

modifications to the I/O port geometries. These improvements actually enabled a single-stage 

forming process to be performed. The simulation effort was also improved by introducing the 

constitutive properties presented in Section 3.1.2 for the O and H24-temper sheet, as well as the 

forming limit diagrams (FLDs) for the brazing sheet alloys developed by Jain [43]. The new 

property data and forming limit data, in conjunction with thickness reduction predictions, were 

applied to assess the formability of the surrogate heat-exchanger component (SHC) using TC4. 

 

4.4.1 Preliminary Numerical Simulation 

A technique used in industry is the incorporation of a “down-flange” or “dog leg” feature, as seen 

in Figure 99, to constraint the edge of the blank. This feature incorporates sharp bends along the 

outer edges of the blank, which resemble the shape of a dog leg, in order to restrict material flow 

similar to a lock bead. The purpose of this feature is to increase the stiffness of the sheet metal for 
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better handling and to aid in locating the sheet within the transfer system and progressive die 

tooling. This feature also locks the sheet during stamping which reduces springback and wrinkling 

by maintain high sheet tension. 

 

 

Figure 99: “down-flange” or "dog leg" feature shown in red box 

 

In addition, slight modifications were made to the I/O port geometry to improve the formability 

while overall shape is maintained, as shown in Figure 100. These modifications are not thought to 

affect original design intent. 

 

The initial I/O port radius was kept identical and then blended gradually to transition into the 

cooling channel. This local increase in radius reduced the bending severity during forming while 

still maintaining a sharp radius for sealing the I/O port joint during brazing at the opening of the 

I/O port. The formability was found to increase in the simulations as the key dimension, the length 

over which the I/O port radius is kept identical, indicated by the red arrow in Figure 100 decreased. 

However, one of the design constraints was to maximize this key dimension since a tight radius is 

required for the brazing operation in which two SHCs are brazed together with a metal tubing 

inserted in the I/O ports. It should be noted that the geometrical blending alone was not sufficient 

to form the part successfully as the feature was still too aggressive to be formed in a single forming 

step. 
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Figure 100: Modified I/O port geometry 

 

Another option to locally increasing the material flow behavior in critical regions was explored by 

modifying the initial blank geometry. A developed blank geometry was introduce to prevent 

excessive stretching when the I/O ports are being formed. To do this, a new trim line was defined 

by offsetting a certain distance from the channels and I/O ports, as shown in Figure 101. The offset 

distance has to be large enough so that there is still sufficient surface area to be brazed after the 

material is pulled in during forming. The minimum flange length required after forming was 

adopted as approximately 1.3 mm, which is the distance between the two adjacent cooling channels 

as shown in Figure 102. As this length is adequate for the current brazing operation and pressure 

tests, it was assumed that it would be acceptable to use this length as the minimum criterion. 

 

 

Figure 101: Initial blank geometry trim line with 3mm flange length (offset distance from features). 

 

Cooling 

channel 

Blended 
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Identical 
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Figure 102: Braze width between two adjacent cooling channels used as minimum criterion for required flange length 

 

Initial blanks with different offset distances were simulated to determine the optimal initial flange 

width, as shown in Figure 103. The forming limit diagrams are shown in Figure 104. Three 

different initial flange widths were considered, 2, 3 and 4 mm for which the final width after 

forming was approximately 0.8, 1.2 and 2.8 mm, respectively. The predictions show that as the 

initial flange width increased, the formability decreased (increase in thinning) due to the greater 

resistance to draw-in of the flange to form the I/O port feature. Also, the difference between the 

initial and final flange width stayed fairly constant at 1.2 mm. The forming limit diagrams 

predicted that the flange width of 2 and 3 mm would form successfully, while the flange width of 

4 mm would fail to form. Although predicted to be safe, the strains in the 3 mm flange width case 

are in a close proximity of the forming limit curve thus the flange length should be no more than 

3 mm. 

 

~1.3mm 
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(a) 

 
(b) 

 
(c) 

 

Figure 103: Contour plot of percent thickness reduction for TC4: H24-temper, 250⁰C forming temperature for initial 

flange length of (a) 2mm (b) 3mm (c) 4mm 

   
(a) (b) (c) 

Figure 104: FLDs for TC4: H24-temper, 250⁰C forming temperature for initial flange length of (a) 2mm (b) 3mm (c) 4mm 

 

Since the minimum final flange length required is 1.3 mm, in order to match the flange width in 

the interior regions of the SHC (Figure 102), and the flange is drawn in 1.2 mm during forming, 

~0.8mm 

~1.8mm 

~2.8mm 
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the minimum initial flange width required is 2.5 mm. Therefore, the initial flange width was chosen 

to be 3 mm in order to be conservative.  

 

4.4.2 Experimental Set-up 

The final developed blank geometry adopted in the experiments is shown in Figure 26. Sharp 

corners were removed to prevent stress concentration by adding fillets. The blank was produced 

using CNC machining with the aid of jig fixture shown in Figure 105. Approximately 5 to 10 

rectangular blanks were stacked and then clamped to the jig surface, after which the final profile 

was machined. 

 

 

Figure 105: Blank machining jig for TC4 

 

The CAD of the TC4 dies are shown in Figure 106 and Figure 107. The TC4 forming die is very 

similar to the die used in the other tooling configurations. An additional feature included in the 

design was the dog leg feature explained previously. This feature comes in contact with the blank 

first, bends the sheet, and effectively locks it in place. 
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Figure 106: CAD of female die for the TC4 

 

Figure 107: CAD of male die for the TC4 

 

4.4.3 Experimental Results 

The experimental results for the TC4 forming experiment are summarized in Table 15. The Fuchs 

lubricant was no longer considered as it had negligible performance difference from the Teflon 

spray which has a more consistent surface quality and greater ease of application. 

