
A Primal-Dual Algorithm On
2-Steiner Graphs

by

Matthew Buckley

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2018

c© Matthew Buckley 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The Steiner Tree Problem is a fundamental network design problem, where the
goal is to connect a subset of terminals of a given network at minimum cost. A
major open question regarding this problem, is proving that the integrality gap of
a certain linear program relaxation, called the bidirected cut relaxation (BCR), is
strictly smaller than 2.
In this thesis, we prove that (BCR) has integrality gap at most 5

3
for a subset of

instances, which we call 2-Steiner instances, via a primal-dual method.

iii

Acknowledgements

I would like to thank Laura Sanità for agreeing to be my supervisor. Her expertise
and enthusiasm for this problem helped guide our analysis. She also provided many
helpful comments to keep the analysis on track as well as to simplify the final result.
I am also thankful to Chaitanya Swamy and Jochen Köenemann for agreeing to read
my thesis and providing many insightful comments.
Lastly, I would like to thank Sanchit Kalhan, Ramin Mousavi, and Maxwell Levit.
They offered encouragement in difficult times during the thesis process.

iv

Dedication

This is dedicated to my parents, Bill and Paula, as well as my sister Chelsea, for
their continual support and words of encouragement.

v

Table of Contents

List of Algorithms vii

List of Figures viii

1 Introduction 1
1.1 Related Results . 2
1.2 Thesis Organization . 3

2 Preliminaries 5
2.1 The Bidirected Cut Relaxation . 5
2.2 Dual Symmetry . 7

3 The Algorithm 10
3.1 Properties of Algorithm 1 . 12

4 The Importance of Laminarity 14
4.1 Laminarity in Algorithm 1 . 14
4.2 Important Connectivity Properties 16

5 The Approximation Factor 22
5.1 A Minimum Cost R ∪ I-Spanning Tree 22
5.2 The 5

3
Ratio . 25

6 Algorithmic Guarantees 29
6.1 The Pruning Algorithm . 29
6.2 Termination of Algorithm 2 . 35
6.3 A Polynomial Time Implementation 39

7 Concluding Remarks 42

Bibliography 44

Appendix 47
A.1 Theorem 4.8 For θ-Star-Steiner Graphs 47
A.2 Approximation Ratio For θ-Star Steiner 49

vi

List of Algorithms

1 Algorithm 1 . 11
2 Algorithm 2 . 12

3 Pruning Algorithm . 30

vii

List of Figures

4.1 The Crossing Sets of Lemma 4.7 . 16
4.2 The cases of Theorem 4.8 . 18
4.3 Possible crossings at Q . 20

5.1 The 1-star and 2-star from lemma 5.4 25

6.1 Possible Crossings During The Pruning Algorithm 31

7.1 Crossings In Other Steiner Components 43
A.1 A 7 edge 3-star . 49
A.2 T̃K for lemma A.4 . 52

viii

Chapter 1

Introduction

A fundamental problem in the area of network design is the Steiner Tree problem,
in which the goal is to connect a set of terminals of a network at minimum cost.
In particular, we are given a graph G = (V,E) with edge costs c : E → R+ and
a partition of the vertices V = R ∪ S. The vertices of R are referred to as ter-
minals, while the vertices of S are called Steiner vertices. Our goal is to find a
tree T spanning R that minimizes the sum of the cost of the edges. The Steiner
Tree problem has been extensively studied in the literature and has applications in
logistics, telecommunication, transport networks, and biology [5, 18]. The Steiner
Tree problem is known to be NP-hard [14]. Determining the relationship between
P and NP is arguably the most important open question in the fields of algorithms
and theoretical computer science. Many researchers and practitioners have tried to
discover a solution to this problem. The question was initially proposed by Cook [4]
and still remains an important open problem today [11]. One approach to tackling
NP-hard problems, is via approximation algorithms. An α-approximation algorithm
is guaranteed to find a solution within a factor α of the optimal value and it does
so in polynomial time. The theory of approximation algorithms has been applied
extensively to the Steiner tree problem and determining the approximability of this
problem is a major focus of current research. It is known that it is NP-hard to
achieve an approximation ratio of 96

95
[3], and it admits a 2-approximation algorithm

via a reduction to the minimum spanning tree problem [15]. In a sequence of papers,
the approximation was improved from 2 to ln(4) [20, 24, 27, 31], which is currently
the best known bound. The ln(4)-approximation algorithms are presented in [1, 17]
respectively and they require solving a large linear program (LP) relaxation of the
problem, known as the hypergraphic relaxation (HYP) [2, 22]. It is NP-hard to
obtain a solution to (HYP), but it is possible to obtain an (1 + ε)-approximate so-
lution, [17], for any ε > 0. Computing this approximate solution is the bottleneck
of both ln(4)-approximation algorithms. Thus a more efficient method of obtaining
an approximate solution would substantially reduce the runtimes of both of these
algorithms.
A more compact LP relaxation for the Steiner Tree problem is given by the so-called
bidirected cut relaxation (BCR) [8, 30]. Only a trivial upperbound of 2 is known
for (BCR), however this LP can be solved much faster than (HYP) and it is widely
believed that the integrality gap is strictly less than 2. Improving this upperbound is
an important open question which is listed in [29] as one of the 10 big open questions
in the area of approximation algorithms.

1

It is known that (HYP) is a stronger relaxation than (BCR) and has integrality
gap at most ln(4) [17]. Thus, one obvious way to tackle the open question regard-
ing (BCR) is to compare the integrality gap of this LP with that of (HYP). In
recent years, many researchers have investigated this relationship and the papers
[2, 13, 17] have shown that the integrality gaps of (BCR) and (HYP) are equal
for quasi-bipartite instances. G is said to be quasi-bipartite if every component of
G[S] is a single vertex, that is, the Steiner vertices are pairwise non-adjacent. Subse-
quently, [9] showed that the two LPs are equivalent for a larger class of instances: all
instances where any Steiner vertex has at most 2 Steiner neighbours. Unfortunately,
[9] also shows that there are instances in which exactly one Steiner vertex having
degree 3 in G[S] guarantees that equivalence does not hold. Thus, any progress in
this direction would require substantial new ideas.
Another way to attack the open question in [29] is to work with (BCR) directly. In
this context, [25] uses a primal-dual approach to show that (BCR) has integrality
gap at most 3

2
in quasi-bipartite instances.

In this thesis, we generalize the approach of [25] to develop a primal-dual algorithm
that proves an integrality gap of at most 5

3
for (BCR) in 2-Steiner instances. These

are instances in which the set of Steiner vertices induces a graph where every com-
ponent has at most 2 vertices. That is, the graph induced by the Steiner vertices
is the union of a matching and singleton vertices. Due to the contributions of [9]
it is known that these instances have a smaller integrality gap. However, our con-
tributions here are twofold: (i) to show that a direct proof can be achieved via a
primal-dual method on (BCR) and (ii) shedding some new light on the challenges
of generalizing this method to arbitrary instances. We now turn to a brief overview
of some of the research done on this problem as it relates to our current work.

1.1 Related Results
The Steiner Tree problem has received much attention in the literature, especially
within the last twenty years. In this section, we will focus on only a small subset of
this work that is most relevant to this thesis.
One well-known result is a 2-approximation for the Steiner Tree problem on metric
graphs. The algorithm, as stated in [15] consists of computing a minimum spanning
tree of G[R]. Since this result, there have been many improvements in approxima-
tion algorithms for the problem and many papers have focused on (BCR) to develop
these algorithms.
One important topic for any LP relaxation is characterizing when the LP is integral.
An LP is said to be integral if all extreme points of the polyhedron defined by the
LP are integral. It was shown that (BCR) is integral if |R| = 2 [10], or if R = V
[7, 12]. Moreover, in [16, 23, 28] it is shown that (BCR) integrality also holds for a
special class of graphs known as series-parallel graphs. Thus, it is possible to solve
the Steiner tree problem in polynomial time for such instances. However, even if a
graph does not satisfy these properties, there is still hope of developing an approxi-
mation algorithm using (BCR).
In [25] the authors use (BCR) to develop a primal-dual 3

2
+ ε approximation algo-

rithm for the Steiner Tree problem on quasi-bipartite graphs. This also showed that
the integrality gap of (BCR) is at most 3

2
for quasi-bipartite instances. These results

laid the foundation for other work, such as the approximation algorithm found in

2

[26]. In addition, this thesis is a generalization of the results in [25] and closely
follows the methods used in this paper.
Since the results in [25, 26], there have been many important developments in ap-
proximation algorithms for the Steiner Tree problem. In [31] the author presents
an 11

6
approximation algorithm. These results were used in [24] where the au-

thors present a 5
3
randomized approximation algorithm on 3-uniform hypergraphs.

H = (V ,F) is a hypergraph if for each f ∈ F , f ⊆ V . H is 3-uniform if for each
f ∈ F , |f | = 3. In [?] the authors develop an LP relaxation for the Steiner Tree
problem and show that if every component of G[S] has at most b nodes than the
LP has an integrality gap of at most 2b+1

b+1
. Then, in order to obtain a Steiner Tree

solution, they lose a small factor in the approximation algorithm.
A major breakthrough in this area was given in [27] where the authors present a
1.55 approximation algorithm for the general Steiner Tree problem which improves
to a 1.28 approximation in the quasi-bipartite case. In this result, the authors use
the notion of a full component which has led to more approximation algorithms.
The most recent can be found in [1, 9] in which the authors present the currently
best ln(4)-approximation algorithm using a clever rounding algorithm. Although
our approximation ratio is strictly worse than this guarantee, this thesis provides
a purely combinatorial algorithm for the problem with an efficient runtime. It also
provides insights relating to the structure of the problem.

1.2 Thesis Organization
The layout and ideas of this work are derived largely from the results of [25], and
our work serves to generalize their results from quasi-bipartite graphs to 2-Steiner
graphs. In particular, the three algorithms presented in this work are generalizations
of those found in [25].
We give a (5

3
+ε)-approximation for the Steiner Tree Problem on 2-Steiner graphs via

a primal-dual method. Such methods use a linear program and exploit LP duality
and in our case we use (BCR) as the underlying LP.
In chapter 2, we start by presenting (BCR). We then discuss a notion of symmetry,
which will be important in the algorithm and its analysis. The chapter is concluded
by proving two results relating to this definition.
In chapter 3 we first present our algorithm in two stages. First, we describe algo-
rithm 1, which either terminates with a Steiner Tree or terminates unsuccessfully
because of one of the vertices in S. Then, algorithm 2 iteratively applies algorithm
1 to decide which vertices of S will be included in our Steiner Tree. It does so by
considering the cause of algortihm 1’s early termination. We end the chapter by
proving three results relating to algorithm 1.
Chapter 4 discusses laminarity and how it applies to algorithm 2. This provides the
basis for the remaining chapters and the results in this chapter allow us to show the
correctness of algorithm 2.
In chapter 5 we assume that algorithm 2 terminates. Under this assumption we
show that the tree returned by our algorithm is a Steiner Tree and we prove the
approximation factor.
Chapter 6 shows that algorithm 2 indeed terminates. We do this by introducing
the Pruning Algorithm, which allows us to analyze what happens when algorithm 1
terminates unsuccessfully. We conclude the chapter by giving a polynomial imple-

3

mentation of algorithm 2.
The thesis ends with some concluding remarks in which we also discuss some open
questions and offer ideas for future work.

4

Chapter 2

Preliminaries

In the Steiner Tree problem we are given a connected undirected graph H = (V,EH)
with cost function cH : EH → R+ and a partition of the vertices V = R ∪ S. The
goal is to find a minimum cost tree T that spans the vertices of R.
For a vertex u ∈ V we will denote the neighbours of u in H by NH(u). We will
say that H is 2-Steiner if |NH(u) ∩ S| ≤ 1 for each u ∈ S. It is well known that
for the Steiner tree problem we can work with the graph G = (V,E) which is the
metric completion of H. That is, G is a complete graph on V where the cost of an
edge {a, b} of G is the length of a shortest ab-path in H with respect to costs cH .
We will denote the new costs by c. Then c satisfies the triangle inequality. That is,
for u, v, w ∈ V , cuv ≤ cuw + cwv. This follows simply from the fact that cuv is the
length of a shortest path from u to v while cuw + cwv is the length of a particular
uv-path that uses w. Note that G is not a 2-Steiner graph, but it arises from a
2-Steiner graph H. This property will prove useful in showing the approximation
ratio in chapter 5.
In the following, for V ′ ⊆ V , we will denote by G[V ′] the subgraph of G induced by
the vertices V ′.

2.1 The Bidirected Cut Relaxation
For each edge e = {u, v} ∈ E replace e by the two arcs uv and vu. Call the resulting
set of arcs ~E. We then extend c in the natural way so that cuv = cvu for each
{u, v} ∈ E. For a set of vertices K ⊆ V we define

δout(K) = {ab ∈ ~E | a ∈ K, b /∈ K}

and
δin(K) = {ab ∈ ~E | a /∈ K, b ∈ K}

Now choose an arbitrary root vertex r ∈ R.

Definition 2.1. We will say a set C ⊆ V is a valid set if C ∩R 6= ∅ and r ∈ V \C.

Given a specified root vertex the bidirected cut relaxation (BCR) for the Steiner
Tree problem is:

5

(BCR)

min
∑
e∈ ~E

cexe

s.t.
∑

e∈δout(C)

xe ≥ 1 ∀ valid C

xe ≥ 0 ∀ e ∈ ~E

Then the dual is given by:

(D)

max
∑

valid C

YC

s.t.
∑

C: e∈δout(C)

YC ≤ ce ∀ e ∈ ~E

YC ≥ 0 ∀ valid C

Now suppose T is an optimal Steiner Tree of G. Then by definition we have R ⊆
V (T). However we may also have V (T) ∩ S 6= ∅ and so V (T) = R ∪ I for some
I ⊆ S. If we know I then the Steiner Tree problem just reduces to a minimum
spanning tree problem. So our goal is to find I. This idea can be initially attributed
to [19]. In [19], the authors develop a Steiner Tree heuristic that starts from a min-
imum spanning tree of G[R]. Their algorithm then recursively finds vertex subsets
L such that if we add any node of L to our spanning tree, then the cost of our tree
decreases. Such an algorithm is not a polytime algorithm. However, in [26], these
techniques were applied to develop an approximation algorithm for quasi-bipartite
graphs.
Following [25], we will develop an algorithm that will start with I = ∅. Then in
each iteration we will add or subtract vertices from I in order to improve the Steiner
tree. So suppose we have a set I ⊆ S in some iteration.

Definition 2.2. We call a set X ⊆ S a residual set for I ⊆ S if X ∩ I 6= ∅ and
H[X] is connected.

Notice that if X is a residual set, then by definition X does not contain a terminal.
That is, X is not a proper set. As H is 2-Steiner we have that H[X] is a single
vertex or an edge. When talking about residual sets, we will omit the term "for
I ⊆ S" if it is clear from the context. In chapter 6 we will show that we want to
include the vertices of I in our Steiner tree. So our algorithm will grow dual around
these vertices.
Furthermore, in our algorithm we will not pick a root vertex r ∈ R initially. To
account for this we define a notion similar to valid sets.

Definition 2.3. A set C ⊆ V is a proper set if C ∩R 6= ∅ and (V \ C) ∩R 6= ∅.
Since our algorithm does not pick a root initially, we cannot identify valid sets and
so we will instead grow dual for proper sets and residual sets. Notice that only valid
sets appear in the objective value of (D) and so any proper set that is not valid will
not affect the objective value. Thus we will refer to dual variables γK where K is a
proper set or a residual set. For convenience we will call K a dual set.

6

Definition 2.4. We will say that the amount of dual felt by an arc e = uv is∑
K:e∈δout(K)

γK and we will say that e is tight if
∑

K:e∈δout(K)

γK = ce.

