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Abstract

This thesis deals with the theoretical and experimental details of trying to understand
and infer the quantum potential from Bohmian mechanics using Bohmian trajectories. In
this work, some of the key components of the history of Bohmian mechanics is given, a
theoretical explanation of how to measure the Bohmian potential, followed by an overview
of the experimental apparatus and its components. Some tests of the experimental appa-
ratus are then presented followed by a discussion of the results. Lastly, some interesting
follow up experiments are defined and discussed.

Bohmian mechanics, while completely agreeing with quantum mechanics could not be
more different from the standard notions such as the fact that particles retain their classical
identity of a point like object that have definite and causal trajectories. In this realm, first
developed by de Broglie, these particles move and are guided by a wave, which turns out
to be the wave function itself. Typically, the velocity of the particles anywhere in space
is given by spatial derivatives of the phase of this wave and the energy content of the
particles is given by the temporal derivative. The trajectories can bend even when there
are no outside (classical) forces that are acting on the objects. This is due to the fact that
these observations of Bohmian mechanics must conform to the standard measurements in
quantum mechanics.

One detail that has gone unmeasured (in the sense of inference) in a laboratory setting,
is the quantum potential (the mysterious force that moves particle to make sure they
reproduce the measurements of quantum mechanics). Using the technique of measuring
the trajectories of photons, the question was asked, can the quantum potential for single
photons in the double slit be inferred? A setup has been built in order to try and answer this
question using a single photon detecting camera and a heralding spontaneous parametric
down conversion source. Unfortunately, the quantum potential still goes unmeasured due
to noise in the camera pictures destroying the integrity of the signal and an interesting
problem of trying to stitch together the quantum potential at the varying z-planes.
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Chapter 1

Background & Theory

1.1 de Broglie

Before one can talk about Bohm and his Bohmian mechanics, it is probably best to start
from the beginning of the subject. The reason for this distraction is partially because
the story of Bohmian mechanics is much older and much more interesting than is usually
thought. There is a significant amount of interesting history to the subject that no longer
is common knowledge on how quantum mechanics was developed; and, also, because the
beginning gives a lot of physicality and meaning to the picture that is not typically found in
the current literature (though it has made its way to the public in some ways). Furthermore,
there are some technical details that should be discussed to understand the environment
of quantum mechanics at the time that Bohmian mechanics was developed. The roots of
Bohmian mechanics spread all the way back to de Broglie’s 1925 PhD thesis (and before in
his papers) titled, “Recherches Sur La Théorie Des Quanta.” Most modern day physicists
remember this work solely through his seminal “de Broglie Hypothesis,” which was the idea
that not only does light exhibit a particle and wave duality, but also electrons (and later
shown to be all matter). However, what is interesting to the Bohmian is how de Broglie
developed his hypothesis as it will become clear that the machinery created by de Broglie
was essentially taken and reformatted by David Bohm for his Bohmian mechanics. In this
way, most people attribute the contribution of de Broglie by naming it de Broglie-Bohm
theory; however, due to the fact that de Broglie’s main thesis on this mechanics diverges
from modern Bohmian mechanics, this moniker will be dropped in favor of the name
Bohmian mechanics to make the distinction more clear (the distinction will be discussed
further in 1.2).
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As stated earlier, most physicists recognize de Broglies thesis as the first widely-known
description (he had several other papers earlier where he discussed the possibility of using
Einstein’s equations for quanta other than light [7]) of matter waves and, in as much, we
only really remember the pair of equations E = hν and λ = h

p
[25]. Interestingly, his

discussion starts by assuming that all types of objects have this type of quanta association
and develops the discussion in his thesis stating these ideas in a relativistic reference frame
while discussing the dynamics of waves (matter or not) which de Broglie dubbed as “phase
waves.” He noted that the existence of these waves are not necessarily limited to the
extent of the particle and, in fact, are functions over all of space. In this construction,
he does not ask what causes these waves nor does he claim to understand where they
come from, but he does attempt to build a physical picture out of these waves. Using a
purely classical approach (including special relativity), he derives relations for the phase
and group velocities of the phase waves and more surprisingly relates these to the least
time approaches of Fermat and Maupertuis as well as physical properties of particles.
Thus, the typical description of optics, that the rays where “corpuscles” of light travel on
are described by the Eikonal equations (i.e. normals to the surface of constant phase or
|∇S|2 = n2 where S is the phase surface function and n is the index of refraction) can also
be attributed to matter waves as well (since the normals to the surface of constant phase
will be shown to be related to the velocity of any particle see section 1.2) and will be the
backbone of de Broglie’s theory of particle movement [7]. Interestingly, this concludes that
Newton’s first law is no longer holds as waves will interfere causing the particles trajectory
line to change direction even though there are no external “forces” on the object in the
classical sense. de Broigle even noticed this and stated as much in his thesis; however,
he even goes on to state that there exists such a potential function so that trajectories
bend in the correct way in order to reproduce quantum mechanical effects, but he did not
prefer this approach and thought that these trajectories should be the most basic element
and not guided by these equations [2]. From this approach, de Broglie reproduces the
Bohr-Sommerfeld quantization condition for the hydrogen atoms’ electron radius, which is
the usual way to teach this quantization (meaning that the orbits must have the condition
of being an integer number of the de Broglie wavelength). However, as pointed out in [2],
de Broigle realized that this kind of quantization did not work for every situation and had
come up with a quasiperiodic description, but it was ultimately found to be flawed. While
there is more to consider in his thesis, the majority is not within the scope of this work.

Contrary to popular belief, de Broglie’s thesis (and the works that it was based off of)
did not take off and was relatively unnoticed (in fact being a shadow to his brother). How-
ever, in a communication from Einstein to Lorentz [22], Einstein talks about de Broglie’s
thesis and claims to have found some support of de Broglie’s idea in his discovery of two
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terms in his Bose-Einstein statistics which was reminiscent of a wave part and a parti-
cle part [11]. It was this work of Einstein that cited de Broglie’s thesis that allowed de
Broglie’s ideas to move outside of France. While there are more examples given in [2],
the most shocking was that Schrödinger’s wave equation was a direct result of Schrödinger
(only after reading Einstein’s paper above) taking de Broglie’s idea on the quantization
of the hydrogen atom and making a nonrelativistic approximation resulting in the correct
energy levels, which had proven difficult for de Broglie. This shows that de Broglie’s ideas
were the inspiration for wave mechanics and not the reverse which is typically assumed by
the physics community [2].

Now that scientists had access to the extremely powerful tool of Schrödinger’s equation,
the community was full of new ideas and they have resulted in a dynasty of thought. Use
of this equation is one of the most common approaches to teaching quantum mechanics
in undergraduate and graduate texts. It has resulted in an explosion of experimental and
theoretical ground work from particle colliders to computers. With this powerful new tool
though, comes interpretation in the real world and Erwin Madelung in the mid 1920’s
proposed an abstracted hydrodynamic form of the equation where one chooses the solution
for the equation to be given in the polar form ψ = R(x, t)eiS(x,t). Once the solution is passed
through the Schrödinger equation, the result gives back a form which governs the energy
of the wave and also a conservation equation just like how one might think of a wave in
the classical sense [20]. de Broglie, while independent from Madelung, took his plane wave
solutions (note that this is essentially what Madelung did, but without a complex phase)
and substituted them in the relativistic version of Schrödinger’s equation (now known as the
Klein-Gordon equation). de Broglie reused his idea where the particles are real objects that
exist in the real world where they are represented in the mathematics as some singular part
of the wave and this singularity is guided by the wave (hence the pilot-wave theory). By
the time of the 1927 Solvay conference de Broglie presented his, “La Nouvelle Dynamique
Des Quanta.” In this work, he took the sum of his ideas with the exception of his double
solution (explained later) and brought it to the table for consideration (since much of the
math is going to be presented in the next section on Bohmian mechanics, we shall discuss
the ideas from these conference proceedings). To paraphrase, there exists simultaneously
a point and an associated wave [17]. Combining this with the Klein-Gordon equation, he
was able to find a solution of the equation so that the final form of the solution yields the
same dynamics as expected in the trajectories (see section 1.2). He even gave a formula for
multipartite systems, something that is widely attributed to Bohm. However, after all of
this, the new dynamics of de Broglie was harshly criticized and was dropped by de Broglie
in favor of the more common Copenhagen interpretation [2]. The defeated de Broglie
would not pick up this reasoning again until after Bohm would expose his interpretation

3



(Bohmian mechanics) to the world. Thus, the quantum orthodoxy came to rise.

1.2 Bohmian Mechanics

In 1952, David Bohm submitted his two part work on what is now called Bohmian me-
chanics [3, 4]. In these works, Bohm rediscovered the work of de Broglie and Madelung and
improved upon them. However, there were some significant differences. First, de Broglie
believed that the particle was a (mathematically) singular region of the wave function (as
will be seen the magnitude of the solution does not affect the trajectories of the particles).
The particles in some way were a separate solution. This is where de Broigle’s double
solution program came in the late 50’s (de Broglie became emboldened after Bohm went
against the orthodoxy). The double solution, essentially, was two waves where one solutions
was the typical solution to the Schrödinger equation and the second was the solution that
carried the particle singularity. In Madelung’s solution, the interpretation is left rather
void of interpretation; however, some components have been extrapolated. In this case,
the velocity that both Bohm and de Broglie associated with a particle velocity is thought
of as a flow of probability in the quantum hydrodynamical view point. Finally, both Bohm
and Madelung prescribe there to be a fundamental force on particles that causes them to
organize in a way that quantum mechanics requires, whereas de Broglie decided to remove
Newton’s first law and believed that the particle trajectories were the more fundamental
since these trajectories were the same ones that minimized the Hamiltonian [7]. In this
way, Bohmian mechanics differs from both of his predecessors, de Broglie and Madelung.

1.2.1 Single Particles

The classic derivation of the properties of Bohmian mechanics was done by both Madelung
[20] and de Broglie [17] is done by assuming the wave function is written in the polar
form (just as Madelung and de Broglie did in 1927) and using this ansatz to reformulate
the solution of Schrödinger’s equation yielding a set of complex solutions. So, letting
ψ(xi, t) = R(xi, t)e

i
~S(xi,t),

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V ψ

i~
∂R(xi, t)e

i
~S(xi,t)

∂t
= − ~2

2m
∇2R(xi, t)e

i
~S(xi,t) + V R(xi, t)e

i
~S(xi,t)
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Now, since both R(xi, t) and S(xi, t) are both explicitly dependent on the spatial and
temporal coordinates, this nomenclature will be dropped just to clean the derivation; thus,
ψ = Re

i
~S. Now, expanding the derivatives yields:

i~
∂Re

i
~S

∂t
= − ~2

2m
∇2Re

i
~S + V Re

i
~S

i~
∂R

∂t
−R∂S

∂t
=
−~2

2m

(
∇2R +

i

~
2∇R · ∇S − 1

~2
R(∇S)2 +

i

~
R∇2S

)
+ V R

Choosing the real part and imaginary parts of the equation to be satisfied simultaneously,
we find

Real:−R∂S
∂t

=
−~2

2m

(
∇2R− R

~2
(∇S)2

)
+ V R

−∂S
∂t

=
−~2

2m

(
∇2R

R
− 1

~2
(∇S)2

)
+ V

−∂S(xi, t)

∂t
= Q(xi, t) +

1

2m
[∇S(xi, t)]

2 + V (xi, t)

(1.1)

where the final form of the real part like the Hamilton-Jacobi equation for a classical system
where ∇S reminds us of the momentum of the object and Q is the so called Quantum
Potential.

Imaginary: ~
∂R

∂t
=
−~2

2m

(
2∇R · ∇S

~
+
R∇2S

~

)
−R
R

∂R

∂t
=

1

2m

(
2R∇R · ∇S

R
+
R2∇2S

R

)
∂R2

∂t
=
∇R2 · ∇S

m
+
R2

m
∇2S

∂ρ(xi, t)

∂t
= ∇ ·

[
ρ(xi, t)

∇S(xi, t)

m

]
(1.2)

Looking at the imaginary solution, we find that the imaginary part looks similar to a
continuity equation where the quantity ρ is conserved. Now,

ρ = R(xi, t)
2 = R(xi, t)e

i
~S(xi,t)R(xi, t)e

−i
~ S(xi,t) = |ψ(xi, t)|2 (1.3)

we see that ρ is in fact the probability density; therefore, equation 1.2 is really a conserva-
tion of probability density for the system.
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It is good to note that in the case of the system, that the particle –just like in de
Broglie’s interpretation– must follow a singular path. So, if knowledge about the location
and the velocity of the particle (and technically all others in the universe) is known at
one location then, it is known for all others. For example, if we assume a single particle
universe and that a photon is found at a camera pixel with a specific velocity, we could
follow the trajectory of that photon from that pixel either backwards or forwards in time.
For N particles, the above equations get transformed into the following:

Real: − ∂tS =
N∑
k=1

(∇kS)2

2mk

−
N∑
k=1

~2

2mk

∇2
kR

R

Imaginary: − ∂tρ =
N∑
k=1

∇k · (ρ
∇kS

mk

)

where the quantum potential is given as Q = −
N∑
k

~2
2mk

∇2
kR

R
, k indexes over the different

particle numbers; and, R and S are functions of every particle assumed to exist (i.e.
R = R(x1, x2, ..., xk, ..., xN) and similar for S). So, now the quantum potential is dependent
on the state of every particle at the same time since each particle contributes to a global
wave function. Here global means that it contains information about every particle. In
this way, the trajectories of a particle are immediately changed upon the measurement of
one of the constituents. To put it simply, the ψ that was governing the system has now
been changed such that the wave function of the particle in that was measured is now in
an eigenstate of that measurement operator. Thus, the overall wave function has been
changed to a new state ψ′. The new wave function now acts as the coordinator for the
configuration of the system. In the case of an entangled state, this change in the system
will affect the trajectory of the unmeasured particle instantaneously; however, because the
transmission of this change cannot in any way send information from one party to another
this is allowed [3, 4].

