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Abstract 

An cxperimntal inVtStigviDn was conductcü to study the influence of additives on Iubricant 

rheology in elastohydrodyMmc luaication (el@ and microchl as foumi in applications such 

as gears and mlling elemnt bearings. nie Iubricants wen subjMed to v a y  high pressuns 

whrh actcd globaily over the apparent arca of contact in chi and to even higher pressures 

which aaed localiy at asperity contacts in micro-ehl For chi, calcuiations were descn'bed for 

evaluating the efiéctivt 61m thickncss panunter A (theoretical cenaal î i b  thickness divided 

by measured composite RMS surface roughness). This parameter detemiined an 

approxirriate point of transition to micro-ehi. As weii, an analytical procedure was developed 

for detenriining the liniiting shear stress, which was considered an important paramter in 

high pressure rheology. For micro-ehl, a calcuhtion procedure. baseà on masund suface 

roughness parameters and a m d W  Grecnwood and Williamson type modei, was 

developed to evduate the na1 m a  of contact 

A side-slip disc machine was used to masure âiction forces which sheared 

elastohydrodynamk lubricant films as slip-roll ratio incnased fiom zero. Major disc machine 

modifications included adding devices to measure sucface temperature, using an eIectrical 

resistance circuit to measun cross fiim voltage &op, and providing an automatic data 

acquisition system Lubricant additives, in the general categories of fnction modifier, anti- 

Wear, and extreme pressure, were studid in d i x  machine experknts invoiving rough and 

smooth disc surfaces. 

Friction force rose rapidy to achitve a maximum value at a slip-roll ratio of about 5 8 .  In 

ehi, with the smooth discs, s W  but distinct and repeatabîe merences in the friction forces 

were caused by the additives. These di&rences permitted evaluation of limiting shear stress 

expressions which werc hinctions of pressure for each lubricant. In micro-eh& with a rough 

disc surface, the ftktion fora was 2 - 3 t i m s  higher than occurreâ with smooth disc sirrfaces 



and the additives had signï6cant inûucncc on friction forces. The masured friction force 

divided by tbe estinrated rcal arca of contact gave an aitemative evaluation of the Ilnrùing 

shear stress, which agrœd quite dosely with the liniiting shmr stress pndiaions bascd the 

expressions derivai h m  tcsting in ehL This agrcemtnt suggested that mtion 

masutemnts under eh1 could be usai to evaluatc and explore the influences of additives on 

the litriiting shear stress Thus, the lubricant chcmisay couki be designecl to give an optinial 

lhiting shear stress using disc machine mcas~mnts, under conditions of e U  for guidance. 



Acknowledgements 

1 woiild Iüre to express my sincue gratitude to my supcNisor, Rofessor khn. B. Medlcy, for 

his invaluabk guidanx and encomagcmtnt throughout my studies at the Univtrsity of 

Waterloo. 1 am thanldul not only for h i .  expertise in tribology and the counrless extra hours 

worlang on my iescarch but also for hk infinite cnthusiasm and mithfid niendship. 

1 would also like to express my thanks to Mt. Ernst Huber and Mr. Paul Renlrema, Tribology 

Laboratory technmans, and to Mr. Dicter Raude, Engineering Machine Shop mhanist, for 

their effective support during my experimental w o k  

1 am indebted to my fèilow graduate studenu for many Kvely discussions, enthusiastic help 

and constructive criticism. W~th them 1 shared a very niendly study environment. 

1 also thank Imperial Oil Ltd., Sarnia, Canada and the Natural Sciences and Engineering 

Research Councl of Canada for providing a financial support through the Department of 

Mechanical Engineering, University of Waterloo, for this study. 

Fiaily, 1 give my sincenst thanks to Chao-Wu Sheng and ali of my f d y  mmbers for their 

understanding and encouragement. 



To my dear parents and my beloved husband. 



Table of Contacts 

Abstract ............,............~...m......................ee.œ....m...e.............o........~..m......~ .iv 

Acknowledgements ................................................................................. .M 

0.0 Table of  Contents ...........................................~........................................ MU 

List of Tables .......... ... ....................................................~........................ .xiv 

List of Figures .................m..................................................................... ..xvi 

Nomenclature .......................................................................................... xxiv 

Chapter 1 Introduction ............................................................................. 1 

1.1 Tnbology Mechanism and Lubricant Rheology ............... ..... .........-....... 1 

1.2 Objective and Chosen Approach ........................................................................... 5 

1.3 Thesis Layout ................................................................................................... 6 

Chapter 2 Background .............................................................................. 8 

................................................................................... 2.1 Minerai Oils and Additives 8 

2.1.1 Low pnssure rheological properties ......... .... ..........O.........................-.... 8 

V i o s i t y  

Density 

Viscosity-temperature relationship 

Viscosity-pressure rdationship 

Viscosity variation with both temperatme and pressure 

................................................................................... 2.1.2 Functions of additives 15 

Friction modifier 



Antiwearadditive 

Extrtmt pnssmc additive 

2.2 Eiastohydmdynamic Lubrication .............................*.............................................21 

............................................... 221 Regimes of Iubrication ..*...........................-...-22 

Aydroâynamic lukication 

Elastohydrodynaniic Iubrication 

Boundary lubncation 

a Mixed film Iubrication 

Som comments on Iubrication failure 

................... .... 2.23 Fundamentais of eh1 theoly ................ -...........................*.24 

Heraian theory for nominal point contact 

Reynolds cquation 

Pressure distribution and nIm shape 

2.2.3 Film thickness equation ............ .................-................*......................-...........35 

2.3 Mixed Film Lubrication ................................................................ ................. 4 O 

2.3.1 Surface roughness .................................................................................. .......40 

2.3.2 Effective film thickness parameter @) .................... .....*.**......*.t.........tt....44 

............................................. 2.3.3 Area of asperity contact ..............-....................45 

Contact spot density between flat rough and smooth surfaces 

Determining surfa~e and asperity height dismbutions 

Detefmining the d area of contact for a specifled load 

Extension to a sphere-on-fiat configuration 

2.3.4 Micro-ehl approach ................................................................................. ......59 

Average flow factor approach 

Deterministic solution mode1 

Physid influence in rnicmchl 

2.4 Friction and Rheological Models ........................................................... L 
. . ........................................................... 2.4.1 Fnction behaviour ......66 



.................................................................. 2.43 High pressure mcOlogicai models 70 

The Eyrhg aianiPI activation mode1 

Limiting shcar stress mode1 

Cornparison of the moâtIs 

2.4.3 Limiting shear stress fbn ehl fkiction masanment ...................................... 82 

2.4.4 Friction in rough s d a c c  lubricated contact ................................................. *.85 

Chapter 3 Development of Test Facility ........... ......m.o...o.m...o~.~.~.m..~.m ..90 

3.1 Dkc Machine ....................................................................................................... 90 
..................................................................... ......... 3.1.1 Main components .... 91 

Lubncant supply system 

Driving system 

Loading system 

Traction measuring s y s m  

...................................................................................... 3.1.2 ûperating principles 101 

................................................................................... 3.2 Temperature Measunment 106 

................................ .......... 3.2.1 Temperature of suppiied lubricant .............. 1 0 6  

........................................................ 3.2.2 Contact zone temperature measurement 107 

................................ 3.3 Electrical Resistance Method for Detecting Film Breakdown 111 

............................................................................ 3.3.1 Electrical resistance circuit 112 

.............................................................................................. 3.3.2 Output voltage 112 

.................................................................. 3.4 Data Acquisition and Data Processing 117 
... ................................................................................. 3.4.1 Data acqusiaon system 117 

Haràware 

Software 

Spacific application of V i a 1  Instrument program 

3.4.2 Power spectrum anaiysis and sampling k p e n c y  .......................................... 123 

3.4.3 Analog îilter .................................................................................................. 127 



Chapter 4 Materiais and Methods ..................................................................... 130 

............................................................................................................ 4.1 Lubricants 130 

4.1.1 Base stock ail ............................................................................................... 131 

4.1.2 Fomuiatcd oils ............................................................................................. 134 

Friction modifitr formulation 

Anti-wcar ariciitive fomdation 

Exam pressme additive formulation 

......................................................................................... 4.2 Dcsign of Experimcnts 135 

...................................................................... 4.2- 1 Disc surface roughness conml 136 

Smooth surface 

Rough surface 

Roughness rneasurements 

BA and HSC for rough surface discs 

4.2.2 Operathg conditions ..................................................................................... 148 

Applied load 

Entrainment velocity 

Inlet zone lubricant temperature and arnbient pressure viscosity 

Disc surface roughness and À ratio arrangement 

4.3 Sequence of Experiments ................................................................................ 1 5 4  

...................................................................................... Chapter 5 Results 163 

5.1 Friction Force Measmments ....................................... .............................. 163 

5.1.1 Results for i d e  hl.....,........ ..,... .... ......,,........ 166 

Traction curves 

Maximum fiction force 

5.1.2 Results for mixed film lubrication .... ....,, ...................... ......*..,, 1 8 1  

Traction curvts 

Maximum fnction force 



5.2 Somt Observations h m  Traction Curvts ............................................................ 203 
0 9 5.2.1 Cbata~ft- b m  t h l . ~ ~ ~ - . ~ . - o . ~ . , . ~ o ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ m ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ o c ~ ~ ~ ~ ~ * - ~ ~ ~ ~ ~ ~ ~ o ~ * - ~ ~ o ~ ~ - - ~ - ~ ~ * ~ o * m . ~ - ~ 2 0 3  

Muences of opaoting conditions on e t i o n  force 

Lubricant additives in smooth disc expeMents 

5.2.2 Characteristics fiom mixed film lukation .................................................... 209 

E&cts of sulfate roughness on fiction force 

Lubncant additives in rmgh disc expeNntnts 

........................................................................................ 5.3 Accuracy and Procision 21 

Detcnnining the origin of fiction force at zero skew angle 

Enor in Frcaused by fiction of top disc supporting bcaring 

Top disc alignment 

Disc surface cleaning 

Repeatability 

Chapter 6 Analysis and Discussion ........................................................... 222 

6.1 Innuence of LRatio on Friction Coefficient ......................................................... 222 

6 2  Empiricd Approach to Determine Limiting Shear Stress .................... .......... -230 

6.2.1 Detennining the limiting shear stress index number ........................................ 231 

6-22 Empirid expression of rL as a fiinction of tilm pressure., .......... .........C........-.234 

6.3 Real Ana of Contact for the Rough Surface Discs ............................................... -234 

6.3.1 Bearing area and high spot cowrt ..................................................... 2 5  

.................................................... 6.32 Surface separation and rcal ana of contact 240 

6.4 Cornparison of r L b m  Experiments with Smooth and Rough Top Discs .............. 244 

7- from friction measurements a smooth top disc 

r h  from fÎiction measunments a mu& top disc 

Comparison of values 



Chapter 7 Conclusionsaad Reeommendaüons ........................................ 253 

7.1 Siunmary ............................ I.. ............................................................................... 253 

......................................................................................................... 7.2 ConcIwions * Z 5  

7.3 Rccornrncndations of Furthcr Rcscarich ................................................................. 256 

................................................................................................... References 259 

Appendix A Influence of  Lubricant Additives on Friction in a Disc 

Macbine (PPper acceptai for publication in the 

4Fundamentais and Appücations in Lubtication and Traction". 

Tribology Series. 32. Elsevier) .................................................... 271 



List of Tables 

Coefficients of expansion of minera1 0 5  

................................................................ (hm Hanribook of Lubrican'on. 1984) 11 

................... Viscosity and Density of SAE 5W Enginc Oil (hm Camemn. 198 1) 13 

.......................................................... Discrete data of Fj(Dss for GW type modtl 57 

Measurement resuits of output voltage V. for various u ...................................... 115 

Inspection data of minerai oils used in pnsent study (fkom hperial Oil Ltd) ........ 131 

Measunment rrsults of q o  and p ......................................................................... 1 3 2  

AUoy composition of disc materials ...................................................................... 136 
.................... Roughness measurement records for smooth top and bottom discs ... 141 

Roughness measurements for mugh siirface contact disc pairs 

and matched smooth surface contact disc pairs ............................................... 1 4 3  

..................... 4.6 Talysurf measund data for mugh surface disc RI .................... ... 147 

4.7 Talysurf measunxi data for mugh surface àisc R.2 ................................................. 147 

4.8 Applied load levels and correspondhg contact m a  and pressure .......................... 149 

4.9 Conversion of pulse rate yr and rollhg speed u ..................................................... 149 

4.10 Experimtnt sequence for smooth disc tests ......................................................... 155 

4.11 Experiment sequence forrough disc tests ........................................................ 1 5 8  

.................. 4.12 Experiment sequence for matched smooth disc tests ................... .. 160 

.................................................... 5.1 The Fr. in smooth surfacedisc measurements 180 

................................................. 5.2 The Ff, in rough siIrfacc top disc masurements 201 

5.3 The Ff , in matched nfemce smooth top disc measuremenu ............................. 202 

............... 5.4 E m r  in fiction force caused by fiction of top disc supporting bearings 215 

............................ 5.5 The Ff, in two repcatcd sets of smooth disc tests for MCF 5 -217 

xiv 



............................ 5.6 Multiple Ft . mca~urcmtnts ptrformtd in various exprhcnts 219 

6.1 nie ri, in rough dise expriments ...................................................................... 224 

6.2 The in maichcd smmth dia exptrimtnts ....................................................... 225 

6.3 Constants for the expression of r versus p ........................................................... 234 

6.4 Curie fitting data for rough sdace disc R1 .......................................................... 237 

........................................................................... 6.5 Caiculation of p. A, and 4/ A. 244 

6.6 Measiired and predictcd tr , for eh1 conditions .................................................... 246 

6.7 Measured and prtdicted t~, for micn>chl conditions ....................*..................... 247 

6.8 Ptedictedz~, gbmempincdexpnssion withp, .........................................O..... 248 



List of Figures 

2.1 Physicai illustration o f  Newtonian fluid. ............................................................ 10 

2.2 ViscositEes of SAE lubricating oils at atmospheric pressure 

........................................................................................ (hm Hamrock, 1994) 12 

2.3 Lubrication rnechanism by FM additives ............................................................ 17 

(a) adsorption lubrication mechanism ( h m  Stachowiak and Batchelor, 1993) 

(b) chernical st~cnire of fatty acid (hm Liston. 1992) 

.............................................. 2.4 Effects of niction modifiers ( h m  O'Brien, 1983) 18 

(a) on fiiction coefficient 

(b) on engine power loss 

2.5 Chernical structure of zinc dialkyldithiophosphate 

( h m  Stachowiak and Batchelor, 1993) ............................................................. 20 

2.6 Lubncation mechanism by EP additives ( h m  Liston, 1992) .................... ..... -20 

2.7 Nominal point contact ........................................................................................ 26 

(a) geomctxy of contacting elastic soiid (from Hamrock and Dowson, 1981) 

(b) a circuiar contact ana from a contact of a sphere and a plane 

2.8 Typical bearing iliuseaoion for dcriving Reynolds cquation ................... ..... .-29 

(a) a bcaring with converging-diverging surfaces 

(b) control volume for conservation of momentum 

(c) control volume for conservation of mass 

2.9 Typicaî pressure and film thiclrness profiles for ehl contact ..................... ... .... 32 

2.10 Typical ehl film between an elastic s p h e ~  and a rigid plane ........................O........ 34 

2. 1 1 A simple computational scheme for isothermal eh1 .................................... 36 

2.12 Lubncation nghc chart for nominal point contact (hm Hamrock. 1994, 

based on the results of Esfahanian and Hanuock, 199 1) .....................m...............- 38 



2.13 Gcanctric characteristic of soiid surface (hm Halling, 1976) ........................*... 41 

2.14 SmEacc roughness measrrrcment ( h m  Talysurf 5 Operator's Handbook) ........... 43 

(a) RMS of a Gaussian siafact 

(ô) BA and HSC at a separation z 

2.15 Vadation of fiiction coefficient with film paramter 

.................................................................... (hm Hanirock and Dowson, 1981) 46 

2.16 Representation of contact between a rigid plane and a rough surface .................. 48 
2.17 Average trace cross a circuiar aspcrity contact spot ......................o..................... 50 

2.18 Determination of da% and a h m  a probabiüty plot of BA versus z ................... 5 2  

2.19 Iletennination of d*, and a+ from a probability plot of n/n- versus z .............. 53 
2.20 Nurnencal results of pressure and fiim thickness profiles and contour plots 

(fiom Lubrecht et al, 1988) ................................................................................. 61 
(a) for longitudinal roughness 

(b) for transverse roughness 

2.21 Micro-interfemgrams of mugh surface lubricated contact 

.......,..... .. (fkom deSilva et al. 1985) ................................................................... 62 

(a) for Longitudinal roughness 

(b) for transverse roughness 

222 Solution of aspenty fiattening mode1 ( h m  Kweh et al . 1989) ............................ .44 
2.23 Discontinuous pressure distribution in rough surface contact 

(fiom Evans and Johnson. 1985) ......................................................................... 65 

2.24 Typical fiction curves h m  disc machine ........................................................... 68 

.......................................................... 2.25 Visco-elastic naaire for rheological mode1 71 

2.26 Rclationship of shcar stress and shear strain rate for lubricant under 

........................................................ examely high pressure (hm Smith. 1960) 75 

2.27 Cornparison of fiiction nsults from di&nnt measurement rncthods 

............................................................................. (bm Bai. and Whr .  1979b) 77 

2.28 Observation of Shcar bands ( h m  Bair et al ... 1993) ........................................... -79 

2.29 Traction map for Santotric 50 (hm Evans and Johnson. 1986) . .................... 8 1 



2.30 Variation of ?= with p at varioas tcmptnuiires ( h m  Wu and Cheng. 1994) ........ 86 

2.31 Muencc of b ratio on 6iction coefficient (hm Evans and Johnson . 1985) ........ 88 

3.1 Si&-slip disc -hine @h0<0) .............................................................................. 92 

3.2 Schematic iepresentation of the lubricant supply systcm ...............................o....... 93 

.......................................... 3.3 Schematic rcpzcscntation of the si&-slip disc machine 96 

3.4 Fnction forcc mtasurcmtnt 

(a) saain gauge Nig load ccil ................................................................................. 98 

.......................................................................................... @) load al1 calibration 99 

3.5 Skew angk measutCrnent 

(a) direct ciirnnt displacement aawducer for measuruig skew angle ...................... 100 

(b) DCDT calibration ............................................................................................. 102 

................................. 3.6 Rolling with side-slip kinematic p~ciples on disc machine -103 

(a) Arrangement of discs 

@) Vectors of shear strain rate in contact zone 

(c) Vecton of total shear strain in contact zone 

3.7 Typical traction curve h m  side-slip disc machine ............................................ 1 0 5  

...................... 3.8 Schematic repnsentation of disc surface temperature measurernent 108 

3.9 Influence of thermocouple contact force on disc surface temperature .................... 110 

................... 3.10 Electrical resistance circuit for detecting tilm breakdown ......... 113 

............................................. 3.1 1 Output voltage b r n  elecûical resistance circuit 1 1 4  

................... 3.12 Typical plot of output voltage versus rolling spced for various loads 116 

................... 3.13 Configurations for PC-LPM-16 &ta acquisition system ........ ..... 118 

3.14 A graphical program '4AïïOWAVE.W' for traction measmement 

(a) Front panel .................................................................................................... 120 

(b) Block àiagram ............. ............................. ................................................. 120 

............................................................................................ (c) Hierarchy diagram 121 

............................. 3.15 Typical power spxtrum analysis for rntasurta traction curve 125 

3.16 High ftequency noise h m  unfilted traction curve .............. ...... .......................... 126 



3.17 Circuit of low-plus analog filter .......................................................................... 128 

3.18 Low- pas^ pnalog nUer pr~pcrty ~..................o............-...~........................ 129 

(a) for MCT 5 

(b) f o r M ~ S a n d M C ï S + F M  

(c) for MCî 5 and MCï' 5 + AW 

(d) forMCI'5atidMCî5+EP 

4.2 Main description of eqcrimental design ....................................................... 1 3 7  

4.3 Typical segment of measmeci surface proNe of smooth top dix: SOI ................... .. 139 
(a) in circdemntial direction 

(b) in axial direction 

.................................................................... 4.4 Photo of smooth and rough top discs 140 

4.5 Surface proNes of rough top disc R2 ................................................................. 1 42 

(a) at begùuiing 

(b) after run-in 

(c) after fiction measurement 

................................ 4.6 Typical Talysurf measunment records for rough top disc Rl 145 

(a) surface pronle (afkr mn-in) 

@) data for BA and HSC at various depths 

............................................ 4.7 Typical plot of output voltage vs. Nm parameter 1 5 3  

5.1 Typical repeated traction plots from same operating conditions ............................ 164 

.......... 5.2 Traction curves h m  smooth disc tests for MCT 5 ............ .......,.,, .......... 168 

(a) T = 30°C, 4 load lcvels, 4 lower u's 

@) T = 30°C, sarne 4 loads, 4 higher u's 

(c) T = 4û°C, 4 load levels, 4 lower u's 

(d) T = 4û°C, lower 2 loads, 2 higher u's 



(e) T = 5S°C, 4 load levels, 4 higher u's 

5.3 Traction curvts from smooth disc tests for MCT 5 + FM ...................................... 171 

(a) T = 30°C, 4 Io& levcls, 4 lower a's 

@) T = 30°C sarnc 4 loads, 4 higher u's 

(c) T = 4û0Ç 4 load levels, 4 Iowa u's 

(d) T = W C ,  lower 2 Io&, 2 highcr u's 

(e) T = 55°C 4 load levels, 4 highcr U'S 

..................................... 5.4 Traction curves h m  smooth disc tests for MCI' 5 + AW 174 

(a) T = 30°C, 4 load levels. 4 lower u's 

(b) T = 30°C, same 4 loads, 4 higher u's 

(c) T = 40°Ç 4 load levels. 4 lower u's 

(d) T = 40°C lower 2 loads, 2 higher u's 

(e) T = 5S°C. 4 load levels, 4 higher u's 

.......................................... 5.5 Traction cuves h m  smooth disc tests for MCï + EP 177 

(a) T = 30°C, 4 load levels. 4 lower u's 

(b) T = 30°C, same 4 loads. 4 higher u's 

(c) T = 40°Ç 4 load Ievels, 4 lower u's 

(d) T = 40°C, lower 2 loads, 2 higher u's 

(e) T = 5S°C, 4 load levels. 4 higher u's 

5.6 Traction curves h m  rough top disc tests and matched smooth top disc tests 

for MCT 5 at T = 30°C ......................................................................................... 183 

(a) 2 load levels, highest u's 

(b) 2 load levels, high u's 

(c) 2 load levcls, low u's 

(ci) 2 load levels, lower u's 

(e) 2 load Ievek, lowest u' s 

5.7 Traction c w c s  h m  rwgh top disc tests and matched smooth top disc tests 

............ for MCT 5 at T = 40°C ............... -................... ............ .................. 186 



(a) 2 load ltveh. highcst u's 

@) 2 load levels. high u's 

(c) 2 load kveis, low u's 

(a) 2 load kvels, l o m t  u's 

(e) 2 load levels. lowest u's 

5.8 Traction curves h m  rough top disc tests and matched smooth top disc tests 

for MCT 5 + FM T = 30°C ................................................................................... 189 

(a) 2 load lcvels, highest u's 

(b) 2 load Icvels, high u's 

(c) 2 load levels. low u's 

(d) 2 load levels, lowcr u's 

(e) 2 load leveis, lowest a's 

5.9 Traction c w e s  h m  rough top disc tests and matched smooth top disc tests 
O for MCï 5 + F M  at T = 40 C ................................................................................ 192 

(a) 2 load levels, highest u's 

(b) 2 load levels, high a's 

(c) 2 load levels, low u' s 

(d) 2 load levels, lower u's 

(e) 2 load levels, lowest u's 

5.10 Traction curves h m  rough top disc tests and matched smooth top disc tests 

................................................................................ for MCT 5 + EP at  T = 30°C 195 

(a) 2 load levels, highest u's 

(b) 2 load levels, high u's 

(c) 2 load levels, Iow u's 

(d) 2 load levels, lower u's 

(e) 2 load ltvcis. lowest a's 

5.11 Traction curves £hm rough top disc tests and matched smooth top disc tests 

................................................................................ for MCT 5 + EP at T = 40°C 198 



(a) 2 load levels, highest u's 

(b) 2 load levels. high u's 

Cc) 2 load levels, low u's 

(d) 2 load leveis, lower u's 

(e) 2 load ltveIs, lowcst u's 

5.12 M u e n a  of applicd loads on friction fime in smooth disc icsu .......................... 204 

5.13 Influence of mihg specd on fiction force in smooth disc tests ........................... 205 

5.14 Enect of ialet lubricant temperature on fiction face in smooth disc test 

..................................................... (a) results for F = 829.5 N 

(b) results for F = 244.5 N ................... ..................................................C...-..C.--...C.C207 

5.15 Effects of surface roughness on fiiction force (Ff, versus u plot h m  mugh 

top disc tests and matched smooth top disc tests at T = 30°C) ................... .........C210 

(a) results for MCï 5 

(b) results for MCT 5 + FM 

(c) results for MCT 5 + EP 
5.16 Emn caused by friction of top disc supporting bearings ...................................... 213 

(a) fke  body diagram of top disc and shafi assembly 

@) tnie fiction force 

5.17 Cornparison of Fi, for smooth top disc tests before and afar 

mugh &SC experiments ....................................................................................... 218 

5.1 Comparison of multiple Fr, measurements ..........................................22û 

6. t Plots of the maximum friction coefficient versus h ratio at T = 30°C 

(a) top discs S1 and RI, F = 147.0 N .............................................. ................-.......226 

..... ............. (b) top discs S2 and R2, F = 244.5 N ...................*.....*...... J 

6.2 Plots of the maximum fnction coefficient versus ratio at T = 40°C 

.................. (a) top discs S 1 and RI, F = 147.0 N ...........................................228 

..... ....................................... (ô) top discs S2 and RZ, F = 244.5 N .. .......*...........229 



63 Polynomial carve fitting of BA versus z ............................................................... 236 
................................ 6.4 Plot of BA on probability papa for dcftmiiningd, and a .*.238 

............................................................. 6.5 Po1ynomial cravt fitting of HSC vusus z 239 

6.6 Plot of HSC on probabiüty papcr for dcdcnrimin 
O g d*- and aC ............................. 241 

6.7 Cornparison of prtdicted and measiired R, in chi and microchl 

....................................................................................................... (a) at T = 30°C 249 
O (b) at T = 40 C ....................................................................................................... 250 

................... . 6.8 Cornparison of pzesent TL, vs p, with other nsearcher's values ....252 



Nomenclature 

& apparent contact arca 

A, dcontactarca 

a radius of Hcrtaari contact circle 

BA karing arca in unit lcngth at meanired sudacc height 

C average constant in empirical expression of TL vs. p 

CT thefmal efftct correction factor 

d surface height 

d* asperity height 

da, average surface height 

d*, average asperity height 

El, E2 elastic moduius of contact body 1 or 2 

reducd eiastic moduius 

load 

fiction (or traction ) force 

maximum fiction force 

comon form of probability deasity function ÿ = 0,1,1.5) 

applied force in tangent direction 

Nyquist frasuency 

samphg frquency (scan rate) of &ta acquisition system 

elastic shear modulus of lubricant in rblogical models 

dimensionless elasticïty parameter 

dimensionless viscosity panunctcr 

high spot count in unit length at masund surface height 

measund HSC over traverse length 

reduced dimensionlcss minMum nIm thickness parameter in Eq. 2.23 



anaal fïim thickncss 

minimum f h  thickncss 

constant separaion 

appamt traverse Iength of SULfact protilt 

contact iincd which passes through the mafcrial si& of the profile 

index nmnbcr foc limiting shcar stress distribution 

total sampling number (=an numbcr) of data acquisition systcm 

aspenty density 

maximum aspaityden?jity 

lubricant nIm p s u r e  

average film pressure 

maximumfilmpressurc 

mass flow rate per unit width in x or y direction 

reduced radius 

cenaal line average of suxface roughness profile 

RMS of surface mughness profile 

the maximum peak to valley height of surface roughness profile 

reduced radius in x or y dinction 

Rxi,Rd radius of contact body 1 or 2 in x direction 

Ryl,Rfl radius of contact body 1 or 2 in y direction 

So dimensionless constant used in Eq. 2.7 

s nurnber of discrete contact lines at measured surface height 

T temperature 

T p  (%) beaMg ares in percentage at measured surface height 

T, reference temperatwe 

t time 

At sarnpling internai for &ta acquisition systcm 

u fluid velocity in the entraiment direction 

U I , U ~  surface velocity of contact body 1 or 2 



Vi,V, input or output voltage of elcctrical mistancc circuit 

Vb,Vv horizontal or vertical magnScation of Talystuf profdomuu 

v slidiDg velocity in the direction prpcndicuiar to entrainment velocùy 

x,ys Caasian coordinate systcm 

Z viscosity-psm index. a diniensionless constant in Eq. 2.7 

z separation h m  mean iinc to contact line 

h,m,zp* dimtnsiodess separation parameters 

particuiar scparation at which n = II, 

pnssurc-viscosity coefficient 

dimensionless roughncss parameter defineci in Eq. 2.41 

Roelands pressure-viscosity coefficient 

asperity tip radius 

s hear strain rate 

linear elastic shear strain rate 

non-ihear viscous flow shear sttain rate 

elastic deformation of contact body 

elastic deformation at contact center 

viscosity 

viscosity at atmospheric pressure 

effective nIm thickness parameter (defined as h& in this thesis) 

effixtive nIm thickness parameter (ciefined as h&) 

coefficient of fiction 

maximum coefficient of fiction 

kinematic viscosity 

Poisson's ratio of contact body 1 or 2 

density 

lubncant density at rrquind temperame 

standard deviation of surface heights, i.c. RMS surface heights 



standard &vi&on of asprity heights 

composite RMS surfPce mughness of contan d a c t s  

RMS surface roughness of the top or bottom disc 

RMS surfacc roughness of contact d a c e  1 or 2 

shcar stress within fluid film 

limiting shear sas 

average limiting sbcar stress 

maximum limiting shcar s m s  

Eyring shear stress 

shear stress rate 

skew angle 

pulse rate for bottom disc rollhg speed represented in holes/s 

percent error in Eq. 6.4 

swn  of the squared residuals 

minimum sum of the squared miduais 



Chapter 1 Introduction 

1.1 Tribological Mechanisms and Lubricant Rheology 

The investigation of the ibeology in vay thin hbncant films under high pressures is an 

important topk in trilogy because niany concentrateci contacts in mliing and sliding motion 

are lubricatcd to s o m  extent by these films. niese contacts are found in machine ekmnts 

such as gears, roiling ekmcnt bearings and bearings in vehicle engines. The bbricant films 

are f o n d  by a physicd process known as elastohydrodynarnic lubrication (eu. in which 

average pressures typicaily e x d  1 GPa and film thicknesses are in the range of about 0.1 - 
1.0 pm (F&urc 1.la). The high film pressure causes a significant in- in lubrïcant 

viscosity and a shift h m  Newtonian to non-linear viscoelastic rheological behaviour, as weii 

as elastic defomtions of the niach.int elernent surfaces. Shearing of an ehi film results in 

quite a high fiction force because of the higher viscosity, however, as shear strain rates 

increase, temperature also increases which, in tum, decreases both the viscosity and the 

fiction force. The understanding of the compkx physics of eh1 (Harnrock and Dowson, 

198 1) is a major tribologicd achievement of the twentieth century. 

Under various combinations of contact conditions, eh1 films are thin enough to allow 

individual asperities to play a role. In these cases, the fiim thickness is less than 0.1 prn 

which is of the sam order as root mean square (RMS) surface roughness of typical bearing 

surfaces in concenttated contacts. Conventionai eh1 theory, in which p e k t l y  srnooth 

surfaces are assumd. cannot work well for these films. Tkre has been an increasing 

realization that the asperity contacts thcmseIvcs behave as "rnicro" bearings and s o m  fom of 

fiuid film lubrication may persist under quite extrcm conditions. Consequently, micro-eh1 

theory was developed (Ciuistcnsen, 1969; Fowles, 1971; Tallian, 1972; Cheng, 1978). 



isolated micro-ehl (cl 

coop er ative micro-chi (b) 

L 
boundary lubrication (d) 

Figure 1.1 Tn'boogical mechankm of thin film lubrication in concentrated cantacts 

(ui, uz - cantsiçt d a c e  velocities) 



When thc Bspaitits dtfbrm elasticaliy, rippk are gematcd on the pressure dismiution 

which occurs for perdecty srnooui surfka* nie cispcrity interactions are "cooprative" if 

uiese rippk =main nIativeiy Jnmn comparai to the smooth srirtire pressure distniution 

Llb) and, thos. a relatively continuous luôrjcant dbri is maintained, However, as the 

surfaces appraach more cbsely, t h e  m y  be a transition to 'ïsolatcd" micro-eh& in which 

each aspcrity contact acts as an individual b d n g  figure 1.1~). As a resuit, the pressure 

m y  becom insigni6cant betwetn the asperity contacts and an the applied load is supported 

on the asperity contacts (Kingsbury, 1985; Shieh and Hamrock, 1991; Chang and Webster, 

1991; Sutcli&. 1991; Huang and Wen, 1993). Much of the rrcent understanding of micro- 

ehi cornes fkom theoretical studics because suitable experiments are very difncult to perfom. 

In mim-ehl, the niction force depends on the rhtology of the lubricant film which, as 

rnentioned previously, tends to foiiow a non-lincar viscoelastic behavior. The shearing may 

occur between molecules or betwcen large groups of rnokcuks but the slip planes are 

distributcd to s o m  extent thmugh the lubricant fiim thiclness. During relative sliding 

between the SOM bearing surfaces, the micro-ehl shear action may be considend analogous 

to a continuous "ductile" fracnue process. 

Most lubricanu contain additives that are designed to form very thin surface layers of 

molecular dimnsions (about 5 - 10 nm) that adhere chemmically to the machine element 

surface asperities. As triboIogica1 conditions bccom more extrem and lubricant nIm 

thrkness decreases ~ i g u r e  l.ld), these surfsice layen begin to interact at the asperity tips. 

Their life in the contact during sliding action depends on the strength of the chemical 

attachment to the surface, and whüe they e d t  in the contact the fiction force is hfiuenced 

The fiction forcc may arise h m  shea~g at a layer-siirfact interface or at some intermediate 

plant between contactkg suroice asperitiw. If shearing occurs at a kya-surface interfsice, 

îriction f o m  is inautnced directly by the strength of the adherent chemical bonds. On the 

other hand, if the shearing occurs at an intcnncdiatt pîanc, the ~ c t i o n  force may correhte 

with the strcngth of the adhetcnt chcniical bonds, but the relationship is not k t ,  because 



the bondmg rrross the intelmdiate pLae mist be CO- in any case, the shearing 

involvu slip at a plane rathcr than a âistriiutcd defiormation through the nIm thickncss. and is 

perhaps anabgous to a 'arittk" rathcr than a "ductilt" nactpre ~NICCSS- Whcn the Wtion is 

doniuiated by the lubricant siirfaçt chcmistry, the phenomna is dcscrikd as boundary 

lubrication. 

The triibologral mchamsna: of thin fihn lubmtions are swiniarized in Figure 1.1. Acnial 

contacts may exhibit a bknding of two or mre of these mchanisnrF. The combination of eh1 

and boundary Iubrication and the combination of isoiated &oz hl and boundary Iubrication 

are of particular intenst to the present research. 

Mineral O& are exttnsively uscd as lubricants to d u c e  fiction and wear. Although mineral 

oils are gtaded according to th& viscosity variation with temperature, additive packages that 

malce them formulatcd oils arc also part of thek overail classification. The additive packages 

are considercd to be developed for boundary lubrication. However. they may be uifluential 

and perhaps kneficial in eh1 or micro-eh1 fïims and thedore the performance of additives 

under these conditions is an interesting and important topic. 

New additives are proposed fkequently by lubricant chernisu who concentrate their efforts on 

c haracterizing the chernical pro perties. The rheological behaviour of lubricant additives 

received much kss attention. It is not economically kasible to evaluate aii additive 

formulations in the field or in test programs with compnhensive simulator devices. The low 

cost. standard lubricant screenùig tests, such as 4-bal1 (ASTM D 2266) and T i e n  (ASTM 

D 2509). may be helpful indicators of the chemical-rheologicai khaviour of the additives, but 

often are not relatai k t l y  to the pcifomïince in situ. Therefore, it wouid be useful to 

develop a scrccning test which quantined the rheological Muences of Iubricant additives 

more precisely than thc caSting srandard tests and reiated more directly to the lubricant 

perfomance in final applications or N1 simulation devices. 



One appmach to investigathg the lukication of vny thin films is to masure the M o n  in 

contacts that Jmiuktc some of the kcy conditions found in machine elemnts, and then to 

determine the lubricant tficology basd on these masurementS. In particubr, it would be 

useful to pafonn tests unda controlled conditions of low siip-ton ratio which, for exampk. 

occurs in gars and rolling ekmcnt bearings. Under these conditions thgnmil e-ts are 

much less dominant and lubricant behaviour is not weïî rcprescntcd by standard lubricant 

tests that involve pure soding. Friction (or traction) force mtaSurclTltnt in a disc machine 

provides this control over the slip-roïï ratio and has been used to study chi and various 

combinations of the madianisms shown in Figure 1.1 (Smith, 1959; Johnson and Jefncris, 

1968; Johnson and Roberts, 1974; Wu and Cheng. 1994). Various rheological rnodels werc 

developed to characterize this behavior (Johnson and Tevaafwerk, 1977; Bair and Wmer, 

1979). Quite recently, interest has been focused on the effects of surface roughness on ehl 

ftiction (Evans and Johnson, 1987; Johnson and Higginson, 1988; Sutcli&. 1991). 

However, less experirnental work was found for conditions involving asptrity interactions 

with randomly rough surfaces and formulated oh. aithough such contacts are cormnon in 

practice. 

