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Abstract

Electric Vehicles (EVs) develop high torque at low speeds, resulting in a high rate of
acceleration. However, the rapid rise in torque of an electric motor creates undesired
torsional oscillations, with vehicle jerk arising as a result of wheel slip or flexibility in the
half-shaft. These torsional oscillations in the halfshaft lead to longitudinal oscillations in the
wheels, thus reducing comfort and drivability.

In this research, we have designed an anti-jerk longitudinal dynamics controller that
damps out driveline oscillations and improves the drivability of EVs with central-drivetrain
architecture. The anti-jerk longitudinal dynamics controller has been implemented for both
traction and cruise control applications. We have used a model predictive control (MPC)
approach to design the controller since it allows us to deal with multiple objectives in an
optimal sense. The major scope of this research involves modeling, parameter identification,
design and validation of the longitudinal dynamics controller. The real-time implementation
has been demonstrated using hardware-in-the-loop experiments utilizing fast MPC solvers.

The MapleSim software, which utilizes symbolic computation and optimized-code
generation techniques to create models that are capable of real-time simulation, has been
used to develop the longitudinal dynamics plant model. Road tests have been conducted on
our test vehicle, a Toyota Rav4 electric vehicle (Rav4EV), to identify the parameters for the
longitudinal dynamics model. Experimental data measured using a vehicle measurement
system (VMS), global-positioning system (GPS), and inertial measurement unit (IMU) was
used for parameter identification. Optimization algorithms have been used to identify the
model parameters. A control-oriented model of the EV, which includes a flexible halfshaft
and effect of wheel-slip transients, has been developed with the aim of controlling driveline
oscillations.

The MPC-based anti-jerk traction controller regulates the motor torque corresponding to
the accelerator pedal position, to serve the dual objectives of traction and anti-jerk control.
The performance of this controllers has been compared to that of other controllers in the
literature. Since most traction controllers are on-off controllers and are only activated when
wheel slip exceeds a desired limit, they are not effective in anti-jerk control. The MPC-based
anti-jerk controller is able to serve multiple objectives related to anti-jerk as well as traction,
and is therefore superior to other controllers.

A unified design combining the upper and lower level MPC-based cruise controller
has also been formulated to meet the anti-jerk objective during cruise control. The cruise
controller has been designed such that it is adaptive to changes in road friction conditions.

The efficacy of both traction and cruise controllers has been demonstrated through
model-in-the-loop simulation, and the real-time capability has been demonstrated through
hardware-in-the-loop experiments.
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Chapter 1

Introduction

1.1 History of Electric Vehicles

The history of electric propulsion dates back to 1827, when a Slovak-Hungarian priest, Anyos
Jedik, powered a tiny car using a crude electric motor [4]. In 1835, Thomas Davenport
built a toy electric locomotive. This was followed by Scottish inventor Robert Davidson
developing the first full size electric locomotive, ‘Galvani’ in 1842. The later electric
locomotive developed by Davidson in 1873 is often referred to as the first working electric
road vehicle. By 1900, only 22 percent of cars were powered by gasoline, while 40 percent
were electric and the remaining 38 percent ran on steam [5]. Eventually, improvements in
internal combustion engines and the invention of the electric starter made gasoline-powered
cars a cheaper option. Growth of gasoline-powered cars manufactured by companies like
Ford and General Motors helped lower the prices of these vehicles to almost half that of
their electric counterparts. By the 1930s, gasoline- powered cars had taken over the market,
with electric cars disappearing from the marketplace.

Electric vehicles regained interest in the late 20th century owing to growing concerns
about pollution from gasoline-powered cars. In 1976, the US launched the Electric and
Hybrid Vehicle Research Development and Demonstration Act, Public Law 94-413 [6].
Another big program was launched in the USA in 1993, when several government agencies
and automotive manufacturers formed a partnership for producing electric vehicles (EVs).
The program ended in 2001 with automotive manufacturers having demonstrated but not
launched EVs. Rising fuel costs and emission regulations in the 21st century are now
mounting pressure on automotive manufacturers to increase production of eco-friendly EVs.
Government laws like the Zero Emission Vehicle Mandate passed in California in 1990 are
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1. Introduction

forcing automotive manufacturers to produce and sell EVs [7].

The market share of EVs is not significant today due to high costs, short driving distance
and long charging duration. However, with rapidly reducing cost of batteries [8], the costs of
EVs are likely to go down in the future. Constantly depleting energy resources and increasing
emission regulations are also likely to attract more interest in EVs. Pure battery-electric
vehicles have been available in the market since the 2010s and according to recent data
published [9], EV sales grew 60% in 2016 over the year before. Furthermore, all major car
manufacturers offer EVs. Modeling and simulation is likely to play an important role in the
success of EVs [6].

Electric motors used in EVs have graduated from brushless direct-current (BLDC)
motors to alternating current (AC) synchronous machines, and presently, induction motors
are being utilised in most EVs. Induction motors are most popular because they are cheap,
reliable and robust and can develop high torque in less time with good efficiency as compared
to IC engine (ICE) driven vehicles. Motors fitted in EVs have the ability to produce high
torque over a range of speeds, and require a relatively simpler powertrain architecture [10].
A representation of the powertrain of a front wheel driven EV, directly coupled to the wheels
through a reduction gearbox and halfshafts, is shown in Fig 1.1.

Figure 1.1: Powertrain of front wheel driven EV [1]

2



1. Introduction

1.2 Model-Based Design

Model-based design is a tool that eases the process of selection of components by allowing
early design of powertrain components and their control systems in the development
cycle. Model-based design is also used effectively for validation of control systems. With
widespread use of electronic control, a malfunction in torque control [11] could be a potential
hazard to the driver and the vehicle. Therefore, it is critical that control systems are validated
before implementation on the vehicle. Further, as model-based design and testing is a
collaborative work between testers, system engineers, and programmers, the development
process helps in establishing a common framework for communication through the design
process supporting the development cycle, which all engineers can comprehend easily.

Automotive manufacturers have now moved to virtual prototyping where software are
used to physically model the real component, and hardware is available for testing and
validating the control design. Virtual prototyping not only lowers the expenses during design
stage, but provides an environment for testing and improving the quality of the physical
component before it is constructed. Several software packages such as Adams, MapleSim,
Dymola and CarSim have been developed for modeling and simulation of dynamic systems.

Figure 1.2: Model based design cycle for automotive control systems [2]

A representation of the model based development cycle [2] can be seen in Fig 1.2.
The figure shows a common representation of the model development process for complex
automotive control systems. The ’V’ shape outlines the two broad groupings of phases
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connected through Hardware in-the-Loop (HIL) testing. The left arm of the ’V’ involves
modeling, simulation and developing a controller prototype. The right arm of the ’V’
involves development, tuning and optimization of the controller on the vehicle where it is to
be fitted.

Acausal Modeling

In this research, MapleSim, a software based on graph-theoretic modeling [12] is used to
create a longitudinal dynamics plant model of the Rav4EV. MapleSim is a multi-domain
modeling software that can be used to develop and integrate dynamic models from different
domains such as mechanical, electrical and hydraulic. Models developed in MapleSim are
acausal, which implies that unlike traditional input/output blocks, the connected components
are adaptable to the direction of data flow. Acausal modeling is more suitable for modeling
complex systems such as vehicle powertrains [13].

Figure 1.3: Comparison of acausal and causal system component

Fig 1.3 brings out the difference between causal and acausal system components. It can
be seen that as acausal components have only flange ports, they can be modeled independent
of the direction of signal flow. Output signals can be obtained by connecting sensors in
series or in parallel with the components. Another feature of the MapleSim software is that
it can generate symbolic equations for the model that can be used for parameter optimization,
model reduction and sensitivity analysis. It also has the ability to generate a highly optimized
C-code that can be used in Matlab/Simulink for controls development. The development of
controllers for Model-in-the-loop (MIL) simulation and HIL experiments is undertaken in
Matlab/Simulink environment in this thesis. Matlab and Simulink are software developed by
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MathWorks that provide a numerical computing environment for developing controllers and
simulating models. In this research, the different controllers developed in Matlab/Simulink
environment have been used to control the models developed using MapleSim.

1.3 Driveline Oscillations in Electric Vehicles

Electric motors develop peak torque almost instantaneously, and over a wide range of
speeds, have a high efficiency, and a high power to weight ratio, and require smaller size
powertrains, which makes the powertrain design much simpler as compared to ICE driven
vehicles. However, these characteristics also make EVs more prone to driveline oscillations
as compared to ICE driven vehicles. In this section, we define driveline oscillations, discuss
factors that cause driveline oscillations, and compare design factors that make EVs more
susceptible to driveline oscillations as compared to ICE driven vehicles.

1.3.1 Driveline Oscillation

Drivetrain oscillations is a phenomenon of fluctuating vehicle speed caused by torsional
vibrations in the vehicle powertrain. These oscillations are also called shunt/shuffle vibrations.
Shunt can be described as the initial response or jerk that arises due to high rate of change of
driveline torque, while shuffle is a low frequency vibration that follows shunt [14]. The low
frequency shuffle vibration is typically in the range of 1-10 Hz and corresponds to the first
natural frequency of the driveline [15].

1.3.2 Causes of Driveline Oscillation

Driveline oscillations are mainly caused by elasticity in vehicle powertrain components such
as halfshafts and by wheel-slip dynamics [16]. The driveline oscillations are excited during
tip-in and tip-out maneuvers (push-in and release of the accelerator pedal), clutching in
or shifting gears, increased backlash in gears and wheel-slip in the tires. EVs fitted with
central drive powertrain configurations are especially susceptible to torsional oscillations,
resulting in jerk when subjected to high rate of acceleration especially during tip-in and
tip-out maneuvers [17].

Fig. 1.4 shows the wheel speed, torque and slip oscillations measured experimentally on
our test vehicle, the Rav4EV. It can be seen that the Rav4EV develops peak torque in ≈ 1 s
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which is accompanied by wheel-slip and torque oscillations.
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Figure 1.4: Wheel speed, torque and slip oscillations measured experimentally on the Rav4EV

1.3.3 EVs more susceptible to Oscillations

In this section, we compare some of the design characteristics, that make EVs more
susceptible to driveline oscillations as compared to ICE driven vehicles [18]. We make this
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comparison considering the Lotus Evora platform [3], that is powered by both, an Induction
motor (Lotus Evora 414E) as well as an ICE (Lotus Evora S). The following differences
exist in the characteristics of an EV and an ICE powered vehicle:

(a) Induction motors develop instantaneous torque, and the torque characteristics remain
constant till it reaches its base speed (approx 3000 rpm), followed by a flux weakening
region, where torque decay is observed. However, the ICE vehicle starts at 2000 rpm
(idling) and torque is approximately constant over the speed range. Therefore, ICE
driven Evora S requires to use a reduction gearbox so that torque can be transmitted at
speeds lower than 2000 rpm or above 7000 rpm as shown in Fig. 1.6. The comparative
torque-speed curves for Lotus Evora 414E EV and an ICE driven Evora S are shown
in Fig 1.5.

Figure 1.5: Torque requirement of Evora 414E EV vs a ICE driven Evora S [3]

(b) The capability of induction motors to develop torque over a range of speeds makes
the powertrain design simpler and smaller as compared to ICEs. Generally, most
EVs are fitted with small single-stage reduction gearboxes as compared to relatively
heavy multi-stage reduction gearboxes fitted in ICE driven vehicles. The torque
characteristics of Evora 4141E electric and an Evora S ICE with multi-stage reduction
gearbox can be seen in Fig. 1.6.

(c) The EV design generally does not cater for a clutch or torque converter and therefore the
powertrain is rigidly connected to the wheels through a reduction gear. Not including

7



1. Introduction

Figure 1.6: Evora 4141E electric drivetrain vs Evora S ICE with gearbox [3]

a clutch in the powertrain design, as in the case of an ICE driven vehicle, leads to low
damping in the EV drivetrain. Low driveline damping can lead to sustained driveline
oscillations in EVs [19].

It can be seen from the above example that EVs have lower powertrain inertia, and lower
damping as compared to ICE vehicles. Further, ICEs are usually equipped with dampers to
damp out the high torque oscillations occurring at the firing frequency of the engine [18].
These factors make EVs more susceptible to driveline oscillations.

1.4 Drivability

The low frequency longitudinal oscillations are unpleasant to the human body as resonant
frequencies of some of the internal organs are in the same range [20], thus affecting drivability.
Drivability as defined in [21] is a subjective perception of the interactions between the
driver and vehicle. A literature survey in the area of drivability has indicated that, although
there are no standards prescribed, it is commonly evaluated from a driver’s perspective.
Although drivability was associated with fuel consumption and emissions during the 1970s,
car manufacturers in the last decade started focusing on several vehicle characteristics
like responsiveness, operating smoothness and driving comfort. Drivability by most car
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manufacturers is evaluated subjectively by having their experienced test drivers fill out form
sheets [21].

In the past few years, the focus has shifted to developing objective methods to assess
drivability. AVL DRIVE [22], a software based measurement system uses more than 100
criteria to evaluate drivability objectively. The typical operation modes used by AVL DRIVE
to evaluate drivability include acceleration, braking, tip-in and gear change while assessment
criteria include measurement of vibration response such as shuffle, jerk, oscillations and
overshoots.

The driveline oscillations are quantified in terms of jerk index [21] on a scale of 1 to
10 to assess drivability objectively. Vehicle jerk can be expressed mathematically as the
derivative of acceleration or the second derivative of velocity:

Jv =
d
dt
(Ûv) =

d2

dt2 (v) (1.1)

It is not only important to assess jerk with a driver operation perspective, but also for
advanced driver assistance systems (ADAS) such as cruise control. According to a survey
report by the National Highway Traffic Safety Administration (NHTSA) [23], high jerk in
cruise controllers is preventing users from using cruise-control; NHTSA since formed an
important criteria for evaluating the performance of cruise control systems. In this research,
the maximum acceptable longitudinal jerk for good drivability is considered as 2-3 m/s3

[24, 25].

1.5 Motivation and Scope of Research

High power-to-weight ratios and high initial acceleration due to relatively flat torque-speed
characteristics give EVs a significant edge over the ICEs. However, rapid build up of torque
by an electric motor creates undesired torsional oscillations, leading to problems with regard
to comfort and drivability. Not only is the driver comfort affected, torque oscillations can
lead to wheel slip and increased fatigue of drivetrain components.

In the past, driveline oscillation control did not attract much attention as ICE driven
vehicles are less prone to these oscillations as compared to EVs. Further, motor controllers
are typically designed to produce torque independently of the mechanical state of the
system and do not actively damp out the oscillations [18]. However, as the number of EVs
is increasing, a number of torque control strategies are being researched to improve the
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drivability of EVs.

In this research, we have designed torque management strategies for traction and cruise
control applications, to damp out driveline oscillations actively, and to improve drivability of
EVs. A model-based design approach has been adopted in this research since it can be used
effectively for designing, developing and prototyping of controllers. Accordingly, the scope
of this research falls under 3 categories: modeling, control design and control evaluation.

1.5.1 Modeling

As a first step in model-based design, two types of system models have been designed:
longitudinal dynamics plant model and control-oriented model.

Longitudinal dynamics plant model

A longitudinal dynamics model of an electric vehicle, with central drive powertrain
architecture, has been developed in MapleSim, a software based on graph-theoretic modeling
[12]. The model has been exported to Matlab/Simulink as an optimized C code or S-function
to support development of controllers. Specifically, this high-fidelity model of a Rav4EV
has been utilized to support the following tasks:

• Parameter identification of the longitudinal dynamics model of the EV.

• Validation of control-oriented model.

• Testing the anti-jerk traction and cruise controllers through model-in-the-loop simula-
tion.

• Testing and evaluation of the anti-jerk controllers through hardware-in-the-loop tests.

Control-oriented model

Since we use a model-predictive approach for control design, the control-oriented model
is built into the structure of the model predictive controller (MPC). The control-oriented
model is required to be accurate enough to represent the plant dynamics with reasonable
accuracy, and fast enough to enable real-time implementation. The novel control-oriented
model discussed in Section 3.2.2 enables wheel-slip control in addition to conventionally
used halfshaft torque control models.
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1.5.2 Anti-Jerk Control Design

An MPC approach is used to design the controllers, since it has the ability to deal with
multiple objectives of tracking wheel-slip, velocity and anti-jerk in an optimal sense, while
handling constraints at the same time. The anti-jerk traction controller is designed to track
a reference wheel-slip, while maintaining jerk-free traction in response to a driver pedal
input. A novel anti-jerk cruise control is designed to meet the multiple objectives of velocity
tracking and anti-jerk on any road surface. The system is subject to constraints that include
the maximum motor torque, rate of torque and maximum wheel-slip. In this research, the
following tasks will be undertaken to achieve the control design:

• Create a control-oriented model inherent to the design of the MPC controller.

• Design an MPC-based anti-jerk traction controller.

