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Abstract 

As the demand for lithium-ion batteries (LIBs) has increased, research to increase their life 

and reliability has also continued. To further advance the ability of determining the material 

status of a battery during operation, this research work has stepped into a new direction that may 

pave the way for future developments in sensors that monitor battery material changes during 

operation.  

Graphite is the most commonly used anode material and its phenomenal optical changes, 

which has fascinated many researchers, has inspired this research work and supported the 

development of a new type of electric battery cell sensor that utilizes an optical fiber to monitor 

the degree of lithiation within the battery cell. The ability to characterize the material within the 

battery during operation through optical data may allow the production of a smarter battery pack 

with the ability to perform in various environments and enable a higher level of understanding of 

its state-of-charge and state-of-health. 

In this work, the implementation of a fiber optic evanescent wave sensor for LIBs is 

optimized and analyzed using a newly developed model. The reflectance of commercial graphite 

electrodes charged to 30, 35, 40, 45, 50, 60, 65, 70, 75 and 80 % SOC was measured to 

determine the role of graphite particles in governing the colour of commercial graphite 

electrodes in the visible and infrared range (500 – 900 nm). The reflectance of commercial 

graphite electrodes was found to be most sensitive to lithiation in wavelengths ranging from 750 

to 900 nm, which is the near-infrared band. Using a modified Swagelok cell, in-situ fiber optic 



 

 ix 

evanescent wave spectroscopy (FEWS) was performed on a graphite electrode during 

electrochemical lithiation and found to closely follow the reflectance of commercial graphite 

electrodes. The FEWS study also demonstrated a direct correlation between transmittance 

through the optical fiber and the SOC of the LIB. The most sensitive wavelengths ranged from 

750 to 900 nm. The transmittance through the fabricated optical fiber was found to be unaffected 

when in contact with LIB electrolytes (i.e., 3:7 (vol %) ethylene carbonate and dimethyl 

carbonate) at salt (LiPF6) concentrations ranging from 0.25 to 1.50 M. 

The fiber optic evanescent wave sensing system was optimized for ultimate 

commercialization by focusing on three aspects. The first is the etching of the fiber optic 

evanescent wave sensor (FOEWS). Experimental results demonstrated that a buffered 

hydrofluoric solution consisting of 40 wt % ammonium fluoride (NH4F) solution and 49 wt % 

hydrofluoric acid solution in a ratio of 6:1 was superior to a solution of 49 wt % hydrofluoric 

acid in producing durable sensors. Maximum sensitivity of the FOEWS within a LIB was 

achieved when the etched sensor produced about 92 % transmittance loss in 100 % glycerol. The 

second aspect of optimization was aimed at reducing capacity fade and maximizing the contact 

between the sensor and the graphite electrode. This was achieved by shifting from a Swagelok 

test cell to a pouch cell designed to permit an optical fiber to pass through it while maintaining a 

hermetic seal and embedding the FOEWS within the graphite electrode. The final pouch cell 

configuration constituted a more commercially viable setup with reduced weight and increased 

capacity. The third major development was the use of an in-house narrow band optical sensor 
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interrogator, which replaced the spectrometer and reduced the cost of the sensing system 

significantly. 

The theoretical basis for the developed LIB sensing system was investigated to allow for 

deeper understanding of its abilities. A linear optical model for graphite was developed. The 

model assumes a linear change from the normal dielectric constants of graphite to LiC6 (fully 

lithiated graphite). This optical model was used to estimate the reflectance, refractive index and 

extinction coefficient of graphite as the concentration of intercalated lithium changes. The 

measured reflectance of graphite electrodes was compared with calculated values, based on the 

developed graphite optical model, and found to display similar trends. The optical model was 

then coupled with a lithium-ion battery transport model and a previously developed analytical 

optical model for the FOEWS to simulate the transmittance (signal) of the fiber optic sensor, 

with an estimated cladding thickness of 1.28 m. Simulations produced trends comparable to 

experimental results and suggested that the lithiation rate around the FOEWS may occur at a 

higher rate than the rest of the graphite electrode. The effect of lithium diffusion at the surface of 

graphite particles on the FOEWS transmittance was observed by implementing two hours of rest 

at one hour intervals during the charging and discharging process of a LIB. The effect of lithium 

diffusion on the FOEWS was observed to be most significant during the initial discharge of a 

fully charged LIB, when the lithium concentration within the graphite particles is the greatest. 

The FOEWS was then tested using three distinct applied currents (i.e., C/5, C/8 and C/16) and 

found to deviate at the extremities (i.e., near 0 and 100 % SOC). The slope of the FOEWS 

transmittance over 33 cycles was observed to have three distinct peaks during a charge from 0 to 
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100 % SOC. Deviation from the “three peak” trend in the slope during a charge was found to be 

correlated to capacity fade. This demonstrated the ability of the sensor to predict significant 

capacity fade during a charge prior to observing the faded capacity during a full discharge. 

Finally, a method to estimate the cladding thickness of the FOEWS was presented, which utilizes 

the “comprehensive glycerol test” and FOEWS analytical model. 

The presented work provides a direction for future work that would further promote the 

commercialization of the developed sensing system. Based on the deeper understanding of the 

factors contributing to the optical signal gained during this research, a battery state-of-charge 

and-health estimation algorithm can be developed and tested for its accuracy. Comparing the cost 

of this sensing system to conventional methods would demonstrate its competitiveness and 

support its use in various applications. 
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1. Introduction 

Parts of this chapter are reprinted in adapted form with permission from [1] 

A. Ghannoum et al., “Optical Characterization of Commercial Lithiated Graphite Battery 

Electrodes and in Situ Fiber Optic Evanescent Wave Spectroscopy,” ACS Applied Materials & 

Interfaces, vol. 8, no. 29, pp. 18763–18769, Jul. 2016. Copyright (2016) American Chemical 

Society. 

Energy diversification and the rise in zero-emission vehicles have promoted research in 

energy storage systems. Zero-emission vehicles include battery-powered electric vehicles and 

hydrogen fuel cell vehicles. The current automotive industry has focused on batteries as a source 

of alternative energy due to the challenges that still remain for fuel cells, which include 

improvements to its reliability, reducing its cost and development of the required hydrogen 

infrastructure [2]. Lithium-ion batteries (LIBs) have been targeted for use in electric and hybrid 

vehicles due to their high energy density [3]. A wide selection of electrode chemistries can be 

used in LIBs, but it is essential that the cost, durability, environmental effects, safety and specific 

energy density are taken into account when designing a battery for a specific application. LIBs 

consist of two electrodes, graphite is the most common negative electrode (anode) material used 

in LIBs as it has relatively high capacity (372 mAh g-1), highly reversible lithium ion 

intercalation (insertion), good electrical conductivity, and can be simply and inexpensively 

produced [4]. Figure 1 demonstrates the market demand of graphite in comparison to other anode 

materials over the past several years.  
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Figure 1: Lithium-ion battery anode material market; plotted using data extracted 

from ref. [5]. 

Electric vehicles are powered by a large number of cells connected in series, managed by a 

control system referred to as a battery management system (BMS) that manipulates the charging 

and discharging processes. The BMS is required to estimate the state of charge (SOC), state-of-

health (SOH) and identify cell failures to successfully and safely control a large number of cells. 

To perform all these estimates , a system may utilize sensors to measure temperature, voltage, 

current, running time and combustible gas concentration [6]. Then through the use of algorithms 

a BMS estimates the status of the battery cells based on a point of reference or battery model, 

which differs with chemistry, battery shape and battery size [6]–[8]. The accuracy of the 

estimation algorithms is affected by the complexity and the accuracy of the sensors, which both 

significantly affect the cost of the BMS. This significant cost factor has spawned research on 
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acoustic [9], [10], strain[11]–[14], and optical [1], [15]–[18] based characterization methods that 

aim to reduce the cost, but still accurately estimate SOC and SOH for LIBs. 

1.1 Lithium-Ion Batteries 

Lithium-ion batteries consist of positive and negative electrode materials capable of storing 

lithium, respectively, known as cathode and anode. The two electrodes are separated by 

insulating material to avoid internal electron transfer between the two electrodes. Lithium ions 

(Li+) are transported across an electrolyte between the two electrodes as the battery is charged 

and discharged. Current LIBs utilize cathode materials composed of either a metal oxide (e.g., 

LiCoO2) or metal phosphate (e.g., LiFePO4). Figure 2 illustrates the three identified cathode 

material structures, layered (e.g., LiCoO2), spinel (e.g., LiMn2O4) and olivine (e.g., LiFePO4).  

 
 

Figure 2: Lithium-ion battery cathode material structures. 
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When the battery is fully charged, the lithium content in the cathode is at its minimum. 

During discharge, lithium undergoes oxidation at the anode forming Li-ions that are transported 

through the electrolyte to the cathode where a reduction reaction inserts Li-ions into the cathode. 

Figure 3 illustrates the process of lithium ion insertion into graphite; this process is referred to as 

lithiation, while delithiation refers to the removal of lithium.  

 
 

Figure 3: (a) Graphite’s lithiation/delithiation reaction (b) Schematic of the lithiation 

process. 

LIBs are advantageous due to their ability to undergo many charging/discharging cycles, but 

over time capacity loss limits its life. LIB capacity degradation occurs due to several factors. One 

major factor controlled by a BMS is voltage [19]. When the voltage of a LIB falls below 2V vs. 

Li/Li+ (over discharge), reduction of the electrolyte occurs at the anode, consuming electrolyte 

and Li-ions, as a result reducing its overall capacity [20]. Conversely when a LIB is over-

charged, the increase in the voltage causes oxidation of the electrolyte at the cathode, which also 
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reduces the battery’s capacity [21]. Hence, it is essential to control the charging and discharging 

process of a LIB to avoid capacity loss through irreversible reactions. 

1.2 Graphite as a Lithium Ion Battery Anode 

Graphite is a layered carbon material that can be classified by the fraction of its structurally 

disordered content. The basic building block of graphite is graphene, a planar sheet of carbon 

atoms that stacks to form a layered structure [19]. A variation between the intraplanar and 

interplanar bonding forces in graphite allows for the intercalation of lithium into its layered 

structure, forming lithium graphite intercalation compounds (Li-GIC) [22]. The stacking 

configuration has a significant effect on the maximum amount of lithium that can be inserted 

(capacity), as the fraction of layers with turbostratic misalignment increases, the maximum 

capacity decreases [23]. The stacking of graphene in relation to intercalated lithium layers is 

described by a stage number based on a periodic sequence, where the stage number represents 

the number of graphite layers between the intercalated lithium layers (Figure 4). Through 

analysis of the potential of graphite during electrochemical lithiation and graphite’s colour 

changes, stages 1, 2 and 3 (diluted stage 2 [24]) have been identified to be golden yellow, red 

and dark blue, respectively [25]. Stage 3 is identified as diluted stage 2, since x-ray diffraction 

measurements have shown that a phase change does not occur and the reaction is assumed to 

cause in-plane lithium ordering between LiC6 and LiC9 [22]. 
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Figure 4: Schematic diagram of stages 1, 2 and 3 (diluted stage 2 [24]) lithiated graphite 

based on the Rudorff model [26] with their recognized visible colours of golden yellow, red 

and dark blue, respectively. 

As graphite transitions from one stage to another, its potential vs. Li/Li+ changes. In regions 

where more than one stage exists, a plateau in the voltage is observed [23]. This observation has 

been reproduced through the fabrication of a half-cell consisting of a graphite cathode and a 

lithium metal anode (see Figure 5). The transition for lithiated graphite from stage 1 (LiC6) to 

stage 2 (LiC12) has the largest voltage plateau, which makes it easy to identify in the voltage 

profile (i.e. between 150 to 300 mAh/g capacity in Figure 5). The reactions and stage transitions 

within Figure 5 are further described in Table 1. 

As the voltage of lithiated graphite vs. Li/Li+ decreases, its chemical reactivity increases. 

Reactions involving the electrolyte arise, consuming Li-ions and producing a solid interface 

between the graphite surface and the electrolyte, known as the solid electrolyte interface (SEI) 

[21]. 
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Figure 5: MTI Graphite voltage profile during discharge in a coin cell, with the regions of 

phase transitions labeled I, II, III, IV and V at the observed plateaus described in Table 1. 

 

Table 1: Regions in graphite’s potential vs. lithium during lithiation (Figure 5) and the 

corresponding reactions and stage numbers [22], [27]. 2D denotes dilute stage 2. 

Regions in Figure 5 
Graphite’s lithiation stage 

transition 
Reaction 

I Stage 2  Stage 1 LiC12+Li ↔2LiC6  

II Stage 2D  Stage 2 2LiC18+Li ↔3LiC12  

III 
Stage 3  Stage 2D 

Stage 4  Stage 3 

2LiC27+Li ↔3LiC18  
3LiC36+Li ↔4LiC27  

IV Stage 8  Stage 4 LiC72+Li ↔2LiC36  

V Graphite  Stage 8 12C6+Li ↔LiC72  
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The reduction of the electrolyte and consumption of Li-ions to produce the SEI results in 

capacity loss since the reactions are irreversible. The formation of a stable SEI layer though is 

essential since it ensures that no further irreversible reactions occur. The ideal SEI would 

electrically insulate the electrolyte, preventing its further decomposition, while allowing uniform 

Li-ion migration into and out of the graphene layers [21]. For the long term stability of the SEI, 

its resistance to dissolution into the electrolyte is crucial and structural flexibility is integral to 

sustain its position on the graphite particles as it undergoes stress [28] during 

lithiation/delithiation [21]. 

Stress is induced by lithiation, which causes the spacing between the graphene layers to 

increase by about 0.351 Å (10.5 %), when comparing graphite to LiC6 [29]. The graphite surface 

area is thought to have a direct relationship with the amount of SEI, since larger surface areas 

caused higher initial irreversible capacity loss [30]. Many developments have been made to 

optimize the SEI formation through the use of electrolyte blends and additives, which will be 

discussed in the coming sections. Understanding the intercalation process and surface 

modification is essential in studying its optical properties and how it would affect the response of 

a fiber optic sensor. 

1.2.1 Graphite Solid Electrolyte Interface (SEI) 

Lithium insertion into graphite decreases its potential to values near 0 V vs. Li/Li+, requiring 

a change in the system to allow for the stabilization of the known electrolytes and avoid their 

continuous reduction [19]. Exposure of electrolyte to lithiated graphite initiates its reduction at 

the surface of graphite forming a layer, which is made up of lithium and decomposed electrolyte. 
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The formed layer prevents further reduction of the electrolyte and consumption of lithium ions if 

it insulates the electrolyte from charge transfer electrons. However, for the functionality of the 

system, the formed layer should still allow lithium ion transfer to allow for Li-ion insertion/de-

insertion into graphite. This layer has been given the name solid electrolyte interface (SEI). The 

amount of SEI that forms is mainly affected by the surface area of the graphite as this increases 

the observed irreversible capacity losses [11]. Since the SEI is made up of decomposed 

electrolyte, many studies have been conducted on various electrolytes to understand the 

formation mechanism to advance the performance of LIB. Early studies on liquid electrolytes 

were initiated with propylene carbonate (PC), a polar organic molecule, that has a high dielectric 

constant and is known for its ability to allow lithium electro-deposition using lithium perchlorate 

(LiClO4) as a salt [31]. When PC was used as an electrolyte with graphite, it decomposed 

reductively at a potential of 0.80 V vs. Li/Li+, causing graphite to disintegrate (exfoliate) and 

prohibit lithium ion intercalation [21]. It has been shown that PC does not form a stable SEI and 

instead co-intercalates into graphite and forms decomposition products that cause its exfoliation 

[33]. Ethylene carbonate (EC), which is essentially PC without the methyl group, has a higher 

dielectric constant and melting point (36oC) [21]. Although EC may increase the ionic 

conductivity of the electrolyte if used as a co-solvent, its main contribution is the formation of a 

stable SEI on graphite that allows for the reversible intercalation/de-intercalation of lithium [21]. 