1.2 Objective and Chosen Approach 

The objective of present resarch is to explore the influence of lubricant additives on the 

rheology of ehl and &O-chi. A side-slip disc machine with a particular nominal point 

contact geometry was used to masure the fnction forces with four formulated versions of 

MCï 5 lubricating o l  (ïinpcriai Oii Ltd, Sarnia, Ontario). The forrnulated oils are designateci 

as MCT 5, M a  5 + FM, MCi' 5 + AW and MCï 5 + EP whert the additives arc indicated 

by FM for nriction r n o ~ r ,  AW for anti-wear and EP for extrem pressure. In the contact 

between the top and bottom discs, the oii is subjectcd to a high pressure, whïie maintainhg an 

alrnost constant elastohydrodynamic film rhrkness. Whcn a side-slip velocity is inwduced 

by skewing the top disc, a tktion force perpendicular to the roihg direction occurs. The 



6nction force bmcas& with bxeashg skcw an@ until it miches a rcIative1y constant value 

before thcrmai influences cause its dtclinc. Thtrefore, the tiictïon force mtasurcmtnt is 

linked ditectiy to the Iukicant theobgy. The top disc has eithcr a v a y  -0th suract or a 

randomiy roagh sarbre, which prOauœs chi and micro-chi codions. In tlgs mumer, a 

particular set of formdated o h  is studied and a procedm is devdoped for invtstigating 

additive influence on the rheology of eh1 and micmchi. 

1.3 Thesis Layout 

The remainder of this thesis contains six chapters. Chapter 2 provides a bntf iiterature 

review of lubricant properties, lubrication in CO ncen trated contacts and experimental and 

analfical mthods which rekted to the present study. FÎÎst, low pressure propeaies of 

minerai 03 and fiinctions of additives are considcred. Then, som basic concepts and 

research achievemnts of ehl are presented. Following that, the efbts of surface roughness 

on eh1 are considered. Finaiiy, the developrnent of rheological models £tom fiction force 

measurements are introduced. 

In Chapter 3 the experimntal facility is described. FoiIowing a generai description of the 

components and operating pNicipIes of the side-slip disc machine, three modif?catiions of thk 

test ng are dûcussed. These modifications are the installation of a temperature measurement 

insmimentation, a &ta acquisition system, and an elcctrical resistance circuit for detecting a 

lubricant f3m breakdown. 

Chapter 4 describes the expetimental materials and mtthods. The relevant properties of four 

formulations of a lubrkating mineral O& which art usai in the present study, arc discussed. 

For the experimental design, the triblogical chacactcristics, including two types of disc 

surface roughncss and various combinations of the conditions of load, lubncant temperature, 

ambient pressure viscosity and rohg speeds arc pnscnted. The experiments are arranged in 



groups iinda varbus opcrating conditions for each lubrwtmg oil Fmaly, the central film 

thichiess and the effective film thicbicss paramter is cstimatcâ for each of the test condition 

and given a consequent cxpcrimcm numba for aü of them. 

In Chapter 5, the thcuits of e t i o n  force mtasurtmtnts are reportcd for the various 

lubricants and test conditions. The niaximum friction forces arc detenriined for traction 

c w e s ,  and the fkaturts h m  both srnooth and rough disc experimnts are discusseâ in a 

preiiminary fashion. 

In Chapter 6, a M e r  discussion and analysis of the nsuïts is pnsenteâ. From the Wtion 

force masurcmnts with smooth disc, a linn~g shear stress for each formulation is 

detennined by using an empirical approach developed by Wu and Cheng (1994). and an 

expression of the relationship between the lirniting shear stress and film pressure is found 

Using this expression a limîting shear stress under any pressure can be predicted. For rough 

disc experiments, assuming that loads are camcd only by the asperity contacts and using an 

estimate of the real ana of contact which is obtained by a modined Greenwood and 

WiIliamson type model, the  average pressure is cdcukted by dividing applied load by the real 

area of contact. Also, the average maximum shear stress for various lubricating oils are 

found from masured maximum friction forces. A cornparison of these values to the 

predicted values, using the expression of limiting shear stress versus pressure, is made to 

show the influences of lubricant additives in eh1 and micro-chi, 

Chapter 7 sumiramcs the prrsent study and presents conclusions and recommenàations for 

future work 



Chapter 2 Background 

This chapter prcsents background rclatcd to the -nt nse~rch. Conventional 'low 

pressure" nieological propcrtics of rnincral oils are discussed along with various fiinctions of 

additive packages. Brief descriptions of IukÈation rtgims and eh1 theory are prescnted, 

foliowed by discussions on the influence of contact s h e  roughness on ehl and the 

concepts of micro-eht FlllSIUy, Eriction force masurcmtnts on a disc niachint are descri'bcd 

along with the relationship between these masurementa and %gh pressure" lubricant 

rheology. 

2.1 Mineral Oüs and Additives 

A lubricant is any substance that is useci to d u c e  fiction and Wear between rnovhg surfaces. 

However, only mineral oils, which are low cost üquid lubricants derived fiom petroleum 

hctions, are considurd in the present research. Various additives are usually added in very 

srnail quantities to give the base stock mincd oils a wider range of applications. To a large 

extent, the rheological properties of mineral oils are detemiùied by the base stock, w13e the 

chernical interactions of mineral oils with the contact surface are deterrnined by the additives. 

2.1.1 Low pressure rheological properties 

The fundamntal rheological behavior of mineral oüs depends on the pressa and the shear 

s a  rate. Under low pressures and shw strain rates, mineral oils have a classical 

Newtonian fluid rheology. Conscquently, viscos@ alone is suffzcient to describe the rheology 

with M e r  adjusting relationships to account for the Muences of temperature and pressure. 

This rheologicai description is a conventional approach used to grade engine and gear oils. 



Viscosity is a mssrirr of a nsipuuwz of a minerai ol to a shcar mDin rate. This -ce is 

caused by contindy shifting weak bonds ûctween adjacent iayers of minera1 03 as it is 

subjected to shear. In 1687. Newton suggested tbat shear stress within a fiaid might be 

k t l y  proportional to shear strain rate and this proportionality constant becam known as 

viscosity. In a simple shcar flow 2.1). the viscosity may be calculated as foilows: 

h 

where q - viscosity (Pas) 

z; - shear stress within the fluid in the xirect ion 

y - shear strain rate 

F+ - force driving upper soüd 

A - contact surface area 

uz - velocity of solid 2 in the x-direction - 

h - thickness of sheared Iubricant film 

Viscosity is an important property for most contacts in which fiuid film Iubrication occurs. 

Unfortunately, a lubricant may not have a unifonn viscosity throughout the film because of 

variations in the pressure anaor temperature that cause subsequent changes in the value of 

viscosity. 

Density is important to "low pressure" rbeology because it is required in some standard 

measurement procedures to determine viscosüy. Almost aii the liquid mineral oils are 

incompressible unless under extfemly high pressure (Dowson and Higginson, 1966). but 



Figure 2.1 Physical illustration of Newtonian fiuid 



th& densitics chan* with tcmperaturc evcn at kw pressure. In the prcant study, an 

expression f'mm Cheron (1976) for a density at a specincd tcmptrat~~i~ was adopted to g i n  

Pr =PIS *[1-)1-(~-15)] 

where p - density at temperature T 

pl5 - measorrd density at lS°C 

y - cœfficient of thermal expansion (WC) 

T - temperature in Celsius scaïe ' 

nie coefficients of themial expansion (y) for various ranges of p u  were provideci by a 

commercial handbooka viable 2.1) with some confirmation pmvided by Booser (1984). 

Table 2.1 Coefficients of themial expansion of mineral oils 

PIS W d  r W C )  

1075 - 965 0.00063 

965 - 850 0.00072 

850 - 775 0.00090 

'175 - 742 0.00108 

Thus, given a measund value for pis the density can be calfulated using Eq. 2.2 with support 

from Table 2.1. 

Viscosity-temperature relationship 

Viscosity of a mineral ol decnases with incnasing temperature (Figure 2.2). The Society of 

Automotive Engineers (SAE) has de- dinerent viscosity grades for engine O& which 

depend on their viscosity-temperature behavior. An example of the viscosities of a typical 

l AU temperames are in OC thmgh this thesis. 
' The relevant mges of density were quoted h m  Praduction Informotion Lubricanis ond Specialties, 7th 
Edi tion (1 99O), Imperid Oil W. Cm&. 



Figure 2.2 Vkcosities of SAE lubricating oils at atmospherïc pressure 
(from Hamrock, 1994) 



SAE 5W enginc oil at M M u s  temperatures is given in Table 2.2. The viscosity (q) is the 

ptoduct of Lùiematic viscosity (v) and dcnsity @). 

q = v - p  

where v - kinematic viscosity 

p - density 

Table 2.2 Viscosity and Density of SAE 5W Enguie ûii (hm Cameron, 198 1) 

T(.C) v (mals) p(kg/m5) q ( P a d  

25 4.82~1v 860 0.W15 

40 2.545~10~ 851 0.0217 

100 4.994xlod 812 0.00Q06 

The American Society of Testing and Materiais (ASTM) advocates the use of a viscosity- 

temperature relationship, which was denved ftom a large number of mineral o l  viscosities, 

called the Walther equation (Bnant, et al. 1989) 

where v - bernatic viscosity varïed ftom 2.0 to 20 x 10' cSt 

(1 cst = 1 x lod W S )  

A$ - constants deteMeci  fkom v masuremenu at two different temperatures 

for a specific oiï 

Using the above relationship with two values of v measured in cSt at 40°C and 100°C, the 

constants A and B can be found. nien, the v-T behaviour is represented quite accurately, 

providing v is aïways within the range 2.0 - 20x10~ cSt and T is within the range -70°C - 
370°C. To determine viscosity (q) at a given temperature, the density must be calculateci as 

describeci previously, and then both v and p substituted hto Eq. 2.3. 



A simple relatiomhip bctwtcn prcssure and Mscosity is given by the Barus equation 

(Camcron, 1981). 

q=q0 -ew (2.3 

where qo - viscosity at amiosphcric pressure and a particuiar refercnce tempera- 

p - pressure 

a - pressm-viscosity coefficient at the reference temperature 

The Barus equation is used extensiveiy, but it is vaüd as a reasonable approximation ody at 

low to moderate pressures and becomes inaccurate (ovenstimating viscosity) as pressure 

inmases beyond 0.5 GPa (Hanwck, 1991) or 0.85 GPa (Wu and Cheng, 1994). If the 

reference temperature is high, this inaccuracy acurs at even Iower pressures. 

Viscosity variation with both temperature and pressure 

Som more comprehensive expressions which include the simuitaneous effects of both 

temperature and pressure on viscosity have been given by Cmok (1961). 

tl=t70*e w-BV-T, 

where p -  constant 

T, - refennce temperature 

no - viscosity at atmosphere pnssun and T, 

and by Roeiands et. al. (1963) 



- Roclands press~~~-viscosity coefficient 

- viscosity-pressure indcx. which is u s d y  constant 

over a wide temperature range 

- dimensionkss constant which estabiïshes slope of 

viscosity-temperature relationship 

a , p  - constants 

The expression of Roelands et. al. is considered the most accurate but the nquired constants 

are not nadily available. 

2.1.2 Functions of additives 

Hydrocarbons are the main chedal constituents of mineral oils. Hydrocarbon c h a h  along 

with various incorporateci compounds can Uiteract with the contact s u r f k e s  to produce 

chemicaiiy attached layers which Lriprove uibobgicai performance. In generai, the chemical 

layers are designed to protect the smfkes fkom Wear and d u c e  tiiction. Most of the 

compounds required to form the attached iayers are not found in refïned petroleum hctions 

that fonn the "base stock" oil and must be addcd. The surface chemistry of mineral 02 

depends to a large extent on these "additives". 



Additives may be clasdkd according to th& fiinctioos. Thge arc many types of additives, 

soin: of thcm, mch as antioxihts, a n t i - f o h g  agents, etc are not involveci directiy in the 

fiction and wtar. In the prcscnt stuây, typicai txampks of a fiiction moâiîïer, an antiwear 

additive and an exmerne pressure additive are considerai. 

Friction modifier 

Friction modifier (FM) additives d u c e  the fnction by fomring layers of Iow shear smngth on 

the contact sarfaces. In currcnt usage, the FM additives are mostiy faay acids and esters. 

The molecules generally contain unbranched long chahs of carbon atom, which are at Ieast 

ten atom in iength and are classified as the oil-solubiüang portion, plus a polar group at one 

end, which mets with the contact surfaces by a mechaniSm known as adsorption (Fein, 1983; 

Liston, 1991; Stachowiak and Batchelor, 1993). The rnolecular layers generated by this 

mechanism cover the contact swfaçes as show in Figure 2.3 and effixtively prevent the high 

fiction associated with direct surface contact. 

O'Brien (1983) reporteci experimnts which investigated the effect of a Ection modifier in 

automatic transmission ol ( F i  2.4). Accordhg to O'Brien, FM additives reduced the 

fiction coefficient in the transmission, especially at low sliding velocity where the oil film wa; 

relatively thin and s w k e  asperities might have niade contact with each other. This reduction 

decreased with increasing süding speeds since the asperities were separatecl by a thicker oil 

nIm and the FM additives did not have as much opportunity to act as that at the Iower sliding 

velocities. 

Antiwear additive 

Antiwear (AW) additives reducc wear usuaily at low sliding velocities by helping to initiate 

chernical reactions at the suface which form layas of sulphide and phosphate compounds. 

These chernical reactions, which are classifiecl as chemisorption (S tachowiak and Batchelor, 
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Figure 2.3 Lubrication mechankm by FM additives 
(a) adsorption lubricafion mechanism 

(fiom Stachowiak and Batchelor, 1993) 
(b) chernical structure of fatty acid 

(fian List- 1992) 
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Figure 2.4 Effects of fiction modif ia  (fiom O'Brien 1983) 
(a) on fkicticm coefficient 
(b) on mginepowaloss 



1993). rcquirc initial input cneigy which is provideci by artional heating during the süding of 

one s i a h i a  over the otha. Howmr, this chemisorption is only used at moderate Io& and 

temperatmes. If M o n a l  hcating continues to occur, it can damage the scnfact kyas that 

have just bcen fomrd or impair th& formation. When these sainfe layers do forni. they 

wear out doring süding but at a louer rate than wouid occur with daect contact of tht 

original sur$ces. The surfacc Iaqn pmductd by cheniisorption of AW additive is mch more 

durable than the hyu produccd by a FM additive through the mchanism of attachmnt calleci 

adsorption. 

The m s t  commnly uscd AW additive in engine oils is tinc dakyldithiophosphate (ZDDP), 

in concentrations of 1% - 3% by weight Its chernical structure is given in Figure 2.5. The 

layer fonrrd f?om ZDDP additives effcctively reduces Wear rate. The pnsence of zinc in 

ZDDP piays an important role. Zinc gives the lowest Wear rate conrpared with other metals, 

such as nickel, silver, ltad and tin (Stachowiak and Batchelor, 1993). The lubrication 

rnechanisrn of ZDDP is complex and the cumnt understanding is that the surface layer is 

subject to a '6sacrificiai" wear, which is lower than the W e a r  which would occur without i t  

Extrerne pressure additive 

Extreme pressure (EP) additives are essentially designed as AW additives but work under 

high contact pressuns and slidlig velocities in which lubricant and surface temperatures are 

high. EP additives usuaily contain phosphoms, sulphur or chlorine, plus water and oxygen 

(Fein, 1983; Liston. 1983; Stachowiak and Batchelor, 1993). When they are exposed to hot 

surfaces they are activateci and nact with the sdhces through a miid corrosion mchanisrn 

(Stachowiak and Batchelor, 1993). Figure 2.6 shows a typicai EP additive protective film 

(Liston, 1983). Thcy contain compkx inorganic and organic naction products, which are 

often phosphoms. sulphur and chiorinc containing compounds, as mntioned prcviously, as 

well as almost all of the chetnical elcmnts which present in the lubricant and contact surfaces 

(Fein et al 1986). Care should be taken whüe select@ types of EP additives and determining 
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Figure 2.5 Chernical structure of zinc dialkyküthiophosphate 
(fiom Stachowiak and Batchelor, 1993) 

Figure 1.6 Lubrication rnechanism by EP additives(fkom Liston, 1992) 



their concentrations for individual applications, in orda to irimnriue corrosion and conml the 

f o d o n  of iow sbcar sangth surf'&cc l a . .  For cxampk, if the concentration of EP 

additive is too high. thcn excessive cornsion may occur, whik if it ïs too bw. then the 

surf's may not k M y  pmocctaL 

Surfha layefs pmduced h m  EP additives rciriain stable at quite high temperatures and 

provide a " sacrificial" low wuir rate in the sam m a ~ u  as AW additives. They extend the 

load-carrying capacity p~tventing any unacceptably high rate wear or surface damages, such 

as scufnng and seizing. 

Somtims the s a m  additive can perfonn more than one fûnctions. For example. zinc 

dithiophosphate has ken usai as both an AW and an EP additive. At low temperatures 

associated with low sliding vebcity and contact pressure, surface layers fonn since the 

thermal activation energy is bw. At higher temperatures the surface layus f o m  even more 

readily and remain stable. However, many additives do not work at both high and Iow 

temperattues. 

2.2 Elastohydrodynamic Lubrication 

ln gened, the purpose of lubrication is to protect two contact surfaces during relative motion 

and to d u c e  friction. Bascd on the physics of the siirfacc interaction, lubrication can be 

classifkd into various regims. Ekstohydrodynamic lubrication (ehl) is one of them, which is 

found exttnsively in engineering practicc. In ordv to understand the context in which ehl 

occurs. a brief description of lubrication rtgSns and their mechanisms is given and the 

fundamentah of eh1 theory are discusscd in detail. 



2.2.1 Regimes of  lubrlcation 

Convcntionaiiy, tkrc are four lubricPtion rcgims: hydrodynanDc Iubrication, eiasto- 

hydrodynaniic lubrication, boundary Iubrication, and niixcd film lubrication. The 

characteristics ofcach regim arc dctemiined by the contact gconietry, niateriai of the contact 

surfaces, kincmatic conditions, appüed loads, and lubricant propertits. 

Hydrodynamic lubrication 

Hydrodynamic lubrication can give low fiction and virtually zero Wear. It usuaiiy occurs in 

confonnal sunaCe geomeies. The appiied load is camcd by a pressure generated within the 

fluid îïIm. This pressure develops during relative motion in the region where the surfaces 

converge. The motion of the siirfafes pulls lubricant into the gap between them and the 

decreasing of avaikble space causes the pressure generation In hydrodynamic lubrication, 

the gap between the surfaces must diverge eventually to prmit the lubricant to flow through 

the region of close p r o w t y  (hiown as the contact zone). Contact pressure in hydrodynamic 

lubrication is low enough that the effixts of elastic deformations of contact sdaces and of 

pressure on viscosity do not influence nIm thickness significantly. 

Elastohydmdynamic lubrication 

In ehi, however, both elastic deformation of the contact surfiaces and the lubricant pressure- 

viscosity efféct act to increase the lubricant film thickness. Usuaiiy, eh1 occurs in non- 

conformal sutface geomctries. For materials of low elastic moddus, such as rubber, surface 

deformation is more Unponant thm the pressure-viscosity e&t, wMe the converse is found 

for materials of high elastic modulus, such as =tais or ceradcs. According to Hamrock 

(1994), lubricant viscosity can Vary up to 10 orders of magnitude under a pressure up to 3 

GPa, which cm occur with mtallic surface rnaterials. Thus, despite high fi pressures, 

continuous lubricant h cm be gencrated which pmrent asperity contact and associated 

surface damage. 



Eventuaiiy, a combination of &tors such as high loaà, low snrface vt10cir,, very 

noncomfbrmal smfb  gcomtry. and low lukicMt viscosity with a we& pressure viscosity 

e k t ,  pments  Ouid nIm formation. Howeva, boundary lubncation m y  exkt to protcct the 

contact surfaces. Boundary lubrication bcates at the other end of the lubrication spcctnim 

nom hydrodynamic lubrication. nit opposing contact surtiuxs are ody scparatcd by very 

thin surface kyers of rnokular proportions. As mntioned in Chapter 1. the chernical 

bonding of the lubricant layers to the surface detcnnines the Wtion and Wear of the contact, 

and the layen themselves usually involve additive compounds. In boundary lubrication, the 

fiction force is usuaiiy higher than that in chi, but stiü lower than in dry contact. Sornetimes 

the layer f o m  by a chMcal naction bctween surface and lubricant. Therefore. the 

formation is often temperature, pressure and tim dependent. The kyer thickness depends on 

the size of the composing molecules, and is typicaIly within 1 to 10 nm. 

Mixed fidm lubrication 

The behaviour during the transition fiom eh1 to boundary lubrication is known as mixed film 

lubrication. As the film thickness in eh1 decrcases, the asperities begin to interact and a 

phenomna known as micro-ehi may occur, in which the aspenty geomtry and deformation 

influence the lubricant film thickness. At first the asperities m y  interact in a cooperative 

fashion where lubricant flow at an individual asperity is influenceà by nearby asperities. As 

the nIm thickness decrrases, the asperities begin to act in isolateci individual contacts. When 

the tribological conditions becom m>n severe, the lubricant film becoms even thinner and a 

chemical a t t a c h n t  of additives to the surfaces kads to boundary lubrication. There is a 

progression fiom a lubricant film rheology to an interaction of SOM surface layers, and the 

mode of deformation changes as discussed in Chapta 1. 



Although the abovc behaviour is piausi'bk, it is not accepted univtrsally. A constitutive 

quation of siniilPr fom, govans the dtfomation of both a niicro-chl film and a solid 

boundary lubrication loya (Dawson. 1995; Dowson, 1992). niuefon, exptrimtntai stiidies 

of typical contacts hvolving qedk fomulated lubricants have difficulty deteniiining 

whether the transition h m  eh1 to boundary IubrBcation occurs dinctly or with an intemiediate 

micro-ehi behavior. If asperitks bcgin to interact thmugh boondary lubricant iayers, then 

there can stin bc a transitional behaviour as pressure is sharcd bctween eh1 film and aspcrity 

contacts. which wouid constituu a niixcd film lubrication rcpim. in 0 t h  words, the rriuced 

film lubrication rcgime is composeci of som combination of eh], micro-ehi and boundary 

lubncation but die physics govemhg the proportions of each is not weil established. 

Some comments on lubrication failure 

From the above discussion of lubncation reglnes, a conclusion can be drawn that lubricants 

protect the machine ekmnts fiom dry contact in a number of Merent ways. In rnost cases, 

tribologist saive to avoid dry contact, which ofken causes a drastic increase in friction 

coefficient and Wear rate, by introducing üquid lubricants. However, dry contact can occur 

when ehi films break d o m  and the boundary lubricant layen are s h e d  from the surface. 

When the lubricants an effective, whether with fluid films or surface layers, the lives of 

machine elernents are extended, but evenaiany long term daniage caused by phenornena, such 

as surface fatigue, corrosion or soüd particle abrasion (perhaps from lubricant contaminants), 

resuits in component failm. 

2.2.2 Fundamentals of eh1 theory 

The theory of eh1 explauis the physical action in the lubrication of many non-conformal 

machine element contacts, such as roihg elemnt b e a ~ g s ,  gears, piston rings and c m  

foIlower pairs. A considerable developmnt has o c c d  since the pioncering work of Ertel 

and Grubh. (Gmbin, 1949). on the solutions of ehl problem. A brief review of elastic 



deformation in contact mchanics and viscous flow in fluid mchanics is proviüed in this 

section, and then the main fwiiÿes of ehl are discusscd In the kst part of this d o n  the 

dirneiisionleJs parpmeters and 6im thichiess equations, as wcn as the eh1 =gent cham are 

discussed. 

Hcrt.ri.n th- in nominai point contact 

Hertzian theory gives fomulae for contact stress and elastic deformation in dry static contact 

(there is no liquid Iubricant or s h e  velocities). Smooth s&es are assumed with no 

surface tractions. The surhces art ais0 elastic, isotropie and homogeneoos haif spaces. 

Finaüy, Hertzkm theory assumes that the contact dimnsions aie smaü compared to the radü 

of cwature of the surfaces. A nominal point contact occurs when two srnoth s d c e  

eliipsoids are loaded together and the very s d  contact area is elliptical in shape. Hamrock 

and Dowson (1981) provide fomulae which aiiow load 0, the cwature sum (R*), along 

with the elastic modulus (E) and Poisson's ratio (v) of each surface to give the dùnensions of 

the contact elüpse, the contact stress distri ion and the total deflection of the centers of the 

two ellipsoids. 

The R* is calculated h m  the radü of cuxvature of the ellipsoidal contact surfaces (Figure 

2.7a) as foilows: 

where Rx9 Ry - effkctive radii in the x and y directions 

The fomuiae can bc simplifiai for the circulas contact m a  of the experimental apparatus in 

the present study. In this case, R, = Ry and the circulat contact ana can be considend 

equivaknt to that which occurs when a sphen of radlus R &es contact with a flat plane 

(Figure 2.7b), where R is defined as the effective radius for contacthg spherical surfaces. 



Fi_eure 2.7 Nominal point contact 
(a) geomeay of contacting elastic solid (fiom Hamrock and Dowson, 198 1 ) 
(b) càcular contact area fiom a contact of a sphere and a plane 



The fonnuiac of Hanrock and Dowson can be ~&uCtd to the foiiowing weil established 

Hemian equations for contacting spherical surfaces (Carnaon, 1%6; Halhg, 1975). 

where a - radius of the apparent circuîar contact area 

A. - apparent contact ana (real contact area is calculated by considering the additional 

effect of surface roughness) 

E' - reduced elastic modulus 

F - applied load 

p - contact pressure (or nonnai stress) acting on the contact surfaces 

& - elastic deformation at contact center 

Reynoids equation 

The Reynolds equation is a partiai dinerential equation descriig the pressure distribution in 

fluid fiùn lubrication. It combines the physicd p~ciples  of conservation of mass and 

conservation of momntum for thin film flow. Various versions of the Reynolds equation can 

be found in the literatures, depending on the assumptions maàe in the derivation. The 

foilowing assumptions are niade in the present research to obtain a version of the Reynolds 

equation. 



(1) The fiim thickncss is small. cornparrd to the radii of crnanut of the surfaces and the 

contact dimensions. 

(2) hertial and body forces are ntgiigiblt comparcd to shcar and pnssiin forces. 

(3) Load and surface velocity arc constant so that flow is seady and film thickness is 

constant with respect to time. 

(4) The lubricant is a Newtonian liquid, flow is laminar and viscosity is constant through 

the thickness of the Nm. 

(9 There is no slip at the surface-fluid interface. 

(6) The lubricant is incompressible. 

ConsideMg a typicai b e a ~ g  with converging-diverghg surfaces (Figure 2.8a). the est 

assurnption allows the elimination of shear stresses acting on the side faces of control volume 

(Figure 2.8b). A conservation of momnturn is applied, which is a static force balance 

because inertial forces are negligible. Take iùints as the control volume and foiiow the 

Newtonian laminar flow assumption with constant viscosity through the film thickness, a 

reduced version of the Navïer-S tokes equations is obtained as foilows: 

where p - pressure of lubricant film 

q - lubricant Mscosity 

u. v - lubricant velocities in the x and y directions 

Since the third quation above indicates that the pressure in the z diriection is a constant, it is 

possible to integratc the fkst two equations twice with respect to s, where the boundary 

conditions are describeci by the assumption of no slip at the interface as foUows: 



Pt NO te: 
Similar pressure and 
shear stresses act on 

Rv -- the hidden faces 

Su bscfipts: 

@) e - east, w - west 
s - south, n - north ' Ps M o p  

Figure 2.8 Typid bearing illustration for daMng Reynolds equation 
(a) a bearing with commgingdiverging surfaces 
(b) control volume for conservation of momentun 
(c) control vohme for conservation of mass 



Then the lubricant vdocitics, u and v, arc 

The lubricant velocities may be intepteci m s s  the fïim thickness to obtain the volume flow 

rates per unit width in the x and y directions as follows: 

Take a control volume that stretches across the film thickness (Figure 2&), the conservation 

of mass for the incompnssibk fluid in this control volume implies 

Dividing both sides of Eq. 2.18 by AP Ay , tahg limits as Ax and Ay approach zero. and 

substituting in Eq. 2.17 yields the foiiowing version of the Reynolds equation. 

where u = y / 2 - cntrainmcnt velocity, Le. average lubricant velocity in the contact zone. 



If both contacthg ekmnts arc in a pure rotation wirh sdàce velocities ul and u2, then a 

similar derivation rcvcals that u = 4+4 
2 

Rcssure distribution and film shape 

Determining the pressure distribution in an isothennal eh1 fihn is a cornpiex probiem The 

pressure generatcd in the contact zone changes both viscosity and fiïm thickness; thus, Eq. 

2- 19 is a highly non-linear partial âifftrcntial equation when applied to ehl. 

In typical ehi, the elastic fiattening becoms large compareci with the film thickness and the 

pressure distribution approaches the Hertzian contact pressure for rnost of the contact area. 

However, an inlet pressure "sweep" occurs, in whkh pressure gradudy increases as the 

lubricant is àrawn into the contact by the mving surfaces rather than the rapidy increasing 

Hertzian pressure in the same iniet zone (Figure 2.9). At the exit of the contact zone, the 

pressure drops rapidly to ambient pressure. The infiuence of this ambient pressure on the exit 

zone surface is to reduce deformation, thus producing a constriction down to the minimum 

film thickness. This constriction occurs because deformation is Muenced by the total 

pressure field not just the local nùn value. Ressure rises rapidiy when the lubricant flow is 

co&onted with the constriction. This abrupt rise in pressure is defmed as a pressure spike 

and is an miportant feature of ehL The detaiis of the pressure distribution and the film shape 

are shown simultantously in Figure 2.9 for a simplified case, where onïy the top surface is 

eiastic. Given the same reâuced elastic modulus, the total suditce deformation is identical in 

the contact zone for an elastic-ngid combination as for an elastic-elastic combination as 

suggested by Eqs. 2.8 to 2.14. 

An essential fkature for effective lubrication is to maintain an adequate lubricant film 

thickness. Therefore, it is a very important practical aspect of eh1 theory to determine the film 

thickness within the contact. The fluid film profle through the center of the contact can be 



Figure 2.9 Typical pressure and f i  thickness profiles for eh1 contact 



rcpmscntcd by the foliowiig expression and shown in the sirriplificd case where only the 

upper s d a c e  is elastic (Figure 2.10). 

wheie h. - stparation of the u n d e f o d  surface at the contact centcr 

S - elastic deformation 

The elastic defonnation can be calcuiatd by a "siirfacc ekmcnt" procedure as d e s a i i  by 

Hamrock and Dowson (198 1). 

In ehl calcuktion procedures. the efkt of pressure on viscosity can be estimated by the B m s  

equation (Eq. 2.9, even though it ovenstimates the viscosity at higher pressures. It is found 

that using the more realistic Roelands equation (Eq. 2.7) for pressure viscosity effixts gives 

approhtely the s a m  film thickness resuit is discussed in a subsequent section). 

nKrefore, computational procedures m y  use Roelands equation which @es a more precise 

result (and faster convergence), but the film thickness fomulae, which are comlated fiom the 

numericai solutions, use the pressure-viscosity coefficient (a) h m  the Barns equation for the 

lubricant. The a value may be masund for a given lubricant at relatively low pressures, and 

thus, it is fairly easy to obtain. 

Furthemm in ehl, the pressures are high enough to change density, and thus, the lubricant is 

not incompressibk. Inclusion of this e&ct in ehi caiculation procedures is not difficuit and 

often rnakes convergence easia, but it does not change film thickness sipnincantly compared 

to calcuiations considering the lubricant as incomprcssi%le (Camron, 1976). Thus, eh1 

fonnuIae do not need to include a pressure-density tem. 

The Reynolds quation, as derivcd in the prcvious section, can be used to investigate the ehl 

film thickness with the provision that the pressure generatcü in the contact zone inmases the 



Figure 2.10 Typicai eh1 fikn between an elastic sphere and a rigid plane 



lubricant viscosity and causes the ekstic defomiation. As nrntioned pnviously, both the 

variations in viscosity and eLstic def'ormtion niaLe the Reynolds cquation highly non-lincar. 

The most comnon inkt pressure bouadary condition is p = O at a large uiough negative x- 

valut, so that moving thh inkt boundary funha h m  the contact has a negiigi'bk e&ct on 

the convergcd pressure dism'bution. The most comnon outkt pressure boundary condition is 

p = dp/& = O at som positive x-value close to the outenma cdge of the Hcrtzian dry 

contact arcé The location of this outlet "cavitation" boundary is determincd within the 

numrical solution proccdure. A numrical anaiysis and computation technique was 

developed by Hanirock and Dowson (1981) for solving an hothemial eh1 in an eliipticai 

contact. An equivalent, but somwhat simpler, computation scheme to solve the Reynolds 

equation in i s o t h e d  eh1 is presented in F i p  2.11 to provide the basic approach. 

The typical ehl film thickness pronle presented in Figure 2.10 shows that, ovet most of the 

contact zone, the h thickness is abrost constant, and thus. the centrai film thickness &) 

provides a good estirriate of the average value. Under the pressure spike at the exit of the ehi 

contact, there is a film constriction as mntioned previously. The minimum f îh  thickness 

&a occurs at the constriction and is approxirnate 75 - 80 8 of the 8. 

2.2.3 Film thickness equation 

Eiastohydrodynamic lubrication involves the e&ct of pressure on lubricant viscosity and on 

surface elastic deformation. nius, the nIm thickness in eh1 depends on the relative influences 

of film pressure on the increase in viscosity and the elastic deformation. To quantify these 

influences. Johnson (1970) developed a "regime" chart. Thcse regims of eh1 are specified by 

calculating the magnitude of a dimnsionkss eiastrity parameter (gE), w k h  is proportionai 

to the maximum rigid isoviscous fïün pressure dividcd by the maximum Hertzian pressure as 

shown below and quantines the effect of pressure on surfxe &formation. 



lubricant Mscosity and causes the ciastic deknriation. As mentioncd previousiy, b t h  the 

variations in h s i t y  and elastic dtfonmtion makc the Rtynob equation highly non-luitar. 

nie most comnon inh pressutt boandary condition is p = O at a iargc enough negative x- 

value, so that mving this inlet boiudnry fiinha h m  the contact has a ncgiigibk c&cr on 

the convugtd pressure distn'bution. nie most cornnon outlet pressure boundary condition is 

p = dp/& = O at som positive x-value close to the outcmst cdge of the Hcrtzian dry 

contact aiea nie location of this outkt "cavitation" boundary is dettmiined within the 

numerical solution pnnedm. A numrral analysis and computation technique was 

developed by Hamrock and Dowson (198 1) for solving an isouientral eh1 in an eIliptical 

contact. An equivaicnt, but somwhat sixnpler, computation schem to solve the Reynolds 

equation in i s o t h e d  eh1 is pnsented in Figure 2.1 1 to provide the basic approach. 

The typical eh1 film thickncss profiIt presented in Figure 2.10 shows that, over most of the 

contact zone, the film thickness is almost constant, and thus, the cenaal film thickness (hJ 

provides a good utiniate of the average value. Under the pressure spike at the exit of the eh1 

contact, there is a nIm constriction as mntioned previously. The minimum film thickness 

(h,) occurs at the constriction and is approximate 75 - 80 % of the 4. 

2.2.3 Film thickness equation 

Eiasto hydrodynamic lubrication involves the effect of pressure on lubricant viscosity and on 

surface elastic deformation. nius, the thickness in eh1 depends on the relative influences 

of nIm pressure on the incnase in viscosity and the elastic deformation. To quanti@ these 

influences, Johnson (1970) developed a ''regirm" chart. These regimes of eh1 are specified by 

caiculating the magnitude of a dimensionless elasticity paramter &), whkh is proportional 

to the maximum rigid isoviscous nIm pressure dividcd by the maximum Hertzian pressure as 

show below and quantifies the cff't of pressure on surface defornation. 



Specify a pressure distribution 1 
1 

1 Calculate viscosity and sudiace defonnation 1 
I 

Solve the Reynolds equation for pressure 
with the above viscosity and defonnation 

fieIds held constant (which makes the equation 
linear) and the applicable boundary conditions 

by a £inite ciifference procedure 
with a Gauss-Seidel solver 

I 
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Iterate untü the specified pressure 
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distribution is the same as calculatexi one 1 
I . 

I calculate load by numeriMy i n t e p ~ g  I 
1 the pressure distribution 1 

Iterate until the calculateci load 3 
1 equais the specified load 1 

Figure 2.11 A simple computational SCheXIIe for isothexmal eh1 



nien, a dtrrtnsionless Mscow parameter (gV) k cplculated, which is propartional to the 

maximum rigki isoviscous fiim pressure di- by the pressme at which viscosity quals 2.72 

x qo as shown bdow and quantifies the e&t of pressme on lubricant vixosity. 

Afier ga and gv are cakuiatcd, a dimnsionlcss minhum mm thickness parameter (fi,) can 

be considereâ, which is proportionai to the minimum eh1 film thickness divided by ngid 

isoviscous film thickness as shown below. 

FoUowing Johnson (1970). numrical solutions were used to generate unique fi, contour 

lines on a gv versus ge plot. The orientation of these contour hes  showed a physicai 

interpretation of contact mchanics in four distinct regions. Johnson identined the behaviotu 

in each of these regions as a 'kgime of ehi" and noted that least squares cuve fitting gave 

unique fonnulæ in each regimc of the foîiowing general fom 

fi, =c-(g. )u(g, )b 

where ab,c - constants for a paRicular regime 

The four regims of ehl are isoviscous rigid, viscous rigid. isoviscous eiastic and viscous 

elastic. Esfihanian and Hamrock (1991) generated a regime chart 2.12) for minimum 



Figure 2.12 Lubricatim regime chart for nominal point contact 
(hm Hamrock, 1994, based cm the results of 

Esfehanian and Hamrock, 1991) 



film thickness in nominal point contacts wïth circular contact anas which defincd the reghm 

boundarw accuratcly. if the cakufatnf vducs of ga and gv indicami that a @en contact was 

in the viscous elastic rtgim, then using the constants o = 0.49, b = 0.17 anù c = 1.687 in Eq. 

2.U alIoWtd an estimate of minimum film thickntss 0. 

Hamock and Dowson (1977) generatcd the above formula for and a formula for central 

film thickncss a) ttnough their numerical so1utions in the viscous elastic regh- In the 

prescnt study, & and gv wcxe cakuiattd and Figure 2.12 was uscd to confimi that the contact 

was in the viscous elamc ngimt. nien, the foilowing fornula, which was developed by 

Hamock and Dowson with its sornewhat simpler dmiensiodess groupings, was used to 

calculate k. 

