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Abstract

An electrochemical cell is a multidisciplinary system which involves complex

chemical, electrical, and thermodynamical processes. The primary objective

of this paper is to develop a linear graph-theoretical modeling for the dy-

namic description of electrochemical systems through the representation of

the system topologies. After a brief introduction to the topic and a review of

linear graphs, an approach to develop linear graphs for electrochemical sys-

tems using a circuitry representation is discussed, followed in turn by the use

of the branch and chord transformation techniques to generate final dynamic

equations governing the system. As an example, the application of linear

graph theory to modeling a nickel metal hydride (NiMH) battery will be

presented. Results show that not only the number of equations are reduced

significantly, but also the linear graph model simulates faster compared to
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the original lumped parameter model. The approach presented in this paper

can be extended to modeling complex systems such as an electric or hybrid

electric vehicle where a battery pack is interconnected with other components

in many different domains.

Keywords: linear graph, electrochemical cell, NiMH battery simulation,

hybrid electric vehicle.
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1. Introduction

Due to the recent interests in battery electric and hybrid electric vehicles,

a significant amount of research has been focused on secondary batteries or

electrochemical energy storage devices. For this reason, many of these bat-

tery works have been developed as a part of simulation models of these ve-

hicles. These works are sometimes based on empirical relationships, at other

times on a detailed description of the physical and chemical processes that

take place in the cell (Paxton and Newman , 1997; Newman and Tiedemann

, 1975; Newman et al. , 2004; Wu et al. , 2001), and even on the devel-

opment of equivalent circuits (Salameh et al. , 1992; Chen et al. , 2006).

Various techniques have been used to develop these models such as lookup

tables, lumped parameter models (Wu et al. , 2001), or distributed models

using porous electrode theory (Paxton and Newman , 1997; Newman and

Tiedemann , 1975; Newman et al. , 2004).

In this paper, we propose a formalism which, we believe, is more appro-

priate for the phenomenological description of electrochemical systems which

usually consists of complex phenomena across multiple domains; namely the

chemical domain, electrical domain, thermal domain, and other domains es-

pecially when the battery is placed in a larger system such as a hybrid electric

vehicle system. Modeling engineers usually cope with the generation and so-

lution of the equations governing the motion of such systems.

Linear graph theory is a branch of mathematics that studies the manipu-

lation of topology (Roe , 1966; Andrews and Kesavan , 1975). Although this

theory has been extensively incorporated into formulation of a wide range

of physical systems, namely electrical, mechanical, and hydraulic systems,



the extent to which this theory has been applied to modeling electrochemical

and thermal processes remains from nil to minimum. It is the goal of this

paper to examine this particular problem in some detail. It will be shown in

this paper that the electrochemical processes and thermodynamic behaviors

of batteries, in general, can be described as equivalent electrical components

interconnected to each other, making it possible to use graph theory to de-

velop the dynamic equations for the whole system.

The paper begins with a brief overview of linear graph theory and asso-

ciated mathematical theorems, followed by a discussion of the applications

of linear graphs to modeling electrochemical cells. An example will also be

provided to demonstrate the use of linear graphs to model a NiMH battery

including the thermal effects and side reactions. Finally are some concluding

remarks.

2. Linear graph theory

2.1. Overview

A linear graph representation of a physical system is seen as a collection of

oriented line segments called edges which intersect only at their node points.

Although physical systems in different energy domains use different inter-

pretations of nodes and edges, the linear graph topological interpretations of

these systems are the same: nodes are the boundaries of a component, while

a set of edges represent the component itself. For example, the linear graph

for the electrical network given in Fig. B.1 can be constructed by drawing a

node for each point at which two physical elements connect, and by replacing

these elements with directed edges on a one-to-one basis. This linear graph



is shown in Fig. B.2 and is said to be topologically equivalent to the elec-

trical circuit in Fig. B.1. The direction is arbitrarily assigned to each edge

and is represented by an arrow which provides a reference direction for the

two abstract variables associated with an edge: though variable and across

variable.

[Figure 1 about here.]

[Figure 2 about here.]

By definition, a through variable is a variable that can be measured by an

instrument in series with the corresponding element associated with the edge,

while an across variable is a variable that can be measured by an instrument

placed in parallel with the edge. For an electrical network, for example,

through and across variables can be the currents and voltages, respectively.

A summary of possible through and across variable for some common energy

domains are summarized in Table A.1. These two quantities are carried along

the entire linear graph so that the balance of energy at any point of the graph

can be found. This makes it easier to deal with interfaces between physical

systems in different energy domains as well as determining the energy within

the system.

The through and across variables of an edge are not independent of each

other, but are related by a mathematical expression called terminal equation

or constitutive equation which represents the physical nature of the linear

graph component. Clearly, the empirical nature of the terminal equation

associated with an edge is dependent on the edge’s domain. For example,



the current and voltage associated with an electrical resistor are related by

Ohm’s law which serves as the terminal equation for the resistor element.

One of the unique features of linear graph theory is its ability to sepa-

rate the equations governing the physics of a system’s individual components

from the equations governing their interconnections. That is, the system’s

topological equations are always linear and may be formulated in a system-

atic fashion regardless of the linearity/nonlinearity of a system’s component

equations. The complete topological description of a physical system can be

written in a simple mathematical form using an incidence matrix Γ. This is

a v × e matrix, where v is the number of nodes in the graph, and e is the

number of edges. The incidence matrix has elements

Γ(i, j) =


−1, if edge j is incident upon and towards node i

+1, if edge j is incident upon and away from node i

0, if edge j is not incident upon node i

Specifically, the directed edge j is positively incident upon node i if it points

towards the node, and negatively incident if it is directed away from the

node. As an example, the incidence matrix for the linear graph in Fig. B.2

takes the form:

Γ =


E1 R2 R3 C4

a 1 1 0 0

b 0 −1 1 1

g −1 0 −1 −1


in which the vertices associated with rows and the edges associated with

columns have been explicitly labeled.



An important concept in linear graph theory is the spanning tree, which

is a subgraph that includes all the nodes of the original graph without any

loops. The remaining edges which are not selected in the tree are grouped

in cotrees. The edges of the tree are called branches while the edges of the

cotree are referred to as chords. In this paper, a branch is represented by a

solid line while a chord is depicted by a dotted line. One possible tree for the

graph in Fig. B.2 has been drawn with solid lines and consists of edges E1

and C4. The remaining edges R2 and R3 comprise the chords of the cotree.