 

Table 15: TC4 forming experimental results (O = formed successfully X = fracture occurred ∆ = necked)  

Temper   Temperature None Teflon 

O 
RT O O 

250 O O 

H22 
RT O O 

250 ∆ O 

H24 
RT O O 

250 ∆ O 

 

Dog leg 

feature 

Dog leg 

feature 
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The SHC formed successfully in a single forming operation even with the hardest material, the 

H24-temper, as shown in Figure 108. With the TC4 I/O port geometry and blank geometry, the 

formability increased significantly enabling forming at room temperature without lubricant. In 

addition, the snap-through buckling observed in TC3 was no longer present. 

 

 

Figure 108: SHC formed with H24-temper sheet at 25⁰C (left) and 250⁰C (right) using TC4 

 

As seen previously, the issue associated with forming at elevated temperatures was observed again. 

The SHC formed at 250⁰C with the H22- and H24-temper material without lubricant had 

noticeable necking around the I/O port causing severe thinning, as shown in Figure 109. The 

component did not fracture completely but the severe thinning is unfavorable for component 

durability and corrosion resistance. The necking was not observed with the use of lubricant. The 

cause for this necking at elevated temperatures is suspected to be the increasing coefficient of 

friction with temperature as shown in Figure 33. 
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Figure 109: H24-temper material formed at 250⁰C without lubricant (left) with Teflon lubricant (right) 

 

It was observed that the SHCs formed with the TC4 are superior in terms of formability and 

wrinkling behavior compared to the previous tooling designs. In addition, the ability to form these 

parts in a single forming step offers considerable process efficiency compared to multi-stage 

forming. Initially, the target warm forming temperature was aimed at 250⁰C as higher temperatures 

would increase the risk of adverse thermal effects on the strength of the material and coating 

integrity. The SHCs formed with TC4 at 250⁰C displayed some improvement in the springback 

behavior but the reduction was not high as anticipated. Therefore, the springback behavior at 

higher temperatures up to 350⁰C was further investigated. The high forming temperatures coupled 

with high punch loads resulted in significant reduction in springback. All of the subsequent in-

depth springback analysis presented in this thesis was performed on the SHCs formed with the 

TC4 (see Chapter 5). 

 

4.5 Summary 

This chapter has presented the development process for warm forming tooling by combining 

numerical and experimental methods. Four different tooling configurations that incorporate 

various die designs and process parameters were developed in order to improve part formability 

and wrinkling behavior. Through TC2 and TC3, it was demonstrated that multi-stage forming is 

quite effective in distributing strains to prevent localization such as the one seen around the I/O 

port in TC1 that utilized single-stage forming. However, it was shown the multi-stage forming 

could potentially introduce part defects such as wrinkling and snap-through buckling. The first 
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stage of TC3 included channel geometries in attempt to reduce wrinkling but it was found to be 

ineffective. The greatest formability gain was achieved in TC4 due to the developed blank 

geometry that minimized material constraint and provided ease material flow into the I/O port. The 

developed blank prevented excessive stretching of the sheet while maintaining enough surface area 

to be brazed after the material is pulled in. In conjunction with the minor reduction in geometrical 

sharpness of the I/O port-cooling channel intersection, the SHC exhibited significant improvement 

in formability that allowed forming at room temperature without any lubricants in a single 

operation. The anticipated formability gain associated with warm forming was not observed and, 

in reality, the opposite effect was shown in which the parts exhibited more necking at elevated 

temperatures. The poor formability at elevated temperatures is speculated to be caused by the 

increase in coefficient of friction. Throughout all the tooling configurations, no observable 

evidences that support warm forming in terms of formability were found. However, the beneficial 

effect of warm forming was observed when the parts formed at elevated temperatures displayed 

reduced springback. More in-depth investigation regarding the effect of warm forming on 

springback is completed in the next chapter. 
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5 Springback 

 

 

In order to fully characterize and to gain in-depth knowledge about the springback behavior, the 

effects of a wide range of experimental parameters on springback were considered, as shown in 

Table 16. These included both process and material dependent variables that could potentially 

influence springback. The effect and sensitivity of each parameter on the springback behavior was 

evaluated thoroughly. Note that the holding time is to the duration of time at which the formed 

component is held within the closed dies. The sheet direction refers to the sheet direction (rolling 

versus transverse) aligned with the length of the component during forming, as shown in Figure 

110.  

 

  
 

Figure 110: Rolling and transverse directions relative to blank 

 

The normal and inverted sheet orientations refers to the SHCs formed with the core layer on top 

and bottom surfaces, respectively. As previously mentioned, only the SHCs formed with tooling 

configuration 4 (TC4) were used in the springback analysis. For all of the springback experiments, 

each test condition was repeated at least three times and the scatter bands correspond to one 

standard deviation. 

 

RD TD 
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Table 16: Single-stage springback experimental parameters 

Material 

Temper 

Temperature 

(⁰C) 

Lubricant Forming 

Speed 

(mm/s) 

Punch 

Load 

(kN) 

Holding 

Time  

(s) 

Sheet 

Direction 

Sheet 

Orientation 

O 25, 250 None 1 10 2 RD Normal 

H22 275, 300 Teflon 10 30 30 TD Inverted 

H24 325, 350   80    

 

5.1 Springback Measurement 

In order to analyze the springback behavior, a method to quantify springback had to be developed. 

Springback was characterized in terms of the out-of-plane displacement and curvature of the cross-

section of the formed part. A simple jig (Figure 111) was designed and machined to fixture the 

component in a consistent manner to serve as a reference in measuring springback. It clamped 

down the SHC on the channel such that the clamped side of the component was horizontal. The 

jig constrained the part and removed any unnecessary degrees of freedom for meaningful and 

consistent measurements which would also be useful for validation of the springback numerical 

models. After the SHC is loaded on the jig, the edge of the as-formed parts were scanned on a 

flatbed scanner in a dark room to create a greyscale image with high contrast. 