AU of the procedures and fomulae discussed so far considered a Newtonian lubricant. 

However, friction masurements indicate that the lubncant behaves in a non-Newtonian 

marner in many ehi contacts. In spite of this, the film thickness fomuiae have sttong support 

fiom actuai film thickness measuremnts. For example, optical interfemtry was used by 

Kunz and Wincr (1977) to measiue tilm thickness. as descrikd by Hanrock and Dowson 

(1981), and the results agned well with pndicted values. Recently, Hamrock and his 

coworkers (Lee and Hamrock, 1991a. 1991b; Hsiao and Hamock, 1994) perfomd 

numerical analyses of noMnal line contact with non-Newtonian auid models and pointed out 

that a fomiuk quivalent to Eq. 2.24 based on a Newtonian mode1 gave quite an accurate 

ptediction of film thickness at low enaining velocities and pure rolüng conditions. They 

attribut& this convenient nsult to the Newtonkm behavior of the lubricant during the inlet 

pressure sweep, which appanntiy set the fiim thickmss throughout the contact 



2.3 Mixed Film Lubrication 

When the eh1 filnis tue t h  enough to Plbw individuai asperities to interrt with the opposing 

surfact, the sslirtiicc mughness is another important factor which affltcts lubrication. 

Conventional ch1 thcory bas ken rcmarkably succtssfiil in analyzuig lubncation when the 

surfaces arc wcn stparated but a comprchensive understanding of aspcrity interactions and 

lubricant fïIms unda aspcrity tips has not yet bcm a c t i m d  The study of thùi film 

lubrication between rough surfaces is calkd mixed fjim lubrication @amrock and Dowson, 

1981) and requires knowledge of surface roughness, e&ti.ve film thichess, and ana of 

asperity con- 

2.3.1 Surfaee roughness 

The surfact roughness causes local changes in the lubricant fiLn thickness and the pressure 

distribution. Thus, an analysis of a mixed 6im lubrication in a particular contact begins with 

the masuremnt of the roughness of the contact surfaces. AIl manufactured surfaces are 

rough to s o m  extent. The actual s d c e  profile ù the combination of three types of 

deviatiow: form error, waviness and micro-roughness (Egure 2.13). Even a&r removing ai l  

the form error and waviness by carehil machining, there is stiU micro-roughness whic h cannot 

be eliminated from metal surfaces by any known polishing techniques. 

To determine the surfacc roughness. many masuremnt devices have been developed. 

Among them, devkes that use a contacting styius d e  are cormon. They transform the 

vertical motion of a styius tip into an ekaicai anaiog signai (voltage) when the styius 

traverses on a surface. This voltage is converteci to digital information to represent the 

surface profiîe. There are several important parameters that can be used to characterize a 

rough surface. 



Figure 2.13 Geometnc characteristic of solid d a c e  
(fian Halling 1 976) 



(1) Root mean square of surface height m S )  

The RMS is the e&ctive vertical deviation of a sinface mughness p r m  and is g k n  by the 

gbomMic average vaîue of the diffk~tncts of the pro* h m  Us man iinc. Many 

manufhcniring suraices have a d o m  or Gaussian distribution of surface heights, whae the 

RMS comsponds to the s*udard deviation of the distribution (Figure 2.14a). The RMS 

formula h m  disc&zed mcasuremtnt data is 

where di - surface height h m  a teference plane 

1 
d, = -x di - average surface height 

m i-I 

m - number of discretized surface heights 

(2) Bearing area curve (BA) and high spot count (HSC) 

BA and HSC are not constants for a given profile (like the RMS) but v;iry with the surface 

height coorduiate (2). They are usualiy masurrd at the s a m  time. In a measurernent of BA 

and HSC, a hypotheticd smooth flat surfacc is considered, whkh is parailel to the mean phne 

of the flat rough sudke. When the smooth surface moves towards to the rough surface and 

intersects the rough surface profile at a numbcr of levels as a line in the profile view (Figure 

2. Mb), the BA and HSC are defined by the following expressions. 

where L - traverse lcngth 



L 
RMS 

Figure 2.14 Slirface rougbness measmement 
(fhm T a i y d  5 ûperatot's Hmdboot) 

(a) RMS of a Gaussian d e  
(b) BA and HSC at a sepration z 



fi - contact line which pass through the maftrial si& of the profile at height z 

s - nmber of l i 's at height z 

2.3.2 E f f i v e  film thickness parameter a) 

In order to cvaluatc the extent of aspenty interaction in chi, a dùnensionïess film paramter. 

known as uie Â ratio, is &fincd as: 

where b - centrai film thickness (close to the average film thickness of the contact). 

caIcuiateâ for pufectly smooth surfaces using a formula such as Eq. 2.24 

ai, a - RMS surface roughness of contact surfaces 1 and 2 

This h ratio is the same as that used by Johnson et al. (1972). H m c k  and Dowson (1981) 

and H m c k  (1994) dehed a very similar A* ratio, in which Ibi. rather than h. was used in 

Eq. 2.28 (X* = 0.67 L) and gave the possible values of A* in the four lubrication regirnes 

described in Section 2.2.1 as foflows: 

(1) hydrodynamic lubrication, 5 S A* .+ 100 

(2) elastohydrodynarnic lubrication, 3 5 X* S 10 

(3) mixed @artial) lubrication, 1 5 X* S 5 

(4) boundary lubrication, à.* < 1 

It must be mntioned that the above ranges of the k* ratio lack precision because they do not 

descnbe the luôrication mchanics uniquely. Rather than modeling the actuai surface micro- 

geometry in a fidi numrical solution of ehi, a formula for an "average" film thickness of a 

smooth surface is used with a single "average" roughness parameter. 



The vanPtion of the etion coctIicient (p) with the A* ratio is shown in Figure 2.15. Many 

experimcntal rcsults suggcstd tbat the iraed lubtication =gim (wtirh is labelcd as panial 

lubrication rc@m in the figure) has no sharp transitions h m  the fIuid film lobrication or to 

the boundary lubrication. niereCore, the approximatc locations of the various lubrication 

regimes art dmwn as ~ ~ m t  moveablt lines in thïs figure. 

2.33 Area of asperity contact 

Once roughness has been measured and the calcuiation of the effective nIm thickness 

paramter indicates that asperities afkct the lubrication, a detailcd examination of the asperity 

interaction is rrquned. From the surface mughness masuremnts. the area of asperity 

contact can bc estimated for an unlubricated and static contact. This distributeci area of 

asperity contact indicates the regions in which mim-ehl is possible. 

Many efforts have bccn made to determine the area of asperity contact between rough 

surfaces. From the microscopie point of view. when two surfiices are pushed into contact, 

they wiii touch at a number of discrete aspentks which deforrn either eiastically or plasticaliy. 

The sum of the srnail anas of ail the contact spots wiil be the na1 area of contact (Ar) within a 

specified apparent area of contact (Ad. S o m  existing models start fkom the suroice 

roughness masurement, represent the contact through a stochastic process. and determine 

the mai ana of contact for a specified load. 

Greenwood and wibmson (1966) developed such a mode1 for an elastic contact between a 

flat rough surface and a flat smooth surface. This rnodel assumcd that asperities had spherical 

@S. deformeù indepcndentiy and the Gaussian distribution could be applied to their height 

distribution. When the smooth surfaoe was pushed into contact and located at some 

separation (z), a numbet of aspenties whose height over z would be in contact. To detemine 

A, within a specined apparent arui of contact (AdT a contact spot density (n) was nquired? 

which gave the number of contacted asperities in a unit of Aa. However. n was not rneasured 
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Figure 2.15 Variation of fiction coefficient with film parameter 
(fiom Hamrock and Dowson, 198 1) 



dir#:tly when the swface roughness wns given as a two dimensionai pofilomcm aice. An 

expression. which was @en originaîiy by Cooper et. ai. (1%9) in thtir study of themial 

contact conductance, gave the nlationship betmen the n and masureci values of HSC and 

BA. A mthod of dctcrniaiag an average valut of the radius of cmatwG (p) of the 

contacthg spherical asperity tips at a s@kd load was gMn by De Vaai (1983). The work 

of both Cooper, a al and De Vaai was adoptcd to find pafamcters for a Grœnwood and 

wïhmson type mode1 in the pnsent study. Aithough this mode1 could be extendcd to the 

contact of two mugh sarfaces, such an extension was not nquired in the subsquent analysis 

of the present study and thus it is not described here. 

Contact spot density between fiat mugh and smooth surfaces 

A derivation of the expression relating n to HSC and BA was given by Cooper et ai. (1969) 

but it was difficult to foilow. A somwhat sinipler derivation' was possible which yielded the 

sarne expression. 

FoUowing Greenwood and Tripp (1967). asperities were assumed to have spherical tips of 

about the same radius of cwanirc but various heights. Here, the n is the s a m  whether both 

surfaces are elastic or plastic because only size not number or location of contact spots 

changes. It is convenient for the piestnt denvation, however, to assume a smooth rigid plane 

in contact with a roua plastic plant. When the rigid smooth plane is pressed into an 

individuai asperity tip, the contact circle increases rapidly after initial contact. then more 

slowly as the separation a dccnases. As a result, all the contact spots have about the same 

radius (a) despite the variation in asperity heights when the srnooth plane is at some height z 

(Figure 2.16). 

' This deriviltion was pcesented füst in lecture notes by Dr. J. B. Mediey. 



Figure 2.16 Representation of contact between a rigid plane and a rough d a c e  



nie A. shown in Figure 2.16 is chosai to equal2ÜL. and it is noted that if asperity contact 

aicas are hrgct and sniaIltr than those shown, s o m  extra contact spots would be inchdeci 

and s o m  would be missed, bot on a long trace n shodd be stay about the same. It follows 

that 

HSC n=- 
k- 

To detemiùie an expression for Z, consider a long trace that intersects many contact spots. 

The average length of trace within the contact spots @gwe 2.17) is 

BA -- -2r 
HSC 

where X= (1/ 2)m2 no =- 
2z 4 

Eqs.2.29a and 2.29b ùnply that 

The above expression is vaüd for elastic surfaces because ody size and not the number or the 

location of the contact spots changes. The same expression was derived by Cooper et al 

(1969). 

Determining surlaœ and asperity height distributions 

Both the sutface height distrilution and the aspcrity height distribution are very important 

features involved in the analysis of the rough sinface contact. The features of these 



direction 

of *-i 
where Ci = 2X 

- average Ci 

Figure 2.17 Average trace across a circuiar asperity contact spot 



distriiutions can bc dete- ûom the BA llltaSDtGmcnts and the vaiucs of n cakuiattd 

fiom the BA arid HSC mcasurcmtnts. 

nie values of n increPsed with dcQeasing z untii aspcritics began to mrgt. When this 

aspcrity mrging occurrad. the rate ofimcasc of n deciincd such that a maximum vahie (n-) 

was nachcd at a panicular qaration 4. It was convenicnt to have a new definition for 

aspenty, which was any su- on a rough smface with ia height p a t e r  dian zr. 

Since a plot of BA x 100 versus z represcnted the cumulative firepuency distniution of the 

surface heights, the type and fiaturcs of the surtacc height distriion were obtained by 

plotting BA on a probability paper 2.18). If the BA x 100 data were oriented dong 

an approxïmately straight üne. thc surface heights had a Gaussian distn'bution (Greenwood 

and Williamson, 1966). For this dism%ution, the average surface height (da& was the value 

of z on the fitted line where BA = 50% . The standard deviation (a) of the surface height was 

the distance between d, and the value of z on the fitted h e  where BA = 1646. The 

mathematical expressions were 

For convenienœ in later calcuiation, the location of the ~ a x i s  was adjusted so that z = O 

conesponded to the 6, (Figure 2. 18). 

As mntioned above, an asperity was considered to be any s u d t  on the surface which had a 

height pater than a. The cumulative fkquency distribution of the asperity heights was 

@en by n/n- x 100 versus z plotted on a probability paper 2.19). Again, if the 

n / ~  x 100 data were oriented along an approximately straight iine, the asperity height had a 



Figure 2.18 Determination of &vaand a nom a probability plot of BA venus z 



Figure 2.19 Detemination of d h  and ofkom a probability plot of n/n-versus z 



Gaussian distriiiiutioa. The average asperity hcight (d*d and its dcviation (cP) can be 

obtained from the plot as indicated by dr foiiowuig expressions. 

Determining the r d  area of antact for a speafied Ioad 

AssuMg that all contacting asperities at a particular z have spherical tips with an average 

raàii of cwature and that thcy defonn independently, folio wing the approach developed by 

De Vaal (1983), z, and & can be detemiincd for elastic deformation under a Specined load 

F. 

Following Gnenwood and WWmson (1966), Hertnan equations are applied to individual 

aspenty contacts and Gaussian distributions of surface and asperity heights are employed to 

yield the foiiowing equations: 

(i) for the surface heights 

('rom contact mechanics. the elastic Hertzian contact area is half that 

of ptuely plastic deformation.) 



ci) for the asperity heights 

where Fj(c)=- 

- dimensionless surface. asperity separation 

z - specified separation 

6, d*, - average surface or asperity height, respectively 

a, 6 - standard deviation of surface or asperity heights, respectively 

E' - effective elastic modulus 

/3 - average aspenty tip radius at z 

n- - the maximum contact spot density (before eventual aspenties' merger) 

Eqs. 2.35 and 2.36 gave an expression for B at z 

and substituthg into Eq. 2.37 yielded 



Sincc z,. and z*, arc fiinctions of z, the above quation can be solved for the only udcnown z, 

which comsponàs to a spccincd load F. However, stre & and t* arc implicit in F a .  

FI(&*) and F~J(G*), the solution ~itquirts an iterative root finding procedure (inpkmented 

in a cornputer program) with numrous cvahations of the left side of Eq. 2.40. Discrete 

vdues of F m ,  Fi(&*) and FI&,,*) anre obtaincd fiom McCool (1986) fiable 2.3) and 

ernployed with a naturai cubic spline interpolation routine to obtain values for any z. This 

aUowed the secant mthod to be appiieà to nnd the root of Eq. 2.40. Once the z is known, 

the value of z, can be caiculatcü anci the rtd m a  of contact A, can be dctermined fiom Eq. 

2.35. Also, it is possible to calculate the B nom Eq. 2.39. 



Table 2.3 Di- data of Fj(Q's for GW type mode1 
( h m  McCwl, 1986) 

C P a  Pd0 FIS@ 
0.0 OSOQO 0.4299 



Extension to a spheiron-flat configuration 

Origuiany, Grecnwood and WiIliPnrron (1966) appüed thtir mode1 to a contact between two 

iiat surfaces with apparent ana of contact @en by the known dimensions. For an elastic 

spbon-flat  configuration (with one rough suUface). thc apparent arca of contact could bc 

assumd q u a i  the Hertzian value (Eq. 2. 1 1) according to JO hnson e t  al. (1972). Ho wever, if 

the variation in surfhœ heights was large compared to the gap just outside the HertPan 

contact zone. the apparent area might exceed the Hertzian vaIue. 

A non-dimensional roughncss patametcr (a) was dehed by Greenwood et. al (1984) to 

estimate if the contact size was close to Hertzian. 

where a - RMS surface roughness 

R - radius of the sphere 

a - Hertzian contact radius 

If a is less than about 0.1. the apparent area was very close to the Hettzian value. 

Some more direct mthods have been developed for detemiining real area of contact with 

numerical models, which included actual surface nPaogeometry as input. The numerical 

rnodels of mugh contacts were developed by Bush, Gibson and Thom (1975). McCool and 

Gassel (198 1). Lai and Cheng (1985). Webster et al (1985). Lee and Cheng (1992) and 

Aramaki et al (1993). However, this type of analysis needed long computation time and input 

maps of surface topography. Therefore, Greenwood and Williamson type models temain 

popular in contact mechanics. 



23.4 Microshl approach 

As descn'bad prcviously in Chaptu 1, lubrhtion involving rough siirface contacts is very 

compkx. S o m  modtling of nitro-ch1 has bem pcrf;ormtd at varions research centers. F i  

average flow k t o r  modcls wue uscd to of& a sinipie way to analyze the efkcts of the 

asperities. Laar on with the irnprovc~~ltnts in computer techniques, more accurate numerical 

simufations were perfomied for the lubrication of rough suifaces specifkd by a surface 

topography map. These methods enabied the pccdiction of the detaüs of pressure variation 

and film fluctuation, as well as asperity contact temperatme and friction in micro-ehl films. 

Average fiow factor approach 

An average flow factor approach to study the mixed film lubrication started in late 60's. 

Christensen (1969) developed a stochastic theory to pndict the average effects of roughness 

on the integrated load carrying capacity. This approach was used to predict average eh1 film 

thickness and pressure in the contact of roliing elastic cyiinders (Johnson et. al., 1972). 

Another average flow model for determinhg the e e t s  of roughness was developed by Patir 

and Cheng (19784b). They considered the effkcts of the pattern of the roughness and the 

effective film thickness parameter, and introduced a mthod of deriving the average Reynolds 

equation through flow simulation. TheY numerical simulation extended the appiication of the 

Reynolds equation to the effective film thickness paramter A c 3, where the load starts to be 

shared between the fluid film and the asperity contact films. For a surface with an isotropie 

Gaussian roughness, the eh1 fihi thickness from formuiae based on numerical analysis of 

perfectiy smooth surfaces remûins accurate in the9 prediction of the average nIm thickness, 

down to k = 1. 

The average film rhichess is important since it gives the extent of asperity contact in ngwd 

film lubrication. However, Cheng (1993) recently pointed out that his early model seems to 



give an over estimation of the roughness e&ct cornparcd with mon accurate numrical 

simulation resuits, poir<icdady for the estimation when X ratio is low. 

Deterministic soiution approach 

The average flow approach considers only the average pressure and film thickness, but it 

ignores the variation in pressure and fh thichiess under individual asperiks. W1t.h the 

developrnent of modem cornputers and numrical mthods, som detenrnnistic solution 

rnodels were perford by Cheng (1983). Houpert and Hammck (1985) and Baglin (1986). 

In these modeis, the pressure ripples and film thickness fîuctuations around asperities and 

other irreguiarities were simulateci numericaiiy. They reveakd the characteristics of the 

micro-ehi in cietail. 

A full numrical soiution is demonstrateci in Figure 2.20 for the behaviour of rough surfaces in 

point contacts (Lubrecht, et.aL 1988). They useâ the muitigrid method to investigate the 

effects of sinusoicial roughness on the pressure and film thickness in an ellipticai Henzian 

contact. Their simulation resuits agree weil with the early experimentai rneasurements which 

were carried out by De Silva, et. al. (1985) using an optical apparatus (F~gurc 2.21). 

Physid influences in rnicro-ehl 

There are many other featruts of rough surfaces that may have signiscant effects on lubricant 

behaviour in micro-ehL Two of thcm an the influences of the asperity flattening and the 

discontinuous pressure distribution. 

In practice, the initial surface roughness may demase, even disappear under the heavy load. 

The asperity tips an effèctively htteneâ, but in the smunding low pressure region the 

surtace micro-geomtry rernains undistoned This flattening occurs because the load begins 

to be cartied through the micro-contacts at the aspcrity tips rather than the overaü ehi film 



Figure 2.20 Numerid results of pressure and film ihickness profles 
and contour plots (from Lubrecht et. al., 1988) 

(a) for longitudinal roughess (b) for transverse roughness 



Figure 2.21 Micro-interferoograms of rough d a c e  lubricated contact 
(hm DeSilva et. al., 1985) 

(a) for longitudinal rougbness (b) for transverse rougbness 



The k a 1  pressiins arc significantiy higher than the comsponding He- pressure, and 

hem the local vh~ogties are high niey producc an additionai local elastic or plastr 

deformation at the tips of aspcritits. As a &t of of ld &f;o&on, both tbe e&ctivt 

siirface rougtuiess and the pressure rippks am rcduced in height within the overaU contact 

zone. An asptrity fiattcning mode1 was suggtsted by Kweh. Evans and Snidie (1989), in 

which an isothcnrial chl contact bctwan a rough stationary slnface and a smooth rnoving 

sorface was considend (F@rc 2.22). If this asperity flattcnuig occurs in practict. it would 

give continuous eh1 Nnrs unda conditions whac such 6îm had ken thought impossible. 

The amplitude of initial surface roughness influences the pressure distribution aod nIm 

thickness. As higher amplitude roughnesses art considered, the amplitude of the pressure 

ripples may make the pressure in the vakys betweui asperities becom insipnincant. Thus 

the viscosity drops and the c o n t n i o n  of the vaky regions to the load capacity and the 

fiction force becoms negligible. The pressure disaiu tion becomes discontinuous (Figure 

2.23). In such cases. a solution bascd on the assumption of rontinuous pressure d i s t r i i o n  

is not valid. 

Several research efforts provided analysis of discontinuous pressure dismbutions (Karanii et. 

ai., 1987; Huang and Wen, 1993). In theïr modek, each aspenty contact was considered to 

behave as an isolatcd ehl point contact and the Reynolds equation was appiied for each 

individual asperity. The main points of their modeling work involved the treatment of 

continuity of both flow and surnice deformation with the discontinuous pressure and the 

determination of the beginning of the &-eh1 section (Huang and Wen, 1993). They 

predicted a critical roughness amplitude value for a sinusoicial roughness in a üne contact at 

which the discontinuous pressure distribution occun. AIthough th& pdct ion  does not 

directly relate to the present study, their numerical rnethod cm conceivably be used to solve 

for isolated micro-ehL In experimentai work examining micro-ehl, the discontinuous pressure 

distribution was also considercd as an important end point for the transition h m  cooperative 

micro-ehi to isolated micro-etil (S utciBe, 199 1). 



Figure 2.22 Solution of asperïity flattening model ( h m  Kweh et al., 1989) 



Figure 2.23 Disccmtinuous pressure distribution in rough d a c e  contact 
(from Evims and Johnson, 1985) 



Solutions of mxed fiim lubrication have not becn cstablishtd mii cnough to provide formulae 

to pndict film thicknesses or frinion fora. Not even the kintrmtically simple case ofa rough 

surf= in contact with a nlatmly srnooth one has ken solved 

2.4 Friction and Rheological Models 

Friction is defincd as the force gtneratcd in the contact that ~ s i s t s  relative motion of the 

bearing s&es (Hamock and Dowson, 1981). When the contact surfaas are movuig with 

dinmnt speeds then sliding between them exists. The slowcr rnovhg surface exerts a 

resistant force on the &ter one. Two commoniy encountered types of applications in which 

W o n  is important arc traction components, such as power belts and tires on roads, w h r h  

require high fiction forces, and load transmitting components, such as cranks, gears and all 

kinds of bearings, whkh are expected to operate with nEninral friction. To d u c e  fiction 

forces, lubricam may be used. Thus. the frrtion forces are often very important 

consequence of the rheological behaviour of the lubricant, panicuiar1y in ehL Friction forces 

are often studied with a disc machine apparatus, because it permits high roiling speeds with 

controlled amounts of siiding speed. Therefore, the fiction behavior in a disc machine is 

presented fist and som rheological models which explain the features of fkiction are 

discussed subsequently. 

2.4.1 Friction behaviour 

During the p s t  twenty pars, friction behaviour has been under intensive study. In typical 

ehl, the lubriwit goes throughout the contact in a very short rime (about 1 ms), under very 

high pressure (about 1 GPa), and shear strain rate (about 2x10~ l/s). in diis contact, the 

temperatme rnay &O Vary because of the associated t h c d  cnergy dissipation within the 

film. 



Disc machines have been devcIoped to simulate the trïibology of counter-fod contacts 

under conditions of inainly miiing with som sliding, and can be uscd to study nudamatal 

fnction behavior of lubrrants in these contacts. Disc machines can apply s k  to a lubricant 

film whik avoiding excessive sliding which can lead to high &mpcratures and compkx chahs 

of ckniical rcactions bttwctn the hibricant additives and the s m f b .  In a typicai test, the 

applied bad (F) îs set to a constant value and s<nfPce speeds (u,) and (ua respectively for two 

discs are controIkd The roJiing speed (u = (ui + uù / 2) can be kept constant, but u, and u2 

can both be changed so that the sliding spad (us = ut - uJ variCs. When lubricant is drawn 

into the nip betmen the &CS. it gcnerates a f ï h  of approximatcly uniform fiîm thiclcness (h) 

under the pressure @) which is close to the Hertzian pressure distniution. The variation of 

niction force (FJ is  asu und at ùmasing values of süduig speed and plotted as a îiiction or 

traction cum,  which is usuaily represented as fiiction force (Ff) or the niction coefficient (p 

= FdF) versus slide-roll ratio (udu). 

The traction behaviour of concentrated contacts is cornplex and the shape of traction c w e  

depends on the lubriw>t. contact sufiaces and operating conditions. Figure 2.24 is a group of 

typicd traction cunres, where a point contact side-slip disc machine is considered In this 

case, the sliding speed is in the direction which is perpendicular to the roihg direction, so 

that us = v and the traction curves are plotted by the Fr versus v/u. These traction crwes 

present various rheological behavioiirs of the sheared lubricant 6im. 

Traction c m  A is mtasurad under a low pressure and shows a linear relationship bctween 

the Ff and v/u. The lubricant behaves as a Newtonian fiuid and the dope of the traction curve 

is proportional to the viscosity (q) of the lubricant. When the lubricant is subjected to the 

contact discs, heat niay be generated in the inlct zone due to shearing, especially as the süding 

speed is high, The shear heating can lower the lubricant viscosity signiticantly, which is 

known as shear thinning (Johnson and Tcvaarwerk, 1977), and make the traction curve A 

depart £kom the solid h e  to the dash line. 



Slide to roll ratio ( vlu ) 
A low pressure, Newtonian fi uid film 
0 intennediate pressure, viscoelastic film 
C high pressure, elastioplastic film - - - traction curves with thermal effects 

Figure 2.24 Typicai traction c w e s  fiom a disc machine 



Traction c m  B is masund unda an mttniicdiate pressure, whae a visCoelastic film elcists. 

Inacasing v/u gives a risc of progressive non-lineanry in the Ff. This non-lineat variation was 

explained by Hirst and Moore (1974) and Johnson and Tevaarwcrk (1977) as a shear rate 

dependent viscoelastic khaviout. The viscous aiid changes h m  the Newtonian to a non- 

Newtonian behavioin bccause of the currmhttd thtnriaI activation enrgy which was crcatcd 

during shearing according to the Eyring thcory of fluid viscosity. ûthcr rcsearchers (Bair and 

Wmer, 1979) attributcd this non-lneaf variation of Fr to the lïmiting shear stress (rr). As 

soon as locaüzed hi& pmsurc nde part of the lubricant film nach the TL and behave as 

elastic-plastic solid, then the linear Newtonian rcsponse of Ff is modified Under the 

inteniicdiate pressure, the entire lubricant 6kn has not reached TL. and therefore, the lubricant 

6Im appears to exhibit viscoelastic behaviour. When the süding speed incnases, the iniet 

zone heating due to shear and compression may Jead to an inmase in fiIm temperature and a 

consequent decrease in viscosity and TL. This t h e d  effect causes an obvious decline in the 

traction c m  as shown by the dash line. 

Traction curve C is measund under a high pressure, where the lubricant film is sheared as an 

elastic solid rather than a viscous fluid. The slope is then proportional to the elastic shear 

rnodulus (G) of the lubricant. As the süding speed incruises, Fr reaches a Lirriit and does not 

increase continuously with increasc in v/u, which shown as a fîat part in the traction curve. 

This type of traction c m  indicates that the lubricant film within the whole contact zone 

reaches the TL. Under this TL the lubricant behaves as a perfect plastic solid and shears 

independent of the slicüng speed (Smith, 1962; Plint, 1967; Johnson and Cameron, 1967). It 

has been suggested that TL is a fundamntal materiai property of the lubricant (Bair and 

Winer, 1979a). In the high pressun case, themial effizcts may also occur as shown by the 

dash line. It is possible that the thermal e&ct occurs before the whole lubricant film reaches 

the g. Then, the maximum friction force muisureâ on the traction c m  may not cornspond 

to the TL if the themal effect exists. 



The traction cums in Figure 2.24 suggcst that plessuie is a dominant paramter. When the 

pressaie is high, such as a mcan contact pnssme @& above 1.0 GPa fbt a nMaal oii, the 

linear region is resaicted to extrcmly Iow süding spead and fit.iction is dominatcd by the 

plastic s h e a ~ g  of the lubncant film. Ln contrast, when the p, is below 0.1 GPa, the friction 

is dominaccd by the viscosity of the lubricant. 

2.4.2 High pressure rheologieril models 

Several rheological rnodeis have kai dcve10pcd to explain the highly non-Iinear nlationship 

between the traction or friction force and the slide-to-roll ratio, which involve the shear stress 

(r) and shear s e  rate (y ) relation in the lubricant film The two models that have emerged 

fiom research in rheology are the Eyring t h e d  activation mode1 and the liniiting shear stress 

model. 

Eyring the- activation mode1 

Johnson and Tevaanverk (1977) describeci the lubricant behavior that they observeci in their 

disc machine experiments as a non-linear viscous flow superimposeci on a linear eiastic strain 

(Figure 2.25). nicy suggested the folIowïng constitutive equation relating r to y , which is ' 

a noniinear Maxwell type quation. 

where y - shear saalli rate (subscripts c and v for elastic and viscous components) 

r - shear stress 

G - elastic shcar moddus of the lubncant 

F(r) - a shear stress fùnction for nonlincar vixous flow 



elastic viscous 

Figure 2.25 Visco-elastic nature for rheologica mode1 



Johnson and Tevaanivcrk 

fht by Hirst and Moore 

used the folbwing form of the function F(r), which was suggested 

(1974) and was bascd originaliy on a thtrrnal activation theory of 

fluid viscosity proposcd by Eyring (1936). 

where S, - Eyring shear stress 

9 - Eyring viscosity 

Then the constitutive equation became 

where G, and q wert specified for particular temperature and pressun. 

It is imeresting to note that when the viscosity is low, usually under relatively low pnssure. 

7 Then, ifs cc ?O, it follows that sinh(r/~) = ' t h 0  

and the lubricant behaves as a Newtonian fluid with y = th( (Eq. 2.1). As 7 2 ?O, either 

through higher hlm piessures, increasing shcar strain rates or demashg temperature, the 

fluid becomes appreciably nonlinear and the fidl constitutive equation (Eq. 2.42b) applies. 

Accordhg to Eq. 2.42b. then are three rheological parameters (G,q and ro) for a lubricant 

under high pressure and each of these parameters vary with both pressure and temperature. 

Evaluation of these rheological parameters is very dif3icult. One approach is to use a disc 

machine which can subject a lubticant to suitab1y high pressures for relatively shon periods of 

t h  (typically about 1 ms). Since the disc machine provides a good simulation for eh1 

contacts, the rheological paramters can be detemineci under conditions relevant to 



enginct~g appkation. Howevcr, diffkuitics iuk because shear s t ran  rate, pressure, and 

somctimcs temperattue vary over the contact 

To addrcss these probkrns. Johnson and Ttvaafwttk (19î7) assumd that G. q and r o  codd 

be averagtd over the varying contact pressure and kept temperature variation srnail by 

avoiding high slip velocitics. Then. using an chi formula (Eq.2.24), they estimtcd the tilm 

thickness and deteniand and average shear seain rate ( y  =UA ). If time was expresseci by t 

= x / u, where x is the position in the contact, and u = (ui+u&2 (which was the average rate 

of flow of lubricant through the contact). then, Eq. 2.42b was integrated with the initial 

condition that the  lubricant shear stress was zero as the lubricant entered the Hertzian contact 

zone. Lubricant shear stress was solved andyticaüy as 

Assuhg that the contact zone extended over the Hertzian contact ana dowed the fiction 

force to be detemiined by numencally integrating the shear stress over the contact as foiiows 

It was possible to determine unique values of the rheological parameters (G, q and 20). by 

rneasuring Fr nom a disc machine. Assuming that the lubricant film pressures were close to 

Hertzian, the values of the rheological parameters were assumed to correspond to the average 

Hertzian pressure. However. Johnson (1992) noted that the disc machine was not an ideal 

way to study lubncant pmpertics of mineral oils because pressure varied over the contact 



When the piessure is vay high for a given contlct. increasing shear arain rate (i) h m  zen, 

causes a rapid incnase in shear stress (s). w k h  ItvtIs off at a constant value More t h c d  

e&t cause its decline. Sznith (1959), biisd on his disc machine friction masuremnts, fim 

proposed that the lubricant was shcar9ig as a piastic solid at the "limiting shear stress" 

rather than a viscous I i q d  From his plot of the r versus y (Figure 2-26), the lubricant was 

assumd to deform plasticdy at the TL, so that an incrtase in shear strain rate produces no 

increase in shear stress if the film temperature was kept constant. In this figure, Smith &O 

pointexi out that the was a function of pressun. Later on, his discoveries were discussed 

and developed by other reseaxhers. 

Johnson and Tevaanwerk (1977) suggested that at high contact pressure the lubricant behaved 

like a solid more than a liquid. It was funy elastic and hear at lower shear saain rate, but 

behaved as plastic flow at high shear strain rate when the shear stress reached the TL. If this 

did occur, the elastic-plastic equation could be used to describe reiationship of the shear stress 

and shear strain rate, which was as that indicated by Smith (Figure 2-26) 

For low y the quation was given by Johnson and Roberts (1974) nom their point contact 

disc machine experhcnts as 



Shear ~train rate y 
( where is the "limiting shear stress" and p,> pl ) 

Figure 2.26 Relationship of shear stress a d  shear strain rate 
for lubricant under eaemeiy hi& pressure 



Bair and Wina (1979b) f o d  that the r, is a hnction of tilm pressure by using a high 

pressan rkonrter to masure the TL. Thcy u s d  a Iùru cquation to descri'bc the relation 

betweai the tcand pessun a given tempaatiirc. 

r , = A + B - p  

where AJB - constants 

p - pmssurc 

To deal with the transition h m  elastic to piastic behaviour over a wide range of contact 

pressure, Bair and Winer (1979rb) proposed a M m e n  type constitutive equation based on 

measunments with a pressure rheomm (not a disc machine), which had three independent 

rheological parameters, G, q and sr. 

where G - elastic shear modulus 

q - viscosity 

p - limiting shear stress 

This equation was used to predict the Hction behavior in ehL The prediction for lubricant 

polyphenyl ether SP4E by using the G, q and TL h m  their high pressure rheometer was 

compared with the e t ion  for the s a m  lubricant, which was masured by Johnson and 

Tevaanverk in k i r  dise machine. The predicted friction agreed quite weli with the measund 

results wherc the actud average nIm temperature was considered higher than the bulk 

temperature and was approximately 50 O C  (F~gure 2.27). 



Slide-roll Ratio, U ~ / U  

Figure 2.27 C o m p ~ s m  of fiction rrsults from different measwement meththods 
(âom Bair and Wmr, 1979b) 



Another version of liniiting shear s a s s  modcl was innoducecl by Gccim and Wincr (1980) as 

shown below- 

It predicted the traction curve for the same lubricant with sinElar accuracy as the other 

version (Eq.2.45) and was more suitabie in computational models due to its syrnnetry about 

zero shear stress. 

Further examinations of the nlationship between TL and pressure were perfomred by many 

researchers using various experimntal devices, such as Hoglund and Jacobson (1986a) with a 

high pressure rheorneter. R a s h  and Clifton (1987) with a pressure-shear plate irrtpact 

device and, Evans and Johnson (1986a) with a dise machine containing heating eiements 

imposing temperature on the lubricant film Evans and Johnson (1986). referring to the work 

of Imai and Brown (1976). stated that once TL was reached, "the mechanisrn of fluid flow 

changes fiom thermaüy activated motion of independent molecuiar segments to the formation 

of a shear band through the collaborative motion of adjacent segmnts". Bair and Wmer 

(1992,1993) observai these shear bands opticdy using a flow visuabation celi (Figure 2.28). 

They showed the evidence of localized slip rnechanism at shear bands in eh1 under a pressure 

range of 0.22 GPa to 0.76 GPa. 

Comporisai of the models 

The rheological properties of lubirants in ehi have b a n  established by the above models for 

about twenty p r s .  To specify the lubricant properdts which govem the fiction behaviour, 

both models give the relations of the shca. stress which is developed in the lubricant nIm to 

the shear strain rate which is imposed on the fluid (Eqs. 2.42, 2-43. 2.45 and 2.46). The 

differences between these models are the explmations of the rheologicd mechanisms. 



Figure 2.28 O b s d m  of shear ban& (fiom Bair et al., 1993) 

(Synthetic oil5P4E at P = 220 MPa, T = 22@, 9 = 025 s*') 



The t h e rd  activation mode1 is bssed on an activation cnagy concept to expiain the variation 

of viscosity with temperature ami p r c s m .  Rcccntly, expaimntal measurnnts by Evans 

and Johnson (1986a. 1986b) showcd that the W n  behaviour with smooth sirraice discs 

could taLc various foma in response to inmaskg pressun. Figure 2.29 (Evans and Johnson, 

1986b) is a typicai e t i o n  regirne map of a synthetic traction fiuid, Santotrac 50, where the 

vertical axis is the dmiensionless nhn thickness paramter of (cqou/R) and the horizontal axis 

is the dimnsionless pressure paranitter of (apay3. The xmp displays four distinct regims of 

Newtonian, Eyring, viscoelastic and elaJtic-plastic rheological behaviour. In order to 

construct this type of mp, Le. to distinguish boundaries between the ~girnes, the values of q, 

b and varied with pressure and temperature were masinad from their disc machine 

experiments and some analytical derivations bascd on the rheologïcal models. 

The lùniting shear stress rnodel describes the lubricant khaviour in a somwhat simple way. 

It assurries that the lubricant flows as a plastic soiid at som shear stress (73 which varies 

with temperature and pressure (Smith, 1959; Johnson and Tevaarwerk, 1977; Bair and Wmr, 

1979, 1980, 1992). As the shear stress is below TL, Newtonian behaviour dominates. There 

is a transition fiom the linear Newtonian behaviour to the shear strain rate independent plastic 

behaviour, which was explaincd by Evans and Johnson with the Eyring themial activation 

modeL This transition covers a broad range of shear strain rates as pressure is increased. 