With this definition, we modify the constraints of (D) to
∑

K:e∈δout(K)

γK ≤ ce for each

arc e. Note that here the summation is over all dual sets containing e, these are
proper sets or residual sets. So our new primal dual pair becomes

(P’) min
∑
e∈ ~E

cexe

s.t. ∑
e∈δout(K)

xe ≥

1 if K is valid (1)

1 if K is residual ∀ dual sets K (2)

0 otherwise (3)

It’s dual is given by (D′) where,

(D’) max
∑

valid C

γC +
∑

residual X

γX

s.t.
∑

K:e∈δout(K)

γK ≤ ce ∀ e ∈ ~E

γK ≥ 0 ∀ dual sets K

Notice that constraints (3) in (P ′) are trivially satisfied as xe ≥ 0 for all arcs e in any
feasible solution x. Throughout the remainder of this thesis, we will work with (P ′)
and (D′). However, if K is a residual set then K does not contain any terminals,
and so a Steiner Tree solution is not required to use vertices of K. Thus (P ′) is not
a relaxation of the Steiner Tree problem. In chapter 5, we will use (BCR) to bound
the cost of our solution to (P ′).
Now in the algorithm we will be able to continue raising variables for proper sets
and residual sets as long as the total dual felt by an arc does not exceed its cost.
We will then show that the set of tight edges gives a feasible solution to (P ′).
Now suppose at a particular point during the algorithm we have a dual solution γ.
Definition 2.5. A set K ⊆ V is unsatisfied with respect to dual solution γ if K is
a dual set and for each e ∈ δout(K) we have

∑
K:e∈δout(K)

γK < ce

That is, K is an unsatisfied set if there are no tight edges in δout(K). Thus, if K is
a valid or residual set, then the set of tight edges does not give a feasible solution
to (P ′).

2.2 Dual Symmetry
Given I ⊆ S our algorithm will work with (P ′) and (D′), and initialize all dual
variables to 0. As we have not yet picked a root vertex, we will grow a collection of
dual sets that enforces a notion of symmetry, which will prove useful in the analysis.

7

Definition 2.6. We will say dual symmetry holds if
∑

K:v∈K
γK =

∑
K:u∈K

γK for each

u, v ∈ R ∪ I.

For u, v ∈ R∪I let P = x0x1x2...xn be a directed uv-path where u = x0 and v = xn.
Also, let P̄ = xn...x2x1x0 be the reversed directed vu-path.

Definition 2.7. We will say path symmetry holds for P if∑
e∈ ~E(P)

(∑
K:e∈δout(K)

γK

)
=
∑

e∈ ~E(P̄)

(∑
K:e∈δout(K)

γK

)
Definition 2.8. If all arcs of P are tight then we will say that P is a tight path.

Notice that from this definition, if path symmetry holds for P and no arc feels more
dual than its cost, then all arcs of P are tight if and only if all arcs of P̄ are tight.
In chapter 4 we will show that this property does indeed hold for any dual solution
obtained from our algorithm.
The following lemma illustrates an important link between dual symmetry and path
symmetry. The next result generalizes one found in [25]. We present a proof for
completeness.

Lemma 2.9. Let u, v ∈ R ∪ I and let P be a directed uv-path. Then
∑

K:v∈K
γK =∑

K:u∈K
γK if and only if path symmetry holds for P .

Proof. Notice that we have∑
K:v∈K

γK =
∑
K:u∈K

γK ⇐⇒
∑

K:v∈K,u/∈K

γK =
∑

K:u∈K,v/∈K

γK (2.1)

But the amount of dual felt by arcs on P from a dual variable γK is
γK | ~E(P) ∩ δout(K)|. So the total dual felt by arcs of P is

∑
K γK | ~E(P) ∩ δout(K)|.

Now for any dual set K we have:
• If u, v ∈ K or u, v /∈ K then

| ~E(P) ∩ δout(K)| = | ~E(P) ∩ δout(K)| (2.2)

• If u ∈ K, v /∈ K then

| ~E(P) ∩ δout(K)| = | ~E(P) ∩ δout(K)|+ 1 (2.3)

• If u /∈ K, v ∈ K then

| ~E(P) ∩ δout(K)| = | ~E(P) ∩ δout(K)| − 1 (2.4)

8

Thus we have,∑
e∈ ~E(P)

(∑
K:e∈δout(K)

γK

)
=
∑

e∈ ~E(P̄)

(∑
K:e∈δout(K)

γK

)
⇐⇒

∑
K

| ~E(P) ∩ δout(K)|γK =
∑
K

| ~E(P) ∩ δout(K)|γK

⇐⇒
∑

K:u∈K,v/∈K

| ~E(P) ∩ δout(K)|γK +
∑

K:v∈K,u/∈K

| ~E(P) ∩ δout(K)|γK

=
∑

K:u∈K,v/∈K

| ~E(P) ∩ δout(K)|γK +
∑

K:v∈K,u/∈K

| ~E(P) ∩ δout(K)|γK

⇐⇒
(∑
K:u∈K,v/∈K

| ~E(P) ∩ δout(K)|γK +
∑

K:v∈K,u/∈K

| ~E(P) ∩ δout(K)|γK
)

+
(∑
K:u∈K,v/∈K

γK −
∑

K:v∈K,u/∈K

γK

)
=

∑
K:u∈K,v/∈K

| ~E(P) ∩ δout(K)|γK +
∑

K:v∈K,u/∈K

| ~E(P) ∩ δout(K)|γK

⇐⇒
∑

K:u∈K,v/∈K

γK =
∑

K:v∈K,u/∈K

γK

⇐⇒
∑
K:u∈K

γK =
∑
K:v∈K

γK

Where the third line follows from (2.2), the fourth line follows from (2.3) and (2.4),
and the fifth line follows from (2.1).
Thus, path symmetry holds for P if and only if

∑
K:v∈K

γK =
∑

K:u∈K
γK

The following result now follows immediately.

Corollary 2.10. Dual symmetry implies path symmetry for every directed path con-
necting two vertices of R ∪ I.

9

Chapter 3

The Algorithm

We now want to develop a primal-dual algorithm to solve the Steiner Tree problem
on 2-Steiner graphs. The main idea of the algorithm is as follows: suppose we are
given a set I ⊆ S and suppose further that we have decided to include the vertices of
I in a Steiner Tree solution. In this way, we can treat the vertices of I as terminals
and now we must decide if we will add vertices of S \ I to possibly improve the
solution, this decision will be taken by running algorithm 1. That is, we will run
algorithm 1 to decide whether to produce a spanning tree of R ∪ I or augment I.
Algorithm 1 has three phases: initialization, the symmetric phase, and the deletion
phase. The symmetric phase is the heart of our algorithm as it allows us to maintain
dual symmetry, as will be shown in corollary 3.5.
In initialization, we start with γK = 0 for each dual set K. Recall that K is either
a proper set or a residual set. We also initialize ~L to a list of all tight arcs. As all
dual variables are 0, ~L will only consist of arcs having cost 0 at initialization.
In the symmetric phase we identify minimally unsatisfied sets at each iteration.

Definition 3.1. A set C ⊆ V is minimally unsatisfied if it is an unsatisfied set and
is minimal subject to inclusion.

Note by definition, minimally unsatisfied sets can be either proper sets or residual
sets. In this way, the vertices in I are treated just like terminals.
In Theorem 6.15, we will show that minimally unsatisfied sets can be found effi-
ciently. So in each iteration of the symmetric phase we grow minimally unsatisfied
sets until an arc becomes tight. If there is a tight arc that has its tail in R ∪ I or
has both ends in S \ I, then we add it to our current set of arcs and redefine the
minimally unsatisfied sets. Otherwise we stop algorithm 1 and will say that algo-
rithm 1 terminates unsuccessfully. Note that we give preference to edges of H and
so because of the triangle inequality, the algorithm on G and on H are equivalent,
where G is the metric completion of H. In addition, we give preference to arcs
having their tail in R ∪ I.
If algorithm 1 does not terminate unsuccessfully then we proceed to the deletion
phase. In this phase we pick some terminal to be the root. We then perform a re-
verse delete where we examine the arcs in the reverse order to how they were added.
For an arc e ∈ ~L if ~L \ {e} contains an in-arborescence directed into r and spanning
R, then we delete the arc e. Finally we output the tree T .
If algorithm 1 terminates unsuccessfully it is because an arc uv became tight where
u ∈ S \ I and v ∈ R ∪ I. In lemma 4.3, we will show that if K1 and K2 are two
vertex sets with γK1 > 0 and γK2 > 0 then K1 and K2 do not cross at any node

10

Algorithm 1: Algorithm 1
Input: Vertex sets R and I

Initialization
• For each dual set K, γK ← 0
• Initialize ~L to contain all tight arcs

Symmetric Phase
• While ∃ an unsatisfied set, do:

– Raise dual variables of all minimally unsatisfied sets uniformly, until
some arc uv becomes tight1

– If u ∈ S \ I and v ∈ R ∪ I then STOP
– Else append uv to ~L

Deletion Phase
• Pick an arbitrary r ∈ R as the root
• For edges e ∈ ~L, in reverse order do:

– If each v ∈ R has a path to r in ~L \ {e} then set ~L← ~L− e
• Set ~T ← ~L, output corresponding undirected tree T

of R ∪ I. This property will allow us to show that our algorithm terminates in
Chapter 6. Now notice that when the arc uv becomes tight, u ∈ S \ I. So the above
guarantee does not necessarily hold for u. Thus we will stop running Algorithm 1 in
this case. However, since the arc uv became tight we will add u to our set I. So we
define Q ⊆ S \ I to be the vertices v for which there is a tight vu-path in G[S \ I].
Note that, trivially, u ∈ Q. Theorem 4.8, will show that Q can be used to connect
multiple minimally unsatisfied sets.
In chapter 6 we will show that a minimum spanning tree on R ∪ I ∪ Q has lower
cost than a minimum spanning tree on R ∪ I. This means that we can improve our
Steiner tree solution by adding Q to I. This immediately suggests algorithm 2.

In algorithm 2 we start with I = ∅. At each iteration we run algorithm 1. If
algorithm 1 terminates unsuccessfully then we determine the set Q as described
above. We then add Q to I and move to the next iteration where we reinitialize
algorithm 1 with all dual sets at 0.
If algorithm 1 terminates successfully then we are given a tree T . Note that T spans
R because of the deletion phase in algorithm 1.
Now we pick a vertex s ∈ I with minimum degree for T . If this degree is 0 or 1 then
we simply remove it. This does not increase the cost of T . If the degree is 2, let
w1, w2 be the neighbours of s in T . We replace the edges {w1, s} and {w2, s} with
the edge {w1, w2}. By the triangle inequality this does not increase the cost of the
tree. So we can remove s from I.
If s was removed from I then we reinitialize algorithm 1 in the next iteration of

1. We give priority to arcs corresponding to edges of H over edges of E(G) \ E(H). Among
those arcs, we give priority to edges having their tail in R ∪ I over arcs having their tail in S.
That is, in algorithm 1, if we take arc uv where u ∈ S \ I and v ∈ R∪ I, then there is a minimally
unsatisfied set containing u such that there is no arc from this set to the minimally unsatisfied set
containing v such that this arc has its tail in R ∪ I.

11

Algorithm 2: Algorithm 2

1. Initialize I = ∅

2. Run Algorithm 1

• If Algorithm 1 terminates unsuccessfully because arc ab became tight
with a ∈ S \ I and b ∈ R ∪ I, then:
(a) Let Q ⊆ S \ I be the vertices v for which there is a tight va-path in

G[S \ I]

(b) Add Q to I
(c) Return to the beginning of step 2

• Otherwise, let T be the tree returned by Algorithm 1

(a) Pick a vertex s ∈ I with degT (s) minimum.
i. If degT (s) ≥ 3, proceed to step 3
ii. If degT (s) ≤ 2, remove s from I and return to the beginning of

step 2

3. Output tree T returned by Algorithm 1 when every Steiner vertex has degree
at least 3

algorithm 2. Otherwise, degT (s) ≥ 3 and so every vertex of I has degree at least 3
in T . Then we output T .
In chapter 5 we will show that if algorithm 2 terminates then T is within a factor
of 5

3
of optimal.

3.1 Properties of Algorithm 1
An important property, which will be key in the analysis, is that of laminarity. Let
L ⊆ V .

Definition 3.2. A collection of dual sets, S, is L-laminar if for any S1, S2 ∈ S
either (S1 ∩ L) ∩ (S2 ∩ L) = ∅ or (S1 ∩ L) ⊆ (S2 ∩ L) or (S2 ∩ L) ⊆ (S1 ∩ L).

Definition 3.3. S is L-disjoint if for any S1, S2 ∈ S we have (S1∩L)∩(S2∩L) = ∅.

Note, in each iteration of algorithm 2 we run algorithm 1. So we will start by proving
some properties of algorithm 1. The next three results are generalizations of results
in [25].

Lemma 3.4. During the symmetric part of algorithm 1, minimally unsatisfied sets
are R ∪ I-disjoint.

Proof. Let C be any minimally unsatisfied set with respect to the dual γ and let
v ∈ C ∩ (R ∪ I). Now define Cv ⊆ V to be the set of vertices reachable from v by
a tight path. That is, for any a ∈ Cv there is a directed va-path consisting of tight
edges.
Now if there is an p ∈ Cv \ C then because v ∈ C and p /∈ C, by definition of Cv,

12

there must be a tight arc in δout(C). But this contradicts that C is unsatisfied so
we must have Cv ⊆ C.
Next suppose that there is a q ∈ C \ Cv so that Cv ⊂ C. But by definition of Cv,
δout(Cv) does not contain any tight arcs. So because v ∈ R ∪ I, Cv is an unsatisfied
set contained in C, contradicting the minimality of C. Thus we have C = Cv
So suppose as a contradiction that C1 and C2 are two distinct minimally unsatisfied
sets such that there is a u ∈ R ∪ I with u ∈ C1 ∩C2. Then we have C1 = Cu = C2,
a contradiction. Thus, minimally unsatisfied sets are R ∪ I-disjoint.

Corollary 3.5. During the symmetric part of algorithm 1, the dual is symmetric
and for each v ∈ R ∪ I, v is contained in exactly one minimally unsatisfied set.

Proof. We will prove the result by induction on the number of iterations of algo-
rithm 1. Note that when algorithm 1 initializes γK = 0 for each dual set K. Thus,
dual symmetry holds at intialization. So by lemma 2.9, path symmetry holds for
any two vertices of R ∪ I. So either all pairs of vertices of R ∪ I are connected by a
path of cost 0 or each such vertex is contained in at least one minimally unsatisfied
set. In the first case algorithm 1 terminates, so we can assume each vertex of R ∪ I
is in at least one minimally unsatisfied set. By lemma 3.4, each vertex of R ∪ I is
in at most one minimally unsatisfied set and so we have that each such vertex is in
exactly one minimally unsatisfied set. But now we grow all minimally unsatisfied
sets uniformly and so dual symmetry holds throughout this first iteration.
Now consider some iteration t ≥ 2 and suppose that the result holds in all iterations
before t. By lemma 3.4, for each v ∈ R∪ I, v is contained in at most one minimally
unsatisfied set at the beginning of iteration t. However, if we define Cv to be the set
of vertices that are reachable from v by a tight path, then by the proof of lemma
3.4, either Cv is minimally unsatisfied or R ∪ I ⊆ Cv.
So consider the case that R∪ I ⊆ Cv at the beginning of iteration t and choose any
u ∈ R ∪ I. Then by definition of Cv, there is a tight path from v to u. However,
dual symmetry held at the end of the previous iteration and so by lemma 2.9, we
also have a tight path from u to v. As this is true for each node of R∪ I, algorithm
1 terminates.
Thus, we can instead suppose that Cv is minimally unsatisfied. By the above argu-
ment, Cu is also minimally unsatisfied for each u ∈ R∪I. Thus, each vertex of R∪I
is contained in exactly one minimally unsatisfied set during this iteration. Lastly,
notice that dual symmetry holds at the beginning of this iteration and we uniformly
grow minimally unsatisfied sets throughout the iteration. Thus dual symmetry holds
during iteration t. The result now follows by induction.

The notion of dual symmetry turns out to be a crucial property which will play a
key role in the analysis. In the next chapter we will use this definition to enforce a
concept of laminarity and analyze the role of the set Q in algorithm 2.

13

Chapter 4

The Importance of Laminarity

As mentioned in the previous chapter, laminarity is an important property of our
algorithm. In this chapter we will show that dual sets with positive γ-values form
an R ∪ I laminar family in each iteration of algorithm 2. Using this fact, we will
then be able to show in chapter 6 that algorithm 2 terminates.
So consider an iteration of algorithm 2 and let I ⊆ S be the set of selected Steiner
vertices. In this iteration we run algorithm 1. By lemma 3.4, minimally unsatisfied
sets are R ∪ I-disjoint during this iteration. We will use this property to derive
important consequences for algorithm 1.

4.1 Laminarity in Algorithm 1
In algorithm 1 we focus on raising dual variables for minimally unsatisfied sets in
each iteration.

Definition 4.1. We will say a set K ⊆ V is a loaded set for dual solution γ if K is
a dual set with γK > 0.

That is, K is a loaded dual set if it is currently a minimally unsatisfied set or was a
minimally unsatisfied set at some earlier point during algorithm 1. Our first result
will allow us to guarantee that when algorithm 1 terminates successfully there is a
tight path between any two vertices of R ∪ I. This generalizes the corresponding
result found in [25]

Lemma 4.2. Suppose K is a minimally unsatisfied set during the symmetric part
of algorithm 1. Then for any two vertices u, v ∈ K∩ (R∪I), there is a tight directed
path from u to v when restricted to G[K ∩ (R ∪ I)].