The differences in the SEI produced in the presence of EC and PC has been attributed to the 

effect of the methyl group from PC, which prevents good adhesion and cohesion of the 

decomposed products onto graphite. The methyl group favors gas evolution over SEI formation 
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[21]. Mixing EC with other solvents such as dimethyl carbonate (DMC) and diethyl carbonate 

(DEC) reduces its melting point and allows for its use as a liquid electrolyte [33].   

Through tuning of the mixing ratios it is possible to optimize the stability of the solvated 

lithium ions in the electrolyte to maximize cation/anion diffusion and minimize their interaction 

to achieve better mobility [34]. Minor changes in the components of the electrolyte can 

significantly affect the formation of the SEI layer as well as the kinetics of the system, as 

diffusion of the cations and anions vary. Since performance of certain systems exceeds that of 

others, then understanding the effects of the various components of such systems is critical. 

Studies have shown that the thickness of the SEI layer can vary between 0.2 to 10 nm 

[35][36][37] and has been reported to vary with the stage of lithiation [38]. The optical 

absorbance of lithiated graphite in the infrared region (5–20 m) is also influenced by the 

chemical components of the SEI layer [20].  

In the design of an optical sensor it would be favourable to exclude these wavelengths to 

avoid the effects of a dynamic SEI. The next section will introduce the optical properties of 

graphite, which will be seen to significantly change during the cycling process of a LIB. 

1.3 Optical Properties of Lithiated Graphite 

Graphite intercalation compounds exhibit metallic reflectivity spectra which have been 

analyzed on the basis of the classical Drude model for unbound electrons [39]. The Drude model 

is derived by equating the restoring force in the Lorentz model to zero; the Lorentz model is the 

classical model for insulators, which considers electrons to be a small mass bound by a spring to 
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a larger mass representing the atomic nucleus [40]. Pristine graphite has a relatively low free 

carrier concentration, i.e., ~2 × 10−4 carrier atom-1 (~2 × 1019 cm-3) at room temperature [41]. 

As lithium insertion into graphite occurs via a charge transfer reaction, graphite fully ionizes due 

to the transfer/delocalization of the Li 2s electron into the graphite -band [39][42]. Lithiation 

increases the carrier density in graphite by a factor of ~800 when fully lithiated (LiC6) altering its 

electrical, thermal, magnetic and optical properties [41]. 

Electron transitions can occur in two ways (interband/intraband) within graphite. These 

transitions and the energy required to initiate them contribute to the optical properties of 

graphite. Interband electron transitions dominate in the infrared and visible regions of pristine 

graphite’s spectrum [41], which are transitions of electrons from one band to another [40]. As 

lithium intercalates into graphite and the carrier density increases, interband transitions decrease 

while intraband transitions increase at low frequencies [41]; intraband transitions caused by 

optical excitation of electrons from below the Fermi energy to above the Fermi energy within the 

same band are characteristic of metals and semi-conductors [40]. Intraband transitions of a 

material can be described by the Drude model for unbound electrons [40]. The reflectance of 

LiC6 when compared with graphite at low frequencies (low energy) demonstrates how the 

increase in carrier density affects the optical properties of graphite. 

The plasma frequency (𝜔𝑝) of LiC6 can also be used to explain the observed increase in 

reflectance, which is associated with free carrier plasma oscillations [43]. If the frequency of the 

photon is below that of the 𝜔𝑝, then reflectance is high, when the photon frequency exceeds the 

𝜔𝑝, reflectance decreases [43]. As graphite anodes transform from pristine graphite to LiC6, the 
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𝜔𝑝 shifts and the specific frequency at which reflectance decreases changes and causes an 

observable colour change in graphite [41],[25].  

Earlier reflectance studies on lithiated graphite synthesized LiC6 and LiC12 through vapour 

phase reactions, which produced single-crystal flakes that were used for characterization [39]. A 

clear shift in the normal incident reflectivity of LiC12 to LiC6 was observed, whereby the 𝜔𝑝 

increased from about 1.75 to 2.75 eV, demonstrating the effect of lithiation on the electron 

transitions [39]. 

It is critical to note that graphite is in powder form within a LIB and is not composed of 

single-crystal flakes of graphite. Using an integrating sphere the diffuse reflectance of an 

amorphous carbon electrode (petroleum coke) was studied during its delithiation process in a 

prototype half-cell with a pure lithium anode [44]. The diffuse spectra of petroleum coke ranged 

from 200 to 800 nm (6.20 to 1.55 eV) [44]. At about 230 nm (5.4 eV) a peak is observed, which 

seems to not be affected by the lithiation process. This peak has been attributed to the –* 

interband transition [44], which is also observed in pristine graphite [43]. LiC6 also exhibits a 

similar peak but is slightly shifted to a lower frequency. The petroleum coke energy band 

structure seems to not be significantly affected by the lithiation process, which may be related to 

the microscopic orderliness of petroleum coke in comparison to graphite [44]. The diffuse 

reflectance signal at higher wavelengths (> 350 nm) was attributed to intraband transitions of 

free carriers. The intraband transitions increased as the amount of lithium in petroleum coke 

increased [44]. These studies demonstrate that the optical properties of carbon electrodes vary as 
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the lithium content changes, but it is also important to understand how the optical properties 

change as electrodes age. 

A colorimetric study on a graphite electrode lithiated using a pure lithium anode 

demonstrated that the colour change was stable over 20 cycles [25]. It is important to note that 

this study was done on a small custom windowed cell with only 20 cycles [25], which does not 

represent the life of a graphite electrode within a commercial cell. Images of an aged graphite 

electrode extracted from a high power commercial cell, which was cycled 1400 cycles and had a 

60 % reduction in capacity, showed a significant non-uniformity in the colour distribution, which 

was translated to lithium content [25]. This demonstrates that if the intensity of the reflectance 

can be monitored then the aging of a cell could be observed as the intensity in reflectance varies 

over time.  

A simple empirical correlation can be made using specific wavelengths and the extent of 

lithiation of a graphite electrode based on the observed phenomena but it would be of higher 

fundamental value to model the variation in the carrier density in relation to reflectance within a 

lithium ion battery. To model the change in carrier density a lithium ion transport model is 

required. In a lithium ion battery, several properties affect lithium ion transport, which affect the 

lithium content in graphite; the next section will cover one of the methods that can be employed 

to model lithium transport within a battery system. 

1.4 Modeling of lithium ion transport 

Lithium ion batteries consist of two insertion electrodes that allow the shuttling of lithium 

ions. The degree of lithium insertion controls the cell potential. When an anode such as graphite 
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is fully lithiated within a battery cell, then the battery is considered fully charged. If a circuit 

connects the anode to the cathode in a fully charged battery then the battery would discharge. 

The discharge of a battery is the process where electrons would spontaneously flow from the 

anode to the cathode through the outer circuit while lithium ions de-intercalate from the anode 

and diffuse/migrate into the electrolyte while lithium ions intercalate into the cathode. During the 

charging of the battery, external work needs to be applied to reverse the discharging process, 

since the system deviates from the thermodynamically favoured state [45]. The development of 

mathematical models derived from the thermodynamics that revolve around the 

charging/discharging process [45][46][47][48][49] has been of interest to design and optimize 

lithium-ion batteries [50][51]. This resulted in the formation of general full cell models that 

required specific physical properties and system parameters to simulate particular materials [52]. 

This section outlines the governing equations and boundary conditions  [45], [51], [53], [54] 

used in modeling the transport of lithium ions between a lithium iron phosphate (LiFePO4) 

cathode and a graphite anode as seen in Figure 6 within a multi-physics software (COMSOL 

Inc.). 

The equations governing the transport of Li in the electrode region are divided into two, the 

solid phase (𝑐𝑠,𝑖) and electrolyte phase (𝑐). In the solid phase Li diffusion within the assumed 

spherical electrode particles is based on Fick’s law, i.e., 

𝜕𝑐𝑠,𝑖

𝜕𝑡
= 𝐷𝑠,𝑖

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐𝑠,𝑖

𝜕𝑟
) (1) 
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At the center of the electrode particles, a boundary condition of no flux is set: 

𝐷𝑠,𝑖
𝜕𝑐𝑠,𝑖

𝜕𝑟
= 0 at 𝑟 = 0 

(2) 

 

Figure 6: Schematic of a lithium ion battery with a graphite anode and a LiFePO4 cathode, 

outlining the components of a transport model. 
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At the surface of the electrode particles, the flux of Li is based on the Faradaic current 

(Eq.(3)), which is calculated based on the Butler-Volmer equation (Eq. (4)), 

−𝐷𝑠,𝑖
𝜕𝑐𝑠,𝑖

𝜕𝑟
=

𝑖𝑓

𝐹
 at 𝑟 = 𝑟𝑖 

(3) 

𝑖𝑓 = 𝑖0,𝑖 (𝑒𝑥𝑝 (
𝛼𝑖𝐹

𝑅𝑇
𝜂𝑎𝑐𝑡,𝑖) − 𝑒𝑥𝑝 (−

(1 − 𝛼𝑖)𝐹

𝑅𝑇
𝜂𝑎𝑐𝑡,𝑖)) 

(4) 

 

where the exchange current density (𝑖0,𝑖) is a function of the anodic/cathodic reaction rate 

constants (𝑘𝑎,𝑖 , 𝑘𝑐,𝑖) and Li concentration in both the electrolyte (𝑐) and solid phase (𝑐𝑠,𝑖), 

𝑖0,𝑖 = 𝐹(𝑘𝑎,𝑖)
(1−𝛼𝑖)

(𝑘𝑐,𝑖)
𝛼𝑖(𝑐)𝛼𝑖(𝑐𝑠,𝑚𝑎𝑥,𝑖 − 𝑐𝑠,𝑖)

𝛼𝑖(𝑐𝑠,𝑖)
(1−𝛼𝑖)

 (5) 

 

The current in the solid phase is based on ohms law, 

𝑖𝑠,𝑖 = −𝜎𝑖∇𝜙𝑖 (6) 

The applied current density (𝐼𝑎𝑝𝑝) controls the charge flux between cathode/current collector, 

while electrode/separator boundaries insulate against electronic current, 
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−𝜎𝑔
𝜕𝜙𝑔

𝜕𝑥
= 𝐼𝑎𝑝𝑝 at 𝑥 = 0 (7) 

𝜎𝑔
𝜕𝜙𝑔

𝜕𝑥
= 0 at 𝑥 =  𝐿𝑔 (8) 

𝜎𝑐
𝜕𝜙𝑐

𝜕𝑥
= 0 at 𝑥 =  𝐿𝑔 + 𝐿𝑠 (9) 

𝜎𝑐
𝜕𝜙𝑐

𝜕𝑥
= 𝐼𝑎𝑝𝑝 at 𝑥 = 𝐿𝑔 + 𝐿𝑠 + 𝐿𝑐 (10) 

Graphite’s current collector is set as the electric ground, 𝜙𝑔(𝑥 = 0) = 0. In the electrolyte 

phase around the solid electrodes the Li ion concentration is balanced by the following equation, 

𝜖𝑙,𝑖

𝜕𝑐

𝜕𝑡
= 𝛻 ∙ (𝐷𝛻𝑐) −

𝑖 ∙ 𝛻𝑡+

𝐹
+

𝛻 ∙ 𝑖

𝐹
(1 − 𝑡+) (11) 

where, 

𝑖 = −𝜎𝛻𝜙 +
2𝜎𝑅𝑇

𝐹
(1 +

𝜕 ln  𝑓±

𝜕 ln 𝑐
) (1 − 𝑡+)𝛻 ln 𝑐 

(12) 

 

and 𝑓± is the mean molar activity coefficient. At the outer boundaries no charge or Li flux exists 

in the electrolyte, 

 𝜎
𝜕𝜙

𝜕𝑥
= 0 at 𝑥 = 0 and 𝑥 = 𝐿𝑔 + 𝐿𝑠 + 𝐿𝑐 

(13) 

 

𝐷
𝜕𝑐

𝜕𝑥
= 0 at 𝑥 = 0 and 𝑥 = 𝐿𝑔 + 𝐿𝑠 + 𝐿𝑐 

(14) 

 

The Li ion concentration within the separator region (i.e. between 𝑥 = 𝐿𝑔 and 𝑥 = 𝐿𝑔 + 𝐿𝑠) 

does not include pore wall flux and the electrolyte is assumed to have a volume fraction of one, 

hence in the separator region Eq.(11) becomes, 
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𝜕𝑐

𝜕𝑡
= 𝛻 ∙ (𝐷𝛻𝑐) −

𝑖 ∙ 𝛻𝑡+

𝐹
 (15) 

 

These equations are solved simultaneously to obtain 𝑐𝑠,g as function of time, which can be 

divided by 𝑐𝑠,max,g to obtain the state of charge of a graphite particle as a function time. 
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2. Thesis Objectives and Approach 

The objectives of this thesis are to optimize the implementation of fiber optic evanescent 

wave sensors (FOEWS) inside LIBs and develop a coupled model to simulate and enhance our 

understanding of the sensor output as the optical properties of graphite change within a LIB. This 

allows for deeper analysis of the sensor signal (transmittance) to allow further optimization and 

support its implementation in commercial LIBs for state-of-charge and state-of-health 

estimation.  

The lithiation of a graphite anode is a dynamic process that depends on several factors, which 

include its capacity, electrode thickness and applied electrical current. This necessitates the use 

of a transport model to simulate the concentration changes at the surface of the graphite particles 

and their effect on the FOEWS. As for the optical properties of a graphite anode, the non-pristine 

surface of the anode makes it challenging to experimentally determine its refractive index and 

extinction coefficient, and hence the development a linear optical model based on the known 

dielectric constants of graphite and fully lithiated graphite. This approach is the basis for the 

developed coupled model to investigate the sensor signal in relation to the optical changes of 

graphite within a LIB. 