However, Bair and Wurr (1991, 1993) disagrec with the existence of the Eyring ngime. 

They explained this non-lincar transition with the localized shear bands. which were O bserved 

nom their high pressure flow visuaiization c d  (F@m 2.28). The band occuned at a quite 

low shear strain rate when a departurc nom the Newtonian flow began, and it showed the 

shear stress at that location rtached some critical value. The number of shear bands increased 

with increasing shear strain rate fiom as kw as one at the onset of non-Newtonian flow until 

the shear region is essentially tiUcd with bands. Thciefore, the critical shear stress is 

statistically distributcd by the linnting shear stress TL. The functional fom of the lunithg 

shear stress mode1 (Eq. 2.45 or Eq. 2.46) is expecteà to give this distribution. 



Figure 2.29 fraction map for Santotric M (fiom Evans and Johnson, 1986) 



For the high pressure pknic shear bahavioin, the two mQdeis givc a s a m  eqlanation, 

W h e t k  the t h c d  activation emtc or not, it is elininated in thip =pim. In the present 

study, the rheokgical propcrtits of hnriulated Iubricants wiü be establishcd by the riniiting 

sheat stress mOdtL 

2.43 Limiting shear stress from ebl friction measurement 

The rhwlopical rnodels devcloped to analyze niction bthaviolir of lubricants in eh1 are 

repnsented in constitutive quations (Eqs 2.42b. 2.43.2.45 and 2.46). They are expresscd in 

temu of certain independent rheological panurrters of lubricants. Thus. determining the 

rheological paramcters is the k t  stcp to use a rheological mode1 to predict the lubricant 

khaviour in ehl Udortunately, only a limitai amount of data of the rheological parameters 

is avaiiable for most of the lubrrants in practical situations, although many effons have k e n  

made to &tenn.int thcm sincc the rheological models were presented. 

In generai, there are a k t  and an indirect approaches to determine the rheologicai 

parameters. The direct mthod requires rather sophisticated devices to impose appropriate 

constant values of pressun, temperature and shear straui rate and to rneasure the rheological 

paramters. The indinct approach uses nlatively sinple devices but cannot impose constant 

pressure, tempctaturc and shear strain rate. In kt, even the distribution of these input 

parameters is not known with certainty for the indirect mthod Recently, s o m  data 

generated by using the direct mthod were reported (Hogiund and Jacobson, 1986; Ramesh 

and Qifton, 1987), but the indinct mthod is used widely because of its lower cost and 

simplicity (Kato. et al., 1993; W u  and Cheng, 1994). 

The limiting shear stress (Q). a fundamental rheological paramter, is a hinction of pressure 

and temperature. I€ the traction ngim is "elastic-piastic", the friction may depends only on 

TL. Values for TL have bccn mcasurcd with a disc machine (Johnson and Tevaiuwerk, 1977) 

and a high pressure rheomter (Bair and Wmer, 1979a. 197%). A recent approach to 



m u h g  TL with a-disc machine was developcd by Wu and Chcng (1994); it takes into 

account the distn'bution of film piessiin and was based on the iirprovcd version @q. 2.46) of 

limiting shcar stress mode1 (Gcçm and Wm, 1980). This appmach was adopteci to 

determine thc SL fOr the pnsmt study. The major step in this approach is detaniiniag the 

Liniiting shear stress inkx numbcr (m). If the m is detcrxnirud fkom the masurcd fkiction 

force, it can be used to gencrate an empirical expression of the TL in t e m  of the film pressure 

@)* 

For a nominal point contact with an eiIiptic contact m a  @ab) in Wu and Cheng's test rig, the 

lubncant film h d  a Hertzian pressure distribution 

IJF where p ,  = ~ t ,  - the maximum contact pressure 

x,y - coordinates 

a b  - radius of contact ellipse dong x or y direction 

The lubricant was assumd ui have reached the t~ throughout the contact zone and had not 

been subject to significant shear heating which mant that the iniet temperature of the 

lubriwit prevaikd throughout the contact- Thus. the TL values depended on the lubricant film 

pressure, which foiiowed the constitutive equation (Eq. 2.43a) oripinally suggested by Smith 

(1960), and the TL was assumed to have a distribution as foliows 

where 7- - the maximum TL in contact 

m - an index number for iimiting shear stress distribution 



Under a high shcar s t d n  and high bad, the maximum traction force (Fr-) can be obtained 

by integrating the q on the ellipse contact axea. 

Substituting the ?L @q. 2.48) in and integratuig it rcsulted in 

This can be rewriting as 

Then, a general expression for TL codd be obtained by combining Eqs. 2.47.2.48 and 2.49 

Since the 7' was oniy a function of pressure and temperature, and the temperature was held 

constant, the t~ was related to pressure with Eq. 2.50. For a specititd load, the contact a m  

@ab) and the maximum Hertzian pressure @,,,,J were k n o m  Under a high shear strain rate 

and high load condition, the F- codd be masurcd as the highest constant value in traction 

curve. Therefore, to determint the index number of m for a particular lubricant. Ft,'s wue 

rneasured at a constant temperature and at a number of various eh1 loads. For each load there 

was a Q expression (Eq. 2.50) Uicluding the unknown m and the corresponded nab and p-. 

The m valut was found by "cwe-finding" (it was not clear in their papu what was mant by 



this expression), and set as a constant for the test lubricant by Wu and Cheng. nie plots of .sr 

versus p for âiffkrcnt lubricam tcmperaturc~ (Figure 2-30) showed that prtssure had a 

sironger infiaencc on ZL than tempcram. 

2.4.4 Friction in rough surface lubricated contact 

The fiction force increases as the nIm thickncss dccrtases, especially when the magnitude of 

the film thickntss is comparabk with the s u r f a ~ t  roughness. T b  increase in fiiction is a 

resuit of asperity interaction. Friction behavior in rough surfas lubricated contact has ben 

studied under high pressure and low sliding speed In the early work of lefferis and Johnson 

(1967), the influence of sudice roughness on friction was investigated using a disc machine. 

The measund maximum niction coefficients (0.06 - 0.07) showed littie change Born those of 

smooth surface results (0.055). Jefferis and Johnson (1967) suggested that under the 

conditions of mixed lubrication the niction is stiU govemed by the buik lubricant 

rheological properties. However, the local pressure at the asperity interaction is higher than 

smunding pressure; thus, if the shear stress is close to the liMting value. friction force does 

not inmase dramatidy. 

Later on, Ba9 and Wmr (1982) identified three regims of fiiction based on the feature of 

the effective film thickness parameter (k). At su&cientiy high h ratio, the f i t i o n  force was a 

function of the buik lubricant rheological propertïes at operating conditions. There was no 

surface roughness Muence. At medium ratio, the 5 n  thickness and surface roughness had 

comparable mgnitudes. The aiction force was determincd by the bulk lubricant properties 

under conditions of pressure, temperature and load between the local asperity contacts. Bair 

and Wmr (1982) interpreted the îiktion behaviour in medium X ratio regime. ie. the mixeci 

film lubrication. in the s a m  way as Jefferis and Johnson (1967). At k < 1.0, the ârtion force 

increased in accordance with the propertks of fihm which were adsorbed ont0 the contact 

surfaces. 



Figure 2.3 0 Variation of l imhg shear stress with pressure at various temperatures 
(6om W u  and Cheng, 1994) 



From Evvu and Johnson's (1987) et ion rcgim map (Figure 2-29), the vaiuc of ap, would 

be governed by the pressun at individual aspaity tips w b  the fiiction force dcvciopcd 

betwecn rough surfka. Since the qerity pressme was greater than the smooth sPrfaa 

pressme. the opapting point in the ngim map wouki move to largcr ap,. As the 5 ratio 

decreased. the frktion behaviour changed corresponding to the changes h m  hydrodynarriic 

fiîm pressure to the local aspcrity pressure. 

At the high spots of the aspcritits, rhat would bc a local thinning of the fihn, rcsulting in 

local incrcases in pressure, when the shear strain rate is high nius, the fiction force wili be 

dorrünated by the shcar stress developeà in these high pressure and shear strain rate mgions. 

Figure 2.31 (Evans and Johnson. 1987) gives an example of a contact under certain load and 

kinemtic conditions: the man Hertzian pressure (p.3 of 0.63 GPa and nIm temperature 

of 60°C Wùh an Umeasc in surface roughness, Le. a nduction of Â, the fiction behaviour 

changed and the traction c a m s  had diffèrent shapes. Associated with the regines map in 

Figure 2.29, traction behaviour might graduaüy move to the elastic-@ectiy plastic ngime. 

More recentiy, Johnson and Higginson (1988), and Sutcline (1991) introduced controiied 

roughness in Wtion fonz masurcments. Johnson and Higpinson's (1988) expeNnents wen 

carried out on a reguiar, circuriiftrentially rippled disc in contact with an smoo th disc. To 

establish the mchanism in micro-chi, they assumcd that a thin film separating the asperity 

contacts. and uiis lubricant nIm s h e d  at a constant liniiting shear stress when it was under a 

sufficiently high pressure. They checked the non-Newtonian e&t of sliding in micro-ehi and 

concluded that asperity contact is significantly inaeased with increased sliding speed. 

Sutcline (1991) &O usai the disc machine, but changed his experimental conditions to 

control the lubricant film pressure h m  a Hertzkm pressure dismibution to a discontinuous 

pressure distn'bution. In his experimnts, the film pressure between the aspenty contacts was 

much higher than the Hertzian pressure, but the pressure sunoundeci these asperity contacts 

was raduced to insignincant, which was sinrilai to the pressure distribution 2.23) 

dedbed by Evans and Johnson (1985). He denned the ftiction behaviour govemed by the 



Slide-mil Ratio, U$U 

Figure 2.3 1 Influence of Â ratio on fiction coficient 
(fkom Evans and Johnson, 1987) 



rheoiogy of the l u b h n t  both withh and muroundcd aspcrhy contacts as a CO-optive 

micro-chi, and the fiiction khaviom gonmd oniy by the rheobgy of the luùricant within the 

asperity contacts as isolateci niicro-ehi. He prtdicted the huisition h m  the CO-operative to 

the isolatcd niicro-eh1 for the test conditions with k ratio k tmen  0.88 and 2. In other words, 

when X < 0.88. the pressure surrowiing the aspcrity contacts was negiigiible and the M o n  

f o m  was oniy attn'buted by the film within the aspaity contacts. Sutclüfe (1991) also 

pointed out that the hiid film did not ap- to bnak down u n d  Â. = 0.09 with the film 

thickness as smaii as 8 nm, 



Chapter 3 Development of Test Facility 

This chapter describes the deveiopmtnt of testing biütks used in the present ttscarch. A 

side-slip disc niachine was avaiiabk in the Tnibobgy Labontory of the Department of 

Mechanicai Engineering, University of Waterloo, but it rcquÎrcâ som modification. These 

modifications UIcludcd the installation of a tcrnperaturc masurement systcm, an eiecaicai 

resistance mthod for detecting film brwldown, and a data acquisition qmem consisting of a 

signal conditioner, digital data acquisition board, and a software package. 

3.1 Disc Machine 

The eh1 of non-confornial contact is very complex. In this contact, typical film thickness is in 

the order of 0.5 pm, film pressure exceeds 1 GPa, shear strain rates are up to 4 x 108 S-', and 

temperature can rise over 100°C It is h s t  impossible to measure these paramters directiy 

in practical machine elements such as gears, cams and roihg element bearings. Therefore, 

many of the experimntal rneasurements of eh1 parameters were made in disc machines. 

As mentioned previously, the disc niachine provides rolling motion with a smaii conaoiied 

arnount of sliding. Fundanntal lubricant behaviour can be studieà without the excessive 

temperature rises and associated complex chahs of chernical reactions of the lubncant 

additives on the surfàce which m y  occur during pure sliding. Hence, the disc machine is weli 

suited to studying fundamtntal behaviour and simulating contacts which have mostly rolhg 

motion such as gear tath and r o b g  elemnt karings. On the other hand, the disc machine 

does not provide a good simulation of pure sliding which occurs in machine elements such as 

piston Mgs or flat faced cam foilowers. However, it may still contribute som useful 

fundamentai insight, including some repnsentation of the initiai chernical reactions of the ol 

additive. 



In the preant study, a side-slip disc rnachine sjmiiar to that d e s c r i  by Johnson and Roberts 

(1974) and Johnson and Tevaarwcrk (1977) was usai to masun the Wtion (or traction) 

force in ehl and niicro-chl films and both under approximatcly isothenrial conditions. nie 

lubricating o l  was entraind into a nominai point contact of cin:ular contact area and 

subjccted to high pressures and a range of bw shear rates whik IIliWltaining an almDa 

constant film thickncss. nie M o n  force acting through the lubricant film was masurcd by 

a aansducer consisting of a strain gauged ~ g .  With a suitable analysis, the rheological 

properties of the lubricant could k estiniatcà for the specific operating pressure, temperature, 

and shea. strain rate. 

3.1.1 Main components 

The side-slip disc machine apparatus was mounted on a high stand beside an ol supplying 

tank and a control tower (Figure 3.1). It consisted of systerns for lubricant supply, m g ,  

loading, and traction measunment 

Lubricant supply system 

The lubricant supply system of the disc machine is shown in Figure 3.2. Lubricant was stored 

in a tank, which had an electricaî heater and a reSgeration unit. A simple feedback conuol 

system with an on-off controller allowed the required temperature to be set above or below 

room temperature. 

Lubricant was pumped out from the tank by a gear purnp through pipes to an oil filter (17- 

1704-2 PHBA Motomaster. Canadian Tire Co., Toronto, Canada). A valve comected to the 

outkt of the mtef detennined which side of the contact was supplied with lubricant so that the 

discs could be nui in both directions of rotation. The lubricmt was continuously entraineci by 

the roliing motion of discs to form a lubricant film for the e t i o n  force masruemnt. There 

was a mervoir located under the bottom disc to colîect the lubricant which was thrown fiom 



Figure 3.1 Side-slip disc machine 





the disc sudAces. Pkxigkss shicb wcrc placed around the discs to direct o l  to the rrservoir. 

After one mammlIltnt, the valve of the rtsefvoir was opmd and the lubricant flowed back 

to the oil tank for next measurcmtnt. 

A 746 W (1 EP) DC shunt motor (Reiiancc Ektric  Company, Columbus, Ind 47201, USA) 

drove the bottom disc which in turn diove the top disc by viaut of e t ion  acting through the 

lubricant f ï h  of the contact- In this way the two discs had about the sarne surface velocity. 

The rotor had a fcedback control system for speed in whkh the bottom disc rolling speed 

(UI) was m u r e c i  by a photo-eiecaic sensor beam which was cut intemiinently by a 

perforatecl "target" disc. The aluminium target disc (66 mm in diamter and 2 mm thick) had 

20 holes equaüy spaced around its ckumfkrence and was fitted to the shaft of the bottom 

disc. The pulse nite (y) of the photo-iransistor was recordeci by a frequency counter (John 

Fiuke MKT. Co., Inc., U.S.A.) expresseci in hoie/s on the counter panel and sent to the motor 

speed controîier where proportionai control was exened. nie motor was ~ 0 ~ e C t e d  to the 

bottom disc shaft with a series of timing belts and puileys gîving a speed reduction ratio of 

0.67. 

The pulse rate (y) was convened into the bottom disc surface velocity (ui) by the following 

equation 

where RI - bomm disc radius 

n - number of holes in target disc 

y - pulse rate in holes/s 

hserting the values of R = 0.07 lW4m and n = 20 holes gave the foilowing conversion factor: 



A Iateral süding vclocity (v) was obtaincd by skcwing the top dir assembly with a m u a l  

gear transmission when the cüscs wac  rolling, which is discussed in a subscquent section. 

The load was appüed to the top disc by setting dd-weights on a hanger assernbly whkh 

consisted of a girnbal and a pair of cabks (Figure 3.3). in order to reduce the e&t of 

rotational inertia and mchanical viiration during the skewing of the upper disc at higher 

loads and rolling spceds, a ~e~al igned singie row tapered rolkr beating pivot was ptovided in 

the hanger rod and a heavy o l  darriper was placed below the weights. The bearing pivot 

separated the upper and lower parts of the weight hanger. The damper supplied strong 

resistance to vibrations in both vertical and circumterentiai directions through a plastic disc 

irnnersed in a high viscosity gear o l  (Industriai Gear Oil 680, Monarch Oü Ltd.). In this 

way, the weights and the lower part of the hanger nmained essentiaIly stationary when the 

top disc was skewed. 

The appüed load was equal to the total weight of the hanger, dead-weights and top disc 

assembly minus the buoyancy force associated with the heavy o l  damper. The applied load 

levels were set by the number of dead-weights. 

The mass of the top disc assembly was 1.92 kg and the hanger assembly was 3.321kg. The 
4 3 volum of the pan of the hanger assembly gmiersed in the damper oil was 2.12~10 m . The 

density of the damper oil was 895 kdm3, the mass of the displaceci volume of the oil was 0.19 

kg. Each dead-weight had equal mass as 9.94 kg. Thenfore the applied Ioad could be 

caiculated h m  foliowing equation. 

where n - number of dcad-weights 



1. Top disc 
2. Top disc yoke 
3. Drive from motor 
4. Bottom disc 
5. Lubricant supply 
6. Pivot 
7.  Load weights 
8. Oil damper 

Figure 3.3 Schematic represeatation of the side-slip disc machine 



Traction measuring system 

By skewing the top disc slowly about the v&d axis tlnough the contact center over a d 

angle @, the sidc-slip vtlocity v was increPgd continuously in the direction perpeadicular to 

that of rolling. It sheYed the lubricant film behmen the contact and caused a e t i o n  (or 

traction) force (m which also acted deways. The variation of Fr with (I constitutcd the basic 

masunmnt provided by the disc machine. The Ff was masurcd by a strain gauge load ce11 

and the $ was measiind by a direct cumnt displacemnt ~ s d u c e r  (7DCDT-1000, Hewktt 

Packard, Andover, Mass. JW), referred as DCDT in subsequcnt of this thesis. 

(1) Friction force 

The load cell had four stra in  gauges mounted on a steel ring, two of which were on the 

outside of the Nig and the other two were on the inside. They were connected as a 

Wheatstone bridge configuration and provided a sensitive masuremnt. One end of the load 

ceil was nxed rigidly on the top disc suppon and the other end was 6ced on the top disc yoke 

which was suspended fiom the top disc suppon by two sets of leafsprings which held the top 

disc in place but inrposed iittle resistance to motion in the "side-slip" direction @gure 3.4a). 

As the top disc assembly was skewed, the strain gauge output voltage was directiy 

proportionai to Fr generated by the shearing of the lubricant film in the side-slip direction. 

The strain gauge ring was caiibrated by piacing known weights on a pan which was suspended 

fiom a steel cable which went over a pulley and connected to the top disc yoke. The 

calibration results are shown in Figure 3.4b. 

(2) Skew angle 

DCDT msducer was held tightly by a split block, which was k e d  on the bottom disc 

support firanr: (Figure 3.5a). The DCDT plunger was spring loaded against the top disc 

suppon framc. As the cntire top disc assembly was skcweâ about the contact center, the 
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Figure 3.4 Friction force measmanent 
(a) stmin gauge ring load cell 
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Figure 3.4 Friction force measurement 
(b) load celi calibrtion 
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Figure 3.5 Skew angle measurement 
(a) direct tinrent displacement transducer 



transducer output v&age Ldicated the variation of the displactmnt of the masmed point 

on the top disc assrnbly reiated to bottom disc supportcd hum. nie masund displacemnt 

had b a r  rdationship with the skew an& 9 when it vaned o n t  a very sniall range. nie 

value of + was measurcd during the cdiiration procedm by using a skew angle protractor 

3.5a). T k  cali'bration produccd a linear tclationship as expectcd (Fi- 3.5b). 

Whenever the DCDT transduar was rcmovcâ h m  the holding block or the disc machine 

was reassemblcû, a new calibration was pdomied 

3-13 Operating principles 

The main objective peration of this dise niachine was to masure the Ff when the lubricating 

nIm was sheared in the side-slip direction under a high contact pressure at a certain 

temperature. The kinemtics of roihg with side-slip shearing indicated that 

v= y sin 9 = u, tan#(F~gure 3.6a). Since u = (ui + us)/2 and ui = u2 throughout srnail skew 

angle $, thedore, v = u tan $ , which agreed with the expression given by Johnson and 

Roberts (1974). For the disc machine contact, the r o h g  speed (u) equaied the enaainmnt 

velocity and a lubricant film with an alrnost constant centrai fiLn thickness (hJ was generated 

over the contact area. nie particular nominal point contact geometry of the disc machine had 

a Hertzian contact radius of a and area. of %a2. 

Similar traction force measurennts on side-slip disc machine were descriid by Johnson and 

Roberts (1974). Thwretical formulat of side-slip shearing were developed for both pure 

Newtonian lubricant and pure elastic lubricant tilms. 

(1) For a pure Newtonian fiuid film the shear strain rate y(F&m 3.6b) can k 

approxhated as v&, where h, cm be calculateci by Eq. 2.24. The shear stress is thus 

constant and qua1 to z = ri -v / h, Integrating shear stress over the contact ana gives the Ff, 

which acts at right angles to the roliing direction. 
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Figure 3.5 Skew angle metsurement 
(b) DCDT c a l i i o n  
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Figure 3.6 Rolling with side-slip kitlematic p~c ip l e s  on disc machine 
(a) anangement of discs 
(b) vectm of shear strain rate in contact zone 
(c) vectors of total shear strain in contact zone 



(2) For an elastic solid-lile f ih ,  the shear mess is proportional to the shear strain, 
x 

r = G y .  whclc. y = 1 y - dt = j4=(v/h,) &/u (Figure 3.6~). Integrating the shear 

stress over the contact ama givcs 

However, r d  ehI nImr was neither purc Newtonian flow nor pure elastic lubricant 

deformation. The experinicntal approach was to masure Ff versus $ and subsequently 

develop a plausible and consistent heologicai mode1 of the lubricant flow. 

In a typical disc machine friction force masurement (Figure 3.7), $ was varied over the range 

o f f  0.125 rad as specified by the protractor scaie on the top disc assembly. When @ was 

srna v/u = $ and thus plotting Fr vs. showed the Ection force behavior as a function of 

slip-roll ratio. When $ is varied through the point of pure rohg  at 9 = O the siiding direction 

changes causing the direction of Fr to change as weiL The masurcd Fr vs. $, or traction 

curve, had a sigmoidal shape. Repeating the above act for the opposite direction of roIling 

gave another masund sigrnoidai shape and the cross-over point aiiowed the ongin of the 

traction c m  to be detefmined exactiy. The symmetry of this "traction plot" (Figure 3.7) in 

the four quadrants provided a methoci to check the aligmnent of the disc machine. 



Figure 3.7 Typicai traction plot fkom side-slip disc machine 



3.2 Temperature Measurement 

Temperature control was very important for an i s o t h e d  traction masuremnt. The 

lubriwit supply systcm shouid provide the contact with a lubricant at a known constant 

temperame and the rise in the Iubricant fihn temptraturt in the contact zone shouid be 

negiigible. 

3.2.1 Temperature of supplied lubricant 

Lubricant supply system of the side-slip disc machine was designed to control and provide the 

lubncant at a constant temperature during the experiment. The fkdback control system with 

an on-off controiIer for the heater ailowed the tank temperature to be set to a specific value 

above room temperatun. However, the lubricant temperature hght have changed when it 

was pumped out h m  the tank to the contact, In onler to keep the operator informed of the 

real lubricant temperature, additional temperature checkhg points were needed in the 

lubricant suppiy system. 

One thennometer was inserted in the oii tank to get the actual nading of the tank lubricant 

temperature at any tim. Another crucial point to masure the temperame was the entry to 

the contact. A thennocouple was fïxed to the outlet end of the oü supply pipe with its tip 

irnrnersed Li the lubricant outside the jet. If the lubricant temperature dropped during the 

fiow fiom the tank. then the tank temperature was adjusted to a rehtively higher value. 

Conversely. if the temperature increased for s o m  reason. the tank temperature could be 

preset at a lower value. 

Ensuring that lubricant was suppücd to the inlet zone at a known constant temperature was 

the first step in an W t h e d  txperiment. The next step was keeping the lubricant film 

temperature constant in contact zone. 



3.2.2 Contact zoiie temperature measurement 

As discussed previously, the inkt temperature of the lubrîcant couid be used to give the 

viscosity in an isothtrmai chi fomniln for fiùn thichiess. In a disc machine with ehl conditions 

close to pure mliing, the appropriate uilet lubricant temperature was iikely to equal the 

average of the disc surfact temgmature just prior the entering the contact, whilt, the inlet 

shear heating associatecl with the flow fîcld was nepiigi'bk. Aithough, the disc smfke 

temperature could also be elevated kcause of the accurrmlation of hcat h m  side-slip s h w  in 

the contact zone. the steel disc was such a good heat conductor and an elevated surface 

temperature wodd require considerabk gentration of heat within the 6lm When the skie-slip 

velocity was low, there should not be signincant side-slip shear heating in the contact zone. 

To rneasure the surface temperatun, a themiocouple was pked  in light contact with the 

moving bottom disc surface. But two important things of contacting thenrmcouple 

temperature measurements had to be considered in this case: one was the placement and the 

other was the load between the themocouple tip and disc surface. 

(1) To get an accurate reading, the thmcouple should be placed in the inkt zone as close 

as possible to the contact zone. But the geornetry of the apparatus itself and the size of the 

themcouple tip made this difncult. The closest point to masure the inlet zone temperature 

was dong the centrai line of the contact zone in rolling direction and the distances nom the 

center of contact was 5 mm (Figure 3.8). When the disc machine was kept mnning, the disc 

surface temperature changed graduaiIy h m  the room temperature towards that of idet oil 

temperature, untü a stable tempctaniie was obcaind Under the same load and bernatic 

conditions, the outlet zone temperature was checked with the sam themcouple by ninning 

the disc triachine in the reverse direction. The outlet zone temperature did not show the 

difference fkom the inlet wne temperature. This finding suggested that there was no 

significant accumulation of heat h m  side-slip shcar in the contact zone. 



Figure! 3 -8 Schernatic representation of disc d a c e  temperature meanaement 



(2) Many early papers (Camcmn. 1966; Jeffcris and Johnson. 1968) discussed how a "suiface 

contactkg" and ernôcddcd thcrniocouple coukl provkle dit s a m  e s t h t e  of the disc surîhce 

temperature* For a contoaing thcrmocoupk, a suitabk force m s t  bc detcRTlincd to push it 

against the disc surbice wïth suffiCient force to rritastue surfga rathcr than Iubricant 

temperature, yet not such a large force that would cause any ntlse temperatme devation due 

to fkiction hcating* Since the contact brce was not known for the inlet thennocoupie (No. 1 

in Figure 3.8). a second contiming themocouple was installeci. 

A device was designed to push the thennocouple againa the disc surfixe with a controiieâ 

contact force (Fi- 3.8). The spring constant was detemiincd before it was rnounted in the 

devke. The contact force was inmascd in incremnts of 3N firom the point where the 

themcouple seemd first to touch the disc surface very lightly. Unfortunately, due to the 

space LmStation. this themcouple couid not k placed very close to the contact due to the 

space probiem, and to avoid any possible disc surfacc damage, it was moved 5 mm laterally 

dong the axis of the bottom disc. Thus, this thermocouple provided information on a suitable 

contact force but would only detect substantiai heating of the disc surface. 

The test results gave quite a wide range of contact force to obtain a stable and accurate 

ternperature reading before a sudden inaease in temperature caused by friction heating 

between the thermocouple tip and the disc surface at about 15N (Figure 3.9). During the 

niction force masurcmnts, this device was used dong with the inkt zone themcouple to 

estimate surfae temperatun. When the disc machine was kept running, the whole disc 

surface slowly nached the desircd temperature and both thennocouples gave quite stable 

temperatures. Usuaiiy. the themcouple with controlïed contact force recordcd a 

ternperature not p a t e r  than 1°C below that of the inkt zone themcouple, although it was 

located in a distance h m  contact zone and was offset h m  the contacthg pan of the bottom 

disc by about 5 mm. 
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Figure 3.9 Inmience of thennocouple contact farce on disc d a c e  temperature 



Despite these temperatarc masuremnu, f was sin possible that uilet shear heating could 

elevate the oil tempctatufe. The evidencc of this hePtnig might be removed by kat trPnsfir 

by conduction and convection. When the oIm thidaiesses were calculateci, a fiirther 

caiculation was performd to estirnate the influence of inlet shcar heating as discussed in a 

subsequent section. 

3.3 Electrical Resistance Method for Detecting Film Breakdown 

The objective of adopting an electrical resistance mtasuremnt technique was to check 

whether the ehl formuha (Eq.2.24) of H a m c k  and Dowson (1977) was appropriate for the 

present experiments- A drop in film resistance was expected near h = 3. Roviding this 

occumd, the triiilogical conditions for subsequent experimnts couki be seiected to be in the 

ehi and isolatecl microthl ~gimes. No attempt was made to link eiecmcal nsistance with the 

asperity interaction of mixed fiim lubrication. Such work has been atternpted by others 

(Furey, 1961; Johnson and Higginson, 1988; Yang, etai., 1996), but it was considered 

beyond the scope of the present investigations in which fiction force was masured to study 

rheology of lubricant films. 

Cameron and his coworkers (1958) used the elecaical resistance rriuisurernent technique in an 

attempt to d e t e d e  the eh1 film thickntss. Higher resistance occumd between two r o h g  

surfaces when a lubricant fïJm separated them and the rcsistance level comlated to som 

extent with its thickness. However, the application of this technique became extremely 

dinicult when the fiwd fih was very thin, because aspenty contact made the elccaicai 

resistance drop rapidly instead of decrtasing proportionaiiy to the average film thickness. On 

the other hanâ, thin surface hyen might somtimes form on the contact surfaces and prevent 

an expected drop in nsistance when the lubricant 6kn had broken down. Thenfore, the 

electrical resistance mthod was considercd difficult to apply with precision, yet could be 

applied to provide uschil approximatt information regarding the existence of continuous fiuid 

fh lubrication (Kato, et al., 1993). 



33.1 Electricai resfstance circuit 

The ektricd rcJistance masuremnt technique was casy to inplement. A *le circuit 

(Egure 3.10) was buiit up foiîowing the design of Furey (1961). The circuit consistai of a 

power supply battcry, two resistors (RI= 1.0 x 106 R and R2= 1.0 x 101 R), and a voltmeter 

madout. This circuit niinùriiIed the occurrence of electricai discharge through the o l  fiim by 

lowering the applicd voltage. Whcn a battcry with the input voltage of Vi 21.5 V was used, 

the maximum m c a s d  output voltage was Vo = 15 mV. The top disc was elecaicaiiy 

isolated fiom the bottom disc by putting isolated epoxy resùi Mgs mund the outer race of 

the top disc supporttd bearings. The bottom disc was electricai co~ec ted  to the resistor R2 

through the stand of the disc machine. A carbon bnish acted as a pickup, which was spring- 

loaded against one end of the top disc shaft and ekctrical co~ec ted  the top dix to the othu 

end of R2. 

At a certain load level and temperature, the Vo varied with the electricd resistance of the 

contact between the two discs. If the disc machine was running at a sufficientiy high rolling 

speed and the two discs were separated by continuous fluid film, the V, approached 15 mV 

and no electric cumnt flowed across the contacts. If the rolling speed was low and asperity 

interactions occurred between the contact surfaces, then the film resistance was reduced and 

Vo dropped as the electric current began to flow across the contact 

33.2 Output voltage 

An example set of unfiltemi Vo signais was masured and plotted as waveform graphs 

through a computer program, which simulated an oscilloscope (Figure 3.11). The MCT 5 

base stock ol was used with the applied load of F = 244.5 N and srnooth surface discs. The 

plots showed visible oscïliations supcrimposed on the average V, As u varied fiom O to 4 

mls, the V,, was rcad h m  a digital voltmtcr as an average value given by a built in 

processor. The masured Vo for various rolhg speeds (u) are üsted in Table 3.1. If the h, 



Figure 3.10 Electrical resistance circuit for detectkig 61m breakdown 



Figure 3.1 1 Signais of output voltage from elecmcal resi-ce circuit 
(for MCT 5, F = 439.5 N and Vi = 1.5 V) 



where h, > 0.4 p which was tfaee tims of composite snrface rougniess (4 = 0 . 1 ~ ) .  

nie V. deaeased to zero when u < 0.6 mls. co~ponding to the h. = 0.15 p r ~  whkh mts 

comparable with the surfàcc mughness. Thus. mie asperity interactions occumd and the 

fidl eh1 nIm was rtpiaced by miciochi. 

Table 3.1 Measured V, for various u 
(for MCï 5. F=244.5N. smwth dis) 

V. versus u plots. for the data from this exampIe and for the other three loads of 439.5 N, 

634.5 N and 829.5 N, showed as sigrnoidal fimctions (Figures 3.12). From these plots, it was 

easy to find the asperity interaction staning point, where the lubricant additive Mght have 

signiftcant influence on fktion between contacts. Eventuaiiy, these plots could be used to 

decide the tribological conditions for the fnction force measurements in the pnsent study. 



Figure 3.12 Typical plot of output voltage versus rolling speed for various loads 

( T=3OC, Vi = 1.597 V, Vo max = 15.9 mV ) 



3.4 Data Acquisition and Processing 

The most important modification of the disc machine for the present nsearch was an 

installation of a computer data acquisition Jystem ReMousIy, fkktion fora and skew angle 

masuremnts h m  the disc machine wcre recordcd on an x-y plotter. The computcr data 

acquisition system kilitattd ctcording, s t o ~ g  and processihg of the txperimtntal data. A 

software package was chosen to UnpIemuit the data acquisition and pmccssing. 

3.4.1 Data acquisition system 

Hardware 

A PC-LPM-16 data acquisition hardware board (National Instrument Corporation, Austin. 

TX, USA) was selected and pluggcd into the personal computer. It was a low power 

multichannel input and output board with 16 digital VO hes which were useful in high 

resolution applications. A hardware configuration was used to set certain analog inputs and 

outputs. such as poknty range, jumper setting, etc. Then, a software configuration was set up 

as a currently selected device in the niain lists 3.13) and as the dehult set-up for the 

friction measurement. 

The VO connector for the PC-LPM-16 was located on the back panel of the board. Two 

analog signal input channels were connccted with disc machine: one for Fr fkom the strain 

gauge load celi through an ampiifier, and the other for + Born the DC displanment 

transducer. A ground pin on the connector was chosen for analog input ground signais. 

Software 

The computer software package used in the present study was LabVIEW, standing for 

Laboratory y iua l  ~nstrumnt E @ ~ C M ~  xorkbench mationai Instruments Corporation, - 
Austin, TX, USA). It workcd within Microsofi Wndow 3.1 operating system LabVIEW 

uses a graphical progranmiing language to mate  programs in block diagram fom for 
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Figure 3.13 Configurations for PC-LPM-16 data acqisition system 



scieniinc computation, procas control. and mGaSUttmnt applications. This program anows 

'*al in~tn~m~nt" (VI) to be constn~cted which attcmpt to hitate actuaï insrnuncnu. 
Liiraries of hurtions and tools pic availabk to buüd up the VIS. The most valuable bnut 

of LabWEW is its ability to acquh data fran almost any sources. 

A cornputer àata acquisition systern was set up for the disc machine and krluded som VIS 

for controlhg data acquisition and &ta processing for the fkiction fora masuiemena. 

Specific application pmgrams 

Analog input signals h m  thc disc machine wm recorded in a wavefom graph and stomi in 

a digitai data &. A program (AITOWAVE.VI) was written to perfomi this process. The 

pphical program had thrce fkaturcs: &ont panel. block diagram and hierarchy diagram 

(Fqpes 3.14% 3. M b  and 3. Mc) as discussed below. 

The '%ont panel? was an operating interfixe which provided a visual image that resembled an 

instmmnt front paneL The commands to acquk signals were input Born controliers on the 

&ont panel in a nianntr similar to select settings on a conventional voluneter or a plotter. The 

output data were storcd in tables and presented in graphs. The graphs were simüar to those 

from a plotter, but the stored dixxete &ta ailowed sale changes to be perfomicd long &er 

data coIlection. 

In the fiont panel of AIT0WAVE.W Figure 3.14 a), the PC-LPM-16 (Device control) and 

its three working channels (chonnels controi) should be selected k s t .  Two channeis (one 

with an analog filter and one without it) collectai discrete voltage from the strair~ gauged load 

celï which masurrd the friction force. The last channel cokct discrete voltages fiom DCDT. 

nien. the total scan number (N) and the scan rate (fa were set considering the niction 

masuring operation tirne and the resolution of signals. At the chosen interval, the continuous 

analog signal was converteci to a series of digital values. These discrete values were also 
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Figure 3.14 Graphicd prob- "AITOWAVE.VI" for traction measurement 
(a) Front Panel (b) Block Dia-gam 





plotted as thrre "waveform" graphs of voltage versus the so~ucntial data point numbcr (O - 
1023). The operathg conditions anci the output î% name wac IabeM at the top of the h n t  

pan& 

The block diagram was a prtorial ~cpfcsentation, Le. a logicai fiow chart of the program 

which was creatcd on the h n t  p d  It was constructed by linking descriptive pmgram 

icons that pedormtd spccific data acquisition fuoctions. A LabVIEW program nceived 

instnictions b m  its block diagram which tramkrrcd data, p e r f o d  spccXc tunctiow and 

controlled the ordtr of cxccution, 

In the block diagram of AIT0WAVE.W (Figue 3.14b). aU the "controUers and indiCators" 

fkom the h n t  panel were autoniaticaily shown as terminalS. They were linked with som 

specifk operation sub-prograns, which were sub-Ms and show as icons (AI CONFIG, AI 

START, etc.). to construct the desircd 10- relationship of the program and to control the 

collection of the analogue input signais. 

The hierarchical diagram was a tree of ail M s  and sub-Vls curnntiy being utilized. Each VI 

had its icon in the hierarchical diagram. When the main M was open aU the comsponding VIS 

had to be loaded in the mrnory. VI hierarchy describes a map showing the interaction and 

sequencing of an application. 

In Figure 3. M c  the AITOWAVE.VI was the cumntly used VI which was highlighted. It 

required five sub-VI to compka the data acquisition. The five data acquisition sub-VIS 

needed more sub-VIS to support thtir w o k  -fore the hierarchical diagram for this 

program shows thne levels of Vls which were connecteci by lines. 