• Design an MPC-based anti-jerk cruise controller.

1.5.3 Control Evaluation

In this research, the following process [26] will be used to validate the performance of the
anti-jerk traction and cruise controllers:

• Model-in-the-loop (MIL) simulation to evaluate the performance of the MPC con-
trollers.

• Comparison of the developed MPC controllers to other controllers presented in the
literature.

• Hardware-in-the-loop (HIL) testing to evaluate the real-time implementation capability
of the controllers.

1.6 Thesis Organization

The introduction to this thesis includes a brief historical background and motivation to design
anti-jerk controllers for EVs. A comparison has been made with conventional ICE vehicles
to bring out the significance of driveline oscillations in EVs. A problem statement indicating
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the scope of this research, categorized under modeling, control design, and evaluation, has
been explained.

Chapter 2 presents the dynamic modeling, parameter identification and validation
of the longitudinal dynamics plant model. The longitudinal dynamics plant model is
developed using standard components from the multibody library. An experimental set
up for simultaneous data collection from an array of sensors like Vehicle Measurement
System (VMS), Global Position Sensor (GPS), Inertial Measurement Unit (IMU) and vehicle
Controller Area Network (CAN) using a CAN integration device has been discussed. The
parameters for the longitudinal dynamics model were identified experimentally based on
a two-stage process. In stage 1, component level parameters were identified based on
sub-system models. Thereafter, the parameters identified during stage 1 were optimized
using the full vehicle longitudinal dynamics model in Stage 2. The longitudinal dynamics
model has been validated by comparing against experimental data measured on the vehicle.

Chapter 3 presents the design of control-oriented models and the model-predictive
controller. Two different control-oriented models, one based on only halfshaft torsion
control and the other on halfshaft torsion and wheel slip control, have been formulated.
The parameters of the control-oriented model have been validated using experimental data.
The advantages of using halfshaft torsion and wheel slip based models in the design of
MPC-based anti-jerk traction and cruise controllers has been discussed. A criterion for
performance assessment of controllers through MIL and HIL experiments is also discussed.

Chapter 4 presents the design of the MPC-based anti-jerk traction controller to satisfy
the multiple objectives of slip-tracking performance and enhanced drivability at the same
time. This controller has been compared against other controllers in the literature, all tuned
for anti-jerk performance. The performance was assessed by comparing the test results
of slip-tracking, jerk and integral action of jerk in 5 different scenarios. The real-time
implementation has been demonstrated through HIL testing.

Chapter 5 presents the design of an anti-jerk cruise controller to satisfy the multiple
objectives of velocity tracking and enhanced drivability, while adapting to changes in road
conditions. The significance of incorporating wheel-slip constraints in addition to halfshaft
torsion in the control design to enhance anti-jerk performance has been demonstrated. The
real-time implementation has been demonstrated through HIL testing.

Conclusions, summary of contributions and future work is discussed in Chapter 6.
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Chapter 2

Vehicle Dynamic Modeling and
Validation

2.1 Introduction and Literature Review

Advances in vehicle control systems and reduced development time have necessitated quick
and accurate development of vehicle models. A significant savings in development time are
possible, if an accurate model is available. The accuracy of these models depends on the
parameters used, which are identified through parameter identification techniques.

In this Chapter, an 18 degree of freedom (DOF) high-fidelity longitudinal dynamics
plant model has been developed for the Rav4EV using MapleSim, a software based on
graph-theoretic modeling [27]. MapleSim uses optimized code-generation techniques to
build models capable of real-time simulation.

In general, vehicle parameters are identified through standard tests, undertaken in
dedicated test facilities such as [28]. Standard tests such as null point method, weight balance
method and pendulum tests [29] have been developed for measuring center of gravity of a
vehicle. Tire parameters are identified as per ASTM J199801, which involves tire testing on a
belt-type flat surface machine. However, the tire behaviour during these standard laboratory
tests is not as good as on-road tests [30] due to differences in texture of road surface, ambient
temperature, road crown and road alignment. Vehicle manufacturers are researching methods
[31] to get test bench test data as close as possible to that obtained during on-road tests.
Moreover, standardized test methods are expensive [32] and time-consuming.

This chapter explains how on-road performance measurement systems and numerical
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2. Vehicle Dynamic Modeling and Validation

parameter identification methods can substantially reduce the need for standardized testing
on test beds for vehicles. Experimental data was gathered on our test vehicle, Toyota
Rav4EV, using an integrated measurement system designed to simultaneously collect data
by integrating an array of sensors including a Vehicle Measurement System (VMS), Global
Position Sensor (GPS), Inertial Measurement Unit (IMU), and the vehicle Controller Area
Network (CAN).

A two-stage parameter optimization procedure is proposed to identify the parameters
of the longitudinal dynamics plant model. First, component level or sub-system models
were considered to identify the individual parameters of the plant model. The parameters
identified using this approach were then optimized together using the complete plant model
developed in MapleSim to obtain the final set of parameters. A MATLAB/Simulink based
non-linear least square parameter estimator with a trust region reflective algorithm [33] was
used to identify the parameters by minimizing the difference between experimental and
simulated data.

The MapleSim longitudinal dynamics model is presented in Section 2.2. Details of the
experimental measurement system and vehicle tests are described in Section 2.3. The details
of component level parameter identification are discussed in Section 2.4 and vehicle level
parameter identification and model validation are presented in Section 2.5.

2.2 Plant Model for Longitudinal Dynamics

In this research, MapleSim is used to create a longitudinal dynamics model of the Rav4EV,
since it has the ability to generate highly optimized simulation code useful for real-time
implementation. MapleSim provides a library of standard components such as rigid bodies,
springs, dampers, joints and tires which can be combined to create highly customized
models for a user-application. The developed models are acausal, which means that they are
adaptable to the direction of data flow unlike traditional input/output blocks.

A full-car chassis model of the front wheel drive Rav4EV with 18 DOF has been
developed in MapleSim. The chassis has 6 DOF, wheels 4 DOF, suspension 4 DOF and
halfshaft 4 DOF. The tires have been modeled using Pacejka’s Magic formula relaxation
length model so that the effect of wheel slip transients are included. The model consists
of a rigid body representing the car mass, connected to both front and rear tires through
suspensions. Both suspensions are simplistically modeled as linear spring dampers which
allow only vertical displacement. The motor torque is amplified in a single-reduction gearbox
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and applied to the forward wheels through a halfshaft. The halfshaft is modeled as a torsional
spring and damper system of negligible mass (being small). The halfshaft is connected on
both the wheel and the gearbox sides with universal joints with an additional prismatic joint
on the wheel side to cater for any vertical movement of the front wheel. A representation of
the full-car longitudinal dynamics model in MapleSim is shown in Fig. 2.1.

Figure 2.1: Full-car longitudinal dynamics model of Rav4EV in MapleSim

The various model components are explained in detail as follows:

(a) Vehicle chassis. In the MapleSim model, the vehicle chassis is modeled as rigid body
with mass, CG and inertia parameters specified for the rigid body. The rigid car body
is connected to the front and rear suspensions through a rigid body frame that defines
the position and orientation relative to the center of gravity.

(b) Suspension components. Suspension elements connect the car mass to the front
and rear wheels. The suspension elements are modeled using prismatic joints that
exhibit linear stiffness and damping characteristics. The prismatic joint allows relative
translational motion between the wheel and vehicle chassis only in the vertical direction.
The prismatic joint is assumed to have an initial displacement due to the weight of
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chassis acting on the spring. Each prismatic joint is connected to the wheel through a
revolute joint, thus allowing the wheel one rotational degree of freedom. The stiffness
and damping parameters of this revolute joint are assumed to be zero to simulate an
ideal joint.

(c) Tire components. Each tire consists of two sub-components; a standard tire body and
a tire model. The standard tire component computes the kinematic parameters such as
slip angle, slip ratio and dynamic tire radius based on vertical tire stiffness and load
changes on application of a normal load on the tire. The parameters of the standard
tire component are tire mass, tire inertia, vertical stiffness, damping and unloaded
tire radius. MapleSim has a library of different tire models (Linear, Fiala, Calspan,
Pacejka, and user-defined) to calculate the forces and moments acting at the contact
patch. In this research, we have used a user-defined tire model. The longitudinal force
to be input in the tire model are computed by developing custom components based on
the Pacejka tire model as given in equation (2.4) while the normal force is computed
directly from the standard tire component.

(d) Half shaft components. Half shaft is modeled as a torsional spring and damper
system. The halfshaft has universal joints at each end. One end of the halfshaft is
connected to the powertrain while the other end is connected to the wheel. An ideal
prismatic joint is also added between the halfshaft and wheel to allow for any lateral
displacement of the wheel.

The model accepts motor torque (Tm) as an input and outputs halfshaft (wheel) torque
(Ths), vehicle speed (v), and wheel speed (Whsp = re f fωw). The model was exported as an
optimized S-function so that it could be used for simulation and control in Matlab/Simulink.

2.3 Experimental Testing

2.3.1 Experimental Measurement System

Experimental data was recorded by integrating an array of sensors that includes a Vehicle
Measurement System (VMS), Global Position Sensor (GPS), Inertial Measurement Unit
(IMU), and the vehicle Controller Area Network (CAN). A CAN integration device from
‘Vector Informatik GmbH’ was used to integrate the various signals. The system architecture
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for integrating the signals from the various devices is shown in Fig. 2.2. A brief description
of the various sensors is as follows:

Figure 2.2: Integration of sensors through Vector CAN box

Vehicle Measurement System (VMS). The VMS manufactured by ‘AnD Technologies’
consists of a sensor set mounted on each of the four wheels to record signals during on-road
testing. Each VMS sensor set mounted on a wheel consists of the following five sensors:

(a) Wheel Force Sensor (WFS) and Rotary encoder. The WFS is a strain gauge based
sensor mounted on a custom wheel hub to record forces (Fx , Fy, Fz) and moments
(Mx , My, Mz) on the wheel. The wheel hub also houses a rotary encoder to measure
the angular speed of wheel.

(b) Wheel Position Sensor (WPS). The WPS consists of five digital encoders mounted
on a frame that connects the wheel to the chassis. The sensor measures the relative
displacement and rotation of the wheel about the longitudinal, lateral and vertical axis
with respect to the vehicle body. A picture of WFS and WPS sensors installed on the
vehicle is shown in Fig. 2.3.

(c) Laser Ground Sensors (LGS) and Laser Doppler Velocimeters (LDV). The LGS
and LDV sensors are mounted together as a single unit on the wheel hub as shown in
Fig. 2.4. The LGS comprises three laser sensors that compute the dynamic radius of
the wheel, or distance of the wheel center from the ground. The two LDV sensors are
used to compute the ground speed of the tire in longitudinal and lateral directions. In
addition to measuring the dynamic radius, the LGS and LDV sensors are interfaced
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(a) WFS sensor (b) WPS sensor

Figure 2.3: WFS and WPS sensors mounted on wheel hub

to compute the slip angle, camber angle, pitch angle and roll angle of the tire by
processing the measured data from the sensor set.

Global Position Sensor (GPS) and Inertial Measurement Unit (IMU). An integrated
GPS and IMU sensor unit manufactured by Racelogic was used to measure the pitch, roll
and yaw rate of the vehicle using rate gyroscopes, and longitudinal, lateral and vertical
accelerations using accelerometers. The IMU sensor (Model RLVBIMU04) has an accuracy
of yaw rate resolution of 0.0140/s and acceleration resolution of 0.15 mg. The GPS and
IMU sensors are co-located on the roof of the car with the help of a magnetic base as shown
in Fig. 2.5.

Vehicle Data using Controlled Area Network (CAN bus). A number of signals were also
obtained by tapping into the vehicle CAN through the onboard data port of the Rav4EV. Since
the vehicle is powered by the Tesla powertrain, the vehicle CAN network is an integration of
V1-CAN from Toyota and EV-CAN from Tesla Motors. The V1-CAN consists of signals
related to the vehicle such as accelerator pedal position and vehicle speed while EV-CAN
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Figure 2.4: LGS and LDV sensor set mounted on wheel hub

Figure 2.5: GPS and IMU sensor set co-located with the magnetic mount

consists of powertrain related signals such as motor speed, motor torque, DC voltage and
battery state-of-charge (SOC).

2.3.2 Vehicle Tests

Experimental testing of the Toyota Rav4EV was conducted on the Toyota Motor Manu-
facturing Canada (TMMC) test tracks. Fig. 2.6a shows the Rav4EV equipped up with the
VMS. The Rav4EV was tested at TMMC test track as shown in Fig. 2.6b. Several straight
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line driving maneuvers, which included hard acceleration and hard braking, acceleration
cruise and braking, coast down, and driving over a speed bump, were undertaken to excite
the longitudinal dynamics of the vehicle. The VMS system was calibrated prior to testing.
While few parameters such as wheel base, front and rear track widths are obtained directly
from physical measurements and weight of the Rav4EV on each of the four wheels identified
through weight scales at TMMC, all other model parameters were estimated based on track
tests with the vehicle.

(a) Rav4EV instrumented with measurement system

(b) TMMC test track

Figure 2.6: Rav4EV rigged with vehicle measurement system on TMMC test track
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During coast down tests, wind speed was also recorded using a weather station. A brief
summary of the road tests undertaken and parameters identified are given in Table 2.1.

Test type Vehicle
Speed range

Parameters
Identified

Speed-bump test Constant
15 Km/hr

Suspension parameters

Hard acceleration
tests

0-100 Km/hr Tire model parameters, Motor inertia,
Wheel inertia, Motor model parameters

Acceleration and
cruise tests

0-80 Km/hr
0-100 Km/hr

Position of center of gravity, Vehicle
pitch inertia

Coast-down tests 0-70 Km/hr Coefficient of drag and rolling resis-
tance

Table 2.1: Experimental tests conducted

2.4 Parameter Identification - Component Level

On-road testing was found to be a quick and reliable methodology for parameter identification.
A two-stage optimization process was followed for to identify the paramaters of the
longitudinal dynamics model. In this section, different component level sub-system models
were considered to identify the individual parameters of the longitudinal plant model. The
parameters identified from component level testing was used as an initial guess for vehicle
level estimation discussed in section 2.5. The data collected from different maneuvers has
been processed to estimate the required parameters.

For component level parameter identification, we consider a 3 DOF (longitudinal, pitching
and heave) longitudinal dynamics model of the Rav4EV. In this model, we assume that the
mass is lumped at its center of gravity (CG), and there is no relative motion between the
wheels and chassis. The forces acting on the Rav4EV during longitudinal motion are shown
in Fig. 2.7. The dynamic equation for the longitudinal motion of the vehicle is expressed as:

M Ûv = Fx − Fr − Fd (2.1)

where M represents the total mass of the vehicle, Fx = 2Fx f is the sum of longitudinal
traction/braking forces acting on the each of the front wheels (Fxr = 0 for a front wheel
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Figure 2.7: Longitudinal forces acting on Rav4EV

driven vehicle), Fr = Fr f + Frr is the rolling resistance force on the front and rear wheels
and Fd is the aerodynamic drag force acting at the center of pressure hd . Fz f is the sum of
normal forces on the front wheels and Fzr is the sum of normal forces on the rear wheels
and L is the wheel base indicating the distance between the front and rear wheels. The
longitudinal distance of CG from front and rear wheels are l f and lr respectively, while the
vertical distance of CG from ground is represented by h.

Through the parameter identification procedure, we aim to accurately estimate the traction
force (Fx), resistance forces (Fr and Fd), and torque transmitted through the powertrain of the
Rav4EV. The traction force on the Rav4EV is governed by road-load friction characteristics
as defined by the Pacejka tire model. The friction characteristics are further influenced by
normal load distribution on the wheels, which in turn is governed by suspension dynamics.
The resistance forces are estimated from the coefficient of drag and rolling resistance
identified through coast down tests. The inertial characteristics of the drivetrain (motor,
gearbox and drivetrain) and stiffness/damping characteristics of the halfshaft, govern the
torque (and torsional oscillation) characteristics of the powertrain system. The procedure
followed for parameter identification is explained in the following sections.
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2.4.1 Tire Model Parameters

The longitudinal traction force generated at each tire is a function of longitudinal slip ratio
and the normal force applied on the tires. For a front wheel drive vehicle, the traction force
on the two front wheels is represented as:

Fx = 2Fx f = 2µ(λ)Fz f (2.2)

where µ is the normalized longitudinal force governed by the Pacejka tire model [34] which
is a function of the slip ratio λ. The slip ratio for an accelerating wheel is defined as:

λ =
re f fωw − v

re f fωw
(2.3)

where ωw is the angular velocity of the wheel, re f f is the dynamic radius of the wheel and v
is the vehicle speed. The relationship between µ and λ is represented by Pacejka’s Magic
formula tire model as:

µ = D sin
[
Ctan−1

{
Bλ − E

(
Bλ − tan−1Bλ

)}]
(2.4)

The parameters of Pacejka’s Magic formula tire model in equation (2.4) are determined by
plotting µ with the longitudinal slip ratio λ. Using a non-linear curve fit, the parameters
of the Magic formula tire model as seen in Fig.2.8 have been estimated as B=49, C=1.37,
D=1.25 and E=0.01. The model parameters B, C, D and E in equation (2.4) are:
B: Stiffness factor. It determines the slope at the origin
C: Shape factor. It determines the range of the sine function
D: Peak value. It represents the peak value of the tire force.
BCD: The product of BCD represents the longitudinal stiffness of the tire.
E: Curvature factor. It is used to represent the curvature near the peak of the curve.