1.2.2 Bohmian Trajectories

Within the last 60 years, there has been an extensive amount of work ranging on un-
derstanding the equilibrium condition (the statement that particles must already be dis-
tributed by |ψ(xi, 0)|2 before being able to propagate them) [9], building a working quantum
field theory [15], to trying to describe trajectories [13, 30, 9, 19, 21, 31] and the quantum
potential for physical systems [24]. Of current interest in the community has been the
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experimental determination of Bohmian trajectories by both Kocsis, Mahler, and Xiao
[19, 21, 31]. These works are based off of a proposal done by Wiseman [30], where the use
of weak values allow for the determination of trajectories.

In essence, Kocsis, Mahler and Xiao used relatively identical measurement apparatuses
to measure the weak velocity in the x-direction at a point in space [19, 21, 31]. This should
seem unsettling to those coming out of an undergraduate or perhaps graduate course
in quantum mechanics. The reason to be unsettled is due to Heisenberg’s uncertainty
principle, which should also be true for Bohmian mechanics if it is to reproduce the same
results of quantum mechanics. Bohm’s argument for where the uncertainty principle arises
in Bohmian mechanics states that the uncertainty in the, ironically, deterministic view
of Bohmian mechanics comes from the fact that there is always a disturbance introduced
via the measurement apparatus [3, 4]. In fact, the proof is much the same in Bohmian
mechanics as it is in regular quantum mechanics since the wave function is identical in
both. Thus, as we measure in one basis, the wave function becomes sharply peaked in that
representation, but in the opposing basis the wave function must be broad. Now, while
particles do have well defined positions and momenta, any measurement on the state of the
wave function (as, for example, the velocity of the particles is a measurement of the wave
function) will cause violent fluctuations of particle trajectories in the canonically opposite
basis to the one that is to be measured. This the cause of the uncertainty principle.
However, the caveat here is that the measurement device is now seen as an interaction
with the state and not thought of as a typical quantum measurement [4]. Furthermore,
the question of absolute uncertainty arises, as [10] explains and as discussed earlier, the
state of the system must be fully deterministic since the Bohmian interpretation requires
that particles obey the laws of motion that arise from the Schrödinger equation. Ultimately,
the true wave function of the system is one that takes into account every particle in the
universe and their interactions including (but not limited to) ourselves, the measurement
apparatus, etc. The given probability distribution for just the system under test is a good
approximation, but it is an approximation nonetheless. Thus, one would have to know
the exact state of the entire universe in order to effectively make use of this deterministic
property.

However, in this case, how then could Kocsis, Mahler and Xiao find trajectories? The
determination of trajectories is given by use of weak measurements. The major problem
as pointed out above, is that under typical measurements, the wave function of the parti-
cle(s) in question will always be disturbed, but if we could make sure to disturb the wave
function in a relatively small fashion, then in principle we could measure both properties
simultaneously. This is called a weak measurement [1], and this type of measurement has
a few interesting properties as well as a track record for being known to cause controversy.

7



The weak measurement is defined as 〈Âw〉 =
〈ψf |Â|ψi〉
〈ψf |ψi〉

where |ψf〉 and |ψi〉 are the post-

selected and initial state of the system and Â is the operator under test. In this case, the
most natural selection for the operator is the momentum operator (see derivation below).
Where, we shall post-select at different positions on the camera. However, since we are
only disturbing the state a little in these weak measurements, the measurements must be
repeated many times in order to create an average for the weak value at that particular
location. This average, under some approximations, can be shown to be give the same
results to the standard measurement of the weak operator on the system. This way as long
as enough particles are measured in the setup, the true value of the operator can be found.
To explain in more detail, Kocsis et al. describes the theory for the experiment in more
detail and a transcription follows in the following section [19].

1.2.3 Finding the Weak Momentum

This section is an overview of the calculations that have been done in previous sources;
however, to be consistent this will be presented again with more commentary than is
typically presented the calculation of the interaction of light in the weak measurement
crystal from first principles will be given in the next section. To begin, the state of the
photons as they leave the source is given as 1√

2
|ψ(x, t)〉|φ(x, t)〉 ⊗ (|HH〉 + |V V 〉) where

|ψ(x, t)〉 is the spatial extent of Alice’s photon and |φ(x, t)〉 is the spatial extent of Bob’s
photon leaving the rest of the state to be the polarization state |HH〉+ |V V 〉. Now, why is
the state just of a single spatial dimension? Well the simple answer is that the z-dimension
represents time in this case and the y-dimension will be integrated over. Put in more
words, the phase that will be introduced by the weak measurement will only be acted in
the x-dimension meaning that the y-dimension does not hold new information. Thus, by
integrating over all of pixels at a specific x-position, we remove all of the y information and
strengthen the information that is gained at that x position. In this way, we simplify the
calculation to only include the x-direction and, with out loss of generality, since the state
is only measured in specific z-planes the time is always set which allows us to reduce our
state to one only talking about the x-dimension. A full treatment with the y-dimension is
possible; however, for the purposes here it suffices to just reduce to the one dimensional
case.

Bob’s photon (as labeled as the second Hilbert space above for clarification) is measured
(or just measured as seen in [31]) purely in the polarization state [19, 21]. First, dealing
with the case where the photon is measured to be in some polarization state given by
cos(θ)|H〉+ eiφ sin(θ)|V 〉; however, there are no specific measurements on the spatial state
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of the photon. Thus, the state of Alice’s photon is given by

I ⊗ 〈φ(x)|
(
I ⊗

[
cos(θ)〈H|+ eiφ sin(θ)〈V |

])( 1√
2
|ψ(x)〉|φ(x)〉 ⊗ (|HH〉+ |V V 〉)

)
=

1√
2
〈φ(x)|φ(x)〉|ψ(x)〉 ⊗

(
I ⊗ (cos(θ)〈H|+ eiφ sin(θ)〈V |)(|HH〉+ |V V 〉)

)
=

1√
2
|ψ(x)〉 ⊗

(
cos(θ)〈H|(|HH〉+ |V V 〉) + eiφ sin(θ)〈V |(|HH〉+ |V V 〉)

)
=

1√
2
|ψ(x)〉 ⊗

(
cos(θ)|H〉+ eiφ sin(θ)|V 〉

)
Next, the remaining photon passes through a long piece of calcite which is used to create
the separate paths of the double slit experiment. A naive way to write this mathematically,
is as the operator I ⊗ |H〉〈H|+ |ψ(x+ 2a)〉〈ψ(x)| ⊗ |V 〉〈V |, where a is half of the spatial
distance the beams move away from each other. Acting on the state, this finds

(I ⊗ |H〉〈H|+ |ψ(x+ 2a)〉〈ψ(x)| ⊗ |V 〉〈V |)
(

1√
2
|ψ(x)〉 ⊗ (cos(θ)|H〉+ eiφ sin(θ)|V 〉)

)
=

1√
2

(
|ψ(x)〉 ⊗ cos(θ)|H〉+ |ψ(x+ 2a)〉 ⊗ eiφ sin(θ)|V 〉

)
Further, since the zero is arbitrary on this scale in the x-direction we can rewrite the state
without loss of generality as:

1√
2

(|ψ(x− a)〉 ⊗ cos(θ)|H〉+ |ψ(x+ a)〉 ⊗ eiφ sin(θ)|V 〉)

Each beam then experiences a polarization rotation so that each beam has the same po-
larization, |D〉. This leaves the state as

1√
2

(|ψ(x− a)〉 ⊗ cos(θ)|D〉+ |ψ(x+ a)〉 ⊗ eiφ sin(θ)|D〉)

=
1√
2

(|ψ(x− a)〉 cos(θ) + |ψ(x+ a)〉eiφ sin(θ))⊗ |D〉

= |ψ(x)〉 ⊗ |D〉
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Where another simplification was made by assuming that the spatial part of the wave
function is conglomerated into a singular state given by |ψ(x)〉. Thus the state is given as
|ψ(x)〉 ⊗ |D〉. The beams next pass through the weak measurement crystal. In this case,
the interaction Hamiltonian is given as HI = gk̂x ⊗ Ŝz. The evolution of the state is then
determined by the time evolution operator for this interaction Hamiltonian and is given
by e

−igt
~ k̂x⊗Ŝz , where g is the strength of the interaction in the material and t is the time

that the light is in the material. The time and the interaction strength are then combined
into an effective parameter, ζ with units of m. To make for n easier comparison later, we
create a unit-less parameter η (the interaction parameter) by pulling out a factor of 1

|k| .

e
−igt
~ k̂x⊗Ŝz |ψ(x)〉 ⊗ |D〉 (1.4)

= e
−iη
|k|~ k̂x⊗Ŝz |ψ(x)〉 ⊗ |D〉

≈ (1⊗ 1− iη
~
k̂x
|k|
⊗ ~

2
σ̂z)|ψ(x)〉 ⊗ |D〉

= (|ψ(x)〉 ⊗ |D〉 − iη
2

k̂x
|k|
⊗ σ̂z|ψ(x)〉 ⊗ |D〉) (1.5)

= (|ψ(x)〉 ⊗ |D〉 − iη
2

k̂x
|k|
|ψ(x)〉 ⊗ |A〉)

Finally, the beams are measured in the position and the polarization basis. To make
the calculations easier, the position measurement will be made first and then the polariza-
tion; however, it does not matter which measurement happens first in principal, but the
experiment must take place in the reverse order as most position measurements cannot
allow a subsequent polarization measurement. The polarization measurement in this case
is done in the |R〉 and |L〉 basis.

〈x|

(
|ψ(x)〉 ⊗ |D〉 − iη

2

k̂x
|k|
|ψ(x)〉 ⊗ |A〉

)

= 〈x|ψ(x)〉 ⊗ |D〉 − iη
2
〈x| k̂x
|k|
|ψ(x)〉 ⊗ |A〉

= 〈x|ψ(x)〉

(
|D〉 − i η

2|k|
〈x|k̂x|ψ(x)〉
〈x|ψ(x)〉

|A〉

)
Which, by definition of the weak value in the previous section, it can be written as
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= 〈x|ψ(x)〉
(
|D〉+ i

η

|k|2
〈kx〉w|A〉

)
= 〈x|ψ(x)〉

(
1√
2

(|H〉+ |V 〉) + i
η

2|k|
〈kx〉w

1√
2

(|H〉 − |V 〉)
)

=
〈x|ψ(x)〉√

2

(
(|H〉+ |V 〉) + i

η

2|k|
〈kx〉w(|H〉 − |V 〉)

)
=
〈x|ψ(x)〉√

2

(
(1 + i

η

2|k|
〈kx〉w)|H〉+ (1− i η

2|k|
〈kx〉w)|V 〉

)
≈ 〈x|ψ(x)〉√

2

(
ei

η
2|k| 〈kx〉w |H〉+ e−i

η
2|k| 〈kx〉w |V 〉

)
=
〈x|ψ(x)〉√

2

(
ei

η
2|k| 〈kx〉w 1√

2
(|R〉+ |L〉) + e−i

η
2|k| 〈kx〉w −i√

2
(|R〉 − |L〉)

)
=
〈x|ψ(x)〉

2

(
(ei

η
2|k| 〈kx〉w − ie−i

η
2|k| 〈kx〉w)|R〉) + (ei

η
2|k| 〈kx〉w + ie−i

η
2|k| 〈kx〉w)|L〉

)
Finally, measuring the polarization yields

|〈R|〈x|Ψ〉|2 =

∣∣∣∣〈x|ψ(x)〉
2

(
ei

η
2|k| 〈kx〉w − ie−i

η
2|k| 〈kx〉w

)∣∣∣∣2
|〈R|〈x|Ψ〉|2 =

|ψ(x)|2

2

∣∣∣(ei η
2|k| 〈kx〉w − ie−i

η
2|k| 〈kx〉w

)∣∣∣2
|〈R|〈x|Ψ〉|2 =

|ψ(x)|2

4

(
2− i(e−i

η
|k| 〈kx〉w − ei

η
|k| 〈kx〉w)

)
|〈R|〈x|Ψ〉|2 =

|ψ(x)|2

4

(
2 + 2 sin

(
η

|k|
〈kx〉w

))
|〈R|〈x|Ψ〉|2 =

|ψ(x)|2

2

(
1 + sin

(
η

|k|
〈kx〉w

))
&
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|〈L|〈x|Ψ〉|2 = |〈x|ψ(x)〉
2

(ei
η

2|k| 〈kx〉w + ie−i
η

2|k| 〈kx〉w)|2

|〈L|〈x|Ψ〉|2 =
|ψ(x)|2

4
|(ei

η
2|k| 〈kx〉w + ie−i

η
2|k| 〈kx〉w)|2

|〈L|〈x|Ψ〉|2 =
|ψ(x)|2

4
(2 + i(e−i

η
|k| 〈kx〉w − ei

η
|k| 〈kx〉w))

|〈L|〈x|Ψ〉|2 =
|ψ(x)|2

4
(2− 2 sin

(
η

|k|
〈kx〉w

)
)

|〈L|〈x|Ψ〉|2 =
|ψ(x)|2

2
(1− sin

(
η

|k|
〈kx〉w

)
)

Noticing these measurements, it is possible to recover 〈kx〉w by realizing

|〈R|〈x|ψ〉|2 − |〈L|〈x|ψ〉|2

|〈R|〈x|ψ〉|2 + |〈L|〈x|ψ〉|2
= sin

(
η

|k|
〈kx〉w

)
which implies

〈kx〉w
|k|

=
1

η
sin−1(

|〈R|〈x|ψ〉|2 − |〈L|〈x|ψ〉|2

|〈R|〈x|ψ〉|2 + |〈L|〈x|ψ〉|2
). (1.6)

Thus, now that the weak measurement of the momentum in the x-direction is known at
a specific location at a specific z-plane. The next question is how to take the information
of this velocity field and transform into particle trajectories. The trajectories are created
by taking some selection of initial points and, then, assuming that the speed in the z-
direction for the photons is given by the speed of light (since kx

|k| <<
kz
|k| as prescribed by

the paraxial-Helmholtz equation for any directional beam). It is then further assumed that
since the photons should be traveling at the speed of light, the velocity of the particles in
the x-direction is then defined to be vx = c 〈kx〉

w(x,z)
|k| . By taking each of the initial points

(which we chose), we can find the update of the state/positions of the particles by using
an Euler approximation to solve for the path that the particle takes:

xnew = xold + vx(xold, zold)× (
znew − zold

c
) (1.7)

where znew and zold are taken to be the planes where each of the different measurements
take place and xold and xnew are the positions of the particles at the planes zold and znew
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respectfully. By then connecting the points for every z-plane, the trajectories have been
constructed. In the limit where there are many planes, the trajectories will converge to
the trajectories. Now, there is a certain question about how to choose the initial points,
but the discussion will be left to the next section 1.2.4.