For graphs consisting of multiple parts (as in systems containing multiple

energy domains), each part is independently represented by a tree and the

collection of all these trees make up the graph’s forest, while all of the chords

represent its coforest.

Along with the concept of a system tree, two new topological matrices

can now be introduced - the fundamental cutset (f-cutset) matrix and the

fundamental circuit (f-circuit) matrix. A cutset is defined as a set of edges

that, when removed, divide the graph into two separate parts. An f-cutset

consists of a single branch and a unique set of chords. On the other hand,

a circuit is a set of edges that form a closed loop with the f-circuit being a

circuit containing one chord and a unique set of branches. In an electrical

system, a cutset is essentially a linear combination of the node-based Kirchoff

current law (KCL), which is an expression that the flows passing through a

node are conservative. A circuit corresponds to the Kirchoff voltage law

(KVL), which sums up the forces operating along the edges enclosing each of

the circuits. Mathematical representations of the f-cutset (Af) and f-circuit

(Bf) matrices can be written as



Afτ =
[
1 Ac

] τ b

τ c

 = 0 (1)

and

Bfα =
[
Bb 1

] αb

αc

 = 0 (2)

In these equations, the matrix 1 is the identity matrix, τ b and τ c represent

the branch and chord through variables, and αb and αc corresponds to the

branch and chord across variables. The element (i, j) of the matrix Ac takes

on a value of either +1, -1, or 0 which indicates whether chord j is a part

of and oriented in the same direction as the defining branch i, a part of and

oriented in the opposite direction of the branch i, or not a part of the f-cutset,

respectively. In a similar fashion, the value of the element (i, j) of the matrix

Bb is either +1, -1, or 0 depending whether branch j is a part of and oriented

in the same direction along the loop as chord i, a part of and oriented in the

opposite direction along the loop as chord i, or not a part of the f-circuit,

respectively.

As a result of its linearity, the cutset equation can be rearranged to ex-

press the branch through variables in terms of the chord through variables.

This arrangement is called a chord transformation (Roe , 1966; Andrews and

Kesavan , 1975; McPhee et al. , 2004; McPhee , 1996, 1998) and can be

mathematically expressed as

τ b = −Acτ c (3)

In a similar manner, we may also define the branch transformation (Roe ,

1966; Andrews and Kesavan , 1975; McPhee et al. , 2004; McPhee , 1996,



1998) by rearranging the circuit equation as

αc = −Bbαb (4)

Interestingly, the matrices Ac and Bb are orthogonal as a consequence

of the definition of f-cutset and f-circuit matrices (Roe , 1966; Andrews and

Kesavan , 1975; Schmitke et al. , 2008)

Ac = −BT
b (5)

2.2. Formulation of system equations and tree selection

The f-cutset, f-circuit, and incidence matrices can be used to generate

the governing equations for the physical system to which the linear graph

is topologically equivalent. In the branch-chord formulation of the system

equations, Eqs. (3) and (4) can be used to eliminate the branch through and

chord across variables from the set of system equations. A compact set of

final equations can be obtained by substituting (3) and (4) into the terminal

equations.

As discussed above, the cutset, circuit, and terminal equations provide a

necessary and sufficient set of equations for determining the time response

of a physical system. Thus, the selection of trees for the graphs does not

affect the underlying mathematical model. However, the selection of trees

can greatly reduce the number of equations that have to be solved simul-

taneously, especially if some care is taken in selecting the branches of these

trees. Léger and McPhee (2007) made an observation that the number of

dynamic equations remaining will depend directly on the number of branch

coordinates that have been used. Therefore, the number of equations can be



reduced further by selecting into the trees those elements for which a mini-

mum number of across variables are unknown. The result will be a smaller

number of branch coordinates and therefore, a smaller number of final equa-

tions. This observation can also be extended by selecting into the cotrees the

edges that can minimize the number of chord through variables so that the

number of chord coordinates in the final set of equations is reduced. This

approach is useful when we want through variables to appear in the final

equations and will be demonstrated in an example given in Section 4.

Using this simple criterion, it is desirable to include voltage sources in the

electrical domain, and position drivers and revolute joints in the mechanical

domain, into the trees since their across variables are completely known func-

tions of time. Similarly, current sources in the electrical domain and force

actuators in the mechanical domain can be selected into the cotrees since the

corresponding through variables appearing in the dynamic equations would

be known functions.

3. Linear graph models for electrochemical cells

Linear graph theory has been extensively applied to many physical sys-

tems in different energy domains, namely mechanical domain, electrical do-

main, and hydraulic domain (Roe , 1966; Andrews and Kesavan , 1975;

McPhee et al. , 2004; McPhee , 1996, 1998; Schmitke et al. , 2008; Léger

and McPhee , 2007). Linear graphs have not yet been used to describe elec-

trochemical cells and thermodynamic processes.

In this section, a graph-theoretic representation for electrochemical sys-

tems similar to the circuit diagram in electrical network theory will be in-



troduced. Aside from being intuitively advantageous in presentation, this

graphical notation will reveal the role of system topology in dynamic be-

havior. We will present the procedures for obtaining the dynamic equations

governing an electrochemical cell directly from the graph, and consequently

one may look upon the network graph as another notation for the differential

equations themselves.

3.1. Batteries and electrochemical processes

[Figure 3 about here.]

Figure B.3 shows a schematic of a typical electrochemical cell. Every

electrochemical system contains two electrodes separated by an electrolyte

and connected via an electronic conductor. Ions flow through the electrolyte

from one electrode to the other, and the circuit is completed by electrons

flowing through the external conductor. At each electrode, an electrochemi-

cal reaction is occurring with driving forces for reaction being determined by

the thermodynamic properties of the electrodes and electrolyte. In general,

a chemical reaction on an electrode can be written as

∑
k

skM
zk
k

−⇀↽− νe− (6)

where Mk is the symbol for the chemical formula of species k, sk is the

stoichiometric coefficient for species k, ν is the number of electrons, and zk

is the original charge of species k. For example, consider the reaction

Zn + 2OH− −⇀↽− ZnO + 2e− +H2O (7)

In the above chemical equation, sZnO is -1, sOH− is 2, zZnO is 0, zOH− is -1,

and ν is 2.