Proof. By lemma 3.4, minimally unsatisfied sets are R∪I-disjoint. So for any U ⊂ K
such that u ∈ U , v /∈ U , U is not an unsatisfied set by the minimality of K. Thus
δout(U) contains a tight arc. As U was an arbitrary subset of K we have that there
is a tight uv-path, P , using vertices of K. Moreover, note that algorithm 1 has
not yet terminated unsuccessfully. So in particular, there is no tight arc ab where
a ∈ S \ I and b ∈ R ∪ I. As u, v ∈ R ∪ I, we have that P is actually a path in
G[K ∩ (R ∪ I)].

In particular, this result shows that if K is a loaded set during the symmetric part
of algorithm 1, then K is strongly connected when restricted to G[R ∪ I] and only

14

tight edges. With this, we can now show that loaded sets form a R ∪ I-laminar
family.

Lemma 4.3. Loaded dual sets form a R ∪ I-laminar family at all times during the
symmetric part of algorithm 1.

Proof. We will prove the result by induction on the number of iterations of the
symmetric part of algorithm 1. When the algorithm is initialized each vertex of
R ∪ I forms a minimally unsatisfied set and so the result holds throughout this
iteration. So now consider an iteration t ≥ 2 and suppose that U1 and U2 are loaded
dual sets with U1 6= U2. Then U1 ∩ (R ∪ I) 6= ∅ and U2 ∩ (R ∪ I) 6= ∅. Thus Ui is
either an unsatisfied set or it is contained in a minimally unsatisfied set for i ∈ {1, 2}.
Now notice that by the description of algorithm 1, in a given iteration we only grow
minimally unsatisfied sets. Moreover, a set K remains minimally unsatisfied until
an arc of δout(K) becomes tight. In addition, we never decrease dual variables
during algorithm 1 and so when we start growing γK , K is minimally unsatisfied
and it remains minimally unsatisfied until an arc of δout(K) becomes tight. At which
point, K is satisfied. So, because Ui is a loaded set, if Ui is unsatisfied, then Ui is
a minimally unsatisfied set. Thus there is a minimally unsatisfied set Ki such that
Ui ⊆ Ki for i ∈ {1, 2}.
First suppose that K1 6= K2. Then K1 and K2 are distinct minimally unsatisfied
sets, so by lemma 3.4, K1 and K2 are R ∪ I-disjoint. Thus U1 and U2 are R ∪ I-
disjoint.
Otherwise, suppose that K1 = K2.
Then let LSK1 = {K ⊆ K1 | K ∩ (R∪ I) 6= ∅, γK > 0}. Note that U1, U2 ∈ LSK1 by
the choice of K1 and the fact that K1 = K2. Now let t′ be the last iteration where
γK1 = 0. At iteration t, γK1 > 0 and so we have t′ < t. Moreover, each element of
LSK1 is a loaded dual set. As stated above, for a dual set K, when we start growing
γK , K is minimally unsatisfied and it remains minimally unsatisfied until an arc of
δout(K) becomes tight.
But now notice that we start growing γK1 after iteration t′, by the choice of t′. Also,
K1 is minimally unsatisfied in iteration t. So in all iterations between t′ and t, K1

is minimally unsatisfied. Thus the dual sets in LSK1 \ {K1} have stopped growing
by iteration t′ and so by the induction hypothesis LSK1 \ {K1} is a R ∪ I-laminar
family. So by definition of LSK1 we have that LSK1 is a R∪ I-laminar family. Thus
we have U1 ∩ (R ∪ I) ⊆ U2 ∩ (R ∪ I) or U2 ∩ (R ∪ I) ⊆ U1 ∩ (R ∪ I).
Thus in both cases U1 and U2 do not cross. So loaded dual sets from a R∪I-laminar
family.

Note that if the dual felt by an arc is at most its cost at the beginning of algorithm
1, then this will hold throughout algorithm 1. The reason is, as soon as an arc
e becomes tight we redefine minimally unsatisfied sets so that if C is a minimally
unsatisfied set then e /∈ δout(C). Thus the dual felt by e will not increase after e
becomes tight. But when algorithm 1 initializes, γK = 0 for each dual set K. As
ce ≥ 0 for each arc e, we have that no arc is overtightened during algorithm 1. We
can now prove the following result.

Lemma 4.4. Suppose that u, v ∈ R ∪ I during an execution of algorithm 1 and let
P be a directed path from u to v. Then at all times during algorithm 1, P is a tight
path if and only if P̄ is a tight path, where P̄ is the reversal of P .

15

a

v1

v2

vn

b

Figure 4.1: The Crossing Sets of Lemma 4.7

Proof. Consider an arbitrary point during the execution of algorithm 1 and suppose
that P is a tight path. By corollary 3.5, dual symmetry holds for R ∪ I so that by
corollary 2.10, path symmetry holds for P . That is,∑

e∈ ~E(P)

(∑
K:e∈δout(K)

γK

)
=
∑

e∈ ~E(P̄)

(∑
K:e∈δout(K)

γK

)
(4.1)

However, as argued above, no arc is overtightened during the execution of algorithm
1 and each arc of P is tight. Moreover, for u, v ∈ V , cuv = cvu. Combining this with
(4.1) shows that each arc of P̄ is also tight so that P̄ is a tight path.
Repeating this analysis shows that whenever P̄ is a tight path, P is also tight.

4.2 Important Connectivity Properties
We will now assume that algorithm 1 terminates unsuccessfully because some arc
ab became tight where a ∈ S \ I and b ∈ R ∪ I. We now define the following.

Definition 4.5. For a loaded dual set K, we say that K is an outermost loaded dual
set if there is no other loaded dual set K ′ such that K ⊆ K ′

Note that by lemma 4.3, loaded dual sets form a R ∪ I-laminar family and so the
notion of an outermost loaded dual set is well-defined. We also give the following.

Definition 4.6. For an outermost loaded dual set K we will say that w identifies
K for any w ∈ K ∩ (R ∪ I)

Again, because of lemma 4.3, each vertex of R ∪ I identifies a unique outermost
loaded dual set. The following two results analyze the dual felt by arcs of δout({a})
when the arc ab becomes tight.

Lemma 4.7. Suppose the arc ab becomes tight during the symmetric part of al-
gorithm 1 and causes algorithm 1 to terminate unsuccessfully for a ∈ S \ I and
b ∈ R ∪ I. Then the arc ba is also tight.

Proof. Assume as a contradiction that ab is tight but that there is no tight ba-path.
Now because ab went tight but a ∈ S \ I there must be loaded sets crossing at a. To
see this, suppose as a contradiction that no loaded sets cross at a. As a ∈ S \ I, any
loaded dual set containing a also contains a node of R∪I. Moreover, as the arc ab is

16

tight, there is a loaded dual set containing a and not b. So suppose that c ∈ V \{a, b}
be contained in this dual set such that the arc ca is tight. Then, because no loaded
dual sets cross at a, any loaded dual set containing a also contains c. But the arc
ca is tight so we have ∑

K:c∈K,a/∈K

γK = cac

Also, the arc ab is tight, and whenever a is contained in a loaded dual set, c is also
contained in a loaded dual set. So we have∑

K:a,c∈K

γK = cab

But now by the triangle inequality cbc ≤ cab + cac. Moreover, as every loaded dual
set containing a also contains c we have that b and c are not contained in a dual set
together. Thus∑

K:c∈K,b/∈K

γK =
∑
K:c∈K

γK =
∑

K:c∈K,a/∈K

γK +
∑

K:a,c∈K

γK = cac + cab ≥ cbc

Thus the arc cb is tight. If c ∈ R ∪ I then notice that in algorithm 1 we give
preference to edges that have both ends in R ∪ I. Also, the arc bc is tight no
later than when the arc ab becomes tight, thus we would not stop algorithm 1, a
contradiction. Otherwise, c ∈ S \ I, but then we can repeat the same argument, to
show that there must be at least two loaded dual sets crossing at c, and thus there
are at least two loaded dual sets crossing at a.
So let v1, ..., vn be vertices of R ∪ I that identify distinct outermost loaded sets
K1, ..., Kn crossing at a. Note that b is not contained in a loaded set with vi for any
i ∈ {1, ..., n}. To see this, suppose as a contradiction, b and vi are contained in a
loaded set K. Now if vi ∈ S \ I then because vi ∈ K and K is a loaded set there
must be a tight v′vi-path for some vertex v′ ∈ K ∩ (R ∪ I). Otherwise vi ∈ R ∪ I
so set v′ = vi. But now b, v′ ∈ K ∩ (R ∪ I) and K is a loaded set. Thus, K was
a minimally unsatisfied set at some point during algorithm 1. So by lemma 4.2,
there is a tight bv′-path in K. This now gives a tight bvi-path in K. However, by
assumption the arc va is tight and so we have a tight ba-path, a contradiction.
Thus we have that b is not contained in a loaded set with vi for any i ∈ {1, ..., n}.
Note, by assumption, b ∈ R ∪ I. An example is shown in figure 4.1. (Note that the
thin edges of figure 4.1 correspond to tight paths).
Now observe that the arc ab is tight and so there must be dual sets crossing at a that
do not contain b. That is, n ≥ 1. So consider node v1. This identifies an outermost
loaded dual set K1 crossing at a. But note that we only define minimally unsatisfied
sets to grow around nodes of R ∪ I. So because both v1 and a are contained in a
minimally unsatisfied set, there must be a tight path from v1 to a. Moreover, by
assumption, the arc ab is tight. Thus there is a tight path from v1 to b, P1, and P1

uses the edge ab. But note that v1, b ∈ R ∪ I. Thus, by lemma 4.4, P̄1 is a tight
path. Lastly, notice that the path P1 contains the arc ab, thus the arc ba is tight as
required.

In algorithm 2, if an arc ab becomes tight where a ∈ S \ I and b ∈ R ∪ I then
algorithm 1 terminates unsuccessfully. We then compute Q ⊆ S \ I and add the
nodes of Q to our set I. Our next result justifies why it is a good idea to add Q to
I.

17

a

b

v2

vn

(a) Case 1 of Theorem 4.8

at v2

v1

w2

b

w`

w1

vn

(b) Case 2 of Theorem 4.8

Figure 4.2: The cases of Theorem 4.8

Theorem 4.8. Suppose algorithm 1 terminates unsuccessfully when arc ab becomes
tight for a ∈ S \ I, b ∈ R∪ I, and let Q ⊆ S \ I be the set determined in algorithm 2.
Then for any c ∈ R∪ I, if there is a tight path from c to a vertex of Q that only uses
vertices of R∪ I ∪Q then there is a tight path from Q to c that only uses vertices of
R ∪ I ∪ Q when algorithm 1 terminates. Moreover, Q is strongly connected in the
graph of tight arcs.

Proof. By lemma 4.7, we have that ba is also tight. Note that ab went tight and
caused algorithm 1 to terminate unsuccessfully. However, a ∈ S \ I, so there must
be loaded sets crossing at a. Let v1, ..., vn be the nodes of R ∪ I such that the arc
via is tight for each i ∈ {1, ..., n}. As the arc ba is tight we have that b ∈ {v1, ..., vn}
and so n ≥ 1. After relabelling, we can assume that b = v1.
Now note that for any other loaded set crossing at a that is not identified by one
of v1,, vn then because G is 2-steiner all such sets are identified by some vertex
t ∈ S \ I such that {a, t} ∈ EH . That is, |Q| ∈ {1, 2}. So we have two cases:

Case 1: |Q| = 1.
Then Q = {a} and is clearly strongly connected. In addition, any loaded dual set
crossing at a contains one of v1, ..., vn. But now b = v1 so that the arc av1 is tight.
Thus, there must be additional dual sets crossing at a that load dual for the arc av1.
That is, n ≥ 2. This case is illustrated in figure 4.2(a).

18

We will start by showing that the arc avi is tight for each i ∈ {2, ..., n}. Observe
that arc via is tight, by definition of vi. So together with the arc av1 this gives a
tight path from vi to v1 through a, call this path Pi. Moreover, v1, vi ∈ R∪ I. Thus,
by lemma 4.4, P̄i is also a tight path. Also, as via ∈ ~E(P), we have that avi ∈ ~E(P̄)
so that the arc avi is tight.
Thus, for each i ∈ {1, ..., n}, the arc avi is tight. So consider any other vertex
c ∈ R ∪ I such that there is a tight path from c to Q using nodes of R ∪ I ∪Q, let
P be such a path. We know that Q = {a} and so V (P) \ {a} ⊆ R ∪ I. Moreover,
v1, ..., vn are the only vertices of R ∪ I that are joined to a by a tight arc. Thus the
last vertex of P before a is vi for some i ∈ {1, ..., n}. So let P ′ be the subpath of P
from c to vi. Then P ′ is a tight between two nodes of R ∪ I and so by lemma 4.4,
P̄ ′ is also tight. Now the arc avi followed by P̄ ′ gives a tight path from a to c using
nodes of R ∪ I ∪Q. In particular, we have a tight path from Q to c using nodes of
R ∪ I ∪Q.

Case 2: |Q| = 2
Then Q = {a, t} for some t ∈ S \ I. Moreover, we have chosen v1, ..., vn to be all
nodes of R ∪ I that are joined to a by a tight arc. Thus, if K is any dual set not
containing any of v1, ..., vn and crossing at a, then K must contain t. In addition,
by the description of algorithm 2, we have included t in Q because there is a tight
path from t to a in H[S \ I]. Thus because G is 2-Steiner, the arc ta is tight. So
let w1, ..., w` ∈ R∪ I be the vertices joined to t by a tight arc that are distinct from
v1, ..., vn. Note that algorithm 1 terminated unsucessfully because the arc ab became
tight. As a ∈ S \ I and b ∈ R ∪ I, by the priority rule used in algorithm 1 there
must be two minimally unsatisfied sets loading the arc ab. Otherwise, there is only
one minimally unsatisfied set containing a and not b, let v be the first node in this
set such that the arc va became tight. Then note that∑

K:v∈K,a,b/∈K

= cav

and ∑
K:a,v∈K,b/∈K

= cab

Thus ∑
K:v∈K,a/∈K

= cav + cab ≤ cbv

by the triangle inequality. So the arc bv is tight and thus we would have taken
the arc bv instead of ab by the priority rule of algorithm 1, a contradiction. Thus
n+ ` ≥ 2. This case is illustrated in figure 4.2(b).
We have that b = v1, so now consider vi for i ∈ {2, ..., n}. Then as the arc via is
tight we have that viav1 gives a tight viv1-path. As in case 1, we now have that
v1avi is also a tight path so that in particular the arc avi is tight.
Next, consider wi for i ∈ {1, ..., `} By the choice of wi the arc wit is tight. Moreover,
we have shown that the arcs ta and av1 are tight. Also, we have chosen the vertices
so that w1, ..., w`, v1, ..., vn are all distinct. Thus Pi = witav1 is a tight path from
wi to v1. However, a, t ∈ S and G is 2-Steiner. Thus v1, wi ∈ R ∪ I. So by lemma
4.4, the path P̄i is also tight. As wit ∈ ~E(Pi) we have that twi ∈ ~E(P̄i) so that the
arc twi is tight as desired. Note that in addition, at ∈ ~E(P̄i) so that this arc is also

19

a

v1

v2

vn

(a) Case for |Q| = 1

as v1

v2

w`

vn

w1

(b) Case for |Q| = 2

Figure 4.3: Possible crossings at Q

tight and thus Q is strongly connected.
So now consider c ∈ R ∪ I such that there is a tight path P from c to a node in Q
with V (P) ⊆ R∪ I ∪Q. Then V (P)\{a, t} ∈ R∪ I. Now let u be the last vertex on
P in R∪ I and let P ′ be the subpath of P from c to u. Then by definition, v1, ..., vn
are all vertices joined to a by a tight arc and w1, ..., w` are all vertices joined to t
by a tight arc. So we have that u ∈ {v1, ..., vn, w1, ..., w`}. Thus, as shown above we
have that there is a tight arc from a vertex of Q to u. Moreover, c, u ∈ R ∪ I and
P ′ is a tight cu-path with V (P ′) ⊆ R ∪ I. By lemma 4.4, P̄ ′ is also tight. Thus we
have a tight path from Q to c contained in R ∪ I ∪Q.

Thus in both cases we obtain the desired result so that this completes the proof.