2.4.2 Pitch Inertia and Position of Center of gravity

The pitch inertia (Iy), position of longitudinal center of gravity (CG) (lr or l f ) and height of
CG (h) are identified by exciting the pitching motion of the vehicle through rapid acceleration
and hard braking tests. The data gathered on front and rear tires during acceleration/braking
maneuvers is processed to obtain these parameters. The equation governing the pitch motion
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Figure 2.8: (a) Slip ratio λ vs time (b) Normalized longitudinal force µ vs λ

of the vehicle is expressed as:

Iy Üθ = −Fz f l f + Fzr lr − M Ûvh (2.5)

where, Iy is the pitch inertia of the vehicle and Ûv is the acceleration at the center of gravity
of the vehicle. Rearranging the terms to obtain normal force on the front wheels:

Fz f =
Mglr

L
−

Mh Ûv
L
−

Iy Üθ
L

(2.6)

Since the GPS is not positioned at the CG of the vehicle but at the roof of the car, the
acceleration recorded by the GPS needs to be transformed to the CG of the vehicle. Neglecting
the small centripetal terms, the longitudinal vehicle acceleration at CG is expressed as:

Ûv = ÛvGPS + Üθ(h − H) (2.7)

where H is the height at which GPS is mounted from the ground.
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Figure 2.9: Experimental vs estimated normal force

Substituting equation (2.7) into (2.6), we have:

Fz f =
Mglr

L
−

Mh(ÛvGPS + Üθ(h − H))
L

−
Iy Üθ
L

(2.8)

where the vehicle acceleration in longitudinal direction (ÛvGPS) is measured using the GPS,
and pitch acceleration ( Üθ) measured by taking a derivative of the pitch rate measured by the
IMU.

By minimizing the difference between the experimental and simulated normal force
on the front wheels (Fz f ), as shown in Fig 2.9, the parameters have been estimated as
Iy = 3052 kgm2, lr = 1.42 m and h = 0.62 m.

2.4.3 Suspension Parameters

The front suspension of the Rav4EV is a Mcpherson strut while the rear suspension is of
double wishbone type. To include load transfer effects due to pitching motion of the vehicle
during acceleration and braking maneuvers, we have considered a simplistic approach of
modeling the front and rear suspensions as linear spring and damper elements and assumed
that the suspension elements are symmetric about the longitudinal axis for left/right wheels.
We consider a four-DOF half car model as shown in Fig. 2.10, with the aim to estimate the
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stiffness parameters (K f , Kr) and damping parameters (C f , Cr) of front and rear suspensions.

Figure 2.10: 4-DOF car model for identification of suspension parameters

The model allows vertical motion (z direction) and pitch motion (θ) of the car chassis
(sprung mass) and vertical motions of the front and rear wheels (z f t , z f t). The sprung mass
(Ms) is calculated by subtracting the half car mass from those of the two wheels (Mt f , Mtr)
and the pitch inertia (Is) of the sprung mass is calculated by subtracting half the vehicle
inertia ( Iy

2 ) of the from the inertia of the unsprung mass (Iu) about the CG as follows:

Ms =
M
2
− (Mt f + Mtr)

Is = Iy − Iu

(2.9)

where Iy = Fz f l2
f + Fzr l2

r and Iu = Mt f l2
f + Mtr l2

r . The tires are modelled as linear springs
with stiffness Kt . Since the damping of the tires is small as compared to that of the suspension
elements, it is neglected. The equations of motion for Ms and Is for a vehicle driven at a
constant speed v are:

Ms Üz = −

Fz f︷                                 ︸︸                                 ︷
K f

{
z f − zt f

}
− C f

{
Ûz f − Ûzt f

}
−

Fzr︷                              ︸︸                              ︷
Kr {zr − ztr} − Cr { Ûzr − Ûztr}

Is Üθ = l f
[
K f

{
z f − zt f

}
+ C f

{
Ûz f − Ûzt f

}]
− lr [Kr {zr − ztr} + Cr { Ûzr − Ûztr}]

(2.10)

The equations of motion for unsprung masses (Mt f ) and (Mtr) consisting of the wheel and
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suspension mass can be written as:

Mt f Üzt f = K f
{
z f − zt f

}
+ C f

{
Ûz f − Ûzt f

}
− Kt(zt f − u f ) = 0

Mtr Üztr = Kr {zr − ztr} + C f { Ûzr − Ûztr} − Kt(ztr − ur) = 0

z f = z + l f cos θ and zr = z − lr cos θ

(2.11)

The input to the model is a speed bump of a known profile has been used to excite pitch
and heave motions. The road profile input ui to the model has been considered to be a
modified cosine function [35, 36] expressed as:

ui =
A
2




0 t < Di

v

1 − cos( 2π
λbump

Di)
Di

v ≤ t ≤ Di+λbump

v

0 t > Di+λbump

v


(2.12)

where A = 7.2 cm is the height of the speed bump, λbump = 49.5 cm is the width of the
speed bump and Di is the distance taken by the front or rear tire to travel to the speed bump
and i = f , r refers to the front and rear tire respectively. The speed profile given in (2.12) is
considered appropriate for approximating the suspension forces as compared to the standard
sine function given by:

ui = A sin
(

π

λbump

)
(2.13)

A plot comparing the speed profile approximated using the cosine function in (2.12) and the
sine function (2.13) is given in Fig.2.11.

The suspension parameters are determined by minimizing the cost function J expressed
as:

J =
∫ t

0

[
w1J1

2 + w2J2
2 + w3J3

2] dt (2.14)

where J1, J2, and J3 are the costs with respect to normal forces (Fz f and Fzr) on the front
and rear wheels and pitch rate ( Ûθ) of the unsprung mass, expressed as:

J1 = F∗z f −

Fz f︷                                ︸︸                                ︷
(Ms f + Mt f )g + Kt(zt f − u f )

J2 = F∗zr −

Fzr︷                             ︸︸                             ︷
(Msr + mtr)g + Kt(ztr − ur)

J3 = Ûθ
∗ − Ûθ

(2.15)
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Figure 2.11: Profile of the speed bump

where F∗z f , F∗zr and Ûθ∗ are the experimentally measured normal force on the front wheel,
normal force on the rear wheel and pitch rate, and w1, w2, and w3 are the corresponding
weights. A comparison of the experimental and simulated suspension forces is given in Fig.
2.12.

Using the non-linear least square algorithm, the suspension parameters have been
identified as K f = 54, 370 N/m, Kr = 35, 540 N/m, C f = 1980 Ns/m and Cr = 1795 Ns/m.
The vertical tire stiffness (Kt) is assumed to be 253, 000 N/m as given in the manufacturer’s
specifications.

2.4.4 Resistance force Parameters

The forces resisting the longitudinal motion of the vehicle are the aerodynamic drag force
and the rolling resistance force. Aerodynamic drag force (Fd) is the force due to the air
resistance acting on the frontal area of the vehicle. This can be represented as:

Fd =
1
2
ρCd A f v

2 (2.16)

where ρ is the density of air, assumed as 1.2Kg/m3. The parameters estimated are the
aerodynamic drag coefficient Cd and the frontal area of the vehicle A f . The rolling resistance
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Figure 2.12: Normal force on the front left and rear left wheels

force is caused by a non-symmetric distribution of normal tire load over the contact patch.
The rolling resistance force Fr at the tire center can be modeled as:

Fr = frr(Fz f + Fzr) (2.17)

where frr is the rolling resistance coefficient to be estimated.

2.4.4.1 Frontal Area and Center of Pressure

Frontal area of a vehicle is the orthogonal projection of the vehicle on a plane perpendicular
to the longitudinal axis of the vehicle. Frontal area is an important parameter that determines
the aerodynamic drag, thus affecting the power consumption of the vehicle. In this research
work, the frontal area (A f ) is estimated using an image processing technique [37]. The frontal
image of the Rav4EV was processed to fill the car area with black color and background
with white color. Then ‘im2bw’ function in in the Image Processing Toolbox of MATLAB
is used to convert the grey scale image to binary image. The grey scale image’s darker pixels
are replaced by 0 and lighter pixels are replaced by 1 in the final binary image as shown
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Figure 2.13: Frontal area of Rav4EV and processed image with black and white pixels

in Fig 2.13. Counting the pixels (Bi × Hi) of the black and white color, the actual frontal
area of Rav4EV has been calculated as 2.464 m2 which is 80.6% of the total area of the box
(3.058 m2).

Further, assuming uniform air pressure distribution over the frontal area, the centroid of
the figure could represent the center of pressure where the aerodynamic drag force acts. The
height of center of pressure (hd) has been estimated as 0.689 m.

2.4.4.2 Coefficient of Drag and Rolling Resistance

The aerodynamic drag coefficient (Cd) is determined from a coast-down test in accordance
with the methodology followed by White and Krost [38]. The Rav4EV was accelerated
to about 65 Km/hr and then the throttle released so that the vehicle slows down under the
effects of aerodynamic drag and rolling resistance. The vehicle speed recorded with and
against the wind can be seen in Fig. 2.14.

During coast-down, the traction force (Fx) on the vehicle is small and therefore neglected.
The longitudinal dynamics equation (2.1) reduces to:

M Ûv =
1
2
ρCd A f v

2 + Fr

or

−
dvx

ρCd Af v
2
x

2M +
Fr
M

= dt

(2.18)

where Fr is assumed to be constant for speeds below 70 Km/hr [38]. Integrating equation
(2.18), assuming an initial velocity of vi, the coast down time t for vehicle speed to drop
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Figure 2.14: Vehicle speed recorded during coast down testing of Rav4EV

from vi to vx can be expressed as:

t
T
= 1 −

tan−1
[
vx

(
ρCd Af

2Fr

) 1
2
]

tan−1
[
vi

(
ρCd Af

2Fr

) 1
2
] (2.19)

Solving for velocity vx from equation (2.19) yields:

vx =

(
2Fr

ρCd A f

) 1
2

tan

{(
1 −

t
T

)
tan−1

[
vi

(
ρCd A f

2Fr

) 1
2
]}

(2.20)

Simplifying further,
vx

vi
=

1
β

tan
[(

1 −
t
T

)
tan−1β

]
(2.21)

where

β = vi

(
ρCd A f

2Fr

) 1
2

(2.22)

The parameter β is estimated from (2.21) by plotting non-dimensional velocity ( vxvi )
against non-dimensional time ( t

T ) as shown in Fig. 2.15.
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Figure 2.15: Plot of vx
v0

against t
T to estimate β

The coefficient of drag Cd is obtained as:

Cd =
2Mβtan−1β

viT ρA f
(2.23)

and coefficient of rolling resistance frr is obtained as:

frr =
vitan−1β

βTg
(2.24)

From data collected over 5 runs, the average coefficient of drag (Cd) was estimated as
0.308 which is close to 0.3 specified in the Toyota technical manual. The average coefficient
of rolling resistance ( frr) was estimated as 0.0015.

2.4.5 Drivetrain Inertia

The powertrain of the Rav4EV consists of a central motor driving the wheels through a
single reduction gear. A differential connects the two front wheels on either side of the
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motor. The dynamics of the motor and gearbox, and those of gearbox and halfshaft can be
represented as:

Jm Ûωm =
Tm

ηt
−

Tt

gr
(2.25a)

Jt Ûωt = Tt − Tw (2.25b)

where Jm represents motor inertia, Jt transmission inertia, ηt efficiency of transmission, gr

gear ratio of transmission and Tt transmission torque. Combining equations (2.25a) and
(2.25b), the equation for drivetrain dynamics can be written in terms of measured motor
torque (Tm) and wheel torque (Tw) as:(

Jm +
Jt

gr2

)
︸        ︷︷        ︸

Jd

Ûωm =
Tm

ηt
−

Tw

gr
(2.26)

which was used to simulate angular speed of motor (ωm) for measured inputs Tm and Tw.
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Figure 2.16: Experimental vs simulated motor angular speed (ωm)

By comparing the experimental and simulated motor speed (ωm) as shown in Fig. 2.16,
the combined drivetrain inertia (Jd) has been estimated as 0.25 kgm2 and drivetrain efficiency
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as 94.6%.

2.4.6 Wheel Inertia

A free body diagram (FBD) of the forces acting on the driven wheel is shown in Fig. 2.17.
The dynamic equation governing the driven wheel dynamics can be expressed as:

Figure 2.17: Free-body diagram showing forces on the front (driven) wheel

Jw Ûωw = Tw − re f f Fx f − Mrr (2.27)

where Ûωw is the angular acceleration of wheel, re f f is the measured dynamic radius of
the wheel, and rolling resistance moment is Mrr = aRz f = frr Fz f . The rolling resistance
coefficient ( frr) is estimated as 0.0015 (section 2.4.4.2) andmass of the wheel (Mt f ) including
rims with tire specification 225/65 R17 was measured as 22.7 kg. The relation between the
longitudinal force (Fx f ) at the ground and force Fa measured by the VMS at the centre of
the wheel hub is expressed as:

Fx f = Mt f Ûv − Fa (2.28)

By comparing the experimental and simulated wheel speed (ωw) as shown in Fig. 2.18, the
wheel inertia (Jw) has been estimated as 2.72 kgm2.
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Figure 2.18: Experimental and simulated wheel spin (ωw)

2.4.7 Halfshaft Parameters

Halfshafts are used to transmit the transmission torque from the gearbox to the wheel. The
halfshaft is modeled as a torsional spring and damper system (1 DOF) negligible inertia.
The stiffness of these shafts was derived from the physical and material properties of the
halfshaft obtained from the manufacturer drawings. Torsional stiffness (torque required per
unit twist) of the shaft is expressed as:

k =
GJhs

Lhs
(2.29)

where G is the modulus of rigidity, Jhs is the polar moment of inertia and Lhs is the length of
shaft. As the halfshaft has three different diameters over its length, the equivalent stiffness k

is calculated by summing the longitudinal stiffness of each section. The torsional stiffness k

of the halfshaft is calculated as 22555 Nm/rad. The damping parameter of the halfshaft c

is chosen as 200 Nm/(rad/s) as in [39], which is typical for halfshafts of similar length and
diameters.
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2.5 Parameter Identification - Vehicle Level and Model
Validation

The parameters identified through component level identification procedures were used as
an initial guess for vehicle level estimation. Vehicle level estimation can also be considered
as model validation, since it involved comparison of model outputs to experimental data
during on-road testing.

A motor torque required to achieve a constant vehicle speed of 100 Km/hr was used
as reference input to validate the plant model. Fig. 2.19 shows the motor torque measured
experimentally on the vehicle.
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Figure 2.19: Motor torque input measured experimentally

A comparison of the plant outputs with the experimental data can be seen in Fig. 2.20.
A good co-relation can be seen in the wheel torque, wheel and vehicle speeds. Small
differences between experiments and models can be attributed to the following:

(a) Differences in effective tire radius. The effective tire radius in the plant model is
calculated by the custom tire component based on dynamic changes in load as discussed
in section 2.2 while the control-oriented model assumes a constant tire radius.

(b) Small differences in parameters (B,C,D and E) identified for the Pacejka tire model
(2.4) and the relaxation length model (3.9).
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A comparison has been drawn between the acceleration recorded experimentally by the
IMU and that simulated by the plant model. Since the acceleration data recorded by the
IMU was noisy, a second order Savitzky-Golay filter [40] was used to filter the noise. In the
absence of a sensor which can directly measure jerk, both experimental and model jerks were
calculated by numerically differentiating the acceleration signal. A comparison between
model and experimental acceleration and jerk can be seen in Fig. 2.21.
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Figure 2.20: Comparison of wheel torque, vehicle speeds and wheel speeds - plant model and
experimental data
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2.6 Summary

This chapter illustrates a quick and accurate method for identifying parameters of a
longitudinal dynamics model of an EV based on road testing. A real-time implementable,
18 DOF longitudinal dynamics plant model is presented. The models have been validated
against experimental data collected from the vehicle. A list of all the parameters identified
for the plant are given in Table 1.
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Chapter 3

Model Predictive Control Design

3.1 Introduction and Literature Review

Model Predictive Control (MPC) is an optimal control strategy, which computes the optimal
future control input, taking into account the constraints on system variables. The MPC
algorithm consists of a prediction model, cost function and constraints. At the heart of
MPC resides a control-oriented model (predictor) that predicts the future behavior of the
system over a time frame. These future predictions are evaluated in an optimizer based on a
cost function, and is subjected to constraints. The optimal control input, or control action,
computed by the optimizer is applied to the plant model for one timestep, after which the
process repeats. A block diagram representation of the MPC implementation scheme is
shown in Fig 3.1.