Following historical convention, current is defined as the flow of positive

charge. Thus, electrons move in the direction opposite to that of the conven-

tion for current flow. Current density is the flux of charge, i.e., the rate of

flow of positive charge per unit area perpendicular to the direction of flow.

The behavior of electrochemical systems is determined more by the current

density than by the total current, which is the product of the current density

and the surface area of the porous electrode. In this paper, symbol j refers

to current density.

Owing to the historical development of the field of electrochemistry, we

use over-potential to refer to the magnitude of the potential drop caused by

the resistance to the passage of current and open-circuit potential for the

potential between two battery electrodes at which no current flows. This

open-circuit potential ϕ(t) is derived from the Gibbs free energy and then is

reduced to the Nernst equation as

ϕ(t) = U + (T (t)− T0)
∂U

∂T
− RT (t)

νF
ln

(∏
k

cskk (t)

)
(8)

where U is the open-circuit potential at standard conditions for the electrode,

T0 is the reference temperature, ∂U
∂T

is the reversible heat constant for the

reaction, and ck(t) is the concentration or molality of the reactant k. The

molality ck(t) can be related to the electric charge qk(t) using Faraday’s law:

ck(t) =
qk(t)

2F
(9)

while the relationship between charge and current can be represented by

ik(t) =
dqk(t)

dt
(10)



The other parameters F , R, and T are the Faraday constant, the gas con-

stant, and the battery temperature, respectively.

The resistive force for the chemical reactions at the two electrodes is

termed the surface over-potential and is given the symbol η. The current

density j(t), which is directly related to the rate of chemical reaction, can be

expressed as the function of the surface over-potential by the Butler-Volmer

equation in the form

j(t) = i0

[
exp

(
αF

RT (t)
η(t)

)
− exp

(
− αF

RT (t)
η(t)

)]
× exp

[
Ea

R

(
1

T (t)
− 1

T0

)]
= 2i0 sinh

(
αF

RT (t)
η(t)

)
× exp

[
Ea

R

(
1

T (t)
− 1

T0

)]
(11)

The Arrhenius equation exp
[
Ea

R

(
1

T (t)
− 1

T0

)]
represents the dependency of

the reaction rate on the battery temperature T (t) and the activation energy

Ea. A positive η(t) produces a positive (anodic) current. The derivation and

application of the Butler-Volmer equation, and its limitations, is discussed in

Chapter 8 in the work of Newman et al. (2004). The dimensionless param-

eter α, called charge transfer coefficient is an additional kinetic parameter

that relates how an applied potential favors one direction of reaction over the

other. It usually has a value between 0.2 and 2.0. The parameter i0 is called

the exchange current density and is analogous to the rate constant used in

chemical kinetics. A reaction with a large value of i0 is often called fast or

reversible. As an example, the relationship between the current density j(t)

and the surface over-potential η(t) for the main chemical reaction on the

positive electrode in a NiMH cell is graphed in Fig. B.4.

[Figure 4 about here.]



Besides the main chemical reaction that generates most of the battery’s

current, there are usually several side reactions happening in the cell con-

tainer. The empirical nature of these side chemical reactions depends on the

type of batteries. For example, the side reactions are the hydrogen evolution

and absorbtion reactions in a lead-acid battery and the oxygen evolution and

absorbtion reactions in a NiMH cell. These side reactions may have a sig-

nificant impact on the battery performance and, therefore, modeling these

effects is desirable. Mathematically, modeling side reactions is similar to that

of the main reaction since they are all chemical reactions.

3.2. Electrical circuit-based representation for chemical reactions

To understand the composition of the model, an electrical circuit with

equivalent components will be developed. Through the relations between

electrical components, this equivalent circuit will clearly show the relation-

ship between the electrochemical equations to facilitate the application of

linear graph theory to the system.

The first equation we will examine is the open-circuit potential equation

(i.e., the Nernst equation), Eq. (8), which relates the electrode open-circuit

potential ϕ(t) to the molality of the substances. Since molality and electric

charge are directly related by Faraday’s laws in (9), Eq. (8) can be thought

of as a nonlinear electrical capacitor (Fig. B.5a) which stores free energy,

integrates the current density j(t) in order to obtain the electric charge,

and thereby obtains the open-circuit potential. Starting off from the initial

battery state of charge which is defined by the molality of materials on the

battery electrodes, the charge gradually increases/decreases when the cell

is charged/discharged and so does the stored electrochemical energy. The



chemical kinetics represented by the Butler-Volmer equation in (11) can be

modeled by a nonlinear electrical resistor in which the current density j(t)

and the surface over-potential η(t) are coupled by a nonlinear expression.

This component is illustrated in Fig. B.5b.

[Figure 5 about here.]

Since the current density in Eq. (11) is the current density that moves

the ions (i.e., the molalities in Eq. (8)) from one electrode to another, these

two components must be connected in series. The total electrical potential

across both of these components is the sum of the individual potentials across

each of the two components and is called the positive or negative electrode

potential. We can state that: each chemical reaction is represented by one

pair of these capacitor and resistor. If we only consider the main chemical

reactions, there will be two pairs of capacitor and resistor, each representing

a chemical reaction on one electrode.

Now let us consider an electrode at which there are n chemical reactions

(i.e., both main and side reactions). Since these reactions are independent of

each other, the total electrode current density jtotal(t) is obtained by adding

up the current densities of the individual reactions. That is

jtotal(t) = j1(t) + j2(t) + ...+ jn(t) =
icell
Asurf

. (12)

where Asurf is the surface area of the porous electrode and icell is the current

produced by the battery. The voltage across each capacitor-resistor pair is

also the same

ϕC1(t) + ηR1(t) = ϕC2(t) + ηR2(t) = ... = ϕCn(t) + ηRn(t) (13)



It can be inferred from Eqs. (12) and (13) that the electrode can be repre-

sented by multiple capacitor-resistor pairs hooked up in parallel as shown in

Fig. B.6.

[Figure 6 about here.]

We can close the circuit by connecting the positive and negative terminals

to a current source or an external load as shown in Fig. B.7. The external

load could be a complete electric vehicle. In this figure, Rint is the internal

resistance of the battery. For some batteries, this resistance is very small

and its effects can be ignored.

[Figure 7 about here.]

3.3. Thermal effects

So far, we have presented the electrical circuit representation for the chem-

ical reactions in an electrochemical cell. The model that we consider assumes

that the battery temperature is constant or, in other words, the battery

model we have investigated so far is an isothermal model. This assumption

is generally acceptable for small cells where the applied current is not high.