3.4.2 Power spectrum anaâysis and sampling frequency 

As mntioncd above, data acquisition involves digitizing analog si@. A numkr of gcnerai 

refcrences (Bcndat and Pknol 1980; LabVIEW Analysis VI Rcference Manual, 1993; 

Johnson, 1994) provided s o m  background information of a digital signal processing. When 

continuous anaiog signais arc digitizcd at a constant tmie intmal At, the correspoaduig 

sarnpling hqwncy is f, = ]/At = n/t . wbae n is the number of samples and t is the total 

the. The vahe off, can be selected foliowing the Nyquist criterion. which indiCates that f. 

must be at Ieast twice as large as the highest fiequcncy cornponent in the input signals, in 

order to avoid its rigsrcprescntation known as aiiasing* In other words, for a specified f ,  the 

highest possible fhquency component which can be reprcscnted properly is the corresponding 

'Wyquist fresuency". 

To select a suitable f, a power spectrum analysis of the signals provided s o m  guidance. 

Power specmm andysis is @O& a fast Fourier transformation @Fï) to aansform linear 

tirne sequence signals into the frcquency domain. This transformation cm be used to show 

individual fkquency cornponents of analog signals that can be relateà to masured physicai 

phenomnon. Furthemre, this analysis can be used to help avoid either a too low sampiing 

rate which may cause aliasing or an unnecessary high sarnpling rate which is often expensive. 

h the present study, the power spcctrum anaiysis for the data acquisition and digital 

processing was performcd by a program, PS.VI. This program read recordeci data 

npresenting Fr or 41 ftom a spreadsheet file Wfitten by AITOWAVEVI. It chose a series of 

data by using an index array function and sent it to the sub-program, POWER 

SPECIRUM.VI. The tirne based data were t r a n s f o d  into the muency domain, and the 

power spectrum (square of the ampiitude of the transfonrrd individual fkquency component) 



was found and ploacd (Figure 3.15). The highcst peak on the power spectrum pbt occurrcd 

at a partjcuk fqucncy  which indicatcd that the original analog signal (which coukl bc 

considercd a sumrmtion of many individual sinusoidai componcnts) had a dominant 

component wibi a large ampfitude at that fkquency. 

The PS-VI program was used to a n a l p  the data whïch were coilected at various f. 

up to 40% Hz within the sarm period of masuring tim ( t  =5sec). For a number of 

experiments with smooth top disc, the resuits showed that the highest power spectrum peaL 

was always located at the position close to mo fkquency, s i n a  the traction curve 

masunmot had an overaii sigrnoidal shape. Comparing with the highest peak (which 

represented the maximum friction force and was a quantity of interest in the experiment) there 

were no othcr farge peaks shown on the power spectmm plot and this did not change with the 

increasing in sampling number n. as weii as F, If f. was increased. then the f~ &O increased 

and the possibility of aüasings decnascd for the fiction masuremnts. For aüasing to have 

had a signincant influence on fiction masunmnt, a large amplitude component would have 

to be pnsent with a very high fiequency. 

Subsequent work with a rough top disc might have shown somwhat merent resuits. 

However, the lack of influence of fi on the power spectrum and the tim required for 

subsequent data manipulation and processing were considered, Thus, a suitable value for fi 
was selected as foilows: 

As theh was select& any signals with the ficquency highcr chan f, = f , /2= 102.4(Hz) 

would cause aliasing. Actuany, besides of the highen peak, then were Som peaks 

which did mt show on the plot By changing the scak to let them becorne *file. it was 

found that these pcaks o c c d  at multiples of 60 Hz @gure 3.16). Therefore, they were 
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considercd to bc noise h m  the ckctric circuits of the instrumntaaon- To avoid possi'bk 

signal distortions h m  the electdc circuits anâ othcr possibk physical phenornena in 

subsequent tests which wne not of priniary interest, an d g  filter was appüad befoie any 

digital signal processing occ& 

The anaIog fiitcr allowed signals of low fkquencics to pass but njected or attenuated those of 

higher fkequencies. It was a simple low-pass filtu (Hilbum and Johnson. 1983) with standard 

capacitors. nsistors and operational ampüoer (Figure 3.17) with a low cutoff hquency of 20 

Hz This cutoff hquency wouid not give any possi'ble signal distomon of the firrtion 

masuremnt msults which had a ~ u e n c y  close to zero. Also, it wouid have littie possible 

distortion of the 9 Hz component which conespondeci to the angular rotational s p d  of the 

bottom disc shaft, 

The filter was tested by the sinusoidai signals fkom a signai generator. The responses for 

three senes of input signals with various amplitudes. RMS = OJV, IV and 2V, were quite 

consistent (Figure 3-18). The test results showed that any signais with a hquency greater 

than 100 Hz would almost to tally be filtend out. As mentioned above. the samphg rate was 

chosen as fi = 204.8 Hz and the NyqWst frequency was fN = 102.4 Hz If this mter is used in 

the data acquisition system on disc machine, no signincant aüasing is possible. The filter was 

built into the amplifier between the strain gauge load ceU and data acquisition board. The 

di&rence betwcen the c u m s  with and without the anaiog nIm 3.14a) gave a clear 

view of the benefit in signal clarity of the filtering- 
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Chapter 4 Materials and Methods 

This chaptcr descsibes mdtairLs and mthods iised in the pruent experimntal work. kt, 

the pmperrits lubricants, both base stock anci formulated O&, arc introducd. Secondly, the 

experimntai design is explaid, in which the experiments art grouped d e r  various 

operating conditions. FLially, each of the M o n  force expcrimcnts unda specinc opcrating 

conditions is given a numkr and estimates of the cenaal film thichicss &) and the efktive 

film thickness parameter (n) are ma& for each exptrùntnt. 

The lubricating o h  used in the present research were d e  by Imperhi Oil Limiteci, Canada 

Four formulations of a low viscosity o l  were base stock alone (Mm 9, base stock with a 

Mction modifier additive (Mm 5 + FM), base stock with an anti-wear additive (Mm 5 + 
AW), and base stock with an extrem pressure additive (Mm 5 + EP). The base stock oii 

was a commacial product dircctly refined b m  aude petroleum. 

To show the influence of lubricant additives on Wtion in ehl and mixed film lubrication, each 

of the formulated o k  and the base stock OP were tested under exactly the s a m  operating 

conditions. With the base stock as a reference, the effects of lubricant additives on the 

rheologicai behaviour werc evaluated dircctly h m  the cornparison of the f?iction force 

measmmenû in the side-slip disc machine. 



4.1.1 Base stock oil 

The inspection data of MCT 5 base stock oiî (IMP 405) provided by Impaal Oil Liniitcd 

are listeci in Tabk 4.1. By conparhg the viscosïty to the Society of Automotive Engincers 

(SAE) gradng system, rmaW that it mïght bc an SAE SW (v,, = 38cSt l. but insufomnt 

information was pmvidcd to rmlre a definite identification of the grade). 

Table 4.1 Inspection &ta of mineml oils used in present study (hm imperid Oil Ltd.) 

INSPECXiONS MCX5 MCTS+FM MCTS+AW MCT 5 + EP 

vro (cSt) 18.47 19.12 18.13 18.46 

Via (est) 3.7% 3.803 3 .80  3.800 

PIS (hfd 863.0 8635 8655  866.8 

Rom the given data of the VM and V I ~ .  the VT of a lobkant at any required temperature T 

couid be calcuiated fiom Eq. 2.4 as discussed previously. An exampIe of a caicuhtion of the 

V ~ O  for MCT 5 is shown below. h m  Table 4.1, v a  = 18.47 cSt and V ~ W  = 3.796 cSt, the 

constants in Eq. 2.4 were A = 9.723 19 and B = 3.85258. Inserthg T = 30' C into Eq. 2.4 

with these constants gave 

The density (p) of a lubricant at any rcquired temperature T was caiculated using Eq. 2.2 with 

T = 30 OC. p,, = 8630 kg/m3 and y = 7.2 x 104 1PC. 

Fmally, viscosity (qo) at abnospheric pressure and 30°C was calculateci from Eq. 2.3, 

1 cSt - kinematic viscosity unit ( M t  = 1 x 104m2/s = 1 mm2/s). 



Viscosity was chec'ked using the Brookoeld Synchro-Lcctric viscomter (Bmokfield 

E n g i n c c ~ g  Labonrtorics, Stoughton, MUS., USA) and density was checked by a floatïng 

densimeter (ERT Co. USA). both at a number of temperatures VabIt 4.2). 

T u  4.2 Mtasurcmcnt msuits of qo and p 
T MCTS MCTS + PM MCT 5 + A W  MCTS+EP 

1 p(irJmJ) i I a ( ~ P . l )  p (ym") q,(mh) p(kg/ml) q, (ru-) p (ymJ) 
25 31.2 855 315 857 305 861 325 861 

30 245 851 25.0 854 24.7 858 26.1 858 

35 21 5 848 19.7 850 20.9 854 20.7 856 

40 18.1 845 17.0 846 17.2 852 173 853 

45 14.9 840 145 W3 14.0 849 145 850 

50 124 837 1225 840 120 846 12.5 848 

55 11.1 835 105 837 105 842 11.0 845 

60 9.6 833 9.7 834 10.0 838 9.3 842 

Comparisons of  the viscosities and densities between the data measured at the Tribology Lab. 

University of Waterloo, with the inspection data provided by Imperia1 0i1 Ltd. at the same 

temperature showed little di&rence. These comparisons between m a s u n d  viscosities and 

those calculateci by the ASTM procedure h m  inspecteci data were made by plotting them 

versus temperature @gure 4.1). Once again, Little dinerence was shown between the two 

methods of determinhg viscosity. As a h a 1  example, MCî 5 at 30°C showed a relative 

dinerence of 3.6% for viscosity and 0.3% for density when comparing the masured data to 

the resuits of ASTM calculation procedure. Since the viscosity of lubricant was measund on 

the Brooffieid viscomter in an opcned system and it was difncult to keep a uniforrn 

temperature when the spindie was rotating in the lubricant, especiaiïy when the temperature 

was much higher than the room temperature, an unavoidable temperature decrease rnight have 

occurred. Therefore. the mureci values were usudy higher than those fkom ASTM 

caicuiation. 
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Figure 4.1 Comparison of viscosity at various temperatures for 
(a) MCT 5 (b) MC? 5 + FM (c) MCT 5 + AW (ci) MCT 5 + EP 



In subseqtlcnt calcuiation of eh1 anaal  5 n  thichiess, the masurcd viscositics wert ustd 

because at that tim the inspection data wae not availabk When the Lispection data kanie  

availabk and the ASTM calculation procedure gave ahnost the same rcsuhs for T = 30 O C  

and 40 O C ,  it was deemed unnecessary to iilcalcdate the a n o a l  fiïm thickncss. 

Fricüon modifier formulaüon 

MCT 5 + FM formulation (IMP4806) was the MCf 5 base stock o l  with 0.5% (wt) fiction 

modifier. This proprictary M o n  modifier had a long chah polar mokcuiar structure which 

attached ionicany to mtal surfacts. These mobcules were intendcd to d u c e  the amount of 

mtal-rnetai contact. S o m  autombilt cngine tests had ken done by Imperhi Oil Limited to 

compare the fuiiy fonnulated oii with this FM additive and without it. The detailed results of 

the tests were confidential but they showed a successfui performance of the FM additive in 

that the fuel conswnption in automobile engines dmased.  

The FM additive did not cause much change in viscosity and density under atmospheric 

pressure. The viscosity qo and density p of M a  5 + FM were checked by measurements in 

the s a m  manner as MCî 5 (Tabie 4.2). The q o  vs. T plot for the MCî 5 + FM fonnuiation 

in the range of T = 2S°C - 60°C almost coincideci with that of base stock alone MC?' 5 

(Figure 4.1 b). 

Anti-wear additive formulation 

MCT 5 + AW formulation (IMP 4807) was the base stock MCï 5 with 1.2% (wt) zinc 

dialkyl ddirhio phosphate (ZDDP). The ZDDP is a coimnonly used additive whkh is added to 

ail crank case o h  to control the Wear in automobile engines. This additive is d e  fkom 

primary and sccondary alcohols. The ZDDP was designeci to decompose and fonn surface 

compounds. 



The q~ Md p of MCï 5 + AW wae checkcd by mepsurcmtnts pable 4.2). The comparison 

of the viscosity-temperature relations (n vs. T) bttwœn AW additive fonnnhtion and base 

stock alone iP shown in Figure 4.1~. Thac was no signi6cant di&rcnce in viscositks in the 

whole range of tcrnpcraturi~s, which is similar to the EM additive formdation. 

Extreme prcsoiue additive formulation 

MCï 5 + EP formulation (IMP 4808) was the base stock MCT 5 with 2% (wt) angImnol33 

additives. This additive was a sulphuf-phosphorus compound o h n  used in gear oils. The 

effécts of the EP additive could be tested in an mxi gear test apparatus (a German test 

machine). It couid also be evaluated in a special fou-bali test, in whkh the load was as high 

as 2 to 6 kN and r u d g  tim was as short as 10 second or until the baiis were seized 

together. The e k t s  of EP additives couiâ ais0 be indicated by the fuel consumption data in 

automobile engines. 

The qo and p values of MCT 5 + EP formulation were masurcd using the same rnethod 

describeci before (Table 4.2). 7'ize EP additive did not change the vs. T plot significantly 

fiom that of the base stock MCï 5 alone under atmospheric pressure and in the whole range 

of temperatures (Figure 4. ld). 

4.2 Design of Experiments 

The experiments in the present research involveà the use of a side-slip disc machine with a 

circuiar point contact geomtry to masure the friction force by shearing an i s o t h e d  

lubricant film under conditions of rriainly r o h g  with a small  amount of sliding. The disc 

machine was run with two levek of disc surfacc roughness: one was a contact betwcen two 

smooth surface discs to simulate elastohydmdynamic lubrication (ehl), the other was a contact 



betwccn a rough siirnre dise and a smooth surface disc to simulate mixd film iubricatior 

Lubricating oils wat shcared under v d u s  opcrating contîitions. During each masurement, 

the inlet oii temperanirt was kept constant. Several ratha elaborare series of expcrurients 

were pedomied (Figm 4.2). 

4.2.1 Dise surface rougbaess coatrol 

nie bottom cylindrical disc was aiways kept as smooth as possible, and the roughness of the 

top "crowncd" disc surfacc was either very smooth or quite rough depending on whether ehl 

or micro-eh1 were sought. Both discs were made of wrought tool steel: SAE 0 1  (The 

Society of Automotive Enginars. Oii quenched tool steel) for the bottom disc and Keewatin 

(Atlas Steel, wrought tool steel) for the top discs. The compositions of these two steels were 

listed in Table 4.3. They had very good hardenabiiity and were hardened to a Rockweil C 

value of 63. Special cutting and polishing processes were needed to produce smooth and 

rough disc surfaces at such a high hardness level. 

Table 4.3 Ailoy composition of disc materiais (%wt) 

Material C Mn Si Cr Ni V W 

Keewatin 0.89 1.25 0.42 0.47 0.14 0.43 
SAEOl 0.85-1.0 1.0-1.4 03- 0-4-0.6 0 . L  O k  0.44.6 

Smooth surface disc 

The bottom and top smooth discs were cut to the required geomtry before hardening. Mer 

heat matment, the disc surfaces were lathe tumed with a diamond tip cutting tool first. The 

feed rate and cut depth were controiki precisely. Then they were lapped carefùlly with fine 

diamond paste in the circwnfmntial direction, untü the a "mirrot" finish was achieved. This 

procedure gave a mot mean square (RMS) surface roughness of 0.08 - 0.1 1 p. 
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Figure 4.2 Main description of experimental design 



The siirnice roughness was checked on a Talysurf 5 pmfiiometcr @ h i c  Taybr Hobson, 

b k s t c r ,  UK). It had a processot (SM mode0 to providt a set of values for the alected 

roughness paramctcrs and a profilt M the conman& for a masoremnt were @en 

through the proccssor, whidi containcd the circuits for pmviding n#xssary fiinctions, such as 

seiectuig masummcnt conditions, controiiing paramcter rcquite~~ltnts, coilecting signais, 

pmctssing data, crtating and storing the sudact pro&. nie processot printed out the 

required paramctcr values and ploaed the sarhiee pro&. Aithough, the Talysurf is an 

independent systcm, it was conmcted in paralle1 to a persona1 cornputer (PC) and data 

acquisition systcm Thus, the binary data fik obtained h m  the Taiysmf for the surface 

profile could k saved in an ASCII £ik by running a Quick Basic program: CONBD-BAS on 

PC. Then, the surfaoe profile could be plottcd on PC with much more flexible conml of the 

size and other characteristics than the original Talysurf plot. It provided more possibilities for 

M e r  analysis. Typical smooth disc sudise mughness measuremnts before the experirnents 

showed a somewhat rougher surface in the axial direction than in circumférential direction 

(Figure 4.3). 

Rough surface 

The rough surface top disc was first prepared foIlowing exactly the same processes as for the 

smooth surface disc. Then, a desirrd roughness was produced by sandbïasting. The sand 

useà in blasting was a gradcd siiica abiasive. The size of the abrasive particles, according to 

American Foundrymcn's Association rating, was No. 60 M A ,  and had a m a n  diamter of 

about 1.524mm (0.060 inch). The abrasives were shot on the srnooth disc surface by 

cornpressxi air in an hiustriai surface cicaning niachine. The air pressure level pmvided 

some control over the nsulting surface roughntss. It was chosen as 690 kPa (100 psi) in the 

present study. The abrasive gun kept shooting at a 6xtd angle whüe the disc was rotated 

slowly on a holâet. Usuaiiy, afiet one rotation the disc s&e changed nom that of a mirror 

finish to a unifomily shaded appearance. without appreciably aüixting surfàce dMcnsions 

(Figure 4.4). Mcasured RMS surface roughness about 1.0 - 1.5 p. 
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Figure 4.3 A typicai segment of the measured d a c e  proNe of smooth disc Sq 
(a) in circtnnferentiai direction (b) in axial direction 



Figure 4.4 Smooth and rough top discs 



The ioughntss of disc siirnres was mea~ured aftcr 10 - 15 niinutes "fun-in" when the ~Prface 

roughness had stabilized Run-in had a signi6Eant influence on the Sandbiastcd rough mrfaas 

in p h &  (Figure 4.5). Both aitial and Cacumfèrential directions wm masurcd. The 

paramttcrs. such as uie centrai line average (RJ, the RMS (RJ and the numimm pd- to -  

valley height (R-) were sekcted on the processor 5M in Talystuf 5 pronbmter. The 

muisund conditions, vertical and horizontal magnitications (V. and Vd. traverse length 

(T.L.), and cutsff (CO.), wen sckctcd to be as large as possible for each case. However, if 

T.L. was too large, it k a m e  more daffcult to remove the ondcrlying cwature of the 

s h e s  and stnafler CO. lengths wae quircd. The data givcn in Tabie 4.4 are the 

masurement resuits of two pairs of top and bottom discs. which were label& as (SOI. BO,) 

and (Sk ,  B&) and w m  uscd for two npeateci sets of smooth disc experiments. Each value 

was an average fiom three measurements on the same disc. 

Table 4.4 Roughncss masurement records for smooth discs 

D k  Direction VI Vk T L  C.O. R & R- 

C i .  5000 5 7.2 0.8 0.052 0.045 0.326 

A~aage - - - - 0.0515 0.0645 - 
Bottom(B01) Axial 5000 5 7.2 0.8 0.056 0.070 1.083 

Circumf. 1OOOO 5 7.2 0.8 0.049 0.061 0.838 

Average - - - - 0.0525 0.0655 

TOP(=) Axial 1OOOO 5 5.6 0.8 0.050 0.063 OS76 
C M .  5000 5 73 0.8 O.Cl53 0.066 0.469 

Average - - - - 0.0315 0.0645 - 
Bottom(BOt) hial SOOO 5 7 3  0.8 O.OS9 0.074 0.895 

Ci' 1OOOO 5 7.2 0.8 0.053 0.066 0.927 

Avarge - - - - 0.056 0.MO - 
Note: Each individual parameter in the axial or cikumferential direction is the 

average of 3 4  measurements at diffennt locations on the disc surface. 
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Figure 4.5 Sd i ice  profile of the rough top disc R2 
(a) at b e g i n .  
(b) affernai-in 
(c) aRa niaionmea~ufements 



For the second set of nrperimnts (''Rough Dise Expaimnts" - Figure 4.2). the bottom disc 

was replished and two ncw top discs w e ~ t  prepamî by sandblasting. nie roughncsscs of the 

top and bottom discs mn masund on the Talysiin Oabk 4.5). T b e  were two rough 

sur- top discs (RI and R2) which weie used for two appüed load Imls, 147.0 N and 

244.5 N, nspcctiVeiy. Both wcze usd  with the iepolished bottom disc (BR). Anodia two 

top discs (SI and S2) wen uscd for rriatchcd sets of expamicnts which parantied those 

involving the two m g h  top discs (RI and R2) and involvcd the s a m  bonorn disc (BR). nit 

smooth top discs (SI and S2) had RMS mughncsses an order of magnitude lower than the 

rough top discs ml and R2) mble 4.5). 

Table 4.5 Roughness mcasurcmenu for discs uscd in rough disc experimnts 
and rnatched smooth disc experiments 

D k  Dinctiob V. Vr T L  CO. R Ra- 

(mm (-) @In) 
Axial UKK) 

uim) urm) 
TOP(R~) 5 25 25 0.855 1.175 8.884 

ToP(RZ) Axial 2000 5 25 25 0.646 0.889 6.761 
C d .  U]OO 5 31 25 0.853 1233 10.27 
Average - - - - 0.750 1.061 - 

Bottom(BR) Axial 5000 5 7.2 0.8 0.055 0.074 1351 

C u c d .  1OOOO 5 7.2 0.8 0.051 0.069 0.935 

Avcrage - - - - 0.053 0.072 - 
Top(S1) Axial UlOO 5 5.6 0.8 0.059 0.073 1.074 

C i .  2000 5 5.6 0.8 0.046 0.063 1.472 

Avangc - - - - 0.û525 0.068 - 
Top(s2) Axial UlOO 5 5.6 0.8 0.062 0.077 1.230 

C i .  uK]O 5 5.6 0.8 0.M 0.038 1583 

Average - - - - 0.054 0.0675 - 
Bottom(BS) Axial 5000 5 7.2 0.8 0 . 0  0.063 1.055 

C i .  5000 5 7.2 0.8 0.037 0.071 1.138 

Avargc - - - - 0.0535 0.067 - 
Note: Each individual parameter in the axial or circumferentiai dinction is the 

average of 3-4 measurements at different locations on the disc surface. 



BA and HSC f& tough d a c e  discs 

As mntioned p~~viously. the two d b l a s t e d  mugh sorface discs RI and R 2  were testeci 

under two load Imls. The roughness of the surfàœs was checkcd at ltast thiet tims during 

the expcrinients. The f k t  prof!& befort testhg showed a Gaussian distriiution (Figure 4.5a). 

It had a syrrvnctrical distr'bution about the man iinc. but afta 10 to 15 minutes "run-in" 

under the appoed baà, the pro& had a serious skcwncss ~ i g u r c  4.9). because the asperity 

tips had been worn d o m  or flattcned by local plastic defonnatons. However, as the local 

contact stress decizased, eiastic defomtion domînatcd so that the last check which was 

made after the Wtion experimnts (Figure 4.5~) showed waiaiïy the same profiie as that 

&et mn-in. The profile checkhg mntioned above. included thrce or four masurements on 

each disc in the ckcdren t i a l  directions at locations scparated circumfèrentiaüy by 120° or 

90'. By masuring in the circurrdmntiai direction ody, it was possibie to keep the trace 

within the contact zone which was visible as a darkened line on the disc surface. 

To determine the real ana of contact, two other paramters bearing area (BA or Tp% 

according to the Talysurf processor) and high spot count (HSC) were masureà at various 

height levels. To illustrate the masuremnt procedure, data for disc RI was used which had 

been coilected afkr a set of fition force masmmnts under an applied Ioad of 147.0 N. 

Conditions of nieaswcrnent were V. ~5000. Vb ~ 5 ,  T.L. = 2.5 mm, and C.O. = 2.5 rtnn. 

Thne unnltered profiies were taken in the circumférential direction and gave the BA and HSC 

data which were directly relatcd to the contact zone. The measund results were fÏrst show 

on the screcn of processor SM. Thm, they were printed out as rquired. The output data 

(Figure 4.6) included thne columns: the incremmt of Depth (Cun), the BA in unit traverse 

length (TpI) and the high spot count over the whole traverse length ('SC*). The Tp% and 

HSC* were masund at qua1 incremcnts of Depth (pm), which started âom the highest 

asperity tip, across the mean line and to the lowest valky. The interval depended on the 

selection of the vertical mgnification and was ont-twentieth (ll20) of the fidl scak range in 



Fiyre 4.6 Talysurf memernent records 
(a) profile of run-in ro@ top disc RI 
(b) data for BA and HSC et various depths 
(correspmding to 4.dat in Table 4.6) 



each case. In this example, the oekctal V, was ~5000. Thcn the Ummrnts of I m l  was 

O.5Op flalysurf 5 System Operator's Handbook). 

If the man line of the profile was set as the ongin of vertical axis (2). the rciationship 

betwcen z and mtesurcd Depth was given by Eq. 4.1. 

= De~tbp%40) - D @ ( ~ m m r d )  (4- 1) 

where Deptb,,,, - iincar interpolation value of Depth at Tl(%) = 50 

The BA and HSC in unit length had the foiiowing relations with masureci values Tp% and 

HSC* 

HSC = HSC * /t 
where L - traverse length 

and for the aace in Figure 4.6, L = 2.5 mm The printed values of Tp% and HSC* nom the 

trace were converted into HSC and BA for m e r  analysis to determine the real area of 

contact flable 4.6). Similarly, Table 4.7 gave the same converted data set for rough disc R2. 
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Tabk 4.6 Talysurf measmed data for mgh stufact disc R1 
(î.dat, 4.dat and Sdat for tbnc mvases) 

Mt 

z@m) BAC HSC(rCii) 

5.6'76 0.M 5 2  

Sdat 

z@m) BAC HSCXlhm) 

1.098 0.0 0.8 

Table 4.7 Talysuri measurrd data for mugh surface disc R2 
(d.dat, 7.dat, 8.dat and 9.dat for four traverses) 

6.&t 

zQm) BAC HSC 

0583 0.14 5.6 

0.083 0.46 20.0 

4.417 0.70 24.0 

-0.917 0.79 18.8 

-1.417 0.86 12.8 

-1.917 0.90 9.2 

-2.417 0.92 7.6 

-2917 0.95 sa 
-3.417 0.96 3.6 

-3917 0.97 2.4 

4.417 0.98 2.0 

4917 0.99 2 0  

7&t 

z*) BAC HSC 

0.021 0.49 20.0 

4.479 0.73 22.4 

4.979 0.82 20.8 

-1.479 0.90 120 

-1.979 0.94 9 3  

-2479 0.97 4.8 

-2979 0.98 2-4 

-3.479 0.99 1 2  

-3979 1.00 O 

-4.479 1.00 O 

4979 1.00 O 

7 h t  

zw) BAC HSC 

0.W 0.16 5.6 

-0.455 0.60 28.0 

-0.955 0.75 22.0 

-1.455 0.83 14.8 

-1955 0.88 11.6 

-2455 0.92 8.0 

-29% 0.94 5.6 

-3.455 0.96 3.2 

-3955 0.97 2-4 

-4.455 0.98 1.2 

-4955 0.99 12 

5,455 0.99 O 

8.dat 

zw) BAC HSC 

0.077 0.46 2 2 8  
-0.423 0-72 253 

-0.923 0.82 18-4 

-1.423 0-40 14.0 

-1.923 0.94 7.6 

-2.423 0.96 4.8 

-2.923 0.98 3.6 

-3.423 0-99 24  

-3923 1.00 0.4 

4.423 1.00 0.4 

4.923 1.00 O 



4.2.2 Operating conditions 

The operating conditions mie dpcctiy datcd to the detcrjnination of the luûrication r e m .  

When the test fiicility and mthod mn chosen, s o m  of the conditions w a e  nxcd for aU of 

the experimcnts, such as the g e o m t ~ ~  of the disc machine, tbe disc niaterial, the range of 

skew angle, mom temptratm oü viscosity, etc. But s o n  o t k  condirions had to be 

sckcttd caricfdly for cach group of tests, even each test, since they afkcted the rheological 

behaviour of the lubticant film ditcctly and their choice placed the lubrication in a specinc 

r e m .  The appüed load (F), entrainment velocity (u), composite disc surfxe roughness (GJ 

and inlet zone Iubricant tcmpcranire were considered as crucial paramters of testing 

conditions. As they were selccted, the contact pressure @), inlet Iubricant viscosity (QI), nIm 

thickness a), as weii as the effictive fiim thïchiess paramter 5 couid be calccukteà and the 

lubrication ngimcs codd be determîneà. 

Applied load 

Appüed load systern of the disc machine included the top disc assernbly, weight holder 

assembly, dead-weights and heavy ol danper, which was discusscd in Chapter 3 (Figure 3.4). 

Eight load bels  could be used on this disc machine pable 4.8). Once a load was selected. 

the apparent ana of contact (A,) as well as the average pressure (p.3 and maximum pressun 

(pDYL) coULd be calculated oable 4.8) following the He& equations for norninai point 

contact (Eqs. 2.1 1 and 2.12). 



Tabk 4.8 Applied load lmls and comsponding contact ana and pressure 

Weighb Fm 11 (ma) fi- (ch) pii.(Gm 

1 147.0 315e-7 OSUS 0.8767 
2 -5 3331e-7 O.an4 1.0387 

3 3420 4.416~-7 oms 1.1617 

4 439.5 S a - 7  0.8420 12629 

5 537.0 5,96607 0.9001 1.3502 

6 634.5 6.667e-7 0.9517 1.4276 

7 7320 73-93 0,9981 1 A971 

8 829.5 7.972~-7 1.0405 15608 

Four load levels of 244.m. 439.5N. 634.m and 829.5N with 2, 4, 6 and 8 weights were 

selected for uic smooth disc tests. However, oniy two load levels of 147.5N and 244.5N with 

1 and 2 weights, rcspectivcly, were selectexl for the rough disc tests because it was hoped that 

the progressive plastic deformation of asperity t ips would be limited and a stable surface 

proNe wodd &velbp afkr a run-in pend 

Entrainment veloQty 

Enaaimnt  velocity (u) was a crucial patamttcr to detefmine the film thickness in ehL As 

mentioned in Chapter 3, assuming the surfacc velocities of the top and bottom discs were the 

same, the u was adjusted by the pulse rate yr (Eq. 3.1). However, a high u might introduce 

high mechanical vibrations on the test rig when the load F was also high. Therefore, the 

ranges of u and comsponding y for this disc machine are listed in Table 4.9. 

Table 4.9 Conversion of pulse rate yr and mlling speed u 

u (da) 0.1 0.2 0.25 0.3 0.4 05 0.6 0.7 0.75 0.8 0.9 1.0 

~(aoids) 5 9 11 13 18 22 27 31 33 36 40 45 

u (m/s) 1 2 5  1 1.75 20 225 U 275 3.0 35 4.0 

~(bdds) 56 67 78 89 100 112 123 134 156 178 



Inkt lubricant viscosity varicd with tempetatutt, whkh aneaed both film thickncss and the 

friction force. In the present experbnts, oil was drawn into the inla contact zone at a 

speciticd tcmpctat\rilt- Thus, the central film thrkntss h. whkh depends on the inlct zone 

viscosity couià be detefnpntd by using Eq. 2.24, as discussai previously. Howcvcr, the inh 

tempcraturt was meas& about 5 mm b m  the contact centre and sonr: inlet s k  heating 

codd have occurritd bcfore entrahmnt into the contact zone. Such hcating couid rapidly 

dissipate in the o u t h  zone because of the hi@ themial conductivity of the steel discs, and 

thus mnning the discs in reverse as discussed in Chaptcr 3 might not detect a temperature rise 

in the outlet zone. Fortunately, a calculation of a correction for themial e&ts in the contact 

could be performed (Mobil EHL Guidebook, 4th cdition. 1992; Cheng, 1970). The 

calcuiated comction factors, at aii the appiïed load Ievels and the highest rolüng speed, were 

quite close to 1. Cr = 0.9712 - 0.9988. Titey were much pa t e r  than the criterion of CT 6 

0.9 which was suggested as signincant by Cheng (1970). Therefore, according to these 

calculations, the inlet shear heating e&ct could be ignorcd and no themial correction was 

necessary for nIm thrkness calculations. As discussed in Chapter 3. preliminary tests for 

temperature masuremnt showed that disc surfàce temperatas in both inlet and outlet zone 

during a friction experirritnt were approximatdy the s a m .  These rneasuremnts suggested 

that the side-slip velocity did not intmduce significant heating in the contact zone. 

Furthemre, thermal effects causai by the side-slip would cause a decline in the Wtion force 

with incnasing amounts of side-slip (incteasing skew angie). Such a decline was not seen in 

any of the pftlirriinary firiction expcrimcnts Thcrcfore, aü the fiktion masuremnts in the 

present study were considemi to be under hothemial conditions. The inlet temperature T, as 

measured by the inlet thenmcouple 1 (l3gure 3.8). was used for the experimental plan and the 

ambient pressun Mscosity at T and a constant pressure-viscosity coefficient a were used 

to calculate the h. 



During the W o n  brce masuicmnts, T was mssmed and controlled Most of the 

expcrimtnts were petfornicd at 30°C, but som tests wm @O& at the highcr 

temperatures of 400C and S O C  The ambitnt pzcssuie Mscosities qo of the base stock and 

fomulatcd O& at the thne tcm~craturcs were masund ÇTable 4.2). When the temperature 

hcnased h m  30°C to SS°C, the viscosity h p p c d  h m  25 mPa-s to 11 mPa-s for ail of die 

oils. SUm it was lcss t b  half of the originai value, som e&t on nriction masurement 

results would be expecteâ. 

The inlet Iuùricant temperature might ais0 e&ct the value of pressure-viscosity coefficient a, 

and various formulae were available to calcuiate it, but they were not particularly accurate 

(Camton, 1966; Stachowiak and Batchelor. 1993). In engineering practice, a is ohen 

considered as a fùnction of the molecular structure of the lubricant and usudy used as a 

constant within quite a wide range of ternperatures. In the present study, the a was 

considered as a constant, a = 2.21 x 1 0 ~  m2/N, within the inlet lubncant temperature 

variation refehg the Mobii EHL Guide Book (1992). 

Disc surlaœ roughnoss and k ratio arrangement 

The last important operating condition was the composite roughness of contact disc surfaces, 

which was de- as a, = (e + a#. As mntioned in Chapter 2. was the ratio of centrai 

thickness to the composite roughness @ = h, / 3, and it gave s o m  indication of 

lubrication regims. When the F, T, qo, a and u were selccteà, the cenaal fi thickness h, 

for isothemial ch1 nominal point contact couid be calcuiateù using Eq. 2.24. Therefore, the 

experiments in the pnstnt study were m g e d  in various regimes based on the values of k. 

The average roughness values of smooth top disc SOI and bottom âisc BOL. &r = 0.0645 pm 

and q = 0.0655 pm, were taken from the Talysurf masurements (Tabie 4.4). The composite 

roughness was a, = 0.092 pn From the rcsuits of the preijminary ekctrical resistance circuit 



for an inkt temperature T of 30°C and applied loads F of 244.SN. 439.5N, 634.m and 

829.5N. the output voltage Vo hpd a rdationship with the en -nt velocity u (F@m 

3.12). If the calculation of h. and the masuremnt of a. were accurate. it was expected that 

Vo wodd start to &op at 5 = 3. This behaviour dià occm (Figure 4.7) and by setting 

experimntal conditions such that 5 < 3. it was possible to expcct varying depcs of asperity 

interaction with the assurance of both theoretical calcuiations and experimntal 

muisuremnts. On the 0th- hand. setting > 3 ensurcd Wtually zero dinct aspefity 

interaction with the same assurances. 

The average RMS roughness values for the rough surfas top &CS were &r = 1.146 pm (Rl) 

and or = 1.061 pm (R2). and for the same srnooth surface bottorn disc BR was CB = 0.072 

pm (Tabie 4.5). The composite roughness for R1 and BR contact was = 1.148 pm, and 

for R2 and BR contact was a. = 1.063 pm. HF, T. %, a and u were selected with simüar 

ranges as that for smooth disc tests, and the h. was calculateci by Eq. 2.24, then the h ratio 

would have values )c < 1. This range was traditionaily located in boundary lubrication (Figure 

2.15). However, som ment research on niixed film lubrication argueci that the division 

between mixeci nIm lubaication and boundary Iubrication might be moved to ic values weil 

below 1.0 (Evans and Johnson. 1987; SutcMk, 1991; Johnson, 1992; Cheng. 1992). They 

pointed out that the e&ct of asperity interaction on frrtion was still governed by the 

rheological properties of the bulk lubricant, but at a pressure corresponding to the asperity 

contact pressure. It was noted that friction was strongly influencecl by non-Newtonian 

behaviour but the effect of additives was not investigated. 



dl a A I  O mooth dis, F=244SN, 30C 

e: l O mooth disc, F=439.SN,30C 

mooth disc, F=634.5N, 30C 

O I A moolh disc, F=829.5N.30C 

O* l rough d k ,  F=t 47.ON, 30C 

4 m ~ " &  1 rough dkc, F=244.5N, 30C 

roughdiiF=147.ON,40C 

A rough disc, F=244.5N, 40C 

8 i v ~ 8 r g i 1 ~ 8 ~ T  

Figure 4.7 Typid  plot of output voltage vs. hr 
(for MCT 5, various F, T, u and codllposit RMS d a c e  roughness) 



4.3 Sequence of Experiments 

In the pctsent study, X was used to amange som eltperimnts in the range X < 1.0, others in 

the range 2, > 3.0 and a ièw in betwccn. Ail the eIrperimntal conditions of F, T, u and a, as 
well as the calciilarrrl central fibn thichiess 4 and value of A ratio for each expcrirnent, are 

grouped and listed in Tabks 4.10 - 4.12. The group of the smooth disc cxpebnts  (Tabk 

4.10) included the base stock abn (Mm 5) and thcc fornulateci oils (MCf 5 + FM, Mm 
5 + A W  and M m  5 + EP). The groups of the rough disc experimtnts cable 4.11) and the 

rnatched smooth disc cxpcrimtnts rabie 4.12) included ody the MCï 5, M m  5 + FM and 

MCT 5 + EP. Each indidual cxperiment had a unique n u m k  in a sequence fiom 1 to 210. 