In MPC, the optimization is performed over a moving horizon window. The length of the
moving horizon window is called the prediction horizon (Np), which determines the extent
to which the future is predicted. The MPC problem, at each time instant, computes a vector
of future optimal control inputs (∆u), with the aim to minimize the difference between the
reference and predicted outputs over Np steps. The length of optimal control vector ∆u is
called the control horizon (Nc). Out of the vector ∆u, only the first control input is applied,
while neglecting the rest. This principle is called a Receding Horizon Control [41].

The MPC torque control strategy has a great potential for control of automotive drivelines
[42, 43]. The main advantages of MPC are its ability to deal with multiple input and
multiple output systems in an optimal sense, and its ability to handle multiple constraints,
while computing the optimal control input. Further, the capability of MPC to influence the
transient response characteristics [44] by adjusting the weights of the objective function, and
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Figure 3.1: Block diagram representation of a MPC controller

to implement constraints at each time step makes it an apt choice for the design of anti-jerk
controllers, where driveline oscillations occur as transients during the driving maneuvers.
With the ability of MPC to compute the future optimal control input at the current time
step, it is an ideal choice for connected and autonomous vehicles [45], considering that such
vehicles may have access to future information. Also, MPC can used for linear as well as
non-linear systems and has the ability to reject disturbances [46].

The accuracy and speed of an MPC controller depends on the control-oriented model
built into its structure. In this chapter, we discuss the design of two different control-oriented
models for the design of anti-jerk controllers. First, we discuss the design of common
anti-jerk control-oriented models, mainly designed for ICE driven vehicles, which aim to
damp oscillations through halfshaft torsion control [18, 47, 48]. Since slipping of wheels
often occurs in EVs due to sudden changes in driver torque demand [16, 49], we have
developed a more realistic anti-jerk control-oriented model, which includes tire-friction
effects in addition to halfshaft torsion. We have used the linear tire as well as the non-linear
Pacejka tire to model the tire-road friction. While adding non-linearity to the MPC makes
the control design more accurate, it also makes the MPC computationally expensive, thus
affecting the real-time implementation ability.

The design of control-oriented models and the procedure for identifying parameters for
the models is discussed in section 3.2. The design of MPC-based linear and non-linear
traction and cruise control applications is discussed in section 3.3. The HIL setup used to
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assess the real-time performance of the MPC traction and cruise controllers is discussed in
section 3.4.

3.2 Control-Oriented Models

The accuracy and speed of an MPC controller depends on the control-oriented model built
into its structure. In this section, we design a control-oriented model of an EV that includes
a flexible halfshaft and effects of wheel slip.

For an EV fitted with a central drive powertrain, the central motor connects to the two
forward wheels through a gearbox and flexible shafts, which in turn connect to the wheels.
A powertrain model for a front-wheel drive EV with a central drivetrain is shown in Fig. 3.2.
Since the powertrain is symmetric about each of the forward wheels, the equations of motion
have been derived for only one half of the powertrain. In this model, Jm and Jt represent

Figure 3.2: Powertrain model for EV with central drivetrain

half the inertia of the motor and transmission and Jw, the inertia of the wheel. The halfshaft
is modeled as a torsional spring and damper with stiffness k and damping c. The inertia of
the halfshaft is neglected since it is small as compared to the mass of the vehicle. The mass
of the vehicle is represented as M , reduction ratio of the gearbox as gr , dynamic radius of
the wheel as re f f and torsion angle in the halfshaft as θm

gr − θw.
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In general, powertrain models for anti-jerk control are based on either halfshaft torsion
control or wheel slip ratio control. In this research, we have combined the two approaches
for better anti-jerk performance.

3.2.1 Model based on Halfshaft Torsion Control

The vehicle can be modeled as a two-inertia system [50], where the inertia of the vehicle and
the wheel is lumped on one side while the inertia of the motor and transmission is lumped on
the other side. In this model, it is assumed that a tire is a rigid body, and its inertia is added
to that of the vehicle. The halfshaft is modeled as a torsional spring and damper connecting
the two inertias. A diagram representing the system is shown in Fig 3.3.

Figure 3.3: Diagram of the EV powertrain

The dynamic equation representing the motor and transmission dynamics for a single
front wheel is:

Jd Ûωm =
Tm

2
−

k
gr
(
θm

gr
− θw) −

c
gr
(
ωm

gr
− ωw)︸                                 ︷︷                                 ︸

Ths
gr =

Tw
gr

(3.1)

where Tm is the motor torque, Ths is the halfshaft torque which is the same as wheel torque
(Tw) considering negligible halfshaft inertia, ωm is the angular velocity of the motor, ωw is
the angular velocity of the wheel, and the drivetrain inertia is given by:

Jd = Jm +
Jt

gr2 (3.2)

44



3. Model Predictive Control Design

The wheel dynamics can be represented as:

Jw Ûωw = Tw − re f f
Fx

2
− frr Fz f (3.3)

where Fx the total longitudinal force on the vehicle, which is the sum of the force on the
front wheels, frr is the rolling resistance constant, and Fz f is the normal load on each of the
front wheels. The vehicle acceleration (Ûv) is given by:

M Ûv = Fx − Fd − Fr (3.4)

where the aerodynamic drag Fd =
1
2 Dcv

2 where Dc = ρCd A f . The parameter ρ is the
density of air, Cd is the aerodynamic drag coefficient and A f is the frontal area of the vehicle,
and Fr is the force due to rolling resistance. Since the tire is assumed to be rigid, the vehicle
acceleration can be related to angular wheel acceleration as Ûv = re f f Ûωw. The traction force
(Fx) in equation (3.4) can therefore be represented as:

Fx = Mre f f Ûωw + Fd + Fr (3.5)

Substituting for Fx in equation (3.3), the wheel and vehicle dynamics are given by:

J2 Ûωw = Tw − re f f
(Fd + Fr)

2
− frr Fz f (3.6)

where J2 = Jw+ M
2 r2

e f f . Combining equations (3.1) and (3.6), the system model representing
the dynamics of the powertrain in state-space form is represented as:

ÛX = Ax + Bu + Eud

Y = Cx
(3.7)

where

A =


0 1

gr −1
− k

Jdgr
−c

Jdgr2
c

Jdgr
k
J2

c
J2gr

−c
J2

 ; B =


0
1

2Jd
0

 ; E =


0 0
0 0

re f f frr


C =

[
k c

gr −c

0 0 re f f

]
;

(3.8)

with states as: x =
[
θm
gr − θw ωm ωw

]T
,

45



3. Model Predictive Control Design

input u = Tm, disturbance input ud =
[

0 −(Fd+Fr )
2 −Fz f

]T
, and outputs Y =[

Ths v
]T
.

3.2.2 Model based on Halfshaft Torsion and Wheel Slip Control

The model discussed in section 3.2.1 considers the tire as a rigid body; thus it assumes that
the longitudinal force applied to the wheel is transmitted to the tire (3.5). However, the
longitudinal force acting on the tires is a function of the tire-road friction. Therefore, a more
realistic vehicle model, which includes the tire flexibility and tire-road friction effects, has
been formulated. This model will help control wheel-slip during sudden changes in driver
torque demand, in addition to halfshaft torsion, or during changes in road condition.

The equations for motor/transmission dynamics (3.1) and (3.2), wheel dynamics (3.3)
and vehicle acceleration (3.4) for this wheel-slip based model is the same as that for the
halfshaft torsion model. However, the simplistic longitudinal force model (3.5) for the
halfshaft torsion model is replaced with linear or non-linear tire models. Several tire models
like Lugre [51], Burckhardt [52], Kiencke and Dias [53] and Pacejka 2002 [54] have been
used to model tire-road friction. Out of the these, we have used the Pacejka tire model, since
parameters have been identified for this model.

Slip-based transients play an important role in driveline oscillations especially during
tip-in and tip-out maneuvers. Since our aim is to develop models for anti-jerk control, we
have modeled slip-based transients based on Pacejka’s relaxation length model [55]. The
dynamic equation for transient slip λt can be expressed as:

Ûλt =
re f fωw

Rl
−

v

Rl
−

v

Rl
λt (3.9)

where (Rl) is defined as the distance needed by the tire to reach a certain percentage of the
steady state slip with a step change in slip. The longitudinal relaxation length (Rl) of the tire
is assumed as 0.3 as in [56]. To avoid singularities close to 0 speed as discussed in [57], we
linearize equation (3.9) about an operating speed vop:

Ûλt =
re f fωw

Rl
−

v

Rl
−
vop

Rl
λt (3.10)

Therefore, including the effect of slip-based transients, the longitudinal force on each
tire based on Pacejka non-linear tire model and linear tire model is:
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(a) Pacejka tire model: Based on equation (2.4):

Fx = 2D sin
[
Ctan−1

{
Bλt − E

(
Bλt − tan−1Bλt

)}]
Fz f (3.11)

where parameters B,C,D, and E are experimentally identified as discussed in section
2.4.1. The normal load Fz f on each of the front wheels based on equation (2.6) is
calculated as:

Fz f =
M
2L
(glr − h Ûv) (3.12)

The pitch acceleration Üθ for a straight line maneuver is small and therefore neglected.

(b) Linear tire model: The longitudinal force on the vehicle is given by:

Fx = 2Ctλt (3.13)

The transient longitudinal stiffness Ct is given by:

Ct = Cx Rl, (3.14)

where the longitudinal stiffness Cx = (BCD)Fz f .

Combining equations (3.1) to (3.4) and (3.10) to (3.12)/(3.13), a model for anti-jerk or
driveline oscillation control of EVs is formulated. The linear model in state-space form is
represented as:

ÛX = Ax + Bu + Eud

Y = Cx
(3.15)
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where

A =



− c
Jdgr2

c
Jdgr 0 −k

Jdgr2
k

Jdgr 0
c

Jwgr
−c
Jw

0 k
Jwgr

−k
Jw

−Ctre f f
Jw

0 0 −
Dcvop

M 0 0 2Ct

M

1 0 0 0 0 0
0 1 0 0 0 0
0 re f f

Rl
−1
Rl 0 0 −

vop
Rl


B =



1
2Jd
0
0
0
0
0


E =



0 0
1

Jw
0

0 1
M

0 0
0 0
0 0


C =


c
gr −c 0 k

gr −k 0
0 0 1 0 0 0
0 re f f 0 0 0 0


(3.16)

with states: x =
[
ωm ωw v θm θw λt

]T
,

input: u = Tm, disturbance inputs: ud =
[

0 − frr Fz f −Fd − Fr 0 0 0
]T
,

and outputs: Y =
[

Ths v Whsp

]T
.

Difference in Pacejka and Linear Tire Models

The longitudinal force approximated using the Pacejka tire model (3.11) and that by the
linear tire model (3.13) has been compared in Fig. 3.4. It can be seen that initially, there
is no major difference in the rate of increase of longitudinal force with slip. However, at
slip ratios higher than 0.035, the longitudinal force approximated by the linear tire model is
higher than that recorded by the Pacejka tire model. It can also be seen that the longitudinal
force for the Rav4EV saturates at 5300 N, when a slip ratio of 0.062 is reached. The control
bounds for longitudinal force and slip should accordingly be defined below these limits.
While the Pacejka tire model estimates the longitudinal force more accurately than a linear
tire model, it will result in a higher computation time. The control design is a choice between
accuracy and computation time. Real-time implementation with both linear and non-linear
Pacejka tire models is discussed in Chapters 4 and 5.
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Figure 3.4: Comparison of longitudinal force vs wheel slip in linear and Pacejka tire models

3.2.3 Parameter Identification for Control-Oriented Model

Using an experimental motor torque input shown in Fig. 2.19, the optimization procedure as
discussed in section 2.5 was used to identify the parameters of the control-oriented model.
The parameters identified for the plant model (Table 1) were used as an initial guess. The list
of parameters identified for the control-oriented models are given in Table 2. A comparison
of outputs from the control-oriented model (halfshaft torque, vehicle speed and wheel speed)
with the experimental data for a test, where the vehicle speed is increased from 0-100 Km/hr ,
is shown in Fig. 3.5.
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Figure 3.5: Comparison of wheel torque, vehicle speeds and wheel speeds - control-oriented model
and experimental data
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3.3 Design of MPC for Anti-Jerk Control

The MPC control effort is aimed at regulating the input motor torque to serve the multiple
objectives of reference slip tracking (y = λt) in case of traction control or velocity tracking
(y = v) in case of cruise control. It is assumed that the reference slip or reference vehicle
velocities are available to the MPC ahead of time over the prediction horizon Np. To achieve
anti-jerk control, the halfshaft torsion is also minimised ( θmgr − θw) in the cost function.
Further, to minimize the energy consumption and jerk and wheel/torque oscillations, the
input torque u = Tm in case of non-linear MPC, and ∆u = ∆Tm for the linear MPC is also
included in the cost function. The optimal control problem is subjected to constraints on
wheel slip (λt) and motor torque (Tm).

The traction control design has been implemented with a linear MPC, while the cruise
control design has been implemented using both linear and non-linear controllers. The
design of linear and non-linear controllers is explained in the following sections.

3.3.1 Design of Linear MPC

The design of linear MPC is based on linear tire model with wheel-slip transient effects
discussed in section 3.2.2. The state-space model given in equation (3.16) is reformulated
as in [58] by choosing the optimization variable as the rate of change of motor torque
(∆u = ∆Tm) instead of the absolute value of the control signal (u = Tm). Since ∆Tm is
proportional to jerk, it results in a better anti-jerk performance of the controller. Consider
the control-oriented system in discrete form as:

xk+1 = Axk + Buk + Eudk = Axk + B

xuk︷︸︸︷
uk−1 +B∆uk + Eudk (3.17a)

xuk+1 = xuk + ∆uk (3.17b)

yk = Cxk (3.17c)
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Therefore, the linear system model can be re-written in matrix form as:[
xk+1

xuk+1

]
=

[
A B

0 I

]
︸     ︷︷     ︸

A

[
xk

xuk

]
+

[
B

I

]
︸︷︷︸

B

∆uk +

[
E

0

]
︸︷︷︸

E

udk (3.18a)

yk =
[

C 0
]

︸     ︷︷     ︸
C

[
xk

xuk

]
+

[
0 0

]
︸    ︷︷    ︸

D

∆uk (3.18b)

where x ∈ Rn , ∆u ∈ Rm, and y ∈ Rp are the state, input, and output variables of the linear
system. Due to the principle of receding horizon control, where only the current information
of the plant is required both for prediction and control, it is implicitly assumed that the input
does not affect the output [59]. Therefore, D = 0 in Equation 3.18.

The relation between the predicted output of the system inside the prediction window Y ,
the measured states at the time step xk and the designed variation of the inputs ∆U can be
represented as:

Y = Fxk +Φ∆U +Φd∆Ud (3.19)

where

F =



CA

CA
2

CA
3

...

CA
Np


;Φ =



CB 0 0 ... 0
CAB CB 0 ... 0
CA

2
B CAB CB ... 0

... ... ... ... ...

CA
Np−1

B CA
Np−2

B CA
Np−3

B ... CA
Np−Nc B



Φd =



CE 0 0 ... 0
CAE CE 0 ... 0
CA

2
E CAE CE ... 0

... ... ... ... ...

CA
Np−1

E CA
Np−2

E CA
Np−3

E ... CA
Np−Nc E



(3.20)
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and
Y =

[
y(ki + 1|ki) y(ki + 2|ki) ... y(ki + Np |ki)

]T

∆U =
[
∆u(ki) ∆u(ki + 1) ... ∆u(ki + Nc − 1)

]T

∆Ud =
[
∆ud(ki) ∆ud(ki + 1) ... ∆ud(ki + Nc − 1)

]T

(3.21)

Over the prediction window, the optimal control vector U is defined in matrix form as:



uk |k

uk+1|k

...

...

uk+Nc−1|k

︸           ︷︷           ︸
U

=



Im ×m

Im ×m

...

...

Im ×m

︸     ︷︷     ︸
G1,∆u

Uk−1 +



Im ×m 0 0 ... 0
Im ×m Im ×m 0 ... 0
Im ×m Im ×m Im ×m ... 0
... ... ... ... ...

Im ×m Im ×m Im ×m ... Im ×m

︸                                           ︷︷                                           ︸
G2,∆u



∆uk |k

∆uk |k

...

...