Note that in algorithm 1 we give preference to arcs whose tail is a vertex of R ∪ I.
But the arc ab became tight where a ∈ S \ I. As proved in lemma 4.7, when the
arc ab becomes tight there must be at least two minimally unsatisfied sets crossing
at a which do not contain b. By lemma 4.7, there is also a minimally unsatisfied set
containing b which crosses at a. Combining this with Theorem 4.8, we have one of
the two cases depicted in figure 4.3, where n ≥ 2 in figure 4.3(a) and n + ` ≥ 2 in
figure 4.3(b). We have thus proven the following.

Observation 4.9. If algorithm 1 terminates unsuccessfully then Q is used to connect

20

at least 3 components of R ∪ I when restricted to tight edges. Moreover, this new
component is also strongly connected when restricted to tight edges in G[R ∪ I ∪Q].

This now provides the intuition for why we have defined Q in this way and why
we choose to add Q to our set I in algorithm 2. In chapter 6, we will make this
intuition formal and show that indeed, adding Q decreases the cost of a spanning
tree of R ∪ I. Before proving this, we first show in chapter 5 that if algorithm 2
is guaranteed to terminate, it will output a 5

3
-approximate solution. Chapter 5 will

also use the results of this chapter in order to show the approximation ratio.

21

Chapter 5

The Approximation Factor

In this chapter we will show the approximation factor, assuming that algorithm 2
terminates. For the remainder of this chapter we suppose that algorithm 2 termi-
nates with dual solution γ and tree T .

5.1 A Minimum Cost R ∪ I-Spanning Tree
The next proposition shows that γ is feasible for (D′).

Proposition 5.1. For an arc e = uv ∈ ~E(G), the total dual felt by e is at most ce
at all times during the execution of algorithm 2.

Proof. Note that in each iteration of algorithm 2 we run algorithm 1 and start by
setting γK = 0 for each dual set K. As ce ≥ 0 for each arc e, no arc feels more than
its cost at initialization.
Now we only alter dual variables during the symmetric phase. In this phase we
uniformly grow minimally unsatisfied sets in each iteration. By definition of an
unsatisfied set, the dual values raised in a particular iteration only affect the dual
felt by arcs that are not tight. Moreover, by the description of algorithm 1, we
stop raising dual variables as soon as an arc becomes tight. It thus follows that
during the symmetric phase of algorithm 1, no arc is overtightened. As no arc was
overtightened at initialization, we have that no arc feels more dual than its cost
during algorithm 1. As mentioned above, this now implies that the desired property
holds throughout algorithm 2.

We would now like to analyze the cost of this dual solution. Recall that a dual set
K can refer to a proper set or a residual set. In algorithm 1, we do not pick a root
vertex initially and so we only consider proper sets and residual sets. Once a root is
selected, the proper sets are partitioned into valid and invalid sets. However, only
valid sets and residual sets appear in the objective function of (D′).
Now consider any iteration of algorithm 2. We run the symmetric part of algorithm
1 until there are no more minimally unsatisfied sets. Thus, by lemma 4.2, when
the symmetric phase ends there is a directed vr-path using edges of ~L for each
v ∈ R \ {r}. Now during the deletion phase of algorithm 1 we remove arcs of ~L as
long as there is still a tight vr-path for each v ∈ R \ {r}. Thus when algorithm 1
terminates, if C is a valid set then there is a vertex v ∈ C ∩ (R \ {r}) and r /∈ C.
Thus |δout(C) ∩ ~L| ≥ 1.

22

Moreover, when algorithm 2 terminates, for each u ∈ I we have degT (u) ≥ 3. Also
u ∈ I ⊆ S and r ∈ R with S ∩ R = ∅. Thus u 6= r. Moreover note that each edge
of T corresponds to an arc of ~L. But now if
δout({u}) ∩ ~L = ∅ then because u 6= r, u is not used to connect any vertex of
R \ {r} to r. Thus all the arcs in δin({u})∩ ~L would be deleted during the deletion
phase of algorithm 1 in the last iteration of algorithm 2. Thus we would have
degT (u) = 0, a contradiction. Thus, when algorithm 2 terminates for each u ∈ I we
have |δout({u}) ∩ ~L| ≥ 1.
Lastly consider a residual set X so that X ∩ I 6= ∅. Now suppose u ∈ X ∩ I. If
δout(X) ∩ ~L = ∅ then because r /∈ X, none of the vertices of X are used to connect
a vertex of R \ {r} to r. Thus, for each s ∈ X we will delete all arcs with an
end in s during the reverse delete step. So we will have δout({s}) ∩ ~L = ∅ and
δin({s}) ∩ ~L = ∅ so that degT (s) = 0. In particular degT (u) = 0, a contradiction.
Thus we have |δout(X) ∩ ~L| ≥ 1.
So given that ~L are the arcs corresponding to the tree output by algorithm 2, define
x for each arc e ∈ ~E(G) as

xe =

{
1 if e ∈ ~L
0 otherwise

Then clearly xe ≥ 0 for each e ∈ ~E(G). Also by the above analysis we have∑
e∈δout(C)

xe ≥ 1 for each valid set C. Moreover, for each residual set X we have∑
e∈δout(X)

xe ≥ 1. Thus x is feasible for (P ′). Also note that for any u ∈ S \ I,

δout({u}) ∩ ~L = ∅ as otherwise u would have been added to I during algorithm 2.
Thus during the last iteration of algorithm 2, when the symmetric part of algorithm
1 terminates u is not used to connect any vertex v ∈ R\{r} to r. So when algorithm
2 terminates δ({u}) ∩ E(T) = ∅. Thus T is a spanning tree on R ∪ I. Now using
complementary slackness we will show that T is a minimum spanning tree of R∪ I.
The following result follows from the seminal work of Edmonds [8] and was also
shown in [25]. We report here a proof for completeness.

Lemma 5.2. If algorithm 2 terminates with tree T and set I ⊆ S then∑
e∈E(T)

ce =
∑

valid C

γC +
∑

residual X

γX

Moreover, T is a minimum spanning tree of R ∪ I.

Proof. Let ~L be the set of arcs in ~T when algorithm 2 terminates. Now define x for
each e ∈ ~E(G) as

xe =

{
1 if e ∈ ~L
0 otherwise

Then as discussed above, x is feasible for (P ′). Moreover, if γ is the dual solution
returned by algorithm 2 then by lemma 5.1 and the above discussion γ is feasible
for (D′). Also observe that

∑
e∈E(T)

ce =
∑
e∈~L

ce =
∑

e∈ ~E(G)

cexe. Now the complementary

slackness conditions for the pair (P ′), (D′) are:
1. For e ∈ ~E either xe = 0 or

∑
K:e∈δout(K)

γK = ce

23

2. For valid C either γC = 0 or
∑

e∈δout(C)

xe = 1

3. For residual X either γX = 0 or
∑

e∈δout(X)

xe = 1

4. For all other dual sets K either γK = 0 or
∑

e∈δout(K)

xe = 0

Now note that if xe > 0 then e ∈ ~L. However, in the last iteration of algorithm 2
when algorithm 1 is run it terminates successfully (as otherwise we would add a new
vertex to I and begin a new iteration of algorithm 2). So when e was added to ~L it
was a tight arc and we do not decrease any dual variables during the last iteration
of algorithm 2. Thus e remains tight when algorithm 2 terminates. So condition 1
holds for x and γ.
Now we will show that conditions 2 and 3 hold. So suppose K is a valid set or a
residual set. Because x is feasible we have∑

e∈δout(K)

xe ≥ 1

So suppose as a contradiction that γK > 0 and there are two arcs e, e′ ∈ ~L such
that e, e′ ∈ δout(K). Assume that e′ was added to ~L after e. However, because
γK > 0, K was a minimally unsatisfied set at some point during the last iteration
of algorithm 2. Thus, by lemma 4.2, for any a, b ∈ K ∩ (R∪ I) there is a tight path
from a to b contained in G[K ∩ (R ∪ I)]. Now suppose that e = uv. Then because
|δout(K ′) ∩ ~L| ≥ 1 for each valid set K ′, there is still a directed path from u to r
among the arcs of ~L \ {e′}. As e is a tight arc we have that u ∈ R ∪ I. Also, by
lemma 4.2, for any t ∈ K∩(R∪I) there is a tight path from t to u, using the vertices
of K. And so for any t ∈ K ∩ (R ∪ I) there is a tight path from t to r in ~L \ {e′}.
Thus e′ is not needed to connect vertices of C to r and so e′ will be deleted during
the reverse delete step, a contradiction. As K was either a valid set or residual set,
we have that conditions 2 and 3 hold.
Lastly, consider condition 4. If K is a dual set that is not valid or residual then K
is a proper set with r ∈ K. But then if there are any arcs in δout(K) ∩ ~L, they are
not needed to connect any terminal to r. So these arcs would be deleted during the
reverse delete step. Thus |δout(K) ∩ ~L| = 0 and so condition 4 holds.
So all of the complementary slackness conditions hold and so we have∑

e∈E(T)

ce =
∑

e∈ ~E(G)

cexe =
∑

valid C

γC +
∑

residual X

γX

Now, let T ′ be any other (R ∪ I)-spanning tree. Then if we direct all edges of T ′

towards r and define x′ for each e ∈ ~E(G) as

x′e =

{
1 if e ∈ ~E(T ′)

0 otherwise

then because T ′ is a spanning tree of R ∪ I, x′ is feasible for (P ′). But by the
optimality of x we have∑

e∈E(T)

ce =
∑

e∈ ~E(G)

cexe ≤
∑

e∈ ~E(G)

cex
′
e =

∑
e∈E(T ′)

ce

Thus T is a minimum spanning tree of R ∪ I.

24

s

a
b

c

(a) A 3 edge 1-star

s t
e

a b c d

(b) A 5 edge 2-star

Figure 5.1: The 1-star and 2-star from lemma 5.4

5.2 The 5
3 Ratio

Let G′ = (V ′, E ′) be an arbitrary graph.

Definition 5.3. We say that G′ is a k-star, for k ∈ N, if G′ has a path P on k
vertices such that by contracting P to a single vertex, the resulting graph is a star.

We will use this definition and the previous result to derive the approximation factor
as well as an integrality gap bound for (BCR).
Note that any Steiner tree corresponds to a feasible solution for (BCR). However,
only

∑
valid C

γC is a dual bound on the optimal value of a Steiner tree. So we need to

bound
∑

residual X
γX .

Lemma 5.4. If algorithm 2 terminates with tree T and set I ⊆ S then∑
residual X

γX ≤
2

5

∑
e∈E(T)

ce

Proof. Note that every component of H[I] is a single vertex or a path with one edge.
Moreover, algorithm 1 gives priority to arcs of ~H. So suppose that a, b ∈ S are not
adjacent in H. Then these nodes are joined by a path P in H with at least two
vertices. By definition of G we have that∑

e∈ ~E(P)

ce ≤ cab

But notice that if K is a dual set with ab ∈ δout(K) then at least one arc of P is
also contained in δout(K). So at any point during algorithm 1, if the arc ab is tight
then we also have that P is a tight path. So by our priority rule, the arc ab will
never be used in algorithm 1. Thus, every component of T [I] is also either a single
vertex or a path with one edge. Now let K be a component of T [I].
If K is a single vertex s then degT (s) ≥ 3 and so s is incident to at least 3 vertices
of R. Thus s and all the edges incident to s induce a 1-star, T̄K , with at least 3
edges. By possibly removing some edges we obtain a 1-star T̃K with exactly 3 edges:
a, b, c. T̃K is shown in figure 5.1(a).
Then notice that

∑
f∈E(T̃K)

cf ≤
∑

f∈E(T̄K)

cf . So consider residual sets X with s ∈ X.

Edges a, b, and c all feel dual from γX for each such setX. However, by lemma 5.1 no
arc feels more than its cost when the last iteration of algorithm 2 terminates. Then

25

because dual variables are not changed after this last iteration we have
∑

X:s∈X
γX ≤ ci

for each i ∈ {a, b, c}. Thus,

3
(∑
X:s∈X

γX

)
≤ ca + cb + cc =

∑
f∈E(T̃K)

cf ≤
∑

f∈E(T̄K)

cf

=⇒
∑
X:s∈X

γX ≤
1

3

(∑
f∈T̄K

cf

)
≤ 2

5

(∑
f∈T̄K

cf

)
Otherwise, K is a path with one edge: {s, t}. However, degT (s) ≥ 3 and degT (t) ≥ 3
so both s and t are adjacent to at least two vertices of R. Moreover,
δT ({s})∩ δT ({t}) = {s, t} as T is a tree. Thus s and t together with edges adjacent
to one of these two vertices induces a 2-star, T̄K in which both s and t have degree
at least 3. By possibly deleting edges we can obtain a 2-star, T̃K in which both s
and t have degree 3. Moreover, δT̃K ({s}) = {a, b, e} and δT̃K ({t}) = {c, d, e}. T̃K is
depicted in figure 5.1(b).
Then notice that

∑
f∈E(T̃K)

cf ≤
∑

f∈E(T̄K)

cf . Now the maximum cost edge is adjacent

to one of s or t. So assume the maximum cost edge is i ∈ {a, b, c, d, e} and that it is
adjacent to s, without loss of generality. Note that because i is the maximum cost
edge we have ∑

j∈{a,b,c,d,e}\{i}

cj ≤
∑

j∈{a,b,c,d,e}

cj

But now notice that edges c and d feel dual from γX for each residual X with t ∈ X.
So, ∑

X:t∈X

γX ≤ cj ∀ j ∈ {c, d}

Also, for j ∈ {a, b, e}\{i}, edge j feels dual from γX for each residual X with s ∈ X,
t /∈ X. So, ∑

X:s∈X,t/∈X

γX ≤ cj ∀ j ∈ {a, b, e} \ {i}

Thus we have

2
(∑
X:X∩{s,t}6=∅

γX

)
= 2
(∑
X:t∈X

γX

)
+ 2
(∑
X:s∈X,t/∈X

γX

)
≤

∑
j∈{a,b,c,d,e}\{i}

cj

≤ 4

5

(∑
j∈{a,b,c,d,e}

cj

)
≤ 4

5

(∑
f∈T̄K

cf

)
Thus we have ∑

X:X∩{s,t}6=∅

γX ≤
2

5

(∑
f∈T̄K

cf

)

Thus for each component K of T [I] we have
∑

X:X∩V (K)6=∅
γX ≤ 2

5

(∑
f∈E(T̄K) cf

)
.

However each component of T [I] induces a 1-star or a 2-star and these graphs are

26

all edge disjoint. Moreover, clearly for each s ∈ I, s is contained in some component
of T [I]. So let KI be the set of components of T [I]. Then, we have,∑
residual X

γX ≤
∑
K∈KI

(∑
X:X∩V (K) 6=∅

γX

)
≤ 2

5

[∑
K∈KI

(∑
f∈E(T̄K)

cf

)]
≤ 2

5

(∑
f∈E(T)

cf

)

With these results, we now have all the ingredients for the approximation factor and
the integrality gap bound.

Theorem 5.5. If algorithm 2 terminates successfully with tree T then∑
e∈E(T)

ce ≤
5

3

∑
valid C

γC

Proof. Let T ′ be an optimal Steiner Tree for the given instance. Also, let r be the
root chosen in the last iteration of algorithm 2 and direct all edges of T ′ towards r.
Let the resulting arcs be ~E(T ′). Now define x′ for each e ∈ ~E(G) as

x′e =

{
1 if e ∈ ~E(T ′)

0 otherwise

Then, by definition of x′,
∑

e∈ ~E(G)

cex
′
e =

∑
e∈E(T ′)

ce. Also, because the directed version

of T ′ is an arborescence directed into r and spanning R, x′ is feasible for (P). But
now if x∗ is the optimal solution for (P) and Y ∗ is the optimal solution for (D) then
by strong duality ∑

e∈ ~E(G)

cex
∗
e =

∑
valid C

Y ∗C

However, if γ is the dual solution returned by algorithm 2 then by lemma 5.1 ,γ is
feasible for (D′). So define YC = γC for each valid set C. Then Y is feasible for (D).
Thus, ∑

e∈E(T ′)

ce =
∑

e∈ ~E(G)

cex
′
e ≥

∑
e∈ ~E(G)

cex
∗
e =

∑
valid C

Y ∗C ≥
∑

valid C

YC

Moreover, by lemma 5.2,
∑

valid C
γC +

∑
residual X

γX =
∑

e∈E(T)

ce.

and by definition
∑

valid C
γC =

∑
valid C

YC

Also, by lemma 5.4,
∑

residual X
γX ≤ 2

5

(∑
e∈E(T)

ce

)
.