However, each individual expeNncnt reprcsenteâ at least two (somtimes thme or four) sets 

of measurements, when each set (Fgure 3.7) involved masuring friction f o m  h m  negative 

to positive skew angles in both forward and reverse directions. Thenfore, over a thousand 

measurements have been done in the present study. 



Table 4.10 Expriment repuena for smooth disc tests 

ExptNa Lmbriciiat e&m) T('C) F(N) n(d) k(j&n) kralio 

1 Mm5 0 . a  30 244.5 1.6 0.336 3.7 

2 (SOI. Bo11 4395 19 0.343 3.9 

3 634.5 2.2 0391 4.2 

4 8295 2.3 0395 43 

5 244.5 25 0.454 4.9 

6 439.5 3.0 0.493 5.4 

7 6343 3 3  0512 5.6 

8 8295 3.75 OS48 5.9 

9 40 2445 20 0.358 3.9 

10 4395 225 0.372 4.0 

11 6345 275 0.416 4 5  

12 8295 3.0 0.433 4.7 

13 2445 3.2s 0.495 5.4 

14 4395 3.75 O324 5.7 

15 5s x4.s 3 5  0.4a 5.0 

16 4395 3-75 0.467 5.1 

17 6345 3.8 0.460 5.0 

1 8 8295 4.0 0.467 5.1 

19 MC'M+FM 0.092 30 2445 1.6 0.341 3.7 

20 (Soi, BOi) 4395 1.9 0.368 4.0 

21 6345 2.2 0.396 4.3 

22 829.5 7 3  0.401 4.4 

23 2445 2.5 0.460 5.0 

24 4395 3.0 0,499 5.4 

25 6345 3 3  OS19 5.6 

26 8295 3.75 0556 6.0 

27 40 2443 20 0338 3.7 

28 4395 2.25 0351 3.8 

29 6345 2.75 0.392 4 3  

30 829.5 3.0 0.408 4.4 

31 2445 3.25 0.467 5.1 

32 4395 3-75 0.494 5.4 

33 55 2445 3 5  0.445 4.8 

34 439.5 3-75 0.448 4.9 

35 6345 3.8 0,441 4.8 

36 8295 4.0 0.448 4.8 





(Table 4.10 continu@ 

Erpt No. Labricmit ~(jun) T CC) P (NI u km) A ratio 

73 M-5 0.093 30 2445 1.6 0.336 35 

74 (S02r BOI) 4395 1.9 0363 3.8 

75 634.5 2.2 0391 d l  

76 8295 2.3 0395 4.2 

n 2445 z.5 0.4s 4.8 

78 4395 3.0 0.493 5.2 
79 6345 33 0512 5.4 

80 8295 3.75 0.548 5.8 

8 1 40 244.5 20 0358 3.8 
82 4395 2.2s 0.372 3.9 
83 6345 275 0.416 4-4 

84 8295 3.0 0.433 4.6 

85 2445 3 3  0.495 5 2  

86 4395 3.75 0524 55 

87 55 2445 35 0.464 4.9 
88 4395 3.75 0.467 4.9 
89 6345 3.8 0.460 4.8 

90 829.5 4.0 0.467 4.9 



Table 4.11 Expriment sequcnce for mugh disc tests 

Expt No. Lubricont ai-) T W )  p(N) ~(d') k ~ )  kntio 

91 MCr5 1.15 30 147.0 3.1 0542 0-47 

92 (RI* BR) 24 0.457 0.40 

93 1.7 0362 032 

94 1-1 0271 0.24 

95 0.6 0.180 0.16 

96 1.06 30 2445 33 0.546 052 
97 (Rz BR) 25 0.454 0.43 

98 1.8 0.364 0.34 

99 13 0.277 0.26 

100 0.G 0.184 0.17 

101 1.15 40 147.0 3.7 0559 0.49 

102 (RI. BR) 28 0.464 0.40 

103 2.0 0.370 0.32 

104 13 0.277 0.24 

105 0.7 0,183 0.16 

106 1.06 40 2445 3.9 0560 053 

107 W. BR) 3.0 0.470 0.44 

108 21 0370 035 

109 1.4 0.282 0.27 

L 10 0-75 0.186 0.18 

111 MCTS+FM 1.15 30 147.0 3.1 0549 0.48 

112 (RI, BR) 24 0.463 0.40 

113 1.7 0367 032 

1 14 1.1 0.274 0.24 

115 0.6 0.181 0.16 

116 1.06 30 244.5 3.3 0554 032 

117 (la BR) 2.3 0.460 0-43 

1 18 1.8 0370 035 

119 1.2 028 1 O26 

120 0.65 0.186 0.18 

121 1-15 40 147.0 3.7 0527 0.46 

122 (RI, BR) 28 0.438 0.38 

123 20 0349 0.30 

124 13 0.262 0.23 

125 0.7 0.173 0.15 



(Table 4.1 1 continued) 

ErpkNa Lubrkaat aiw) TrC) F(N) u(a/r) btQun) kratio 

126 1.06 2445 3 9  OS28 0.50 

127 (RZ BR) 3.0 0.443 0.42 

128 2 1  0.349 0.33 

129 1.4 0.266 0 3  

130 0.75 0.175 0.17 

131 MCX'kEP 1.15 30 147.0 3.1 0566 0.49 

132 ml. BR) 24 0.476 0.41 

133 1.7 0.378 033 

134 1.1 0282 0.2s 

135 0.6 0.188 0.16 

136 1.06 30 2445 3 3  OS70 054 

137 W. BR) 2.5 0.473 0.45 

138 1.8 0.380 0.36 

139 1.2 0.289 027 

140 0.65 0.192 0.18 

(RI, BR) 2 8  0.452 039 

20 0361 031 

L.3 0.271 0.24 

0.7 O. 179 0.16 

1.06 40 244.5 3.9 0.546 051 

(a BR) 3.0 0.458 0.43 

21 0.360 034 

1 -4 0275 026 

0.75 0.181 0.17 



Table 4.12 Expairnent seqiunce for mtchd smooth üisc tests 

Expt No. Lubrieiat *(Ira) TCC) F ( ' 1  O(&) b()un) kmtio 

151 MCT5 0.093 30 147.0 3.1 0542 5.7 
152 (Sr. BS) 24 0.457 4.8 

fi3 1.7 0362 3.8 

154 1.1 0.271 2 8  

155 0.6 0.180 1.9 

156 0.095 30 2443 3 3  0.546 5.8 
157 (a BS) 32 0.454 4.8 

158 1.8 0.364 3.8 

159 1 3  0.277 29  

160 0.65 0.184 1-9 

161 0.095 40 147.0 3.7 0.559 5.9 
162 ($1. ES) 28 0.464 4.9 

163 2 0  0.370 3.9 

164 13 0.277 2 9  

165 0.7 0.183 1.9 

166 0.095 40 2445 3-9 0360 5.9 
167 (n BS) 3.0 0.470 4.9 

168 21  0370 3 9  

169 1.4 0.282 3.0 

170 0.73 0.186 2.0 

171 MCT5+FM 0.095 30 147.0 3.1 OS9 5.8 

172 (SI. BS) 24 0.463 4.9 

173 1.7 0.367 3.9 

174 1 .l 0.274 29 

175 0.6 0.181 2 0  

176 0.095 30 2445 3 3  0.5% 5.8 
177 (SZ BS) 2.5 0.460 4.8 

178 1.8 0.370 3.9 

179 1 3  O28 1 3.0 

180 0.65 0.186 2 0  

181 0.095 40 147.0 3.7 0527 5.5 
182 61 .  BS) 2.8 0.438 4.6 

183 2.0 0349 3.7 

184 13 0.262 2 8  

185 0.7 0.173 1.8 



(Table 4.12 continuad) 

mtNa Liibriaat a~(pa8) T(T) F (NI ~ ( d s )  b&m) Lntio 

186 MCTS+FM 0.095 40 24.5 3 3  0528 5.6 
187 (s2 BS) 3.0 0.443 4.7 

188 21 0.349 3.7 

189 1-4 0.266 28 

190 0.75 0.175 1.8 

191 M C ï k E P  0.mS 30 147.0 3.1 0.566 6.0 

192 61, BS) 24 0.476 5.0 

193 1.7 0.378 4.0 

1W 1.1 0.282 3.0 

195 0.6 0.188 20 

196 0.095 30 2445 33 0570 6.0 

197 W. BS) 2 5  0.473 5.0 

198 1.8 0.380 4.0 

199 1.2 0.289 3.0 

200 0.65 0.192 2.0 

201 0.WS 40 147.0 3-7 0545 5.7 
202 (SI. BS) 2.8 0.452 4.8 

203 20 0.361 3.8 

204 13 0.27 1 2.8 

205 0.7 0.179 1.9 

206 0.095 40 244.5 3.9 0.546 5.7 
207 (Sz BS) 3.0 0.458 4.8 

208 2.1 0.360 3.8 

209 1.4 0.275 29 

210 0.75 0.181 1.9 

In the above expetimental plan, the entrainment velocities were limiteci by the disc machine 

used in the present study, Le. u 5 4 Ws, or y S 178 Hz. For exampIe, the tests at temperature 

of 40 O C  and loads of 634.5 N and 829.5 N could not run properly. Therefore, they were not in 

the smooth surface enperimental plan. Neither were the tests at temperature of 55 O C  for ai l  

four loads. 



The txpetiments 73 & 90 (Tabk 4-10) were pdormtd unda tbc sam operating conditions as 

experimtnts 1 to 18. Thesefore, the base stock ol (MCï 5)  had a rrpeated set of smooth disc 

tests, but thm was a smaü dincttnce in the top and bottom disc sOTfhcc roughnesses. 

As m n t i o d  pmiously, for rough s o r b r e  tests, ï t  was noted that too high appücd loads might 

cause prognssM and contînuous plastic deformation of the aspcrity tips dming an experhnt. 

Therefore, only two applied load kvels were scbcted, 147.0 N and 244.5 N. Experimenu 91 

to 150 and 151 to 210 werc matchcd in that they were peifomicd with the sam oii and under 

the s a m  operating conditions. The top discs. however, had different snrface roughnesses, the 

first set with RMS roughness about ten t m s  that of the second set. Therefore, they 

represented dinmnt  lubrication rcgimcs. ahhough th& nIm thicknesses should be the same for 

qua1 loads and entraiment vclocities. 

A shoa FORTRAN program, THICKFOR. was written to caicuiate h. and X. The inputs of 

the program inchdeci F, q ~ ,  a, R, E', and OB. in gened, at the selected temperatures, the 

lubricant viscosity had only iittle variation among the formulations cable 4.2 and Figure 4.1). 

Also, the s a m  disc pair, Le. the sam or and as, was used to test each of the lubricants. 

Therefore. the calculated vaiucs of h ratio for an of the srnooth disc experimnts were found in 

a range of 3.7 S h S 6.2 ('ïable 4.10), which was satisfiw the nquired range for eh1 repurie, 5 2 

3. Thus. the smooth disc experiments were assumai to simulate ehL 

On the 0 t h  hand, the rough disc cxperimnts (91 to150) had values of h ratio under both load 

leveis between 0.15 - 0.55, whenas the matched smooth ci* expeNnents (151 to 210) had A 

ratio in the range of 1.8 S 5 6.0. Thus. it is possible to show the effécts of asperity 

interactions and the influences of lubricant additives in the rough dûc experiments. The resuits 

of experiments are discusscd in the consequent chaptcrs. 



Chapter 5 Results 

This c h a p e  prrscnts the rtsuIts ob<ained h m  the main expinients perfbrmtd on the side- 

slip disc machinc. Iii aii cases, the ainion fonr (F3 in the side-slip direction is prcsented as a 

function of the skew angk (+) in a sksingle traction curvc. The d t s  arc organaed in groups. 

Fmt, the results for fun chi with smooth disc surCaces arc prcscntcd, fobwed by the fcsuits 

for the niixed film lubrication wah the mugh top discs. Major findings of the present thesis 

cm be o b m e d  diianly h m  the cornparisons of the traction curves, eiuiu under the s a m  

set of conditions but for di&:rcnt lubricant additives, or under diffcrent test conditions but for 

the s a m  lubricant formulation. The accuracy and pracision of test resuits are discussed 

briefiy in the 1st part of this chaptcr. 

5.1 Friction Force Measurement 

Following the experimntal plan, hundreds of fiction force masurcmnts were performed for 

ehi and niixed fiLn lubrication. The friction force data was obtaincd from the data acquisition 

system which featured the software package, LabVIEW for Windows, as desCnbcd in Chapter 

3. The analog Fr signal was digitizcd with a specined sampling frcsuency and stored in a data 

file. The analog $ signal was treated in the sam manner. Thcn, al l  the Ff vs. 0 curves were 

plotteù &om these data files using a software package, G W H E R  for W i o w s  (Golden 

Software, Inc. Golden, Colorado, USA, 1994). For a partDculat set of conditions, a traction 

plot was obtained, which included masurcd Fr vcrsus fiom - 0.125 to + 0.125 rad, in both 

foward (FWD) and reverse (REV) roiling dinctions to give two sigrnoidal cwes  (Figure 

5.1) which intcrscct at Fr = O as described prcviously in Chapter 3. 



Figure 5.1 Typical repeated traction plots for the same 0-8 conditions 
(for MCT 5 + FM at T=30 C, u=2.5m/s and F=244.5N) 



In rnoa cases. rolling spcd (a) was the first paramttcr after to k wied aqutntialiy and a 

corresponding scquence of traction pbts was obtained. It wss JtMdard practice to rcpcat the 

sequence of u a d  thus the comsponding scqucncc of m o n  plots. Sonietims, the diçc 

machine was stoppai, htcr, NO until the thcnnai conditions stabilizcd and the sam 

sequence of u rcpeated again Pnd tbui again. As a comcqucnce. many sets of conditions had 

four comsponding traction pbts (Rgure 5.1) aithough, more ofken, only the h t  two traction 

plots werc obtallied. If a sin* Ff vs. $ cmts was rcquircd h m  = O rad to @ = 0.125 rad, 

each traction plot providcd four choias, one in each quadrant. If four traction plots had been 

obtakd. then. sixteen choias were availabk- In order to avoid excessive data managemnt 

probiens and because the cums were ail very sïmiiar, the present author selected a singk 

typical Ff vs. 9 curve fkom one quachnt to represcnt one set of conditions for the speciâc 

purpose of pnsenting typical curvcs in this c h a p e  

A suniriiary of the results of each of the experimnts was given by quoting the maximum 

fiction force (Fr mu). To d e t e d e  Fr,, a number of the traction Cumes with low levels of 

signai oscillation were identifid &om a total of two or four %action plots" (usuaiîy fiom the 

first and fourth quadrants). Then, the fiction force at = 0.05 rad (corresponding to a skie- 

roll ratio of 5%) was iàentificd for each c w e  and ail of these fiction forces were averaged. 

In this mamer, it was hoped that the rnost consistent value of Fr, was obtained This 

selection of = 0.05 rad for Fr, was made because in all cases Ff was very close to its 

maximum value, whmas for highcr v b s  of som traction c w e s  had decreases in Fr 

caused by t h e d  effécts (F@rc 5.2b, Expt. No. 8). Also, using + to represent the skie-roii 

ratio, ie. v/u = tan Q = Q (rad), was correct only when $ was s r d i ,  and thus, accuracy would 

be reduced when 9 was large. 



5.1.1 Results for full eh1 

Traction a m e s  

The m o t h  disc tests with SOL top disc and BOl bottom disc were arrangeci in one group for 

ail four formulations: MCï 5, MCT 5 + FM, MCï 5 + AW and MCT 5 + EP. The traction 

plots were obtallrtd at various rohg  vebcities. under four loads (244.5 N. 439.5 N. 634.5 N 

and 829.5 N) and at thrct temptratuns (30°C, 40°C and 55°C). Traction cpms which were 

masured under the s a m  temperature and simüar X ratios. but various loads and roiiing 

velocities. were groupeà togethcr and plotted in individual figures. In this niannet. aü the 

data could be presented as a series of 25 plots (Figures 5.2a to %Se) with correspondhg 

experiment numbers which were related to the exact conditions in Tabie 4.10. Thus, a 

ngorous represcntation of the variation of Fr with (J was given for each experkntai 

condition. nie shape of each individual traction c w e  was influenceci by the load, rohg  

velocity and iniet lubricant temperature, as well as the thermal effects and mechanical 

vibrations, as discussed in subsequent sections. 



LIST OF TRACTION CüRVES FROM SMOOTH DISC EXPERIMENTS 

(Figures 5.2a to SJe on jmge 168 to 179) 

5.4 (a) M a 5  +AW 30 37.38,39.40 

5.4 (b) 

5.4 (c) 

5.4 (d) 
5.4 (c) 



Expt No. 

- 2  

No. 

Figrne 5.2 Tracficm  es h m  ~mooth dirc tests for MCT 5 
(a) T = 30 OC, 4 load levek, 4 lower u's 
@) T = 3 0 O C ,  same 4 loads, 4 higher u's 



No. 

0.00 0.05 0.1 0 0.1 5 

Figure 5.2 Traction cuwes hm smooth disc tests fcp MCT 5 
(c) T = 40°C, 4 load leveis, 4 lower u's 
(d) T = 40 OC, Iowa 2 loads, 2 higher u's 



Expt. No. 

0.00 0.05 0.1 O 0.1 5 
@ (rad) (el 

Figure 5.2 Traction ciwes fbm smooth disc tests for MCT 5 
(e) T = 5 9  C, 4 load levels, 4 higher u's 



Expt. No. 

Expt. No. 

r I I I I  t I B I 1 

Figrne 5.3 Traction m e s  âom smooth d i s  tests foi MCT 5+FM 
(a) T = 3 0 O C ,  4 load leveis, 4 lower u's 
(b) T = 30' C, same 4 loads, 4 hi* u's 



60 - Expt. No. - 
30 

29 

28 

- 27 

0 8  8  I 1 I I I  I 1 8  8  S I 

0.05 0.10 
9 (rad) 

Expt. No. 

Figure 5.3 Traction cuwes fiom smoodi disc tests for MCT S+FM 
(c) T = 40 OC, 4 load levels, 4 lowa d s 
(d) T = 40" C, lower 2 loads, 2 higher u's 



Expt. No. 

Figure 5.3 Traction ciwes f?om smooth disc tests for MCT 5+FM 
(e) T = 55" C, 4 load Ievels, 4 hi&= d s  



Expt. No. 

0.00 0.05 0.10 0.15 
9 (rad) @) 

Figure 5.4 Traction curves fimm smooth disc tests for MCT S+AW 
(a) T = 30" C, 4 load leveis, 4 lowa u's 
(b) T-~O'C,  same4loads, 4higberu's 



60 1 Expt No. 

Expt. No. 

Figure 5.4 T d m  c w e s  fiom smooth disc tests for MCT 5+AW 
(c) T = 40 0C, 4 load lewls, 4 lower u's 
(d) T = 40 OC, lower 2 loads, 2 higher u's 



1 Expt. No. 

Figure 5.4 Traction curves from miooth disc tests for MCT S+AW 
(e) T = 5S°C, 4 load leveis, 4 higher u's 



Expt. No. 

1 Expt. No. 

Figure 5.5 Traction a m e s  âom smooth disc tests far MCT 5+EP 
(a) T = 3 0" C, 4 load levels, 4 lower u's 
(b) T = 30' C, same 4 loads, 4 higher u's 



Expt No. 

40 
f Expt. No. - 30 

Figure 5.5 Traction c w e s  h m  smooth disc tests far MCT 5+EP 
(c) T = 400 C, 4 load levels, 4 lower u's 
(d) T = 40 OC7 lower 2 loads, 2 higher u's 



Expt. No. 

0.05 0.10 
@ (rad) 

Figure 5.5 Traction c w e s  fiom smooth disc tests for MCT 5+EP 
(e) T = 55 C, 4doad levels, 4 higher u's 



Maximum Metion force 

As d e s c r i i  previously, the mximurn ainion force Fr , was dttcrniiricd for each 

experinicnt fiable 5.1). The expcrinitnts mn organized so that sam conditions were 

ùrposcd on each of the Iubricants, and thus Table 5.1 was constructcâ so that cach row 

present experimtnts comsponding to the sam conditions. 

Table 5.1 The Fr, in smooth surf' disc mcasuritrnents 

Expt. ~~~O 
No.. M ~ S  

1 16.82 
2 3û.18 
3 4358 
4 59.96 
5 15.19 
6 28.55 
7 4224 
8 5659 
9 16.03 
10 28.60 
11 4210 
12 5557 
13 15.08 
14 2657 
15 1453 
16 2551 
17 37.22 
18 5057 

* Refer to Table 4.10 

Expt. Fr- O 
Na MCTS+EP 

55 16.21 
56 28.52 
57 4205 
58 54.75 
59 14.98 
60 2755 
61 38.79 
62 5234 
63 14.86 

64 26-70 
65 3750 
66 50.20 
67 13.88 
68 25.68 

69 13.85 
70 23.05 
7 1 3437 
72 46.09 

for the test conditions of each experiment 



5.1.2 Results for mixed Film lubrication 

Traction curves 

The niction fonr mtasuremtnts in mixcd film lubràcatïon were perfomrd for tlira 

formulations: MCT 5, MCï 5 + FM and MCï 5 + EP. Ail the traction plots wen masurrd 

under two loaâs (147.0 N and 244.5 N) and at two tcmpcranue~ (30°C and N°C). The 

traction cuiues which wen masund with the rough top àiscs RI, R2 and smooth bonom 

disc BR could bc comparai with the traction c w e s  which werc masured in the matched 

smooth disc experiments with the smooth top dises SI, S2 and the smooth bottom disc BS. 

For each set of the conditions, two traction curves for the same lubncant, at the sarne 

temperature, siniilar L ratios, slightly varicd rohg speeds, but under two different loads, 

were grouped together and plotted in one figure. The matched smoth disc results which 

were rneasured exactly under the s a m  conditions as in the rough dÛc tests were plotted in 

the s a m  figure. Therefore, each figure included four traction cwes: two thick hed curves 

for the rough disc tesu at two load levels and the- other two thin h e d  curves for the matched 

smooth disc tests. In this manner, ail the resuits were presented as a series of 30 plots 

(Figures 5.6a - 5.1 le) with corresponding experirrient numbers which were refemd to the 

conditions in Tables 4.11 and 4.12. As for the fidi eh1 eqeMrnts, the shape of each 

individual traction c m  was intluenccd by experimntal conditions, such as the surface 

roughness, load, rollhg velocity, thermal eff'ects and mechanical vibration, as discussed in 

subsequent sections. 



LIST OF TRACTION CURVES FOR ROUGH TOP DTSC EXPERIMENTS 

AND MATCHED SMOOTH TOP DISC EXPEIUMENTS 

(Figures Sm6a to SmUe on pages 183 to 200) 

Labrirut T ~ P -  CC) E.pt NO. 
5.6 (a) M m 5  30 91,%,151,156 

5.6 (b) 92,97,152,157 
5-6 (c) 93,98,153,158 

5.6 (a 94,99,154, 159 
5.6 (e) 95,100,155,160 

5.7 (a) 40 101,106,161,166 

5.7 (b) 102,107,162,167 
5.7 (c) lû3,10S, 163,168 

5.7 (d) 104,109,164,169 

5.7 (e) 105,110,165,170 

5.8 (a) M m S + F M  30 111.116,171,176 

5.8 (b) 112,117,172 in 
5.8 (c) 113,118,173,178 

5.8 (d) 114,119,174,179 

5.8 (e) 115, lu), 175.L80 

5.9 (a) 40 121,126,181,186 

5.9 (W 
5.9 (c) 

5.9 (d) 

5.9 (e) 

5-10 (a) MCI'Z+EP 30 131,136,191,196 

5.10 (b) 132,137,192,197 

5.10 (c) 133,138,193,198 

5-10 (d) 134. f 39,194,199 

5.10 (e) 135,140,195,200 

5.11(a) 40 141,146,201,206 

5.11 (b) 142,147,202,207 

5.11 (c) 143,148,203,208 

5-11 (d) 144,149,2û4,209 

5.11 (e) 145,150,205,210 



3 - rough top diic 

- srnooth disc 
Expt. No. 

I I I I  1 1 1 I I 1 1 I I 1 

Figure 5.6 Traction c w e s  fiam rough top disc and 
matched smooth disc tests for MCT 5 at T=3O OC 

(a) 2 load levels, highest ds 
(ô) 2 load leveis, highu's 



Expt. No. 

30 7 - mugh top disc E~pt.  NO. 

S 7--/""" smooth disc 

Fi- 5.6 Traction m e s  h m  rough top disc tests and 
matched smooth top âisc tests for MCT 5 at T=30° C 

(c) 2 load levels, Iow u's 
(d) 2 load levels, lowa u's 



- rouoh top diic Expt No. 

- 8ni00th &SC . r  A 

Figure 5.6 Tracfion Cumes &om rough top disc tests and 
matched smooth top disc tests for MCT 5 at T=30°C 

(e) 2 load levels, lowest IL'S 



Expt. No. 

- rough top disc 

- smooth dsc 

(a) 

Expt. No. 

Figure 5.7 Traction ciwes fkom rough top disc and 
matched smooth top disc tests for MCT 5 at ~ 4 0 '  c 

(a) 2 load leveis, highest u's 
(b) 2 load I d ,  high u's 



Expt No. 

4 -  smooth asc 

0.00 0.05 0.1 O 
9 (rad) 

30 7 - rough top disc 

4 -.-...-vu-- smooth d' 

Figure 5.7 Traction c w c s  h m  rough top disc tests and 
matched smooth top âisc tests for MCT 5 at T=4OoC 

(c) 2 load lewls, l m  ds 
(d) 2 load levels, lower u's 



- tough top disc k p t .  NO. 
- smooth âisc 

0.00 0.05 0.1 O 0.15 
@ (rad) (e) 

Figure 5.7 Traction m e s  fkom rough top disc tests 
matched smooth top disc tests for MCT 5 at T=40 OC 

(e) 2 load leveIs, lowest u's 



- iough top âiic 

- smooth dise 

20 Expt. No. 

0.05 0.10 
9 (rad) 

30 1 - rough top disc 

25 1 - smooth di% 
Expt. No. 

20 - 
117 

177 
112 

17 2 

O 1 1 1 1  I l- 1 1 1  I 1 "  1 
0.00 0.05 0.10 0.15 

4) (rad) (b) 
Figure 5.8 Traction c w e s  fiomrough top disc tests and 

matched smooth top disc tests for MCT 5+FM at T=30°C 
(a) 2 load levels, highest u's 
@) 2 load levels, high u's 



- rough top diiiic 

- smooth disc Expt. No. 

- rough top disc 

25 
- smooth disc 

Expt. No. 

Figure 5.8 Tracfion c w e s  fiom rough top disc tests and 
matched snooth top disc tests for MCT 5+FM at T=30°C 

(c) 2 lœd l m l s  low u's 
(6) 2 load levels, Iowa u's 
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Figure 5.8 Traction c w e s  âomrough top disc tests and 
matched smooth top disc tests for MCT 5+FM at T=30°c 

(e) 2 load leveis, lowest u's 



7 - rough top âiic 

25 4 - S ~ O O ~ I  di= 

Expt No. 

Figure 5.9 Traction curves fiomrough top disc tests and 
matched smooth top disc tests for MCT 5+FM at T=40°c 

(a) 2 load leveis, highest u's 
@) 2 load lewlq high d s  

30 - 
a 

25 - - 
20 - 

- r o u ~ h  top disc 

smooth disc 

Expt. No. 

127 

187 
122 

182 

1 l ~ l l b  I I I 1 



Expt. No. 

0.00 0.05 0.10 0.15 
9 (rad) (c) 

- rough top disc 
Expt. No. 

smooth disc 

0.00 0.05 0.10 0.15 
9 (rad) (d) 

Figure 5.9 Tracfion c w e s  h m  rough top diSc tests and 
matchcd smooth top disc tests for MCT 5+FM at T+O°C 

(c) 2 l d  levels, low u's 
(d) 2 load levels, Iowa u's 



30 1 - mugh top âiio 
Expt. No. 

1 1  smooth disc 

0.00 0.05 0.10 0.15 
@ (rad) (e) 

Figure 5.9 Traction m e s  fkom rough top disc tests and 
matched nnooth top disc tests for MCT S+FM at T=40°C 

(e) 2 load levels, lowest u's 



- roum top fi ic 

- smooth âic 

Expt. No. 

@ (rad) 

- rough top disc 

- smooa  SC 

Expt. No. 

Figure5.10 Tfacfi~~~cwesfnmiroughtopdixtestsand 
matchd snooth top âisc tests for MCT 5+EP at T=30 T 

(a) 2 load levels, highest u's 
@) 2 load levels, high d s  





- rough top diic 

- smooth dise 
Expt. No. 

0.05 0.10 
@ (rad) 

Figure 5.10 Traction c w e s  from rough top disc tests and 
matched smooth top disc tests for MCT 5+EP at T=30°C 

(e) 2 load levels, lowest u's 



3 - rough top &O 

1 smooth disc 

4 Expt. No. 

- roughtopdisc 

- srnooth disc 

Expt. No. 

Figure 5.1 1 Tsaction ciirves f?om rough top disc tests and 
matched smooth top disc tests for MCT 5+EP at TE40 OC 

(a) 2 load levek, highest u's 
@) 2 load levek, hi& u's 



*=d- smooth dbc Expt. No. 

0.00 0.05 0.1 0 
9 (rad) 

25 4- smootti dise Expt. No. 

Figure5.11 Tfacfi011cwesfiomroughtopdisctestsand 
matched smooth top disc tests for MCT 5+EP at T=4û°C 

(c) 2 load leveis, low u's 
(d) 2 load leweîs, lawa u's 



- fough top dise 

- smooth âisc 
Expt. No. 

Figure 5.1 1 T d o n  c w e s  fiom rough top disc tests and 
matched snooth top disc tests for MCT 5+EP at Tr40 OC 

(e) 2 load levels, lowest u's 



Maximum ftiction f m  

The Fr - in mugh disc tI<pWrrnts Çfable 5.2) and the matchcd smooth disc experimtnts 

Vable 5.3) wcre obtained 51 the manncr d G s c n i  prcviousIy at the bcguuiing of this section. 

Once again, exprinnts in each row of Tables 5.2 ami 5.3 had the s a m  operating conditions 

but diffezitnt Iubricants. 

Table 5.2 Tht Fr, in rough top disc mwmcments 

* Refer Table 4.11 for the operating conditions 

hpcrimtot Fr- (NI 

Nomber MCTS+EP 

131 10.095 

132 10.61 

133 11.62 

134 12.60s 

135 13,795 

136 16.3 

137 16.655 

138 17315 

139 1855 

140 20.78 

141 9.685 

142 9.97 

143 1129 

144 12.335 

145 14.015 

146 15.665 

147 16.105 

148 17.345 

149 19315 

150 m.315 



Table 5.3 Thc Ff, in rnatdwl refuence smooth top disc x:mcnts 

* Refer io Table 4.12 for the operating conditions of each experiment 



5.2 Some Observations fmm the Traction Cuwes 

Blluenrcs of operathg conditions on friction fœce 

The influences of the F, u and T on ftiction hrce wcrc drawn h m  the resulCs of the smooth 

disc experimtnts. Fim, the maximum mtion force Fr, incnased with increasing load F 

(Figure 5.12). Slightly Iower Ff , tcnded to occur for the Iubricants with additives at the 

higher F. 

Secondly. Ff , demascd with increasing rolling velocity u @gu.re 5.13). As u increased, a 

pater amount of oil was drawn in the contact zone and caused an increase in the centrai film 

thickness a), which couid be caiculated based on the rehtionship d e s m i  in Eq. 2.24. On 

the other hmd, the inmase of u also caused an increase in the side-slip velocity (v), which 

could be expIained using the rclationship shown in Figure 3.6. As mntioneâ previously, the 

shear saain rate ( y )  expresscd by v/h, a&ctcd -the friction force as descr i i  by rheology 

models (Eqs. 2.42, 2.43, 2.45 and 2.46). There was no simple and k t  rclationship to 

des& the comprehcnsive results of the above Muence of m h g  velocity on the friction 

force. Howcvcr, at a smai i  and constant skew angle = 0.05, by which the Ff , was 

determined, and with the limitai velocity variation (u < 4 d s )  on the side-slip disc machine, 

the maximum friction force dccrieased with an inmase in mlling velocity. 

niirdly, the maximum fnction force Fr Y. dCCnaSCd with increasing iniet lubricant 

temperature (F@re 5.14). However, the influence of T was significant only at the higher 

loads. 



MCTS+FM, 23-26 

MCTS+AW, 41-44 

MCT 5 + EP, 59 - 62 

Figure 5.12 Intluence of applied loads on fiction force in smooth disc tests 
( for T = 30 C and various r o b g  speed about 2 mls ) 



4 Lubricant Expt No. 

Figure 5.13 Infiuence of rolling speed on friction force in smooth disc tests 
(for T=3O C andF=829.5 N) 



Lubncant E>tpt No. -+- MCT 5 +FM, 22.30.36 

I O  jC-- MCTS+AW. 40.48.54 

j 14- MCT 5 + EP. 58.66.72 

Figure 5.14 Effects of inlet zone tempgahie on fiction force in srnoobi disc tests 
(a) for F = 829.5 N and u = 2.3 m/s - 4 m/s 



Lubricant Expt. No. 

-+. MCT5. 1, 9, 15 

s - 9  - MCT S +FM. 19.27.33 

- 0  MCT 5 + AW. 37.45.51 *- MCT 5 + €P. 55.63.69 

Figure 5.14 Effects of inlet zone temperature on fiction force in srnoah disc tests 
@)forF =244.SN andu= l.6ds - 3.5mls 



Lubricant additives in s d  diPe arpaiments 

Tbere was a smali but distinct Md rcpcatabk decrw~e in Fr- as a resdt of the arlditivcs in 

the lubricam This decrease was shown clearly by comparing the values in cach row of Table 

5.1. The efffcts of adciitivcs was enhanced by high Io&. 

Both the FM and EP additives deaeased the Fr, comparai with the MCT 5 base stock 

alone under the sanr tcsting conditions. nie ~ n c c s  inn#iJcd with an increase in load 

and varicd h m  kss than 1 N undct a load of 24U.S N to about 3 - 4 N under a Ioad of 829.5 

N. However, the A W  anditive had the kast efkt on Fr, with almost the same values for 

loads of 244.5 N, 439.5 N and 634.5 N. and droppeù only 1 - 2 N for a load of 829.5 N. 

Subscquent anaiysis was expected to show littic di&tnce bctwcen MCï 5 and M m  5 + 
AW O&. Thus, not aii additives influence the rheology to the same extent When the 

influence was kss, thcre was less need for tùrther examination in the pnsent study. For this 

reason, and the nputcd difficdty in removing the ZDDP in the AW additive eom disc 

surfaces (Snyder, a ai., 1984). no m e r  work was performed with the AW additive. 

The effkct of inlet lubricant temperature was intensting. It was expected that a more 

significant influence of additives would occur at higkr temperatures. However, at the highest 

load. al i  of the additives were as e&ctive at low inkt temperature of 30 O C  as at higher inkt 

temperatures of 40 O C  and SS°C (Figure 5.14a). Since most additives, particularly the EP 

additive, were designeci to be chemically activated on a s d a c e  by high temperatmes, this 

inscnsitivity to inlet tempaanÿe suggested a Merent and unknown chemistry in fidl ehi films. 



5.2.2 Characteristics of mixed film lubrication 

A cornparison of the resuhs of the expCnments with mugh top d k s  R1 and R2. and the 

mtched eqmimnts with smooth top discs S1 and S2, gave a ckar view of the e&ct of 

surfact roughncss on et ion .  The Fr incrrased with Piaease in the composite smface 

rouglmcss 4. All the traction CUNCS h m  mugh disc tests showcd highcr maximum fiction 

force than that of smooth disc tests whcn they wert masureci under the s a m  F, u and T 

(Figures 5.6a - 5.1 le and Tables 5.2 - 5.3). Also. the traction c w e s  showed much steepet 

initial slopes in the rough disc experirnents comparecl with those h m  the smooth disc 

experiments under the sarne operating conditions. 

The dependence of Fr, on u was more pronounced for the rough disc experinitnts than for 

the smooth disc experimnts. particnlarly when u < 2 d s  (F@re 5.15). In Figure 5.15. the 

variation of Ff , with F could be found by masuring the length of vertical bars. where the 

upper end was the Ff , masureâ under the F = 244.5 N and the lower end was that 

measurcd undcr the F = 147.0 N. Thc Fr, incrtased when the load increased, both in the 

rough and smooth disc experiments. In general, the solid bars, whrh represented the resuits 

of the rough disc exptrimcnts, were longer than the dashed bars, which reprtsented the 

rtsults of the matched smooth disc experiments. Thus, Ff, had larger increases with F in 

the rough disc experiments than the smooth disc ones at the same test conditions. 

Inlet lubricant temperatme had a slight e f k t  on Ff , in rough disc experimnts. similarly to 

the behaviour descn'btd in the iast section for the sm>oth disc experimtnts with top disc SO 

and at the lowest F. However, under highcr loaâs, the inltt temperatures might have a more 

pronounced effect on Fr,. 



MCT 5 +EP 

Legend 

Results of 1 mugh disc tests 

T Results of 
L Smooth disc tests 

Figure 5.15 Effects of su&ce roughness an maximum fiction force 
(Ff max vs. u plots, at T=30 C) 

(a) for MCT 5, (b) f a  MCT 5 + FM, (cm MCT 5 + EP 



Eff8dS of lubrbnt additives in rai* aise erperirnents 

Both the FM and EP additive fbmuiated oiis duccd tk W o n  fime signifkantly under aü 

the rough disc testhg c o ~ n s ,  especiPlly at bwet roiling s p d s .  By comparing Figure 

5.15a with Figures 11Sb anci 5 .15~  over the whok range of u, the Ff, decrrased about 5.5 

N for MCï 5 + FM and 4.5 N for MCI' 5 + EP. This behaviom was significantly difièrent 

h m  the v a y  smali influence of lubricant sdditMs in srnoth disc expetiments in generai, and 

showed spaciocally in Figure 5.15 when comparing with the matched smooth disc 

experiments. 