∆uk+Nc−1|k

︸             ︷︷             ︸
∆U

(3.22)

Constraints can be added to the system in the form of variation to the input signal as follows:


G∆u

Gu

Gy

︸   ︷︷   ︸
G

∆U 6


W∆u

Wu

Wy

︸    ︷︷    ︸
W

(3.23)

where

G∆u =

[
−G2,∆u

G2,∆u

]
; W∆u =

[
−Umin + G1,∆uU(k − 1)
Umax − G1,∆uU(k − 1)

]

Gu =

[
−I

I

]
; Wu =

[
−∆Umin

∆Umax

]

Gy =

[
−φ

φ

]
; W3 =

[
−Ymin + Fx0)

Ymax − Fx0)

]
In Equation 3.23, the G∆u and G∆u matrices define the input constraints, Gu and Wu matrices
define the input rate constraints, and Gy and Wy matrices define the output constraints.
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Let the current optimization problem have the cost function:

J =
Np−1∑
j=1

{
yT (k + j |k ) Q y (k + j |k )

}
+

Np−1∑
j=1

{
∆uT (k + j − 1 |k ) R ∆u (k + j − 1 |k )

(3.24)

where Q is the diagonal matrix of output weights and R is the input weight.
Substituting the prediction equation 3.19 in equation 3.24, the revised objective function can
be written in quadratic form for a case with no terminal penalty as:

J(k) =
1
2
∆UTH∆U +M∆UT

subject to

G∆U 6 W

(3.25)

where
H = 2(R + φTQφ + φT

dQφd)

M = 2(xT
0 F

T − xT
re f (k))Qφ + 2(xT

0 F
T − xT

re f (k))Qφd
(3.26)

and G and W are specified by the constraints of Equation 3.25. The optimal control vector
∆U of length Nc is computed by solving:

∆U = −H−1MT (3.27)

Note that since the first element of ∆U is used to determine the control signal u(k)

applied to the plant, the procedure is repeated at each sampling interval. The linear problem
has been solved using the mpcqp solver [60] in Matlab. Since this solver supports generation
of C-code, all HIL tasks could also be performed using this solver.

3.3.2 Design of Non-Linear MPC

The non-linear MPC has been design using the non-linear Pacejka tire model discussed in
section 3.2.2. The model also includes the effect of wheel slip transients and load transfer
between front and rear wheels. The non-linearMPCwas solved using the sequential quadratic
programming (SQP) solver using f mincon function in Matlab/Simulink. A brief description
of the Matlab based SQP solver can be found in [61]. However, since f mincon does not
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support generation of C-code required for undertaking HIL experiments, the problem was
also solved using an NMPC solver developed by Maitland et al. [62].

NMPC solver

The NMPC was implemented using a direct single shooting approach with penalty functions
to enforce inequality constraints. The Gradients and Hessians required for Newton’s method
were pre-computed symbolically using Maple. The recursive definition of the states over
the prediction horizon found in single-shooting was handled by realizing the Lagrangian
as a straight line program of symbolic expressions on which we could carry out automatic
differentiation followed by code optimization. This design choice minimized the order of
the optimization problem within the NMPC. In particular, since only the control inputs over
the control horizon are included in the Lagrangian, and no multipliers or slack variables are
introduced, it restricts the number of terms in the Lagrangian. The resultant Lagrangian is
of the form:

L(U) = J(U) +
h∑

i=1
wiρ(gi(U)) (3.28)

where U ∈ RNc is a vector of control inputs, J is the cost function as defined in equation
(4.1) or (5.1), g ∈ Rh are the inequality constraints, wi are weighting factors and ρ(z) is a
penalty function of inequality constraints represented as:

ρ(z) =
(
2z − (zmax + zmin)

zmax − zmin

) p

(3.29)

where z ∈ [zmin, zmax] defines the maximum and minimum of the state/control inputs (X,U)
included in the constraints penalty function. We set p = 8 in our implementation. The
behaviour of the function ρ(z) is demonstrated in Fig. 3.6.

It can be seen that as z increases from -10 to 10, the function ρ approaches infinity in the
form of a square well and can be defined as:

lim
p→∞

ρ =


0 z ∈ [(zmin + zmax)/2]
1 z ∈ [zmin, zmax]

∞ z < [zmin, zmax]

(3.30)

Newton’s method has been used to optimize the Lagrangian L(U). We consider a single
state discrete dynamical system xk+1 = g(xk) then we can capture the recursively defined

55



3. Model Predictive Control Design

-10 -5 0 5 10
Input (z)

0

0.5

1

1.5

2

P
en

al
ty

 F
u

n
ct

io
n

 (
)

Figure 3.6: Penalty function ρ with any arbitrary input z varying from −10 to 10

state x3 = g(g(g(x0))) by the straight line program

[inputx0 (3.31)

t1 = g(x0), (3.32)

t2 = g(t1), (3.33)

x3 = g(t2), (3.34)

returnx3]. (3.35)

The Gradient (∇L) and Hessian (HL) of the Lagrangian L are pre-computed using
symbolic computation and optimized for on-line evaluation. The use of symbolics in this
manner negates the need for a second simulation loop common to numerical implementations
of the direct single shooting method. Thus, the NMPC in this formulation solves for the
optimum U∗ by finding a minimum of L. This involves repeatedly solving the linear system:

HL(U)∆UNS = −∇L(U)T (3.36)

while updating U = U + ∆UNS until convergence, ∆UNS being the Newton step.

The proposed method sets (3.36) to be of minimal dimension and uses precomputed and
optimized functions to evaluate HL and ∇L, aimed at reducing controller turnaround times.
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Since it minimizes the computational cost, we are able to forgo the globalization steps found
within more advanced Newton based solvers like fmincon.

3.4 Performance Assessment of Controllers

Model-based design (MBD) process, cuts down the development costs and makes the
development process faster and safer. With the simulation hardware available today,
complex vehicle models that can depict the behaviour of a vehicle can be simulated in
real-time. In this research, we have tested the MPC through Model-in-the-loop (MIL) and
Hardware-in-the-loop (HIL) testing.

3.4.1 Model-in-the-loop Tests

MIL simulation has been undertaken by testing the controller on the MapleSim plant model
using Matlab/Simulink. Since the objective of the anti-jerk controllers is to maximize the the
slip or velocity tracking ability with minimum jerk, we have formed the following assessment
criteria to evaluate the tracking and jerk performance of our controllers:

(a) The root mean square of the slip tracking error e(t) = λtre f − λt (RMS–STE) in case
of traction controller and velocity tracking error e(t) = vre f − v (RMS–VTE) in case
of cruise controller is given by:

RMS–STE or RMS–VTE =

√√√√√√ 1
t f − ti

t f∫
ti

e(t)2dt (3.37)

where ti and t f are initial and final time respectively over the reference input. The
RMSE slip and velocity is considered as a measure of the tracking performance of
the controller over the drive cycle. A low RMS-STE or RMS-VTE implies a good
tracking performance.

(b) Measurement of longitudinal jerk. As discussed in section 1.4, a maximum acceptable
jerk of 2-3 m/s3 is considered for good drivability.

(c) The integral of absolute value of jerk (IAJ) corresponds to the cumulative sum of jerk
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over the reference input and is defined as:

I AJ =
1

t f − ti

∫ t f

ti
|Jv | dt (3.38)

IAJ is a measure of the overall jerk performance of the controller over the drive cycle.

(d) The motor energy consumption (in Whr) during acceleration can be represented as
the integral sum of the absolute value of motor power consumption and is given by:

Energy =


1

t f −ti

t f∫
ti
|Tmωm | dt [rise − f all(Tm ≤ 50Nm)]

0 [ f all(Tm > 50Nm)]

(3.39)

A trigger based on ‘rise’ and ‘ f all’ of power is used to calculate the overall energy
consumed. ‘rise’ implies a power increase across any time step while ‘ f all’ implies
power decrease in a time step. Therefore, as long as the power increase is observed
across a time step, it is added to the motor power consumption. However, if there
is a decrease in power observed across a time step, it is not counted towards the
energy consumed. Since EVs are equipped with regenerative braking, when energy
is produced during ‘ f all’ in motor torque (≤ 50Nm for the Rav4EV), it does not
contribute towards the power consumed during acceleration and is therefore subtracted
from the overall energy consumption. The remaining torque during deceleration
has been neglected as it corresponds to mechanical braking and does not contribute
towards motor energy consumption or generation.

3.4.2 Hardware-in-the-loop Experiments

Hardware-in-the-Loop (HIL) experiments, controlled through a host computer, have been
performed to evaluate the the real-time performance of the MPC on an Electronic Control
Unit (ECU). The HIL setup consists of the ECU, which is loaded with the designed controller,
and a Real-Time computer (RTC) that runs the MapleSim plant model. A Control Area
Network (CAN) bus connects the ECU to the RTC. A schematic diagram of the HIL
architecture can be seen in Fig. 3.7. The specification of the ECU, RTC and host computer
are shown in Table 3.1.

The MapleSim based longitudinal vehicle dynamics model has been converted to a
C-code using the dSPACE real-time workshop compiler/code generator rti1006.tlc. Similarly,
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Figure 3.7: Schematic diagram for HIL experiments

the Matlab/Simulink code for the controller was compiled using the rti1401.tlc compiler.
The C-code for the controller was then uploaded on the DS1401 processor in the ECU, while
the C-code for the plant model was loaded on the DS1006 processor in the RTC.

Component Part Specification
Real-Time Computer
(Plant Model)

Processor
Memory
HIL I/O Board

DS-1006 Quad-Core AMD, 2.8 GHz
1 GB local, 4x128 MB global memory
DS-2202

ECU:Micro-AutoBox II
(Control-Oriented
Model)

Processor
Memory
HIL I/O interface

DS-1401 PowerPC 750GL 900 MHz
16MB main, 16MB non-volatile memory
DS-1511

Host computer Processor
Memory

Core i7, 3.4 GHz
16GB

Table 3.1: Specification for RTC, ECU and Host computer used for HIL experiments

The aim of undertaking HIL experiments is to find the optimal prediction and control
horizons (Np and Nc) that will demonstrate real-time capability of the controller. The
real-time performance of the controller is quantified by the turn-around time, which is the
time taken for executing the controller code in the ECU. The generally accepted limit for
turn-around time is less than 10 milliseconds (ms) for real-time applications [63].
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Chapter 4

Anti-Jerk Traction Control

4.1 Introduction and Literature Review

Electric Vehicles (EVs) with central drive powertrain configuration are particularly prone to
driveline oscillations. These driveline oscillations are mainly caused by flexible halfshafts
and the slip dynamics of tires. However, the central drivetrain is a popular and preferred
solution by many manufacturers today primarily due to packaging constraints, and exists
in a number of EVs such as the Toyota Rav4EV, Tesla Model S, and Nissan Leaf. The
oscillations occur as transients during sudden changes in driver torque demand such as
pressing/releasing of accelerator pedal known as tip-in and tip-out, perturbations from the
road, backlash in the powertrain or application of friction brakes. These oscillations cause
discomfort to the driver and therefore dedicated torque control strategies are required to
control these oscillations.

In this chapter, we design an anti-jerk traction or Acceleration Slip Regulation (ASR)
controller to maintain vehicle traction during high wheel-slip or sudden changes in speed
demanded by the driver.

Typically, traction control designs [64] can be divided into 2 categories:

• Controllers based on wheel-slip feedback control. A number of different approaches
including PID, LQR, H∞, and sliding mode [65–67] have been used to design
wheel-slip based traction control

• Controllers independent of wheel-slip such as model-following controllers [68, 69] or
maximum transmissible torque estimation (MTTE) based controllers [70–72].
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However, anti-jerk control has not been included in both these strategies.

There are also independent strategies for design of anti-jerk controllers ([18, 47, 48]).
These strategies mainly deal with damping the oscillations due to halfshaft flexibility. In [73],
an anti-jerk controller is designed for damping the resonant low-frequency of the drivetrain
in the inner loop and eliminating high-frequency oscillations due to torque reaction in the
wheels in the outer loop.

However, there are few design strategies for unified traction and anti-jerk controllers.
Recently, a unified approach for design of traction controller with anti-jerk function has been
presented in [74]. The authors presented a unified design of anti-jerk traction controllers by
adding a driveline oscillation controller developed in [73] in series with gain-scheduled PI,
sliding mode, MTTE and H∞ traction controllers. However, the MPC approach has not been
used so far in the design of a unified traction and anti-jerk controller.

In this chapter, we design a real-time MPC-based anti-jerk traction controller for EVs
with central drive powertrains. Key features of the MPC controller presented here are:
(a) ability to handle multiple control requirements of traction and drivability, (b) handle
constraints such as maximum motor torque and wheel slip, and (c) ability to usefully process
future road information available through technologies such as Global Positioning Systems
(GPS), Intelligent Transportation System (ITS), real-time traffic data and vehicle-to-vehicle
(V2V) or vehicle-to-infrastructure (V2I) communication systems in connected vehicles.

In particular, the look-ahead (LA) MPC-based traction controller developed in this paper
utilizes future road and traffic information to calculate the motor torque demand. The
LA-MPC based controller will find potential use in connected vehicles in vehicle-following
or speed-following modes. We have designed our controller to meet the dual objectives of
traction as well as driveline oscillation/jerk control while maintain drivability and lowering
the energy consumption of the vehicle.

4.2 Anti-jerk traction control design

The aim of the anti-jerk traction controller is to regulate the motor torque input so as to
achieve the desired slip-tracking performance, with no wheel speed oscillations, minimizing
jerk and energy consumption with minimum change in final speed achieved by the vehicle.
The following different control designs have been compared:

• Model predictive anti-jerk controller developed as a part of our current research on
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connected EVs

• Gain scheduled integral-action controller (as described in [74])

• Maximum transmissible torque estimation (as described in [74, 75])

• Integral sliding model controller (as described in [67])

4.2.1 MPC based control design

The MPC control effort is aimed at regulating the input motor torque (Tm) to serve the
following multiple objectives:

• Track a reference slip ratio (λtre f ) corresponding to an accelerator pedal position input.

• Control the halfshaft torsion by including ( θmgr − θw) in the cost function.

• Minimize the energy consumption and jerk and wheel/torque oscillations by including
(∆u = ∆Tm) in the cost function.

The plant and control-oriented models have been discussed in Section 2.2 and 3.2.2
respectively have been used to design the MPC based traction contoller. The overall control
scheme of the MPC traction control is shown in Fig. 5.1.

Figure 4.1: Control scheme of MPC controller

The quadratic objective function applied to the optimal control problem is:

Min
u

J =

Np∫
0

[
w1(λt − λtre f )

2 + (w2∆u2) + w3

(
θm

gr
− θw

)2
]

(4.1)
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where w1,w2 and w3 are weighting factors for slip tracking, rate of change of torque, and
halfshaft torsion respectively in the objective function.

The optimal control problem is subjected to the following constraints:
v > 0
ωw > 0

λtmin ≤ λt ≤ λtmax

Tmin ≤ u ≤ Tmax

(4.2)

The control design for the linear MPC based traction control system has been explained
in section 3.3.1. The above problem was solved mpcqp solver in Matlab with a sampling
period (∆t) of 10 ms for discretization.

4.2.2 Gain-scheduled integral action

To implement the slip response characteristics accurately, a gain-scheduled integral action
controller, where the integral gain changes with vehicle speed has been implemented. Since
the slip response characteristics change with the vehicle operating speed as seen in Fig. 4.3,
we implement a gain-scheduled integral action controller. The overall control scheme of the
integral action controller is shown in Fig 4.2.

Figure 4.2: Control scheme of Integral action controller

The integral action controller was tuned for anti-jerk by imposing a gain margin (GM)
of 15 dB, a phase margin (PM) of 89◦, and a tracking bandwidth of 30-50 Hz at -3dB.
The integral-gain controller computes the required motor torque input (u = Tm), which is
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Figure 4.3: Frequency response over a range of operating speeds from 20 Km/hr to 100 Km/hr

expressed over time t as:

u (t) = Ki

t∫
0

e dt (4.3)

where: e = λtre f − λt . The integral-gain constant Ki is tuned to achieve a GM of 15dB at
different vehicle speeds, ranging from 20 - 100 Km/hr, as given in Table 4.1.