The breakdown of the overall approach is summarized in Figure 7 where each step is 

designated with a number, which will be referred to in the following list of specific objectives. 
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Figure 7: Schematic outlining the modeling and experimental work completed to 

compare simulated FOEWS transmittance to actual transmittance 

The thesis objectives are divided into two sections, modeling {1} and experimental {2}. The 

specific objectives include:  

i. optimization of the fabrication and characterization process for FOEWS to enhance 

sensitivity and durability of the sensor {4}. 

ii. design of a process to embed a FOEWS in a graphite anode within a pouch cell {4} to 

study the sensor signal {13,14}.  

iii. investigation of the potential effects of the electrolyte on the FOEWS {5}. 

iv. examination of the durability of the sensor within a LIB {4}. 

v. development of an optical model for graphite {8} and verify it through a reflectance 

study on commercial graphite anodes {3,9}. The optical model coupled with a transport 
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model {6,7} and an analytical model {10} of the FOEWS yields a simulated sensor 

signal (transmittance) {12} to correlate the optical changes with a battery’s SOC {14}. 

2.1 Thesis Outline 

Chapter 1 covers background information relevant to the thesis work with focus on the 

components and dynamics of a LIB and optical properties of graphite, while Chapter 2 

summarizes the overall objectives and tasks. Chapters 3 to 5 provides details on the specific 

experimental work conducted and discussion of the results. The work presented in chapters 3 and 

4 are reprinted from three published peer-reviewed journal articles [1], [17], [18]. Chapter 3 

introduces the initial characterization of commercial graphite electrodes through reflectance 

spectroscopy and initial development of lithium ion battery in-situ fiber optic evanescent wave 

sensing with spectroscopic measurements. Chapter 4 is dedicated to the optimization of the fiber 

optic evanescent wave sensing system with focus on three aspects. i) Fabrication of the sensor to 

maximize durability and sensitivity, ii) development of a method to embed the sensor within a 

commercially viable pouch cell instead of a Swagelok cell to reduce capacity fade, allow for long 

term testing and maximize the interaction between the sensor and the graphite electrode, and iii) 

use of an in-house narrow band optical sensor interrogator that replaces the spectrometer and 

reduces the cost of the sensing system significantly. Chapter 5 focuses on the theoretical output 

signal of the fiber optic sensor, which required the development of a lithiated graphite optical 

model and coupling it with a transport model for the lithium ion battery and an analytical model 

for the fiber optic sensor. The model predictions are compared to experimental results. An 

analysis of the effects of applied current on lithium ion diffusion and the ability of the sensor to 
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predict capacity fade are also presented in Chapter 5. Finally, Chapter 6 provides a summary and 

conclusions of this thesis and also presents future work that would promote the 

commercialization of the presented lithium ion battery sensing system.  
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3. Characterization of Commercial Graphite Electrodes and in Situ Fiber 

Optic Evanescent Wave Spectroscopy 

This chapter is reprinted in adapted form with permission from [1] 

A. Ghannoum, R. C. Norris, K. Iyer, L. Zdravkova, A. Yu, and P. Nieva, “Optical 

Characterization of Commercial Lithiated Graphite Battery Electrodes and in Situ Fiber Optic 

Evanescent Wave Spectroscopy,” ACS Applied Materials & Interfaces, vol. 8, no. 29, pp. 

18763–18769, Jul. 2016. 

3.1 Introduction 

A wide array of electrode chemistries can be used in LIBs [55]. The benefits of a given 

configuration depends on several parameters, which include the cost, durability, environmental 

effects, operational safety and specific energy density. In this chapter we focus on a commercial 

battery fabricated by former A123 Systems Inc. containing LiFePO4 as a cathode and graphite as 

an anode. LiFePO4 is inexpensive, environmentally benign and abundant cathode material used 

for rechargeable LIBs, which has a theoretical capacity of 170 mAh g-1 [56].  Graphite has a 

higher capacity (372 mAh g-1) and is commonly used in LIBs due to its highly reversible lithium 

(Li) ion intercalation, good electrical conductivity, simple preparation process and low 

production cost [4].  

Electric vehicles are powered by battery packs consisting of battery cells connected in series. 

Based on estimates of the state-of-charge (SOC), state-of-health (SOH), failure status and life 

expectancy of individual cells, a control system is used to manipulate the charging and 
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discharging processes. The existing SOC estimation methods are based on algorithms (e.g., 

Kalman filters) that depend on externally measured parameters (i.e., current, voltage and 

temperature). The required accuracy in SOC estimation depends on the application since the 

sensors employed to measure the voltage of individual cells and collect electric current data 

significantly affect the cost [57]. Implementation of real-time in-line voltage measurements of 

cells connected in series with varying voltage reference levels is complex [58]. Real-time 

measurements are also affected by uncertain drive cycles [59]. Additionally, SOC is correlated to 

the open circuit voltage (OCV) of the battery cell; however, the direct measurement of OCV is 

not possible during battery operation. Some SOC estimation methods rely on electric current 

integration, which is highly dependent on the accuracy of electric flow measurements. An error 

in the measurement can accumulate in an open-loop calculation and SOC estimation without a 

corrective step eventually becomes inaccurate [59]. Investigating other variables that may assist 

or replace voltage and current measurements to estimate SOC is of great interest. It is suggested 

that a non-electronic in-situ optical measurement may contribute to the estimation of SOC. 

Compared to electronic sensors, optical-based sensors are less sensitive to electromagnetic 

interference. Additionally, since they can be composed of dielectric materials such as silica, 

optical sensors may tolerate the internal chemical environment of a LIB.  

Graphite-based anodes are comprised of graphite micro-particles covered with a solid 

electrolyte interphase (SEI) layer composed of organic and inorganic compounds, which forms 

during the charging of the battery as the electrolyte undergoes reduction reactions at the 

electrode surface [36], [37]. The SEI layer acts as a screen that permits the flow of Li ions, and 
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prevents further reduction of electrolyte and co-intercalation of solvent molecules into the 

electrode [60]. The optical reflectivity of a graphite anode in the infrared region (5–20 m) is 

influenced by the chemical components of the SEI layer [20], however graphite is known to 

dominate absorption in the infrared region [41], [61]. An optical sensor that functions at 

wavelengths lower than the infrared region would avoid the effect of the dynamic SEI. Studying 

the reflectance of graphite electrodes as a function of wavelength at various lithiation stages is 

essential in the development of an in-situ optical waveguide sensor, which can be embedded in a 

LIB for real-time estimation of SOC. Additionally, this in-situ optical measurement technique, 

which relies on direct interaction between optical waves and the cell electrochemistry, may 

reveal other dynamic changes inside the cell which are not observable through voltage and 

current measurements. Direct measurement data may also be used as a comparative 

benchmarking real-time characterization tool during battery production and used to better 

understand the long-term internal evolution that may affect the stability and life of a battery. 

This chapter reports a study on the reflectance of commercial graphite anodes charged to 

specific states of charge to investigate the dominance of graphite in governing the optical 

properties of a commercial graphite electrode in relation to SOC. Real-time fiber evanescent 

wave spectroscopy (FEWS) was also performed to determine the potential wavelengths that can 

be used to track the lithiation process of a graphite electrode. The optical fiber is tested with 

electrolyte solutions with varying salt concentrations to affirm that the electrolyte does not affect 

its transmittance. 



 

 26 

3.2 Experimental 

3.2.1 Materials 

Commercial cylindrical LiFePO4-graphite cells APR18650M1-B (1.1 Ah) were acquired 

from former A123 Systems Inc. The lithium-ion battery cells were charged to various states of 

charge and then disassembled in an inert environment to obtain the commercial graphite 

electrode samples for reflectance measurements, as described in detail elsewhere [62]. A multi-

mode optical fiber (AFS105/125Y, Thorlabs) etched using a buffered oxide (JT5569-3, VWR) 

was used for in situ fiber evanescent-wave spectroscopy. The optical fiber was embedded in 

batteries fabricated using graphite and LiFePO4 electrodes (MTI Corp.) separated by a 25 m 

trilayer polypropylene-polyethylene-polypropylene membrane (Celgard®). The battery 

electrolyte consisted of a 3:7 (vol %) mixture of ethylene carbonate (BASF) and dimethyl 

carbonate (BASF) with 1 M lithium hexafluorophosphate (LiPF6) (Purolyte®, Novolyte 

Technologies). Solution of electrolyte with varying LiPF6 concentrations (0.25, 0.50, 0.75, 1.00, 

1.25 and 1.75 M) were prepared to test their possible effects on the embedded optical fiber. 

3.2.2 Reflectance Spectroscopy 

The reflectance of the extracted commercial graphite anode samples was measured using a 

fiber optic spectrometer (OceanOptics USB4000) connected to a reflection probe (QR200-7-

VIS-NIR, Ocean Optics) setup at 45o in a customized apparatus with a tungsten halogen light 

source (OceanOptics LS-1). The 45o mount is necessary in order to minimize the effect of 
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specular reflection. The wavelengths measured ranged from 500 to 900 nm.  A summary of the 

procedure is described in Figure 8. 

 

Figure 8: 10 Cylindrical LiFePO4-graphite cells were charged to 30, 35, 40, 45, 50, 60, 65, 

70, 75 and 80 % SOC. Disassembled using a pipe cutter and pliers; the graphite (anode) 

was extracted and rinsed using dimethyl carbonate. Images were taken of each graphite 

sample using a conventional camera and reflectance spectroscopy was performed as seen in 

the schematic. Reproduced in adapted form with permission from [1]. Copyright (2016) 

American Chemical Society. 

3.2.3 In-situ Fiber Evanescent-wave Spectroscopy 

The jacket (polymeric buffer) of a multi-mode optical fiber (AFS105/125Y, Thorlabs) was 

removed mechanically and the cladding was partially etched using a buffered hydrofluoric acid 
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(BHF) solution to a diameter of about ~105 m (see Figure 9); the etched region is the sensing 

region. The etched fiber was embedded inside a custom designed Swagelok cell between the 

graphite electrode and separator (see Figure 10). This configuration allowed the graphite anode 

to act as an “optical cladding” that can absorb from the transmitted spectrum through the 

interaction between the evanescent wave and the graphite layer [63]. The same light source and 

spectrometer as in the reflectance spectroscopy setup were used to produce optical transmittance 

measurements. To study the electrolyte’s influence on the optical fiber, three etched fibers were 

tested using the same setup seen in Figure 10 but instead of a Swagelok cell electrolyte solutions 

with varying LiPF6 (salt) concentrations were used. In addition, to investigate the possible effects 

of the presence of the optical fiber on the graphite anode, six coin cells were fabricated using the 

same materials used in the Swagelok cell assembly, three of which contained multi-mode optical 

fibers (AFS105/125Y, Thorlabs). 
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Figure 9: Scanning electron micrograph of an etched multi-mode optical fiber 

(AFS105/125Y, Thorlabs) and (b) a schematic of the optical fiber with the etched region 

highlighted in red. 
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Figure 10: Schematic of the experimental setup for fiber evanescent wave spectroscopy 

with a detailed illustration of the modified Swagelok cell. Reproduced in adapted form with 

permission from [1]. Copyright (2016) American Chemical Society. 

3.3 Results and Discussion 

Pristine graphite has a relatively low free carrier concentration (10-4 free carriers/atom) at 

room temperature [41]. As Li-ions intercalate and transfer/delocalize their 2s electron into 

graphite’s -band (see Figure 11), the carrier density in the graphite layers adjacent to the lithium 

layers increases [42]. The increase in the free carrier concentration changes the electrical, 

chemical, thermal, magnetic and optical properties of graphite [41]. 
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Figure 11: Schematic diagram of graphite’s lithiation process with electron configurations 

for lithium ions and lithiated graphite; presumed photon scattering mechanism is shown 

with red arrows. Reproduced in adapted form with permission from [1]. Copyright (2016) 

American Chemical Society. 

Optical reflectivity of pure stage phases of lithiated graphite have been studied in the 

literature using highly ordered pyrolytic graphite (HOPG) [39], [41], [43], [64], [65]. The 

reflectance of an amorphous carbon electrode (petroleum coke) has also been investigated during 
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its delithiation process in a prototype half-cell with a pure lithium anode positioned within an 

integrating sphere [44]. These studies form a basis for understanding the results obtained from 

the reflectance spectroscopy of commercial grade graphite anodes that are composed of various 

substructures (i.e., graphite micro-particles covered by an SEI layer, carbon nano-particles 

known as carbon black and carbon fibers) as seen in the scanning electron micrograph in Figure 

12. Considering the sizes of the various substructures, graphite particles are significantly larger 

and dominate the surface of the electrode, while other components such as the carbon fibers may 

dominate other micro-sized regions. This is of significance since it demonstrates that while 

graphite may be in contact with an optical fiber positioned within a battery, the distribution of 

graphite particles near the optical fiber may vary, giving each battery its own interaction 

intensity fingerprint. 
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Figure 12: (a) Scanning electron micrograph of a graphite anode extracted from an 

APR18650M1-B type cell and (b) a schematic illustrating the various substructures present 

on a graphite electrode and their relative size in relation to the investigated range of 

wavelengths. Reproduced in adapted form with permission from [1]. Copyright (2016) 

American Chemical Society. 
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3.3.1 Colorimetry of commercial lithiated graphite.  

The extent of the lithiation of graphite is characterized by the periodic arrangement of 

intercalated Li-ion layers. The number of graphite layers between adjacent layers of Li-ions 

defines the stage numbers based on the Rudorff model [26]. Stage I, II, and III lithiated graphite 

may be identified by their colours, which have been observed to be bright-yellow (golden), red 

and blue respectively. Stage IV and higher are identified with a colour that approaches the black 

colour of pristine graphite [66]. We conducted an initial colorimetry study on the extracted 

commercial graphite anodes to observe the extent of lithiation as SOC varies. Figure 13 shows 

digital images of extracted graphite anodes taken, using a conventional camera, immediately 

after disassembly.  

Figure 13: Images of the extracted graphite anodes at different SOC levels.  Reproduced in 

adapted form with permission from [1]. Copyright (2016) American Chemical Society. 

As SOC increases from 30 to 80 %, the colour of the anode progresses from grey-black to 

red-black. At 40 % SOC, grey is the dominant colour with the occasional blue striation along the 
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length, whereas light-grey is dominant at 50 % SOC, and variations of red and black are 

observed in the extracted graphite anodes at 70 % to 80 % SOC. The light-grey (50 % SOC) tone 

may indicate a gradual progression toward the black colour of pure-graphite associated with 

lithiation Stage IV, also observed by Marie et al. [25]. The presence of grey tones and blue 

striations (40 %) may be indicative of lithiation Stage III. Red tones (70 to 80 %) may suggest 

the attainment of lithiation Stage II. The results support the correlations between the colour of 

the extracted electrodes with their state within the LIB and the dominance of graphite in 

governing the anode optical properties. The absence of bright-yellow colours in the electrode 

samples shown in Figure 13 indicates that the capacity of the graphite anode was designed to be 

greater than that of the cathode in order to prevent full-lithiation (lithiation Stage I) of the 

graphite anode. This design approach can mitigate capacity degradation and fade that would 

occur if graphite is over-lithiated and Li metal is deposited [67]. Some of the extracted graphite 

electrodes deviated slightly from the observed colour trend. Graphite electrode samples were 

obtained from different sections of the disassembled batteries and showed that the 

electrochemical composition varied with position, as reported by Maire el al. [25]. 