Cornpa~g the traction curvcs for MCT 5 (Figures 5.6 and 5.7) with that for MC?' 5 + EP 
(Figures 5.10 and 5.1 1). the EP additive not only duced the fiction force, but also 

effectively reduced the oscillations in the traction cmes.  As mentioned in Chapter 3, the 

application of the o l  damper reduced the major mechanical vibrations. However, oscillations 

stiU existed in traction curves for both smooth and rough disc experiments, especially under 

high loads, high temperaturc and high rolling vebcities. In the smooth disc experUnents, the 

oscillations had a r e m  lumnonic pattem which rnight be relateci to the mchanical vi'bration 

daectly (Figures 5 . 3 ~  and 5.k ) .  However, in the rough disc experirnents, the oscfitions 

occumd more randomly. SupposedIy, they Mght include both the mechanicd vibration and 

the variation of the numbtr of interacting aspetities in the contact. But nevertheless, there 

were much las  of thest osciilations in the expcrimnts with MCT 5 + EP than that in the 

experiments with M m  5. 

5.3 Accuracy and Precision 

Generally, the evaiuation of any expcrimcntal nsults must consider ultimately accuracy and 

precision. Accuracy can be studYd by considering the underlying physics, checkhg 

calibrations, rnodifjhg procedures to remove unwanted signals and ushg alternative 



approaches to obtain simiIar rcsults. Recision is often shtdicd by repeating the exptriment 

under identical conditions to obsavc how cbse the ns& arc to each otha. This approach 

to studying p a o n  is known as npeatability. in Chaptcr 3, the wotking principk, 

cali'brations and som modifications of the sidaslip disc machine wcrc discussd in detail. In 

the prtsent section, certain issues rcgaiding the accmacy and rcpearability of the resuits h m  

the friction force mtasurtmcnts on the disc machine arc discussed. 

DeteRnYling Un origin of fn'cüm fara at zero skew angle 

Side-siïp was introduced by dcewing the top disc h m  = + 0.125 rad to = - 0.125 rad 

However, the majority of rcsults nponed in the pnscnt thesis were from 4 = O rad to 4 = 

0.125 rad and gave Fr -. The detemination of the zero îkktion point, where 9 = 0. was 

important in detemïining the Ft -. It was h s t  impossible to set an absolute zero position 

because of the high sensitivity of the Ff to srnail shifts in @ in the Ning region of a traction 

curve. However. the reversal in r o h g  direction allowed the orïgin of the Fr venus to be 

detemiined with high accuracy. The FWD and REV k t i o n s  of mlling changed the 

direction of the ftiction force but not its value. Therefore, a symmerrical "traction plot" 

(Figure 5.1) was constructed with the two traction curves and the zero ktion point was 

given at the intersection point 

Emr in Fr caused by friction of top disc supporting bearing 

The top disc in the disc niachine is dnven by a srnall fiiction force ttuough the lubricant nIm 

between the top and bottom discs. This driving Etion force applicd to the top âisc must 

overcom the fktional resistanx of the bail bearings which support the top disc shah. This 

baU bearing friction causes som slip in the roILUig direction and thus sub@t the lubricant to 

some shear stress even when the skew angle is zero (and zero slip has been assumed). 



contact I 

side-slip 

Figun 5.16 Esror causeci by fiction of top disc supportmg bearings 
(a) Free body d i a m  of top disc and shaff assembiy 
@) Tme fi5cti011 force 



nie nÉtional rrsiaMce of a mihg bcaring a r b s  h m  the mfling and südiog of the b a h  ovcr 

the inna races. Conside~g the top disc show in Figrnt 5.1& CM' =O hplics that 

For example, in a smooth disc test of MCT 5 with F = 634.5 N and the friction coefficient of 

self-aligning bail bcaring considercd as pb =0.0010 (Hanrock, 1994; SKF Gcneral 

Catalogue, 1980). a driving fiction force in the rolling dllaction is of Ffd = 0.115 N. 

Compand with the maximum Wtion force measraed in side slip direction of Ff , = 42.24 

N, the fiction force in the rolling dirtction is about 0.272 96 of the shear in the side slip 

direction. 

If there is Longitudinal niftion in the contact zone caused by the karing etional mistance, 

then the mie fkiction force acting on the lubricant is as shown in Figure 5.16b. So the percent 

emr in ushg Fr, rather than Fra is 

The cdculation for various test conditions aie su- in Tabie 5.4. Only if the fiction 

coeflkicnt of bail bcaring > 0.1 would the emr excecds 5%. A value of p b  > 0.1 is not 

iikely to have occumd. 



TabIe 5.4 Error in M o n  force caused by friction of top disc supporting bearinp 

F M  Pt- @O b= YI %err 
147.0 8.48 0.067? 0.0010 O.OOC# 
147.0 8.48 0.06n 0.010 0.05 

147.0 8.48 0.0577 0.10 4.6 

al45 15.19 0.0621 0.0010 0.00043 
4395 2835 0.0650 0.0010 O.Cial39 

634.5 42.24 0.0666 0.0010 0.00037 

8295 56.59 0.0682 0.0010 0.00036 

Top disc aiignment 

The symmetry of the measund aiction force variations in the four quadrants of the traction 

plot provideci a check on the accutacy of the disc machine alignmtnt. Before f i t i on  fom 

masuremnts were s*uted, som pnlimù>ary tests were perforrncd to check whether the top 

disc was aiigned with the bottom disc. if the whok top disc assembly was not aligned 

properly, the zero skew angle on the protractor would not comsponded the zero value nom 

the direct current displacement transducer (DCDT), and the plot of the FWD and REV 

traction cums would loose their synnietry. To overcome this misaügnment problem, the top 

assembly was continuous~y repositioned until the + vahie nom the protractor matched the 

DCDT output. If the top disc was tilted in y-z phm. it introduced an extra spin f o m  

perpenàicuiar to the rolling dmction, which would have shearrd the fiim in the contact. This 

extra force. either positive or negative, showcd clearly in the recorded data, in that, the zero 

of @ fiom the crossing of FWD and REV W o n  curves did not occur at zero of Fr. To 

overcom this tilting probkm, the top disc yoke was balancd by resetting the ieaf sp~gs.  

Then, the top disc axis was adjustcd by a wom and gear drive, as wen as an adjustable 

protractor and traction plots were gcneratcd until the requitcd zero tilt was achieved. 



Dise d a œ  deaning 

The tests aiways Jtarted h m  using pme base stock oii MCï' 5 6rst and, subsequently, the 

additive formuîations. The dint adàitive foRllllfafiOns for the major -0th disc exptrimnts 

with top disc Sol pmcccdcd h m  the FM to AW and thcn EP additive oils. nie two arlctitivt 

formuiations for the mugh disc exptrimtnts with top discs R1 and R2. and the matched 

smooth disc expaimnts with top âiscs SI and S2 wcn  pcrtomrd h t  with the FM additive 

oii and then the EP additive o l  Bcfore introducing a new iubncanr. all the components in the 

whole lubricant circulation system, such as the o t  tank, vaivcs, heating pipes, OP mavoir and 

two discs, werc cltantd thoroughly by varsol and tbcn aatone. Also. the oü mter was 

replaced The ncw luôricant was aiways run through the system before the reaî test and 

du@ out. Then the tests mrc perfomiad with a second quanaty of the new Iubricant. 

One top disc was uscd for only one group of tests. For examplt, &CC the EP additive OP was 

tested on the disc machine, the top disc was repîaceâ by a new (or rcpolished) one. The useâ 

disc was sent back to the machine shop to be iightly cut (to a depth of 1 - 2 pm) on a lathe 

and repolishcd with a fine diamond paste to the s a m  RMS roughness level The bottom disc 

was &O repolishcd h m  tmie to tirne, especiaiiy when the top disc was changed fkom smooth 

to rough, or vice versa. 

Repeatabiüty 

For each combiiation of test conditions (F, u. T and 6, the experirnents were npeated to 

produce at least two and somtims four traction plots. The ftiction force masurernents 

showed very good npcatability as shown by the four traction plots in Figure 5.1. To check 

repeatabiiity mon rigorously, a set of exptriments was perfomied with new disa (S02 and 

Bh), which had almost the s a m  RMS roughness as discs (SOI and Bol). using only MCT 5 

base stock lubricant but varying F, u and T. Thus, the exptriments numbmd 73 - 90 were 

under exactly the s a m  testhg conditions as the expcrimmts bennnen nurnbers 1 - 18. The 

FI, values for the comsponding expahcnts wen vcxy close fiable 5.5). 



Table 5 5  The Fr, in two rcpcaftd sets of smooth disc tests for M m  5 

However, much later in the research program when a final set of expetimnts with a smooth 

top disc was perfomied under conditions which matched those of the rough disc experimnts. 

Fr, seetneci to decrease compand with the previous smooth disc test results (Figure 5.17). 

The new top discs (S 1 and S2) with the repoiished bottom disc (BS) gave approximately the 

same composite RMS surface roughness as the one for the top discs SOI or S& and bottom 

discs BOI or B&. When the testing conditions wue exactly the s a m  as in the previous tests. 

the di&=rence in Ff , was about 2 - 3 N. Fortunatcly, the Fr, for the lubricants with 

additives féli bclow that of the base stock as before, and thus, the overail average Fr , for the 

base stock remained above that of the lubricants with additives, 



MC1 5, top di# Sô, 

.,+ FM, top dbc Sq 

MCT S. top dise S2 

.-+ FM, top dise S2 

Figure 5.17 Cornparisan of Ff, of smooth top disc experiments 
befare and a f k  rough disc eqeriements 

(T=3K, F=244.5N) 



of the mcasured Ft- possiiks h m  the traction pbts and the data hiles for a paRjcular set of 

testing conditions with base stock oil vabk 5.6 and Figure 5.18). CkarIy, the di&=rcnces in 

the rcsults did not secm to bc statistlcan . . 
y signüjcant snd thus the physics of tht cxpcriments 

nitasurtxmnts in individuai fun eh1 txpcrimnts and to test the dinerent Iubricants in a 
- scqucntial mannet. When this was done, smaü but consistent dit&~nces werc always f o d  

in the Fr,, for the various lubxicants. 

Table 5.6 MuitipIe Fr, Nasurements 
(Performed in txptrimGnts at the beginning, micidie and end of 

the present stuày for MCT 5, F = 2445 N, T = 30 O C ,  u = 2.5 d s )  

R- (NI h " m  OV) Fr- O 
Early Expt. Na 5 Rtpeat Expk Na 77 Later Expt. Na157 

1426 14.36 13.2û 

13.28 1438 14.57 

16-07 14.91 13.22 

17.09 14.10 13.49 

15.68 16.77 13.64 

14.61 16.47 14.42 

1260 16.24 13.92 

14.80 16.54 13.05 

15.91 

14.96 

15.83 

14.91 

The reason for the scatter shown in Figure 5.18 was not deterrriined, aithough reduced 

friction in the top disc skewing assembly by introducing a brass shim between süding surfaces 

of steel ring and bras block did seem to be nsponsible for reduceü scatter and improveâ 

syrrimetry in the traction plots in the later experimnts. It was suspected that a combination 

of minor inûuences might have conspired to shift the average values in Figure 5.17. In any 

case, changing the lubricant formulation for a particular set of discs did change the average 



Early 
Expt. 
No.5 

Repeat 
Expt. 
No.77 

Later 
Expt. 

No.157 

Figure 5.18 Cornparison of multiple Ff, measurernents 

(Pdanned m experixneuts at the beghmkg, middle and end of 
the present study fm MCT 5, F=244.5N, T=3K andu=25mls) 



F- in a rtptatabk rrianntr, while it would be pnfcrabk to have a more "@bal" 

rcpeatabiiity, subsequcnt anaïysis did show that the d i û k f t c ~ ~ ~ ~  in avcragcs of Fm fot vIUiOus 

lubricants codd st i i l  givc usenil dieobgicai information. Future improvemuits in 

experimtntai pmtocols might lead to a bata giobai ~tpcatability. 



Chapter 6 Analysis and Discussion 

This chapter aiialypes and discusses thc ~splts coDMCd fiorn ail the groups of friction Conr 

mtasutcrrients on the disc machine. First, the maximum cotfncitnt of M o n  fbr each 

experimnt was pbttcd vasus k ratio. Secondiy, the maximum friction force (Ff.,,,J h m  

each expetimcnt wîth fun ch1 (the smooth top disc, b > 3) was used in an enpincal procedmc 

to detemine the limting shear stress as a fiinction of pressure for each of the forrnulated 

lubricants. nie tbkd anaiysis examincd Fr, h m  the txpcrimnts with micro-ehl (the rough 

top disc, Â CC 1). estiniated the r a i  area of contact, and catcuked both the average liniiting 

shear stress and average film pmsure. For cach of the formulated lubricants, the limiting 

shear stress obca8ied by extrapolating the functional nhtionship with pressure, which was 

derived f?om the experimnts under M eh1 conditions, was compareci with the value bascd on 

the masmrnents under micro-ehï conditions. The efficacy of using disc machine fiction 

measurements under fuii eh1 conditions to examine the influence of lubricant additives on the 

fundamental rheologral pa*uncter of lirriiting s h w  stress was discussed based on the 

analysis. 

6.1 Influence of 2, Ratio on Friction Coefficient 

As mntioned in tht previous chapten, the X ratio was used to characterize the extent of 

asperity interaction and to distinguish the Iubrication mgimes. The A ratio was the cenaal f ï h  

thickness b), pdicttd by an eh1 formula, dividtd by the composite RMS roughness (6) of 

the contact surfâccs (Eq. 2.35). In the prescnt study, the aiction force mcasurannts on the 

side-slip disc machine werc arrangcd in groups, which werc assigneci to various lubrication 

regimes by their A ratio (Tables 4.10 - 4.12). However. Jeff'eris and Johnson (1968) found 

lit& change in friction with Lrreasing asperity interaction. If the side-slip machine was to 

provide rheologkd informition, it was expected that di&.,rcnces in I ratio shouid correspond 



to detcctabk chg&in M o n .  nitrtfore, a @le analysis was p r f o d  whrh consisad 

of ploaing Oie k ratio versus the maximum friction cafficicnt 0. 

In the expanientai work with the sidoslip disc machine, the fricton force acnascd rapidly 

as the skcw an& (e) kreascd h m  zero, untii an ahnoa constant value was reachcd when 

P 0.OSrad (contsponding to a skie-rail ratio of about 5%). nimfore, = 0.05 rad was 

specincd to correspond to the maximum niction force (fi-) in the andysis and the ~irp was 

The Fr, &ts were taken fmm Table 5.2 for the rough slirface disc tests and nom Table 

5.3 for the matched smoth suriace disc tests. As mntioned in Chapter 5. the Ff - listed in 

these two tables are the average of at least four traction measuremnts for each operating 

conditions. which couid be f o d  in Tables 4.1 1 and 4.12 foUo wing the specined experiment 

number. Thenfore, the calculated results of p- are the average values, which are given in 

Table 6.1 for the rough surface disc experimnts and in Table 6.2 for the mtched srnooth 

surface disc experiments. 



Table 6.1 The in mugh siirface disc expcrimtnts 

ejcpcriiacat )i.is 

Nambet MCT S + EP 

131 0.0687 

132 0.0722 

133 0.0790 
134 0.0857 

135 0.0938 

136 0.0447 

137 0.068 1 

138 0.0708 

139 0.0759 

140 0.0850 

141 0.M9 

142 0.0678 

143 0.0768 

144 0.0839 

145 0.0953 

146 0.0641 

147 0.0659 

148 0.0709 

149 0.0786 

150 0.083 1 



Table 6 2  nie ri, in matched smooth s u r f !  disc cxpcrimcnts 

-=t b 
Nuaber MCT 5 + EP 

191 0.0497 
192 0.(#8% 

193 0.0497 

194 . 0.0078 

195 0.0488 

1% 0.1151 1 

197 0.0519 

198 0.0512 

199 0.0514 

200 0.0519 

201 0.0445 

202 0.0428 

203 0.0443 

204 0.û447 

205 0.0445 

206 0.0456 

267 0.W8 

208 O . m  

209 0.0456 

210 0.0479 

The overview of the influence of the b ratio on the p- of the mtched experiments is shown 

in the following figures. Figure 6.la is the results for the F of 147 N with top smoth disc S 1 

and rough &SC R1 at T of 30 O C ,  and Figure 6. l b  is for the F of 244.5 N with discs S2 and R2 

respectively at same temperature. Quite sùiiüar behaviour of p- versus k is fonnd at T of 

40 O C ,  the results are shown in Figures 6.2a and 6.2b with other conditions as the same as 

those in Figure 6.1. 



Figure 6.1 Plots of the maximum Mion coefficient versus A ratio at T=30@ 

(a) top discs S 1 and RI, F=lM.O N 



a MCTS 

MCtS+FM 

A MCTS+EP 
-- esümated interpolation 

Figure 6.1 Plots of the msvcimum fiction coefficient verrus h ratio at T=30@ 

(b) top discs S2 and R2, F = 244.5 N 



0 MCTO 

O MCtS+FM 

A MCTS+EP 
-- estimated interpolations 

Figure 6.2 Plots of the maximum fiction coefficient versushaho at T4O"C 

(a) top discs S 1 and RI, F = 147.0 N 



Figure 6.2 Plots of the maximum fkiction coefficient versus h ratio at T=40@ 

(b) top discs S2 and R2, F = 244.5 N 



In tbest figures, the p- was a p p f o ~ l y  constant for each lubricant as 5 > 1.8 

cornspondùig to the -0th top d k  expthnts .  Fiom the data shown in the Tabk 6.2. the 

additives had only som smaü but rcpeatabk e&ct on ~i, in these cxpcrïmnts. Both the 

FM and EP additivt lubricants showaï süghtly bvn p- than base stock abne. This srriPI1 

e&ct pcrsisttd until X CC 1, wheccupon both the FM and EP additives rcduced the p- 

signiticantly cornparcd with base stock alone. Thh couki bc a result of aie e&*s of asperity 

interactions in the rough top disc eqcrimcnts. When the 5 was k t w a n  0.24 to 0.55. the 

p- incnased gradudy betwan 0.06 and 0.10. In m s t  cases, the EP additive reduced the 

p- more than the FM aâditivcs. For h just below 0.2, an abrupt increase in p,- occmed 

for each lubricant, and especiaiiy the li, value for the MCï 5 was two or thne times the 

value for > 1.8. 

As suggested by Hamrock and Dowson (1981), the incrcase in coefficient of fiction 01) 
distinguished the transition of lubrication regines Figure 2.15). The region of their film 

paramter (3 < n* < 10) comsponded to the fidi ehl and gave the lowest p. In the present 

experimnts. this region extendeâ to h of 1.8 @* = 1.2) and the was not over 0.06 for 

each of the Iubricants. But in the lowest k ngion, the 14, was above 0.10, which is 

conventionally recognucd as the value for boundary lubrkation (Wüliams, 1994) and the 

chernical properties of lubricant additives were considenxi to dominate the Wtion, together 

with the extent of the contact zones at the asperity dps. 

6.2 Empirical Approach to Determine Limiting Shear Stress 

The intent of the prcsent study was to examine the influence of additives on lubricant 

rheologral parameters in eh1 and micro-ch1 films using a disc machine. In these eh1 and 

micro-eh1 fiIms, the various rheologicai moâels discusscd in Chapter 2 pnsenteà different 

interpretations of Iubricant behaviour at very low &car strall, rates and relative Iow pressures. 



Howevcr, tha was a gcncral a p m n t  that lubricant reached a limiting sheat stress (rL) at 

shear strain rates just siightly higher than zero with high film pressure. Sincc lubricants in 

many praictid contacts are considucd to operate under these conditions, TL i s  an important 

rheological paramter and deteminhg the e&t of lubricant additives on it was consi;dcred to 

be consistent with the obptivcs of die present study. 

An enpirical approach dcveloped by Wu and Cheng (1994) was uscü to determine the TL 

nom the M o n  masurcrritnts obtained with the side-si@ disc machine. S o m  fkatures of the 

contact w a e  describeci in prcvious chaptus and could be surnmarizcd as foilows: 

(1) isothemial lubricant film 

(2) film pressure close to that given by Hertzian theory 

(3) unifonn oilnIm thickness & over a contact zone approximately equal to that 

given by Herrzian theory 

(4) both surfaces moving with the same velocity (u) in the rolling direction, but with 

a side-slip velocity (v) superimposed on the lubricant nIm 

(5) uniaxial shear in the side-slip dirrction 

6.2.1 Determining the limiting shear stress index number 

The empmcal approach of determining the iimiting shear stress index number (m) was 

describeci previously in Chapter 2, Section 2.4.3. This approach assurned that the lubricant 

had reached the limiting shear stress throughout the contact. Since the temperature was 

considered at a constant, the t~ was relatai to pressure only and could be relateci to the 

maximum e t i o n  force (Ff by intcgrating over the circular contact area (xa2) and talchg 

into account the pressure variation over the contact. For a specified load and temperature, 

the contact ma, maximum pressure (p-) and Fbor werc either caiculateâ or m a s d  and. 

therefore, Eq. 2.50 couid bt uscd to relate TL to a function of pressure @) and index number 

(ml- 



To determine the value of m for a partjcuiar lubricant at a spcifk temperature, Eh was 

nicasand at cach of four opplicd bads and TL = f @) was obtaincd h m  Eq. 2.50. The 

experinicnts imrolvRg the smooth top disn (SOI, Sh) with A > 3 werc used for thcse 

cakuïations. At the sam film prtssure (p). the TL expression indicated that rom valac of m 

must exist such that the same t~ couid bc CalcuiatCd for each applicd load 

Wu and Cheng (1994) did not W a t e  ckrly how this m valut was dettrmincd. In the 

present study. a voluc of p was set equal to the maximum He- pressure for the lowest of 

the four lcvels of appücd load. An m value was specined and Eq. 2.50 was used to calculate 

for values of TL. An average of the four TL values (TL) was cakulatcd and the sum of the 

s q u d  residuais was detemincd as follows: 

For exampie, the traction force measunmnts for MCTS at a iniet temperature of T = 30 OC, 

(experiment numbers 5 - 8. 23 - 26. 59 - 62) and Eq. 2.50 gave the foiIowing four 

expressions (conesponding to loads of 244.5 N, 439.5 N, 634.5 N and 829.5 N) for the 

limiting shear stress 

r,, =4303~10~(rn+l )(1038Px 10') 



For ~ 1 . 0 3 8  x 10' Pa and m4.6. 

ru = 68.85 MPa, 

7~ = 69.15 MPa, 

= 69.14 MPa, 

ru = 69.78 MPa, 

and 

F, = 69.23 ma, 
e = 0.4614 

The above calculations wen  perfommi automaticaily by a FORTRAN cornputer program 

'TL.FOR". This program was run for ranges of m values, starting nom O to 1 and reWg 

within that range u n d  the m value was determineci to three significant digits, which gave a 

minimum e . A single minimum E always o c c d  at about m = 0.6. In the above example m 

= 0.615 comsponded to the minimum E. 

The same procedures were appiied to MCï 5 + FM and m = 0.565 was obtained. Sirililarly, 

for MCT 5 + EP, m = 0.523 was obtained. 

In applying this minimum square residual method to determine m, two factors influenceci the 

results. The first was the numbcr of load kveb involved in the detedation. A slight 

change in m occurd when thnt load levels were used instead of four and mort substantial 

change occurrrd whcn two load bels wcrc used. Thus, it was apparent tbat m was 

inauenced by the inevitabie scatter in the finction mcasurenients. nie recomrrnded course of 

action was to use at least four load leveis and repeat the measunmenu at each load level 

more than once. The second factor was the seiection of p. The seiected p changed h m  

1.038 GPa @, at F = 244.5 N) to 0.8 GPa, the m value increased only slightly. thus 

indicating that the calculatcd m value was not very sensitive to variation in p. 



6.2.2 Emplricai expression of TL as function of film pressure (p) 

Once the index numbcr m was Cicttintincd, an enpirical expnxsion for the &ïtionship 

betmen TL Bnd p was genetated (Eq. 6.3) by substitoting the values of Fi, na2 and p, for 

a particuiar loaci level inm Eq. 2.50. 

7L = c e p h  (6.3) 

when: C - an average value calculated fhm four Id levels 

For both TL and p in Pa, the index n u m k  m and the proportionality constant C for the 

exanrpk given in 1st section w a e  evaluatcâ Vabk 6.3). Simiiar predictions for temperature 

of 40°C w e n  baseci on the tests of experYnent numbers 9 - 12, 27 - 30 and 63 - 66. The 

Feu data could bc hund in Table 5.1 and the comsponding test conditions were listed in 

Table 4.10. Through the samc procedure, the rn and C were found and listeci in the s a m  

table uable 6.3). 

Table 6.3 Constants for the expression of Q versus p (Eq. 6.3) 

Temp.(.C) CwrÉPnt MCTS MCT 5 + FM MCTS+ EP 

30 C OS&-3 0.436-2 024%-1 

m 0.615 0565 0323 

40 C 0.134~-2 03095~-2 0.1305~-1 

m 0.594 0371 0.536 

6.3 Real Area of Contact for Rough Surface Discs 

Surface roughness has a signincant effit on ûiction force in mixed film lubrication. This 

effect is a consequence of the decrease in the reai area of contact with increased surface 

roughness, which then resuits in high contact pressm. To continue the rheological analysis 



in the p m n t  stuüy, 1 is n a z ~ s a r y  to estimate the mai area of contact (Ar) for the mugh dne 

experiments. 

A p r d u r e  of the determination A, for a mugh surnice against a rigid smooth surfas was 

introduced prwiously in Chapter 2, Section 2.3.3. h m  the roughness mtasmmnts of 

HSC and BA for rough discs, the contact spot density (n) at various scparations bctwccn two 

contact surfâœs, the average sririace height (W. avengc asperity height (d*& and theù 

deviations (a and o') were found k u g h  a simple stochPstic anaïlysis of BA and Mn-. 

Then, a Greenwood and Wiïümson type of contact mode1 was applied to detemine the real 

to apparent contact arca ratio (m under a particular load fonowing the mthods describeci 

by De Vaii (1983). 

6.3.1 Bearing area and bigh spot count 

A Talysurf 5 profilomter was used to quantify the surface roughness of al1 discs used in the 

present study, and gave the BA and HSC at various heights z in the asperity tip region of the 

rough surface discs (Tables 4.6 and 4.7). Then, the denved formula (Eq. 2.30) can be used to 

cietennine the contact spot density n from the BA and HSC, which were masured Born rough 

discs RI and R2. 

However, as mentioncd in Chapter 2, the statisticai analysis mthod, which was developed to 

prepare the paramters for a Greenwood and Wiliiamson type mode1 to determine the &, 

requins plots of BA vs. z and dn,  vs. z on probability papen to check the surface and 

asperity height dism'butions. Since the processor of Talysurf 5 selectcd the ris intemaIly, it 

was not always possible to get enough data in the asperity tip region. To generatc more data, 

thne traverses wert tPken on the same rough surface disc (for exampk RI). Then, additional 

values were obtained by interpolation with pkewise third order polynonrial cuves which fit 

BA x 100 versus z on a linear CO-ordinate system (Figure 6.3). The coefficient of 



Figure 6.3 Polynomial c w e  fitting of BA versus z for rough disc R1 



dcttrniination', R-Squareci value rcachcû 0.982585. Disaetc data obtained b m  this c m  

fits and siniilpr oncs ôor HSC (E5gurt 6.4) allow niany discretc n values to bc calculateci and 

to be determincd (Table 6.4). 

Table 6.4 Rcsults of m e  fitting for rough d a a  disc R1 

z-) BA HSC ('hm) m(Ymma) (dn,"dxlOO 
-0.4 0.013537 44.2141 22'19.42 - 
-03 0.653722 45.0881 244242 100 

4.2 0.624427 4320!59 234798 96-13 

4.1 0385890 389272 203202 8 3 s  

0.0 0538656 32.7303 1561.99 63.95 

0.1 0.451894 273070 1295.99 53.06 

0.2 0.372834 22.3892 1065.97 43.23 

0 3  0301475 17.9770 841.92 34-47 

0.4 0.237818 14.0703 633.8 1 26.77 

O S  0-181862 10.669 1 49139 20.13 

0.6 0-133- 7.7734 35521 14.54 

0.7 0.093055 53833 24459 10.01 

0.8 0.060204 3.4987 159.69 6.54 

0.9 0.035054 21 197 100.67 4.12 

1.0 0.017606 1.2462 6928 284 

1.1 0.007859 0.8782 07-07) - 
1 3  0.005814 1.0157 (139.37) - 

The above &ta were plotted as BA x 100 vs. z on a probabiiity paper (Figure 6.5). For the 

rough disc RI, the BA data were fit with a straight line in the asperity tip region of the 

surfaces. The roughness promes were measured after run-in and did not have an overail 

Gaussian distribution as shown in Figure 4.5b. However, the sdace height distriiution was 

Gaussian in the asperity tip ngion, which made intimate contact with the smooth disc surface. 

The features of the distribution included the average surfacc height (da,,& and standard 

deviation (a), both of which were detemiincd ftom this plot. Foliowing Eqs. 2.3 1 and 2.32, 

da- = O and a = 0.48 pn for mugh disc RI. 

The coefficient of daaniinatim. R-sq& d u e  qua is  1 - SSrl(SSe+SSr), vhae SSe is the Residual sum 
of squares* and SSr is the Regredon swn of squzves (Grsipher fM Wmdows Reference Mamai, 1994). 



Figure 6.4 Polynomial c w e  f i h g  of HSC vernis z for rough disc R1 



Figure 6.5 Plot of BA cm probability papa to detesmine da., and for disc RI 



In the s i d a r  nipina, piectwise third oider polynoniinl c u m  was fit to the HSC data figure 

6.4). The coe-nt detemination, R-quaricd value was 0.980137. Data mterpoktcd ushg 

the c m  fit wae substitutcd togethtr with BA data into Eq. 2.30 to calculate the n and 

n/ i i i ,  for each z CI.blc 6.4). Finsny, the diirr x 100 VC~SPS z was pbtted on a probabiiity 

papcr (Figure 6.6). Folbwiag the Eqs. 2.33 and 2.34, the awagt aspcrity hcight was found 

as, ci*, = 0.1 1 pm and a+ = 0.47 Fm for rough disc RI. 

Both the BA Pnd HSC pbts on probability papcr haù lines fittecl mandy. Software rnight be 

developed eventualiy to pafonn this task autorriatically and wouJd have to includc an 

"exclusion criterion" for points in the Iow and very high z regions which were not distrlbuted 

in a Gaussian fashion. However, such software would have to be carefuIly crafted to 

outperfom such a m u a i  fit in which both slopc and exclusion criterion can be considemi 

simdtaneously. 

6.3.2 Surface separation and real area of contact 

To estimate the &, it was decided to tmiporarily ignore the presence of lubricant. Also, it 

was a s s u m d  the & was rcpresented accurately by a flat rough sudice with a Henzian 

apparent area (A.) against a smooth flat surface. Although, the Aa was infiuenced by the 

surfafe roughncss (Greenwood et. ai., 1984). for an elastic contact of sdaces with Gaussian 

distributions of surfixe and aspcrity heights, the & depended mostly on the bad and was 

relatively independent of the A.. 

A Greenwood and W-on type mode1 (Section 2.3.3) was used to determine the & for 

the present study. In this model the separation (2) bctwcen a rough and a smooth contact 

surfaces was found and used to determine the & for a specifk load A FORTRAN computer 

program was wrïttcn to hi the separation z by using a secant algorùhm for the non-hear 

Eq. 2.40 (rtpeated below). 



Figure 6.6 Plot of HSC on probability paper to detamine d*,, and d for disc RI 



In this equaiion. t anci h* wen implmt in the pmbabiüty density fiinctioni F&). FI(&*) 

and Fi&,*). For any given z, or z:. the comsponding fiindons wae evaluaad by 

interpolation b m  the disciete values in TaMe 2.3 (McCool 1986) ushg a naturai cubic 

spiinc routine @avidson, 1988). 

The aforemntioned example (Section 6.3.1) was used to demonstrate the caiculation of the 

@, A. and N A ,  For the applicd load F of 147.0 N, ttduced clastic moduius E' of 

219.8 x 10' Pa and reduccd raàïus R of 2258 x 10" m. the apparent contact area fiom 

Hertzian formuia @qs. 2. 10 and 2.1 1) was 

The surface roughness paranters fiom Section 6.3.1 were: d, = O pn, Q = 0.48 pm, d*rq = 

0.11 pm, a* = 0.47 pm and n, ~244242  mm-*. lnserting these values and the test 

condition pa~amctcrs. F, E' and & into Eq. 2-40 and using the secant algorithm with cubic 

spline interpolation gave 

z,  = 02373, and z: = O.ûO83S. 

The comsponding values O€ Fj(r)'s wert: 



It was now possible to calculate die p. A, and A/&: 

(2) the reai a r a  of contact (Eq. 2.36) 

(3) the ratio of the real to apparent contact areas 

AU of the above calcuhtions were pufornicd by a cornputer program SECANT.FOR. 

Despite distinct dinetences in input data, nsults for discs R1 and R2 exhiibited remadtable 

similarity in their output data pable 65). 



Table 6.5 Caiculation of B. A and AIA. 

PorPoietet D k  R I  Dlrc R2 

Iapmt Fo'Q 147.0 244s 

EUM) 0.0 0.0 

a m )  0.48 0.55 

dg, @a 0-11 0.03 

a' 0.47 0.45 

iiip(d 2442.42 31 16.27 

A. (-4 025 151 0.35307 

0- t 0.2373 0.1574 
t* O.ûû735 0.1257 

Fo (4$ 0.4062 0.4375 

FI (&*) 0.3958 0.3319 

FIS(&*) 0.4249 03574 

$ (-1 0.1423 0.1132 

Mnimt)  0.05108 0.07723 

Ad& 0.203 1 0.2187 

6.4 Comparisoa of TL from Experimenfs with Smootb and Rougb Top Discs 

A number of experimnts was ptrformd under full chi with various appüed Ioads and the 

measund maximum fiidon forces were uscd to h d  a functiond relationship between 

luriiting shear stress and pressure for each Iubricant (Eq. 6.3 and Table 6.3) as described 

previously in Section 6.1. C o d  this rheological equation be applied to predrt the average 

limiting shear stress for each lubrruit (t- = Fr, / &) as asd in the expehnts  with 

the rough top discs? If so, strong circumstantial cvidence wouki à found for the existence of 

micro-ehl, The rcduction in the niaximum firiction force as observed for the lubricants with 

additives in the rough top dUc experimnts could bc amibutcd to a change in the k t i n g  

shear stress which had been evduated unûer fidl ehl conditions. To develop the application of 

Eq. 6.3, it was uscd k t  to prcdict tm in NI ciù. 



One approach to ushg Eq. 6.3 to predict TL, was to simply substitutc in p = p, and exptct 

that TL = Sincc Eq. 6.3 was derived h m  Eq. 2.50 w k h  containcd the exact r~ , the 

emr in the substitution of p = p, codd be derived as foiïows: 

Evaluaiing this expression for the m values obtained for the pnsent smdy gave a maximum 

error of less than 2 96. 

To check the approximation of TL, by substituting p, into Eq. 6.3, a cornparison with the 

mas& TL was perfomicd (T'abie 6.6). The agreemnt was exdent, weîi within the 

expected 2 1 maximum. However, it was noted that the C and m values in Eq. 6.3 had been 

denved k t l y  ftom thcse experimtnts. and thus, excellent agreement had to occur if the 

precision of the experirnents was good. Nevertheless. it was estabiisheâ that an accurate 

pndiction of TL, was possible by substituting p = p .  into Eq. 6.3. 



Table 6.6 Muwred and pedicad TL, for chi conditions 

?hW fmm ftiction measurements wîth a rough top disc 

The friction forces masund in the experimcnts with the rough top disc were assurcd to arise 

nom isolatcd micro-ehl In isolatal micro-eh1 of a surface with sphcricaiiy tipped aspcrities, 

the film pressure could be approxinrated as a numkr of localizcd Hcrtzian distriiutions. In 

the present study, it s c t d  reasonabk to use Eq. 6.3 4 t h  p = p.- for all of the micro- 

contacts to prcùict - The predrtcd ?- could be compared to the directly masured 7- 



that was obtaincd h m  dMding the masurrd maximum e t i o n  force Fr, by the cstimated 

real area of contact A, 

As 5 dcuuiscd, eitba a transition h m  coopaatm to isolateci niiaochl or film brtakdown 

occiimd in Jorn of the micro-contacts, both of which could cause increasing Fr -. To 

stock ol did secm to have a big inacPsc btbw Â. = 0.23. which suggested a keaLdown of 

micro-eh1 and gave a basis for sekting the above lower linrit for the range of L The upper 

limit was chosen because no ûktion mtasurtmcnts were available for 0.54 < A, c 1.8 and at 1 

= 1.8 the Fi, values weze as low as for M th1 thus Udicating 1itt.k damehl  took phce. 

For subsequent comparisons, two vaiucs of r t ,  were caiculated fkom the Ff, obtained for 

the highest and the lowest k values Ui this specincd range. In thîs mariner, a range of TL, 

values were estimatcd with a comsponding p, for the lubncants in each of the experimnts 

with top discs R1 and R2 (Table 6.7). 

Table 6.7 Measured and pndicted 7- for microchl conditions 



nie prtdtcted tk, couid be c o m p ~  with the d k t l y  masurcd one in the isolatcd micro- 

ehi (Table 63, A more obvious camparison was nide by plotting the data of Table 6.7 in 

Figure 6.7a for T = 30°C and F'igun 6.7b for T = 400C The pndicttd incIudcd values 

nom Table 6.7 and hinha discrttt values üstcd in Table 6.8, which were g c n c d  by 

substituthg p, values into Eq. 6.3. An of these values weie iinked by a sood linc gencrattd 

using a cubic spline interpolation. 