 

 

Figure 111: Springback measurement jig with SHC in position used for springback measurement 

 

A MATLAB script was created that utilized image processing to automatically measure 

springback (y-displacement) and curvature of the component from the scanned greyscale images. 

Figure 112 shows the scanned and processed images of the part. The image processing consisted 

Scanned side 

Y X 

Z 
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of converting a greyscale image into a binary image and applying built-in filtering and 

morphological operations. The curvature of the component was obtained by fitting a circle to the 

cross-section excluding the side walls. The vertical displacement was defined as the distance from 

the intersection of the line segments fit to the side wall and the tangent to channel bottom tangent 

to a horizontal reference plane.  

 

 
(a) 

 
(b) 

 

Figure 112: (a) Scanned raw image (b) Processed image with detected y-displacement and curvature 

 

5.2 Measured Springback Behavior 

5.2.1 Effect of Forming Temperature and Material Temper 

The measured springback results for the three tempers at different temperatures are presented in 

Figure 113. The forming was done using a punch speed of 1 mm/s and an unlubricated condition. 

As noted before, slight necking occurred at the I/O port region for the parts formed at elevated 

temperatures, which should not affect the macro springback of the components. The red horizontal 

dashed line indicates the springback values for O-temper sheet formed at room temperature and 

serves as a reference against which the effect of forming temperature and material temper can be 

assessed.  

Intersection point 
Circle fit 

Y-displacement 
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Figure 113: Effect of temperature and material temper on springback for TC4 with 10kN punch load and 2 second 

holding time at dry condition 

 

The effect of temper is quite evident in the room temperature results which show increased 

deviation from nominal geometry (springback) as the temper (hardness) is increased. This can be 

attributed to the increased amount of work hardening, higher residual stresses and dislocation 

densities in the higher temper materials introduced during fabrication of the sheet. For the O-

temper condition, the springback actually increased with elevated temperature for all of the 

temperatures considered. The increase in springback with temperature for the O-temper material 

was attributed to the decreasing elastic modulus. As temperature increases, the strength of the 

material is reduced but the elastic modulus is reduced as well. However, the O-temper material is 

already in the fully annealed condition hence the reduction in strength with increasing temperature 

is not as significant as for the harder tempers. Therefore, the reduction in elastic modulus was 

greater than the reduction in strength which caused an overall increase in springback which is 

proportional to the strength-to-elastic modulus ratio. The approximate strength-to-elastic modulus 
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ratios at different temperatures for the three tempers are shown in Figure 114. The yield strengths 

were obtained from the tensile tests by Verma [73] and elastic moduli were obtained from Omer 

[89]. It is observed that the ratios actually increase for O-temper while they decrease for harder 

tempers with increasing temperature, which agree with the springback results. 

 

Figure 114: Yield strength-to-elastic modulus ratios for O-, H22- and H24-tempers at different temperatures 

 

For the two harder tempers (H22 and H24), the increased forming temperature was beneficial and 

the results show a decrease in springback. The relative ranking of the springback exhibited by the 

three tempers is relatively constant up to 275⁰C. For the highest forming temperatures considered 

(300-350⁰C), the extent of springback is similar to that of the O-temper room temperature material. 

 

5.2.2 Effect of Lubricant 

The introduction of a lubricant had a minor adverse effect on the springback of the H24-temper at 

both room and elevated temperatures as shown in Figure 115.  
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Figure 115: Effect of Teflon lubricant on H24 springback for TC4 with 10kN punch load and 2 second holding time 

 

The difference in springback between the dry and lubricated conditions increases with temperature 

which is likely caused by an increase in coefficient of friction with temperature in the dry 

condition, shown previously through the friction characterization (Figure 33). Similar results are 

found in the literature as well [90]. A lower coefficient of friction tends to reduce membrane 

tension within the blank so that internal bending moments are higher, resulting in a mild increase 

in springback. However as shown in the previous chapter, the formability increase gained by the 

use of lubricant outweighs the minor increase in springback. 

 

5.2.3 Effect of Forming Speed 

Figure 116 shows the effect of forming speed on the H24-temper springback. As expected, the 

forming speed only affected the springback at elevated temperature due to the increased strain rate 

sensitivity (Figure 20), as shown previously in the tensile test results by Verma [73]. At low speed 

and elevated temperature, there is a reduction in springback relative to room temperature 

conditions, however, this benefit is reduced at higher punch speeds. Therefore, in order to 

minimize springback, the punch velocity should be kept low. 
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Figure 116: Effect of forming speed on H24 springback for TC4 with 10kN punch load and 2 second holding time at dry 

condition 

 

5.2.4 Effect of Coil Set 

Brazing sheet is delivered in the form of coils and, as a result, the blanks had an initial curvature 

known as coil set, as seen in Figure 117. Coil set is a phenomenon in which the metal strip retains 

a residual curvature even after the strip is removed from the coil. An apparatus called a sheet 

straightener, which applies mild cyclic bending and unbending deformation to the sheet to remove 

coil set, is usually used in industry. 

 

 
(a) 

 
(b) 

 

Figure 117: (a) As-received sheet (b) Straightened sheet 
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Figure 118: Effect of coil set on H24 springback (Dry conditions) for TC4 with 10kN punch load and 2 second holding 

time 

 

In order to ensure that the initial coil set does not have an effect on the final springback, the 

springback was measured from the parts made with the sheets that were fed through a straightener. 

The results are presented in Figure 118 and demonstrates that the initial coil set has no effect on 

the final springback at each temperature condition considered. Due to the extremely thin sheet 

used in the current work, even a very small amount of residual stress and plastic strain can cause 

significant and exaggerated curvature. However, the stresses and plastic strains associated with the 

forming process are much higher than those associated with the coil set, such that coil set has a 

negligible impact on the final springback. 