Thus we have,∑
e∈E(T)

ce =
∑

valid C

γC +
∑

residual X

γX ≤
∑

valid C

γK +
2

5

(∑
e∈E(T)

ce

)
=⇒

∑
e∈E(T)

ce ≤
5

3

(∑
valid C

γC

)

27

Note that in this proof we showed if we restrict γ to valid sets then it is feasible for
(D). As any solution to (D) gives a lower bound on the cost of an optimal Steiner
Tree, we now have the desired approximation factor. In the next chapter, we discuss
how to implement the algorithm in polynomial time.

28

Chapter 6

Algorithmic Guarantees

In this chapter we will show that algorithm 2 terminates. To do this we will introduce
an "uncrossing" procedure, which will be applied only when algorithm 1 terminates
unsuccessfully. This procedure, called the Pruning Algorithm, will be crucial for our
analysis.

6.1 The Pruning Algorithm
We now introduce the pruning algorithm, which is depicted in algorithm 3. In this
algorithm, we start by picking a setQ ⊆ S\I and a dual solution γ to (D′). Note that
Q is the set selected by algorithm 2 when algorithm 1 terminates unsuccessfully and
γ is the dual solution computed by algorithm 1. Then in each iteration we consider
outermost loaded dual sets, as in definition 4.5, such that these sets cross at Q′ for
some Q′ ⊆ Q. If there are more than one loaded sets crossing at Q′, say K1, ..., K`,
then an amount of dual λ is subtracted from these sets. This dual is then added
to their intersection. In addition, if R ∪ I ∪ Q 6⊆ K1 ∪ ... ∪ K` then we also add
dual to the union of these sets. Note that this cannot increase the dual felt by an
arc and so we maintain feasibility in (D′). We repeat this step until there are no
loaded dual sets crossing at Q. As output we obtain a dual solution γ′ feasible for
(D′) for I ′ := I ∪ Q. Moreover, this solution is (R ∪ I ′)-laminar. In this chapter
we will prove important properties about this algorithm and will then show how to
implement algorithm 2 in polynomial time. Combining this with Theorem 5.5 leads
to a 5

3
+ ε approximation factor. We start by showing that the pruning algorithm is

well defined.

Observation 6.1. Let γ, I, and Q be defined as above, and I ′ = I ∪Q. If γ is not
(R ∪ I ′)-laminar then we can find outermost loaded dual sets K1, ..., K` crossing at
some vertex of Q such that for each u ∈ Q either:

a. u ∈ Ki for each i ∈ {1, ..., `}

b. u /∈ Ki for each i ∈ {1, ..., `}

c. u ∈ Ki for exactly one i ∈ {1, ..., `}

Proof. If |Q| = 1 then the result clearly holds. So suppose instead that Q = {s, t}
and consider an arbitrary iteration of the pruning algorithm. First suppose there are
loaded sets K1, ..., K` crossing, that contain both s and t. This is shown in figure

29

Algorithm 3: Pruning Algorithm
• Input: A dual solution γ computed by algorithm 1 which terminated

unsuccessfully for some sets R and I, and tight arc ab with a ∈ R ∪ I and
b ∈ S \ I

• Let Q ⊆ S \ I be the vertices v for which there is a tight va-path in G[S \ I]

• Set I ′ = I ∪Q

• while ∃ loaded dual sets crossing at some vertex of Q

1. Let K1, ..., K` be outermost loaded dual sets crossing at some Q′ ⊆ Q
such that for each u ∈ Q either:

(a) u ∈ Ki for each i ∈ {1, ..., `}
(b) u ∈ Ki for exactly one i ∈ {1, ..., `}
(c) u /∈ Ki for each i ∈ {1, ..., `}

2. Set λ = min{γKi | i ∈ {1, ..., `}}
3. Set γKi = γKi − λ for each i ∈ {1, ..., `}
4. Set γ⋂`

i=1Ki
= γ⋂`

i=1Ki
+ (`− 1)λ

5. If R ∪ I ′ ⊆ K1 ∪ ... ∪K` setγ⋃`
i=1Ki

= γ⋃`
i=1Ki

+ λ

6.1(a) where the dual sets are outermost loaded sets. By selecting all outermost
loaded dual sets containing both s and t gives dual sets satisfying the desired prop-
erties.
Otherwise, suppose there are outermost loaded sets K1, ..., K`s crossing at s. Be-
cause there are no crossing loaded sets that contain both s and t, at most one of
K1, ..., K`s contain t. This is shown in figure 6.1(b) where the dual sets are the cor-
responding outermost sets. Thus, if we consider all outermost loaded dual sets that
cross at s then these sets satisfy the conditions. Similarly, if there are outermost
loaded sets K1, ..., K`t crossing at t, they also satisfy the conditions.
Thus, in each iteration, we can find the desired dual sets.

Although we do not actually apply this algorithm when finding our approximate
Steiner tree, it is worthwhile to show that the algorithm terminates.
Consider an arbitrary iteration of the pruning algorithm where we pick loaded dual
sets K1, ..., K` crossing at some Q′ ⊆ Q. In this iteration, γKi is decreased to 0 for
at least one i ∈ {1, ..., `}. So the total number of sets crossing at Q′ decreases. Also,
dual is added to the union and intersection of K1, ..., K`. Thus, by conditions a, b,
and c of the pruning algorithm, for any vertex u ∈ Q, the sum of dual values for
sets crossing at u does not increase. In addition, note that K1 ∪ ...∪K` could cross
at some nodes of Q \ Q′. But in this case, at least one of K1, ..., K` cross at such
a node. Thus for each vertex of Q \Q′, the total number of outermost loaded dual
sets crossing at this vertex does not increase. Also, as we decrease γKi by λ for each
i ∈ {1, ..., `} and then increase γ⋃`

i=1Ki
by λ, we have that the sum of dual values

crossing at such nodes has not increased.
Moreover, loaded dual sets form a R ∪ I-laminar family. Thus there are at most

30

s t

K1 K2 K`

(a) K1, ...,K` cross at s and t

s t
K1K2

K`s

(b) K1, ...,K`s cross at s

Figure 6.1: Possible Crossings During The Pruning Algorithm

2|R ∪ I| ≤ 2|V | loaded dual sets (see for example [6]). Thus, the pruning algorithm
does in fact terminate and can be implemented in O(n) time.
We now turn to comparing the dual felt by an arc e ∈ ~E before and after the pruning
algorithm.

Lemma 6.2. For any e = ab ∈ ~E(G[R ∪ I ′]), after the pruning algorithm, the dual
felt by e is at most the dual felt by e before the pruning algorithm.

Proof. Note that in each iteration of the pruning algorithm we consider outermost
loaded dual sets U1, ..., Uh crossing at some vertex of Q. We set λ = min{γUi | i ∈
{1, ..., h}} and update dual values. By lemma 3.4, these sets are R ∪ I-disjoint.
So for v ∈ R ∪ I, either v /∈ Ui for each i ∈ {1, ..., h} or v ∈ Ui for exactly one
i ∈ {1, ..., h}. Also, by observation 6.1, for any u ∈ Q, either u is contained in all of
U1, ..., Uh, none of U1, ..., Uh, or exactly one of U1, ..., Uh.
So first suppose that a ∈ Ui for each i ∈ {1, ..., h}, so a ∈ Q.
If b ∈ Ui for each i ∈ {1, ..., h} then e does not feel dual from any of the sets updated
in this iteration.
If b is contained in one of U1, ..., Uh, say U1 then e feels a decrease of (h− 1)λ from
decreasing γU2 , ..., γUh . It feels an increase of (h− 1)λ from increasing γ⋂h

i=1 Ui
and e

does not feel any dual from γ⋃h
i=1 Ui

.
If b /∈ Ui for each i ∈ {1, ..., h} then e feels the decrease of hλ from decreasing
γU1 , ..., γUh . It also feels the increase of λ from increasing γ⋃h

i=1 Ui
and (h− 1)λ from

increasing γ⋂h
i=1 Ui

.
So the total dual felt by e is unchanged in this case.
Next suppose that a is contained in exactly one of U1, ..., Uh, say U1.

31

If b ∈ Ui for each i ∈ {1, ..., h} then e does not feel dual from any sets updated in
this iteration. If b is in exactly one of U1, ..., Uh, then if b ∈ U1, e does not feel dual
from any sets updated in this iteration. So suppose instead that b ∈ U2. Then e
feels a decrease of λ from decreasing γU1 . e does not feel dual from γ⋃h

i=1 Ui
or from

γ⋂h
i=1 Ui

. If b /∈ Ui for each i ∈ {1, ..., h}, then e feels a decrease of λ from decreasing
γU1 . It feels an increase of λ from increasing γ⋃h

i=1 Ui
and e does not feel any dual

from γ⋂h
i=1 Ui

.
Thus in this case the dual felt by e does not increase.
Lastly suppose a /∈ Ui for each i ∈ {1, ..., h}. Then e does not feel any dual from
dual sets updated in this iteration. Thus, the dual felt by e is unchanged.
So in all cases, the dual felt by e does not increase during the pruning algorithm.

Note that in the proof of lemma 6.2, the only case in which the dual felt by the
arc ab decreases is if both a and b are contained in exactly one of the loaded dual
sets that cross. Moreover, a and b must be in different loaded dual sets. However,
note that ∅ 6= K1 ∩ ... ∩ K` ⊆ Q. Moreover, G is 2-Steiner, so for any such arc
|{a, b}∩Q| ≤ 1. Thus any arcs with both ends in Q remain tight during the pruning
algorithm. By theorem 4.8, Q is strongly connected, with respect to tight edges,
when the pruning algorithm begins and so now we have that this property holds
when the pruning algorithm terminates. We can now show the following.

Observation 6.3. Let w ∈ R∪ I. Then there is at least one vertex u ∈ Q such that
whenever w is contained in a loaded dual set K crossing at Q, u ∈ K.

Proof. Note that |Q| ∈ {1, 2}. Clearly, the result holds if |Q| = 1. Similarly, if there
is no loaded dual set containing w and a node of Q then the result also holds. So
consider the case that Q = {s, t}. Then note that by lemma 4.2, the loaded dual
sets form a (R ∪ I)-laminar family and this property is maintained throughout the
pruning algorithm. So we cannot have two loaded dual sets, K1 and K2, such that
s, w ∈ K1, t /∈ K1 and t, w ∈ K2, s /∈ K2 because such sets cross at w. So without
loss of generality, suppose there is a loaded dual set containing s and w but not t.
Thus for any loaded dual set containing w and t, this set also contains s. The result
follows.

We will also use the following observation.

Observation 6.4. Suppose Q = {s, t}. Then there is a vertex w ∈ R ∪ I such that
ws became tight at the same time or before there was a tight path from w to t during
algorithm 1. Similarly, there is a vertex v ∈ R ∪ I such that vt became tight at the
same time or before there was a tight path from v to s during algorithm 1.

Proof. Suppose as a contradiction that for each w′ ∈ R ∪ I such that w′s is tight,
there was a tight path from w′ to t before the arc w′s became tight. Note that
s, t ∈ S \I, so that if K is a loaded dual set containing s then t ∈ K. But then there
are no loaded dual sets K such that st ∈ δout(K) so that the arc st never becomes
tight. So now if we consider the graph of tight edges, Q is not strongly connected.
This contradicts theorem 4.8.
A similar argument shows that the result also holds for t.

The next result shows that dual symmetry holds when the pruning algorithm com-
pletes.

32

Lemma 6.5. Throughout the pruning algorithm, dual symmetry holds for R ∪ I ′.

Proof. Let u ∈ R ∪ I ′. First suppose that u ∈ R ∪ I. Note that in each iteration of
the pruning algorithm we consider dual sets K1, ..., K` that cross at some vertex of
Q, with ` ≥ 2. We set λ = min{γKi | i ∈ {1, ..., `}} and then we update dual values.
As u ∈ R∪ I, by lemma 4.3 we have that u is contained in at most one of K1, ..., K`.
If u is not contained in any of K1, ..., K`, then the total dual around u is unchanged
in this iteration. Otherwise, suppose u ∈ K1. Then u /∈ K2 ∪ ... ∪ K`. So the
dual around u decreases by λ when we subtract λ from γK1 . Also, by assumption,
u /∈

⋂`
i=1 Ki and so the total dual around u is unaffected when updating dual variable

γ⋂`
i=1Ki

. Lastly, if K1∪ ...∪K` ⊂ R∪ I ′ then the dual around u increases by λ when
we add λ to γ⋃`

i=1Ki
. Otherwise, R ∪ I ′ ⊆ K1 ∪ ... ∪K`. But in this case the total

dual around each node of R ∪ I decreases by λ. Thus the total dual around u is
unchanged in this iteration.
It thus follows that in all iterations of the pruning algorithm, the total dual around
u is either unchanged or is changed by the same amount for all nodes of R∪ I. This
holds for all vertices of R ∪ I. However, we already showed that dual symmetry
holds for R∪ I before the pruning algorithm begins. Thus, dual symmetry holds for
R ∪ I throughout the pruning algorithm.
So now suppose that u ∈ Q. Now choose the vertex w ∈ R ∪ I according to
observation 6.4. That is, the arc wu was the first tight path from w to Q. Thus,
whenever w is contained in a loaded dual set crossing at Q, u is also contained in
this dual set. But now observe that the dual around w can be expressed as∑

K:w∈K

γK =
∑

K:w∈K,u/∈K

γK +
∑

K:u,w∈K

γK

But the arc wu is tight when the pruning algorithm begins so that∑
K:w∈K,u/∈K

γK = cwu (6.1)

Also, from the proof of lemma 6.2, this arc remains tight throughout the pruning
algorithm so that this quantity stays constant.
Next note that the dual around u can be expressed as∑

K:u∈K

γK =
∑

K:u∈K,w/∈K

γK +
∑

K:u,w∈K

γK

However, by theorem 4.8, the arc uw is tight when the pruning algorithm begins.
Also, by lemma 6.2, this arc remains tight throughout the pruning algorithm. So
consider an arbitrary point during the pruning algorithm, then we have∑

K:u∈K,w/∈K

γK = cuw (6.2)

33

Thus at this point in the pruning algorithm we have∑
K:w∈K

γK =
∑

K:w∈K,u/∈K

γK +
∑

K:u,w∈K

γK

= cuw +
∑

K:u,w∈K

γK

=
∑

K:u∈K,w/∈K

γK +
∑

K:u,w∈K

γK

=
∑
K:u∈K

γK

Where the second line follows from (6.1) and the third line follows from (6.2). Thus,
the dual around w is the same as the dual around u. But w was a vertex of R∪I and
u was an arbitrary vertex of Q. Moreover, we showed that dual symmetry held for
R∪ I. Thus, dual symmetry holds for R∪ I ′ throughout the pruning algorithm.

Now using this result, we can show the importance of the pruning algorithm. Specif-
ically, our next result shows that Q is used to join multiple strongly connected
components.

Lemma 6.6. Let K be a loaded dual set during the pruning algorithm. Then for
any u, v ∈ K ∩ (R ∪ I ′) there is a tight uv-path using vertices of K. In particular,
this property holds when the pruning algorithm terminates

Proof. Consider an arbitrary point during the pruning algorithm. First consider the
case that K ∩Q = ∅. Then K was a loaded dual set prior to the pruning algorithm.
Moreover, by lemma 4.3, the loaded dual sets form a (R ∪ I)-laminar family. Now
notice that during the pruning algorithm we only consider loaded dual sets crossing
at some vertex of Q. Thus if ab is an arc with a, b ∈ K∩(R∪I) then the dual felt by
ab is unchanged throughout the pruning algorithm. But now by lemma 4.2, there
was a tight uv-path in K before the pruning algorithm. Moreover, as K ∩ Q = ∅
this path does not use any vertex of S \I, by the termination condition of algorithm
1. Thus, this path remains tight throughout the pruning algorithm.
So suppose instead that K ∩ Q 6= ∅. Note that by the proof of theorem 4.8, for
a, b ∈ Q, there is a tight ab-path in Q when the pruning algorithm initializes.
Moreover, by the proof of lemma 6.2, this path remains tight throughout the pruning
algorithm. Thus Q is strongly connected, with respect to tight arc, throughout the
pruning algorithm. Thus, it suffices to show that there is a tight path in K from u
to a vertex of K ∩Q and a tight path in K from a vertex of K ∩Q to v.
So we start by showing there is a tight path from u to a vertex of K ∩Q. If u ∈ Q
then we are done. Otherwise, by observation 6.3, there is a vertex w ∈ Q such that
whenever u is contained in a loaded set K ′ crossing at Q, w ∈ K ′. Also, by lemma
4.2, there is a tight path from u to w contained in K ′. By lemma 6.2, this path
remains tight throughout the pruning algorithm.
Now we want to show there is a tight path from a vertex of K ∩Q to v. But again,
v ∈ K and so there is a tight path P ′ from v to some vertex t ∈ K ∩Q. As shown
above, we can choose this path so that P ′ remains tight throughout the pruning
algorithm. So now by lemma 6.5 we have that dual symmetry holds for R ∪ I ′
throughout the pruning algorithm. Thus, by corollary 2.10, path symmetry holds

34

for P ′. That is P ′ is a tight path.
So now we have a tight path from u to w and a tight path from t to v for t, w ∈ C∩Q.
But |Q| ≤ 2. So either t = w or C ∩ Q = Q. But Q is strongly connected with
respect to tight arcs. So in either case we have a tight path from w to t. Thus, we
have a tight path from u to v.