1.2.4 Technical Considerations for the Trajectories

This section is devoted to a few topics that have been glossed over when defining Bohmian
trajectories in the previous section. These issues are about the definition of the trajectories,
the connection between light and Bohmian photons, seed points for the trajectories, and
how to create a weak measurement using optical components. There are a few theoretical
debates in some of the areas as well that have not been fully resolved. I will try to
acknowledge them while pressing further as they are beyond the scope of this project.

Theoretical Issues

The first theoretical issue is a question about the identity of the trajectories. This is only
one of many such trajectory configurations that could be deemed to be the correct config-
uration. This is due to the fact that there are any number of velocity fields will give rise
to the same statistics as defined above (since adding the curl of any field will automati-
cally satisfy equation 1.2 since the divergence of any curl is 0) and, thus, technically there
are then infinitely many solutions for the trajectory configurations. However, as Wiseman
argues, this is the only configuration of trajectories that matter, because it is the only
solution of trajectories that are experimentally realizable [30]. This solution is then the
one we define as the Bohmian trajectories.

Next, there is a subtle incompatibility that we have over looked. In the above analysis,
we used the time dependent Schödinger equation to talk about the quantum state of light.
Formally, though, light typically needs the full power of a field theory to be described
since photons are the very essence of a relativistic particle and are solutions of Maxwells
equations. However, there are certain configurations of light that are known to follow what
is known as the paraxial-Helmholtz equation and is the typical way of describing a lasers
output. Effectively, these solutions of the Helmholtz equation are for any beam such that
the angle that the wave vector makes with the axis of propagation is much smaller than
one. The equation is given by ∇2

⊥ψ+ 2i|k| ∂
∂z
ψ = 0 where ∇2

⊥ = ∂2

∂x2
+ ∂2

∂y2
[26]. Let us now

compare this equation to Schrödinger’s equation -with no outside potential:
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i~
∂

∂t
ψ +

~2∇2

2m
ψ = 0

2i|k| ∂
∂z
ψ +∇2

⊥ψ = 0

(1.8)

If we choose that our Schrödinger equation is confined to the two dimensions perpendicular
to the direction of beam propagation and that the z direction is related to time under
the approximation that z = tc, then we see that the equations are a perfect analog of
one another. This means that without needing to move to a quantum field theoretic
formulation, we should be able to approximate our more complicated relativistic particles
using the Schrödinger equation! In fact, by comparing the two equations and by constant
matching, we can attach a mass to our equivalent Schrödinger system:

∇2
⊥ψ + 2i|k| ∂

∂z
ψ = 0

1

2|k|
∇2
⊥ψ + i

∂

∂z
ψ = 0

1

2|k|
∇2
⊥ψ + i

∂

∂(ct)
ψ = 0

c

2|k|
∇2
⊥ψ + i

∂

∂t
ψ = 0

~∇2
⊥

2m
ψ + i

∂

∂t
ψ = 0

(1.9)

Thus, we see the old naive approximation for the mass of the photon (mp = ~|k|
c

). It should
be noted that the solution found and described here relies heavily on the approximation
that the beam is moving with small angles to the direction of propagation. Without this,
this mass definition would not hold in the general case. Furthermore, it should be noted
that when we measure in the experiment, we measure the paraxial Helmholtz not the
Schrödinger equation. Thus, we need to take our measurements and convert them into the
Schrödinger basis by changing z to t and factoring in the effective mass. This allows us to
describe the Bohmian particles. By then switching back to the measurement basis we can
report the Bohmian trajectories in physical space.

There is, however, a problem that some have with the above analysis. The main issue
is that this analysis rests on the fact that a mass-less field can be localized or have a first
quantized representation. The reason for this discrepancy is from a few proofs that state
that position operators are impossible to define for a photon making the construction of
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a probability density impossible [18, 23, 29]. Without a suitable first quantized field, the
idea of a Bohmian particle and trajectory are difficult to define as Bohmian mechanics
requires such a notion in order to define these constructions. Hence there is a fundamental
incompatible with the notion of quantum field theory. Furthermore, there have been some
attempts to try to quantize the electromagnetic field in the paraxial regime to give rise to a
local quantum field theory where localization and the ability to define a first quantization
are possible (see [8, 6]). The major issue with this realization is that by assuming a paraxial
equation, the covariance of the theory is lost meaning that by looking in different frames
may cause the outcome of the measurements to be different. So, with this all said, what
would the experiment actually measure if not for photon trajectories? Using this analysis,
there are claims that the more appropriate way to identify the measurement outcome is
the momentum components of the stress-energy tensor and are in some way measuring
energy flow of the system [12]. However, I am not in a position to dispute or confirm either
of the views that are presented here. So, I will assume that there is some truth to the
first quantization procedure as that is the impetus for this project and as well as choose to
follow along with the current claims of [19, 21, 31] in order to be cohesive and follow the
current narrative of experiments.

Further, there is an issue with how to choose the initial points. Kocsis, et al. argue
that the only seed points should be the ones allowed where the kx value is measured (i.e.
only at the center of the pixels on the camera) [19]. However, there is no basis that other
points could not be allowed. After all, just because the average momentum was measured
over some width, does not mean that there is no interpolating curve between the various
points. In fact, intuitively we would expect this curve to match the theoretical curve even
though we are averaging in the x-direction. We know this because the number of pixels
should be smaller than our major features and except for points at or near the minima
and maxima where the average would be slightly smaller than the true value, everywhere
else each pixel will only be linear in terms of the weak momentum as a function of the
x-direction. This means that the average value over the pixel should be the value given
exactly at the center of the pixel. Therefore, we can interpolate for the velocity in between
the middle pixel measurements that we would be taking.

Finally, while de Broglie would be proud to see his trajectories in such high esteem,
it is not enough for the Bohmian. To the Bohmian, remember, what is sacred above all
else is the quantum potential. For it is this potential that drives the photons into their
configurations even though there are no forces that act upon them in the classical sense.
The purpose of my experiment was to investigate if there was a method that could derive
the quantum potential from the trajectories of photons as was done by [19, 21, 31].
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Realizing the Weak Measurement

The physical realization of the weak measurement starts by assuming that there is a bire-
fringent material that has two indices of refraction (no and ne), an optical axis given at
some angle to the normal of the surface –θopt,– and a material length given by L. The
photon then enters the material at some angle, θ = kx

|k| . The photon then gains a phase
given by the formula

φ = nL|k| (1.10)

However, it should be noted that the length and the index of refraction are dependent on the
polarization and the angle of the incoming light. Effectively, this gives two phases (and two
paths for the light). The important part is then to look at the phase difference between the
two paths. Remembering that there are two operators going on: the polarization projection
due to the birefringence and the momentum of the photon. We will right away start with
the polarization degree of freedom as an operator and then uplift the momentum when we
need to. We also assign, without loss of generality (or at least up to a minus sign), that
the |H〉 polarized light takes the path defined using no and |V 〉 polarized light will take
the other path defined with the index of refraction ne(θ

′′) = 1√
cos2(θ′′+θopt)

n2o
+

sin2(θ′′+θopt)
n2e

.

φ|H〉 =
noL|k|
cos θ′

|H〉〈H| (1.11)

φ|V 〉 =
ne(θ

′′)L|k|
cos θ′′

|V 〉〈V | (1.12)

The distinction here is that θ′(θ) and θ′′(θ) are the internal angles that the beam takes as
it goes through the material which are functions of the incident angle θ and are calculated
by applying Snells law. Calculating the difference in the phase, we find

δφ =φ|H〉 − φ|V 〉 (1.13)

=
noL|k|
cos θ′

|H〉〈H| − ne(θ
′′)L|k|

cos θ′′
|V 〉〈V | (1.14)

=L|k|

(
no

cos θ′
0

0 − ne(θ′′)
cos θ′′(θ)

)
(1.15)

=
L|k|α′(θ)

2
I +

L|k|β′(θ)
2

σz (1.16)
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=
α(θ)

2
I +

β(θ)

2
σz (1.17)

where α(θ) = L|k|( no
cos θ′
− ne(θ′′)

cos θ′′
) and β(θ) = L|k|( no

cos θ′
+ ne(θ′′)

cos θ′′
). Now, remembering that

a crystal with its optic axis in the x-z plane acts like a a wave retarder, the rotation on
the polarization goes as

e−iδφ = e−i(
α(θ)
2
Î+

β(θ)
2
σ̂z) (1.18)

We now note that both α(θ) and β(θ) can be expressed as a Taylor series. Using this fact,
we find

[α(θ̂)⊗ Î , β(θ̂)⊗ σ̂z] =
1

2

(
[α(θ̂), β(θ̂)]⊗ {Î , σ̂z}+ {α(θ̂), β(θ̂)} ⊗ [Î , σ̂z]

)
(1.19)

=
1

2

(
[α(θ̂), β(θ̂)]⊗ {Î , σ̂z}+ {α(θ̂), β(θ̂)} ⊗ 0

)
(1.20)

=
1

2
[α(θ̂), β(θ̂)]⊗ {Î , σ̂z} (1.21)

=
1

2
[α(θ̂), β(θ̂)]⊗ 2σ̂z (1.22)

= [α(θ̂), β(θ̂)]⊗ σ̂z (1.23)

= [
∑
n

α(n)(0)θ̂n,
∑
m

β(m)(0)θ̂m]⊗ σ̂z (1.24)

=
∑
n

∑
m

[α(n)(0)θ̂n, β(m)(0)θ̂m]⊗ σ̂z (1.25)

focusing on the terms of θ̂ we see the above commutator reduces to sums of the commutator
below

[β(m)(0)θ̂m, α(n)(0)θ̂n] = β(m)(0)α(n)(0)[θ̂m, θ̂n] (1.26)

= 0 (1.27)

Thus,

[α(θ̂)⊗ Î , β(θ̂)⊗ σ̂z] =
∑
n

∑
m

[α(n)(0)θ̂n, β(m)(0)θ̂m]⊗ σ̂z (1.28)
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=
∑
n

∑
m

0⊗ σ̂z (1.29)

= 0 (1.30)

Hence, we find that we can rewrite the solution of above (1.18) as

e
−i
(
α(θ̂)
2
Î+

β(θ̂)
2
σ̂z
)

= e−i
α(θ̂)
2
Îe−i

β(θ̂)
2
σ̂z (1.31)

(1.32)

Now, acting that unitary on the state |ψ〉 ⊗ |D〉 and realizing that both α(θ̂) and β(θ̂)
can be expanded as a Taylor series around θ = 0, we press on with the calculation

e−i
α(θ̂)
2
Îe−i

β(θ̂)
2
σ̂z |ψ〉 ⊗ |D〉 =

e−i(
µ+υθ̂

2
+

∞∑
m>1

α(m)(0)θ̂

2m!
)Îe−i(

γ+ηθ̂
2

+

∞∑
n>1

β(n)(0)θ̂n

2n!
)σ̂z |ψ〉 ⊗ |D〉 (1.33)

which can be reduced by using analogs of the commutator (see equation 1.27) to the
following

e−i
α(θ̂)
2
Îe−i

β(θ̂)
2
σ̂z |ψ〉 ⊗ |D〉 = (1.34)

= e−i(
µ
2

)e−i(
υθ̂
2

)⊗Îe−i(

∞∑
m>1

α(m)(0)θ̂

2m!
)⊗Îe−i(

γ
2

)⊗σ̂ze−i(
ηθ̂
2

)⊗σ̂ze−i(

∞∑
n>1

β(n)(0)θ̂n

2n!
)⊗σ̂z |ψ〉 ⊗ |D〉 (1.35)

= e−i(
µ
2

)e−i(
υθ̂
2

)⊗Î
∞∏
m>1

e−i(
α(m)(0)θ̂

2m!
)⊗Îe−i(

γ
2

)⊗σ̂ze−i(
ηθ̂
2

)⊗σ̂z
∞∏
n>1

e−i(
β(n)(0)θ̂n

2n!
)⊗σ̂z |ψ〉 ⊗ |D〉 (1.36)

= e−i(
µ
2

)e−i(
υθ̂
2

)⊗Î
∞∏
m>1

e−i(
α(m)(0)θ̂

2m!
)⊗Îe−i(

γ
2

)⊗σ̂ze−i(
ηθ̂
2

)⊗σ̂z
∞∏
n>1

∞∑
j=0

(−i(β
(n)(0)θ̂n

2n!
)⊗ σ̂z)j

j!
|ψ〉 ⊗ |D〉

(1.37)

= e−i(
µ
2

)e−i(
υθ̂
2

)⊗Î
∞∏
m>1

e−i(
α(m)(0)θ̂

2m!
)⊗Îe−i(

γ
2

)⊗σ̂ze−i(
ηθ̂
2

)⊗σ̂z · ··
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∞∏
n>1

(Î ⊗ Î − i(β
(n)(0)θ̂n

2n!
)⊗ σ̂z + . . .)|ψ〉 ⊗ |D〉

(1.38)

Further, for p > 1, due to the paraxial approximation the θ � 1 which means that we can
make the approximation that θp ≈ 0, we can act our θ̂ operator on our state yielding

θ̂p ⊗ Î|ψ〉|D〉 = θ̂p|ψ〉 ⊗ |D〉 (1.39)

=
k̂px
|k|p
|ψ〉 ⊗ |D〉 (1.40)

=

∞∫
−∞

k̂px
|k|p
|kx〉〈kx|ψ〉 ⊗ |D〉dkx (1.41)

=

∞∫
−∞

(
kx
|k|

)p
|kx〉〈kx|ψ〉 ⊗ |D〉dkx (1.42)

=

∞∫
−∞

θp|kx〉〈kx|ψ〉 ⊗ |D〉dkx (1.43)