Table 6.8 Rcdictcd TL, from ernpirical expnssion with p, 

Mh) (T = W C )  

MCTS MCT S+FM MCT 5+EP 

28.984 26.758 27.697 
66.036 59.063 58.235 

106.899 93.857 89.947 

150.452 130.371 122.445 

196.122 168.222 155.541 

243552 S07.171 189.122 

292.499 247.040 223.1 10 

The agreement between the dirrctly masund and pndicted was quite good, particularly 

for the tests at F = 244.5 N (with top disc R2). Since two test temperature had only a 10°C 

di&rewc, an influence of temperature on additive performance was not found AU of the 

lubncants showed a slight âeaease in TL, with increasing temperatme. 

The cornparison indicatcd that in the rough disc experimnts with b ratio greater than about 

0.24, microchl occumd and the shcar stresses throughout the contact rcached the limiting 

shear stress. niucforc, the limiting shear stress mode1 can describe the lubrication in the 

present isolatcâ micro-ehi regirne. 



A MCTS+EP MCT 5 
0.3 - - 

a + FM 
* 

+ EP 

0.2 - - - 
- 

0.1 - 
- - 

Figure 6.7 Cornparison of predicted andmeanired in ehl and micro-ehi 

(a) T=3O C 



Figure 6.7 Cornparison of predicted a d  measund .E, in eh1 and micro-ehl 

@) at T=40°C 



h m  the engineaing point of Mear, &taniUiUig the TL h m  fktion mtasurtllltnt in a side- 

slip disc niachine unda niII chi is a osfui technique. Altbough -0th discJ arc qPirtd, 

long m-in is not requaed and experimnts can be p a f o n d  with niUiiniP1 sprbrce chnage* 

It is a sinpk and low cost procedure as c o m p d  with the expensive fidi enginc tests and 

field tests* It is Jso more pzecb than som sinple pme süding tests in whkh extensive 

snrface damage occuncd h m  slidng Paion. nit -nt nrthod givcs a direct cvaluation of 

the r ~ ,  a contro111lig rheological paramter in micro-ehI, and h sensitive enough to giw 

dflerent values for diffititnt additives. 

Although no other res«uch groups have testeci MCI' 5, the lirrriting shear stress versus 

pressurc nsuits of the pnsent smdy can be cornparcd with those obtained by others using 

various O& to ascertain whcthcr the pnscnt rcsuits an in the samc range. n iey  are Udced in 

the sarne range 6.8). 

In summary? the disc machine can be used as a test apparatus to saeen a large number of 

IubRcant additives. Disc niachine ~sults can provide uscfal information on rheology for the 

designers and usen of lubricant additives. However. the present mthod should be applied to 

more other additives and high temperatures to explore the generaiity of this approach. 



200 
mcosity: 
Santotrac 50 0.028 Pa s (MC) - MCTS 0.025 ?a s (30%) 
HVI 0.140 Pa s ( W C )  
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(Evrnr & J o h m ,  
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Figure 6.8 Comparison of present Lg vs. p with o k  researchers' values 

(Resented data fiom Bair and W h z ,  1979; Carm and Spike, 1989; 
Evans and Jdmsm, 1986; Wu and Cheng 1994) 



Chapter 7 Summary, Conclusions and Recommendations 

7.1 Summary 

The work reported in this thtsis dealt niainly with the investigation of the friction behaviour 

of formulated lubricating ails in both thl ami mkmchi rcgims. A &-slip âisc machine was 

used to provide a shpk rncthod of masuring the friction force due to shearing of the 

lubricant olm in the contan between the mlling discs. nie disc machint subjectcd a 

lubricating oil to high pnssures. w N e  maintainhg an h s t  constant ehl film thickness. 

The fition force tlltaSmmGnts w m  paformcd using both srnoth and rough d ixs .  The 

composite RMS surhice roughnesscs were about 0 . 1 ~  for the smooth disc expcriments and 

1.0 to 1.5pm for the rough disc experinients. .The k t  group of experimnts were p e r f o d  

using base stock oil (Mm 5) alone combined with thm type of additives (FM, AW and EP) 

with smooth top and bottom discs and uoder four load kvels of 244.5 N, 439.5 N, 634.5 N 

and 829.5 N. The entrainmtnt velocities wert varied between 1.6 4 s  and 4.0 nt's. Three 

inlet lubricant temperatmes of 30°C, 40°C and 5S°C were u d  The second goup of 

experirnents involved both rough and smooth top discs with smooth bottom discs, which were 

performed undet identical loads, iolling velocities and temperatures in "matched" 

experiments. In other words. the operating conditions for each matched expeNnents were the 

same except the composite RMS roughness of disc surface. Two load bels  of 147.0 N and 

244.5 N, five tnl.ralluncnt velocitits bttwun 0.6 nJs and 3.3 rds, and two inlet hbncant 

terriperaturcs of 30°C and 40°C were applicd. nit resuhs in di experimcnts consisted of the 

traction CUIYCS of e t i o n  force (Fd vernis the skew angle (+) of the top d i x  (which equalcd 

the ratio of side-slip to mihg velocities). 

To analyze the results, an efktive fïim thicbiess parameter @) was de- in this thesis as 

the ratio of the thcorctical central film thicloiess &) to the composite RMS surface roughness 



(e) of the discs (Eq. 2.28). This paramter was iwcd to detemiine the Iubrication mgims in 

an appmximatc rrianmr. Fbr aii of the anooth disc txpaimnts, k was grcatcr tban 3 and 

thcre was. in thsory, a contnuous fîuid f i h  bctwetn dises without pspaity intcractiom. For 

the rough disc experimtnts, the 3. ratio was within the range of 0.15 to 0.5. Md the aspcrity 

interactions hrd to be considcnd The exprimntai nsplts mre sumriarizcd by plots of 

fiicthn cocfkknt (p) versus 5 ratio 6.1 and 6.2). The a u e a  of lubricant 

additives on fiction was show and discusscd by & d g  dircctly to these plots. 

Subsequent analyses focusd on the mbchanical behaviour. espccially on the rheological 

behaviour, of the lubricants with additives in chi and nncrO-chL It was assumed that the 

Iubricant films were sheand at a liniiting s h w  stress (a. This assumption was examined by 

usùrg the smooth disc friction masurcmnts for fidi chi (n > 3) to determine the ümiting shear 

s t n s s  for each lubricant. Foiîowing the approach devdoped by Wu and Cheng (1994), an 

empirical expression of the nlationship between S' and p was found (Eq. 6.3). In the rough 

disc experimtnts, assuming isolated micro-eh1 oa& the nriction force was predicted as 

the product of the average Mting shear stress (at the average pressure) and the real ana of 

contact. The rcal area of contact had been determineci fkom the roughness nieasmrnents of 

discs and o h  expebnta l  parametcm by using a Greenwood and HIiIliamson type mode& 

with an assumption of the entire bad was ody carried by the asperity contacts. The 

cornparison of the predictcd f i t ion  force with the masmed rtsults h m  the rough disc 

experiments showed quite good agreement 

The resuits and analysis of part of the data for T = 30 OC was presented at the 23rd Leeds- 

Lyon Symposium on Tnilogy in Scptcmbcr, 19%. The associateci papa was acccpted for 

publication in the Tundamtntais Md Appiications in Lubrication and Traction", Tnblogy 

Series. 32, Elsevier, edited by C. Taylor et ai.. and included som nviewers' questions and 

authors npiies (Appendix A). 



7.2 Conclusions 

1. Friction fi,- was ir#uured on a side-slip dioc niechine wiih various k slirface 

roughnesses for biise stock and tlvce f;omulated lubricating oiis. The W t i m  force 

mtasmrncnts of the m o t h  disc experbmnts showal only slight but npeatable di&:rcnccs 

krween the base stock and f'ormulated oüs. nie M o n  fonr masornnt s  of the rough 

disc experinitnts showed significant e&ts of additives on the fktion force. Both tk 

e t i o n  rodioer 0 and cxtmm pressure (EP) additives reduced the e t ion  force. Ln 

most cases, the EP additive rcduccd e t i o n  more thm the FM additive. The antiweat (AW) 

additive had somwhat mort matic behaviour, somtimes rriarginally reducing fiktion force, 

w N e  at other time, giving the sam Mtion force as the base stock oil in the srnooth disc 

expuimnts. 

2. The output voltage in the electrical resistance circuit dropped at 5 = 3 (F~gure 4.7). as 

expected (Section 4.2.2, Chapter 4). thus, providing experimental support for the Hamock 

and Dowson (1977) formula (Eq. 2.24) for centrai 5 n  thickness, whkh was developed nom 

their theoretical numencal analysis. 

3. The plots of the maximum friction coefficient (Clu3 venus 5 ratio suggested that 

additives had a very sriiall e&ct on fiiction coefficient until ratio droppcd ùelow 0.55 

whereupon both the FM and EP additives reduced the fiction force compareci with base 

stock alone. It was suggested that the additives workeci more eficientiy in the hced film 

regime than in full chi. 

4. FollowOig an tmpirical appmach (Wu and Cheng, 1994), in which it was assumd that 

ai i  of the Iubricant films wue king sheand at the limiting shear stress (td, rcsuîts of the disc 

machine fiction force nieasiiremnts uder  conditions of M eh1 (Â > 3) yieided an expression 

(Eq. 6.3) for TL in ternis of the nIm pressure @) for each lubricant formulation. 



S. The exprtssion was uscd to esthnate T- in the mugh d i s  expcrimcnts assuming 

isolated niiCr0-cb.L The rt, value agrœ weii with the mpsmtd values of the maximum 

aiction foret divid#l by the d ana of contact (AJ for the base stock 02 alone and 

when it had the FM ami EP additives. Thk agr#mnt supporteci the vaodny of the cmpiricd 

appmach used to fmd and showeù how limiting s k   sas^ can be usai to predict e t ion 

forces in isolatcd mic~olehl. 

6. A procedure was devclopeû to quantiry the hfiuence of lubricant additives on 19ràting 

s h w  stress by e t i o n  masurcmnts in a dùc machint under full chl This findng 

suggested that lubrrants could be &signecl to have an optimal limiîing shear stress using disc 

machine mPsunmnts as a guidance. The mosmmnt of the aiction force in a disc 

machine providcd a simple, low cost mthod to assess the idiuence of additives compared 

with high cost en* tests and extensive &Id tcsting. Ah, this procedure may be 

particularly suitabk for sckting additives to cxhiiit a desireci behaviour h m  a large number 

of candidate formulations. 

Recommendations of Further Research 

Further research shouId focus on two directions: continuation of the work on the fiction 

measunment using the disc machine and studws of the fundamntal lubrication nrchanisms in 

micro-ehL nie continuhg work shouid includc improvcmnts to the accuracy, p i s i o n  and 

range of operating conditions of the tcsting fàciüty, experimnts on more lubricant 

fomuktions under various conditions, and a dcvelopmnt of the analyiical procedures. The 

studies of fundamentai mchanism should use various exptrimtntal and anaîytical methods to 

clarify the nlationship b a n  the rblogical propcrtits, such as the lingting shear stress, to 

the chernical propertks of the lubricant additives. Thus the mchanism of additive influence 

on friction in micro-chi would be explaimd thomughly. 



1. Thtrie were s o n  linritations of the âisc machine which s h o U  bc removeci in the future 

nsearch. For txampk, the o l  tcnperature cannot be hi* than 6û°C in the prcscnt disc 

mhinc.  Homva, niany lubricant additives aie designcd for use in an ekvated tcmpcraturc 

environment to protect the contact scrrtiices, mch as piston Mg, ad cyiindet by fonriing a 

nhn as a resuh of  som special thamany activated cheniical reactions. The currcnt inlet 

lubricam tempttaturt upper Mt d o u  not allow the enicts of such additives be scen ckrrly. 

A ncw design Tor a high temptratt~~ Iukicant circuiation syaern wouki g i w  bcttcr evaluation 

of the inauencc of additives on friction at higher tcmpcraturts. 

2. The nianual systan of skewing the top disc ïntroduccs som djf6.cuIties and enors 

during the friction force masuremnts. In the pnsuit experimcnts, it is very dîfficult to make 

a d o m  operation of skew angle to match the sanpling tim for the data acquisition system 

and to obtain a symmtatcal traction plot. Thenfore. an automaticdy controlled system of 

skewing the top disc is n d e d  to sa* these requinmots, siniplify the operation and get 

more precise results. 

3. A hydraulic loading system can be used in the side-slip disc machine, instead of the 

suspended weight assembly. This would d o w  the appiieû loads k adjusted continuously and 

avoid some mechanical vibrations. 

4. In the prcscnt rcscarch only a few lubrwnt additives have k n  stuclied using liMted 

range of disc suface roughnesses. However. many new lubricant additives were designed for 

various appkations. The additive designers put more of the* efforts on the chetnical 

compositions and propcrties, but pay lcss attention to the high pressure rheological 

propenies. Usehi results wouki corn h m  fiirthtr tests on new lubricant additives using the 

procedures describai in the prcscnt thcsis, and wouîd be avaiïablc to the machine designers 

and users. 



5. The expaimnts in the present stiidy have concentratcd on vgr smooth and very rough 

disc s\irfaces, whkh are e x p t d  to smplpte the eh1 and isoiatcd microchi ngims 

nspcctivdy. In practue, the inmmdipte siirface roughncss e x h  and rriakcs the Iukicpnt 

wodc in the coopcrativc micro4  regim. The mchanical behaviour of1ubricant additives in 

this rem hss sttracted considerable attention. Thus, fPrther expcrimcntal studies of the 

infiucnce of lubricant additks within this regnie could be paformcd, pcrhaps using the disc 

machine. 

6. It shopkl not be expccd that the influence of lubrkant additives on fiction in micro- 

ehl could k compktely detcrnatlcd by using only the disc machine. AU the relateà 

fundamental studies, such as determination of the chernical and physicaî propenies of 

lubricant additives, and the experimcntal techniques, such as Wuaihion of the shear 

deformation of lubricant film under high pressure and high temperature, could provide 

rheological evaluation of lubricants in ehi and niicro-ehl It wouid be beneficial to compare 

the results of the pnsent study to those of alternative experbntai techniques (Cam and 

Spike, 1989; Bair a ai., 1993) for the same oils and additives. 
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Influence of Lubricnnt Additives on Friction in a Dise Machine 
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2. MAI'EIUIS AND METHODS 

Table 1 
Lubricant speciflcati-ians 

T MCT5 MCT5 MCT5 
CC) +FM +EP 

2.2. Discmrcbine 
A sidealip d i s  machine (Fie 1 and 2) was used to 

p-de r simple method of subjecting a lubriating oii 
to ptesmm and a range of Iow &car rates- while 
maiauraraie an h o s t  constant e b l 5  thichess. The 
load \vas applied by hanging weights on the top disc. 



An oiï daqer was p W  b e h  the weights and a pivot 
was provided iu the hanger md so îhat the weights did 
not move when the top disc was skewed (rotated in the 
plane of the contact zone)- Bdh of these fmiures acted 
to ceduce the 111i~cbanicsl vi'bmtiows at the higbet mlling 
speeds and loads- A DC motor drove the bottom disc 
which in tum drove the top dise, at about îhe same 
d a ç e  velocity, by virtae of fiction acting through ihe 
contact. By skewbg the top disc mandy, a side-slip 
veIocity was b p o d  and contmuousiy mcreaJed, thns 
causing a ficrion (ûaction) force which acted sideways 
(perpendicular to the rolling directioa). The friction 
force was measured by a load œfl which used strain 
gauges and îhe skew angle (+) was measured wiîh a 
displacemeut traducer- A digital daîa acquisition 
board (PC-LPT-16 h m  National Insnuments, A- 
Texas) was used with a purposelbuilt signai 
~~~ldi t iooiug unit (Wheatstone bridge, amplinec and an 
analog anti-alaising filter). To help recod and process 
the data, a softwamz package (LdbView for Wmdows 
fiom National Instruments) was employed- 

Figure 1. Side-slip disc m a c b  which is mo~ted on 
a high stand with the weights hanging below. 

Thenaacouples were p k e d  ia light contact with the 
disc surfaces and in ihe inlet oil Stream m order to 
detennine an appropriate inlet oil tempetatme. in 
addition, a simple circuit was fabricated to detennhe the 
electrical -ce of the oii The &ce 
measmnm& prowided some insight into the beghhg 
and extent of asperity interaction, 

Tt is Impoc&iit to r e a k  that ifthe app t idon  of this 
disc machine is established for evaluating additive 
performance, much of the instrumentation descnbed 
above can be simpLified or eliminated. 

1 . Top dise 
2- Top disc yoke 
3. Drive h m  motor 
4. Bottom disc 
5. Lubricant supply 
6. Load weights 
7. Heavy oil damper 

Figure 2. Schematic represeuhtiou of the side-slip 
disc machine. 

2.3. Discfabrieaüon 
The discs were rnachined £hm wrought tool steel 

(SAE 0 1 fm ib bottom disc aad Atlas Steei's Keewatin 
for the top disc). Then, they were hardened by heat 
tmtment to a RockweU C value of 63, precision cut on 
a iathe with a diamond tip cntcing tool and lapped with 
fme d i a m d  paste mtil an RMS rougbnesses (e, and 
uJ m îhe range of 0.08 - O. 1 1 pm were measmed witb 
a pro- device (TaiySacf 5, made by Rank Taylor 
Hobson, Leicester, UIQ- Two mu@ top discs were 
fiibricated by addhg the additional step of sand blasting 
with a gradecl siüca sand (No. 60 AFA with a meau 
diameter of about t .5 mm) to achieve a a, m the range 
of 1.0 - 15 pm- 

2.4, Opcratiogconditions 
A rmfnber of procedmai @deluies were developed 

to sekt tk opaatmg amditions. The thennocouples in 
the Ïdet zone were monitored and roUing speeds kept 
low enongh tbat ïniet she8 h-g was not detected 

Whea askg the smooth discs at a particuiar load, the 
elecûical mtktame messmemats ailowed a range of 
rolliogspeedstobesettbatproceeded@~through 
tbe initiai tmkJown of the ehi î ï h  Likewise, with the 
roagh top discs, the rolling speeds were set to approach 
the point at which the teSiStlMce dropped close to zero, 
thus suggestmg a breakdowu of micro-eh1 films had 
o m m d .  It was nmgnkd that the electricai resistance 
c d  give an Msccuratc indication of the extent of film 
breakdowu because of oii rieposit and orà& layers on 



An outlioe of îhe aperhental input parameters is 
pro\ided m Table 3 Dietailal data iists wiü be avdable 

Figure 4. T>picai &ect of additives on fiiction for 
(a) smooth top disc (S2) and (b) rough top disc (R2). 

' Iha mmpmiîe roughncss of top d is  SO is = 0 . a  pm in Tabk 2 of ihis p-r. 



Al. Friction rnd iambdr ratio 
One rather obvioris to perfôrm m miiogy 

is to es;rmine the idbwœ o f k  h b d a  ratio (A) on the 

The central film thicC;aess (hJ is caidted,  
~ ~ ~ f a r  q,at3OoCof2S~mPas. 
E' of 219.8 GPa Rof22.58 mm and a of22.1 GPx1 
dong w i t h  various vaiues of u and F rismg 

hm HanuocIr and Dowson (19% 1)- 
The CF, vaiues are ui;a h m  Table 2. E l e c a i d  

hsisfimce rneaswemcaos tbrough the contact indiuued 
dut a ccmtinpous hii film occurred for about L > 3. As 
menti& pmiousiy, the Fr, was speÉiflcd as 
o c a m i q  at @ = 0.03 rad ( cmespnding to a slide-rolt 
ratio of 5%) a d  anddivg by the load @es the 
ma?cimm fiaiou cacffbht ( ~ r ,  ). By elimhaîing 4 
firom M e r  -dention. a concise overvien- of the 
present espetiments GUI be shown in Fi_= 5 (acept 
the testing witb top disc Sû). 

Broadly simik bchatiour of H, venus X was 
f o d  usine top dises SI and RI witb F = 147.0 N (Fig 
51) and top discs S2 and Rî with F = 24.5 N (Fig 9). 
Howvever. the fiction for the mu@ dise tests, 

Figure 5.l Plots of p- vamp À for (a) F = 147.0 N 
(aopdis;sSI d R 1 ) d  (b)F=24UN(mpdiscsSZ 
and R2)- 

1 The fd version of plots of p- vcrnu A m Figures 5 (a) and (b) in this paper can be found in Figures 6.1 (a) 
and (b) on pages 226 - 227. 



whnr C = mrqc of the foar lord kvck 

which mas e v d d  (Table 3) for the inbrïcants ofthe 
preseatsmby. 

Table 3 
Collsmlts for eqa (4) 

MCT 5 MCT5 MCT5 
+FM +EP 

m 0.615 0.565 0523 
C 0.000569 0.00436 0.0243 

43.  Red a r u  of contact for the rougb d k s  
To ~zeihektionbcttaviomfotthemuphdiscs 

(discs RI aud Ri) wbich bad A c 1. it was decideri to 
ignore the Iubncant. far the moment, and esrimste the 
reai a m  of contact The uaiphav mnghness ptramaet 
of Greenwd et ai (1984) wrs 0-135 for disc Q d 
0.1 1 1 for disc R2. A d g  to GrcenWOOd a ai, the 
apparent area of contact (4 ) was inflpcnced by the 
roa& d a c e  sach thu if HaeiPi theoy (which 
assumai smooth d a c e s )  wrs used to criculrtc A,, it 
wodd be &out 2W0 ander ttun thra the vaiue- 
However. it was coosidaed relevant to note tbat far 
eIastic contact of a d a c c  Gaiissisa disa ions  
of Surface aud asperiw heighis. the real axca of contact 
(4) might dqmd m e  on the load and be relative& 
mdependent of the A,- 

In any case. it was rssmned that the & was 
represented aamateiy by a fiat roqh d a c e .  with an 
4 equai to the smooth SMfâccd He- vdw. lotded 
agaiast a smooth h t  diace. A portion of a 'pical 
Ta&surfpm~eter t race  of one of the mu) top discs 
is showvn io Figure 6. The dam fiom the profilmeter 

F i  6. Typicai SMface of one of the mu@ top discs 
afierm-ie 

Table 4 
Caicniation ofthe d ana of contact 

Parameter Disc 



4.5. C o m p h a  ofthe lhnitfng 9htu mesa from 
cbl .ad mir& f-u mcrrurementa 

iurhe~"pcrimcritsmW,hringmpdircSO.s,,was 
determined by dividing ihe mersared F,, & the 
Hemiancomacta#whïchwascaIcaIated~eqn 
(5). Sobdtmïng p, imo eqn (4) gave a prcdiction of 
r,, and when the nwsuredvaiues wcrccomp& to 
the prdicted ones fa the esample of the base stock oii 
(MCT 5 )  close a p e m a t  was obt;iined (Table 5). 
Assuming an absohneiy prccise value of m hrid been 
obtained Appadïx A eqn (AS) was manïpalated 
to show thaî the pcrceot errer ( % mr) in estimatiag a 
vdw of iLii.using p.n in an espression such a eqn (4) 
wouid be 

and emhmhgthis equatioa far the m vaines obtamed in 
the m t  smdy gave a mauimpm percent errw of l e s  
h 2 % .  Th(1~fœtbepresentehlexper9nait~~(S) 
nith p = p, M i l d  give an accorne estimate of r,, 

Tabk 5 
Th use ofeqn (4) Ïn predictirig s,,fa the base stock 
iubricant (MCT J) 

Rcmembering tbat the Wm pressure in isalated micro- 
eh1 of a surf" tdh spberid tipped asperities could be 
approsimated as -ber of Iocdized Hemisa 

-.- 

(a) 

Ficm 8. Cornparisan of the average iimiting shear 
sttess predictions based on chi and micro-ehl fnctioa 
-îs for (a) F = 147.0 N luid (b) F = 2445 N. 



5. DISCUSSION S. CONCLUSIONS 

Tbetmiitiirpdun-*=-aMm 
~ ~ ~ P o P s ~ ~ ~ C O O ~ ~ ~ ~ O D S ~  
~Qmrcbsdp~i ibtbobtrinedun&risolauti  
~ ~ t n l ! ? .  
'Cbc~*--mnmcd~WncJnt 
YMitN#_ 

a The imUtnlg shear s!rcss çarnbmod mith an 
cvrhuaonoftfie~rr#ofcontactpnnideda 
simple -011 modcl for isolated mic~0lehL 
A simple, lm cost test proccdrPle using a sideslip 
d k  a u m k  adïhs of contin9011~ eh1 was 

fw hbricant rdiiitives- 
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Determiniagthe Limitiag shear stress indes number 
fmm friction mcuurcmcnts with r dtc P1.fbiat 

la elastohydrodynamic umucts the Iiibricrnt may 
be subjected to hi@ pressures and shear rates. 'Ihe 
resistmg shear stress in the lubricant often ruches a 
Iimiting value (73 which depends on prcs~mr and 
tempaatmt but is mdepePdeat of the &car rate 
(Johnson and Teviiarwak 1977; Bair ad Wmer. 
1979)- This mode1 far Iubricant bchaviom is very 
simple and there is mue debaie regardhg the aitent to 
which it appiies in elrstohydm&~amic contacts (Baif 
and Wmer. 1992: Bair a ai. 1993). 

in the prrsnit stpdy, an unpiricd qproach 
foIlowing Wu and Cheng (1994) was dopied to 
detennine a ümiting shear stnsç mdes numiser (m). 
This approach used fiction measmmeats ficm a disc 
machine and was bascd on îhe assimiptian tbrt ihe 
lubrimnt had reached Limitïng shear stress thmughoot 

It foibwed that die maximm fiction force as measureü 
Mtha~machinewas 

ads l lbdak  - in hm eqn (AZ) dong with elemen tary 
mte@oos gave 

Eqm (Al), (A2) and (A3) were combineci to @e 

To dcicrmnie tht valac of xn for r patticnlar 
Inbncanf the maximum fiction f- was r n d  at 
eacbaffm rpplied lords (2443 N, 1393 N. 6343 N' 
8293 N). At the same pressirrr @). eqn (A4 mdicated 
that swre vdae of m mast orin mçh that the same 
hitiq ~ s i r e s s  c d d  k calcuiated for each appiied 
lord. 

W u  and C h q  (1994) did not iadicate clearly how 
this m vahie was &&al In tbe prcsent smdy, a 
value of p was chosen e@ to the ma-um Hertüan 
prcssutc fm the lowest of four imk of itpplied load- 
An m whe  w ~ s  q e d k d  and eqn (A4) used to caldate 
fornwh~~far~ , .  An~cragcoftùefours,valueswa~ 



Contact spot Qhsity bdnccn dot rough and smooth 
surfaces 

ifthetopas?pbyofanaminallyflatsarfacerepion 
can be measrrred an accmate three d m i e n c c i d  
map. it is relrtively simple to asxtain thc nmnber of 
asperity contacts when a smooth f '  plane is locrted at 
a particuk sepadcm With a s p d k d  rpprtent ama 
of contact ( A, ), a direct mersmcment of contact spot 
deasi ty(n)couidbemuieatthatsep~ 

HOWCVQ. ifa pfkmeter trace is uscd to mcasurc 
~ ~ h y i v i n g r  twodiiirmcimidenphitis 
somewhat more dZ6cuit to estabIish an -on far 
contact spot density which is reiated to the fcrtares of 
the profilometcr trace To rddrrns this @lem, a rigîd 
-th plane (rcprescnted in îwo dimcPsions as a 
horizontal he) b a t a i  at some seprntioa ( z ), is 
considend to be in contact witb au isotropk& mu& 
surface which is messared by a pmfiiame~er (Fïg B1)- 
A line representmg the average of ihe rot& d a c e  
heights is dm horizontal and ihc mu@ d r c e  
undergoes p e r f i i  plastic deformation l k  a at z is 
the siune if the two surfaces defm  el^^ bat it is 

a m m h t  fot visprlartion În tbe present dcvelapment 
to CapsidCrthe rbove ri@-pmc pair. 

AnarprrsEionrrlumgntuthchighspotcoant 
a d  m g  rreii (BA) z can be de\-cl@ 

F d t o n ~ ~ ~ t b e H S C i s o n c b r l f & e  
nnmkoftimcsthtroir~smZiceprofilccrosxstbc 
haadknphscnting~smoo~smfrce&ided 
bytbeptofütlengthwhiletbcBA~sthesum~fth~ 
lcpgrh of tht hOLeOIIUl h e  SC--& containeci nithin 
thcroughd~~tprofiledividedbythcprofîieIcngh 
(FïïB1). TkNSCrPdBAaiepdedasfimca'o~of 
bei@t (a scprntion) z by the 5%f processr of the 
Ta&surfpm~aatRhichwasuscdinthcprrscnt 
sîuly- Howaer, fhiS pmcessm sclects the heic@s 
intandïy a n d o h d o e s  mt sqpk the rcqPired 
pirrmetcrs at enoagh heights- Whar this occ& 
aâditionai values were obtained by mterpoiation with a 
t h p d o r d n p o ~  

Foliowhg Greenwd aud Tripp (1967), the 
ssperities arc asmd to have sphericaï tips of about the 
same radias of anvatme bnt various heights. When a 
aioothflatpbneispressedÏntos~chasphericaltip the 
amtact cück increasés rapidly after initiai contact then 
more siowly as the s e p d o n  z m. As a resniî, 
the contact spots all have about the same radius of 
ctrntatuxe (à ) when the smooth &t d a c e  is at some 
h-t z despite thc vrnation m asperim heights, 

It is ammht  to consider the 4 shom m Fig B 1 
and to note that if asperity contact areas are iarger and 
smrlIer h m  those shown sotne ex= contact spots 
wouid be h i d e  and some woriid be missed but on a 
bng trace n shouid s t q  about the same. It foUows that 

To daermmc an expRssion for zF &der a long trace 
tbrtfœtbegimz mtersects mauycuntact spots. The 
mmgc ka@ of- within the contact spots (Fig B2) 
is 



m this case 

Figure B2- Haifof a contact spot 

Eqns (B 1) and (B2) impk that 

The above expression is vriid fm e M c  daces 
because on& size anci not the nmbcr or the location of 
the contact spots dmqcs. This sune exprzssion was 
derived in a somewbat different wq by Cooper et ai 
(1969). 

Determining the surf' rad osperity height 
distributions 

The HSC and BA were m d  for decrwsing z 
us* a profilmeter wïtb interpoiation as mentioncd in 
Appendk B. It was then possible to detamme n for 

Figure Cl - Plot of BA cm probabiiity paper (disc RI)- 

ifaaaspaà'.was -datd to be any stimmit on 
tbcdacewhichhdsah~t~utbanz~thenthe 
cnmuiative hpency of the ?sperity (as opposed to 
Sanace) hei@t distn'butïon wrs @en by du- which 
codd thca be ploftecl on probabil* paper (fis C2). 
Onoc again the data fit a stmight h e  for the outermost 
region of the d a c e s  for both disc 1 and 2. thas 
mdicatmg a GaussfUSSfan distn'butioe The fe3m-e~ of the 
distribution mcluded the average asperity height (w) 
and the standard deviaàon (a*) which couid be 
detamincd hm the plot on pmbabil i~  papa. 



F i p  82, Plot ofda- on probabiIity plpcc (dis  Rl). 

in both the BA and îhe h- plots on probabiiity 
papa- the fiüdiines w a e  estimated "by eye"- Cleariy, 
software most bc dcvcIoped to perfontl the curve fits 
and a criteria m m  be dc\leIopd for excldiq the 
points in the low z @OIE which are not distnbuted m 
a Gaussian f&cm. HoweverevR this sh- in the 
presemt indpïs was not qected to influence the 
overan findnigs siglifkwlu., 

APPENDM D 

Determinhg the r d  area of contact for a spccir~d 
load 

ifthe qaration z w n t  knonn for a specified load 
and the defonnation was pedect& piastic, ihe ratio of 
red to apparent rier of cuntact wouid e@ the BA a! 
thatz(co~anrppacatarrrthitwrsthc1cagtb 
of the trace d of ; n f i n i u  width) . 
Ullfio~~arte&, z was not howu ancl the MOLrmtiOO 
was e h - c  in the prcsent stPdystPdy Howeva. assmning 
that aii umtacîiq rspaitics at a pirticalrr z have 
spherical tips with about the same tadii of cPntatmF 
which muid lx reprsaited a&quatdy by an average 
vaiue. and that k y  M i  hkpedentlv. a p t o c e d ~  
was dweloped m fbd t Foliowiug Greenwod and 
llQbmm (1%6), H a  eqriarioas wac applied to 
individual aqeritv contacts and Ciaussiau disai%dops 
of suxface md -aspericp height distn'bmions 
employai to yield tht foIIowbg equauons: 

E c p  (Dl) a d  (D2) gave an expression for the sperity 
tip radius at a piuticolarz 

and mbstiûaïq into eqn (D3) rieldeci 

which was sobed for the s e p ~ o n  z which 
comqmndcd to the specified load F, A computer 
p f o p m  was m ~ i ü e a  in F m  to p e r f i  the sohrtion 
of cqn (D5) sach contained a mant mot findiq 
d@dm lbnt arcd the diSctete vdws of the FJ0s -@en 
byMCCool(1986) a d  a naturai cubic spiine routine to 
provide mterpoiated vaines wberr reqnired, 

Once the z d u e  had bten determïned. the 
co~cspd~dmo q value was calcuiated and eqn 0 1 )  
gave the d area of conract, AIso- it was possible to 
calcnlate the average tip radius for ail contacting 
rsperities using eqn (DS). 



Discussion of the Paper by Yu and Medley in the 23rd Leeds-Lyon 

Symposium on Tribology 

Question 1: J.A.Wiüiams, Cambridge University, Dept Engineering 

You demonsoate the importance of the A ratio on the ov& fiction coefficient of your rough 

surface experimnts for which you assumu& I dwilr. a Gieenwood and WiIbmson type of 

topography. This requins that the surfaa can bc asuibes a single chafa~tcnstic value of 

asperity cwaturt  - how did you assets its value h m  your topographicai rneasurements and 

could you indicate the sorts of values you have used. 

Question 2: Maniix Visscher, The University of Lads 

The authors derived average pnssurc and average shear stress values for the ‘irai contacts". 

To this end they used the Greenwood and WiIliamson contact mode1 to calcuiated the na1 ana 

of contact. This, and othcr, contact models make use, however, of panuneters which are not 

inainsic properties of the surface but depend on the masurement parameters Dl. DZ]. me 
rnean peak radius, cg., varies signifïcantly with the sampling interval. Hence. by manipulatkg 

the roughness measunment, one can get any value one Wres. My question, therefore, is: have 

the authors considersd this fact, and how have they overcome the pmblem? 
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Question 3: JC Bdl. Shen Rwcarch Ltd. UK 

nie authors have estimatcd the contribution of fiction of lubricant additives by the use of the 

limiting shear stress (w mode1 of W u  and Cheng. The mcchuiism by which additives a£fkct TL 

is fat h m  c h .  Would the authors please CI- this mecfianiSm and how it is reflected in the 

Wu and Cheng modeL 

Authors' Reply 

Drs. WillianrP and Visschcr seem to bc asking csscntially the same question. In our 

pasentation, WC did not daborate on our "Grccnwood and Williamson" type mode1 but, in our 

paper, details are provided in Section 4.3 and Appendices B. C and D. The inûuenœ of 

Greenwood and Wiüiamson Id us to assume that asprities had sphencd tips, defonned 

independently and that Gaussian distributions could be applied to surface and asperity height 

distributions. However. using the reîationship for contact spot density, derived by Cooper e t  

ai. (1969) and also in Appendix B of our paper in a somwhat different mariner. we assumed 

that all contacting asperities at a particular separation z (Figure B 1) had sphericai tips of about 

the sarne radius of curvanue (but various heights) which couid be represented adequately by an 

average value (B). nie method of obtaining the separation z and correspondhg B for a aven 

load c m  be found in De Vaal (1983) and also in AppendOr D of our paper, and the numerical 

values for our two rough surface (discs R1 and R2) are Iisted in Table 4. By detemihg a 

separation z and an average B. both related to the applied load, we aüowed smali surface 

ripples and/or noise which might be part of the trace of the surface heights (Figure 6), details 

of which would be sensitive to sarnpling interval, to mrge when the surfaces are at separation 

z and thus not inUuenœ the calculatcd real ami of contact significantly. In this rnanner. our 

calculated was not a single constant value for the surface but a fbnction of the applied load 

which, in turn. set the separation z. For our surface topography and loads. the B value was not 

iikely to change much unless the load was reduccd signiticantly. 



This approach di&rs fkom that of Vissckr et ai [DZ] but it sams to achitvt a sornewhat 

Smilar result in that it eliniiiiPtes sniPlla scaie "Pspmtics" fmm consideration. Since om 

d a c e s  wcrc =-in before testing sa that vimially rill asptrities would be dcfaniing ehstkaliy 

undcr load, plasticity index could not have been uscd to &termine a samphg intervai. 

However, our a p p m h  might provide a n d e  altemative which would be usehl in the 

modeling of Visscher et ai. 

If a Grecnwood and Williamson mode1 cep- a ''mean pcaic radius" as statcâ by Dr. Viiher 

or a "single characteristic value of ~sperity curvanue" as statcd by Dr. Williams, thcn pcrhaps 

we should not have associared Gncnwood and WrIIiamson so dimtly with our modeL Since 

the calculation of rcal areas of contact was oniy a means to an end in o u  paper, we make no 

claims to have a universal model bascd on "intrinsic" surface properties. However, we do fée1 

that the adopted approach gives a unique prediction of r d  area of contact which is reasonabiy 

accurate for the mn-in surfaces in o u  study. 

In response to the question of Dr. &Il, we have found that under our conditions of high 

pressure and low temperature, the fnction can be controlled by the limiting shear stress and the 

additives cause a decrease in die iimiting shear stress as pndicted by Equation 4 of our paper 

by reducing the value of m which is the indtx number from the model of Wu and Cheng 

(1994). The detexmination of m is dcscribed in àetail in Appendix A of our paper. One can 

speculate that the additives influence the formation of the shcar bands, describecl by Bair et. ai. 

(1993) by aiiowing the lubricant to "slide over i W '  more ricadily. However, Dr. Bell may be 

seeking a specifk and v&ed mcchanism relateci to the lubricant chcmistry and including the 

influence of temperatme. It was beyorid the scopc of the prcsent study to detennine these 

important aspects of the mechanism. but nevertht1ess we do fœl that some exptrimental 

evidenct of its existence has bttn obtaind 
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