Corollary 6.7. The set Q joins multiple strongly connected components of R∪ I in
the graph of tight arcs when the pruning algorithm terminates.

Proof. Consider an iteration of the pruning algorithm in which we pick outermost
loaded dual sets K1, ..., K` crossing at Q with ` ≥ 2. By lemma 6.6, K1, ..., K` are
strongly connected on R ∪ I ′ when restricted to tight arcs. But then in particular,
for each node u ∈ Ki ∩ (R ∪ I ′) for i ∈ {1, ..., `}, there is a tight path from u to
K1 ∩ ...∩K` ⊆ Q using vertices of R∪ I ′. By lemma 6.5 and lemma 4.4, the reverse
path is also tight. Thus K1 ∪ ... ∪K` is strongly connected through Q.
Now notice that by observation 4.9, there are multiple outermost loaded dual sets,
K ′1, ..., K

′
`′ , crossing at Q when algorithm 1 terminates unsuccessfully, with `′ ≥ 3.

Moreover, by lemma 4.2, these loaded dual sets are strongly connected on R∪I when
restricted to tight arcs. By the above analysis and the description of the pruning
algorithm, we have that when the pruning algorithm terminates K ′1∪ ...∪K ′` ⊆ K ⊆
V such that K is strongly connected on R ∪ I ′ when restricted to tight edges.

6.2 Termination of Algorithm 2
Given the previous results, we now have the tools to show that algorithm 2 termi-
nates. The organization of this section mirrors the approach taken in [25] and all of
our results are generalizations.
Suppose that when algorithm 1 terminates unsuccessfully, the current dual solution
is γ. We will create two new dual solutions: γ1 and γ2.
To generate γ1 we do the following:

• We project γ to R ∪ I as follows:

– γ̃C =
∑

C′: C′∩(R∪I)=C
γC′ ∀ proper sets C

– γ̃X = γX ∀ residual X

• Run Algorithm 1 on G[R ∪ I] starting from γ̃ to obtain γ1

We now generate a second dual, γ2, with the following procedure:

• Apply the pruning algorithm to obtain dual γ′ from γ

• Project γ′ to R ∪ I ′ as follows:

– γ̄C =
∑

C′: C′∩(R∪I′)=C
γ′C′ ∀ proper sets C

– γ̄X = γ′X ∀ residual X

• Run Algorithm 1 on G[R ∪ I ′] starting from γ̄ to obtain γ2

35

Definition 6.8. For a graph H letMST (H) denote the cost of a minimum spanning
tree of H.

The next two results describe the cost of these dual solutions.

Lemma 6.9.
∑

valid C
γ1
C +

∑
residual X

γ1
X = MST (G[R ∪ I])

Proof. Consider an arc e = ab. We will compare the dual felt by e with respect to
γ and the dual felt by e with respect to γ̃. There are two cases:

Case 1: a ∈ R.
Then e only feels dual from proper sets and so the total dual felt by e with respect
to γ̃ is ∑

C:e∈δout(C)

γ̃C =
∑

C:e∈δout(C)

[∑
C′:C′∩(R∪I)=C

γC′

]
=

∑
C′:e∈δout(C′)

γC′

Where the last equality follows from lemma 4.3, namely that loaded dual sets form
a (R ∪ I)-laminar family.

Case 2: a ∈ I.
Then e feels dual from proper sets and from residual sets X with a ∈ X, b /∈ X. So
the total dual felt by e with respect to γ̃ is∑

C:e∈δout(C)

γ̃C +
∑

X:e∈δout(X)

γ̃X =
∑

C:e∈δout(C)

[
∑

C′:C′∩(R∪I)=C

γC′] +
∑

X:e∈δout(X)

γX

=
∑

C′:e∈C′
γC′ +

∑
X:e∈δout(X)

γX

Where again the last equality follows from lemma 4.3.

Thus in both cases e feels the same amount of dual with respect to γ as it feels
with respect to γ̃. Thus after projecting γ to R ∪ I, all edges that were tight
before the projection remain tight and no new edge becomes tight. Thus because
path symmetry held with respect to γ, path symmetry holds with respect to γ̃. So
by lemma 2.9, dual symmetry holds for γ̃ and our minimally unsatisfied sets are
unchanged. Thus we can continue running algorithm 1 with γ̃. Moreover, as we
have restricted to the graph G[R ∪ I] algorithm 1 will terminate successfully with
dual solution γ1 and tree T 1. Note that γ was feasible for (D′) so that γ̃ is feasible for
(D′). Now by lemma 5.2,

∑
valid C

γ1
C+

∑
residual X

γ1
X =

∑
e∈E(T 1)

ce = MST (G[R∪I]).

Lemma 6.10.
∑

valid C
γ2
C +

∑
residual X

γ2
X = MST (G[R ∪ I ′])

Proof. The pruning algorithm was applied to dual solution γ because arc uv became
tight with u ∈ S \I and v ∈ R∪I. After the pruning algorithm, γ′ was the new dual
solution. By lemma 6.5, dual symmetry holds for R∪I ′ when the pruning algorithm
completes. Thus by corollary 2.10, path symmetry holds for any path connecting
two vertices of R ∪ I ′.

36

Once the pruning algorithm completes we project γ′ to a new dual, γ̄. So consider
an arc e = ab ∈ ~E(G[R∪ I ′]). We will compare the dual felt by e with respect to γ′
and the dual felt by e with respect to γ̄. There are two cases:

Case 1: a ∈ R.
Then e only feels dual from proper sets. So the total dual felt by e with respect to
γ̄ is ∑

C:e∈δout(C)

γ̄C =
∑

C:e∈δout(C)

[∑
C′:C′∩(R∪I′)=C

γ′C′
]

=
∑

C′:e∈δout(C′)

γ′C′

Where the last equality follows from lemma 4.3.

Case 2: a ∈ I. Then e feels dual from proper sets and from residual sets X with
a ∈ X, b /∈ X. So the total dual felt by e with respect to γ̄ is∑

C:e∈δout(C)

γ̄C +
∑

X:e∈δout(X)

γ̄X =
∑

C:e∈δout(C)

[∑
C′:C′∩(R∪I′)=C

γ′C′
]

+
∑

X:e∈δout(X)

γ′X

=
∑

C′:e∈δout(C′)

γ′C′ +
∑

X:e∈δout(X)

γ′X

Where the last equality follows from lemma 4.3.

Thus in both cases e feels the same amount of dual with respect to γ′ as it feels
with respect to γ̄. So the minimally unsatisfied sets with respect to γ′ and with
respect to γ̄ are the same. Moreover, for any path connecting two vertices of R∪ I ′,
path symmetry held for γ′ and so path symmetry holds for γ̄. So by corollary
2.10, the dual γ̄ is symmetric. Thus we can continue running algorithm 1 with γ̄.
Also, because γ′ was feasible for (D′), γ̄ is feasible for (D′). Moreover, as we have
restricted to the graph G[R ∪ I ′], algorithm 1 will terminate successfully with dual
solution γ2 and tree T 2. Now by lemma 5.2,∑

valid C

γ2
C +

∑
residual X

γ2
X =

∑
e∈E(T 2)

ce = MST (G[R ∪ I ∪Q])

With these two results we can now show that algorithm 2 does terminate.

Theorem 6.11. MST (G[R ∪ I ′]) < MST (G[R ∪ I])

Proof. When algorithm 1 terminates unsuccessfully, some arc from a vertex of S \ I
to R∪I became tight. Let γ be the dual values at this point. The pruning algorithm
identifies a set of vertices Q to add to I and then we create two new duals, γ1 and
γ2 as discussed above. Now we define two quantities β1 and β2 as follows:

β1 =
∑

proper C:
r/∈C

γ1
C +

∑
residual X

γ1
X −

∑
proper C:
r/∈C

γ̃C −
∑

residual X

γ̃X

β2 =
∑

proper C:
r/∈C

γ2
C +

∑
residual X

γ2
X −

∑
proper C:
r/∈C

γ̄C −
∑

residual X

γ̄X

37

That is, β1 is the total increase in dual sets (for sets not containing r) from running
algorithm 1 on γ̃ to obtain γ1. Similarly, β2 is the total increase in dual sets (for
sets not containing r) from running algorithm 1 on γ̄ to obtain γ2. However, note
that during the projection steps if C ′ ⊆ V is a loaded set then C ′ is mapped to a
unique set in R ∪ I and a unique set in R ∪ I ′. Thus the projection step does not
change the sum of the dual variables. So we have∑

proper C:
r/∈C

γ1
C +

∑
residual X

γ1
X =

∑
proper C:
r/∈C

γC +
∑

residual X

γX + β1

∑
proper C:
r/∈C

γ2
C +

∑
residual X

γ2
X =

∑
proper C:
r/∈C

γ′C +
∑

residual X

γ′X + β2

So now consider the quantity ∑
proper C:
r/∈C

γC +
∑

residual X

γX (6.3)

and consider an iteration of the pruning algorithm. We select outermost loaded dual
sets K1, ..., K` that cross at some Q′ ⊆ Q. We compute λ = min{γKi | i ∈ {1, ..., `}}
and then we update dual values.
First suppose that r /∈ K1 ∪ ... ∪K`. Then (6.3) is decreased by `λ from decreasing
γKi for i ∈ {1, ..., `}. It is also increased by (`− 1)λ when γ⋂`

i=1Ki
is increased, and

is increased by λ when γ⋃`
i=1Ki

is increased.
Otherwise r ∈ K1 ∪ ... ∪K`. But K1, ..., K` are outermost loaded sets so by lemma
4.3, r ∈ Kj for exactly one j ∈ {1, ..., `} (assume j = 1). Then (6.3) is decreased
by (` − 1)λ from decreasing γKi for i ∈ {2, ..., `}. It is also increased by (` − 1)λ
when γ⋂`

i=1Ki
is increased. Moreover, as r ∈ K1 ∪ ... ∪K`, (6.3) is unchanged from

increasing γ⋃`
i=1Ki

.
Thus (6.3) is invariant throughout the pruning algorithm and so∑

proper C:
r/∈C

γC +
∑

residual X

γX =
∑

proper C:
r/∈C

γ′C +
∑

residual X

γ′X

Now note that by observation 4.9 and corollary 6.7, by applying the pruning algo-
rithm we have connected at least three components via Q. Thus when algorithm 1
starts on γ̄ there are fewer components than when algorithm 1 starts on γ̃. More-
over, from the proof of lemma 6.2, any arc leaving a minimally unsatisfied set is
feeling the same dual after the pruning algorithm. Thus at all times, when we run
algorithm 1 on γ̄ there are at most as many components as when we run algorithm
1 on γ̃ and initially there are fewer when we start algorithm 1 on γ̄. By corollary
6.7, Q joins multiple components of R ∪ I and by our priority rule in algorithm 1,
there are no tight arcs in the cut induced by these components. Thus β1 > β2 in
both cases. Also note that if C ⊆ V is a proper set with r /∈ C then C is a valid

38

set, by definitions 2.1 and 2.3. So,

MST (G[R ∪ I]) =
∑

proper C:
r/∈C

γ1
C +

∑
residual X

γ1
X =

∑
proper C:
r/∈C

γC +
∑

residual X

γX + β1

=
∑

proper C:
r/∈C

γ′C +
∑

residual X

γ′X + β1

>
∑

proper C:
r/∈C

γ′C +
∑

residual X

γ′X + β2

=
∑

proper C:
r/∈C

γ2
C +

∑
residual X

γ2
X

= MST (G[R ∪ I ′])

Where the first equality follows from lemma 6.9 and the last follows from lemma
6.10.

Note that if algorithm 1 terminates successfully with set I ⊆ S then by lemma 5.2,
T is a minimum spanning tree of R ∪ I. So by theorem 6.11, by adding Q to I
we have decreased the cost of our final Steiner tree. As all edge costs are finite,
algorithm 2 will terminate. While this is not necessarily a polytime algorithm, we
have proved the following.

Theorem 6.12. The integrality gap of (BCR) is at most 5
3
for 2-Steiner graphs.

6.3 A Polynomial Time Implementation
To obtain a polytime algorithm we will round ce for each edge e ∈ E. This will
cause us to lose a factor of ε but will guarantee that algorithm 2 runs in polynomial
time. We first need the following well known result, which can be found in [15]. We
present the equally well known proof for completeness.

Lemma 6.13. MST (G[R]) ≤ 2OPT

Proof. Let T be an optimal Steiner tree of G so that c(T) = OPT .
Double each edge of T to obtain an Eulerian multigraph H. As T spans R, H spans
R. Moreover, c(H) = 2c(T).
Now we can shortcut H to obtain a cycle C with V (C) = R and c(C) ≤ c(H). By
deleting any edge of C we obtain a tree T that spans R and so we have

MST (G[R]) ≤ c(T) ≤ c(C) ≤ c(H) = 2c(T) = 2OPT

Now with this lemma we are ready to discuss the polytime implementation of algo-
rithm 2.
Note that if OPT = 0 then by lemma 6.13, MST (G[R]) = 0 and so a minimum

39

spanning tree on R gives an optimal solution. So we may assume MST (G[R]) > 0
and thus OPT > 0 Pick a small ε > 0 and define

β =
(ε)MST (G[R])

2(|V | − 1)

Now define c′ ∈ RE
+ for each e ∈ E as c′e = kβ for the smallest k ∈ Z such that

kβ ≥ ce
That is, c′ is obtained from c by rounding up each coordinate to the closest integer
multiple of β.
Now for u, v, w ∈ V we have c′uv = kuvβ, c′uw = kuwβ, and c′wv = kwvβ. But the
triangle inequality holds for c so that cuv ≤ cuw + cwv.
By definition we have kuv =

⌈
cuv
β

⌉
, kuw =

⌈
cuw
β

⌉
, and kwv =

⌈
cwv
β

⌉
Thus kuv ≤ kuw + kwv and so c′uv ≤ c′uw + c′wv. That is, c′ is also a metric. Now we
can apply algorithm 2 to G with metric costs c′. The following appears in [25] but
we present the proof here for completeness.

Lemma 6.14. If T is an optimal Steiner tree of G then c′(T) ≤ (1 + ε)c(T)

Proof. Observe that T has at most |V | − 1 edges. Also for e ∈ E, c′e ≤ ce + β. In
addition, because T is optimal, c(T) = OPT . So,

c′(T) ≤ c(T) + (|V | − 1)β = c(T) + (|V | − 1)
(ε)MST (G[R])

2(|V | − 1)

≤ OPT + ε
2OPT

2
= (1 + ε)OPT

= (1 + ε)c(T)

where the second line follows from lemma 6.13

Note that we are assuming OPT > 0 and so the tree returned by algorithm 2 has
cost at least β > 0. Now as shown above, in each iteration of algorithm 2 we decrease
the cost of our Steiner tree. But this decrease is at least β. Moreover, we start with
I = ∅ so that our tree has cost MST (G[R]) ≤ 2OPT . Also, clearly our final tree
has cost at least OPT so there are at most MST (G[R])

β
= 2(|V |−1)

ε
iterations. We can

now prove the following.

Theorem 6.15. Given a 2-Steiner graph H = (V,EH) with cost function cH : EH →
R+, there exists a (5

3
+ ε)-approximation algorithm for the Steiner tree problem for

any ε > 0.