However, when the current intensity is high, as in the case of traction batter-

ies for electric or hybrid electric vehicles, the effects of battery temperature

can become significant.

Application of energy balance (Wang , 1999; Gomadam , 2003) to the

whole cell yields

cpmcell
dT (t)

dt
= −hAcell(T (t)−Ta)+icell(t)vcell(t)−

n∑
k=1

jk(t)

(
ϕk(t)− T (t)

∂Uk

∂T

)
(14)



In this equation, cp is the heat capacity of the cell, mcell is the mass of

the cell, h is the external heat transfer coefficient, Acell is the cell container

external surface area, Ta is the ambient temperature, and n is the number

of chemical reactions. The right-hand side of the equation consists of three

terms: the first term corresponds to the heat exchange with the outside

environment through the cell container walls according to Newton’s law of

cooling, the second term refers to the irreversible heat arisen from ohmic

heating for the whole cell, and the last term is the reversible entropic heat

released or absorbed by the chemical reactions. Equation (14) shows that

the heat generation rate is equal to the sum of heat transferred out of the

system and the heat stored in the system.

According to classical thermodynamics, Eq. (14) can be written as

dQ(t)

dt
=

dQext(t)

dt
+

dQirr(t)

dt
+

dQrev(t)

dt
, (15)

in which dQ(t) = cpmcelldT (t) according to the definition of heat capacity and

dQext(t)
dt

= −hAcell(T (t)− Ta) according to Newton’s law of cooling. The last

two terms, dQirr(t)
dt

= icell(t)vcell(t) and
dQrev(t)

dt
= −

∑n
k=1 jk(t)

(
ϕk(t)− T (t)∂Uk

∂T

)
,

are the rates of heat dissipated/absorbed due to the internal resistance and

chemical reactions. In electrochemistry, Qrev(t) is also called the Gibbs free-

energy change.

In order to develop a linear graph for the thermal domain, we need to

transform the thermal balance equation into the temperature-entropy form

so that the through Ṡ(t) and across T (t) variables appear explicitly in the

equation. Dividing both sides of Eq. (15) by T (t) results in

Ṡ(t) = Ṡext(t) + Ṡirr(t) + Ṡrev(t), (16)



where Ṡext(t), Ṡirr(t), and Ṡrev(t) are the time derivatives of the entropy for the

external temperature exchange term, the irreversible term, and the reversible

term, respectively. In Eq. (16), Ṡrev(t) is the sum of the individual entropies

for the chemical reactions and can be expressed as Ṡrev(t) =
∑n

k=1 Ṡrevk(t).

3.4. Linear graph for battery model

Following the circuitry representation for the chemical domain as dis-

cussed in Section 3.2 and the temperature-entropy representation given in

Section 3.3, we can develop the linear graphs for both domains. Examples for

such graphs are shown in Fig. B.8. In this figure, C’s and R’s are the nonlin-

ear capacitors and resistors whose equations are given in Eq. (8) and Eq. (11).

For convenience, the current i(t) and voltage v(t) will be used as through and

across variables for the chemical domain. The current flowing through each

component can be related to the current density by i(t) = Asurfj(t). The

voltage across each resistor is the surface-over potential η(t) while the volt-

age across the each capacitor component is the open-circuit voltage ϕ(t). The

tree branches and chords have been arbitrarily chosen as shown in Fig. B.8a,

which bears a striking resemblance to the physical system in Fig. B.7. We

use a solid line to represent a tree branch and a dotted line for a chord. If

the model of the external circuit is known, we can also construct the linear

graph for the entire system. For battery charge and discharge operations,

the external circuit is simply a current source which delivers electric current

to the battery. The two graphs in Fig. B.8 are coupled by the temperature

variable T (t) which appears in Eqs. (8) and (11).

[Figure 8 about here.]



For the thermal domain, the graph is simply a set of edges connected in

parallel. The through and across variables for the thermal domain are the

time-derivative of entropy Ṡ(t) and the battery temperature T (t), respec-

tively. It can be realized that the product of Ṡ(t) and T (t) is power, same as

the product of voltage and current. This indicates that the energy flowing

through the system components is conserved.

The system dynamic equations can be developed following the procedures

discussed in Section 2.2. We can write the through variables vector for the

chemical domain as

i =
[
iCc1(t) ... iCan(t) iRc1(t) ... iRan(t) iRint

(t) icell(t)
]T

(17)

The molalities ck’s in Eq. (8) can be replaced by charge variables qk’s

using Faraday’s law in (9). These charges are also through variables

q =
[
qCc1(t) ... qCan(t) qRc1(t) ... qRan(t) qRint

(t) qcell(t)
]T

(18)

Similarly, the across variable vector can be defined as follows

v =
[
vCc1(t) ... vCan(t) vRc1(t) ... vRan(t) vRint

(t) vcell(t)
]T

(19)

We can also define the through and across variable vectors for the thermal

domain

s =
[
Ṡext(t) Ṡirr(t) Ṡrev1(t) ... Ṡrevn(t) Ṡ(t)

]T
(20)

and

t =
[
Text(t) Tirr(t) Trev1(t) ... Trevn(t) T (t)

]T
(21)



The branch and chord transformations can be applied directly to the

current and voltage variables as shown in Eqs. (4) and (3). However, for

the charge variables, initial values, which appear as we integrate the current

variables, must be included in the chord transformation equation. This gives

[qb(t) + qb(0)] = −Acq [qc(t) + qc(0)] (22)

The formulation procedures for an electrochemical system can be sum-

marized as in Fig. B.9. The figure depicts the steps in the formulation as well

as their resulting output variables. After the final step we obtain 2(n−1)+1

ODEs representing the charge-current relation equations, 2(n− 1) + 1 alge-

braic equations for the chemical domain, and 1 ODE for the thermal domain.

It can be observed that 2(n− 1) + 1 is also the number of chords in the lin-

ear graph. The number of equations can be reduced further if some of the

through variables are known functions of time. As an example, if the applied

current on the battery terminals is known then icell can be considered as a

current driver and two equations (i.e., one charge-current relation and one

algebraic equation) can be eliminated from the final equations since the value

of icell can now be substituted directly into all the equations.

[Figure 9 about here.]