Vehicle speed Integral-gain (Ki)
(Km/hr) (Nm/s)

20 7790
40 10865
60 14580
80 18055
100 21296

Table 4.1: Ki for vehicle speeds ranging from 20-100 Km/hr
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4.2.3 Maximum transmissible torque estimation controller

The maximum transmissible torque estimation (MTTE) controller as developed by [75]
computes the maximum transmissible torque (Tw,max) so as to keep the slip within limits.
The major advantage of using this controller is that it does not require knowledge of chassis
velocity or tire–road condition. It only makes use of torque reference and the wheel spin
to estimate the Tw,max required to achieve anti-slip control, and accordingly this Tw,max is
applied as a dynamic limiter to the reference torque. Fig. 4.4 shows the control scheme of
the MTTE controller. The wheel torque estimate (T̂w) corresponding to the force between

Figure 4.4: Control scheme of MTTE controller

the tire and road surface, neglecting the driveline resistance due to rolling and aerodynamic
resistance forces, is given by:

T̂w = (Tm − Jd Ûωm)gr (4.4)

where the inertia of the onboard drivetrain Jd is given by equation (3.2). An appropriate
difference between chassis and wheel speeds due to the tire-road friction is estimated using a
relaxation factor α. The relaxation factor is represented as the ratio of angular accelerations
of the chassis and the wheel as:

α =
Ûωv

Ûωw
=

ˆ2Tw/Jveh

(Tw,max − T̂w)/Jd
(4.5)
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where Tw,max represents the drivetrain torque in limit conditions and Jveh is the equivalent
vehicle inertia given by Jveh = Mr2

e f f + 2Jw. Rearranging equation (4.5), the maximum
transmissible torque can be written as:

Tw,max =

(
2Jd

αJveh
+ 1

)
T̂w (4.6)

As T̂w is calculated from equation (4.4), Tw,max can be calculated from equation (4.6) by
considering α = 0.95 [75]. Initially, we select α close to 1 which corresponds to a small
slip ratio for a dry road condition. As the vehicle enters a slippery road, Tw,max is reduced
adaptively due to decrease in T̂w.

4.2.4 Integral sliding mode controller

The Integral Sliding Mode (ISM) controller maintains a desired slip by defining a sliding
surface. In the proposed implementation scheme seen in Fig. 4.5, a ISM controller is
designed to limit the maximum motor torque to Tm,law which is calculated depending on the
maximum wheel slip permissible on the road surface. The sliding surface S(λ) is defined as:

Figure 4.5: Control scheme of ISM controller

S(λ) = λe + Kin

∫ t

0
λe(t)dt (4.7)

where λe = λ− λre f and the integral gain Kin > 0. The integral part action with gain ensures
a smooth control action through first order filtering of the discontinuous part of the control
action [76]. As the system trajectory is required to stay on the sliding surface, the derivative
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of the sliding surface S( Ûλ) = 0. Differentiating equation (4.7) gives:

S( Ûλ) =
−Ûv + (1 − λ) ÛWhsp

ÛWhsp
(4.8)

where Whsp is the wheel speed. Combining the wheel dynamics equation (3.3) with (4.8),
the following is obtained:-

S( Ûλ) = f + bTm (4.9)

where:
f = − gµ

Whspgr

[
1 + (1 − λ)

r2
e f f

M
Jw

]
+ Jd Ûωm

b = (1−λ) re f fJwWhsp

(4.10)

Using (4.7) and (4.9), the sliding model control law can be derived by adding a switching
control input (Tmeqv ) to the equivalent control input (Tmsw ) as:

Tmlaw
=Tmeqv+Tmsw (4.11)

where:
Tmeqv =

1
b [− f − Kinλe]

Tmsw =
1
b

[
−K sat

(
λ
Φ

) ]
sat

(
λ
Φ

)
=


−1,
λ/Φ

1

λ < −Φ

−Φ ≤ λ ≤ Φ

s > Φ

(4.12)

The design parameter Φ defines the boundary layer thickness around the sliding surface
and sliding gain K is a tunable parameter. For the system under consideration, the chosen
parameters Kin and Φ are chosen as 100 and 0.06 respectively.

To improve robustness of the ISM controller to changes in road conditions and vehicle
mass as cited in [77], the value of the sliding gain is defined as K = F + η where:

F =
g

|vw |

{
|µmax − µ| + (1 − λ)

r2
e f f

Jw

����Mmax
4

µmax −
M
4
µ

����} (4.13)

and η is tuned to 15 Nm. The parameter µmax has been selected as 1.18 and Mmax as
2200 kg.
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4.3 Performance assessment

The performance of the four controllers has been compared based on assessment criteria
defined in section 3.4.1 in three different scenarios:

• Scenario 1. Apply a step throttle input of 0-100% at t = 2s for a vehicle initially at rest.
The performance of frozen-time MPC (FT-MPC) with Np = Nc = 1 and look-ahead
MPC (LA-MPC) with Np = 100 (i.e. 1s), Nc = 5 is compared to the integral action,
ISM and MTTE controllers.

• Scenario 2. Apply a throttle pedal input in three steps of 2 seconds each with λre f

increasing in steps of 0.02. The performance of FT-MPC and LA-MPC is compared
with the other controllers.

• Scenario 3. Comparison of the controllers over a reference throttle input that
approximates a US06 drive cycle over a time period of 500 s.

Scenario 1

In Scenario 1, a comparison has been drawn between controllers on application of a step
input (0-100% throttle position) at t = 2s. The controllers were tuned to achieve similar slip
tracking performance and final speed. A comparison of IAJ and maximum jerk generated by
each of four controllers for achieving similar tracking performance is given in Table 4.2.

A comparison of results for a FT-MPC controller with Np = Nc = 1 and other
controllers can be seen in Fig. 4.6. The comparison of results for a LA-MPC controller with
Np = 100, Nc = 5 with other controllers can be seen in Fig. 4.7.

Analysis of Scenario 1 and 2 reveals the following:

• In Scenario 1, for similar slip tracking performance, there is no significant difference
between the IAJ and maximum jerk achieved by both Integral-action and the FT-MPC
controller. However, the anti-jerk performance of the LA-MPC controller as seen
in Scenario 2, far exceeds any other controller. This is because the MPC is able to
usefully process the future information available through technologies such as GPS,
ITS, V2V or V2X to compute the torque demand in advance.

• While the maximum jerk produced by the ISM controller is lower as compared to some
other controllers, the slip tracking performance is not at par with the other controllers,
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Controller
RMS-STE Final speed IAJ Max Jerk
(×10−3) (Km/hr) (m/s3) (m/s3)

Sc
en

ar
io

1 Integral-action 10 56.8 4.3 19.6
ISM 12 56.5 5.8 10.1
MTTE 11 56.0 9.2 26.8
FT-MPC 10 56.8 4.3 19.6
LA-MPC 10 56.3 3.2 4.5

Table 4.2: Scenario 1: Comparison of FT-MPC controller (Np = Nc = 1) and LA-MPC controller
(Np = 100, Nc = 5) with other controllers

especially in the range of 2-3 s. This is due to the use of input torque rate controller in
series with the ISM controller. The IAJ is also higher as compared to the MPC and
Integral-action controller.

• The MTTE controller produces the highest jerk and IAJ. Since the input wheel torque
is calculated based on a filtered wheel speed output, the effectiveness of the jerk will
depend on the filter used. However, use of a higher frequency filter results in lower
final speeds.

Scenario 2

To check the system response with a different pedal input, λre f was increased in three steps
of 2 seconds each in Scenarios 2. The tuning parameters were held the same as used in
Scenario 1. As in case of Scenario 1, a comparison has been drawn between the controllers
by comparing the IAJ and max jerk while achieving the same slip tracking performance and
final speeds. Table 4.3 shows the performance analysis of the four controllers.

A comparison of results for a frozen-time FT-MPC controller and LA-MPC controller
with other controllers can be seen in Fig. 4.8 and Fig. 4.9 respectively. Analysis of Scenario
2 reveals following:

• Similar slip tracking performance (RMS-STE), jerk and final speed was achieved
by both Integral-action and the FT-MPC controller as seen in Fig. 4.8 which is also
consistent with results in Fig. 4.6.

• The anti-jerk performance of LA-MPC controller exceeds any other controller as seen
in Fig. 4.9 which is consistent with results in Fig. 4.7.
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Figure 4.6: Scenario 1: Comparison of FT-MPC controller with other controllers (with λre f increasing
from 0-0.06) to achieve the same slip tracking performance and final speed

• The slip tracking performance of the ISM and MTTE controllers is not at par with
the Integral-action and MPC controllers in the intermediate steps (t=1-3s and t=3-
5s). However, the final slip tracking performance when λre f=0.06 is as good as the
Integral-action and MPC controllers.

• The jerk produced by the ISM and MTTE controllers in the intermediate steps (t=1-3s
and 3-5s) is also much higher in comparison to the integral-action andMPC controllers.

Scenario 3

The performance of the Integral action and the LA-MPC controllers have been compared
over a US06 drive cycle (500 s). The ISM and MTTE controllers have not been compared as
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Figure 4.7: Scenario 1: Comparison of LA-MPC controller with other controllers (with λre f
increasing from 0-0.06) to achieve the same final speed

Controller
RMS-STE Final speed IAJ Max Jerk
(×10−3) (Km/hr) (m/s3) (m/s3)

Sc
en

ar
io

2 Integral-action 5.3 68.2 4.3 7.9
ISM 4.8 72.1 7.8 15.2
MTTE 4.9 70.6 9.2 11.0
FT-MPC 5.2 68.5 4.4 7.9
LA-MPC 5.3 68.0 4.2 1.3

Table 4.3: Scenario 2: Comparison of FT-MPC controller (Np = Nc = 1) and LA-MPC controller
(Np = 100, Nc = 5) with other controllers

their use is limited to acceleration-slip-regulation (ASR) on the positive slip region only,
and are activated only when required [73, 74]. Negative slip or braking action as existing in
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Figure 4.8: Scenario 2: Comparison of FT-MPC controller with other controllers (with λre f increasing
in three steps of 0.02 each over 6 s)

a drive cycle situation cannot be applied to these controllers.

The performance of the controllers was compared at three RMS-STE set-points that
correspond to a GM of 15, 20 and 30 dB for the Integral-gain controller. The LA-MPC
controller was also tuned to achieve the same RMS-STE and approximately the same energy
consumption as the integral action controller. The resulting IAJ and maximum jerk achieved
by the two controllers was compared to assess their anti-jerk performance.

Results presented in Table 4.4 show that, when tuned to achieve the same slip tracking
performance, the MPC controller has a better anti-jerk performance as compared to the
Integral action controller. The energy efficiency of the MPC controller, however, reduces as
compared to the Integral-action controller as the GM increases from 15 to 30 dB. Fig. 4.10
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Figure 4.9: Scenario 2: Comparison of LA-MPC controller with other controllers (with λre f
increasing in three steps of 0.02 each over 6 s)

Controller
RMS-STE Energy IAJ Max Jerk
(×10−3) (Whr) (m/s3) (m/s3)

Sc
en

ar
io

3

IA (GM:15dB) 1.5 956 133 3.02
LA-MPC 1.5 945 86 2.15

IA (GM:20dB) 2.6 872 116 2.37
LA-MPC 2.6 875 66 1.61

IA (GM:30dB) 2.9 819 110 2.13
LA-MPC 2.9 856 62 1.49

Table 4.4: Integral-action (IA) controller tuned to achieve gain margins of 15, 20 and 30 dB. IAJ and
max jerk are compared for three conditions while tuning the LA-MPC controller to achieve the same
RMS-STE slip and energy consumption as the IA controller
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shows the comparison of energy consumption and Integral jerk between the Integral-action
and MPC controllers when tuned to achieve a RMSE slip of 2.6 × 10−3.

Analysis of the three scenarios shows that both the Integral action and FT-MPC controller
have similar performance and therefore can be used as anti-jerk traction controllers in
conventional vehicles. The LA-MPC has a superior anti-jerk performance and lower energy
consumption (upto a GM of 15 dB) as compared to the other controllers and therefore could
find use in connected or intelligent vehicles that have access to future information through
V2V or V2I communication.
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Figure 4.10: Scenario3: Comparison of Integral-action and MPC controller when tuned to a RMSE
slip of 0.0015)
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4.4 Hardware-in-the-loop experiments

Hardware-in-the-loop (HIL) experiments are used to demonstrate real-time performance of
the MPC on an Electronic Control Unit (ECU). A general description of the hardware setup
for the HIL experiments has been discussed in section 3.4.2. The aim of the experiments is to
compute the optimal prediction horizon (Np) and control horizon (Nc) that will demonstrate
the real-time capability of the controller. The generally accepted upper limit for turn-around
time is 10 ms for real-time applications [63].

The choice of prediction and control horizons is generally a trade off between performance
and computational time. Increase in prediction horizon (Np) corresponds to an increase in
the knowledge of the future trip while the control horizon (Nc) is proportional to the ECU
control effort. The HIL experiments were performed by tuning the controller with different
Np and Nc, such that similar end results are achieved with each setting. Fig. ??(a) shows
the controller turn-around time when increasing Np from 0 − 300 (with Nc = 10). It can be
seen in the figure that turn-around time increases linearly with increase in Np up to 1 ms.
However, there is a higher variance in turn-around time when Np < 50 (or 0.5 s). Fig. ??(b)
shows that as Nc is increased from 2 − 18 (with Np = 100), the turn-around time increases
exponentially up to 3.8 ms.

A prediction horizon of Np = 100 and control horizon of Nc = 5 has been selected as
tuning parameters for the LA-MPC to achieve a maximum turn-around time of 0.2 ms, thus
ensuring real-time performance.
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Figure 4.11: ECU maximum turn-around time for different lengths of prediction horizon, Nc = 10
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Figure 4.12: ECU maximum turn-around time for different lengths of control horizon, Np = 100

4.5 Summary

A predictive LA-MPC anti-jerk traction controller has been designed for a central drivetrain
architecture in EVs to satisfy the multiple objectives of slip tracking performance and
enhanced drivability at the same time. A comparison has been drawn between the LA-MPC,
Integral-action controller, a robust ISM controller andMTTE controller, all tuned for anti-jerk
performance.
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Chapter 5

Anti-Jerk Cruise Control

5.1 Introduction and Literature Review

Cruise Control (CC) system is an Advanced Driver Assistance Systems (ADAS), which
regulates the speed of the vehicle in response to a desired speed profile. Unlike the anti-jerk
traction controllers which regulate the motor torque in response to a driver pedal input,
anti-jerk cruise controllers are designed to regulate torque in response to reference speed input.
Since most anti-jerk traction controllers are on-off controllers which are only activated when
slip exceeds the desired limits, the same design cannot be used for a cruise controller since
sudden activation/deactivation could deteriorate the performance of the cruise controller.

Cruise control design for Electric Vehicles (EVs) has gained particular attention in recent
years. According to a survey report by National Highway Traffic Safety Administration
(NHTSA) in 2015 [23], high jerk in cruise controllers are preventing users from using
cruise-control; NHTSA since formed an important criteria for evaluating the performance of
CC systems.

A Cruise controller typically comprises of an upper-level controller and a lower-level
controller. The upper-level controller determines the vehicle kinematics such as regulating
the vehicle speed in speed following mode or a desired distance from a preceding vehicle in
distance following mode. The lower level controller [78] is a longitudinal dynamics controller
which regulates the torque demand to achieve the desired acceleration or deceleration
demanded by the upper level controller. Further, the lower-level cruise controller is also
responsible to regulate the acceleration during conditions when the rate of torque increase is
high, or when the wheel slip is high due to road-friction conditions.

77



5. Anti-Jerk Cruise Control

Over the years, several advances have been made to the design of the upper-level cruise
controller with regards to comfort [24], fuel-economy [79, 80] and traffic flow smoothing
[81, 82]. The design of upper-level cruise controllers has also been extended to Adaptive
cruise control (ACC) [83, 84] to cater for maintaining a fixed distance with respect to the
host vehicle, a ACC-Stop & Go [85, 86] to cater for maintaining inter-vehicular distance
even in high traffic and low-speed situations. Cooperative ACC [87, 88] could help platoon
vehicles to share sensor data thus enabling faster and safer travel by maintaining a shorter
inter-vehicular distance.

The lower-level cruise control performs the function of a traction or longitudinal dynamics
controller when the vehicle is in cruise control. It is generally assumed while developing the
cruise controllers that the lower-level controller is designed well [89]. We could find little
literature on anti-jerk design of lower-level cruise controllers. Therefore, there is a need
to design an anti-jerk cruise controller which could regulate the motor torque to achieve
low jerk. It is pertinent to mention that low-jerk can only be achieved by compromising the
velocity tracking performance. In this chapter, we present a cruise controller that achieves
the best velocity tracking performance while maintaining jerk in the desired range. Key
goals of the anti-jerk Model Predictive cruise control (MPCC) are:

• Meet the multiple objectives of an upper-level and lower-level cruise controller
simultaneously.

• Achieve anti-jerk control by including (a) halfshaft torsion control (b) wheel-slip
constraints to ensure a smooth ride even on rapidly-changing road conditions.

The net result is that the controller should be able to track the desired velocity profile with
minimum jerk while increasing road safety.

The design of the anti-jerk MPCC is discussed in Section 5.2. The performance
assessment/tuning of the controller is presented in Section 5.3 and HIL experiments
demonstrating the real-time implementation of the controller are described in Section 5.4.

5.2 Anti-jerk cruise control design

The aim of the anti-jerk MPCC is to regulate the motor torque input so as to achieve the
desired velocity-tracking performance with minimum jerk by using future road information
available from sources such as GPS, ITS, VTV and VTI. The overall control scheme of the
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MPCC is shown in Fig. 5.1. The MPC control effort is aimed at regulating the input motor
torque to serve the following multiple objectives:

• Track a reference velocity profile (vre f ) with minimum jerk by looking ahead into the
future.