Proof. Set ε′ = 3
5
ε. Let G be the metric completion of H with edge costs c. Now

define β = (ε′)MST (G[R])
2(|V |−1)

and let c′ be the edge costs obtained from c by rounding ce
up to the closest integer multiple of β for each e ∈ E. Now we run algorithm 2 on
G with edge costs c′ to obtain a Steiner tree T . By Theorem 5.5 and lemma 6.14
we have, ∑

e∈E(T)

ce ≤ (
5

3
)(1 + ε′)OPT = (

5

3
+ ε)OPT

40

Now consider an iteration of algorithm 2. Let n = |V | and m = |E|. Note that if
algorithm 1 terminates unsuccessfully then Q can be computed in O(m) time. If
instead, algorithm 1 terminates successfully then the minimum degree vertex of I
can also be found in O(m) time. So we turn to the analysis of algorithm 1.
Both the initialization and deletion phases can be implemented in polynomial time.
Moreover, by corollary 3.5, each vertex of R∪I is contained in exactly one minimally
unsatisfied set. Thus we can store components in a union-find structure, see [21],
which can be implemented in time O(nlogn).
To determine tight edges in the symmetric phase, we implement a priority queue
of edges, using a notion of time. This involves sorting the edge weights once in
time O(mlogm) and keeping track of how many minimally unsatisfied sets each arc
intersects. This can be implemented in O(mlogn) time.
Thus, each iteration of algorithm 2 requires O(mlogn) time. Moreover, by our
above analysis, there are O(n

ε
) iterations. So after accounting for the edge sorting,

we have a total runtime of O(1
ε
nmlogn + mlogm). Combining this with the above

approximation factor gives the desired result.

41

Chapter 7

Concluding Remarks

The Steiner tree problem is a fundamental network design problem, which has re-
ceived much attention in the literature. A major open question regarding this prob-
lem is proving that the integrality gap of the bidirected cut relaxation (BCR) is
strictly smaller than 2.
In this thesis, we have proven that (BCR) has integrality gap at most 5

3
for a subset

of instances, which we denote as 2-Steiner instances. We do so via a primal-dual ap-
proach. Our algorithm mimics the approach given in [25] for quasi-biartite instances,
but its proof of correctness requires new ingredients in the form of lemmas 4.7, 6.2,
6.5, and 6.6, as well as observation 6.1 and observation 4.8. Although our ratio is
strictly worse than the one achieved in [9], our result uses a primal-dual algorithm
which is directly applied on (BCR), rather than mapping solutions to a different
(hypergraphic) relaxation, as is done in [9]. This is nice both from a combinatorial
and a practical perspective. Primal-dual algorithms exploit the structure of an LP
and of the underlying problem. In particular, we believe that our method can be
further generalized to tackle instances containing Steiner claws. Specifically, it may
be possible to apply our techniques to instances where the set of Steiner vertices
induces a graph in which each component is a star. In the appendix we provide the
generalization of some of our results to this case.
We now end with some suggestions for areas of future work. As already mentioned, a
first direction of future work is to generalize our primal-dual algorithm to instances
where Steiner vertices induce stars (and in particular, claws). In order to tackle
more general instances, a second direction is to find generalizations for observation
6.1 as well as lemmas 6.5 and 6.6. In the current proofs we have developed an un-
crossing algorithm that ensures any loaded dual set is strongly connected when the
pruning algorithm terminates. As G was 2-Steiner we could guarantee that |Q| ≤ 2
and so we could use a case analysis to determine how to uncross dual sets. How-
ever, in general, these crossing could be arbitrary as two Steiner nodes in the same
component could be connected via a path in R ∪ I. Figure 7.1 offers two examples
of crossing patterns that could occur.
However, it is possible that alternative proofs of these lemmas could be more easily
generalized to arbitrary graphs. This would then give researchers another method
to analyze the integrality gap of (BCR) in other instances.

42

s2

s1

s3

sn

(a) Crossing Sets For A Path

t

s1 s2 sn

(b) Crossing Sets For A Star

Figure 7.1: Crossings In Other Steiner Components

43

Bibliography

[1] J. Byrka, F. Grandoni, T. Rothvoss, and L. Sanità. Steiner tree approximation
via iterative randomized rounding. J. ACM, 60(1):6:1–6:33, Feb. 2013.

[2] D. Chakrabarty, J. Könemann, and D. Pritchard. Hypergraphic lp relaxations
for steiner trees. In IPCO, pages 383–396. Springer, 2010.

[3] M. Chlebık and J. Chlebıková. Approximation hardness of the steiner tree prob-
lem on graphs. In Proceedings of the 8th Scandinavian Workshop on Algorithm
Theory (SWAT), pages 170–179. Springer, 2002.

[4] S. Cook. The p versus np problem. In Clay Mathematical Institute; The Mil-
lennium Prize Problem, 2000.

[5] D.-Z. Du and P. M. Pardalos. Network optimization problems: algorithms,
applications and complexity, volume 2. World Scientific, 1993.

[6] P. J. Dukes. Generalized laminar families and certain forbidden matrices. Order,
32(3):401–408, 2015.

[7] J. Edmonds. Optimum branchings. Journal of Research of the National Bureau
of Standards B, 71(4):233–240, 1967.

[8] J. Edmonds. Optimum branchings. Mathematics and the Decision Sciences,
Part, 1:335–345, 1968.

[9] A. E. Feldmann, J. Könemann, N. Olver, and L. Sanità. On the equivalence of
the bidirected and hypergraphic relaxations for steiner tree. Math. Program.,
160(1-2):379–406, 2016.

[10] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
journal of Mathematics, 8(3):399–404, 1956.

[11] L. Fortnow. The golden ticket: P, NP, and the search for the impossible. Prince-
ton University Press, 2013.

[12] D. R. Fulkerson. Packing rooted directed cuts in a weighted directed graph.
Mathematical Programming, 6(1):1–13, 1974.

[13] I. Fung, K. Georgiou, J. Koenemann, and M. Sharpe. Efficient algorithms for
solving hypergraphic steiner tree relaxations in quasi-bipartite instances. arXiv
preprint arXiv:1202.5049, 2012.

[14] M. R. Garey and D. S. Johnson. The rectilinear steiner tree problem is np-
complete. SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

44

[15] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on
Applied Mathematics, 16(1):1–29, 1968.

[16] M. X. Goemans. Arborescence polytopes for series-parallel graphs. Discrete
Applied Mathematics, 51(3):277–289, 1994.

[17] M. X. Goemans, N. Olver, T. Rothvoß, and R. Zenklusen. Matroids and in-
tegrality gaps for hypergraphic steiner tree relaxations. In Proceedings of the
forty-fourth annual ACM symposium on Theory of computing, pages 1161–1176.
ACM, 2012.

[18] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner tree problem, vol-
ume 53. Elsevier, 1992.

[19] A. B. Kahng and G. Robins. A new class of iterative steiner tree heuristics with
good performance. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 11(7):893–902, 1992.

[20] M. Karpinski and A. Zelikovsky. New approximation algorithms for the steiner
tree problems. Journal of Combinatorial Optimization, 1(1):47–65, 1997.

[21] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2005.

[22] T. Polzin and S. V. Daneshmand. On steiner trees and minimum spanning trees
in hypergraphs. Operations Research Letters, 31(1):12–20, 2003.

[23] A. Prodon, T. Liebling, and H. Gröflin. Steiner’s problem on 2-trees, 1985.

[24] H. J. Prömel and A. Steger. A new approximation algorithm for the steiner tree
problem with performance ratio 5/3. J. Algorithms, 36(1):89–101, July 2000.

[25] S. Rajagopalan and V. V. Vazirani. On the bidirected cut relaxation for the
metric steiner tree problem. In Proceedings of the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’99, pages 742–751, Philadelphia,
PA, USA, 1999. Society for Industrial and Applied Mathematics.

[26] R. Rizzi. On the steiner tree 3/2-approximation for quasi-bipartite graphs. 6,
12 1999.

[27] G. Robins and A. Zelikovsky. Tighter bounds for graph steiner tree approxi-
mation. SIAM J. Discret. Math., 19(1):122–134, May 2005.

[28] M. Schaffers. Network flow design iii. polyhedral characterization of the single
source fixed costs problem on series-parallel graphs. Technical report, CORE
Discussion Paper, Université Catholique de Louvain (Louvain-la-Neuve, 1991),
1991.

[29] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, New York, NY, USA, 1st edition, 2011.

[30] R. T. Wong. A dual ascent approach for steiner tree problems on a directed
graph. Mathematical programming, 28(3):271–287, 1984.

45

[31] A. Z. Zelikovsky. An 11/6-approximation algorithm for the network steiner
problem. Algorithmica, 9(5):463–470, May 1993.

46

Appendix

In this section we generalize some of the results from chapters 4 and 5 to another
instance of the Steiner Tree problem. Namely, we are given a graph H = (V,EH)
with partition V = R ∪ I such that every component of H[S] is a star with at most
θ nodes. We will call such graphs θ-star-Steiner. Again, we can consider the metric
completion.
We can still run algorithm 2 on such instances. Note that in this setting the proofs
of all lemmas in chapter 4 are unchanged, only the proof of theorem 4.8 changes.

A.1 Theorem 4.8 For θ-Star-Steiner Graphs
In this section, we generalize theorem 4.8 to θ-Star-Steiner instances. Consider an
iteration of algorithm 2 and suppose that algorithm 1 terminates unsuccessfully
because the arc ab became tight where a ∈ S \ I and b ∈ R ∪ I. Then we define
Q ⊆ S \ I to be the set of all vertices u ∈ S \ I such that there is a tight ua-path
in G[S \ I]. As H is θ-Star-Steiner we have that Q is also a star with at most θ
vertices. Using the results of chapter 4 we can now show the following,

Theorem A.1. Suppose algorithm 1 terminates unsuccessfully when arc ab becomes
tight for a ∈ S \ I, b ∈ R∪ I, and let Q ⊆ S \ I be the set determined in algorithm 2.
Then for any c ∈ R∪ I, if there is a tight path from c to a vertex of Q that only uses
vertices of R ∪ I ∪ Q then there is a tight path from Q to c that only uses vertices
of R ∪ I ∪Q when algorithm 1 terminates. Moreover, Q is strongly connected with
respect to tight edges.

Proof. By lemma 4.7, we have that ba is also tight. Note that ab went tight and
caused algorithm 1 to terminate unsucessfully. However, a ∈ S \ I, so there must
be loaded sets crossing at a. Let v1, ..., vn be the nodes of R ∪ I such that the arc
via is tight for each i ∈ {1, ..., n}. As the arc ba is tight we have that b ∈ {v1, ..., vn}
and so n ≥ 1. After relabelling, we can assume that b = v1.
Now note that for any other loaded set crossing at a that is not identified by one of
v1,, vn, such a set must contain a vertex u ∈ S \ I such that {a, u} ∈ EH . Thus
either |Q| = 1 or |Q| ≥ 2. So we have two cases:

Case 1: |Q| = 1.
Then Q = {a} and is clearly strongly connected. In addition, any loaded dual set
crossing at a contains one of v1, ..., vn. But now b = v1 so that the arc av1 is tight.
Thus, there must be additional dual sets crossing at a that load dual for the arc av1.
That is, n ≥ 2.
We will start by showing that the arc avi is tight for each i ∈ {2, ..., n}. But now
observe that arc via is tight, by definition of vi. So together with the arc av1 this gives

47

a tight path from vi to v1 through a, call this path Pi. Moreover, v1, vi ∈ R ∪ I.
Thus, by lemma 4.4, P̄i is also a tight path. Also, as via ∈ ~E(P), we have that
avi ∈ ~E(P̄) so that the arc avi is tight.
Thus, for each i ∈ {1, ..., n}, the arc avi is tight. So consider any other vertex
c ∈ R ∪ I such that there is a tight path from c to Q using nodes of R ∪ I ∪Q, let
P be such a path. We know that Q = {a} and so V (P) \ {a} ⊆ R ∪ I. Moreover,
v1, ..., vn are the only vertices of R ∪ I that are joined to a by a tight arc. Thus the
last vertex of P before a is vi for some i ∈ {1, ..., n}. So let P ′ be the subpath of P
from c to vi. Then P ′ is a tight between two nodes of R ∪ I and so by lemma 4.4,
P̄ ′ is also tight. Now the arc avi followed by P̄ ′ gives a tight path from a to c using
nodes of R ∪ I ∪Q. In particular, we have a tight path from Q to c using nodes of
R ∪ I ∪Q.

Case 2: |Q| ≥ 2
Then Q = {a, t1, ..., tk} for some t1, ..., tk ∈ S \ I with 1 ≤ k ≤ θ − 1. Moreover,
we have chosen v1, ..., vn to be all nodes of R ∪ I that are joined to a by a tight
arc. Thus, if K is any other dual set crossing at a then K must contain tj for some
j ∈ {1, ..., k}. In addition, by the description of algorithm 2, we have included tj in
Q because there is a tight path from tj to a in G[S \ I]. By the choice of Q, there
is a tight path from tj to a in Q, say Ptja. So let wj1, ..., w

j
`j
∈ R ∪ I be the vertices

joined to tj by a tight arc. We can choose v1, ..., vn, w
1
1, ..., w

1
`1
, ..., wk1 , ..., w

k
`k

to all
be distinct. Note that a ∈ S \ I and the arc ab caused algorithm 1 to terminate
unsuccessfully. As we give priority to arcs with their tail in R ∪ I, we must have
that

n+
k∑
j=1

`j ≥ 2

We have that b = v1, so now consider vi for i ∈ {2, ..., n}. Then as the arc via is
tight we have that viav1 gives a tight viv1-path. As in case 1, we now have that
v1avi is also a tight path so that in particular the arc avi is tight.
Next, consider wji for i ∈ {1, ..., `j} and j ∈ {1, ..., k}. By the choice of wji the arc
wji tj is tight. Moreover, Ptja is a tight path and av1 is also tight. So let P j

i be the
path defined by arc wji t followed by Ptja followed by av1. Then P j

i is a tight path
from wji to v1. However, v1, w

j
i ∈ R∪ I. So by lemma 4.4, the path P̄ j

i is also tight.
As wji t ∈ ~E(P j

i) we have that twji ∈ ~E(P̄i) so that the arc twji is tight as desired.
In addition, P̄tja is a subpath of P̄ j

i so that this is also a tight path. So, for each
w ∈ Q \ {a}, we have a tight path from w to a and a tight path from a to w.
Moreover, both paths only use nodes of Q. Thus, Q is strongly connected when
restricted to tight edges.
So now consider c ∈ R ∪ I such that there is a tight path P from c to a node in Q
with V (P) ⊆ R ∪ I ∪ Q. Traverse P starting from c and let q be the first vertex
of P in Q. Set u to be the vertex before q on P . That is, the arc uq is an arc of
P . Now let P ′ be the subpath of P from c to u. By the choice of u we have that
V (P ′) ⊆ R ∪ I.
Now by definition, v1, ..., vn are all vertices joined to a by a tight arc and wj1, ..., w

j
`j

are all vertices joined to tj by a tight arc for j ∈ {1, ..., k}. So either u = vi for
some i ∈ {1, ..., n} or u = wji for some j ∈ {1, ..., k} and i ∈ {1, ..., `j}. Thus, as
shown above we have that there is a tight arc from a vertex of Q to u. Moreover,

48

s t u
e1 e2

a b
e3

c d

Figure A.1: A 7 edge 3-star

c, u ∈ R∪ I and P ′ is a tight cu-path with V (P ′) ⊆ R∪ I. By lemma 4.4, P̄ ′ is also
tight. Thus we have a tight path from Q to c contained in R ∪ I ∪Q.

Thus in both cases we obtain the desired result so that this completes the proof.

A.2 Approximation Ratio For θ-Star Steiner
In this section, we generalize the results of chapter 5 for θ-Star-Steiner graphs. Note
that the proofs of lemmas 5.1 and 5.2 are still valid for these instances. So we are
left with generalizing lemma 5.4 and theorem 5.5. However, notice that these results
are only valid if algorithm 2 terminates. Thus, these results alone are not sufficient
to bound the integrality gap for (BCR).
We will actually derive two separate approximation factors. The first applies to the
case when θ ≤ 3 and allows us to achieve a slightly better bound in this case. The
second case is when θ ≥ 4.