While the colorimetry results display the various colours of the electrode at various SOC 

with an observed trend but positional dependency, reflectance spectroscopy provides a more 

accurate measurement of the specific wavelengths reflected from the electrode surface. The 

qualitative colour description of graphite described here is quantitatively characterized utilizing 

reflectance spectroscopy in the next section. 
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3.3.2 Reflectance Spectroscopy: Visible and Near Infrared Wavelengths.  

The optical reflectivity of lithiated graphite has been observed to resemble that of metals, 

where a drop in reflectivity is observed at a specific frequency (plasma frequency 𝜔𝑝) known as 

the Drude edge [41]. The Drude edge occurs when photons are absorbed by free electrons, which 

then oscillate causing a significant drop in reflectivity, as described by the Drude model. 

Reflectivity increases as the frequency of the photons decreases below the 𝜔𝑝. The process of Li 

intercalation increases the carrier density in graphite and shifts the 𝜔𝑝 to higher frequencies (i.e., 

smaller wavelengths) [41]. The results of reflectance spectroscopy performed on the graphite 

anode using the system described in Figure 8 for wavelengths ranging from 500 nm to 900 nm 

are shown in Figure 14.  

 

Figure 14: Reflectance spectroscopy measurements of commercial graphite anodes. 

Reproduced in adapted form with permission from [1]. Copyright (2016) American 

Chemical Society. 
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These results were obtained from a macro sized area on the order of 5 millimeters. This area 

is much larger than that of the individual sub-structures found in a graphite electrode seen in 

Figure 12. Hence, the measured reflectance is a macro-measurement. Positional dependency was 

observed in colorimetry, which may have arose due non-homogeneities on the electrode surface 

caused by the fabrication process [25]. As a result, the single spot reflectance spectroscopy 

measurements presented here represents a local macro reflectance that is characteristic of the 

composition, sub-structures and local state of lithiation. The optical properties are also known to 

be highly anisotropic, where the outcome of a light wave propagating parallel to the graphite 

sheets would be different than one propagating perpendicularly [41]. Thus the local bulk 

reflectance may be distinguished from an ideal homogenous electrode and a pure-phase lithiated 

graphite such as the ones synthesized by Basu et al. [39]. 

The reflectance spectrum for the commercial graphite anode at 30–60 % SOC in Figure 14 

displays more prominent reflectance of green (500 nm), yellow (590 nm) and near infrared (NIR) 

(885 nm). From 60 – 80 % SOC, NIR and red (750 nm) reflectance increases significantly while 

yellow and green decrease. At 70 – 80 % SOC, reflectance of red dominates relative to the other 

visible colours. This reaffirms the observed red colour of the colorimetry images obtained from 

the graphite anode charged to 75 and 80 % SOC (see Figure 13). The results therefore indicate 

that higher wavelengths toward NIR are more sensitive to SOC.  

Over the range of wavelengths investigated, a shift in the reflectance minima λmin, is 

observed. As SOC increased the density of free electrons increase and cause the λmin to occur at 

higher frequencies, as specified by the Drude model that relates the λmin to the free electron 
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density [41]. The general reflectance spectrum of the extracted graphite anodes obtained in this 

work show notable differences compared to the in-situ diffuse reflectance spectrum of the less 

ordered lithiated petroleum coke powder reported by Xie et al. [44]. It is critical to note that the 

extracted graphite anodes theoretically could only be charged to about 170 mAh g -1, which is the 

theoretical capacity of the cathode (LiFePO4). To draw a comparison between the results 

reported for the in-situ diffuse reflectance study by Xie et al. we assume that 30 to 80 % SOC is 

equivalent to about 50 to 140 mAh g-1. At 800 nm between 30 – 60 % SOC (50 – 104 mAh g-1) 

the extracted graphite anode exhibited a minor decrease in reflectance followed by a steady 

increase with varying slopes, while petroleum coke showed a gradual decrease in reflectance. At 

higher states of charge (>60 %) graphite displayed a significant increase in reflectance at 800 

nm. Petroleum coke also displayed a significant increase in reflectance at higher SOC, which has 

been attributed to the increase in free carrier concentration [44]. The reflectivity studies done on 

pure-phase LiC6 and LiC12 by Basu et al. also show an increase in reflectance but comparing the 

results of highly lithiated pristine surfaces would be an extrapolation. These results support the 

conclusion that graphite in a commercial graphite anode has a large impact on the reflectance of 

the anode for wavelengths ranging from 500 to 900 nm, even with the existence of sub-

structures, with the highest change observed at higher wavelengths.  

3.3.3 Fiber Evanescent-Wave Spectroscopy.  

In order to enable in-situ optical characterization of the graphite anode, fiber evanescent 

wave spectroscopy (FEWS) was chosen. FEWS provides a cost-effective, real-time, non-

destructive and robust method to optically interrogate a harsh environment such as the anode of a 
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cell. Considering that the lithiation of graphite has been observed to change the degree of 

absorption and scattering of light as shown in Figure 14, FEWS allows for sensing changes at the 

interface between the fiber and the active material that undergoes a shift in optical properties 

[63]. Thus, changes in the optical properties of a graphite anode due to lithium intercalation can 

be measured and externally interrogated. 

As shown in Figure 15, the FEWS sensor used in this work is a multimode fiber with an 

etched region where the cladding is thinned out to allow the evanescent wave to escape. This 

evanescent wave interacts with the material surrounding it. Depending on the refractive index 

and absorbance of the material, it modulates the intensity of the light coupled back into the 

carrier fiber. The intensity of the evanescent wave from a waveguide is a function of the 

refractive index of the cladding material and the distance from the core-cladding interface. Thus, 

the intensity of the evanescent wave incident on the electrode can be controlled by controlling 

the thickness of the remaining cladding. A thinner cladding allows a higher degree of evanescent 

wave coupling with the surrounding material while a thicker cladding reduces the evanescent 

wave coupling. In our case, the thickness of the cladding is engineered so that we can obtain a 

representative readout from a relatively long sensing length. Owing to the high absorptivity and 

scattering properties of the graphite electrode, a thinner cladding would increase the absorbance 

of the FEWS, thus decaying the intensity of the emitted light. Thicker cladding would reduce the 

interaction of the evanescent wave with the material being sensed (i.e., the graphite anode). 

Hence, this engineered cladding thickness allows for a sensor to sense changes in the graphite 

over the entire length of the anode electrode of 0.8 cm without complete attenuation of the 
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optical signal due to absorption by graphite. As a battery charges the electrodes undergo volume 

change [68] that produce a strain [69] within a battery. The graphite electrode expands during 

charging, which could decrease the optical fiber signal if significant micro-bending [70] occurs.  

Hydrofluoric acid (HF) forms in a battery when the common salt LiPF6 decomposes into LiF 

and PF5, which can react with water to produce PF3O and HF [71]. Since this reaction degrades 

the battery, it is therefore essential to avoid water during the battery fabrication process to 

prevent HF formation. The cladding thickness of an optical fiber could potentially be altered 

through etching if sufficient amount of HF forms within the battery during operation. Although 

measures have been taken to avoid HF formation, higher loss in the transmittance signal might 

be observed if HF does form during the long term operation of a battery and etches some of the 

cladding. Further development of the FEWS optical fiber system implemented as a sensor should 

consider variations in the transmittance due to possible deterioration of the cladding in the 

presence of HF during long term cycling of a battery. 
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Figure 15: Illustration of a FEWS sensor and illustration of standing wave pattern and 

exponentially decaying evanescent wave. Reproduced in adapted form with permission 

from [1]. Copyright (2016) American Chemical Society. 

In the modified Swagelok cell, the optical fiber covers a region of about 1.7 % of the graphite 

electrode. This region can be considered negligible in relation to the total graphite electrode size 

to produce an observable effect on the overall capacity of the cell. However, the optical fiber 

does apply a slight increased pressure on the graphite immediately beneath it as the outer current 

collectors apply a pressure on both sides of the optical fiber (see Figure 10). Depending on the 

extent of the applied pressure, the electrodes kinetics may be affected due to the reduction in the 

space between particles, which reduces the interaction between the graphite particles and the 

electrolyte [72, p. 2]. To overcome and minimize any possible effects on the kinetics of the 

graphite electrode, a low applied current of 0.1C was used. Further development in the 

implementation of an optical fiber sensor within a commercial battery will require 
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reconfiguration of the optical fiber within the battery to eliminate/minimize variations in 

pressure. It should be also noted that for the purpose of this work, the magnitude of the electric 

field produced by the amount of light transmitting through the optical fiber was not considered to 

significantly affect the lithiation of the battery when compared to the electric field generated by 

the battery’s electrodes. 

The battery electrolyte present at the interface between the optical fiber and the graphite 

electrode may interfere with the FEWS measurements in two possible ways. The first one is a 

possible constant loss (i.e. baseline shift) in the transmittance due to its presence. The second one 

might be related to the change in salt concentration during battery operation and its effect on the 

electrolyte optical properties. During charging and discharging, the electrolyte salt concentration 

deviates near the graphite particles from the initial 1 M as lithiation occurs, the degree of 

deviation depends on the magnitude of applied current [53]. To determine the effect of the 

electrolyte, FEWS optical fibers were positioned in an electrolyte solution with a salt 

concentration of 1 M LiPF6 and also in air using the same setup found in Figure 10. For 

wavelengths ranging from 500 to 893 nm, the average transmittance loss was 0.20 % in the 

presence of electrolyte when compared to air. These results indicate that the electrolyte does not 

cause a significant loss in the transmittance when the battery is at equilibrium. To determine the 

effect of the electrolyte under non-equilibrium conditions, electrolyte solutions with salt 

concentrations ranging from 0.25 to 1.5 M LiPF6 were also used. The resulting transmittance was 

measured for wavelengths ranging from 500 to 893 nm and plotted in Figure 16. The results 

show that the electrolyte does not significantly affect the transmittance of the optical fiber, with a 
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maximum observed transmittance change not exceeding 1.0 %. They also indicate that the 

electrolyte acts in the same way as the fiber cladding by allowing evanescent waves to pass 

through and interact with the graphite electrode. 

 

Figure 16: Percentage of transmittance of wavelengths ranging from 500 to 893 nm 

through etched optical fibers placed in electrolyte solutions (3:7 (vol %) ethylene carbonate 

and dimethyl carbonate) containing LiPF6 concentrations ranging from 0.25 to 1.5 M. 

(Reference point was measured at 1 M LiPF6). Reproduced in adapted form with 

permission from [1]. Copyright (2016) American Chemical Society. 

 

FEWS transmittance measurements were made using a tungsten halogen light source setup as 

shown in Figure 10. The results were then normalized at every discrete wavelength using the 

equation ∆𝑇 𝑇−1 = (𝑇 − 𝑇𝐹𝑖𝑛𝑎𝑙) 𝑇𝐹𝑖𝑛𝑎𝑙
−1 , where 𝑇 is the measured transmittance and 𝑇𝐹𝑖𝑛𝑎𝑙 is the 
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transmittance when the cell was fully discharged. This was completed for wavelengths ranging 

from 500 nm to 900 nm and plotted in Figure 17. 

 

Figure 17: Embedded optical fiber normalized transmittance measured during graphite 

delithiation in a Swagelok cell as described in Figure 10. Reproduced in adapted form with 

permission from [1]. Copyright (2016) American Chemical Society. 

The transmittance was measured using the above described FEWS sensor in direct contact 

with a coin-shaped graphite electrode with 0.8 cm diameter and a total capacity of 308 mAh g-1 

measured based on parameters obtained from the manufacturer and half-cell testing. The 

Swagelok cell was assembled in-house in a full cell configuration in which the total capacity of 

the cell relied on the capacity of the limiting electrode (LiFePO4). This resulted in a total first 

charge capacity of 160 mAh g-1 (cell potential, 3.7 V) when a current of 0.1C was applied. Since 
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an SEI formed during the first charge, some capacity was lost resulting in a discharge capacity of 

115 mAh g-1 (cell potential, 2.5 V), which corresponds to a first cycle efficiency (FCE) of about 

72 %. To verify that this loss is not just a phenomena observed in the modified Swagelok cell, 

the six coin cells fabricated with and without (reference cells) optical fibers of the same 

dimensions as the one used for the Swagelok were tested. The testing was performed by 

comparing the first cycle efficiency (FCE) of these two types of coin cell configurations. The 

reference coin cells showed FCEs of 74, 76 and 84 %. The coin cells containing the optical fibers 

had FCEs of 81, 83, and 84 %. These results were all within the range of expected variability in 

the FCE and can be mainly attributed to variations in the applied pressure used in the coin cells 

during fabrication since an increase in pressure is known to accelerate capacity fade [73]. The 

slightly lower FCE of 72 % measured in the Swagelok cell can be therefore attributed to the 

higher pressure conditions caused by the degree of turning of the Swagelok nut. 

Considering that the discharge capacity was 115 mAh g-1 based on coulomb counting, it can 

be stated that the graphite anode was lithiated to about 40 % of its total capacity. Comparing this 

percentage to the general capacity of graphite vs. Li/Li+, it is inferred that the graphite reached 

stage III (LiC18) and approached stage II (LiC12) when the cell was fully charged. Hence, the 

achieved lithiation stage in the in-house Swagelok cell is slightly lower than the lithiation stage 

attained by the commercial cylindrical cells. 

The normalized transmittance plotted in Figure 17  corresponds to a delithiation (i.e. 

discharge) only, since noise was observed during the initial charge, which may be attributed to 

the formation of the SEI layer. As the Swagelok cell was discharged, a gradual decrease in 
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transmittance was observed with larger changes observed at the higher wavelengths. The 

transmitted wavelengths closely follows the trend observed in colorimetry as well as the 

reflectance measurements since the transmission of red shows the highest increase with SOC. 

Since transmittance increased with SOC, volume change of graphite particles does not seem to 

produce significant micro-bending to cause a decrease in the transmittance.  

The direct correlation between the SOC and the transmitted signal in the red and near-IR 

region demonstrates the basis for a novel method to characterize the optical properties of the 

electrode in real-time as a function of the SOC. This allows for in-line monitoring of the optical 

properties of the battery electrodes which can then be correlated to the SOC. It should be noted 

that the transmittance of the FEWS is sensitive mainly to the outer surfaces of the graphite 

particles. Therefore the transmittance of the optical fiber is directly related to the lithium 

concentration at the surface of the electrode. The saturation/depletion of lithium at the surface of 

the graphite particles will produce the same transmittance measurements at any given rate. 