4. Application to NiMH cell model

Due to its dominance in almost all hybrid vehicles the NiMH battery

model has been chosen to demonstrate the technique in this paper. The

NiMH is one of the latest battery technologies and has many advantages



over the other more commonly used rechargeable batteries such as the lead-

acid battery or the nickel-cadmium battery. Some of these advantages include

higher energy density, more environmental friendly, and less prone to memory

(i.e., periodic exercise cycles need to be done less often). The NiMH battery

model presented is a modified version of the lumped battery model proposed

by Wu et al. (2001). In this section, the NiMH chemistry together with side

reactions and thermal effects will be presented, followed by a linear-graph-

based formulation for both chemical and thermal domains.

4.1. NiMH battery chemistry

The chemical reactions on the two electrodes of the battery can be written

as follows:

Main reaction on positive electrode:

NiOOH + H2O + e−
discharge−−−−−⇀↽−−−−−
charge

Ni(OH)2 +OH− (23)

Side reaction on positive electrode:

2OH− −→ 1

2
O2 +H2O + 2e− (24)

Main reaction on negative electrode:

MH + OH− discharge−−−−−⇀↽−−−−−
charge

M+H2O + e− (25)

Side reaction on negative electrode:

1

2
O2 +H2O + 2e− −→ 2OH− (26)

where the metal M in the negative electrode is an inter-metallic compound,

usually a rare earth compound. During charging, oxygen is generated at



the nickel electrode and the gas is formed when the solubility limit in the

electrolyte is reached. The oxygen is then transported to the metal hydride

electrode where it is reduced by the recombined reaction (26). During dis-

charge, the oxygen generation reaction may occurs at low rates, at which the

potential of the nickel electrode is higher than the equilibrium potential of

the oxygen generation (Gu et al. , 1999; Paul et al. , 2008).

The electromotive force in the battery as defined by the open-circuit

potentials (i.e., Nernst’s equations) for the main reactions (23, 25) on the

positive and negative electrodes is

ϕ1(t) = U1 + (T (t)− T0)
∂U1

∂T
+

RT (t)

F
ln

(
cH+,max − cH+(t)

cecH+(t)

)
(27)

ϕ3(t) = U3 + (T (t)− T0)
∂U3

∂T
+ RT (t)

F
ln (c2e) + 9.712× 10−4

+0.2372 exp
(
−28.057cMH(t)

cMH,max

)
− 2.7302×10−4(

cMH(t)

cMH,max

)2

+0.010768

(28)

and the equilibrium potential for the oxygen reactions (24, 26) is given by

ϕ2(t) = U2 + (T (t)− T0)
∂U2

∂T
+

RT (t)

2F
ln

(
p0.5O2

(t)

c2e

)
(29)

In these equations, cH+(t) is the concentration of Ni(OH)2, cMH(t) is the

concentration of the metal hydride (MH), pO2 is the partial pressure of oxygen

gas, and T (t) is the battery temperature. Other parameters and constants

are listed in Table B.2. Equation (28) was curve-fitted from the experimental

data of a nickel/KOH/LaNi5 battery using a nickel oxide positive electrode

provided by Paxton and Newman (1997). There is only one open-circuit

potential equation (29) for the two side reactions (24, 26) since side reactions



are coupled together by the oxygen transport from the positive electrode to

the negative electrode.

The rate of chemical reactions on each electrode is defined by the Butler-

Volmer equation which relates the current density jk(t) to the surface over-

potential ηk(t) by

jk(t) = i0,k

[
exp

(
αkF

RT (t)
ηk(t)

)
− exp

(
− αkF

RT (t)
ηk(t)

)]
(30)

where k = 1..3 for the first three chemical equations (23-25). The exchange

current density i0,k for each chemical equation is given by

i0,1 = i0,1,ref

(
cH+(t)

cH+,ref

)0.5(
ce

ce,ref

)0.5(cH+,max − cH+(t)

cH+,max − cH+,ref

)0.5

exp

[
Ea,1

R

(
1

T (t)
− 1

T0

)]
(31)

i0,2 = i0,2,ref

(
ce

ce,ref

)0.5(
pO2(t)

pO2,ref

)0.5

exp

[
Ea,2

R

(
1

T (t)
− 1

T0

)]
(32)

i0,3 = i0,3,ref

(
cMH(t)

cMH,ref

)0.5(
ce

ce,ref

)0.5(
cMH,max − cMH(t)

cMH,max − cMH,ref

)0.5

exp

[
Ea,3

R

(
1

T (t)
− 1

T0

)]
(33)

where i0,k,ref is the exchange current density at a reference reactant concen-

tration.

For the oxygen reduction reaction on the negative electrode, a limiting

current equation is used for the rate of reaction

j4(t) = −pO2(t)

pO2,ref

i0,4 (34)

where

i0,4 = i0,4,ref exp

[
Ea,4

R

(
1

T (t)
− 1

T0

)]
(35)



The battery current icell(t) can be calculated from the charge balance

equations on the electrodes given by

icell(t) = Aposaposlpos(j1(t) + j2(t)) (36)

icell(t) = −Aneganeglneg(j3(t) + j4(t)) (37)

The mass balance of the nickel active material is given by

j1(t) = F
dcH+(t)

dt

LNi(OH)2

ρNi(OH)2
lposapos

(38)

j3(t) = F
dcMH(t)

dt

LMH

ρMHlneganeg
(39)

Aposaposlposj2(t) + Aneganeglnegj4(t) = F
dpO2(t)

dt

Vgas

RT (t)
(40)

The battery temperature can be obtained from the energy balance of the

whole cell described by Eq. (14).

4.2. Linear graph representation for chemical domain

The application of the linear graph concept to the chemical reactions

of the NiMH battery is a straightforward operation. The main and side

chemical reactions for the NiMH battery model shown in Section 4.1 can be

represented by an equivalent electrical circuit as shown in Fig. B.10. The

open-circuit voltage equations (27), (29), and (28) can be represented by

nonlinear electrical capacitors C1, C2, and C3. The relationship between the

electrical potentials ϕk and concentrations in these equations is similar to the

capacitive relationship between voltage and charge in an electrical capacitor.

The nonlinear resistors R1, R2, and R3 are used to model the resistive

relationship between the current density and over voltage in Eq. (30). The



current density for the oxygen reduction reaction in Eq. (34) and the applied

current at the battery terminals can be represented by the current drivers

i4(t) = I4 and icell(t) = Iapp. For simplicity, it is assumed that the battery is

cycled with a constant current Iapp. We also assume that the battery has thin

electrodes and, therefore, we can ignore the influence of the battery internal

resistance.

