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Abstract 

Window coverings have been used for many years to provide protection from undesired 

environmental conditions and to regulate indoor conditions. Models for complex fenestration 

systems (CFS), a term coined in the early 90’s in light of optical and thermal complexity of shading 

elements, are essential in pursuing multiple objectives of modern building design. This research 

focuses on energy performance of one type of window shading, draperies. 

Coupled with a rectangular pleated drape model, the conventional three-property Keyes Universal 

Chart (KUC) predicts shading effect of pleated drapes. This thesis offers a much improved KUC, 

the b&C model, which was developed using fabric solar-optical properties obtained by a highly 

accurate spectrophotometer. The improved KUC has largely eliminated the bias and reduced the 

uncertainty present in the original KUC. The b&C model, also a three-property KUC, uses 

manipulative functional relationships. A fourth property, fabric thickness, was explored to better 

correlate the three-property relationships, resulting in the customized KUC for increased accuracy. 

Previous pleated drape models comprised only rectangular pleats (i.e., RPD). A triangular pleated 

drape (TPD) model was built for comparison with RPD. In parallel, an experiment was designed 

to measure and study the effects of fullness, pleating profile, and angle of incidence for selected 

fabrics. A comprehensive set of transmittance test results was attained using the Broad Area 

Illuminating Integrating Sphere (BAI-IS) system. Both RPD and TPD models were assessed with 

the experiment. Discussions on the effects of variables are offered. 

The improved/customized KUC combined with a RPD/TPD model can be implemented in 

building energy simulation software or used as a stand-alone tool to determine the shading effect 

of a pleated drape on the solar heat gain.  
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CHAPTER 1                                                             

INTRODUCTION 

 

1.1 A Brief History of Window Coverings1,2 

Driven purely by the basic physiological needs, human beings used a variety of coverings for 

protection and shelter from adverse weather conditions. Explicably, ancient desert civilizations 

needed ways to protect themselves from the harsh sun. As an example, they put together strips of 

cloth to form window blinds to shield themselves. When desired and possible, they wetted those 

strips of cloth to keep out dirt/sand and to provide cool air. Long before the idea of fashion was 

formalized3, humans hung animal hides as curtains and placed them over doorways and openings. 

In this case, these curtains were there to define space as well as to offer privacy. 

                                                      
 

1 This section provides a brief history of window coverings. Terms that are used today to describe various window 

coverings include blinds, curtains, drapes, and screens. These terms are written here in a less restrictive means to 

describe what and how human used them before. As history progressed and technology advanced, meanings of 

these words also have more definitive meanings. 
2 This section is a compilation based on the articles listed below. 

Alex Hooper-Hodson. 2014 December. A History of Curtains and Drapes (Part 1 to Part 6). 

http://www.homestyle-online.co.uk/curtains/a-history-of-curtains-drapes-part-one-the-renaissance/ 

The Editors of Encyclopedia Britannica. 2006 October. Curtain – Interior Decoration. 

https://www.britannica.com/topic/curtain-interior-decoration 

Amy Azzarito. 2011 March. Past & Present: History of Curtains. 

http://www.designsponge.com/2011/03/past-present-history-of-curtains.html 

Adrienne Chinn. The History of Curtains and Drapery through the Ages. 

http://www.adriennechinn.co.uk/article12.htm 

Classic Window Coverings. The History of Window Blinds 

http://www.classiccoveringsbend.com/history-of-window-blinds 

Helioscreen. 2012 January. A Brief History of Window Blinds 

https://www.helioscreen.com.au/history-window-blinds/ 

DirectBlind 2016 July. 10 Super Interesting Facts about Blinds and Curtains 

https://www.directblinds.co.uk/blog/interesting-facts-about-blinds-and-curtains/ 
3 According to The Barnhart Dictionary of Etymology (1988), it was probably about the 14th century that a sense of 

style, fashion, manner of dress was first recorded. The English word of fashion first appeared in the 17 th century. 