However, the limits to graphite lithiation and lithium migration would remain the same, as it is a 

material property [74]. Once the current stops, lithium may undergo migration within the particle 

and the transmittance measurement would change accordingly. The method of using an optical 

fiber is therefore adaptive to the applied current and might indicate the limitation of the actual 

material during cycling. Further studies are required to properly model the correlation between 

the optical properties of the electrodes and their electrochemical properties. Additionally, testing 

its reliability/feasibility when embedded within a battery system is required to determine its 

accuracy in estimating SOC over many cycles and varying rates of charge and discharge. 
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3.4 Conclusions 

The optical changes of commercial graphite anodes were studied using lithium ion battery 

cells charged to 30, 35, 40, 45, 50, 60, 65, 70, 75 and 80 % SOC. The results through colorimetry 

support the dominance of graphite particles in governing the color of graphite anodes and that 

stage 2 lithiation (LiC12) is the maximum lithiation stage achieved in this given battery 

configuration. The optical changes were also quantitatively studied by analyzing the reflectance 

of visible and infrared light (500 – 900 nm). The trends observed in the reflectance of the 

commercial anode in comparison to pure-phase lithiated graphite materials, also supports the 

dominance of graphite in governing the reflectance of graphite-based anodes. The results of the 

reflectance study of lithiated graphite demonstrate a direct correlation between the state of 

charge and the measured reflectance at wavelengths ranging from 750 – 900 nm (near-infrared 

band). In-situ fiber evanescent-wave spectroscopy, or FEWS, using wavelengths ranging from 

500 – 900 nm was completed using a modified Swagelok cell. The FEWS results demonstrate a 

trend that closely follows the reflectance of the extracted commercial graphite anodes. They also 

demonstrate the ability to measure SOC with an optical fiber embedded in a graphite anode 

within a LIB. Further sensitivity and durability studies of the FEWS optical fiber system 

implemented as a sensor will be required to determine its accuracy in measuring SOC in LIBs in 

comparison to other conventional methods.  
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4. Optimization of Embedded Fiber Optic Evanescent Wave Sensors for 

Optical Characterization of Graphite Anodes in Lithium-Ion Batteries 

This chapter is reprinted in adapted form with permission from [18] 

A. Ghannoum, P. Nieva, A. Yu, and A. Khajepour, “Development of Embedded Fiber-Optic 

Evanescent Wave Sensors for Optical Characterization of Graphite Anodes in Lithium-Ion 

Batteries,” ACS Appl. Mater. Interfaces, vol. 9, no. 47, pp. 41284–41290, Nov. 2017. 

Parts of this chapter is reprinted in adapted form with permission from [17] 

A. Ghannoum, K. Iyer, P. Nieva, and A. Khajepour, “Fiber Optic Monitoring of Lithium-Ion 

Batteries,” in IEEE SENSORS 2016 Proceedings, Orlando, FL, USA, 2016, pp. 868–870. © 

2016 IEEE. 

4.1 Introduction 

Optical fibers utilizing evanescent waves as a sensing mechanism have been used in various 

applications [75]–[79] due to their fast response, selectivity and durability [80]. In the previous 

chapter, a correlation between the degree of lithiation of commercial graphite anodes and the 

reflectance as measured by fiber-optic evanescent wave spectroscopy (FEWS) was demonstrated 

[1]. The spectroscopy results demonstrated significant increase in transmittance in the near-

infrared band (i.e., 750–900 nm) when graphite was lithiated electrochemically. This illustrated 

that changes in the optical properties of graphite during lithiation can be observed using a FEWS 

[1]. This discovery allows for the simplification of the fiber-optic evanescent wave sensor’s 
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(FOEWS) interrogation system, whereby a photodetector sensitive to near-infrared wavelengths 

can be utilized instead of a costly spectrometer to monitor a LIB [12]. The lithium content of a 

graphite anode is directly related to the SOC of LIB. The transmittance intensity of a FOEWS, 

which is affected by the lithium content in graphite, can hence be used to estimate the SOC of a 

battery. Capacity fade in a LIB results in a decrease in the range of lithiation/delithiation of 

graphite; this results in a decrease in the amplitude of the FOEWS’s transmittance. This implies 

that the amplitude of the transmittance can be correlated to the state of health (SOH) of a battery.  

The LIB environment can be considered a delicate but also a chemically harsh environment 

containing an anode, cathode, separator and electrolyte. Overcharging, excessive external stress, 

and contamination due to poor assembly can all lead to capacity fade by allowing lithium 

deposition, electrode detachment, electrolyte decomposition (side reactions) or separator pore 

size reduction[67], [73], [81], [82]. Consequently, it is essential that the assembly of a battery is 

studied and optimized when introducing a new component to the battery environment such as a 

fiber optic sensor. In this chapter, the development, embedding and performance characterization 

of the FOEWS are considered. Different etching solutions are studied in their ability to produce 

durable fiber optic sensors. The method of embedding the FOEWS into the LIB and its 

characterization have been developed to ensure maximum battery cell life and improved sensor 

sensitivity. The minimal capacity fade observed in all studied LIBs with embedded FOEWS, also 

demonstrates its commercial feasibility. 
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4.2 Experimental 

4.2.1 Materials 

The LIB sensor was fabricated using a step index multi-mode optical fiber (AFS105/125Y, 

Thorlabs) with a core and cladding diameter of 105 m and 125 m, respectively. The fiber was 

etched using both 49 % hydrofluoric acid (HF, JT9564-6, VWR) and buffered oxide etchant 

(JT5569-3, VWR). The ends of the FOEWSs were connectorized using universal bare fiber 

terminators (BFTU, THORLABS) with connectors (B10125A, THORLABS) attached. Glycerol 

(GX0185-2, EMD Millipore) was used to characterize the FOEWS’s etched cladding prior to 

battery testing. Swagelok cells and pouch/prismatic cells were fabricated using graphite and 

LiFePO4 electrodes (MTI Corp.) and a trilayer polypropylene-polyethylene-polypropylene 

membrane (Celgard) as a separator. The electrolyte consisted of a mixture of 1:1 (vol %) 

ethylene carbonate (BASF) and dimethyl carbonate (BASF), with 1 M lithium 

hexafluorophosphate (Purolyte®, Novolyte Technologies) as a salt. A graphite electrode slurry 

was prepared for embedding the sensors, which consisted of 26 % solids and 74 % liquid. The 

solid composition was 85 % graphite (43209, Alfa Aesar), 10 % poly(vinylidene fluoride) 

(182702, Sigma-Aldrich) and 5 % carbon black (Lib-SuperP, MTI Corp.), while the liquid 

composition was 100 % N-methyl-2-pyrolidone. An ethylene-vinyl acetate polymer-based hot 

melt adhesive (PLIB-HMA8, MTI Corp.) strip was attached to the sensors to ensure a proper seal 

during pouch cell fabrication. 
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4.2.2 Sensor/Battery System Preparation 

The optical fibers were initially stripped to remove the polymer jacket surrounding the fiber 

using a mechanical and chemical process. A fiber stripper (ThorLabs T06S13) was first used to 

form a discontinuity on the fiber in the sensing region. This discontinuity was then immersed in 

acetone to allow the jacket to swell and delaminate from the underlying silica fiber. The polymer 

jacket was wiped away using lab wipes (VWR Spec-Wipe). This process ensured that the fiber 

experienced minimal amount of surface stress. When the jacket was removed exclusively by 

mechanical means, cracks and irregularities formed.  

Once the polymer jacket was removed successfully, the unjacketed fibers were mounted in a 

custom fixture to hold them in place with the unjacketed portion left unexposed on the bottom. 

The fixture was then placed in a polypropylene beaker (1201-0250, NALGENE) (Figure 18a) 

containing buffered oxide etchant (J.T. Baker Buffered Oxide Etchant 5569). The fiber was 

allowed to etch in the buffered oxide. The etched fiber was then thoroughly rinsed using water 

and iso-propyl alcohol [1], [17]. The fiber was then observed under an optical microscope to 

obtain a rough estimate of the diameter and examine its surface for any defects such as cracks or 

undulations. Acceptable fibers obtained were then empirically characterized using glycerol. The 

primary performance metric used for this characterization method was the transmittance loss of 

the fiber immersed in glycerol compared to air. For this test, the fiber was temporarily 

connectorized (ThorLabs BFTU) and connected at one end to an LED light source (Vishay 

VSLY5850) driven at a constant current using a power supply (Agilent E3646A). The other end 

was connected to an InGaAs photodetector (Thorlabs DET10C) hooked up to an oscilloscope. 
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The voltage output read by the oscilloscope was correlated to the transmittance of the light sent 

through the optical fiber. The baseline transmittance of the fiber was measured in air. Low 

transmittance in air was indicative of cracks or gaps in the fiber. Fibers with low transmittance 

were discarded and fibers with high transmittance were immersed in glycerol. The reduction in 

transmittance due to glycerol was compared (as a percentage) to the transmittance in air and 

defined as the “fiber loss” [17].  

The Swagelok assembly configuration was described in Section 3.2.3 [1]. Sensors used in 

pouch cells had two hot melt adhesive strips (MTI Corp.) attached about 3 cm from the center of 

the sensor to ensure a hermetic seal. The graphite/LiFePO4 electrodes were cut into 3 cm by 2 cm 

rectangles and 1 cm by 2 cm of active material was removed to obtain square electrodes (2 cm by 

2 cm). The region with the removed electrode material was reserved for current collecting tabs 

that were spot-welded (Figure 18b). Aluminum tabs (PLiB-ATC4, MTI Corp.) were used for the 

positive electrode (LiFePO4) and nickel tabs (PLiB-NTA3, MTI Corp.) were used for the 

negative electrode (graphite). The separator was then placed between the electrodes and the 

sensor was positioned between the graphite electrode and separator. The stack was then 

sandwiched between two laminated aluminum sheets (alf-100-210, MTI Corp.) (Figure 18c). 

Three sides were sealed using a heat sealer (MSK-140, MTI Corp.). The open end was used to 

introduce electrolyte inside a glove box and then sealed using a Compact Vacuum Sealer (MSK-

155A, MTI Corp.). The pouch was then placed on a 3D printed case to be held for testing (Figure 

18d). A pouch cell with an embedded sensor was prepared by placing the sensor on the graphite 

electrode, pouring a slurry of graphite on top to envelop the sensor and then leaving it to air-dry 
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in a fume hood. The batteries were then cycled using an eight-channel battery analyzer (BST8-

WA, MTI Corp.) and the optical signal recorded using a custom optical sensor interrogator 

(OSI).  

The OSI consisted of a narrow band LED concentrated at 850 nm (Optek OPF370) that was 

driven at a constant current using a temperature-compensated low-dropout regulator. This LED 

was placed in a connector that allowed it to be mated to the sensor. The other end of the fiber 

sensor was also connected to the OSI. A silicon photodetector (Optek OPF480) was used to 

receive the intensity signal from the fiber sensor. The photodetector signal was then passed 

through a transimpedance amplifier (TI TLC2272) and the voltage output from this amplifier 

was fed into a 16 bit analog-to-digital convertor (ADC) (Microchip MCP 3427). The ADC 

passed the digital signal over I2C to a microcontroller. This microcontroller then converted this 

I2C signal into an actual voltage which could be read/recorded/plotted by a computer [17].  
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Figure 18: An overview of pouch cell with optical fiber sensor preparation process starting 

with a. optical fiber etching, b. spot welding of the current collectors to the electrodes and 

c. stacking the battery components (laminated aluminum, cathode, separator, anode and 

second laminated aluminum layer). d. Final assembled pouch cell with a connectorized 

FOEWS [18]. Copyright (2017) American Chemical Society. 

4.3 Results and Discussion 

4.3.1 Fabrication of Fiber Evanescent Wave Sensors 

Etching of optical fibers using HF concentrations ranging from 48 to 52 wt % was done in 

the past to reduce the fiber diameter [83]. We first examined the use of a 49 wt % HF solution to 

etch the fluorine-doped silica cladding from the sensing region of the FOEWS. However, the 
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resulting sensor was fragile as it broke easily during handling and battery fabrication. In addition, 

the FOEWSs prepared using 49 wt % HF were found to have non-uniform surfaces as seen by 

scanning electron microscopy (SEM) (Figure 19a). Circular pits on the surface with diameters 

ranging from 3 to 25 m were also observed. 

 

Figure 19: SEM micrograph of fiber optic evanescent wave sensors (FOEWS) etched using 

(a) concentrated HF (49 %) and (b) BHF (6:1 ratio of NH4F to HF) [18]. Copyright (2017) 

American Chemical Society. 

Etching solutions consisting of 6:1 to 10:1 mixtures of 40 wt % ammonium fluoride (NH4F) 

and 49 wt % HF are utilized extensively to etch silica in the semiconductor industry and referred 

to as buffered HF (BHF) [84]. A 6:1 mixture (i.e. 34.3 wt % NH4F and 7.0 wt % HF) was tested 

and found to produce FOEWS that could withstand the LIB fabrication process. As seen in 

Figure 19b, FOEWS prepared using BHF were observed to have smoother surfaces. The 

observed difference between the two fibers is believed to be due to the variation in the etching 

mechanism. The solution with higher concentration of HF etches more quickly [84] and favors 
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HF2
− reactions with silica [85]. The second solution containing NH4F however, had  higher pH 

and favored HF reactions with silica over HF2
− during the etching process [85]. The mechanism 

resulting in the non-uniformity in the fabricated FOEWSs is beyond the scope of this thesis, but 

the results indicate that using BHF solutions produces FOEWSs with higher durability, 

increasing the throughput of the sensor/battery fabrication process. 

4.3.2 Fiber Optic Evanescent Wave Sensors in LIBs 

Two LIB configurations were used with the developed FOEWS and tested: (1) Swagelok and 

(2) in-house pouch cell, as shown in Figure 20. The Swagelok configuration allows for repeated 

testing of the same FOEWS since the cell can be disassembled and the electrodes replaced. With 

careful handling, a sensor can be tested up to three times within one Swagelok cell. 

Theoretically, the FOEWS should not break but because the assembly takes place in a glove box, 

handling can be difficult. 

 

Figure 20: The FOEWS in two LIB configurations: (a) Swagelok and (b) pouch cell. Both 

cells contained three layers: 1. graphite electrode 2. separator 3. lithium iron phosphate 

(LiFePO4), with a fiber optic sensor positioned on the graphite electrode [18]. Copyright 

(2017) American Chemical Society. 
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The Swagelok cell was reported to have a low first cycle efficiency (FCE) of 72 %, attributed 

to the higher pressure conditions within the cell when compared to those in other configurations 

such as coin cells [1]. It was difficult to precisely control the applied pressure because it 

depended on the tightness of the Swagelok nuts. However, decreasing the degree of turning 

would increase the risk of contamination by air. Hence, a second generation of Swagelok cells 

was fabricated by reducing the applied pressure and keeping them in an inert environment to 

avoid air contamination. With these precautions, a FCE of 83.2  3.00 % was achieved, which is 

comparable to the reported FCE of coin cells tested with the same electrodes [1]. Graphite 

electrodes were extracted from the Swagelok cells after cycling and examined by SEM to 

observe the structural effect of the FOEWS on the graphite electrode. As seen in Figure 21Figure 

8, a “trench” was formed on the graphite electrode in the region where the FOEWS was 

positioned covering about 1.7 % of the entire area. The increased strain in this trench was 

expected to cause a variation in the performance of the electrode in the region below the sensor 

compared to the bulk region [73]. This variation could cause the sensor signal to primarily reflect 

the local region, but could be correlated to the overall SOC as the local strain is constant (i.e. 

lithiation/delithiation dynamics are constant). For preliminary testing, the Swagelok 

configuration was considered ideal but not sufficient for long term testing due to observed 

capacity fade after several cycles. 
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Figure 21: SEM of a graphite anode extracted from a Swagelok cell that has completed two 

cycles, demonstrating the trench formed by the presence of a FOEWS on the graphite 

electrode [18]. Copyright (2017) American Chemical Society. 