Lemma A.2. If algorithm 2 terminates with tree T and set I ⊆ S then if θ ≤ 3 we
have ∑

residual X

γX ≤
θ

2θ + 1

∑
e∈E(T)

ce

Proof. Note that because θ ≤ 3 every component of H[I] is a star with at most 3
nodes, and so every component of H[I] is a path with at most 3 nodes. As was
shown in lemma 5.4, we now have that every component of T [I] is a path with at
most 3 nodes. So let K be a component of T [I] and suppose K has φ ≤ θ nodes.
First suppose that φ ≤ 2. Let T̄K be the subtree of T consisting of all edges adjacent
to a vertex of K. Then by lemma 5.4 we have that∑

X:X∩V (K)6=∅

γX ≤
φ

2φ+ 1

(∑
f∈T̄K

cf

)
≤ θ

2θ + 1

(∑
f∈T̄K

cf

)
Otherwise, φ = 3 = θ. So K is a 2 edge path with edges e1 = {s, t}, and e2 = {t, u}.
However, degT (s) ≥ 3 and degT (u) ≥ 3 so that both s and u are adjacent to at least
two vertices of R. Similarly, degT (t) ≥ 3 so that t is adjacent to at least one vertex
of R. So s, t, and u induce a 3-star T̄K . By possibly deleting edges, we can obtain a
3-star T̃K in which all of s, t, and u have degree 3. Moreover, δT̃K ({s}) = {a, b, e1},
δT̃K ({t}) = {e1, e2, e3}, and δT̃K ({u}) = {c, d, e2}. T̃K is depicted in figure A.1. Then
notice that

∑
f∈E(T̃K)

cf ≤
∑

f∈E(T̄K)

cf . So first suppose that the maximum cost edge is

ej for j ∈ {1, 2, 3}. By lemma 5.1, no edge is overtightened during the execution of

49

algorithm 2. The edges a and b both feel dual from all residual sets X with s ∈ X.
So we have

∑
X:s∈X

γX ≤ ca and
∑

X:s∈X
γX ≤ cb. Similarly, the edges c and d feel dual

from all residual sets X with u ∈ X and s /∈ X. So we have
∑

X:u∈X,s/∈X
γX ≤ cc

and
∑

X:u∈X,s/∈X
γX ≤ cd. Lastly, the edges e1, e2 and e3 feel dual from all residual

sets X with t ∈ X and s, u /∈ X. So in particular,
∑

X:t∈X,s,u/∈X
γX ≤ cei for each

i ∈ {1, 2, 3} \ {j}. Thus we have,

2
(∑
X:{s,t,u}∩X 6=∅

γX

)
= 2
(∑
X:s∈X

γX

)
+ 2
(∑
X:u∈X,s/∈X

γX

)
+ 2
(∑
X:t∈X,s,u/∈X

γX

)

≤ ca + cb + cc + cd +
3∑
i=1

(i 6=j)

cei

≤ 6

7
c(T̃K)

where the last line follows from the fact that T̃K has 7 edges and ej is the most
expensive.
Otherwise, one of a, b, c, or d is the most expensive edge. By symmetry, we can
assume that a is the most expensive edge. The edges b and e1 feel dual from all
residual setsX with s ∈ X. By lemma 5.1, no edge is overtightened during algorithm
2 and so

∑
X:s∈X

γX ≤ cb and
∑

X:s∈X
γX ≤ ce1 . Similarly, the edges c and d feel dual

from all residual sets X with u ∈ X and s /∈ X. So we have
∑

X:u∈X,s/∈X
γX ≤ cc and∑

X:u∈X,s/∈X
γX ≤ cd. Also, the edges e2 and e3 feel dual from all residual sets X with

t ∈ X and s, u /∈ X. So we have
∑

X:t∈X,s,u/∈X
γX ≤ cei for i ∈ {2, 3}. Thus we have,

2
(∑
X:{s,t,u}∩X 6=∅

γX

)
= 2
(∑
X:s∈X

γX

)
+ 2
(∑
X:u∈X,s/∈X

γX

)
+ 2
(∑
X:t∈X,u,s/∈X

γX

)
≤ cb + cc + cd + ce1 + ce2 + ce3

≤ 6

7
c(T̃K)

where the last line follows from the fact that T̃K has 7 edges and a is the most
expensive edge.
Thus, in both cases we have that 2

(∑
X:{s,t,u}∩X 6=∅

γX

)
≤ 6

7
. So we have

∑
X:{s,t,u}∩X 6=∅

γX ≤
3

7
c(T̃K) ≤ 3

7
c(T̄K) =

θ

2θ + 1
c(T̄K)

where the last line follows from the fact that φ = θ = 3.

Thus for each component K of T [I] we have
∑

X:X∩V (K) 6=∅
γX ≤ θ

2θ+1

(∑
f∈E(T̄K) cf

)
.

However each component of T [I] induces a φ-star with φ ≤ 3. Moreover, these

50

graphs are all edge disjoint. In addition, clearly for each s ∈ I, s is contained in
some component of T [I]. So let KI be the set of components of T [I]. Then, we have,∑
residual X

γX ≤
∑
K∈KI

(∑
X:X∩V (K)6=∅

γX

)
≤ θ

2θ + 1

[∑
K∈KI

(∑
f∈E(T̄K)

cf

)]
≤ θ

2θ + 1

(∑
f∈E(T)

cf

)

With this result, we can now prove the approximation factor for θ ≤ 3 if algorithm
2 terminates.

Theorem A.3. Let G = (V,E) be a θ-Star-Steiner graph satisfying the triangle
inequality and assume θ ≤ 3. If algorithm 2 terminates successfully with tree T then∑

e∈E(T)

ce ≤
2θ + 1

θ + 1

∑
valid K

γK

Proof. Let T ′ be an optimal Steiner Tree for the given instance. Also, let r be the
root chosen in the last iteration of algorithm 2 and direct all edges of T ′ towards r.
Let the resulting arcs be ~E(T ′). Now define x′ for each e ∈ ~E(G) as

x′e =

{
1 if e ∈ ~E(T ′)

0 otherwise

Then, by definition of x′,
∑

e∈ ~E(G)

cex
′
e =

∑
e∈E(T ′)

ce. Also, because the directed version

of T ′ is an arborescence directed into r and spanning R, x′ is feasible for (P). But
now if x∗ is the optimal solution for (P) and Y ∗ is the optimal solution for (D) then
by strong duality∑
e∈ ~E(G)

cex
∗
e =

∑
valid C

Y ∗C .

However, if γ is the dual solution returned by algorithm 2 then by lemma 5.1 γ is
feasible for (D∗). So define YC = γC for each valid set C. Then Y is feasible for D.
Thus, ∑

e∈E(T ′)

ce =
∑

e∈ ~E(G)

cex
′
e ≥

∑
e∈ ~E(G)

cex
∗
e =

∑
valid C

Y ∗C ≥
∑

valid C

YC

Moreover, by lemma 5.2,
∑

valid C
γC +

∑
residual X

γX =
∑

e∈E(T) ce.

and by definition
∑

valid C
γC =

∑
valid C

YC

Also, by lemma A.2,
∑

residual X
γX ≤ θ

2θ+1

(∑
e∈E(T)

ce

)
.

Thus we have,∑
e∈E(T)

ce =
∑

valid C

γC +
∑

residual X

γX ≤
∑

valid K

γK +
θ

2θ + 1

(∑
e∈E(T)

ce

)
=⇒

∑
e∈E(T)

ce ≤
2θ + 1

θ + 1

(∑
valid K

γK

)

51

sφ

s1 s2sφ−1

e1

e2

eφ−1

a1 b1
a2

b2

bφ−1

aφ−1

Figure A.2: T̃K for lemma A.4

We now turn to the case where θ ≥ 4.

Lemma A.4. Suppose algorithm 2 terminates with tree T and set I ⊆ S. Then if
θ ≥ 4 we have ∑

residual X

γX ≤
3θ − 4

6θ − 6

∑
e∈E(T)

ce

Proof. Note that every component of H[I] is a star with at most θ nodes. By the
same argument used in lemma 5.4, every component of T [I] is a star with at most
θ nodes. So let K be a component of T [I] and suppose that K has φ ≤ θ vertices.
If φ ≤ 3, then K is a path with at most 2 edges. Let T̄K be the φ-star induced by
the vertices of K. Then by lemma A.2 we have∑

X:X∩V (K)6=∅

γX ≤
φ

2φ+ 1

∑
f∈E(T̄K)

≤ θ

2θ + 1

∑
f∈E(T̄K)

≤ 3θ − 4

6θ − 6

∑
f∈E(T̄K)

where the second inequality follows from φ ≤ θ and the third inequality follows from
the fact that when θ ≥ 4 we have θ

2θ+1
≤ 3θ−4

6θ−6
with equality only if θ = 4.

So instead suppose that φ ≥ 4. Then K is a star with φ − 1 leaf nodes. Denote
the center of K by sφ and let s1, s2, ..., sφ−1 be the leaves of K. Then K has edges
ei = {si, sφ} for each i ∈ {1, ..., φ − 1}. Moreover, we know that degT (si) ≥ 3
for each i ∈ {1, ..., φ− 1}. Thus si is incident to at least two vertices of R for each
i ∈ {1, ..., φ−1}. Note that sφ may also be incident to some vertices of R. Let T̄K be
the subtree corresponding to edges incident to at least one node of K. By possibly
deleting edges, we obtain a subtree T̃K of T̄K in which si is incident to exactly two
vertices of R. Specifically, δT̃K ({si}) = {ai, bi, ei} for each i ∈ {1, ..., φ − 1} and
δT̃K ({sφ}) = {e1, ..., eφ−1}. T̃K is depicted in figure A.2. Notice that T̃K has 3φ− 3
edges.
So first assume that ej is the most expensive edge of T̃K for some j ∈ {1, ..., φ− 1}.
Then by lemma 5.2, no edge is overtightened during the execution of algorithm 2.
The edges a1 and b1 feel dual from all residual sets X with s1 ∈ X. Thus we have∑
X:s1∈X

γX ≤ ca1 and
∑

X:s1∈X
γX ≤ cb1 . Also, for i ∈ {2, 3, ..., φ− 1}, the edges ai and

52

bi feel dual from all residual sets X with si ∈ X and s1, ..., si−1 /∈ X. So we have∑
X:si∈X,s1,...,si−1 /∈X

γX ≤ cai and
∑

X:si∈X,s1,...,si−1 /∈X
γX ≤ cbi for each i ∈ {2, 3, ..., φ− 1}.

Lastly, for each i ∈ {1, ..., φ− 1} the edge ei feels dual from all residual sets X with
sφ ∈ X and s1, ..., sφ−1 /∈ X. So in particular,

∑
X:sφ∈X,s1,...,sφ−1 /∈X

γX ≤ cei for each

i ∈ {1, ..., φ− 1} \ {j} By combining these results we have

2
(∑
X:X∩V (K)6=∅

γX

)
= 2
(∑
X:1∈X

γX

)
+ 2

φ−1∑
i=2

(∑
X:si∈X:s1,...,si−1 /∈X

γX

)
+ 2
(∑
X:sφ∈X,s1,...,sφ−1 /∈X

γX

)

≤
φ−1∑
i=1

(
cai + cbi

)
+

φ−1∑
i=1

(i 6=j)

cei

≤ 3φ− 4

3φ− 3
c(T̃K)

where the second line follows from the fact that φ ≥ 4 so that φ− 2 ≥ 2. The last
line follows from the fact that T̃K has 3φ− 3 edges and ej is the most expensive.
Otherwise, ai or bi is the most expensive edge for some i ∈ {1, ..., φ − 1}. Without
loss of generality, we can assume that a1 is the most expensive edge. The edges a2

and b2 feel dual from all residual sets X with s2 ∈ X. As no edge is overtightened,
we have

∑
X:s2∈X

γX ≤ ca2 and
∑

X:s2∈X
γX ≤ cb2 . Similarly, for each i ∈ {3, ..., φ − 1},

the edges ai and bi feel dual from all residual sets X with si ∈ X and s2, ..., si−1 /∈ X.
So we have

∑
X:si∈X,s2,...,si−1 /∈X

γX ≤ cai and
∑

X:si∈X,s2,...,si−1 /∈X
γX ≤ cbi . In addition, for

each i ∈ {2, ..., φ−1}, the edge ei feels dual from all residual sets X with sφ ∈ X and
s2, ..., sφ−1 /∈ X. So we have

∑
X:sφ∈X,s2,...,sφ−1 /∈X

γX ≤ cei for each i ∈ {2, ..., φ − 1}.

Lastly, the edges b1 and e1 feel dual from all residual sets X with s1 ∈ X and
s2, ..., sφ /∈ X. So we have

∑
X:s1∈X,s2,...,sφ /∈X

γX ≤ cb1 and
∑

X:s1∈X,s2,...,sφ /∈X
γX ≤ ce1 . By

combining these inequalities we obtain

2
(∑
X:X∩V (K)6=∅

γX

)
= 2
(∑
X:s2∈X

γX

)
+ 2

φ∑
i=3

(∑
X:si∈X,s2,...,si−1 /∈X

γX

)
+ 2
(∑
X:s1∈X,s2,...,sφ /∈X

γX

)

≤ cb1 +

φ∑
i=2

(
cai + cbi

)
+

φ−1∑
i=1

cei

≤ 3φ− 4

3φ− 3
c(T̃K)

where the second line follows from the fact that φ ≥ 4 and so φ − 2 ≥ 2. The last
line follows from the fact that T̃K has 3φ− 3 edges and a1 is the most expensive.
Thus in both cases we have that 2

(∑
X:X∩V (K)6=∅

γX

)
≤ 3φ−4

3φ−3
c(T̃K). Thus we have,

∑
X:X∩V (K) 6=∅

γX ≤
3φ− 4

6φ− 6
c(T̃K) ≤ 3φ− 4

6φ− 6
c(T̄K) ≤ 3θ − 4

6θ − 6
c(T̃K)

53

where the second inequality follows from c(T̃K) ≤ c(T̄K) and the third inequality
follows from φ ≤ θ.

Thus for each component K of T [I] we have
∑

X:X∩V (K) 6=∅
γX ≤ 3θ−4

6θ−6

(∑
f∈E(T̄K) cf

)
.

However, for each component K of T [I], K together with all edges having an end in
K induces a subtree of T , and all of these trees are edge disjoint. Moreover, clearly
for each s ∈ I, s is contained in some component of T [I]. So let KI be the set of
components of T [I]. Then, we have,∑
residual X

γX ≤
∑
K∈KI

(∑
X:X∩V (K)6=∅

γX

)
≤ 3θ − 4

6θ − 6

[∑
K∈KI

(∑
f∈E(T̄K)

cf

)]
≤ 3θ − 4

6θ − 6

(∑
f∈E(T)

cf

)

Now we can show the second approximation factor for θ ≥ 4 if algorithm 2 termi-
nates.

Theorem A.5. Let G = (V,E) be a θ-Star-Steiner graph satisfying the triangle
inequality and assume θ ≥ 4. If algorithm 2 terminates successfully with tree T then∑

e∈E(T)

ce ≤
6θ − 6

3θ − 2

∑
valid K

γK

Proof. Let T ′ be an optimal Steiner Tree for the given instance. Also, let r be the
root chosen in the last iteration of algorithm 2 and direct all edges of T ′ towards r.
Let the resulting arcs be ~E(T ′). Now define x′ for each e ∈ ~E(G) as

x′e =

{
1 if e ∈ ~E(T ′)

0 otherwise

Then, by definition of x′,
∑

e∈ ~E(G)

cex
′
e =

∑
e∈E(T ′)

ce. Also, because the directed version

of T ′ is an arborescence directed into r and spanning R, x′ is feasible for (P). But
now if x∗ is the optimal solution for (P) and Y ∗ is the optimal solution for (D) then
by strong duality∑
e∈ ~E(G)

cex
∗
e =

∑
valid C

Y ∗C .

However, if γ is the dual solution returned by algorithm 2 then by lemma 5.1 γ is
feasible for (D∗). So define YC = γC for each valid set C. Then Y is feasible for D.
Thus, ∑

e∈E(T ′)

ce =
∑

e∈ ~E(G)

cex
′
e ≥

∑
e∈ ~E(G)

cex
∗
e =

∑
valid C

Y ∗C ≥
∑

valid C

YC

Moreover, by lemma 5.2,
∑

valid C
γC +

∑
residual X

γX =
∑

e∈E(T) ce.

and by definition
∑

valid C
γC =

∑
valid C

YC

Also, by lemma A.4,
∑

residual X
γX ≤ 3θ−4

6θ−6

(∑
e∈E(T)

ce

)
.

54

Thus we have,∑
e∈E(T)

ce =
∑

valid C

γC +
∑

residual X

γX ≤
∑

valid K

γK +
3θ − 4

6θ − 6

(∑
e∈E(T)

ce

)
=⇒

∑
e∈E(T)

ce ≤
6θ − 6

3θ − 2

(∑
valid K

γK

)

55

	List of Algorithms
	List of Figures
	Introduction
	Related Results
	Thesis Organization

	Preliminaries
	The Bidirected Cut Relaxation
	Dual Symmetry

	The Algorithm
	Properties of Algorithm 1

	The Importance of Laminarity
	Laminarity in Algorithm 1
	Important Connectivity Properties

	The Approximation Factor
	A Minimum Cost R I-Spanning Tree
	The 53 Ratio

	Algorithmic Guarantees
	The Pruning Algorithm
	Termination of Algorithm 2
	A Polynomial Time Implementation

	Concluding Remarks
	Bibliography
	Appendix
	Theorem 4.8 For -Star-Steiner Graphs
	Approximation Ratio For -Star Steiner