http://www.homestyle-online.co.uk/curtains/a-history-of-curtains-drapes-part-one-the-renaissance/
https://www.britannica.com/topic/curtain-interior-decoration
http://www.designsponge.com/2011/03/past-present-history-of-curtains.html
http://www.adriennechinn.co.uk/article12.htm
http://www.classiccoveringsbend.com/history-of-window-blinds
https://www.helioscreen.com.au/history-window-blinds/
https://www.directblinds.co.uk/blog/interesting-facts-about-blinds-and-curtains/
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The first Roman blind was devised to keep out dust and debris. People suspended damp pieces of 

cloth over windows and doorways. The sogginess in the blinds gave more weight (sturdier), 

trapped dirt, and even provided cooling. Textiles were not the only kind of material used in making 

blinds. The earliest known window blinds were probably assembled using bamboo by the Chinese, 

and reeds by the Egyptians. Even today, window shades made of bamboo and reeds are 

commercially available and regularly advertised by household hardware retailers. 

The use of curtains marched along with advancements in household textiles (first linen, flax, 

followed by wool and later cotton and silk). From the evidence of excavations at Olynthus, 

Pompeii, and Herculaneum, portieres4 appear to have been used as room dividers in classical 

antiquity. Mosaics from the 2nd to 6th century show curtains suspended from rods spanning arches. 

In England, only beds were curtained along a tester or canopy before the 17th century. Beds were 

so important because they represented the owner’s wealth and status. Curtains for windows were 

almost non-existent. Instead, utilitarian wooden shutters (or heavy cloth) were more common, most 

likely, for regulating light and airflow (e.g. keeping the cold out). So curtains over doors appeared 

first. The hangings would be both decorative and practical in reducing the cold draft from room to 

room within the building. 

The use of venetian blinds did not originate in Venice as the name might suggest. It was actually 

the Persians who invented and used venetian blinds through the late middle ages. Merchants 

introduced the eastern art to the Italian city of Venice where these blinds attained the well-known 

name and became popular across Europe through the 18th century. 

                                                      
 

4 A portiere is a curtain hung in a doorway either to replace the door or for decoration. 
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The rolling types of blind came into play during the 17th and 18th century as window shades grew 

in popularity and developed in function and style. Likely, the rolling design emerged initially for 

the purpose of privacy and for protecting the costly textile. 

1.1.1 Functions of Window Shades – Before and Today 

It is notable that the prominent functions of these various coverings remain unchanged throughout 

history. It is also quite interesting that the use of blinds and curtains along with their intended 

functions can be explained and have been influenced very much by the different levels of human 

needs (e.g., Maslow’s hierarchy of needs)5. These ancient inventions were originated from the 

most basic needs for survival (e.g., physiological and safety needs). When the basic level needs 

have been satisfied, then humans address the higher order needs (e.g., esteem needs such as 

achievement, status, and reputation). The bed curtain before the 17th century is a good example of 

the higher order needs. Similarly, the hierarchy of needs explains the reason why the idea/word of 

fashion did not appear earlier in history. 

Today, although bed curtains are rarely seen, the various levels of human needs are apparent in the 

original functions of window coverings and later in the aesthetic aspects of those coverings. There 

is a great variety of window shades available today. Regardless of type, each of them has to meet 

multiple design objectives and fulfil modern requirements. 

 

 

                                                      
 

5 Maslow's hierarchy of needs is a theory in psychology proposed by Abraham Maslow in his 1943 paper "A Theory 

of Human Motivation" in Psychological Review. 
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1.2 Background 

1.2.1 Sustainability – The New Standard 

Sustainability is becoming the new standard due to a growing list of energy and environmental 

concerns. Energy conservation is the first step and a key strategy to achieve sustainability. Studies 

(e.g., IPCC 2014 and Berardi 2015) show that buildings account for at least 30% of total energy 

use in North America as well as globally. Modern buildings have better insulation, allowing little 

heat transfer. As well, significant efforts have been made to improve window U-value (or U-

Factor6). As buildings have better and better insulation, the complexity of windows effect and the 

associated solar heat gain on building energy use also increases. 