≈
∞∫

−∞

0|kx〉〈kx|ψ〉 ⊗ |D〉dkx (1.44)

≈ 0 (1.45)

Thus, continuing the main calculation on the state from equation 1.38

= e−i(
µ
2

)e−i(
υθ̂
2

)⊗Î
∞∏
m>1

e−i(
α(m)(0)θ̂

2m!
)⊗Îe−i(

γ
2

)⊗σ̂ze−i(
ηθ̂
2

)⊗σ̂z · ··

∞∏
n>1

(Î ⊗ Î − i(β
(n)(0)θ̂n

2n!
)⊗ σ̂z + . . .)|ψ〉 ⊗ |D〉 (1.46)

= e−i(
µ
2

)e−i(
υθ̂
2

)⊗Î
∞∏
m>1

e−i(
α(m)(0)θ̂

2m!
)⊗Îe−i(

γ
2

)⊗σ̂ze−i(
ηθ̂
2

)⊗σ̂z Î ⊗ Î|ψ〉 ⊗ |D〉 (1.47)
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= e−i(
µ
2

)e−i(
υθ̂
2

)⊗Î
∞∏
m>1

e−i(
α(m)(0)θ̂

2m!
)⊗Îe−i(

γ
2

)⊗σ̂z
∞∑
n=0

(
−i(ηθ̂

2
)⊗ σ̂z

)n
n!

|ψ〉 ⊗ |D〉 (1.48)

≈ e−i(
µ
2

)e−i(
υθ̂
2

)⊗Î
∞∏
m>1

e−i(
α(m)(0)θ̂

2m!
)⊗Î
(

cos
(γ

2

)
− i sin

(γ
2

)
σz

)(
|ψ〉 ⊗ |D〉 − iηθ̂

2
|ψ〉 ⊗ |A〉

)
(1.49)

= e−i(
µ
2

)e−i(
υθ̂
2

)⊗Î
∞∏
m>1

e−i(
α(m)(0)θ̂

2m!
)⊗Î ···(

cos
(γ

2

)
|ψ〉 ⊗ |D〉 − i

cos
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |A〉 − i sin

(γ
2

)
|ψ〉 ⊗ |A〉 −

sin
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |D〉

)
(1.50)

= e−i(
µ
2

)e−i(
υθ̂
2

)⊗Î
∞∏
m>1

∞∑
n=0

(
−i(α

(m)(0)θ̂
2m!

⊗ Î)
)n

n!
···(

cos
(γ

2

)
|ψ〉 ⊗ |D〉 − i

cos
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |A〉 − i sin

(γ
2

)
|ψ〉 ⊗ |A〉 −

sin
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |D〉

)
(1.51)

utilizing the paraxial approximation and the relation found earlier (see the calculation
starting at 1.39)

≈ e−i(
µ
2

)e−i(
υθ̂
2

)⊗Î
∞∏
m>1

(
Î ⊗ Î + 0 + . . .+ 0 + . . .

)
···(

cos
(γ

2

)
|ψ〉 ⊗ |D〉 − i

cos
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |A〉 − i sin

(γ
2

)
|ψ〉 ⊗ |A〉 −

sin
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |D〉

)
(1.52)

= e−i(
µ
2

)e−i(
υθ̂
2

)⊗Î · ··(
cos
(γ

2

)
|ψ〉 ⊗ |D〉 − i

cos
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |A〉 − i sin

(γ
2

)
|ψ〉 ⊗ |A〉 −

sin
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |D〉

)
(1.53)
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= e−i(
µ
2

)

∞∑
n=0

(
−i(υθ̂

2
)⊗ Î

)n
n!

· ··(
cos
(γ

2

)
|ψ〉 ⊗ |D〉 − i

cos
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |A〉 − i sin

(γ
2

)
|ψ〉 ⊗ |A〉 −

sin
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |D〉

)
(1.54)

≈ e−i(
µ
2

)

(
Î ⊗ Î − i(υθ̂

2
)⊗ Î

)
· ··(

cos
(γ

2

)
|ψ〉 ⊗ |D〉 − i

cos
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |A〉 − i sin

(γ
2

)
|ψ〉 ⊗ |A〉 −

sin
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |D〉

)
(1.55)

≈ e−i(
µ
2

)[
(

cos
(γ

2

)
|ψ〉 ⊗ |D〉 − i

cos
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |A〉 − i sin

(γ
2

)
|ψ〉 ⊗ |A〉 −

sin
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |D〉

)
+(

−iυθ̂
2

cos
(γ

2

)
|ψ〉 ⊗ |D〉 − 0− υθ̂

2
sin
(γ

2

)
|ψ〉 ⊗ |A〉 − 0

)
] (1.56)

= e−i(
µ
2

)( cos
(γ

2

)
|ψ〉 ⊗ |D〉 − i

cos
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |A〉 − i sin

(γ
2

)
|ψ〉 ⊗ |A〉 −

sin
(
γ
2

)
ηθ̂

2
|ψ〉 ⊗ |A〉+

− iυθ̂
2

cos
(γ

2

)
|ψ〉 ⊗ |D〉 − υθ̂

2
sin
(γ

2

)
|ψ〉 ⊗ |A〉) (1.57)

= e−i(
µ
2

)( cos
(γ

2

)
|ψ〉 ⊗ |D〉 − i

cos
(
γ
2

)
ηk̂x

2|k|
|ψ〉 ⊗ |A〉 − i sin

(γ
2

)
|ψ〉 ⊗ |A〉 −

sin
(
γ
2

)
ηk̂x

2|k|
|ψ〉 ⊗ |A〉+

− i υk̂x
2|k|

cos
(γ

2

)
|ψ〉 ⊗ |D〉 − υk̂x

2|k|
sin
(γ

2

)
|ψ〉 ⊗ |A〉) (1.58)

by then taking the definition of the weak value of an operator, Q̂, as 〈Ψ|Q̂|Φ〉〈Ψ|Φ〉 . This allows for

us to define 〈kx〉w = 〈x|k̂x|ψ〉
〈x|ψ〉 which allows us to simplify our statement above significantly

by using this definition as well as post-selecting on the position:

=
〈x|ψ〉

2
e−i(

µ
2

)( cos
(γ

2

)
|D〉 − i

cos
(
γ
2

)
η

2|k|
〈kx〉w|A〉 − i sin

(γ
2

)
|A〉 −

sin
(
γ
2

)
η

2|k|
〈kx〉w|A〉+

− i υ
2|k|

cos
(γ

2

)
〈kx〉w|D〉 −

υ

2|k|
sin
(γ

2

)
〈kx〉w|A〉) (1.59)
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=
〈x|ψ〉

2
e−i(

µ
2

)

(
e
−iγ
2

(2|k| − i〈kx〉w(υ + η))

2|k|
|H〉+ e

iγ
2

(2|k|+ i〈kx〉w(υ − η))

2|k|
|V 〉
)

(1.60)

≈ 〈x|ψ〉
2

e−i(
µ
2

)

(
e
−iγ
2 e−i

〈kx〉w(η+υ)
2|k| |H〉+ e

iγ
2 ei

〈kx〉w(η−υ)
2|k| |V 〉

)
(1.61)

Now, by post-selecting on the right and left polarizations, we find

|〈R|Φ〉|2 =
|ψ(x)|2

2

(
1 + sin

(
γ +

η

|k|
〈kx〉w

))
(1.62)

|〈L|Φ〉|2 =
|ψ(x)|2

2

(
1− sin

(
γ +

η

|k|
〈kx〉w

))
(1.63)

which is of the same form that we expected in the previous treatment. However, there
are a few things to note. First, using a slight abuse of notation we can change the form
to something with a bit more physical meaning. Let’s look just at the R-polarization
post-selection

|〈R|Φ〉|2 =
|ψ(x)|2

2

(
1 + sin

(
γ +

η

|k|
〈kx〉w

))
(1.64)

=
|ψ(x)|2

2

(
1 + sin

(
γ + η〈 kx

|k|
〉w
))

(1.65)

=
|ψ(x)|2

2
(1 + sin(γ + η〈θ〉w)) (1.66)

Now, if we rotate the crystal’s normal in the x-z plane, then technically we find the
angle will be changed by δ (so the total angle is now θ + δ); thus, we find

|〈R|Φ〉|2 =
|ψ(x)|2

2
(1 + sin (γ + η〈(θ + δ)〉w)) (1.67)

=
|ψ(x)|2

2
(1 + sin (γ + η(〈θ〉w + 〈δ〉w)) (1.68)

=
|ψ(x)|2

2
(1 + sin (γ + η〈θ〉w + η〈δ〉w)) (1.69)
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Therefore, there exists such a δ such that ηδ = −γ. This allows for the intensities of the
left and right polarizations to be equal when 〈kx〉w

|k| = 0 (note: the same δ also works for

the L-polarization post-selection). Next, we note that the solution above does not include
terms from the identity part of the half of the first operator (see 1.17). Thus, we could
replace the full operator with only the terms with σ̂z in 1.17. Then, we can make the
identification of the simple operator interaction operator that is defined/weakly explained
in [19] and the operator that we defined from the crystal properties of birefringence and
the angle of the incoming light. In this identification, η is the interaction strength in weak
measurement theory. The last thing to do now that the identification of the pure theory to
the actual measurement conditions are talked about, is to actually calculate the theoretical
values of η and γ.

To do this, we remember that γ = L|k|( no
cos θ′

+ ne(θ′′)
cos θ′′

)[0] and η = L|k|( no
cos θ′

+ ne(θ′′)
cos θ′′

)(1)[0]
as per our definition in equation 1.33. The [0] is to imply that since θ′ and θ′′ are functions of

θ and here we set θ = 0. Now, for θ′(θ) = arcsin
(
θ
no

)
since the H-polarization component

is the original relation from Snells law. The other component is not quite a straight
forward calculation unfortunately. However, it turns out that since the incoming angles are
small due to the paraxial approximation, the angles interior to the material (derived from

θ = ne(θ
′′) sin θ′′ = sin(θ′′)√

cos2(θ′′+θopt)
n2o

+
sin2(θ′′+θopt)

n2e

where θopt is the angle of the optical axis in the

material) are also small and is linear by use of numerical methods. Using the interpolated
line as the function for θ′′(θ) is well defined and can be used for the calculation. Thus,
we have all required definitions to find the numerical values for the interaction parameter,
η, as well as the offset, γ. In our case, using the numbers of our experimental setup and
calcite crystal L = .5mm, |k| = 2π

808∗10−9
1
m

, θopt = π
4
, no = 1.6486, and ne = 1.4818 which

leaves with the solution of η = −413.17. As will be noted later, by slightly decreasing the
angle and increasing the length slightly to in the interval of .503mm to .507mm, there are
solutions for η = 419.555 which means nothing at the moment, but will become important
as it matches the measured value of our interaction parameter in our experiment.
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Chapter 2

Experiment

2.1 Theory

In this section, the theory of the specific parts of the experiment will be described. Specif-
ically, it will go through the intricacies of how the experiment works. The first subsection
details how the quantum potential is calculated from the trajectories them selves. The last
subsection, details how to then create fake propagation using a lens system and how the
lens system should work.

2.1.1 The Quantum Potential

Before the process of taking data, it is good practice to simulate the measurements that
will take place. We first assume that we have two Gaussian beams flowing down a table,
but with no lens system. In this case, to find the trajectories of the photons, we first need
to find the Bohmian velocity as a function of distance and transverse position. To do this,
we remember that the Bohmian velocity is given by ∇S where S(xi, t) is the phase function

of the wave function ψ = R(xi, t)e
i
~S(xi,t). In this case, by naively taking the momentum

operator to the wave function, we see that
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p̂xψ = −i~ ∂
∂x
R(xi, t)e

i
~S(xi,t)

= −i~∂R(xi, t)

∂x
e
i
~S(xi,t) +R(xi, t)e

i
~S(xi,t)

∂S(xi, t)

∂x

= −i~∂R(xi, t)

∂x
e
i
~S(xi,t) + ψ

∂S(xi, t)

∂x

and, hence

Re(
p̂xψ

ψ
) = Re(

−i~
ψ

∂R(xi, t)

∂x
e
i
~S(xi,t) +

∂S(xi, t)

∂x
)

= Re(
−i~

R(xi, t)

∂R(xi, t)

∂x
+
∂S(xi, t)

∂x
)

=
∂S(xi, t)

∂x
(2.1)

(2.2)

which follows because S(xi, t) and R(xi, t) are defined as a real-valued functions.

This can be used to find the momentum of the particles and, since they are photons,
the velocity in a specific direction can be found by dividing by the effective mass. Thus,
the velocity of the photons can be found given that we have the initial state of the system
for every point in the transverse and flow directions. Now, there are two transverse parts
to the beam in our physical system, which we will label the one parallel to the table as
x and the one perpendicular, y. In this experiment, the weak measurement couples only
one of the directions of the field, in our case the x-direction, projecting only on the x
component on the velocity field. In this case, the optic axis is in the x-z plane and we
integrate over the y-direction at the end of the experiment to remove this dependence from
the system. Thus, the system is now a function over the coordinate double (x, z). In
section 1.2.4, we covered that the direction of propagation and time were related. This
relation is between our physical system and the system where we can talk about Bohmian
mechanics. Thus, our pair in the Sch́’odinger space must be (x, t). This is the appropriate
space to do all of our trajectory related related work. The majority of results will not be
talked about in the analogous space, but in the measurement space instead. We chose to
use the z-coordinate in this case since: a) the Gaussian beam is typically written in this
way already and b) the experiment will be labeled in the same way so it will keep the
presentation easier to understand. Thus, we only have a single direction for the velocity
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to go, the x-direction, as the derivative with respect to z is now the same as the temporal
derivative and more correctly labeled an energy. So, everything in the simulation will be
labeled by the coordinate pair (x, z).