For improved pressure control, reduced capacity fade and increased packing efficiency, the 

pouch cell configuration shown in Figure 20b was chosen over prismatic and cylindrical cells. 

The incorporation of a FOEWS requires the use of a polymer-based hot melt adhesive around the 

optical fiber exit points from the pouch cell to avoid air from seeping into the pouch [17]. 

Moisture in the air reacts with the salt LiPF6 to form PF3O and HF that would cause battery 

degradation [71]. As a battery cycles, the applied pressure on the electrodes increases during 

charge and decreases during discharge due to volume change [73]. The assembled pouch cells 

were hence placed in custom housings to apply an initial pressure of 4 psi promoting uniform 

current distribution and minimizing rippling of the electrodes resulting in lower capacity fade 

[73]. Using this in-house pouch cell configuration, a FCE of 87.2  2.5 % was achieved, which 
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exceeded the performance of both the coin cells and second generation Swagelok cells with the 

same electrode material. Electrodes from the in-house pouch cells were also examined using an 

SEM to determine the degree of deformation caused by the presence of the FOEWS. As seen in 

Figure 22, the graphite electrode in the pouch cells did not undergo significant deformation as 

compared to the Swagelok cells, which demonstrates that the Swagelok cells were cycling at a 

larger applied pressure promoting an increase in the rate of capacity fade. However, the area of 

the FOEWS interfacing with the graphite anode in the pouch cell is smaller, since the 

deformation and indentation occurring in the electrode are smaller as seen in Figure 22. 

 

Figure 22: SEM micrographs of the region where the FOEWS was positioned (between the 

dotted lines) on the graphite anode extracted from (a) an in-house pouch cell and (b) a 

Swagelok cell [18]. Copyright (2017) American Chemical Society. 

To maximize the interaction between the FOEWS and the graphite electrode a slurry of 

graphite was prepared to completely embed the FOEWS (see Figure 23). Embedding the sensor 

allowed for easier pouch cell assembly since the sensor was fastened to the graphite electrode. In 
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an industrial process, this would ensure higher throughput in a production line. The three tested 

configurations are illustrated in Figure 24, where the sensor in the Swagelok cell sits deeper into 

the graphite electrode when compared with the pouch cell, as observed by the larger trench in 

Figure 22. However, the embedded sensor is positioned on top of the original electrode with a 

layer of added slurry to encompass the sensor’s diameter. The results from testing the three 

configurations are discussed in the next section. 

 

Figure 23: SEM micrograph of prepared graphite slurry for embedding the FOEWS 

sensor [18]. Copyright (2017) American Chemical Society. 
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Figure 24: Schematic illustration of the cross-section of the FOEWS positioned within the 

graphite anode in (a) Swagelok cell (based on Figure 22b), (b) pouch cell (based on Figure 

22a) and (c) pouch cell with added slurry (Figure 23) to embed the sensor [18]. Copyright 

(2017) American Chemical Society. 

4.3.2 Fiber Optic Evanescent Wave Sensor Transmittance and Glycerol Testing 

The fabrication of FOEWS for LIBs requires a validation step to ensure the etched optical 

fibers are functional and sensitive to changes within the battery. Many sensors were fabricated 

and tested with 100 % glycerol to ensure that the optical fibers are not over-/under-etched and to 

correlate the transmittance loss in glycerol to the sensor sensitivity in a LIB. Transmittance 

through an optical fiber relies on the refractive index difference between the core of the fiber and 

the cladding (i.e., the layer around the core); the core’s refractive index must be higher than the 

cladding to allow total internal reflection to occur [86]. Adding a temporary layer of glycerol on 

the etched sensors would indicate if the cladding still exists on the fiber and the condition for 

total internal reflection still exists since the refractive index of glycerol (i.e., 1.4656 at 850 nm 
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[87]) is higher than the refractive index of the core (silica) (i.e., 1.4525 at 850 nm [88]). If a 

cladding does not exist 100 % loss in transmittance is observed when glycerol is placed on the 

etched fiber, which translates to a sensor with no signal in a battery. Etched FOEWS with about 

85 to 96 % loss in glycerol were tested in LIBs. To compare the various cells, the LIBs were 

cycled from 0 to 100 % SOC based on the battery voltage limits (i.e., 2.5–3.7 V), while 

recording the optical transmittance through a FOEWS. The sensor’s baseline (i.e., transmittance 

at 0 % SOC) differed between the various batteries due to variation in the contact area, optical 

fiber coupling and cladding thickness. To compare the results, the sensors’ sensitivities were 

determined using the following expression, [transmittance at 100 % SOC – transmittance at 0 % 

SOC)/ transmittance at 0 % SOC] and were correlated to the FOEWSs’ transmittance loss in 

glycerol (see Figure 25). 
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Figure 25: Fiber optic evanescent wave sensor sensitivity in relation to the loss in 100 % 

glycerol. The presented results include all three configurations (swagelok cells (Figure 24a), 

pouch cells (Figure 24b) and sensors embedded within the graphite electrode in a pouch 

cell (Figure 24c)) [18]. Copyright (2017) American Chemical Society. 

Based on the results in Figure 25, the Swagelok and pouch cells with and without embedded 

sensors demonstrated the highest sensitivity when the sensor transmittance loss in glycerol was 

about 92.0, 93.5 and 92.0 %, respectively. However, since only two pouch cells with embedded 

sensors were tested, we conclude that FOEWS with about 92.0 % loss in glycerol achieve the 
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highest sensitivity in a LIB on the basis of the other two configurations. In the same figure a 

scatter was observed in the Swagelok cell results, which can be attributed to the variation in 

pressure between the cells, since the depth of the trench is dependent on the pressure applied 

during assembly. The deeper the trench, the larger the interaction between the FOEWS and the 

graphite electrode, increasing the sensitivity of the sensor. This also explains the reason why the 

sensors in the Swagelok cells had larger sensitivity than the pouch cells as seen by the trench size 

difference in Figure 22. Embedding the sensor completely within the graphite electrode as 

illustrated in Figure 24c within a pouch cell resulted in the highest sensitivity, which can also be 

seen when comparing the full cycle transmittance of all three configurations (swagelok cell, 

pouch cell and pouch cell with an embedded FOEWS) (see Figure 26). The relative sensor signal 

change was determined by shifting all transmittance measurements to start at 0 at 0 % SOC and 

dividing the transmittance measurements by the initial transmittance at 0 % SOC as a point of 

reference to permit comparison between all three configurations.  
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Figure 26: Full charge and discharge transmittance for all three configurations (swagelok, 

pouch and pouch with an embedded sensor). Relative sensor signal change is equal to 

[(T-To)/To], where 𝑻 is the transmittance and 𝑻𝒐 is the transmittance at 0% SOC [18]. 

Copyright (2017) American Chemical Society. 

The transmittance through the FOEWS was observed to increase when the battery is charged 

in all three configurations following a similar trend. The slope in the charging signal 

significantly decreased as the battery approached 62.5 % SOC. This may indicate the limit of 

interaction of the sensor with the graphite particles, due to the sensing depth [89] or the decrease 

in lithiation activity in the local region [25] of the FOEWS. During discharge, the transmittance 

was observed to decrease more steadily as lithium deintercalated, indicating a steady change in 

the graphite particles surrounding the FOEWS during discharge unlike charging. To investigate 

this further, a method to embed multiple fibers within one graphite electrode in different 
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locations/depths is required for complete characterization of the graphite anode. Nevertheless, 

the current observed trend in the signal from an embedded optical fiber within a pouch cell can 

be used to estimate SOC based on the optical changes within a LIB. Further development in the 

embedding process of FOEWS will allow the use of such sensors in cylindrical cells and further 

promote their commercial use in many more applications. 

4.4 Conclusions 

The process of fabricating fiber optic evanescent wave sensors and integration of the sensors 

into Swagelok and pouch battery cells has been presented. A method for characterization to 

achieve higher sensitivity and higher efficiency in the battery performance has been developed. 

The experimental results demonstrate that a buffered hydrofluoric solution of 40 wt % 

ammonium fluoride (NH4F) and 49 wt % hydrofluoric solution (6:1) is superior to a solution of 

49 wt % hydrofluoric acid for the cladding etching process during sensor fabrication. A 

qualitative analysis of the graphite electrodes used in both Swagelok and pouch cells 

demonstrate the significant reduction in applied pressure when using pouch cells allowing for 

batteries with longer life. The quantitative analysis of the first cycle efficiency of the two battery 

configurations demonstrate the superiority of using a pouch cell with an initial applied pressure 

of about 4 psi. The fiber optic sensor was tested within batteries and found to have highest 

sensitivity when the transmittance loss in 100 % glycerol approached 92 %. It was also 

demonstrated that increasing the area that the FOEWS contacts the graphite electrodes by 

embedding the sensor enhanced its sensitivity. 
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5. Modeling the Photonic Interaction of Graphite With a Fiber Optic 

Sensor Within a Lithium-ion Battery 

This chapter is based on a manuscript pending submission 

A. Ghannoum, J. R. Godin, and P. Nieva, “Modeling the Photonic interaction of Graphite with a 

Fiber Optic Sensor within a Lithium-ion Battery.” Unpublished manuscript 

 

5.1 Introduction 

The developments in the implementation of fiber optic evanescent wave sensing within 

lithium ion batteries (LIBs) presented in the previous two chapters, define the baseline for 

comparison between experimental signals and theoretically simulated signals. This provides a 

fundamental approach to understanding the optical signal produced by the fiber optic evanescent 

wave sensor (FOEWS).  

This chapter presents the development of a coupled model to simulate a FOEWS embedded 

into a graphite electrode within a LIB. The model couples a developed graphite optical model 

with a LIB transport model and a previously developed FOEWS analytical model to simulate the 

FOEWS optical signal during LIB operation. The developed graphite optical model is also used 

to estimate the reflectance of lithiated graphite electrodes extracted from coin cells. An enhanced 

glycerol test is also introduced in this chapter, and combined with the FOEWS’s analytical 

optical model to approximate the sensor cladding thickness after etching. Finally, the relation 
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between applied current and the FOEWS signal is investigated and explained using the coupled 

model. 

5.2 Experimental 

5.2.1 Materials 

Buffered oxide (JT5569-3, VWR) was used to etch the optical fiber cladding. Glycerol 

(GX0185-2, EMD Millipore) was used to test the fabricated sensors. The fabricated battery 

consisted of graphite and LiFePO4 electrodes (MTI Corp.), trilayer polypropylene-polyethylene-

polypropylene membrane (Celgard®) as a separator, mixture of ethylene carbonate and dimethyl 

carbonate 1:1 (vol %) 1 M lithium hexafluorophosphate (746711, Sigma-Aldrich) as an 

electrolyte. A graphite slurry was made using graphite (43209, Alfa Aesar), poly(vinylidene 

fluoride) (182702, Sigma-Aldrich), carbon black (Lib-SuperP, MTI Corp.) and N-methyl-2-

pyrrolidone (328634, Sigma-Aldrich). To achieve a hermitic seal ethylene-vinyl acetate polymer 

based hot melt adhesive (PLIB-HMA8, MTI Corp.) was used around the fabricated FOEWS. 

5.2.2 Preparation of Fiber Optic Sensor 

A step index multi-mode optical fiber (AFS105/125Y, Thorlabs) was etched in a 

polypropylene beaker (1201-0250, NALGENE) containing buffered oxide etchant[1], [17]. The 

etched optical fiber was then connecterized using SMA-905 stainless alloy connectors (F193336, 

FIS) and the sensing region was then tested using glycerol. Hot melt adhesives were attached 

about 2.5 cm from the center of the sensing region to align with the pouch cell edges during the 

fabrication of the pouch cell described in the next section. 



 

 69 

5.2.3 Preparation of Pouch Cell with an Embedded Fiber Optic Sensor 

The pouch cell was prepared as in chapter 4 (section 4.2.2, [18]), graphite and LiFePO4 

electrodes were cut into 2  3 cm rectangles with the active material covering a 2  2 cm square 

area and the foil (copper for graphite and aluminum for LiFePO4) exposed in a 1  2 cm area. 

Current collectors were attached by spot-welding to the remaining foil section on the electrodes, 

nickel tabs (PLiB-NTA3, MTI Corp.) were used with copper foil (i.e., for graphite electrodes) 

and aluminum tabs (PLiB-ATC4, MTI Corp.) were used with aluminum foil (i.e., for LiFePO4 

electrodes). A graphite slurry (74.0 % N-methyl-2-pyrolidone, 22.1 % graphite, 2.60 % 

poly(vinylidene fluoride) and 1.30 % carbon black) was prepared and used to embed the 

prepared fiber optic sensor onto the graphite electrode and left to dry in a fume hood. Laminated 

aluminum (alf-100-210, MTI Corp.) was shaped to fit the electrodes with a trilayer 

polypropylene-polyethylene-polypropylene separator between them. The laminated aluminum 

containing the battery’s solid components was sealed along three edges using a heat sealer 

(MSK-140, MTI Corp.). After this partial seal, electrolyte was injected in a glove box prior to 

sealing the fourth edge using a Compact Vacuum Sealer (MSK-155A, MTI Corp.). The prepared 

pouch cell was placed in a 3-D printed casing (see Figure 18d) with an initial applied pressure of 

4 psi and positioned for testing. 

5.2.4 Battery Cycling and Fiber Optic Sensor Transmittance Acquisition 

The pouch cell was connected to a programmable battery cycler (BST8-WA, MTI Corp.) 

while the fiber optic sensor was connected to a narrow band LED (850 nm) at one end and a 

photodiode at the other end specific to the same narrow band of the LED as described elsewhere 
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[17]. To ensure that the battery reached a state-of-charge (SOC) of 0 and 100 %, a two-step 

discharge and charge protocol was used derived from a method presented in [90]. During 

charging, a constant current was applied until the battery reached its upper voltage limit of 3.7 V; 

then a constant voltage of 3.7 V was applied until the current reached 10 % of the initial applied 

current. The battery was then allowed to rest for 20 min followed by a constant current discharge 

(first step in discharge) until it reached 2.5 V (lower limit) followed by a 30 min rest to allow the 

redistribution of the lithium ions within the electrode particles. The second step in the discharge 

was then initiated using 10% of the initial discharge current to ensure 0 % SOC was reached. 

5.2.5 Lithiated Graphite Diffuse Reflectance Spectroscopy 

The reflectance of extracted graphite electrode samples from coin cells was measured using a 

fiber-optic spectrometer (USB4000, Ocean Optics) and a tungsten halogen light source (LS-1, 

Ocean Optics). The reflectance probe (QR200-7-VIS-NIR, Ocean Optics) was set up at 45o in a 

customized apparatus inside a glove box, as illustrated and described in Section 3.2.2  [1]. The 

coin cells consisted of a lithium metal anode, graphite as a cathode (same graphite electrode used 

in the pouch cells) and the same separator used in the pouch cells. The coin cells were discharged 

to attain graphite electrodes with 0, 20, 40, 60, 80 and 100 % SOC. 