 

5.2.5 Effect of Sheet Direction 

Due to the crystallographic texture induced by the rolling process, sheet metals can exhibit 

significant anisotropy. Therefore, the effect of sheet direction (anisotropy) was studied by forming 

the SHC in two different directions in which the length of the blank is aligned with either the 

rolling or transverse directions as shown in Figure 110. The springback results are summarized in 

Figure 119. It was observed that anisotropy has no effect on the room temperature springback and 
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only a very small effect at elevated temperature. This indicates that the particular brazing sheet 

used in the current study has only a mild degree of planar anisotropy. Thus, for the balance of the 

experiments in this thesis, the rolling direction is aligned with the length of the blank. 

 

Figure 119: Effect of anisotropy on H24 springback (Teflon lubricated) for TC4 with 10kN punch load and 2 second 

holding time 

 

5.2.6 Effect of Sheet Orientation 

Normally, the SHC is oriented prior to forming such that the core side is located at the top surface 

of the component. It was observed that if the SHC was formed with the inverted sheet orientation 

(clad layer as top surface), there was a significant reduction in springback, as shown in Figure 120. 

Initially, the coil set was suspected to be the cause of the springback reduction as the curvature of 

the coil set works against the springback at the inverted orientation. However, it was concluded 

above that the coil set has negligible effect on the springback behavior. The friction gradient 

between the top and bottom surfaces was also considered as a potential cause, but the components 

formed with the use of lubricant still exhibited the same behavior. Another suspected cause was 

the strength gradient between the two layers. Due to the strength gradient, the neutral axis is no 

longer aligned with the sheet mid-plane thus the stress distribution after bending and springback 

would be asymmetrical with respect to the mid-plane. Therefore depending on the sheet orientation, 
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the springback behavior would be different. This effect is examined more closely in Section 6.1.1 

in which a numerical model of springback is presented. The observations in Figure 120 are 

consistent with those of Hino et al. [91], who characterized the springback behavior of a sheet 

metal laminate consisting of aluminum and stainless steel. They found that the springback behavior 

is strongly affected by the strength difference between the laminate layers and the relative position 

of the layers. 

 

Figure 120: Effect of sheet orientation on H24 springback at 25⁰C (Dry condition) for TC4 with 10kN punch load and 2 

second holding time 

 

5.2.7 Effect of Punch Load and Holding Time 

It was observed that as the punch load increased, the springback decreased significantly, as shown 

in Figure 121. The springback reduction was attributed to through-thickness deformation known 

as bottoming or coining. The through-thickness deformation leads to high localized compressive 

stress and plasticity in bend regions which reduces the residual bending stresses and resulting 

springback. A similar trend was observed in the studies done by Leu et al. [92] and Forcellese et 

al.[93]. 
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Figure 121: Effect of punch load on H24 springback at 250⁰C for TC4 with 2 second holding time and Teflon lubricant 

 

The effect of punch holding time was investigated by holding the formed SHC under the punch 

load (10kN) for an extended duration. The springback decreased significantly and the effect 

seemed to saturate beyond a holding time of 30 seconds, as shown in Figure 122. Vickers micro-

hardness tests were performed to determine whether recrystallization occurred due to the longer 

exposure to elevated temperatures. The results from the Vickers micro-hard tests (Figure 123) 

show that there was no permanent reduction in the material strength. It was speculated that the 

long exposure time to elevated temperature allowed for temporary dislocation movement and 

realignment which led to further stress relaxation from warm forming. Consequently, the elastic 

unloading after release from the die occurred at the lower stress level resulting in decreased 

springback and the strength was regained when the component cooled down to room temperature.  
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Figure 122: Effect of holding time on H24 springback at 250⁰C for TC4 with 10kN punch load and Teflon lubricant 

 

Figure 123: Effect of punch holding time on Vickers hardness for TC4 with 10kN punch load and Teflon lubricant 

 

The final results that consider the combined effect of increased punch load and holding time are 

shown in Figure 124. The red dotted line indicates the springback values for O-temper at room 

temperature formed with 10 kN punch load. The red solid line represents the identical condition 

except it was formed under 80 kN punch load. These two red lines serve as a benchmark/control 
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measurement against which the effect of warm forming on harder temper materials can be 

compared. It is shown that punch load and holding time have significant impact in reducing 

springback, particularly at elevated temperatures. The effect of punch load is observed to be 

magnified with increasing temperature as thermal softening allows more coining to occur. The 

effect of holding time seems to be diminishing with increasing temperature as there was no 

difference in the springback values at 350⁰C between the two holding times. Furthermore, the 

holding time of 30 seconds would not be feasible in the actual industrial process since a low cycle 

time is essential. When the low punch load was used, the H24-temper obtained springback values 

that are similar to that of the O-temper if a sufficiently high forming temperature was used. 

However with the use of high punch load, the springback values for the O-temper decreased 

practically to zero thus, the H24-temper was no longer able to obtain similar springback results as 

the O-temper.  

 

Figure 124: Effect of punch load and holding time on H24 springback (Teflon lubricated) for TC4. Red dotted line 

indicates O-temper formed at 25⁰C with 10kN punch load. Red solid line indicates O-temper formed at 25⁰C with 80kN 

punch load 
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Although the reduction in springback for the H24-temper was not able to surpass the O-temper 

springback results, it was shown that warm forming is still a very effective method in reducing 

springback. A maximum reduction of 88% was observed at 325⁰C when high punch load and 

holding time were used. Brazing tests will be performed in future work to determine the required 

reduction in springback for the SHCs that allows them to be brazed successfully. 