The state can be thought of as a pair of Gaussian beams propagating in the z-direction
and having extent in the x-direction. The Gaussian beam is given by the formula

E(x, z, w, λ, Eo) = Eo√
1+ z2λ2

π2w4

e

−x2

w2(1+ z2λ2

π2w4 ) e

−i2πz
λ
− iπx2

zλ(1+π
2w4

z2λ2
)
+i arctan ( zλ

πw2 )

(2.3)

which has the interesting property of having a linear Bohmian-velocity profile. To see this,
we recognize that the only part of the phase that is imaginary and contains a term that
depends on x is − iπx2

zλ(1+π2w4

z2λ2
)
. Taking the x-derivative and multiplying by the prefactors of

this term should then yield the weak velocity which is clearly linear in x and the velocity
is 0 when x = 0 (which is the center of the Gaussian). Note: for z = 0, the velocity
is identically 0 since at the waist, the beam has no phase. The slope will be positive
as a function of time and the beam will diverge in the x-direction, but the point in the
center will always stay still. Thus, the points where x < 0 must travel in the −x direction
and those points in the opposite side of x = 0 must have positive velocities to satisfy the
intuitive picture. The case, for two Gaussians is similar, but care must be taken. Supposing
the Gaussians are the same distance, a, from x = 0 and that the waist of the beams are
small enough that each beam is distinct (i.e. the overlap of the beams is small), then the
state is given by 1√

2
(E(x− a, z, w, λ, Eo) +E(x+ a, z, w, λ, Eo). Since the overlap is small

a crude approximation can be used so where the same function can be thought of before

as − iπ(x−a)2

zλ(1+π2w4

z2λ2
)

over the region near x = a and − iπ(x+a)2

zλ(1+π2w4

z2λ2
)

over the region near x = −a.

In this way, using the same methodology of taking the derivative of this phase term yields
two linear functions which are both zero at their respective peaks (for z > 0, but small
enough that the beams have not overlapped). However, as x gets closer to 0, the only
way to know the value of the Bohmian velocity is to actually calculate the velocity. It is
intuitive that the velocity should be 0 at 0, however, because the function that we have
described is continuous and the respective wave function is complex, but never 0. Thus,
by the intermediate value theorem and that points to the right of x = −a and points to
the left of x = a have velocities that are positive and negative respectfully, the velocity
must attain 0 at x = 0.
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Figure 2.1: The calculated weak velocity for various z-planes

It should be noted that the weak velocity is found from equally spaced x starting points,
rather than the equally probable trajectories used below. These velocity curves are

calculated using two Guassians each centered at ±1.33mm and a waist of 0.64mm as well
as equation 2.1.

Knowing the velocity field at all points allows the trajectories to be calculated by
taking an initial seed point and then applying equation 1.7. This formula gives the new
approximate x-position of the particle in question at the new z-position. In the limit of
znew − zold → 0, the path of the trajectory should be exactly that of a particle as given
by de Broglie or Bohm (this is easy to show in de Broglie’s case since it was the velocity
that was fundamental and not the quantum potential; thus, the particle’s path must be
exactly given by the infinite sum described here and since Bohm’s trajectories agree with
de Broglie’s; we are done). The trajectories are shown in figure 2.2.
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Figure 2.2: The simulated trajectories

It should be noted that these trajectories are found from equally spaced x starting points,
rather than the equally probable trajectories.

The trajectories are found using an even distribution of the particles; however, we must
be careful. By definition, the state must start in quantum equilibrium meaning that the
state of the system had to have started so that the initial probability distribution is the
same if one were to calculate from the trajectories. Now, in principle it is possible to start
with any initial state as long as you count the probability of the system to be carried by
the single particle moving on the trajectory as a separate value. The probability is the
usual one where

P =

∫ b

a

ψ?ψdx (2.4)

and the limits of integration (a and b) are given by the mid points between the previous/the
next particle and the current particle under test (assuming the seeds were chosen with the
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typical ordering on R). Assuming that the probability is then kept constant (which is a
good approximation because of the probability conservation equation (1.2), we can find the
new probability density for that particle after it has undergone its motion, by again finding
the midpoints to its partners on either side and dividing the probability by the length of
that new interval. It is this that brings up a good point; in the experiment, the camera is
not infinitely sensitive and has to deal with outside sources. Thus, there will exist points
where the image is washed out by noise or the camera cannot resolve the signal. Since this
is the case, we can truly define the beams as separate until the beams start interacting on
the camera. So, when we seed the initial starting points of the trajectories, there is no
point in seeding a place which will have just contributions from the noise. Thus, the points
to start the trajectories must also have a large enough contribution in probability density,
that they would make a contribution to the image being seen by the camera. This leaves
us with the two plots below:
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Figure 2.3: Probability Density Comparison at z = 0

The probability density distribution found at z = 0 where the red line is the normalized
distribution from the two Gaussians, and where the blue points are the probability

densities for each trajectory.

30



-0.004 -0.002 0.002 0.004
x-position (m)

50

100

150

200

250

300

Probability Density
Probability Distribution From Trajectories z=10m

Figure 2.4: The simulated probability density at z = 10

The probability density distribution found at z = 10 where the red line is the normalized
distribution from the two Gaussians, and where the blue points are the probability
densities for each trajectory. Note: it is not a perfect comparison. This is from the

approximation of how we defined probability in this case as well as that we only have
finitely many points and z-slices taken to build up the trajectories.

in this case, the points were selected to have the same probability of 0.0001. Which shows
that the trajectories are the correct trajectories as we have fairly good matches to the
probability density distribution as expected. For the remaining graphics, the point distri-
bution was taken to be equally spaced points on the x-axis. Since the trajectories above
show that the probability distribution is available to be taken, then any other selection of
points will work as long as the probability of each trajectory is kept track of as a separate
property of each particle that exists.

The quantum potential can then be calculated (see Figure 2.5), by taking the velocity at
each point along the trajectory, fitting to it a spline and taking the time derivative of that
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spline at each of the projected points. However, all of the trajectories have been plotted
as functions of x and z. We have to remind ourselves that we measure in the z dimension.
This is in the physical space, but in our analogy, our true photon trajectories are functions
of time. The solution to this issue is to remember that the z and t are related. This regains
the quantum force for each points along the trajectory. By then fitting the quantum force
at a common z-positions with a spline and integrating from 0 to the point one would like
to probe yields the quantum potential up to a constant that depends on time or in our
physical space, the z-direction. In this case, the error increase typically found by taking
the derivative or integral is lessened; however, in the future a better technique may be
found to reduce this error. It should be noted that in this case, there is an added difficulty.
Since the quantum force is defined as a conservative field by the very definition of the
existence of the quantum potential. This means that it is not good enough to integrate
only along the x-direction alone as this does not give information about how to stitch the
planes at different z-slices of the inferred quantum potential together again. See, Figures
2.5 and 2.6 for a comparison of the quantum potential found from the simulation and from
its definition.

Figure 2.5: The quantum potential: from the simulated trajectories

The quantum potential at various z planes. They are built from approximately 37000
trajectories and distance skips of 0.1m in the ẑ-direction.
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Figure 2.6: The quantum potential

The quantum potential as expected in the experiment given the relevant parameters in
the experiment. This was calculated using the relation Q ∝ ∇2R

R
.

In this way, one would naively apply the classical algorithm:

1. Integrate the force in direction one to get a potential that is off by some constant
depending on direction two

2. Taking the derivative in direction two and comparing this with the force in direction
two yields the derivative of the constant function with respect to direction two

3. Finally integrating this constant function with respect to direction two and adding
it to the integration of the force, we find the potential

Realizing that we have already integrated the force for our inference, we now need to find
the constant of integration for the z direction (i.e. the force on the particle in the z-
direction) and compare that with −∂Qx

∂z
where Qx is the quantum potential that is inferred
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from integrating in the x-direction– for some strip given at a single x-coordinate (perhaps
repeating the process for a few x-positions in order to make sure the answer is roughly
independent of x). This will find the derivative of the constant that varies in the z-
direction. Then taking that function, integrating it with respect to z and and adding
it to our inferred version (Qx), will yield the quantum potential (at least up to a global
constant). Unfortunately, this does not work. The main issue with that entire description
is that the z-direction is not a spatial direction, rather it is one of time in the Schrödinger
system where our Bohmian particles lie. In this case, a new approach would have to be
taken to account for this discrepancy. One possible approach follows below:

1. First, start by realizing that ∂
∂z

= ∂
∂(ct)

= 1
c
∂
∂t

.

2. Next, notice that since there are only two directions, that c2 = v2
x + v2

z → vz =√
c2 − v2

x.

3. Realizing that if we were to keep with the analogy, vz = ∂S
∂z

= 1
c
∂S
∂t
→ ∂S

∂t
= cvz.

4. Finally, by taking 1.1, plugging in the values of the calculated ∂S
∂t

, (∇S)2

2m
, and the

found quantum potential, we should be able to back out the time dependent constant
that will allow us to stitch together the different z-slices. Written out, −∂S(x,t)

∂t
=

Qx(x, t) + C(t) + 1
2m

[
∂S(x,t)
∂x

]2

, where Qx(x, t) is the quantum potential at a specific

z-plane and C(t) is the constant function that we are trying to solve for.

While, the plot has the same shape (see Figures 2.7 and 2.8), there are some features
that the plot is also missing. This could be related to the fact that we have taken a square
root, or perhaps something more esoteric. In any case, at this point we will have to console
ourselves with only being able to solve for the Bohmian quantum potential without this
constant of integration in the z-direction. Something to note that is not evident from this
analysis is that the system must be fed with many, many individual starting points. These
points can be chosen in any fashion; however, if the particles are not started with the
quantum equilibrium condition in mind, then we must note that the density of trajectories
will not give the correct probability density.
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Figure 2.7: Simulating ∂S
∂t

from the quantum potential (found from Q ∝ ∇2R
R

) minus the
kinetic energy.
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Figure 2.8: ∂S
∂t

as evaluated from the simulated weak velocity curves.

There are some requirements that are necessary for the quantum potential to be numer-
ically stable. It is absolutely necessary to make as many z-position points as it allows for
smoother trajectories and increases the numerical stability of quantum forces and thus the
potential along with it. This is especially true for interference patterns with more fringes.
Intuitively, it should make sense that there would be a greater quantum force in the wells of
the quantum potential as the particles are being forced into the smaller area of the fringes
in a smaller amount of time. Which means, that the particles will spend less time in the
wells and, thus, need more time precision in order to fully see these trajectories. Secondly,
there was a minimum number of seed points that were necessary in order to reconstruct
the potential. The reasoning behind this fact is that there are now more points of the
distribution being sampled which will induce larger numerical stability during the process
of finding the potential and they are important to making sure that the features in the
potential are well represented. It should be noted that there is a minimum for which the
amount of return decreases for the number of points included. For the plots shown here,
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the number of initial seed points needed to be roughly 15000 to make up each beam, with
a sampling of 0.1m of the propagation distance seems to reproduce the majority of the
quantum potential.

2.1.2 The Lens System

In order for a double slit to work in this case, there are two options: move the camera
back 10m and allow the beams to interfere “naturally” or move to a linear optical system
so that it artificially creates the distance the beam needs to move down the table. The
second choice was preferable in this case. The requirements for this system would be that
the beams should “move” in some way together and that their waist at the same point
should also change in some way (either decrease or increase). One such system that we
could use consists of two overlapping telescopes [19, 21, 31] as shown in the figure 2.9.

37



{ {f1 f3

f1 f2 f3

{ {f1 f3

f1 f3f2

{f3

{

d

{f3

a)

b)

Figure 2.9: A diagram of the lens system at the first and last lens positions

A break down of the suggested lens system to the two extreme cases where a) shows the
middle lens at the focal point of f1 so that f1 and f3 make a telescope, and b) shows the
middle lens at its furthest position where it has moved a distance f2 closer to f3 in order

to make a new telescope between f1 and f2 and the two separated beams end up
overlapping at the focal point of f3.

As can be seen, the beams start apart and then move together as the second lens is
moved forward. The next question is how will the beam shapes change as a function of
the lens position? In this case, it is easier to think about a single beam at the center of
the lenses. There are two distinct lens systems. One with a telescope made with the two
exterior lenses (see Figure 2.9.a) and the other where the first two lenses make a telescope
and the last lens serves to focus the beam (see Figure 2.9.b). Assuming perfect alignment,
we expect that the first case should have an effective magnification of |M | = |f3

f1
| and the

second case should have an effective magnification of |M | = |f2
f1
| (which comes out colinear

due to the fact that the lens system makes a Galilean telescope) and into the last lens,
f3, to be focused down at its focal length. Thus, the beam should be smaller than in
the first case; in other words, solving the second requirement. Unfortunately, this simple
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physical picture does not allow for a full understanding of the magnification as a function
of position. Now that we know that the system does its job, we can focus on actually
understanding this system in a more fundamental level, with the main goal of finding the
effective distance the beam would have traveled.