5.3 Modeling 

5.3.1 Transport Model 

The lithiation of graphite within a lithium ion battery was modeled in one-dimensional space 

using COMSOL. The transport model governing equations were based on the battery module in 
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COMSOL [51], [53], described in Chapter 1 (section 1.4). The schematic representation of all 

layers considered in this model is shown in Figure 27; it consists of two electrodes, graphite and 

LiFePO4, separated by a separator in a medium of electrolyte.  

 

Figure 27: Schematic representation of the layers of the lithium ion battery modeled in the 

transport model. The current collectors are conductive material, while the electrodes 

consist of spherical particles representing the active material. 

The model parameters were based on both experimental characterization of the battery 

components and literature values (Table 2, please refer to the abbreviation list for a complete 

description of the listed parameters). The maximum lithium concentration was measured using 

the maximum reversible capacity achieved in a half-cell for both electrodes. The equilibrium 

potential of graphite from 0 to 100 % SOC was based on open circuit voltage measurements 

taken within a charge at C/50 in a half-cell. The half-cell was rested for an hour before every 

open circuit voltage measurement. The equilibrium potential of LiFePO4 was also measured in 
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the same way but an applied current of C/40 was used. The thickness of the separator and both 

the electrodes were measured using cross-sectional SEM micrographs. The spherical particle 

radius for the graphite electrode used in the transport model was derived using the average 

volume of the graphite particles. The volume of a graphite particle was calculated assuming an 

ellipsoidal shape, 2 of the axes were measured using SEM micrographs and the third axis (i.e. 

thickness) of the ellipsoid was assumed to be 5 m based on cross-sectional SEM micrographs. 

The spherical radius of the LiFePO4 particles used in the transport model was derived from the 

calculated average area of the LiFePO4 particles. This area was calculated assuming an ellipse 

with dimensions measured using SEM micrographs. The volume fractions were estimated based 

on an analysis of the areas of voids versus solid materials found in SEM micrographs of graphite 

and LiFePO4 electrodes. The diffusion coefficients and reaction rate constants of the electrodes 

were fitted to match the simulated voltage profiles with the experimental results. The remaining 

parameters were obtained from various literature references as indicated in Table 2. The solid 

phase parameters are separated from the electrolyte/separator parameters to distinguish between 

the volume fraction of the electrolyte and the solid electrodes. The model was used to estimate 

the average lithium concentration in the particles to model the optical properties of the graphite 

particles during battery cycling as discussed in the next section. 
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Table 2: Lithium transport model parameters with values extracted from experimental 

characterization of the battery and referenced literature. a: assumed e: estimated f: fitted 

m: measured 

Solid phase parameters Graphite (g) LiFePO4 (c) Units 

Maximum Li concentration 𝑐𝑠,𝑚𝑎𝑥,𝑔 = 30944m 𝑐𝑠,𝑚𝑎𝑥,𝑐  = 22820m [mol m-3] 

Diffusion coefficient 𝐷𝑠,𝑔 = 3.9×10-14f 𝐷𝑠,𝑐  = 3.2×10-13f [m2 s-1] 

Anodic reaction rate constant 𝑘𝑎,𝑔= 2×10-11f 𝑘𝑎,𝑐= 2×10-11f [m s-1] 

Cathodic reaction rate constant 𝑘𝑐,𝑔= 2×10-11f 𝑘𝑐,𝑐= 2×10-11f [m s-1] 

Thickness 𝐿𝑔= 89.7×10-6m 𝐿𝑐= 90.0×10-6m [m] 

Particle radius 𝑟𝑔= 10.75×10-6a 𝑟𝑐= 0.2165×10-6a [m] 

Temperature 𝑇 = 298  [K] 

Charge transfer coefficient 𝛼𝑖 = 0.5a [91]   

Volume fraction 𝜖𝑠,𝑔 = 0.433e 𝜖𝑠,𝑐 = 0.305e 

 Conductivity 𝜎𝑔 = 100 [78] [79] 𝜎𝑐 = 11.8 [93] [S m-1] 

Equilibrium potentials  Δ𝜙𝑒𝑞,𝑔(𝑆𝑂𝐶)m
 Δ𝜙𝑒𝑞,𝑐(𝑆𝑂𝐶)m

 [V] 

Electrolyte/Separator parameters 1 M LiPF6, 1:1 EC:DMC Units 

Diffusion coefficient 𝐷 = 1.38×10-9 [94] [m2 s-1] 

Thickness 𝐿𝑠𝑒𝑝 = 28.63×10-6,m [m] 

Cationic transport number 𝑡+ = 0.21 [95]  

Volume fraction (in electrode) 𝜖𝑔 = 0.500e 𝜖𝑐 = 0.593e  

Conductivity 𝜎(csalt) [96] [S m-1] 
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5.3.2 Graphite Optical Model 

Since graphite is anisotropic, its reflectance at 850 nm is much larger when photons are 

directed perpendicularly to its carbon layers [97]. The bulk diffuse reflectance of graphite 

electrodes increases as the amount of inserted lithium increases [16][41]. Chemically (not 

electrochemically) prepared lithiated graphite also exhibit a significant increase in reflectivity as 

the amount of lithium is increased [39]. The maximum ratio of lithium to carbon in lithiated 

graphite is one to six (LiC6). The real (𝜀1) and imaginary (𝜀2) components of the dielectric 

constant that defines the optical properties of LiC6 at 850 nm normal to the graphite layers, are 

derived to be -8.3723 and 5.7354, respectively [98]. The values of 𝜀1 and 𝜀2 for graphite under 

“near-normal” incidence at 850 nm have been derived to be 8.8212 and 4.5290 [97].  

Using the two limits for the dielectric constants specified above at normal incidence, a simple 

model for the optical properties was developed. The model assumes a linear change in the 

dielectric constants as graphite transitions to LiC6 and defined as, 

 

𝜀1 =  −0.17193 (𝑆𝑂𝐿𝑔) + 8.8212  (16) 

𝜀2 =  0.012065 (𝑆𝑂𝐿𝑔) + 4.5290  (17) 

 

Where 𝑆𝑂𝐿𝑔 is the state of lithiation with values ranging from 0 (graphite) to 100 (LiC6). Once 

𝜀1 and 𝜀2 are known, the refractive index (𝑛) and extinction coefficient (𝑘) of lithiated graphite is 

obtained using the following relationships [99]: 
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𝑛 = √√𝜀1
2 + 𝜀2

2 + 𝜀1

2
 

 (18) 

𝑘 = √√𝜀1
2 + 𝜀2

2 − 𝜀1

2
 

 (19) 

 

  The reflectivity (𝑅) of a specular surface of graphite at normal incidence can be determined 

using the following expression with the calculated 𝑛 and 𝑘 values [99].  

𝑅 =  
(𝑛 − 1)2 + 𝑘2

(𝑛 + 1)2 + 𝑘2
 

 (20) 

Using only the normal incidence values in this model is an approximation. The normal incidence 

reflectivity is about 19 times larger than reflectivity parallel to the graphite layers when 

calculated using dielectric constants obtained from [100] at 850 nm. This indicates that the 

developed optical model may be used to determine the theoretical maximum values that can be 

obtained from a graphite electrode sample.  

The calculated refractive index and extinction coefficient were used in determining the fiber 

optic sensor transmittance using an analytical model developed by J. R. Godin [101].  The 

following section demonstrates the use of the analytical model to estimate the cladding thickness 

of the etched FOEWS and its use in simulating the transmittance of FOEWS embedded within a 

LIB. 
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5.3.3 Fiber Optic Sensor Model 

The previously developed analytical model by J. R. Godin is based on the transfer matrix 

method and models the behaviour of the fiber optic sensor interacting with any material with 

known optical constants [101]. This model was utilized to both estimate the thickness of the 

cladding after etching the fiber optic sensor and to model the transmittance of the embedded 

FOEWS.  

The sensing length was initially determined after etching, using a conventional microscope, 

and substituted into the fiber optic sensor model. The sensor was then connected to an optical 

interrogator to obtain an initial transmittance reading. A comprehensive glycerol test is 

performed, which entails applying glycerol on the sensing region, initially covering a small 

region with a measured length (i.e., 5 – 10 mm) and increasing the region covered by glycerol in 

intervals (i.e., 2.5 – 5 mm) while recording the change in transmittance (see Figure 28). The fiber 

optic sensor model was then used to estimate the optical fiber cladding thickness (see Figure 29). 

The specific comprehensive glycerol test presented in Figure 29, was used to approximate the 

cladding thickness to be 1.17 m, which is relatively small considering a core diameter of 105 

m. The cladding thickness is an essential input parameter to the analytical model when 

simulating the embedded FOEWS.  

The 𝑛 and 𝑘 values used in the analytical model to simulate the embedded FOEWS were 

obtained using equations 15 – 18. The graphite’s state of lithiation (𝑆𝑂𝐿𝑔) used in equations 15 

and 16 was set to be equivalent to the average surface lithium concentration in the graphite 

particles within a LIB over the maximum possible concentration using the transport model 
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presented in section 5.3.1. The electrolyte was assumed to have no effect on the sensor [1] and 

the sensing region within the electrode was assumed to be in contact with graphite particles only. 

Figure 30 summarizes how the fiber optic model is combined with the graphite optical model 

and transport model to obtain simulated optical fiber transmittance as a function of SOLg. 

 

Figure 28: Schematic representation of the comprehensive glycerol test. Glycerol is injected 

onto the sensing region to cover 5 – 10 mm and then increased by 2.5 – 5 mm increments, 

while recording the transmittance through the fiber optic sensor. 
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Figure 29: Comprehensive glycerol test results compared to fiber optic sensor 

transmittance results as the cladding was increased from 1.14 m to 1.20 m. 

 

Figure 30: Flowchart outlining how the battery transport model, graphite optical model 

and fiber optic sensor model are coupled to obtain simulated transmittance as a function of 

graphite’s state of lithiation 
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5.4 Results and Discussion 

5.4.1 Lithiated Graphite Diffuse Reflectance Spectroscopy 

The reflectance of the graphite electrodes used in the fabricated pouch cells with embedded 

fiber optic sensors was measured to evaluate the ability of the developed graphite optical model 

to estimate reflectance. A total of 11 graphite electrodes, lithiated to values ranging from 0 to 

100 % SOLg, were tested in two trials and compared with the calculated reflectance at 850 nm 

based on the developed graphite optical model (equations 15 – 19) as seen in Figure 31. The two 

trials demonstrate the same general trend with a slight variation, which was caused by the 

random arrangement of the graphite particles (anisotropic material) on the electrode surface and 

alignment with the reflectance probe.  

 

Figure 31: Comparison of the calculated reflectance of graphite based on the developed 

model with two trials of reflectance measurements (at 850 nm) of graphite electrodes 

extracted from 11 coin cells. 
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Comparing the experimental trials to the calculated reflectance indicates that the model was 

capable of producing the same general trend. A slight variation in the trend was observed at 80 

and 100 % lithiation when comparing the experimental data to the model. The calculated 

reflectance at 100 % lithiation assumes a specular surface [99] and uses values derived from a 

measurement taken at a position normal to graphite layers [98]. Comparing the measured and 

calculated reflectance at 100 % SOLg indicates that the graphite particles in the electrodes do not 

form a specular surface and were not perfectly aligned normal to the reflectance probe as 

expected, achieving only 25 % of the calculated reflectance. The downward shift in the data 

between trials 1 and 2 corresponds to a decrease in the intensity of the reflectance, which may 

indicate a small shift in the positioning of the reflectance probe away from the sample. 

5.4.2 Coupled Model vs. Embedded Fiber Optic Sensor 

A pouch cell with an embedded fiber optic sensor with a cladding thickness of 1.28 m (94.9 

% transmittance loss in 100 % glycerol and a sensing length of 28.5 mm) was cycled from 0 to 

100 % SOC, based on the voltage limits of 2.5 to 3.7 V as described in section 5.2.4. The battery 

capacity was determined based on the applied current and time (i.e., coulomb counting) and then 

compared with the observed optical transmittance through the embedded fiber optic sensor as 

seen in Figure 32. 
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Figure 32: The optical transmittance of an embedded fiber optic evanescent wave sensor 

(green) during the first 11 cycles (0 to 100 % SOC) of a pouch cell and the coulomb 

counting capacity (red) based on the applied current required to cycle between 2.5 and 3.7 

V.   

The optical change in the battery was observed to follow the capacity changes closely. The 

irreversible capacity loss during the first cycle seems to affect the extent that the transmittance 

drops during the first discharge (i.e. it does not drop down to the initial value). The charging 

process of the battery is a two-step process. A constant current is initially applied until the 

battery reaches 3.7 V and then a constant voltage is applied until the current reaches a tenth of 

the initial applied current. During the first step, the transmittance undergoes a steady increase 

with varying slopes; the slope of the transmittance during a charge exhibits 3 distinct peaks (see 

Figure 33). 
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Figure 33: The slope of the optical transmittance of an embedded fiber optic evanescent 

wave sensor during the first 33 charges (0 to 100 % SOC) of a pouch cell overlapped for 

comparison by plotting them against the battery’s capacity. 

Based on the capacity in the second cycle, the highest repeated slope peak occurs when the 

battery reaches about 45 % SOC. Considering the graphite state of lithiation (SOLg) as a point of 

reference, the highest slope occurs at about 19 % SOLg. The first and second peaks occur at 

about 1.6 and 10 % SOLg, respectively. Based on potential-capacity curves for graphite vs. 

Li/Li+ (see Figure 5), all three peaks seem to occur near the transition zones of the graphite 

lithiation stages IV, III and II. Hence, analyzing the slope of transmittance during cycling can be 

used in an algorithm to determine the SOLg. Three of the cycles in the first 33 cycles did not 
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follow the three consecutive peak trend, cycles 1, 20 and 23, which have been found to be cycles 

in which capacity fade occurred. This demonstrates the ability of the FOEWS to predict capacity 

fade prior to its occurrence as seen in Figure 34. The capacity fade in the first cycle is linked to 

the formation of the SEI layer. While the cause of capacity fade in cycles 20 and 23 are not 

identified. Comparing the change in experimental transmittance (i.e. amplitude) during the first 

33 cycles, a relationship between amplitude and achievable capacity is observed. A decrease in 

amplitude is correlated to a decrease in lithiation activity; this indicates that the amplitude can be 

used to determine the battery’s state of health (SOH) over full cycles. In terms of determining 

SOH prior to completing a full cycle, the slope peaks plotted in Figure 33 do decrease in 

magnitude as capacity fades. This change in the slope can be further analyzed and used in an 

algorithm to determine the SOH of a LIB. 