 

5.2.8 Effect of Thermal Expansion Gradient 

When the blanks were placed on the hot dies during the heating stage, a sheet curling effect was 

observed as shown in Figure 125. It was determined that this phenomenon is caused by a 

“bimetallic strip” effect. A bimetallic strip consists of two different metal strips with different 

thermal expansion coefficients bonded together. Therefore when the sheet is heated, one of the 

two metals expand at a higher rate causing the strip to bend or curl. The sheet studied in the current 

work also consists of two different aluminum alloys (AA3003 and AA4045) and their coefficient 

of thermal expansion are reported to be 23.2x106 and 21.05x106 K-1, respectively [94]. These 

values are consistent with the observed behavior in that the sheet bends towards the clad side which 

has the lower coefficient of thermal expansion. The curling effect was no longer observed when 

the clad layer was removed (by polishing) which validates the source of the curling as differential 

thermal expansion gradient between the two alloys. 

 

 
(a) 

 
(b) 

 

Figure 125: Thermal effect at 250⁰C for (a) brazing sheet with clad layer on top and (b) brazing sheet with clad layer 

removed 
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When the SHCs are formed at elevated temperatures and cooled down to room temperature, 

thermal contraction is observed as well. The thermal contraction adds to the part geometric 

distortion since the top of the component contracts more and causes the component to curl 

upwards. This effect is another reason why the SHCs formed with the inverted sheet orientation 

exhibit lower part geometric distortion (see Figure 120). With the inverted orientation, the clad 

side with the lower coefficient of thermal expansion is at the top of the component which decreases 

springback by curling downwards. The thermal expansion gradient must be accounted for in the 

numerical simulations to capture the expansion and contraction effects in order to accurately 

predict the final springback at room temperature (see Section 6.1.2). 

 

5.3 Summary 

This research presented in this chapter provides useful insight into different experimental/material 

parameters and their effects on springback. The effect of temper was evident since strength is 

directly correlated to springback. Temperature, the driving mechanism of warm forming, had 

somewhat lower than expected effect at intermediate temperatures (250-275⁰C) thus higher 

temperature were required. However, the effect of temperature coupled with increased punch load 

and holding time offered significant improvement in springback behavior even at 250⁰C, 

successfully demonstrating the potential of warm forming. The bi-metallic nature of the sheet had 

an interesting effect on springback through the differences in thermal expansion coefficients and 

strength between the two metal layers. The punch speed and lubrication had minor adverse impact 

on springback while sheet direction and coil set had no observable effect. 
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6 Springback Simulation 

 

 

In an effort to develop predictive models of part springback after forming, springback simulations 

were performed considering the TC4 experiments using the non-linear static implicit formulation 

in LS-DYNA. In these models, the results of the forming simulation were used to initialize the 

springback model. Typically, the output of the forming simulation contains the deformed 

geometry, associated internal stresses, strains and thinning. The static implicit solver calculates the 

unloaded configuration that satisfies the force equilibrium conditions. 

 

Two types of springback simulations were developed. The first utilized the shell-based forming 

simulations presented in Chapters 3 and 4. In addition, solid element-based models were developed 

in an effort to capture the through-thickness compression (coining) effects that were thought to be 

operative under the higher tooling load cases reported in Chapter 5 (Section 5.2.7). Solid element-

based forming models are generally avoided whenever possible due to high computational cost 

(compared to shell element models), however, in this work, it proved difficult to capture coining 

using shells. 

 

6.1 Springback Models 

6.1.1 Material Model for Springback 

For most springback simulation, the material behavior is purely elastic thus only Young’s modulus 

and Poisson’s ratio are required. Commonly, an elastic material model (*MAT_001) is used since 

the part is simply unloaded elastically and simulations are performed isothermally with constant 

elastic modulus at the temperature of interest. The elastic moduli at different temperatures were 

obtained from Omer [89] and approximated as a linear function of temperature. The elastic moduli 

used in the simulations are summarized in Table 17.  
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Table 17: Elastic moduli at different temperatures 

Temperature 25⁰C 250⁰C 300⁰C 350⁰C 

Elastic Modulus 

(MPa) 
70,155 48,079 43,173 38,267 

 

In the current warm forming work, several different phenomenon observed during the experiments 

had to be account for in an effort to accurately predict the springback behavior, including thermal 

expansion effects and the differences in strength between the core and clad layers.  

 

One unusual aspect of the brazing sheet material studied herein is the different thermal expansion 

coefficient values associated with the AA3003 core versus the AA4045 clad layers. This effect led 

to the curvature changes in the sheet as the temperature went up or down during either insertion 

into the warm die or removal and subsequent air cooling. These thermal effects were captured by 

imposing different thermal expansion coefficients found previously in the literature [94], as 

specified in Section 5.2.8, for the elements that represent the core and clad layers. 

 

In addition, to properly model springback of the clad later (AA4045), it becomes important to 

predict the stresses within that layer prior to springback which, in turn, requires a stress-strain 

curve for that layer versus the core layer. (The stress-strain data presented in Section 3.1.2 used 

for the forming models represents the aggregate or composite response of the core-clad brazing 

sheet.) Given that the clad layer has a nominal 0.02 mm thickness (the core layer is approximately 

0.18 mm thick), direct measurement of the strain-strain response of the clad is quite difficult. In 

order to estimate the strength of the clad material, Vickers micro-hardness tests were performed, 

however, the indents could not be done on the edge of the clad layer since it is only 20 µm thick. 

Therefore, the tests were done on the surface (face) of the sheet with a very low force of 10 gf. In 

order to ensure that the indenter is not penetrating the clad layer, the indentation depth was 

calculated with the following formula: 

 

 h =
d

2√2 tan 68°
 (12) 

 

where h is the indentation depth and d is the average diagonal length of the indent. The average 

diagonal length for the clad layer was 23 µm, which corresponds to the indentation depth of 3.3 
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µm. This indentation depth was much lower than the thickness of the clad layer and the hardness 

value was measured to be 36±1.6HV. In addition, similar hardness tests were performed on the 

core layer with the indents on both the sheet surface and edge to ensure that there is no difference 

between the two indentation locations/orientation. It was found that both locations yielded the 

same result of 71.9±2.6HV. Finally, the hardening behavior of the clad layer was approximated by 

scaling the flow curves for the core layer by one-half, the ratio between the hardness values. The 

resulting stress-strain curves are shown in Figure 126.  