[Figure 10 about here.]

The linear graph for the chemical domain is shown in Fig. B.11. We

see that the topological graph structure comprises eight edges, to which

we have assigned arbitrary sign directions. The number of equations to

be solved simultaneously can be reduced by selecting a tree and using a

branch-chord formulation, as described in Section 2. Choosing C1, C3, C3,

R2, and R3 as branches and R1, I4, and Iapp as chords can reduce the num-

ber of final equations as it will be shown that the equations for I4 and Iapp

are known (i.e., limiting current for oxygen reduction reaction and constant

charge/discharge current).

[Figure 11 about here.]

The column matrix of through variables is:

i =
[
iC1(t) iC2(t) iC3(t) iR2(t) iR3(t) iR1(t) i4(t) icell(t)

]T
(41)

Vector i can be broken down into the branch through variable vector ib

and chord through variable vector ic as

ib =
[
iC1(t) iC2(t) iC3(t) iR2(t) iR3(t)

]T
(42)



ic =
[
iR1(t) i4(t) icell(t)

]T
(43)

Since the currents, which are the derivatives of the electrical charges, are

through variables, the charges are also through variables and can be written

in vector forms as

qb =
[
qC1(t) qC2(t) qC3(t) qR2(t) qR3(t)

]T
(44)

qc =
[
qR1(t) q4(t) qcell(t)

]T
(45)

The current and charge variables are expressed in terms of the current

densities and concentrations as follows

iR1(t) = Aposaposlposj1(t)

iR2(t) = Aposaposlposj2(t)

iR3(t) = Aneganeglnegj3(t)

i4(t) = Aneganeglnegj4(t)

(46)

and

qC1(t) =
FAposLNi(OH)2

ρNi(OH)2

cH+(t)

qC3(t) = FAnegLMH

ρMH
cMH(t)

qC2(t) + q4(t) = FVgas

RT (t)
pO2(t)

(47)

Similarly, the across variable vector can be defined as follows

v =
[
vC1(t) vC2(t) vC3(t) vR2(t) vR3(t) vR1(t) v4(t) vcell(t)

]T
(48)

vb =
[
vC1(t) vC2(t) vC3(t) vR2(t) vR3(t)

]T
(49)



vc =
[
vR1(t) v4(t) vcell(t)

]T
(50)

where the voltage variables are related to the battery electrical potentials by

vCk(t) = ϕk(t)

vRk(t) = ηk(t) k = 1..3
(51)

For convenience, the Butler-Volmer equations are converted into the con-

ductance form by applying the inverse hyperbolic operation to Eqs. (30) as

vRk(t) = RT (t)
αkF

ln

[
jk(t)
2i0,k

+

√(
jk(t)
2i0,k

)2
+ 1

]
k = 1..3 (52)

The expressions in Eqs. (27), (29), (28), (34), and (52) can be written as

functions of currents, charges, and voltages using the relations in (46), (47),

and (51); doing so, we obtain the following set of six terminal equations

vC1(t) = U1 + (T (t)− T0)
∂U1

∂T

+RT (t)
F

ln
(

cH+,maxFAposLNi(OH)2
−ρNi(OH)2

qC1(t)

ceρNi(OH)2
qC1(t)

)
vC2(t) = U2 + (T (t)− T0)

∂U2

∂T
+ RT (t)

2F
ln

√
qC2(t)+q4(t)

FVgas
RT (t)

c2e


vC3(t) = U3 + (T (t)− T0)

∂U3

∂T
+ RT (t)

F
ln (c2e) + 9.712× 10−4

+0.2372 exp
[
− 28.057ρMH

FAnegLMHcMH,max
qC3(t)

]
− 2.7302×10−4[

ρMH
FAnegLMHcMH,max

qC3(t)

]2
+0.010768

vR2(t) = RT (t)
α2F

ln

[
iR2(t)

2i0,2Aposaposlpos
+

√(
iR2(t)

2i0,2Aposaposlpos

)2
+ 1

]

vR3(t) = RT (t)
α3F

ln

[
iR3(t)

2i0,3Aneganeglneg
+

√(
iR3(t)

2i0,3Aneganeglneg

)2
+ 1

]

vR1(t) = RT (t)
α1F

ln

[
iR1(t)

2i0,1Aposaposlpos
+

√(
iR1(t)

2i0,1Aposaposlpos

)2
+ 1

]

(53)



In a similar manner, the current driver in (34) can also be written as

i4(t) = −qC2(t) + q4(t)

pO2,refFVgas

RT (t)i0,4 (54)

We now define the f-cutset and f-circuit matrices. For the graph given

in Fig. B.11 and the given tree selection, the fundamental-cutset matrix is

obtained:

Af =



1 0 0 0 0 −1 0 0

0 1 0 0 0 1 0 −1

0 0 1 0 0 0 1 1

0 0 0 1 0 1 0 −1

0 0 0 0 1 0 1 1


=
[
1b Ac

]
(55)

which can be used to write the chord transformation equation for this system

iC1(t)

iC2(t)

iC3(t)

iR2(t)

iR3(t)


= −



−1 0 0

1 0 −1

0 1 1

1 0 −1

0 1 1




iR1(t)

i4(t)

icell(t)

 (56)

For the charge variables, initial values must be included in the chord

transformation equations, which yields

qC1(t)− qC1(0)

qC2(t)− qC2(0)

qC3(t)− qC3(0)

qR2(t)− qR2(0)

qR3(t)− qR3(0)


= −



−1 0 0

1 0 −1

0 1 1

1 0 −1

0 1 1




qR1(t)− qR1(0)

q4(t)− q4(0)

qcell(t)− qcell(0)

 (57)



From the fundamental-cutset matrix, one can directly obtain the following

fundamental-circuit matrix:

Bf =


1 −1 0 −1 0 1 0 0

0 0 −1 0 −1 0 1 0

0 1 −1 1 −1 0 0 1

 =
[
Bb 1c

]
(58)

in which each row corresponds to an equation along the edges enclosing each

circuit.