1.2.2 Effects of Windows on Building Energy Use 

Windows are one of the most influential envelope components to affect annual building HVAC 

energy consumption. Studies have shown that approximately 25% of consumption for the building 

sector is attributed to windows through heating, cooling, ventilation and lighting of buildings. For 

instance, Table 1.1 shows the energy lost/gain through windows (both conduction and solar heat 

gain) and opaque building envelope components from heating and cooling (Energetics 

Incorporated 2014). A positive value indicates the building component escalates heating (or 

cooling) load while a negative value implies the building component eases heating (or cooling) 

load. This data shows that windows have a significant impact on energy consumption, and 

therefore energy savings, in buildings. Consequently, as an example, NECB7 limits the maximum 

                                                      
 

6 U-Factor, also called thermal transmittance, is the overall heat transfer coefficient with SI units of W/(m2K), and it 

is a measure of how well heat is transmitted through an assembly. The smaller the U-Factor, the higher the 

insulation value. 
7 NECB stands for National Energy Code for Building. 
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window to wall ratio to 40% for locations such as Toronto and Vancouver, and to 20% for 

Yellowknife and Iqaluit (based on the prescriptive compliance option)8. 

Table 1.1: Annual energy consumption attributable to fenestration and building 

components in 2010 (Quads)9 (Energetics Incorporated 2014) 

Building Component 
Residential Commercial 

Heating Cooling Heating Cooling 

Roofs 1.00 0.49 0.88 0.05 

Walls 1.54 0.34 1.48 -0.03 

Foundation 1.17 -0.22 0.79 -0.21 

Infiltration 2.26 0.59 1.29 -0.15 

Windows (Conduction) 2.06 0.03 1.60 -0.30 

Windows (Solar Heat Gain) -0.66 1.14 -0.97 1.38 

 

Among the building components, windows may occupy relatively small areas. Yet windows are 

clearly a weak point in any energy efficiency strategy. Thermally, they provide much less 

resistance than other building components, which is a detriment in both heating and cooling 

climates. From the solar heat gain perspective, they have the potential to either offset heating load 

or drive up cooling demand. As shown in Table 1.1, solar heat gain through windows offsets the 

heating load (negative value) in both the residential and commercial sectors. However, as buildings 

become better insulated, and/or as one moves to a more cooling dominated climate, increased 

cooling demand becomes a serious concern. 

                                                      
 

8 Energy efficiency requirements can be set in different ways depending on types of regulation. For the prescriptive 

compliance method, each individual building component must achieve compliance with their specific energy 

efficiency requirements. 
9 1 quad = 1015 BTU = 293.07 TWh 
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1.2.3 Complex Fenestration Systems - CFS 

Solar radiation is a natural and inevitable source of light and heat for buildings. Window areas that 

are subject to high solar heat gain may cause overheating in a well-insulated building. Solar heat 

gain is usually the largest variable heat gain that affects peak cooling loads of a building. This is 

especially true given the current architectural trend toward highly glazed facades, especially in 

commercial buildings. A window design that is able to transition between high and low solar heat 

gains would be a great asset. 

Advanced window technologies, such as smart glass, are available for controlling solar heat gain. 

A more conventional, much more economical and commonly implemented approach is to regulate 

solar heat gain by adding shading attachments such as venetian blinds, roller blinds, and draperies. 

Window attachments are very popular and come in a wide variety of materials, weaves, fabrics, 

and colors. Their key benefits include low cost, ease of user control, privacy, aesthetics, and 

comfort (e.g., regulate solar heat gain, reduce glare, and etc.). The functions of conventional 

window attachments can be both an advantage and, sometimes, a drawback. The high level of user 

control entails manual adjustment/positioning to, for example, provide the most energy saving. 

Also, when deployed for privacy, shading attachments usually block outdoor views that may be 

desirable for the sense of connection to the outdoors. With added cost, there are ways to avoid or 

at least mitigate the drawbacks. One option is to use multiple shading layers. Automation of shades 

(including motors, sensors, controls, and timers) is also available and can be implemented to attain 

and optimize multiple benefits of these devices. 