 

Figure 126: O-temper behavior predicted with the extended Nadai model at 250⁰C for core and clad layers 

 

The stress-strain curves shown in Figure 126 were adopted for the majority of the springback 

simulations presented below. Note that the stress-strain curve shown for the core layer in Figure 

126 is that used for the forming simulation studies presented in Chapter 4 and represents an average 

hardening response for the core-clad composite that comprises the brazing sheet. 

 

6.1.2 Element Selection for Springback 

Baseline springback simulations were performed using the shell element-based forming models 

presented in Chapter 3 and 4. As will be shown below, these models were able to capture the 

0.02 s-1 

0.002 s-1 

0.02 s-1 

0.002 s-1 

~70HV 

~35HV 
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influence of some of the important physical parameters (e.g. temperature) on degree of springback. 

However, the shell-based models were not able to capture the effect of punch load which was 

thought to produce through-thickness deformation known as coining or bottoming at higher load 

levels. This behavior cannot be captured with shell elements since they invoke a plane stress 

condition in which the stress in the thickness direction is zero. Therefore, coining effects cannot 

be captured with conventional sheet elements. A range of so-called “thick shell” element 

formulations, available in LS-DYNA, were investigated to capture the effect of though thickness 

stress, however, these attempts were unsuccessful (the models crashed).  

 

As shown in the springback experiment, the bi-metallic nature of the sheet had strong influence on 

the springback behavior. Due to the difference in strength between the two layers, the sheet 

orientation at which the SHC is formed had an effect on the final springback. When the SHC was 

formed with the clad side up (inverted orientation), the springback was reduced compared to when 

the SHC was formed with the core side up (normal orientation). The difference in thermal 

expansion coefficient between the two layers also has an effect on springback. After the SHC is 

formed at elevated temperatures and cools down to room temperature, the part curls upwards as 

the top layer contracts more due to higher thermal expansion coefficient. 

 

As an alternative approach, solid elements were considered to capture through-thickness 

deformation at high punch force. These elements introduce a high computational penalty since in 

explicit dynamic formulations, the time step is dependent upon the smallest element size and 

elements meshed through the thickness of a 0.2 mm sheet are very small. As a compromise, one 

approach that was adopted was to mesh the core region of the sheet using three solid elements and 

to use a single shell element to mesh the clad region, as shown in Figure 127. The location of the 

reference surface for the shell element was offset from the mid-plane to coincide with the surface 

of the solid element at the core-clad interface and these nodes were merged together.  It is 

recognized that this approach is a gross simplification, however, use of a large number of solid 

elements throughout the thickness of the brazing sheet was not considered computationally 

feasible, particularly if the model were to be scaled to a full-size battery cooling plate (Figure 1). 
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Figure 127: Blank mesh 

 

The solid-shell discretization shown in Figure 127 was run for a number of forming and springback 

cases. For comparison purposes, a typical shell-based forming model (as presented in Chapters 3 

and 4) required approximately 2.6 hours to run on an Intel Xeon E7-8870 cluster using 8 cores. 

The solid-shell model, with a 0.06 mm element size in the core, required 9 hours of computational 

time. A fully discretized solid element model, with one element in the 0.02 mm clad and six 0.03 

mm elements in the core, was not attempted, but would require approximately 6-8 times longer to 

run based on the assumption of a 1/3 reduction in time step size and a corresponding 2 times 

increase in numbers of elements. It is recognized that the discretization shown in Figure 127 is 

likely too coarse to properly capture the residual stress distribution operative during springback 

after forming, however, this approach was adopted to study the effect of through-thickness 

deformation that cannot be captured using conventional thin shell elements. 

 

6.1.3 Boundary Conditions for Springback Models 

The forming models were run without the half-symmetry conditions considered in the formability 

studies (Chapters 3 and 4). Otherwise, all of the contact treatments and tooling motions in the 

formability studies were retained for the forming step in the springback simulations. 

 

For the springback stage, the tooling is deleted and the part must be constrained to prevent all rigid 

body modes. Also the constraints should mimic the physical process used to measure springback 

so the simulation actually represents the physical process. The part was constrained the same way 

it was constrained in the experimental chapter in which a jig was used as shown in Figure 128. A 

Clad layer 

(0.02 mm) 

Core layer 

(0.06 mm 

per element) 
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minimum number of nodes were used to prevent over-constraining the component which can result 

in a non-physical model.  

 

   

Figure 128: Forming simulation result and constrained nodes for springback simulation 

 

Springback predictions were extracted from the numerical models in the same manner as they were 

measured in the experiments (see Figure 112). The x and y-coordinate data of the cross-section of 

the formed part were extracted after the springback simulation stage and used in the MATLAB 

script to calculate the y-displacement and curvature. 

 

6.2 Forming Simulation Results  

Since the effect of punch load has to be considered, the punch was displaced until the required 

punch load (10 or 80 kN) was achieved and then the forming simulation was terminated. The force-

displacement results from the simulations are compared against the experimental results in Figure 

129 and Figure 130. The force-displacement response at low punch load was predicted quite well 

for both temperature conditions. The simulated curves deviated very slightly at the end of the 

punch travel. At the high punch load condition, the simulation results deviated quite significantly 

for both temperature conditions as displacement increased. It was observed that the force response 

was greatly over-estimated and increased exponentially within very little displacement. The exact 

cause for this effect is unknown but some form of compression-related locking is suspected. The 

results also show that the two discretization methods, pure shell and solid-shell combination, 

produce similar responses. 