Similarly, making use of Eq. (4), the branch transformation for the system

can be written explicitly as


vR1

v4

vcell

 = −


1 −1 0 −1 0

0 0 −1 0 −1

0 1 −1 1 −1





vC1

vC2

vC3

vR2

vR3


(59)

Substituting Eq. (47) and the first equation in (59) into the terminal

equations in (53) we obtain

RT (t)
α1F

ln

[
iR1(t)

2i0,1Aposaposlpos
+

√(
iR1(t)

2i0,1Aposaposlpos

)2
+ 1

]
+

+U1 + (T (t)− T0)
∂U1

∂T
+ RT (t)

F
ln
(

FAposLNi(OH)2
cH+,max−ρNi(OH)2

qC1(t)

ceρNi(OH)2
qC1(t)

)
+

−U2 + (T (t)− T0)
∂U2

∂T
+ RT (t)

2F
ln

(√
RT (t)(qC2(t)+q4(t))

c2e
√

FVgas

)
+

−RT (t)
α2F

ln

[
iR2(t)

2i0,2Aposaposlpos
+

√(
iR2(t)

2i0,2Aposaposlpos

)2
+ 1

]
= 0

(60)



By applying the chord transformations in (56) and (57) to both current

and charge variables in (54) and (60), we obtain the following set of two

equations:



−Aneganeglneg[qcell(t)+qC2(0)−qR1(t)+qR1(0)−qcell(0)+q4(t)]RT (t)i0,4
FVgaspO2,ref

= i4(t)

RT (t)
α1F

ln

[
iR1(t)

2i0,1Aposaposlpos
+

√(
iR1(t)

2i0,1Aposaposlpos

)2
+ 1

]
+ U1 + (T (t)− T0)

∂U1

∂T
+

+RT (t)
F

ln
(

FAposLNi(OH)2
cH+,max−ρNi(OH)2

(qR1(t)+qR1(0)−qC1(0))

ceρNi(OH)2
(qR1(t)+qR1(0)−qC1(0))

)
+

−U2 + (T (t)− T0)
∂U2

∂T
+ RT (t)

2F
ln

(√
RT (t)(−qR1(t)+qR1(0)+qcell(t)−qcell(0)+qC2(0)+q4(t))

c2e
√

FVgas

)
+

−RT (t)
α2F

ln

[
−iR1(t)+icell(t)
2i0,2Aposaposlpos

+

√(
−iR1(t)+icell(t)
2i0,2Aposaposlpos

)2
+ 1

]
= 0

(61)

It should be noted from the above equation that icell(t) is the current

applied on the battery terminals and, therefore, is completely known. We

have the following relationships

iR1(t) = dqR1(t)
dt

i4(t) = dq4(t)
dt

icell(t) = dqcell(t)
dt

(62)

Therefore, Eq. (61) become a set of two ordinary differential equations (ODEs)

which only consists of three unknowns qR1(t), q4(t), and T (t) and can easily

be solved using a numerical integrator with proper initial conditions, if the

temperature is known.

4.3. Linear graph for thermal domain

In Section 4.2 we have shown the steps to develop a linear graph and sys-

tem equations for a NiMH model under the assumption of constant battery



temperature. In real automotive applications, studying the thermal effects

of batteries is of particular importance due to the large influence of bat-

tery temperature on the battery and vehicle performance. Besides reducing

battery efficiency, overheating a battery may even cause an explosion if the

battery temperature is not controlled. Due to these reasons, it is desirable

to also develop a linear graph for the thermal effects in a car battery.

To construct a linear graph for the thermal domain, we can make use

of the entropy-temperature relationship in Eq. (16) for the four chemical

reactions. Considering the time-derivative of the entropies as through vari-

ables and the temperature as an across variable, we can construct the linear

graph for the thermal domain as shown in Fig. B.12. By applying the branch

and chord transformations in Eqs. (59), (56), and (57), we can also convert

Eq. (16) into a function that is only dependent on T (t), qR1(t), and q4(t).

[Figure 12 about here.]

4.4. Simulation results

The model developed has been used to simulate several scenarios in order

to observe its behaviors, particularly with regard to thermal effects. Ta-

ble B.2 contains the model parameters used in the simulations. These pa-

rameters were identified using homotopy optimization from a 3.4 Ah NiMH

battery produced by North American Battery Company (NABC) based on

the reference parameters provided in the work of Wu et al. (2001). The

battery data was measured at A&D Technology’s laboratory in Ann Arbor,

Michigan, USA.

The battery voltage versus time for four different discharge and charge

rates from 1 C (3.4 A) to 1/8 C (0.425 A) are shown in Fig. B.13 and



Fig. B.14. As expected, the battery voltage drops/rises more quickly as the

discharge/charge current is increased. Figure B.15 compares the battery volt-

ages obtained from simulation results and battery testing data at a constant

charge and discharge rate of 1/5 C. It can be seen that these results are in

good agreement.

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

The battery temperature during discharge and charge versus time is

shown in Fig. B.16. It is assumed that the battery has been cooled down to

room temperature (25◦C) at the start of each simulation. In these figures,

the depletion of reactants results in high over-potential loss that causes a

rapid cell temperature increase. Due to the temperature exchange with the

environment, the battery temperature is flattened out at the end of the cy-

cle. At a high charge rate, due to the high ohmic and over-potential losses,

high charge potential is needed as expected. The cell heat generation is also

significant at high discharge currents for the same reasons. This may cause

the cell temperature to rise more than 10◦C. At high-rate charge, the oxygen

generation also increases very quickly, contributing significantly to the in-

crease in the cell temperature. However, during discharge, oxygen gas is only

generated at low currents. This explains the difference between the cell tem-

peratures in the two figures at the same rates, particularly at the high rates.

Battery temperature control is therefore very important, particularly in a



battery electric vehicle or hybrid electric vehicle system where the current

intensity is usually very high.

One of the most noticeable results is that the linear graph model simu-

lates approximately 30% faster than the lumped model (i.e., all equations

in Wu et al. (2001) are stacked together) at all charge and discharge rates

as summarized in Table B.3. The simulation times were obtained from a

DellTM OptiPlex 2.9 GHz desktop computer using Maple dsolve function

based on the default Runge-Kutta Fehlberg numeric integrator with the same

settings (abserr = relerr = 10−7) for both linear graph and lumped models.

[Figure 16 about here.]

[Figure 17 about here.]

[Table 1 about here.]