• Minimize the energy consumption by including input torque (u = Tm) in case of
non-linear MPC and (u = ∆Tm) for the linear MPC in the cost function.

• Control the halfshaft torsion by including the halfshaft torsion angle ( θmgr − θw) in the
cost function.

The quadratic objective function applied to the linear and non-linear anti-jerk cruise control
problem is:

Min
u

J =

Np∫
0

[
w1(v − vre f )

2 + w2(u2) + w3

(
θm

gr
− θw

)2
]

(5.1)

where w1,w2 and w3 are weighting factors for velocity tracking, input torque and halfshaft
torsion respectively in the objective function. The optimal control problem is subjected to
the following constraints: 

v > 0
ωw > 0

λtmin ≤ λ ≤ λtmax

Tmin ≤ u ≤ Tmax

(5.2)

5.2.1 Design of Linear MPCC

The linear MPC is designed such that it is adaptive to changes in road-friction conditions.
The Recursive Least Square (RLS) estimator has been designed to estimate the longitudinal
stiffness of the tire (Cx) and update the MPCC controller in real time. The overall control
scheme of the MPCC is shown in Fig. 5.1.

A linear-time-varying (LTV) form of the model explained in section 3.3.1 is formulated
to solve the linear MPCC as:

xk+1 = A(t)xk + B(t)uk + E(t)ūk (5.3a)

xuk+1 = xuk + ∆uk (5.3b)

yk = C(t)xk (5.3c)
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Figure 5.1: Control scheme of anti-jerk Model Predictive Adaptive Cruise Controller

with states: x =
[
ωm ωw v θm θw λt

]T
, model input: u = ∆Tm, and disturbance

input ud =
[
−Fr −Fd −vop

]T
. The model outputs are y =

[
θm
gr − θw v Whsp

]
.

The linear MPC problem is formulated as a quadratic programming (QP) problem as
discussed in section 3.3.1 using the cost function in (5.1) and constraints in (5.2). The problem
is solved using ’mpcqp’ solver in Matlab. The sampling period (∆t) for discretization has
been chosen as 10 ms.

Since theMPC controller is designed to adapt to changes in road conditions, the maximum
slip/torque constraints and slip stiffness applicable under various road friction conditions
also need to be determined. In the following sections, the methodology used to calculate the
torque/slip constraints, and design of the RLS estimator for the slip stiffness in real time is
discussed.

Maximum motor torque and slip

To find the maximum motor torque and slip constraints to be used by the adaptive MPC, we
establish a relationship between motor torque and wheel slip as follows:
The relationship between motor torque Tm and wheel torque Tw for steady state speeds based
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on equation (3.1) is:
Tm =

2Tw

gr
(5.4)

For steady state conditions, the relation between wheel torque and longitudinal tire force
represented by equation (3.3), while neglecting rolling resistance is given by:

Tw = re f f
Fx

2
(5.5)

From equation (5.4) and (5.5), where the longitudinal force Fx is represented by the Pacejka
tire model (3.11), the relationship between motor torque Tm and wheel slip λt is given as:

Tm '
2D sin

[
Ctan−1 {

Bλt − E
(
Bλt − tan−1Bλt

)}]
Fz f re f f

gr
(5.6)

Fig. 5.2 shows the plot of (Tm versus λt) obtained by fitting the Pacejka tire model.
While the tire model for the dry-road was determined from experimental measurements as
discussed in Section 2.4.1, the tire model for wet-road and snowy-road were approximated
by scaling down results obtained on dry-road. The operating limits for maximum motor
torque and longitudinal slip based on the operating curve the three road conditions are:
Tmmax = [355, 190, 110] and λtmax = [0.062, 0.057, 0.045].

The constraints for the three road conditions are specified just below the peak point of
the torque/slip curves for the three road conditions as: Tmmin/max

= [±350,±180,±100] Nm

and λtmin/max
= [±0.06,±0.052,±0.04].

Slip stiffness estimation and constraints specification

Since the longitudinal dynamics plant model is derived using the Pacejka tire model, whereas
the MPC controller is designed based on a linear tire model, we derive the equivalent slip
stiffness of tires in dry-road, wet and snowy road conditions for the linear tire model from
the Pacejka tire model. The transient longitudinal stiffness (Ct) as represented in equation
(3.14) is:

Ct = (BCD)Fz f Rl (5.7)

For a linear tire model, the relation between motor torque (Tm) and wheel slip (λ) is calculated
from equation (5.4), (5.5), and (5.7) as:

Tm '
2Ctλtre f f

gr
(5.8)
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Figure 5.2: Plot showing maximum limit for torque and slip from the Pacejka tire model

The slope of the Pacejka tire curves and the equivalent linear tire model curves are plotted
in Fig. 5.3. The equivalent longitudinal stiffness Ct calculated using (5.7) for dry-road
condition, wet-road condition and snowy-road condition is Ct = [163750, 99000, 90000] N

per unit slip ratio.

The Adaptive MPC is designed such that it switches the torque and wheel slip constraints
based on road condition, depending on Ct estimated by the RLS estimator. Since Ct could
vary based on various factors such as types of tires, tire wear, pressure and temperature [90],
the range for Ct defined for implementing the torque/slip constraints is shown in Table 5.1.

Recursive Least-Square (RLS) estimator

A slip-slope based tire-road estimation method [91, 92] has been used to estimate the
longitudinal stiffness of the tire. Considering a linear tire model (with constant Ct and Fz f ),
the relationship between normalized traction force (µ) and slip (λt) is:

dµ
dt
= Ct

dλt

dt
(5.9)
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Figure 5.3: Motor torque operating lines corresponding to dry, wet and snowy roads

Road friction Longitudinal Motor Slip

condition Stiffness (Ct) Torque (Tm) ratio (λt)

Units − N/slip ratio Nm −

A
da

pt
iv
e

C
on

st
ra
in
ts Dry-road Ct ≥ 130, 000 ±350 ±0.06

Wet-road 95, 000N < Ct < 130, 000N ±180 ±0.052

Snowy-road Ct ≤ 95, 000 ±100 ±0.04

Table 5.1: Adaptive constraints for various road friction conditions

A recursive least squares algorithm with forgetting factor [93] has been used to iteratively
update the unknown parameter Cx from the regressor model:

Whsp(t)
Tm(t)

=
φ(t)
u(t)
=

b3s3 + b2s2 + b1s + b0

s5 + a4s4 + a3s3 + a2s2 + a1s + a0
(5.10)

where the coefficients (a4, a3, a2, a1, a0) and (b3, b2, b1, b0) of the transfer function are
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determined from the model described in section 3.2.2. The problem can be formulated as
follows:

y(t) = θ(t)φ(t) (5.11)

where θ(t) is the estimated parameter Ct(t), y(t) is the measured Whsp signal and φ(t) is
determined from the regression model given in equation (5.10). The procedure involves
calculating the regression vector φ(t), calculating the identification error:

ε(t) = y(t) − φTθ(t − 1) (5.12)

which is the difference between the actual plant output and that of the predicted model. Then,
calculate the update gain vector given by:

K(t) =
P(t − 1)φ(t)

σ f + φT (t)P(t − 1)φ(t)
(5.13)

and covariance matrix given by:

P(t) =
1
σ f

[
P(t − 1) −

P(t − 1)φ(t)φT (t)P(t − 1)
σ f + φT (t)P(t − 1)φ(t)

]
(5.14)

The parameter estimate for θ(t) is then updated as:

θ(t) = θ(t − 1) + K(t)ε(t) (5.15)

where the forgetting factor σ f has been chosen as 0.96 to reduce the influence of old data,
and track changes quickly.

5.2.2 Design of Non-linear MPCC

The NMPC control problem was formulated using the control-oriented model in Section
3.2.2 is written as:

Ûx = f (x, u, ud) (5.16)

with states: x =
[
ωm ωw v θm θw λt

]T
, model input: u = Tm, and disturbance input

ud =
[
−Fr −Fd

]T
. The model outputs are y =

[
θm
gr − θw v

]
. A schematic diagram

explaining the implementation of the NMPC problem is shown in Fig. 5.4.

The NMPC problem has been solved using the cost function and constraints defined
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Figure 5.4: Implementation scheme on non-linear model predictive cruise control

in Section 5.2. The problem was solved using (a) SQP solver ’fmincon’ function in
Matlab/Simulink [61] and (b) A self-coded Single Shooting NMPC solver developed by
Maitland et al. [62] as explained in section 3.3.2. Since ’fmincon’ function does not
support C-code generation, HIL implementation was undertaken using the Single Shooting
NMPC solver.

5.3 Performance assessment

The objective of the anti-jerk MPCC is to objectively demonstrate velocity-tracking ability
with minimum jerk. The assessment criterion defined in Section 3.4 has been used to
evaluate the performance of the linear and non-linear anti-jerk MPCC.

5.3.1 Linear MPCC

The performance of the anti-jerk MPCC has been assessed by comparing the performance of
the linear MPCC over the US06 and UDDS drive cycles. The following section explains
the tuning of the controllers and compares the performance of adaptive and non-adaptive
controllers for varying road conditions.

Tuning of Linear MPCC

We would like to tune the controller so as to maintain velocity tracking error as low as
possible while keeping maximum jerk below 2-3 m/s3. Tuning the weighting factor w1 helps
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achieve a good tracking performance, weighting factor w2 helps decrease jerk by controlling
the halfshaft torsion during sudden changes in acceleration, and weighting factor w3 helps
make the input torque profile smoother while achieving the control action using minimum
energy.

The choice of prediction and control horizon is generally a trade off between performance
and computational time. Increase in prediction horizon (Np) corresponds to an increase in
the knowledge of the future trip, while increase in control horizon (Nc) is proportional to
the ECU control effort. A larger prediction and control window results in a more optimal
control action but makes real-time implementation a challenge. In this case, we have tuned
the controller for the highest accuracy and then verified that it can be implemented in real
time through HIL testing.

A four-step process to tune the controller for a US06 drive cycle is illustrated below:

• Step 1: The weighting factors w1 and w2 are chosen with the aim of achieving a good
tracking performance. This is achieved by setting the weighting factors w1 = 150,
w2 = 150, w3 = 0. The prediction horizon is selected as Np = 10 (0.1 s) and control
horizon as Nc = 3 (0.03 s).

• Step 2: The tuning parameters are selected as in Step 1, while the prediction horizon
is increased in steps from 10 to 100.

Prediction RMS Max
IAJ

horizon VTE Jerk
Units - m/s m/s3 m/s3

Tu
ni
ng

fo
r
A
nt
i-j
er
k

(N
p)

10 1.95 10.4 185.53
30 1.4 6.4 148.95
50 0.58 4.8 142.23
60 0.38 4.4 137.82
70 0.27 3.5 133.42
80 0.18 2.95 127.8
100 0.07 2.82 113.25

Table 5.2: Anti-jerk performance of linear MPCC with Np ranging from 10 to
100 steps

Table 5.2 shows that as prediction horizon increases, theRMS-VTEdecreases indicating
a good velocity tracking performance. The maximum jerk and IAJ also decrease with
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increase in prediction horizon. However, based on HIL experiments discussed in
Section 5.4.1, we select Np = 70 as the tuning parameter so that the turnaround time
is less than 7 ms. This is less than accepted limit of 10 ms for real time performance
discussed in section 3.4.2.

• Step 3: The tuning parameters are selected as w1 = 150, w2 = 150, w3 = 0, Np = 70
and Nc is increased in steps from 3 to 10.

Control RMS Max
IAJ

horizon VTE Jerk
Units - m/s m/s3 m/s3

Tu
ni
ng

fo
r

A
nt
i-j
er
k
(N

c
) 3 0.27 3.54 133.42

5 0.27 3.53 133.41
7 0.27 3.52 133.09
10 0.27 3.51 132.85

Table 5.3: Anti-jerk performance of linear MPCC with Nc ranging from 3 to 10
steps.

Fig. 5.3 shows that as Nc increases, there is only a marginal improvement in the velocity
tracking and jerk performance. However, the turn-around time for implementation in
HIL also increases. To keep the turn-around time below 7 ms as discussed in Section
5.4.1, Nc = 3 has been selected as the tuning parameter.

• Step 4: The tuning parameters are selected as w1 = 150, w2 = 150, Np = 70, Nc = 3
and weighting factor w3 is increased in steps from 0 to 240,000. Table 5.4 shows that
as w3 is increased, the RMS-VTE increases, while the jerk and IAJ decrease. Keeping
a good balance between velocity tracking performance (≤ 0.5–0.6 m/s) and drivability
(≤ 2 m/s3), we have selected w3 = 180, 000 as the final tuning parameter.

The performance of linear MPCC has been tested on a US06 and UDDS drive cycle. Fig.
5.5 shows the US06 drive cycle can be tracked with a maximum error of ±1.8 Km/hr , a
maximum jerk of 1.96 m/s3 while maintaining the desired motor torque within specified
limits ie- Motor torque within ±350 Nm and slip ratio within ± 0.06. The performance
of the linear MPCC has also been validated over 500 s of a UDDS drive cycle. Fig. 5.6
shows that the UDDS drive cycle can be tracked with a maximum error of ±1.7 Km/hr and
a maximum jerk of 1.15 m/s3.

87



5. Anti-Jerk Cruise Control

Weighting RMS Max
IAJ

(w3) VTE Jerk
Units - m/s m/s3 m/s3

Tu
ni
ng

fo
r

A
nt
i-j
er
k
(w

3)

0 0.27 3.54 133.42
45000 0.28 2.56 110.61
100,000 0.37 2.26 93.70
140,000 0.41 2.12 88.89
180,000 0.51 1.96 81.09
240,000 0.72 1.72 69.44

Table 5.4: Anti-jerk performance of linear MPCC with w3 ranging from 0 to
100, 000

Adaptive performance of linear MPCC

The performance of the adaptive and non-adaptive controllers, both tuned with the same
input and output weights, has been compared when road changes from dry-asphalt road to
snowy condition after about 40 s of a US06 drive-cycle. In the adaptive MPC, the road
condition is diagnosed with the help of the parameter estimator. As seen in Fig. 5.7, the
longitudinal stiffness Ct changes from 163, 750 N on dry-asphalt road to 82, 000 N on snowy
road between 40 and 47 s. It can be seen in Fig. 5.8 that the velocity tracking performance of
the adaptive MPC is marginally lower as compared to non-adaptive MPC due to constraints
on the maximum torque and slip (shown in dotted lines). However, anti-jerk performance
of the adaptive MPC is much better, with less slip and torque oscillations after 40 s. The
adaptive MPC avoids slipping in low-friction conditions by constraining the motor torque
and wheel slip.

5.3.2 Non linear MPCC

The following section explains the methodology used for tuning and performance assessment
of the NMPCC controller over US06 and UDDS drive cycles. The importance of including
slip-based constraints in the NMPCC has been also demonstrated.

Tuning of NMPCC

The four-step process to tune the NMPCC for a US06 drive cycle is illustrated below:
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Figure 5.5: Plot showing anti-jerk performance of linear MPCC following a US06 drive cycle.
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Figure 5.6: Plot showing anti-jerk performance of linear MPCC following a UDDS drive cycle.
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Figure 5.7: Plot showing road friction changing to snowy-road between 40-47 s.

• Step 1: The weighting factors w1 and w2 are chosen with the aim of achieving a good
tracking performance. This is achieved by setting the weighting factors w1 = 400,
w2 = 0.04, w3 = 0. The prediction horizon is selected as (Np = 10) and control
horizon as (Nc = 3).

• Step 2: The tuning parameters are selected as in Step 1, while the prediction horizon is
increased in steps from 10 to 70. Table 5.5 shows that as prediction horizon increases,
the RMS-VTE decreases, indicating a good velocity tracking performance. However,
the maximum jerk and IAJ increase as we increase the prediction horizon. As discussed
in Section 5.4.2, a maximum CPU turn-around time of 0.18 ms is recorded during
HIL experiments when increasing prediction horizon. We select Np = 27 as the tuning
parameter to keep the maximum jerk below 3 m/s3.

• Step 3: Next, we tune for the optimal control horizon by setting tuning parameters as
w1 = 400,w2 = 0.04, w3 = 0 and Np = 27 while increasing Nc from 3 to 10. Table 5.6
shows that as Nc increases, the velocity tracking as well as jerk performance improves
upto Nc = 7. As discussed in Section 5.4.2, a maximum CPU turn-around time of
0.1 ms is recorded during HIL experiments when increasing control horizon upto
Nc = 10. We have select Nc = 7 as the tuning parameter, which results in maximum
RMS-VTE of 1.49 m/s and maximum jerk 2.13 m/s3.
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Figure 5.8: Plot showing comparison of adaptive and non-adaptive linear MPCC.
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Prediction RMS Max IAJ
horizon VTE Jerk

Units - m/s m/s3 m/s3

Tu
ni
ng

fo
r
A
nt
i-j
er
k

(N
p
)

10 5.77 1.06 6.53
20 2.37 1.71 13.71
25 1.74 2.52 15.74
27 1.63 2.45 15.72
30 1.36 3.3 17.26
50 0.84 5.07 20.84
70 0.80 5.60 21.50

Table 5.5: Anti-jerk performance of NMPCC with Np ranging from 10 to 100 steps.