 

X, Y, Z, ϴZ 

Y, ϴZ 

X, Y, ϴZ 
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Figure 129: Experimental and predicted force-displacement curves at 10 kN punch load condition for 25⁰C (left) and 

250⁰C (right) for H24 temper 

  
Figure 130: Experimental and predicted force-displacement curves at 80 kN punch load condition for 25⁰C (left) and 

250⁰C (right) for H24 temper 

 

The through-thickness strain distributions at the critical region around the I/O port (Figure 131) 

were measured to compare the two discretization methods and evaluate the effect of temperature 

and punch load on the strain distribution, as shown in Figure 132. The results show that the 

distribution was affected by the forming temperature but not the punch load for both mesh 

discretizations. Figure 133 compares the two discretization methods and shows that both predict 

similar trend in which the clad side has much higher strain compared to core. A slight deviation 

exists where the solid-shell mesh predicts higher strain on the core side. 
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Figure 131: High strain element at which through-thickness strain distributions are obtained. Pure shell (left) and solid-

shell (right) discretization 

  
Figure 132: Through-thickness strain distribution for pure shell (left) and solid-shell (right) discretization 

 

Figure 133: Through-thickness strain distribution for pure shell and solid-shell at 10kN load 
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6.3 Springback Simulation Results 

Overall, the springback mode was predicted well in which one side of the SHC curled up as shown 

in Figure 134. It was demonstrated that the thermal expansion effect could be captured as shown 

below as the blue line which has more part deviation compared to the black line that does not 

consider the thermal expansion. However, due to lack of experimental measurements regarding 

this effect, it was not included in the subsequent springback simulations. 

 

 

 

 

 

 
Figure 134: Springback simulation results (solid-shell model) for H24 formed at 250⁰C with Teflon lubricant 

 

Figure 135 shows the comparison between simulation results predicted with blank meshed with 

shell elements and solid elements (Figure 127) for H24-temper formed with Teflon lubricant at 

different temperatures. The shell-based simulation results generally over-predicted springback and 

solid-based simulations had better correlation to the experimental results. Furthermore, the shell-

based simulation would not be able to predict the coining effect on springback. The balance of the 

simulations in this thesis is performed with the solid-based blank mesh. 

Pre-unloading Post-unloading 
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Figure 135: TC4: Experiment vs. simulation results for H24-temper formed with Teflon lubricant and 10kN punch load 

condition. A comparison between shell- and solid-based simulations. 

 

Figure 136 to Figure 138 provide comparisons between the experiment and simulation results for 

the three tempers considered at dry conditions. For O-temper sheet, the simulations generally 

under-predicted springback (Figure 136). The under-prediction was more pronounced at higher 

temperature, probably due to the fact that the material model is extrapolated beyond temperatures 

above 250⁰C, the maximum considered by Verma [73]. Furthermore, O-temper has very low 

strength to begin with at room temperature, which degrades quickly as temperature increases due 

to thermal softening as predicted in the model. However, the overall trend was captured 

qualitatively in which springback actually increased at intermediate temperatures compared to 

room temperature as seen in the experiment. This trend was explained by the overall increase in 

strength-to-modulus ratio at elevated temperatures discussed previously. 
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Figure 136: TC4: Experiment vs. simulation results for O-temper formed at dry and 10kN punch load condition 

 

For the H22-temper, the springback behavior (Figure 137) was slightly over-predicted in the 

temperature range of 25⁰C and 300⁰C. However, springback was severely under-predicted at 

350⁰C. Again this is probably due to poor extrapolation beyond the range of the material 

characterization experiments performed (up to 250⁰C). Furthermore, the extended Nadai model 

might not be suitable for very high warm forming temperatures such as 350⁰C. The H24-temper 

(Figure 138) results displayed modest over-prediction in all of the temperatures considered, but 

the general trend was captured.  
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Figure 137: TC4: Experiment vs. simulation results for H22-temper formed at dry and 10kN punch load condition 

 

Figure 138: TC4: Experiment vs. simulation results for H24-temper formed at dry and 10kN punch load condition 

 

Figure 139 shows the effect of sheet orientation in simulation of the H24-temper sheet formed at 

room temperature. As previously shown, there was a reduction in springback when the sheet was 

placed in the die with the clad layer oriented away from the braze joint. From Figure 139, it can 

be seen that the model captures this trend, although the change in springback reduction with sheet 
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orientation was larger than observed in the experiments. The over-prediction could be attributed 

to the simple approximation made for the strength of the clad layer based on the micro-hardness 

test results. More accurate flow behavior of the clad layer (AA4045) should be determined through 

tensile characterization. 

 

Figure 139: TC4: Effect of sheet orientation on H24 springback at 25⁰C and 10kN punch load condition 

 

Figure 140 shows the predicted effect of Teflon versus dry lubrication on springback of the H24 

parts. Overall, the predicted springback exceeded the measured values for each temperature 

considered. Also, the springback behavior of the component simulated at 300⁰C with Teflon 

exhibited unusual twisting behavior that was not observed in the experiments.  The increase in 

springback with the use of lubricant in the experiments was not captured in the simulations for the 

y-displacement while it was observed in terms of the change in curvature.  The reasons for this 

discrepancy are unknown. 
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Figure 140: TC4: Effect of Teflon lubricant on H24 springback at 10kN punch load condition 

 

Figure 141 shows the effect of punch of load (10 kN and 80 kN) on H24 springback. In the 

experiments, a significant reduction in springback was observed due to through-thickness 

deformation caused by high compressive loads. The simulation results show that the effect of 

punch load in reducing springback was predicted qualitatively, but the quantitative change was 

underestimated significantly. 
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Figure 141: TC4: Effect of punch load on H24 springback (Teflon lubricated) 