In the second charging step (i.e., when the charging voltage is constant) the optical 

transmittance was observed to generally stop increasing and instead, it decreases slightly. A 

decrease in the applied current causes a decrease in the lithiation process. This allows for lithium 

ion diffusion within the graphite particles to dominate, which could be the cause of a slight 

decrease in the optical transmittance during constant voltage charging. 
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Figure 34: Experimental results demonstrating the ability of the fiber optic sensor to 

predict significant capacity fade in the cycle before the capacity fade occurs. The maximum 

graphite state of lithiation (SOLg) achieved during a full charge (0 to 100 % SOC) of a 

pouch cell is plotted (blue) over 33 cycles and the corresponding recorded capacity at the 

maximum peak in the slope of the transmittance from Figure 33. 

To demonstrate this further, a full cycle was completed with 1 hr interval charges using an 

applied current of C/16 and 2 hour rests between every step as seen in Figure 35. During the 

charging process a slight drop in transmittance is observed during the start of every rest period, 

which was more prominent as SOC increased. At lower capacities this effect seems to be minor, 

which can be explained by the lower concentration gradient within the graphite particles causing 

slower or minor diffusion of the lithium ions. During the discharging process, the optical 

transmittance increased at the beginning of every rest period. The magnitude that the optical 

transmittance increased during the rest periods decreased significantly as the SOC decreased. 
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Figure 35: Fiber optic sensor transmittance and battery potential during a full cycle. 

Current was applied over 1hr intervals with 2hrs rests between every interval and the 

voltage limits were set to 3.7 V during charging and 2.5 V during discharging. Current of 

C/16 was used. 

In addition, the magnitudes of change in the optical transmittance during the discharging rest 

periods were observed to be much larger than during the rests in the charging process. This 

supports the notion that the concentration of lithium ions at the graphite particle surface 

significantly affects the optical transmittance [1]. The FOEWS has a specific penetration depth 

dependent on the wavelength of the transmitting light. As the distance from the fiber increases, 

the intensity of the penetrated wave decreases exponentially [102]. For this reason, the 
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concentrations of intercalated lithium ions at the surface of the graphite particles obtained using 

the transport model were used in the developed linear graphite optical model.  

The optical transmittance during the first, second, fifteenth, twentieth and twenty-fifth charge 

were plotted for comparison with the simulated transmittance as they represented the general 

trends observed during the first 33 charges (see Figure 36).  

 

Figure 36: Comparison of the fiber optic sensor transmittance model output to the 

measured transmittance from a pouch cell during the 1st, 2nd, 15th, 20th and 25th charge; 

where variation can be observed as capacity fade increases. 

The initial transmittance at 0 % SOLg is about 3 % lower in the experimental data (i.e., cycle 

1) compared with the model results. This discrepancy may be caused by two environmental 

factors, i) the coupling of the light source to the optical fiber and ii) the external applied pressure 

on the pouch cell. The optical transmittance obtained during cycling is divided by the 

transmittance of the FOEWS when tested in air, prior to pouch cell assembly. This may cause an 
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offset since the coupling of the light into the fiber during the test in air may not be equivalent to 

the coupling after pouch cell assembly. The second factor (i.e., applied pressure) affects the 

contact between the graphite particles and the optical fiber [18], which could decrease the overall 

transmittance. The 3% deviation in the experimental signal compared to the simulated signal 

remains until the battery reaches a SOLg of about 30 %, where the experimental signal increases 

at a lower rate, while the simulated transmittance continues to increase causing a large deviation.   

The general trend of increasing transmittance as SOLg increases is evident in both the 

experimental and modeling results. The significant variation occurs at higher SOLg, where the 

rate of increase in the actual transmittance decreases significantly, while the simulated 

transmittance continues to increase with minor slope changes. This variation indicates that the 

diffusion of lithium ions in the simulations is much smoother than the actual graphite around the 

FOEWS. Reducing the current, increases the achievable capacity; by changing the lithiation 

dynamics, allowing more time for lithium ion diffusion within the solid graphite particles. In 

other words, changing the applied current directly affects the optical transmittance as seen in 

Figure 37, which shows the normalized transmittance of a FOEWS with a cladding thickness of 

1.28 m embedded in a pouch cell that was charged from 0 to 100 % SOC using three different 

rates, C/5, C/8 and C/16. It can be observed that a reduction in the applied current causes a 

generally smoother increase in transmittance. When an applied current of C/5 was used, a peak 

in the optical transmittance was observed as the pouch cell approached 100 % SOC, which may 

indicate the saturation point at the surface of the graphite particles around the FOEWS. To 

observe these phenomena in the simulated data, the current was also increased in the transport 
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model from 0.1 C to 1C and 2C and the results are plotted in Figure 38. To allow for comparison 

between the three currents, the simulated transmittance was plotted against the fraction of the full 

cycle, since the time periods for each cycle differed significantly. Each cycle included a full 

charge followed by a resting period and then a full discharge followed by a second resting 

period. As the current increased, the resting periods exhibited larger drops in transmittance after 

the full charge step. This aligns with the experimental results and demonstrates how the 

concentration of lithium at the surface of the particles decreases during its diffusion as the 

battery rests. Similarly, during the rest period after the full discharge the simulated transmittance 

increases due to an increase in the lithium ions at surface of the particles as they diffuse outwards 

(this is more visible in the 2C simulation). Experimentally this was only observed at higher SOC, 

since only lower currents were used to cycle the pouch cell. 
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Figure 37: Normalized transmittance of a fiber optic sensor with a cladding thickness of 

1.28 m embedded in a pouch cell charged at three different rates, C/5, C/8 and C/16 from 

0 to 100 % SOC. 

 

Figure 38: Simulated fiber optic sensor transmittance in a pouch cell with three different 

applied currents; 0.1C, 1C and 2C. The full cycle included a charging step followed by a 

resting period and then a discharging step followed by a second rest. 



 

 90 

The simulated optical transmittance (see Figure 38) also demonstrated a “three” slope trend 

during the battery charge when a current of 2 C was used, similar to the experimental results 

shown in Figure 37. These results suggest that the diffusion dynamics in the graphite particles 

around the FOEWS may differ from the surrounding region. The observed transmittance trend is 

similar to simulations with higher applied current, suggesting that lithiation around the fiber may 

occur at a higher rate. However, this observation would require verification by other in-situ 

characterization methods such as neutron imaging [103], [104] to observe regions with and 

without a FOEWS simultaneously. In addition, elevated pressure due to the presence of the 

FOEWS may also compact the graphite particles beneath it, thus increasing the conductivity in 

the region due to the improved contact, which may cause an increase in the lithiation rate. 

Nevertheless, it is clear that the FOEWS signal can be correlated to the SOC of a battery but 

additional studies on SOC determination algorithms are needed, and optimization of the FOEWS 

location would further support the use of the developed sensor in commercial applications. 

5.5 Conclusions 

An optical model for lithiated graphite has been developed based on the normal dielectric 

constants of graphite and fully lithiated graphite, with the ability to approximate the reflectance, 

refractive index and extinction coefficient of electrochemically lithiated graphite. The optical 

model has been coupled with a transport model for a lithium ion battery (LIB) and an analytical 

optical model for fiber optic evanescent wave sensors (FOEWS) to simulate the transmittance of 

a FOEWS, fabricated using a multimode optical fiber with a diameter of about 105 m and an 

estimated cladding thickness of 1.28 m, embedded in a graphite electrode within a pouch LIB. 
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Simulations produced trends comparable with the experimental results and suggested that the 

lithiation rate around the FOEWS may occur at a higher rate than the rest of the graphite 

electrode; Additional in-situ characterization techniques may further verify this conclusion. The 

effect of lithium diffusion at the surface of graphite particles on the FOEWS transmittance has 

been observed by implementing two hours of rest at one hour intervals during the charging and 

discharging process of a LIB. Lithium diffusion at the surface during relaxation (i.e. rest) was 

observed to be most significant during the initial discharge of a fully charged LIB. Changing the 

applied current was found to affect the FOEWS transmittance at the extremities (i.e., near 0 and 

100 % SOC) as diffusion dynamics changed. The transmittance of the FOEWS was observed 

over thirty three cycles and a trend with three distinct slope peaks was found during a charge 

from 0 to 100 % SOC. During a charge with significant capacity fade the slope of the 

transmittance was observed to deviate from the three distinct peaks, demonstrating an ability to 

predict significant capacity fade prior to its observation through a voltage limited discharge. A 

method to estimate the cladding thickness of the FOEWS was also developed utilizing a 

“comprehensive glycerol test” developed in-house and the FOEWS analytical model. Further 

studies on an SOC and SOH estimation algorithm for the developed FOEWS will support its 

commercialization and verify its ability to support management of LIBs.  
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6. Conclusions and Future Work 

6.1 Summary and conclusions 

The overall objective of this thesis is to optimize the implementation of a previously 

developed fiber optic evanescent wave sensor (FOEWS) inside lithium ion batteries (LIBs) to 

support its commercialization. In addition to developing a coupled model to simulate and 

enhance our understanding of the FOEWS output signal as graphite undergoes optical changes 

during lithiation/delithiation within LIBs to support the development of state of charge and state 

of health estimation algorithms. 

After an introduction in Chapter 1 and background information described in Chapter 2, 

Chapter 3 studied the reflectance of commercial graphite electrodes composed of graphite 

particles, a binding agent, carbon particles, and solid electrolyte interphase, at 30, 35, 40, 45, 50, 

60, 65, 70, 75 and 80 % SOC to demonstrate the dominance of graphite particles in governing 

the colour of commercial graphite electrodes in the studied spectra. This study was also used to 

determine that the maximum lithiation stage achieved in A123 commercial LIBs was stage 2 

(LiC12). The observed reflectance trends in the visible and infrared spectra (500 – 900 nm) were 

compared to pure-phase lithiated graphite materials demonstrating that graphite dominates the 

reflectance of graphite electrodes. It was also determined that lithiation of graphite had a more 

significant affect on the reflectance of photons with wavelengths ranging from 750 – 900 nm 

(near-infrared band) within the investigated range. Chapter 3 also presented the first in-situ fiber 

optic evanescent wave spectroscopy (FEWS) measurements, with wavelengths ranging from 500 

– 900 nm using a modified Swagelok cell. The trend observed in the FEWS study was found to 
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closely follow the reflectance of commercial graphite electrodes. The FEWS results also 

demonstrated a direct correlation between the transmittance through the fiber optic sensor and 

the SOC of the LIB. In this Chapter, it was also demonstrated that electrolyte solutions with 

varying salt (LiPF6) concentrations had no effect on the transmittance of the fabricated FOEWS. 

Chapter 4 presented the optimization of the fiber optic evanescent wave sensing system for the 

ultimate purpose of commercialization by focusing on three aspects. The first aspect was the 

cladding etching of the fiber optic evanescent wave sensor (FOEWS). Experimental results 

demonstrated that a buffered hydrofluoric solution of 6:1, 40 wt % ammonium fluoride (NH4F) 

and 49 wt % hydrofluoric solution, was superior to a solution of 49 wt % hydrofluoric acid in 

producing durable sensors. Maximum sensitivity of the FOEWS within a LIB was achieved 

when the etched sensor produced about 92 % transmittance loss in 100 % glycerol. The second 

aspect of optimization was aimed at reducing capacity fade and maximizing contact between the 

sensor and the graphite electrode. This was achieved by designing a pouch cell that allowed an 

optical fiber to be embedded in the graphite electrode while maintaining a hermetic seal. The 

final pouch cell configuration appears to be a commercially viable with reduced weight and 

increased capacity. Finally, the third major development was the use of an in-house narrow band 

optical sensor interrogator, replacing the spectrometer, which reduced the cost of the sensing 

system significantly and made it more commercially viable. 

Chapter 5 focused on the theoretical basis for the developed LIB sensing system to allow for 

deeper understanding of its performance. An optical model for graphite was presented, which 

assumed a linear trend between the normal dielectric constants of graphite and fully lithiated 
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graphite (LiC6). The graphite model was used to estimate the reflectance, refractive index and 

extinction coefficient of graphite as a function of the concentration of intercalated lithium ions. 

Reflectance measurements of graphite electrodes used with the FOEWS were examined and 

found to follow a similar trend as the trend obtained using the developed graphite optical model. 

The optical model was then coupled with a lithium ion battery transport model and an analytical 

optical model for the FOEWS to simulate the transmittance signal of the fiber optic sensor. A 

method to estimate the cladding thickness of the FOEWS was presented, which utilized a 

“comprehensive glycerol test” and the FOEWS analytical optical model. Simulation results were 

presented for a FOEWS with an estimated cladding thickness of 1.28 m. Trends comparable to 

experimental results were observed and suggested that the lithiation rate around the FOEWS may 

occur at a higher rate than the rest of the graphite electrode. The effect of lithium diffusion at the 

surface of graphite particles on the FOEWS transmittance was observed by implementing two 

hours of rest at one hour intervals during the charging and discharging process of a LIB. The 

effect of lithium diffusion on the FOEWS was observed to be most significant during the initial 

discharge of a fully charged LIB, which is when the lithium concentration within the graphite 

particles is the greatest. The FOEWS was then tested using three distinct applied currents C/5, 

C/8 and C/16 and found to deviate near 0 and 100 % SOC. The slope of the FOEWS 

transmittance over thirty three cycles was observed to have three distinct peaks during a charge 

from 0 to 100 % SOC. Deviation from the “three peak” trend in the slope during a charge was 

found to be correlated to capacity fade. This demonstrated the ability to predict significant 
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capacity fade during a charge prior to its observation through the capacity attained in a full 

discharge. 

The presented work provides a direction for future work that would further promote the 

commercialization of the developed sensing system. Using the deeper understanding of the 

optical signal presented in this thesis, a battery state-of-charge and-health estimation algorithm 

can be developed and tested for its accuracy. Comparing the cost of this sensing system to 

conventional methods would demonstrate its competitiveness and support its use in various 

applications. 

6.1 Proposed future work 

The commercialization of the developed sensing system will rely heavily on its ability to 

estimate state of charge (SOC) and state of health (SOH). This will require rigorous testing with 

the sensor embedded in commercial batteries in parallel with the development of algorithms that 

minimize computational power and maximize accuracy in estimating SOC and SOH. A 

comprehensive study to compare the use of the optical sensor signal only to using voltage and 

current measurements with the optical signal in estimating the SOC and SOH is required to 

demonstrate the best possible methods for utilizing the sensing system.  

In terms of further understanding the effects that the sensor may have on the current 

distribution within the whole LIB, an in-situ neutron imaging study of a battery equipped with a 

FOEWS would demonstrate the distribution of current within the graphite electrode. It is 

important to understand the sensor signal in relation to the rest of the graphite electrode, to allow 

for an optimized design. The optical fiber sensor is considered a local measurement but this 
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should not reduce from its value since the graphite electrode is a network of particles connected 

electrically. If a disturbance occurs in any part of the network, the distribution of current is also 

disturbed, thus altering the local lithiation process around the optical fiber sensor. 

To broaden the range of applications for the FOEWS, a method to embed optical fibers within 

cylindrical cells is required. As in the pouch cell or any type of cell, maintaining a hermitic seal 

is the main challenge. This may require the design of a new cap that allows an optical fiber to 

pass through, ideally with minimal alterations to the standard fabrication process. 
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