Control RMS Max IAJ
horizon VTE Jerk

Units - m/s m/s3 m/s3

Tu
ni
ng

fo
r

A
nt
i-j
er
k

(N
c
)

3 1.63 2.45 15.72
5 1.55 2.33 13.71
7 1.49 2.13 11.38
10 1.56 2.36 13.92

Table 5.6: Anti-jerk performance of NMPCC with Nc ranging from 3 to 10 steps.

• Step 4: Further tuning is progressed with w1 = 400 and w2 = 0.04, Np = 27 and
Nc = 7. The weighting factor w3 is progressively increased from 0 to 75, 000 and
results are listed in Table 5.7. It shows that as w3 is increased, the RMS-VTE, jerk and
IAJ decreases up to w3 = 45000 and then increase. Therefore, w3 = 45000 has been
selected as the final tuning parameter.

Weighting RMS Max
IAJ

(w3) VTE Jerk
Units - m/s m/s3 m/s3

Tu
ni
ng

fo
r

A
nt
i-j
er
k
(w

3) 0 1.49 2.13 11.38
25000 1.44 2.01 11.12
45000 1.37 1.97 10.97
75000 1.62 2.12 12.02

Table 5.7: Increasing w3 of NMPCC from 0 to 75000.
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The performance of NMPCC has been tested for 500 s of the US06 and UDDS drive
cycles. A plot of the tuned NMPCC to achieve a maximum jerk of 2.01 m/s3 and
a maximum error of ±2 Km/hr for a US06 drive cycle is shown in Fig. 5.9. Fig.
5.10 shows that that the UDDS drive cycle can be tracked with a maximum error of
±1.9 Km/hr and a maximum jerk of 0.7 m/s3.

5.3.3 Performance of NMPCCwith andwithout slip-based constraints

To illustrate the significance of slip-based constraints, the velocity-tracking and jerk perfor-
mance of the MPCC controller during the first 50 s of a US06 drive-cycle is compared with
and without slip-based constraints. It may be noted that all other constraints in (5.2) are still
satisfied. The weighting factors for both conditions are selected as w1 = 400, w2 = 0.0005
and w3 = 0 to draw an even comparison between them, while achieving a good velocity
tracking performance. A summary of the simulation results are compiled in Table 5.8. The

RMS Max IAJ
VTE Jerk

Units m/s m/s3 m/s3

Without slip constraints 0.267 8.78 41.36
With slip constraints 0.178 6.69 32.88

Table 5.8: Performance of NMPCC with and without slip-based constraints

vehicle speeds, jerk, slip-ratio and motor torque achieved in the two conditions is compared
in Fig. 5.11. It can be seen that if the slip-based constraints are not included in the control
design, even though motor torque is constrained between ± 350 Nm, a high jerk (maximum
8.78 m/s3) is observed due to the vehicle operating at a high wheel slip ratio of 0.12 − 0.15
in the negatively-sloped region of the Pacejka tire model (Fig 5.2). However, by including
the slip-based constraints in the control design, not only is the jerk reduced, but the velocity
tracking performance is also improved. This is because the vehicle is forced to operate in
the positively-sloped region of the tire model.
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Figure 5.9: Plot showing anti-jerk performance of NMPCC following a US06 drive cycle.

95



5. Anti-Jerk Cruise Control

100 200 300 400 500
0

50

100

Ve
hi

cl
e 

Sp
ee

d
(K

m
/h

r)
Vehicle SpeedRef Vehicle Speedach

100 200 300 400 500

-0.05

0

0.05

 S
lip

 R
at

io
 (

t)

100 200 300 400 500

-2

0

2

Je
rk

 (m
/s

3 )

100 200 300 400 500
Time (s)

-400

-200

0

200

400

 M
ot

or
 T

or
qu

e 
(N

m
)

Figure 5.10: Plot showing anti-jerk performance of NMPCC following a UDDS drive cycle.
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Figure 5.11: Plot showing velocity tracking performance with and without slip constraints for the
first 50s of US06 drive cycle
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5.4 Hardware-in-the-loop experiments

Hardware-in-the-loop (HIL) experiments are used to demonstrate real-time capability of
the MPC controllers. A general description of the HIL setup and the procedure used
for undertaking the HIL experiments is discussed in Section 3.4.2. The aim of the HIL
experiments is to determine the optimal prediction and control horizons (Np and Nc) that
result in real-time capability of the controllers. The real-time performance of the controller
is quantified by the turn-around time, which is the time taken for executing the controller
code in the ECU. The generally accepted upper limit for turn-around time is 10 ms for
real-time applications [63].

5.4.1 HIL experiments: Linear MPCC

The LMPCC, formulated as a quadratic programming (QP) problem (discussed in Section
5.3.1), was implemented on the HIL setup. The experiments were performed by tuning the
controller with different Np and Nc, such that similar end results are achieved with each
setting.

It can be seen from Table 5.2 that as Np increases from 10 to 80, the velocity tracking
performance improves, while the jerk performance deteriorates. Real-time performance is
not possible with Np > 80. The simulation was run on a HIL setup with different Np ranging
from 10 − 80 (with Nc = 3). The controller turn-around time of 0.39-8.46 ms has been
recorded at various prediction horizons as seen in Fig. 5.12. However, real-time performance
was not possible with Nc > 3 (turnaround time > 10 ms). A maximum turn-around time
of 6.97 ms has been selected with Np = 70 and Nc = 3 for demonstrating the real-time
implementation with the linear MPCC.

5.4.2 HIL experiments: NMPCC

The NMPCC formulated using the Single Shooting NMPC solver (discussed in Section
5.3.1) was implemented on the HIL setup. It can seen in Table 5.5 that the velocity tracking
improves as Np increases from 10 to 70. However, jerk performance deteriorates with
Np > 27. The controller turn-around time of 0.039-0.17 ms has been recorded at various
prediction horizons from 10 to 70 as seen in Fig. 5.13. Setting Np = 27, a turn-around time
ranging from 0.06-0.1 ms has been recorded while increasing Nc from 3 to 10. Fig. 5.14
shows the increase in turnaround times with increase in Nc. However, the velocity tracking
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Figure 5.12: ECUmaximum turn-around time for for linear MPCCwith different lengths of prediction
horizon

performance deteriorates after Nc = 7 as seen in Table 5.6. Therefore, Np = 27 and Nc = 3
has been selected to achieve a maximum turn-around time of 0.082 ms with the NMPCC
controller.
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Figure 5.13: ECU maximum turn-around time for NMPCC with different lengths of prediction
horizon
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Figure 5.14: ECU maximum turn-around time for NMPCC with different lengths of control horizon,
Np = 100
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5.5 Comparison of Linear MPCC and NMPCC

The overall performance of the linear MPCC and NMPCC for the US06 drive cycle and
UDDS drive cycles is summarized in Table 5.9.

Linear MPCC NMPCC
RMS
-VTE

Jerk Np Nc
Ta
time

RMS
-VTE

Jerk Np Nc
Ta
time

Units Km/hr m/s3 steps ms Km/hr m/s3 steps ms
US06 ± 1.83 1.96

70 3 6.97
± 2 2.01

27 7 0.082
UDDS ± 1.7 1.15 ± 1.9 0.7

Table 5.9: Comparison of overall performance: linear MPCC and NMPCC

It can be seen that a similar velocity tracking and jerk performance can be achieved by
both linear MPCC and NMPCC. However, the computation or turn-around time (Ta) of
the NMPCC problem is much faster than the linear MPCC. The difference in Ta is due to
use of different solvers for the NMPCC and linear MPCC problems. While the NMPCC
problem is solved using the Single-shooting NMPC solver [62], the linear MPCC problem is
solved using the Matlab based ’mpcqp’ solver. Since the main goal in this research is only to
demonstrate the real-time capability of the developed controllers, we have not attempted to
compare the computational efficiency the two solvers. Future work may involve comparing
different MPC solvers for the anti-jerk MPCC problem.

5.6 Summary

Novel linear and non-linear MPC-based anti-jerk cruise controllers have been designed
for central drivetrain architecture in EVs to meet multiple objectives of velocity tracking
performance and enhanced drivability, while adapting to changes in road conditions. The
significance of incorporating wheel-slip constraints in addition to halfshaft torsion in the
control design to enhance anti-jerk performance has been demonstrated. A stiff set of system
equations has been solved in the powertrain model, without increasing the discretization
time step. The real-time capability of our design has been demonstrated on a HIL setup
using two different solvers, NMPC solver for the NMPCC and Matlab based ’mpcqp’ solver
for the linear MPCC.
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Chapter 6

Conclusions

In this thesis, anti-jerk longitudinal dynamic controllers have been designed for an electric
vehicle with central drive powertrain using the model predictive control approach.

Road tests have been conducted on our test vehicle, the Toyota Rav4EV, to identify the
parameters for the longitudinal dynamics model. Experimental data measured using an
integrated measurement system designed to simultaneously collect data from the vehicle
measurement system (VMS), global-positioning system (GPS), and inertial measurement
unit (IMU) has been used for parameter identification. A two-stage parameter identification
procedure has been followed to identify the parameters using different models. First,
component level vehicle sub-system models have been considered to identify the individual
model parameters. The parameters identified using this approach were thereafter optimized
together using a full vehicle MapleSim model to obtain the final set of parameters. Adopting
such a technique eliminates the need for laboratory-based parameter identification procedures.

A real-time implementable longitudinal dynamics plant model of an electric vehicle with
flexible halfshafts was developed in the MapleSim software. The symbolic computation
capability of MapleSim allows significant reduction in the number of equations and generates
a highly optimized simulation code for real-time implementation. An equation based control-
oriented model of the electric vehicle, of lower fidelity than the longitudinal dynamics
plant model, has been developed. The plant and control-oriented models have been used to
evaluate the control performance through model-in-the-loop (MIL) and hardware-in-the-loop
(HIL) simulations.

The anti-jerk capability of the longitudinal dynamics controllers has been demonstrated
in both traction as well as cruise-control applications. The MPC-based anti-jerk traction
controller simultaneously meets the requirements of slip-tracking and enhanced drivability.
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6. Conclusions

A comparison drawn between the proposed MPC-based anti-jerk traction controller and
other controllers in the literature, such as the integral-action controller, integral-sliding-
mode controller and maximum-torque-transmissible-estimation controller, demonstrates its
superior performance.

The anti-jerk cruise controller has been designed to meet multiple objectives of velocity
tracking performance and enhanced drivability, while adapting to changes in road conditions.
The significance of incorporating wheel-slip constraints in addition to halfshaft torsion in
the control design so as to enhance anti-jerk performance has been demonstrated. A stiff set
of system equations has been solved in the powertrain model. Simulation results on a US06
drive cycle show that the reference velocity profile can be tracked with a maximum error of
±2 Km/hr and a maximum jerk of 2.01 m/s3.

The designed controllers have been tested through HIL simulations using DSpace
hardware. The plant model was loaded on the real-time computer (RTC), while the anti-jerk
controllers were loaded on the electronic control unit (ECU). A Control Area Network
(CAN) bus connected the ECU to the RTC. The real-time capability of the traction and cruise
controllers has been demonstrated on a HIL setup using two different solvers, the Single
Shooting NMPC solver based on symbolic computation with Maple, and a Matlab-based
’mpcqp’ solver.

6.1 Summary of Contributions

The research contributions can be summarized as follows:

1. Developed a longitudinal dynamics model of an electric vehicle with a central drive
powertrain which

• is validated with experimental results, and

• can be implemented in real-time.

2. Developed a novel control-oriented model of the electric powertrain by

• including slip-based constraints in addition to halfshaft torque in the powertrain
model. Adding slip-based constraints helps to control jerk during sudden changes
in road-friction conditions while keeping the torque demand within limits.

• solving a stiff system of ODEs as a result of including slip-based dynamics.
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3. Demonstrated a model-based parameter identification technique based on road-tests,
which

• is simpler and faster than standardized laboratory tests. An innovative approach
is used to connect a system of different sensors (IMU, GPS, VMS and vehicle
CAN) together in a single bus.

• eliminates the need for standardized testing, which generally involves the use of
a number of different expensive indoor facilities.

4. Developed an MPC-based anti-jerk traction controller that

• adds the anti-jerk function to traction control,

• incorporates wheel-slip constraints to enable operation when wheel-slip is high,
and

• is implementable in real-time.

5. Developed a novel design for an MPC-based cruise controller, which

• combines the upper and lower level cruise controllers in a single unit,

• can be implemented in deteriorated road-friction conditions, and

• is implementable in real-time.

6.2 Recommendations for Future Research

Although the performance of the MPC-based anti-jerk longitudinal dynamics controller has
been demonstrated throughMIL and HIL experiments, there is further scope for improvement
in modeling, model validation and controller design as illustrated below:

6.2.1 Modeling and Validation

Motor model. A physics-based model of the induction motor based on field-oriented
control could be included to represent the electric motor dynamics more accurately. A
detailed parameter identification procedure based on no-load tests, locked rotor tests and
back-emf tests will be required to estimate the motor parameters.
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Parameter validation. The model parameters identified from road-tests may be validated
with ASTM and other standardized tests procedures to prove the efficacy of the road-test
procedures.

6.2.2 Development of controller

Tuning of Controllers. Tuning of the developed controllers is an iterative process of
model-based design as discussed in Chapter 1. Although the controllers have been tuned
through MIL and HIL testing, the developed anti-jerk traction and cruise controllers could
be calibrated better using algorithms such as particle swan optimization [94] for meta-
optimization to accurately estimate the parameters of the MPC. Further tuning could also be
undertaken during component-in-the-loop (CIL) testing. The power-train test facility in the
Green and Intelligent Automotive (GAIA) Laboratory commissioned recently at University
of Waterloo has the necessary infrastructure to test the controllers.

Fast MPC solvers. In this research, we have used NMPC solver and Matlab based ’mpcqp’
solvers to solve the MPC problem in real-time. However, a comparative analysis in the
performance of the solvers has not been done. Also, a number of fastMPCapproaches (explicit
MPC, general minimum residual) have been developed to enable real-time deployment of
controllers and reduction in ECU computation time. A comparative analysis of different
MPC solvers will help find the best solver for the problem.

Future trip-information. As discussed in Chapter 4, future-trip information through
technologies such as GPS, ITS, real-time traffic data and V2V or V2I communication can
improve the performance of MPC. It may be prudent to undertake CIL testing of traction
and cruise controllers whilst proving additional future trip information to these controllers.
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A: Parameters for Plant Model

Parameter Symbol Value Units
Weight of car M 1750 kg
Wheel base L 2.66 m
Frontal area A f 2.79 m2

Parameters for longitudinal force
Pacejka Tire Model B,C,D, E 49,1.37,1.25,0.01 –
Suspension stiffness K f ,Kr 54,370, 35,540 N/m
Tire vertical stiffness Kt 253,000 N/m
Suspension damping C f ,Cr 1980,1795 Ns/m
Pitch Inertia of car Iy 3052 kgm2

Position of CG lr, h 1.15, 0.62 m
Parameters for Aerodynamic drag and Rolling resistance
Coeff of drag Cd 0.382 –
Coeff of roll resistance frr 0.0015 –
Inertial parameters
Drivetrain inertia Jd 0.423 kgm2

Wheel inertia Jw 4.7 kgm2

Height of center of pressure hd 0.689 m
Halfshaft stiffness k 21,600 Nm/rad
Halfshaft damping c 200 Nm/rad/s

Table 1: Parameters of longitudinal dynamics model: Rav4EV
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B: Parameters for Control-Oriented Model

Parameter Symbol Value Units
Weight of car M 1750 kg

Wheel base L 2.66 m
Frontal area A f 2.79 m2

Parameters for longitudinal force
Pacejka Tire Model B,C,D, E 49.04,1.018,1.101,0.001 –
Position of CG lr, h 1.48, 0.526 m
Normal force on each of front tires Fz f 5500 N
Dynamic radius of tire re f f 0.357 m
Parameters for Aerodynamic drag and Rolling resistance
Coeff of drag Cd 0.4 –
Coeff of roll resistance frr 0.002 –
Inertial parameters
Drivetrain inertia Jd 0.25 kgm2

Wheel inertia Jw 4 kgm2

Halfshaft stiffness k 21,600 Nm/rad
Halfshaft damping c 200 Nm/rad/s

Table 2: Parameters of control-oriented model: Rav4EV
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