 

6.4 Summary 

Overall, the springback simulations were able to predict the qualitative trends for both shell and 

solid-shell elements in displaying reduction in springback with increasing temperature. The 

shell-based simulation results were over-predicted compared to that of solid-based simulation 

which had much higher correlation to the experimental data. The thermal expansion effect was 

demonstrated but it should be validated in the experiment by more carefully measuring how 

much the part deviates when heated. The effect of sheet orientation was captured successfully 

with the simulation with the inverted sheet orientation displaying reduction in springback. The 

simulations were not able to capture the effect of lubricant and punch load on springback. 
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7 Conclusions and Recommendations 

 

 

7.1 Conclusions 

A component-level study has been performed to investigate the effect of warm forming on 

formability and springback behavior on aluminum alloy brazing sheet widely used in the 

automotive heat exchanger industry. The brazing sheet consisted of AA3003 core and AA4045 

clad layers and manufactured to O-, H22- and H24-temper conditions. The following conclusions 

were derived from the results of this research: 

 

1. Vickers hardness tests were performed after heating samples blanks to temperatures 

ranging from 25 to 350⁰C for pre-selected heating time of 40 seconds. The results show 

that there was no permanent reduction in strength (hardness) with increasing temperature. 

 

2. Twist compression tests were performed to characterize the tribological behavior at 

elevated temperatures. It was found that the coefficient of friction (COF) is a strong 

function of temperature. For dry tests, the core side (AA3003) had significantly higher 

COF compared to the clad side (AA4045). Little difference was observed between the two 

layers using lubricant. 

 

3. The extended Nadai model [32] was able to capture the negative hardening effect observed 

for harder temper materials at elevated temperatures.  

 

4. Four different tooling configurations (TC1 to TC4) were developed to improve the 

formability and wrinkling behavior in the warm forming process. 

a. Parts formed using TC1 fractured at the I/O port region due to tight radii 
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b. A two-stage forming operation was implemented for TC2 to pre-form the I/O port 

region to promote a more uniform strain distribution to prevent strain localization in 

the second stage. The part displayed severe wrinkling. 

c. TC3 included the optimized I/O port geometry and channel geometry in the first stage 

to increase formability and reduce wrinkling. Formability was improved but the design 

was ineffective in terms of reducing wrinkling behavior. An undesirable snap-through 

buckling effect was also introduced. 

d. The TC4 (single-stage forming) introduced geometric modifications to the I/O port-

cooling channel intersection and a developed blank was used to optimize the material 

flow into the I/O port feature while still maintaining a sufficient flange area for brazing. 

These changes significantly improved formability. 

e. Multi-stage forming was quite effective in increasing formability but introduced part 

defects such as wrinkling and snap-through buckling. 

f. Use of lubrication was essential to promote a successful forming operation, especially 

at elevated temperatures due to increase in COF 

g. The punch velocity had minor adverse effects on formability 

h. The benefit of warm forming on formability was not clearly observed as fracture and 

localization occurred at elevated temperatures 

 

5. The springback behavior was characterized by studying a wide range of experimental 

parameters. Overall, warm forming was very effective in reducing springback. The results 

show that: 

a. Harder temper conditions exhibit higher springback. H24 springback was more than 

two-fold greater than that of O-temper. 

b. No beneficial effect of temperature was observed in terms of reducing springback for 

O-temper parts. 

c. Significant reduction in springback was observed for H22 and H24 with increases in 

temperature. The maximum reductions occurred at 325⁰C (51% and 68% respectively). 

d. The use of lubricant increased springback slightly (up to 15% at 350⁰C). 

e. An increase in punch speed reduced the benefit of warm forming. 

f. Initial coil set did not have an effect on springback. 
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g. Sheet direction did not have an effect on springback. 

h. Sheet orientation had considerable effect on springback due to the strength and thermal 

expansion differences between the two layers. The inverted sheet orientation had 29% 

lower springback compared to the conventional sheet orientation (clad layer up). 

i. Punch load increase from 10 kN to 80 kN and holding time (2 to 30 seconds) had 

significant impact on springback (up to 88% reduction observed at 325⁰C for 30 second 

holding time and 54% at 250C for 2 second holding time for H24-temper). 

 

6. Springback simulations that take the thermal expansion and strength gradient and through-

thickness compression into account were developed. This was accomplished by 

discretizing the mesh with a combination of solid and shell elements. The simulation results 

successfully predicted the qualitative trend in the experiment with satisfactory match to the 

measured data in regards to the temperature effects. The model was not able to accurately 

capture the effect of lubricant and punch load. 

 

7.2 Recommendations 

The following recommendations are made for future work: 

 

1. Material characterization should be expanded to include higher temperature conditions (up 

to 350⁰C). More advanced material models that considers texture-based anisotropy and 

kinematic hardening (Bauschinger effect) should be considered.  

 

2. The effect of through-thickness compression was underestimated in the numerical 

simulations. The cause for the underestimation should be identified to accurately capture 

the compression effect that has significant impact on springback. The blank mesh should 

be refined to contain more elements in the through-thickness direction to better capture the 

residual stress gradient. 

 

3. Sheet thinning should be measured at critical locations to correlate forming temperature, 

punch load, and lubrication to formability quantitatively. 
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4. The effect of warm forming and lubricants on brazeability should be assessed to ensure the 

brazing performance is not hindered. Furthermore, the maximum allowable springback for 

the parts to be brazed successfully should be established.  

 

5. The reduction in die clearance at elevated temperatures due to thermal expansion could 

have negative impact on warm formability; thus further investigation is needed. 

 

6. Different friction characterization tests capable of measuring the coefficient of friction at 

very low sliding distance should be explored. 

 

7. The mechanical behavior of the clad layer should be obtained with more reliable method 

such as tensile testing. 
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