The intuition is a little easier to explain before we fully go through the final solution.
As explained above, there is at least a system where the beams come together and if a
beam were placed in the center, its waist would decrease (though we do not necessarily
know if either of these are linear phenomena). The question is how should the “effective”
distance the beam has traveled be determined? It is well known that the Gaussian beams’
waist diverge as w(z) = w0

√
1 + ( z

zR
)2. Given this, there is a measure of the distance the

beam has traveled by determining the beam size at different imaging planes. But, how
does one then define magnification of the lens system? The magnification of an unknown
lens system can be found by placing some object and shining a light on that object; by
dividing the length of the shadow that the object casts after the lens system and before,
this is the magnification. However, how does one think about it for laser beams? In this
case, usually taking waist of a beam (or the beam diameters) measurement counts as such
an object (shadow or not) as it would be a measure of an object from the center of the lens
and just like the shadow it will measure the apparent increase (or decrease) in it yielding
the absolute value of the magnification. Formulating this idea, the magnification of the
beam should be given by

wf
wi

. While this is easy to see and is probably known by most
in the experimental optics community, there is an inherent problem in this definition. It
becomes circular when we try to use this to solve for the effective distance the beam has
propagated. For example, let’s take wf to be the beam waist found after the lens system at
a configuration defined by the parameter d, which controls in some way the magnification
of the system (i.e. wf (d)). However, it is not possible to strictly compare wf (d) with the
original beam propagation as they, by definition, need to operate in the same manner. To
alleviate this problem, take the final configuration and try to map it back to the original

beam by dividing by the magnification (
wafter(d)

M
). Using the definition of the magnification,

the beam waist to compare to is given by
wafter(d)×wi

wf
, but the wf in this case is given by

the observable of wafter(d). Thus, find wi = wi, which doesn’t answer the question of
how the parameter in the lens system relates to the propagation distance since no matter
which position is used it would result in always returning the initial beam waist. This
implies that for every choice of d, the distance would be identically “z.” Rather, there
needs to be some independent way of defining the magnification. The two beams which
should be propagating parallel together to make the double slit will be able to fill this
role. Effectively, the distance between these two beams should then give an independent
measure (from the beam waist) of the magnification so that the notion of the dependence
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of the parameter, d, does not get removed from the measurement. Therefore, to sum up,

we want the magnification to be defined as |M(d)| = |Dafter(d)

Dbefore
|, where D is the distance

between the two beams. Now, note that the magnification still depends on d, which is fine
as the only problem was that the previous definition was circular. Now, we have the final
definition of how to find the effective distance as a function of the lens system parameter,
d. Thus, we have the final set of equations:

wfree =
wafter(d)

|M(d)|

wo

√
1 + (

zeffλ

πw2
o

)2 =
wafter(d)

|M(d)|

Where, wfree is the waist of a freely expanding beam, wo and λ is the original waist and
wavelength of that freely expanding beam, and zeff is the effective travel distance of that
beam. And, thus

zeff =

√
π((

wafter(d)

|M(d)| )2 − w2
o)

λ
. (2.5)

Now that there is a clear understanding of what we need in order to get the effective
distance traveled, we should try to model what we expect the magnification of the lens
system to be like. To do this, we utilize ABCD matrices where lenses are functions of the
focal length –L(f),– and free space propagation is a function of distance –FS(s). In this
case, the lens system as defined above can be modeled as:

N = FS(f3)L(f3)FS(f3 − d)L(f2)FS(f1 + d)L(f1)

=

(
1 f3

0 1

)(
1 0
− 1
f3

1

)(
1 f3 − d
0 1

)(
1 0
− 1
f2

1

)(
1 f1 + d
0 1

)(
1 0
− 1
f1

1

)
=

(
(d−f2)f3
f1f2

−f1(d+f1−f2)f3
f1f2

d2

f1f2f3

−f1(d(d+f1)+f1f2)
f1f2f3

)

where we note the parameter, d, is the parameter that controls the magnification of the
system and takes values from 0 through f2. Since, we defined above that the magnification
would come from distance between each of the beams and we can assume that the beams
are parallel to each other and meeting the lens symmetrically about the center of the lens,
we can find the amount that the beams diverge from the center after passing the lens
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system by letting the beam be assigned to the ray with no angle (θ = 0) and at some
distance from the center ω. Thus,

ωnew = N

(
ω
0

)
=

(
(d−f2)f3ω

f1f2
d2ω
f1f2f3

)

Since the first element of the vector is defined to be the distance to the center, the
magnification of the lens system is found by dividing by the original distance to the center
of that given ray. Therefore, the magnification is given by

|M | = |(d− f2)f3

f1f2

| (2.6)

The absolute values are included because at the end of the day, it does not matter if
the beams invert since ideally the beams would be identical; however, only the distance
between them matters. Now that the magnification of the system is quantified, the effective
distance that the beams have “traveled” due to the lens system given that the beam waist
is sampled for enough distances.

2.2 Experiment

In this section, we will take an extended look into how to build the experiment. This ex-
periment can be broken into five separate parts: the source, Bob’s tomography section, the
setup of the double slits, the weak measurement, the lens system and strong measurement,
and the single photon camera.
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Figure 2.10: System diagram

A break down of the experiment. In section a) we have our source that sends out two
photons (polarization entanglement is possible). Section b) contains a polarization

tomography station for Bob’s photon. c) contains the setup for creating the double slits,
polarization and timing compensation, and beam compensation. d) contains the weak

measurement crystal, strong measurement and the single photon camera who heralds off
of a measurement of a photon from the tomography station.

42



Figure 2.11: An angled top view of the experimental sections c) and d) found in Figure
2.10
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2.2.1 The Source

Figure 2.12: A picture of the entanglement generating SPDC source used in section a) of
Figure 2.10

The source chosen for this experiment was a Sagnac polarization source [28]. Using a
continuous wave laser, single photons are created going through a crystal of periodically
polled Potassium Titanyl Phosphate (PPKTP). In this case, the source is a type two
spontaneous parametric down-conversion (SPDC) process, where the final states of the
photons leaving are phase matched to have the same momentum, but opposite polarization
and having the same frequency (remember, energy conservation makes ω = ωi + ωs and in
this case ωi = ωf ). In this case, an 405nm continuous wave laser set to enter the PPKTP
crystal with polarization in the |H〉 direction, would go through the crystal and become two
photons: one of polarization |V 〉 and the other of polarization |H〉; and each of the photons
will leave with a wavelength of 810nm as well as the same momentum. However, the source
does not necessarily produce only two photons at a time. Due to the fact that it is related
to the displacement field within the crystal and that displacement field is really given as an
infinite sum of the electric field tensor. Typically, the constants (given as χi) are related to
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the probability of the number of photons occurring orders happening. The source is then
tuned to make sure that the photons are given in the bell state |HH〉 + |V V 〉. Each of
these photons are then coupled into separate single mode fibers and sent to either Alice’s
side with the double slit or to Bob’s side with tomography. Furthermore, we produce a the
Bell state |H〉|H〉 + |V 〉|V 〉 with about 100,000 coincidences a second as well as a CHSH
inequality violation of 2.57± 0.017. Hence, we know that we have two entangled photons
and that the photons are in the state that we want. See Figure 2.12 for a picture of the
source.

2.2.2 Bob’s Tomography

From the source, Bob’s photon emerges from the fiber via a fiber collimator only to imme-
diately go through a quarter wave plate and a half wave plate tuned so that the polarization
of the photon ensures that if |H〉 is sent through that |H〉 also emerges. The cause for the
polarization shift is due to the stress acting on the single mode fiber. This stress (such as
coiling the fiber) causes just enough of a change in the index of refraction in the fiber, that
the polarization can rotate; however, we can always undo the rotation since it is a unitary
assuming the fiber stays still. Next, the photon then goes through another set of quarter
and half wave plates and finally through a polarizing beam splitter. The quarter and half
waveplates allow for any polarization we want to be rotated to |H〉 and then selected. The
reason for this is that polarizing beam splitters typically have higher efficiencies compared
to their thin film brothers and sisters. Once the state has been selected, the photon will
then be collected into a single mode fiber and be sent (assuming it made the previous
selection) to be a herald for the camera. Refer to figure 2.10b.
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2.2.3 The Double Slits

Figure 2.13: The Double Slit Apparatus shown in c) of Figure 2.10

The other photon then passes through a quarter and half waveplates (to compensate for
any polarization drift through the fiber from the source to the collimator). The photon
then hits two mirrors to change the direction and then hits a quarter wave plate to change
the polarization of the photons to |D〉 or |A〉. The photon then goes through a long piece of
calcite. This splits the photon into two beams. However, these beams are distinguishable
by their polarization. To get rid of this problem, each beam passes through a half wave
plate to switch the polarization to |D〉 in each beam. Thus, now two separate beams
exist with a separation of 2.66mm and widths of 0.00064mm. If these beams propagated
forever, eventually, the beams would subsume each other and, if measured on a camera,
then the image would have interference on it just like a double slit experiment. However,
this is impractical as the length of the optical table would need to be 5-7 meters long with
submillimeter precision on placing the camera. For a picture of this setup, refer to Figures
2.13 and 2.10c). Finally, the beams pass through a 1:1 telescope to reduce the amount of
effective space the beams pass through. This is due to the fact that without it, the beams
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were too large in diameter to get three fringes on the camera by the time they entered the
telescope system.

2.2.4 The Weak Measurement

Given that each beam now has separate polarizations, one |H〉 and one |V 〉, they must be
switched to |D〉. To do this, two half wave plates (each with a hole in the center) in each
are placed so that the hole of one wave plate is lined up with exactly one beam, but it will
then pass through the other wave plate. This way, only one wave plate acts on a beam at
a time. Hence, even though the beams are not the same polarization, they can be made to
be. The next thing needed in the weak measurement is the weak measurement crystal. For
this, we used a thin piece of calcite that was 0.5mm thick, an optical axis of π

4
and with

an interaction parameter of η = 419.6± 0.9 which is in correspondence to our theoretical
value with some concessions to the length and optical axis angle. See Figures 2.10c) and
2.14 below.

47



2.2.5 The Lens System and the Strong Measurement

Figure 2.14: A picture of the weak measurement crystal followed by the strong measure-
ment and lens system as drawn in Figure 2.10d)

Finally, the photon going through the double slit side of the measurement impinges upon
a quarter waveplate and a long piece of calcite. In this case the quarter wave plate is set
so the final polarization measurement (and also the strong measurement in this case) is
for the |L〉 and |R〉 basis. In this case, the |L〉 polarized light beams are 3mm lower than
the |R〉 beams and thus can be seen on the camera at the same time. The beams will
then hit three cylindrical lenses, which are placed in succession, with focal lengths given
respective of the order that the light hits them f1 = 10cm, f2 = 2.5cm and f3 = 15cm.
The middle lens can travel by a motorized stage and it is what allows for the apparent
change in the propagation distance to the camera. Once the photon has traversed through
the polarization measurements and the lenses, the photon is then measured on the camera
in coincidence with the herald photon from Bob’s tomography side. This entire process is
then repeated for numerous amounts of photons in order to obtain a spatial pattern and
the image is finally read out. For reference please see Figures 2.10d and 2.14
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2.2.6 Alignment

In this case, most of the alignment techniques needed to make this setup can be done
with back reflections. However, there are a few parts that are a bit more nuanced. For
example, aligning the source requires maximum overlap of the two separate paths. In
this case, the secret to aligning the source is given in [28]. Another example is the lens
system with the camera. This was, and probably is, the most difficult part of the entire
project to align; so, understanding how to align it is extremely important. First, each lens
was placed into their approximate distance down the table from the strong polarization
measurement. In this case, we chose to make sure that the size of the 808nm diode laser
was approximately 1mm in diameter. Then the most difficult part of the entire alignment
(making sure that the second lens’ travel is straight with respect to the table) needs to be
done. Now, unfortunately due to the way the table is setup (in imperial units) and that
the translation mount is in metric units; therefore, a converting piece is required. However,
the converting piece has a significant amount of clearance around the screws causing the
ability to attach the converting piece in a way so that the motorized translation stage
moves only in the ẑ direction is difficult. Therefore, a procedure is needed to make it move
only in the ẑ direction which includes:

1. Place two iris’ on a straight line in the direction of ẑ

2. Using the x̂ translation, center the beam on the lens (meaning put the laser beam
through the two iris’ and close the iris’ to just see the beam)

3. Now that the beam is centered, use the translation in the ẑ direction and move to
the end of its motion and note which side of the hole the beam lands on (note always
start from closest position to the source for every iteration):

• If the beam stayed centered on both of the iris’ then it is centered and done

• Otherwise, the beam will have moved to one side of the hole in the iris or the
other

4. Using the x̂ translation move the beam to approximately the opposite side of the
hole in the iris and translate the lens to the starting position

5. Undoing three of the screws of the converting piece, lightly tap the converting piece
to move the light beam back to the center
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6. If done correctly, as the lens travels forward again, the beam should be closer to the
middle of the iris and repeat. If the beam appears on the other side of the iris, it has
gone to far.

Now that the middle lens can be translated without fear of the beam wandering off
axis, the lens system in total can be aligned, which is the second hardest alignment of the
setup. The best way to align the system is to start with lens three (the lens closest to the
camera) and the camera placement.

1. Back reflect the lens (which includes the centering the lens) using a single beam
centered between the two beams that will be used there

2. Back reflect the camera using the same single beam making sure that the beam is
visible on the camera

3. Note the location of the center of the single beam; this will be the center of the setup

4. Using two beams that are separated and parallel to each other and centered around
the single beams above, move the camera along the ẑ direction until the center of
the each beam (using on camera software) is the same and equal to the center of the
single beam (using the x̂ translation on the first lens)

Now, placing lens one (the lens closest to the source) into the path, the alignment is
given.

1. Using the single beam again (in the center) back reflect the lens

2. Then, adjust the ẑ translation on lens one so that the two beams’ expansion is given
by the magnification equation x′ = f3

f1
x where x is the distance from the center of

one beam to the center of the other, f1 and f3 are the focal lengths for the lenses,
and x′ is the distance of the center of one beam to the center of the other

3. The average of the two beam centers should also be the center point found in the
previous steps; if it is not, then use the x̂ translations on lens one to make it so

Once lens one is in place, continue by placing lens two. The second lens is placed so
that at one point of its motion the lens does not affect the beams (to relatively first order;
unfortunately depending on the lenses thickness this approximation, may not be valid).
The alignment method, for this lens is below:
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1. Begin by noting the position of lens three’s x̂ direction translation and move the
third lens out of the way so that the beams pass by it, but do not interact with the
lens

2. Move the second lens to its furthest position away from the first lens in the ẑ direction,
a telescope should have been created between lens one and lens two

3. Using this telescope, adjust the ẑ translation on lens two so that the two beams’
expansion is given by the magnification equation x′ = f2

f1
x where x is the distance

from the center of one beam to the center of the other, f1 and f2 are the focal lengths
for the lenses, and x′ is the distance of the center of one beam to the center of the
other

4. The average of the center of the two beams will be the center that was found in the
beginning with lens three and the camera, adjusting the x̂ translation if it is not.

This procedure is finished by placing lens three back into the lens array and checking
two things:

1. That as lens two is moved, the average center of the two beams is as close to the
calculated center of the single beam found at the very beginning (in practice, it is
enough to check three spots: the beginning, middle and end).

2. As lens two moves from the position closest to lens one to the position closest to lens
three, the beams impinge upon each other and, finally, the center of each beam will
be as close to being the same number as possible and should follow the magnification
x′ = f3

f1
x (given when lens one was put into place) when lens 2 is as close to lens one

as possible.