5. Conclusion

In this paper, we have presented a linear graph formulation for systemat-

ically generating a compact set of dynamic equations governing electrochem-

ical systems. By carefully managing how equations are formed, a smaller set

of expressions is obtained. This benefits symbolic implementation by reduc-

ing the size of the largest expression that needs to be handled by the com-

puter, thus allowing for the analysis of more complicated systems. It was also

shown that the equations obtained using linear graph theoretical approach

simulated approximately 30% faster than the original lumped model.

Since the interconnections between a system’s components are repre-

sented by a linear graph, tree selection strategies can be used to determine



the modeling variables for the system. It is clear that this flexibility can

provide benefits during formulation as well as simulation.

This approach can be extended to modeling a more complex system such

as a battery electric vehicle or a hybrid electric vehicle within which a battery

model is an important part. This is a potential for future research since

modeling individual parts of a battery/hybrid electric vehicle has been done

in the literature (McPhee et al. , 2004; Schmitke et al. , 2008; Dao et al. ,

2010), but never before using linear graph theory.
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Appendix A. Through and across variables for some physical sys-

tems

Domain Through [unit] Across [unit]

Electrical current voltage

i [A] v [V ]

Mechanical translational force velocity

F⃗ [N ] v⃗ [m.s−1]

Mechanical rotational torque angular velocity

τ⃗ [N.m] ω⃗ [rad.s−1]

Hydraulic volume flow pressure

ϕv [m3.s−1] p [N.m−2]

Thermal entropy flow temperature

dS
dt

[W.◦K−1] T [◦K]

Chemical molar flow chemical potential

dN
dt

[mol.s−1] µ [J.mol−1]

Table A.1: Through and across variables.



Appendix B. NiMH battery parameters used in simulations

Parameter Unit Symbol Value

Specific electrode area of positive electrode cm2.cm−3 apos 4000.0

Specific electrode area of negative elec-

trode

cm2.cm−3 aneg 3000.0

Surface area of positive electrode cm2 Apos 175.0

Surface area of negative electrode cm2 Aneg 100.0

Thickness of positive electrode cm lpos 3.3× 10−2

Thickness of negative electrode cm lneg 2.8× 10−2

Loading of nickel active material g.cm−2 LNi(OH)2 6.8× 10−2

Loading of metal hydride material g.cm−2 LMH 1.13× 10−1

Concentration of KOH electrolyte mol.cm−3 ce 7.0× 10−3

Reference concentration of KOH elec-

trolyte

mol.cm−3 ce,ref 1.0× 10−3

Maximum concentration of Ni(OH)2

in nickel active material mol.cm−3 cH+,max 3.7× 10−2

Reference concentration of Ni(OH)2

in nickel active material mol.cm−3 cH+,ref 0.5cH+,max

Maximum concentration of hydrogen

in metal hydride material mol.cm−3 cMH,max 1.0× 10−1



Reference concentration of hydrogen

in metal hydride material mol.cm−3 cMH,ref 0.5cMH,max

Reference oxygen pressure atm pO2,ref 1.0

Exchange current density of reaction at

reference

reactant concentration for first reaction A.cm−2 i0,1,ref 15.1× 10−4

Exchange current density of reaction at

reference

reactant concentration for second reaction A.cm−2 i0,2,ref 2.0× 10−4

Exchange current density of reaction at

reference

reactant concentration for third reaction A.cm−2 i0,3,ref 10.2× 10−4

Exchange current density of reaction at

reference

reactant concentration for fourth reaction A.cm−2 i0,4,ref 13.2× 10−4

Activation energy for first reaction J.mol−1 Ea,1 10.0× 103

Activation energy for second reaction J.mol−1 Ea,2 120.0× 103

Activation energy for third reaction J.mol−1 Ea,3 10.0× 103

Activation energy for fourth reaction J.mol−1 Ea,4 10.0× 103

Reversible heat for first reaction V.K−1 ∂U1

∂T
−1.35 ×

10−3



Reversible heat for second reaction V.K−1 ∂U2

∂T
−1.68 ×

10−3

Reversible heat for third reaction V.K−1 ∂U3

∂T
−1.55 ×

10−3

Reversible heat for fourth reaction V.K−1 ∂U4

∂T
−1.68 ×

10−3

Charge transfer coefficient α1 0.5

Charge transfer coefficient α2 1.0

Charge transfer coefficient α3 0.5

Open-circuit voltage V U1,c, U1,d 0.527,

0.458

Open-circuit voltage V U2 0.4011

Open-circuit voltage V U3 -0.8279

Open-circuit voltage V U4 0.4011

Gas volume in NiMH cell cm3 Vgas 1.0× 10−1

Density of nickel active material g.cm−3 ρNi(OH)2
3.4

Density of metal hydride g.cm−3 ρMH 7.47

Reference battery temperature K T0 303.15

Table B.2: NiMH battery parameters.
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Table B.3: Average simulation time (in seconds) comparison between linear graph model
and lumped model.

Applied current Linear graph model Lumped model
Discharge 1 C 0.898 1.115
Discharge 1/2 C 0.922 1.176
Discharge 1/4 C 0.902 1.121
Discharge 1/8 C 0.916 1.198
Charge 1 C 0.904 1.128
Charge 1/2 C 0.919 1.122
Charge 1/4 C 0.918 1.124
Charge 1/8 C 0.920 1.189
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Figure B.1: Electrical network example.
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Figure B.2: Linear graph isomorphic to electrical network.



Figure B.3: Electrochemical cell.



Figure B.4: Dependence of current density on surface over-potential on positive electrode
of a NiMH cell at 30◦C.
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Figure B.5: Circuitry representation for (a) open-circuit potential equation and (b) Butler-
Volmer’s equation.
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Figure B.6: Circuitry representation for multiple reactions.
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Figure B.7: Equivalent circuit-based representation for electrochemical cell.
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Figure B.8: Linear graph representation for (a) chemical domain and (b) thermal domain.
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Figure B.9: Formulation steps for electrochemical cells.
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Figure B.10: Circuitry representation for NiMH cell.
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Figure B.11: Linear graph presentation for main and side chemical reactions.
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Figure B.12: Linear graph representation for thermal domain.



Figure B.13: Battery discharge at constant rates.



Figure B.14: Battery charge at constant rates.



Figure B.15: Simulated and experimental battery voltages at 1/5 C charge/discharge rate.



Figure B.16: Battery temperature rising from initial temperature 25◦C at constant dis-
charge rates.



Figure B.17: Battery temperature rising from initial temperature 25◦C at constant charge
rates.