If the average of the beam centers moves more than is required, then it is possible
that x̂ translation of one of the lenses is off or that the ẑ translation of the middle lens is
not enough. As long as step 2 above is true, one can take out the lenses and start from
the beginning, but only correcting the x̂ translations of the lenses. If that did not fix the
problem, then lens two ẑ is not perfectly square with the beam direction and everything
must be realigned.

If the second step is incorrect, then one of the steps was not followed correctly. To
compensate, it is best to first quickly measure the distances between the lenses so that
they follow the correct formulas: lens three to the camera is roughly f3, lens one to lens
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three is roughly f1 + f3, and lens two at its minimal state is f1 away from lens one while
it is f1 + f2 away from lens one at its maximal state. Note that there might be some
discrepancy as the lenses may not have focal lengths that was specified on the box due to
machining error, etc. Once the calculations are done, it is best determine which lens is the
problem and address it for each individual case.

2.2.7 The Single Photon Camera

Figure 2.15: The PI-MAX4 camera

One of the most important pieces of equipment used in this experiment was the single pho-
ton detecting camera, a Princeton Instruments’ PI-MAX 4 Electron-Multiplied Intensified
Charge-Coupled Device (EMICCD) (Princeton, NJ) and its controlling software (Lightfield
v6.5). In this camera (as seen in Figures 2.15 and 2.10), there are multiple properties that
make it ideal for this application. First, the camera has an electrical fast shutter, allowing
it to take pictures spanning approximately 3ns as well as heralding on an outside detec-
tion such as the detection of the second photon from an SPDC source. The camera also
is able to electronically delay its shutter opening after is has received an electrical signal
from the separate detector. The camera has a high quantum efficiency around the photon
wavelength in this experiment (408nm and 409nm). Lastly, the camera consists of both a
EMCCD and an ICCD in a combination known as an EMICCD. This combination allows
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for the resolution of single photon events. All of these features allow for the detection of
the spatial modes of single photons in coincidence from an SPDC source.

Intensifier Gain

One way to view low-intensity light using a camera is to use an intensified CCD. The
amplification of the light in this case, is a multistep process. The process starts when the
photon hits a photocathode and the releases an electron. That electron is then attracted
via a high voltage induced electric field to the Microchannel plate which is filled with glass
channels. Since a high voltage is applied to the Microchannel plate, when the electron
enters one of the glass channels, the electron accelerates through it causing additional
electrons to be released from the walls, which are also accelerated to the end of the plate.
The electrons then slam into a phosphor screen where light is released due to the properties
of phosphor and then emitted into a fiber optic piece. The fiber optic is coupled to the
CCD and the intensified image is then read out to a computer [16].

EMCCD Gain

Another way to illuminate low-light conditions is to use an EMCCD. Typically, the camera
works by creating “photoelectrons” or electrons created by the photo-electric effect during
exposure on the pixel in the CCD; these electrons are then moved to a storage area at the
back of the CCD to allow for fast capturing and imaging. The storage area is then readout
through several electrodes where there is a small chance of creating more electrons. The
charges then reach an amplifier, which creates an electric signal that can interpreted by
the computer and creates the image. If the images are required to be read out quickly, the
higher voltages and signals within the timing chips end up contaminating the signal and
are one of the greatest noise inducing effects in EMCCDs [5].

On CCD-Accumulations and Frames

This is a confusing and perhaps less well-documented feature in Lightfield where there are
two seemingly similar features, but are not usually distinguished. On CCD-Accumulations
are defined as when the camera opens up its electronic shutter and closes it, however,
rather than the signal getting read directly to the computer, the signal is stored in the
storage area in the EMCCD. This happens regardless of whether or not the camera is
using the EMCCD or the ICCD or some combination above. A frame on the other hand,
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is whenever the data is transferred from the storage area in the camera to the computer
(i.e. taking the analog data in the camera and then digitizing it). In this sense, if the
program has 100,000 on CCD-Accumulations and requires 50 frames, then the camera will
open its shutter 100,000 times per frame, the frames will then be added together digitally.
This means that the camera was exposed 50 × 100, 000 = 5, 000, 000 times in a single
picture. As stated earlier, the more times the camera converts the analog data into digital,
the more noise will be injected into the system. On the other hand, the camera should
not over-saturated by overflowing the electron wells (where the electrons are stored before
digitization). Therefore, it becomes a compromising procedure between injecting more
noise into the system, but also making sure not to over-saturate the camera.

Single Photon Detection- Thresholding & Clipping

The last important setting in Lightfield to understand for single photon experiments is the
“single photon detection” mode and the two options that exist: thresholding and clipping.
They are, for the most part, very similar. Essentially, they both take an input value that
is set by the user before the experiment, and anything that is readout below that value
is automatically set to zero by the program. However, the difference between the modes
is what happens afterward the detection. In the clipping mode, the value is readout like
there was no photon detection, while in the thresholding mode any pixel which is over the
user’s value is automatically set to 1 (i.e. a single photon event happened at this point).
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Controlling the Camera Using Lightfield Parameters

Figure 2.16: Single photons with minimal thresholding

Note that the obvious particle strikes are large blots with very distinct extent. This
means that the effective pixel size is larger than the physical size of a pixel implying that

smaller features are harder to see.
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Figure 2.17: Single photons appropriately thresholded

Note that the obvious particle strikes are small blots on the order of one to three pixels
wide.

With the explanation of each of the parameters available through Lightfield, the next
important process is to learn how to set them and how they are to be used together
in order to get the best image possible. First, unless the CCD is cooled, trying to see
single photons using just the electron-multiplying gain (em-gain) is not possible on the
PI-MAX 4. That is unless the PI-MAX 4 is cooled to liquid nitrogen temperatures like
other EMCCDs; however, it is a large risk to the internal electronics due to condensation
issues that could short out the electronics. Thus, in order to see a single photon at the
relatively high temperature the CCD utilizes the intensifier gain in order to detect these
events. However, this gain should be used in a relatively limited manner in order to reduce
smearing or blurring of the photons on the image as explained in the above subsection.
The best way to use this is to allow the photon to be imaged on the CCD using the
intensifier and then amplify that signal by using the em-gain in order to raise the signal
above the background noise; thus, allowing the thresholding to be effective. Blurring of the
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photons over multiple pixels will occur due to the intensifier. To fix this, the thresholding
should be relatively high so that only the peaks of the individual impacts are selected
and reducing the blurring at the price of also reducing the number of successfully imaged
photons. Finally, the number of on CCD-Accumulations should be used to make sure that
the photons do not hit the same place twice, since using the thresholding photon detection
mode does not reward multiple strikes in the same place. Instead, multiple frames should
be used. As the gating time becomes shorter, some pixels will become “hot,” meaning
that they are more likely to register false events due to the high voltages being applied and
possible defects in the individual pixels. Since these pixels should be relatively constant,
taking an image with the same settings, but with the cap on could reduce/remove these
defects in the images.

Proposed Sequence to Image Single Photons

It is possible to take pictures of single photons using this setup; however, it is a difficult
task. In order to make the setup function effectively, a set procedure was developed
in order to measure single photons. This sequence allows the camera’s user to go from
needing to measure multiple photons to get an image down to single photons being imaged
on the single photon camera. There are possible improvements which could be made to
this sequence and there are some limitations to the camera as described above. This
sequence requires that the user has sufficient knowledge of the Lightfield software and that
they have successfully done the first light instructions which have been supplied by the
Princeton Instruments PI-MAX 4 manual. Note: because the intensifier and CCD chip are
wavelength dependent, some of these parameters should be changed/thought about given
the information above while these steps are taking place. The sequence described below
was specifically outlined for the source defined in 2.2.1.

1. First, it is best to put a regular CCD camera in front of the beam(s) to make sure
the size of the beam will be able to fit on the PI-Max 4 using a classical laser with
about 20µW of power.

2. The timing window for the single photons should be approximated by removing the
classical camera and placing a coupler (which couple free space light to single mode
fiber) and running a fiber to a single photon detector and coincidence logic device.
Using the single photon histogram program (which varies the relative delay between
two signals to find the largest amount of coincidence counts between two photons as
in an SPDC source), and finding the relative delay between the two photons.
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3. Once the relative delay between the photons is found, any variances between the
setup with the coupler and the camera needs to be accounted for such as differing
coax-cable lengths (signals run at 2

3
c in that case) as well as any differences in how

far the camera is placed compared to where the coupler was placed, and that you
have removed a length of fiber (which also has light move at roughly 2

3
c). Using this,

one can find the new relative delay taking these things into account.

4. After creating a marker for the delay, the next step is to find the signal on the
camera. Making sure the camera is placed down the optical line (which can be done
by making sure to cap the camera and check with a classical beam that the beam
will hit the CCD via visual inspection), ensure that the camera will have the beam(s)
placed in an appropriate location on the camera by placing the photons down the line
and reduce the em-gain and intensifier gain set to 1. Then changing the coincidence
window to somewehere between 1s and 5s (your milage may vary/being careful to
not overexpose) and placing the camera under internal trigger (set to approximately
1kHz) and with a single frame (on CCD accumulations also set to 1) and hit play.
This will allow the user to see the beam on the camera. If the beam is not seen, then
the gains need to be increased being careful to not over saturate the camera. If the
beam does not show up, even after increasing the gain to 21 on the intensifier and
53 on the em-gain, then the beam(s) must not be on the camera. Readjust the beam
and try again.

5. The next step is to find the timing window for single photon sensitivity. Start by
taking the beam used in step three and taking the BNC cable connected to the port
where the heralding photon is detected and connect the free end to the Trigger In
port on the back of the PI-MAX 4. Beginning with a coincidence window of 200ns
and setting the delay starting at the relative delay found above minus 300ns. Take
images with a gain setting (assuming the photons are at 808-810nm wavelengths
as it changes the quantum efficiency of the camera, and a heralding rate of around
130000 photons/second) of em-gain to 58 and intensifier gain to 21, and with on-CCD
accumulations around 106 and about 3 frames so that the with each image the delay
setting is increased by 100ns. Once an image is formed, record the delay number.

6. Starting with the delay found in the previous step and using the same gain settings,
start by varying these following settings: decrease the number of heralding photons
by either decreasing the pump laser power or by some other method (one method
of achieving this is to purposely misalign the polarization analyzer in Bob’s side)
to get the total number of heralding photons to around 10,000 detections/second as
the reprate of the camera decreases as the gate width decreases; and increase the
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number of frames to approximately 10, while decreasing the on-CCD accumulations
to 100,000. Now, by changing the width of the gate to 100ns, increase the delay
from the number found in the previous step by around 20ns watching for the delays
where the signal disappears entirely. Then starting just outside of those delays found
above (i.e. using the delay minus the new coincidence window), repeat the process by
adding to the delay half of the gate width setting until you get to 3ns of gate width.
Making sure to record/save each of the files so that if a clear photo is produced,
the camera settings from that photo can be retrieved by using the convert data to
experiment feature in Lightfield.

These steps allow the user to obtain images of single photons using a PI-MAX 4 camera.

2.3 Analysis & Results

2.3.1 Calibration

Lens System

Now that the system is set up and aligned, we need to be able to calibrate the individual
systems in the experiment. First, the distance between the two beams after the first
polarizing beam displacer from the source seen in Figure 2.10. To do this an 808nm diode
laser was allowed through the system, a Coherent LaserCam-HR II camera (Santa Clara,
CA) was placed in the beam, and a movable iris was placed so that the iris allowed only
one beam through at a given time. By aligning the iris to each of the beams, the iris can
then by moved along via micrometer and stage. When the image of the beam looks as
circular as possible, the beam is centered on the iris. The two readings for the beam are
subtracted and the beams are found to be 2.66mm apart.

The beams Gaussian nature must be found, by taking the classical laser and the same
camera as above, the beam was allowed to freely expand down the table. Using the Coher-
ent HRII camera’s diameter measurement, the beams diameter as a function of propagation
distance is measured and shown below:
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Figure 2.18: A graph of the beam width data for the beam after the pinhole and its fit as
a function of propagation

The beam diameter as a function of the lens displacement when using the pinhole. Note
that it follows a Guassian well with a waist of 0.2145mm.
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Figure 2.19: A graph of the beam width data for the beam without the pinhole and its fit
as a function of propagation

The beam diameter as a function of the middle lens displacement. While it was unable to
be fitted by a Gaussian beam, it was able to be fitted with a general hyperbolic equation.

After numerous attempts at fitting the data using the typical Gaussian propagation equa-
tion, the data was able to be fit using a modified hyperbolic implying that the beam in
question is not a pure Gaussian and in fact made up of multiple modes. Since the number
of pixels being illuminated is over 10 (ranging from just under 60 to over 200) the error
in the measurement is only a few percent [14]. Thus, the fitted curve will be used as the
theoretical beam expansion when compared with the beam waists after the dividing by the
magnification.

The lens system also needs to be calibrated. In this case, each of the lenses are given
in section 2.2.5. Plugging these values into equation 2.6, the line to compare the system
to is given by |M | = 1.5− 60d and if the results are a line similar in nature the alignment
of the lens system is ensured. By using the HRII camera instead of the single photon
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camera at the end of the lens system as described in the alignment section and reusing the
selection of the individual beams by using the iris above, the centers of both beams can
be determined by using the camera’s center function. By subtracting the x-coordinate of
the right beams center from the left beams center, the new distance between the beams
can be calculated for a given position of the middle lens. Further, by dividing this new
distance by the distance between the two beams right out of the polarizing beam displacer,
the magnification is found and shown below:
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Figure 2.20: The magnification from the distance between the two beams when the pinhole
is included
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Figure 2.21: The magnification from the distance between the two beams when the pinhole
is not included

The fit is found to be given by

y = 1.49301(±0.00078)x− 59.99343(±0.05374) (2.7)

which is in good standing with the expected results of 1.49301− 59.99343x as found from
equation 2.6 being careful to match units.

Next, the beam waists after the lens system must also be found. In order to do this, one
of the output beams must be placed straight in the middle of the lens system. This is done,
by once again closing the iris so that just a bit of light is going through and then moving
both the iris and the back mirror by half of the amount that the beams are displaced by the
polarizing beam displacer. Using the iris to allow the center beam through, but completely
blocking the off-center beam, allows the beam diameter measurement to be done by the
Coherent HR-II. There is an issue of making sure the beam has the same intensity from
one lens position to the next. However, because this is as the camera sees, there is no other
way to make sure this intensity stays the same with out knowing more about the beam.
Thus, there can be a lot of variation in the measurement. In order to counter act this, one
must decrease the intensity of the light from when the camera was saturated to the point
where the beam became just unsaturated allowing us to standardize the measurement.
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The waist is then recorded for each lens displacement from values ranging from 0mm to
25mm displacement as plotted below.
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Figure 2.22: The beam diameters measured after the lens system with the pinhole

Note: that the beam diameter is not quite a straight line as we would expect. This is
mainly due to user error in setting up the intensity on the camera correctly. However,

because it is continually decreasing, the values can be used for our effective propagation
distance.
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Figure 2.23: The beam diameters measured after the lens system without the pinhole

With all three of the measurements taken, the effective propagation distance can be
found. To do this, we follow the steps outlined in section 2.1.2. Shown below is the plot
of the effective propagation as found from these steps.
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Figure 2.24: The Effective Distance the Lens System Produces With Pinhole

The plot shows the effective distance the particles go as the middle lens moves when the
pinhole was in place. The inset shows that the scale of change compared with the bigger

graph as it only stops at the target of 10m.
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Figure 2.25: The Effective Distance the Lens System Produces

The plot shows effective distance that the particles go to when the middle lens of the lens
system is moved. The inset shows the same graph, but only looking at points that are
below the 10m mark to give a sense of scaling as the lens moves further away from the

first lens.

The Weak Measurement

The calibration of the weak measurement is done by rotating the weak measurement crys-
tal’s normal in the x-z plane to change the direction of the optic axis compared to the
beam. As explained above in 1.2.4, the weak measurement crystal works by taking the
phase difference of the two beams. The phase difference is linear with respect to the incom-
ing angle of light and the difference between the optical path lengths gives the interaction
parameter, labeled as η in section 1.2.3. The angle in this case is defined as kx

|k| , so we need
to do two things: characterize the total strength of the interaction, η, and find the angle
such that the constant term, γ, in the linear equation is 0. From the analysis in section
2.1.1, we find the phase (the weak momentum since the angle is really an operator mea-

sure as the momentum is not known) in its linear form is given as sin
(
η kx|k| + γ

)
= IR−IL

IR−IL
.

Meaning, that if we collect the total intensity for both the right circularly polarized light
and the left circularly polarized light and plug them into the equation above, we can try
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to fit the data in order to know for which angle we can effectively make γ = 0 (using a
redefinition of γ) and the slope given by the value of the derivative given at γ = 0 (or
through a fit of the function given enough points).
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Figure 2.26: The experimental differences in intensities divided by their sum as a function
of the rotation of the weak measurement crystal normal in the x-z plane as well as their
fit

The plot shows the angular dependence of the weak measurement crystal on the
measurement from quantum light without the pinhole. The strength of the measurement

is calculated as the derivative of the curve divided by the amplitude or using a fit to
estimate the parameters of the function. Typically, the amplitude is 1; however, in this

case it was lower than this. This is most likely due to the crystals optic axis not being set
correctly in the x-z plane. The fit is given by

−0.5435(±0.0020) sin(−419.6(±0.8519)x+ 4.723(±0.0071)). It should be noted that the 0
in the x-axis is not guaranteed to have the normal of the crystal fully in the z-direction.

Hence, we find that the optimal point is around .00375rad from our crystals original
position and we find that the crystal has an interaction parameter of roughly 419.6 (note:
that the sign here is meaningless as the sign can always be brought out of the sine. Us-
ing these parameters, we can set our week measurement crystal and use it to produce
measurements of the weak velocity at different x-positions.
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Figure 2.27: A distribution of the weak velocity data over many z-slices

These plots shows the evolution of weak velocity as a function of x-position over many
z-slices. This data was take using a classical beam with a pinhole. It is interesting to note
that the reason for the velocity to not be in straight lines before the beams overlap is due

to the higher order modes that are created from the light going through the pinhole.

Using, these momentum values, seed points were found by taking approximately 10000
points equally spaced out points in each of the Gaussians where the velocity of the separated
beams were stable (at z = 0). Each of the points were updated to each of the different
z-planes creating the trajectories seen in Figure 2.28
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Figure 2.28: Trajectories of the photons moving through the Gaussian beams as a function
of both x and z positions using a classical beam.

It should be noted here that it seems like there are more fringing before the beams
overlap than would appear in the actual pattern. The reason for this is due to the

interference from the overlap of the higher-order modes produced from the pinhole with
the opposite Gaussian beam.

Now, given that the classically found weak values and trajectories looked like they had
some of the more interesting features correct, but the quantum potential could not be
found from the data. Moving on the next step was to try the same experiment using single
photons and removing the pinhole. The following pictures were taken:
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Figure 2.29: The single photon image with the lens at 25mm without any thresholding
applied.

Figure 2.30: The single photon image with the lens at 25mm with thresholding applied.
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Figure 2.31: The single photon image with the lens at 21mm with thresholding applied.

Figure 2.32: The single photon image with the lens at 13.5mm with thresholding applied.

Figure 2.33: The single photon image with the lens at 0mm with thresholding applied.
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Figure 2.34: The single photon image with the lens at 0mm without any thresholding being
applied.
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Figure 2.35: A sample of the beams with the weak measurement at 25mm

Note: the white speckle in the background, those are large values of “photons” usually in
the 1000’s, which is most likely a false reading in those pixels.
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Figure 2.36: A sample of the beams with the weak measurement at 13mm

Due to some concerns about the background noise, a picture was taken with camera
cap on and compared to data sets. All of the pictures have been modified so that the lowest
value was mapped to 0 and the highest to 1. Using this, we can pick up any background
that would be drowned out by the rest of the image so we can compare them on a similar
footing.
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Figure 2.37: A picture taken with the photon camera capped at an intensifier gain of 21
and an EM gain of 58 for 100,000 On-CCD Accumulations with 500 frames

Figure 2.38: A picture taken with the photon camera not capped while single photons
are being imaged at an intensifier gain of 21 and an EM gain of 58 for 100,000 On-CCD
Accumulations with 500 frames

76



Figure 2.39: A picture taken with the photon camera not capped while single photons
being imaged at an intensifier gain of 21 and an EM gain of 58 for 100,000 On-CCD
Accumulations with 1000 frames captured 3 months before the picture in 2.37

2.4 Discussion

The question, having gotten this far, is what was learned from this experiment? In this
case, first a simulation of the data from the trajectories was created using the experimental
parameters. The trajectories were created and the quantum potential was calculated from
those trajectories just like they would be in the experiment. When that data (Figure 2.5)
is compared with the actual calculated quantum potential from the probability density
function (Figure 2.6), we should see that the results from the trajectories are of the same
order and have similar features. They are not exactly the same, but by increasing the
number of points taken in the z-direction and sampled in the x-direction we should see
the resemblance get better and better. There is something to be said about the fact that,
at the moment, we cannot stitch together the individual z-slices. The cause of this seems
to be the fact that we typically think of the trajectories in the measurement space (in
x and z coordinates); however, this is not governed by the Schrödinger equation. Thus,
when doing calculations for our trajectories, they should be done in the analog space (in x
and t coordinates). Once the trajectories and the quantum potential have been calculated
in the analog space, we can then return our trajectories and quantum potential to the
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measurement space taking advantage of the one-to-one nature of the mapping.

Next, sample data was taken using a classical beam with a pinhole in the setup. We
should note that there seems to be some odd features in the x-velocity curve toward (see
Figure 2.27) when compared to the thoretical description of the Bohmian velocity in Figure
2.1. These features are actually due to interference that was present in the experiment and
were caused by the pinhole that was inserted to make the beam more Gaussian in its
evolution as shown in Figure 2.18. However, that is only true of the main peak, if one
were to place a camera after the pinhole, there would be a few higher order modes which
would be slightly larger in diameter than the main peak, but much less intense. So, once
the singular beam is split into the two slits of the double slit experiment, the ringing
would also get doubled into both slits as well. Furthermore, since the ringing is larger
in diameter than the main mode, the ringing will also interact with the opposite beam
and actually gives rise to the jagged appearance in both the velocity and the resulting
trajectories as could be seen by replacing the Gaussian beams in the simulation with those
of a sinc function. By sacrificing the Gaussian-ness of the beam, the idea was to get back
the nice clean features in the velocity and trajectories as seen in Figures 2.1 and 2.2. The
quantum potential unfortunately was unable to be reproduced because rather than taking
equal steps in the effective z-planes, it was instead equal steps done by the lens meaning
that the larger differences will cause the particles with high-velocity to have trajectories
that cross with their neighbors.

Finally, what about the single photon camera and measuring the single photon weak
value? Unfortunately, as seen in Figures 2.29-2.36, there was too much noise in the pictures
than could be dealt with. Part of the noise was due to the low amount of light that was
going through the experiment and, in addition to this, there was also the fact that we have
to split the beam into fourths and the beams had variable widths that made it difficult to
get a good image. There was the possibility of reducing the noise in the images, by taking
many background images and subtracting out the average of those in order to remove these
large spike features. These, hot spots, can be seen by looking at Figures 2.37-2.39. Looking
at the patterns, we see that all of the pictures have many similarly lit pixels. Indicating
that the process is not random and seems to be consistent as long as the camera settings are
kept the same. There does seem to be some differences between 2.37 and 2.39. This seems
to be mainly an issue with aging of the camera as well as the fact that in 2.39 there was two
times as many frames as in the background file; however, some of the differences between
2.37 and 2.38 or 2.39 is also due to the fact that there were photons being measured with
the camera as well. The last thing to take away from the background is that the best that
we can do is remove the information in that pixel. This is because in the thresholding
mode, the pixel either fires or does not. In the ones that are firing every time, there is no
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distinguishing between if it was a legitimate photon strike or a miss fire, since these hot
spots seem to fire nearly every time the camera opens. However, this will get rid of the
majority of the spikes that made it impossible to look at the trajectories. It should be
noted that this seems to only happen in very dim light such as in this experiment. The
more photons that seem to be concentrated in an area there is a reduction in hot spot
activation inside of the signal such as in the bright fringes of Figure 2.35.
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Chapter 3

Future Work

3.1 Identification of the Beam Waist

One perhaps useful tool that would be of interest to an experimenter would be some simple
experiment that would allow for the precise measurement of the beam waist. In this case,
the weak velocity of the beam in the x-direction was determined to be 0 everywhere when
the weak measurement occurs at the waist. This is because there should be no phase at
the waist in a Gaussian beam. In this way, rather than guessing that the waist has been
found due to extrapolation, this would give a realistic metric for quantifying how close the
current z-plane selected is to the waist based on the slope of the velocity line.

3.2 Momentum Entanglement

Another interesting experiment would be to see how the measurement of the weak momen-
tum compares to the actual momentum operator as measured at the same time. To compare
these two, a momentum entangled source such as one that outputs |p〉|−p〉+|−p〉|p〉 should
be built. The first step would be to characterize the momentum measurement. That way
it will be possible to know the value of the momentum that was measured. This could
be done using first two momentum measurements rather than one of the measurements
being the weak momentum as well as test the entanglement. The weak momentum setup
created by Kocsis et al. is the one that would be of interest and relevant to this idea;
however, there might be other measures that would be more important [19]. Now, two
things should happen: 1) the measurement of the momentum as given originally will be
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able to be directly compared to the momentum found using the weak value and, ideally,
there would be a single column of pixels accessed assuming the beam is a Gaussian since
it has a linear momentum curve implying a singular location with a momentum that is
equal and opposite of what was measured on the other photon. If they are not Gaussian,
it would be interesting to see if the beam has more than one column of pixels lit up. 2) if
the measurement of the momentum is then taken by a slightly wider slit (meaning more
variance in the momentum), then more columns of pixels should become active since more
momentum states are being allowed through on the non-weak measurement side.

3.3 Trajectories of Diffraction

In the 1927 conference proceedings, one of the points that was of interest was the paths the
particles would take after there is a partial block in the beam [17]. Now that the trajectories
are experimentally accessible it would be interesting to reconstruct the trajectories for these
patterns. There are some things to note about this system. First, the beam block should
be placed at or a little before halfway into the beam. This allows the experimenter to know
exactly which photons should pass just to the side of the beam block (assuming a Gaussian
beam input). The rest of the setup is similar to the one built in Kocsis et al., but without
the lens system [19]. In fact, the strong measurement should be placed right before the
camera in order to do this. Furthermore, the block should be as thin as possible and the
space that the strong measurement takes up should be as small as possible (in fact it is the
spatial length requirement of both the quarter wave-plate and polarizing beam displacer
that discount many experiments one could do with trajectories). In theory, there should be
a path created by those photons right before beam block and as well as after it. However,
the parts of path beside the beam block will be experimentally untestable. Instead, after
the trajectories are found for a few positions before and after the block, the trajectories
might be able to be stitched together. However, the longer the weak measurement setup is
in space requirements (lengths of crystals etc.), means that more instability in the resulting
trajectories. As a bonus, it would also be interesting to see what happens to the photons
that would not be able to move around the barrier; so, if the surface was mirrored, then
measuring the reflection of the photons would be quite interesting.
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Chapter 4

Conclusion

In conclusion, after attempting to measure the quantum potential by using a weak value of
the momentum to construct photon trajectories with a single photon camera, it still goes
unmeasured. However, in terms of theory, the measurement should work as increasing the
number of sampled points gets closer and closer to the actual quantum potential. There is
still a problem with trying to get the different z-planes to be stitched together, but there
does seem to be a way forward in that regard. Next, we saw that is was possible to extract
the weak values and build the trajectories using a classical laser. Further, the quantum
potential was not able to be replicated in this case due to the choice of measurement using
a pinhole, which deviated from the ideal Gaussian case. Finally, using single photons to
recreate the trajectories of the particles was unable to be realized due to the fact that the
images, which were obtained with the single photon camera, were too noisy to extract the
necessary information to create trajectories. In the future, perhaps a better measurement
style will come along to reduce the noise or the noise could be reduced by background
subtraction.
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