In any case, shading devices make a window “switchable” in various ways. Figure 1.1 shows a 

double glazing unit with a between-pane venetian blind (also known as an integral blind) and a 
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roller blind attached to the indoor side of the unit. Such a system is usually called a Complex 

Fenestration System (CFS). In general, CFS refers to a window system that incorporates one or 

multiple shading elements. The influence of CFS on building energy consumption fuels their 

technological advancement, increases system complexity, and generates a renewed interest in 

quantifying the effect of window shades on building energy performance. 

 

 

Figure 1.1: Example of a complex fenestration system (Wright et al. 2011) 

 

1.2.4 Energy Flow through Fenestration Systems 

CFS energy flow mechanisms include temperature driven heat transfer, solar heat gain, and 

infiltration. Due to an indoor-outdoor temperature difference, heat flows through a CFS by 

conduction, convection, and thermal radiation. The U-factor quantifies the combined mechanisms 

(conduction and longwave radiant exchange) of temperature driven heat transfer. Regardless of 

the indoor-outdoor temperature difference, solar radiation incident on a CFS either directly from 
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the sun or indirectly by reflection from the surroundings can be transmitted through the CFS. The 

amount of solar heat gain is measured in terms of the solar heat gain coefficient (SHGC). 

Outdoor air entering the building through infiltration leads to increased heating or cooling loads. 

Windows and doors are responsible for a significant amount of infiltration in homes. So the effects 

of infiltration through fenestration systems are also a part of the overall energy analysis. For the 

center-glass (glazing area) analysis, however, infiltration does not need to be considered. 

The center-glass analysis of energy transport through a fenestration system takes advantage of the 

fact that there is very little overlap between solar (shortwave) spectrum (< 2500 nm) and thermal 

(longwave) spectrum (> 2500 nm). Named solar-thermal separation, this fact allows the analysis 

to be carried out in two steps: (1) solar-optical and then (2) heat transfer analysis. 

1.2.4.1 Heat Transfer Analysis 

For thermal heat transfer analysis, an energy balance is imposed on each layer where net heat 

transfer must equal the absorbed solar radiation, which is determined from the first step, the solar-

optical analysis. Thermal Individual Layer Models (ILMs) (e.g., Kotey et al. 2008, Wright et al. 

2008, and Yahoda et al. 2004) are available for modelling each heat transfer mechanism. 

1.2.4.2 Solar Optical Analysis 

When solar radiation is incident on a fenestration system, the system can reflect, absorb, or directly 

transmit the radiation through the system. The absorbed portion flows either inward or outward by 

means of heat transfer. Figure 1.2 illustrates the energy flow of solar radiation incident on a simple 

one-layer fenestration system. 

The flux of absorbed solar radiation can be calculated based on the solar optical properties, namely 

reflectance (ρ), absorptance (α), and transmittance (τ), for each layer in the system. The ratio of 
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solar heat gain (including transmitted portion plus the inward-flowing fraction of the absorbed 

portion) to incident solar radiation is defined as the solar heat gain coefficient (SHGC), or 

qb = ED( + Nα) 

SHGC =  + Nα 

(1.1) 

(1.2) 

where qb is the total solar gain per unit area (W/m2), ED is the direct solar irradiance (W/m2),   

is the solar transmittance, N is the inward-flowing fraction of the absorbed radiation, and α is the 

portion of ED that is absorbed. 

 

Figure 1.2: Illustration of solar heat gain flow through a fenestration system 

 

Normal incidence beam-beam solar optical and longwave properties of glazing layers are well 

documented (e.g., LBNL 2008, Pettit 1979, Roos 1997, Pfrommer et al. 1995, and Furler 1991). 

Additionally, Wright et al. (2009) offers a practical approach to estimate the off-normal solar 

optical properties of glazing. Kotey et al. (2009a, 2009b, 2009c, 2009d, and 2009e) have developed 

solar optical Individual Layer Models (ILMs) for shading elements including slat type shades, 

drapes, roller blinds and insect screens. 
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1.3 Context of the Research 

When energy conservation was not a main concern (e.g., before energy crisis in the 1970s), the 

indoor environmental qualities of a building could be easily achieved. The energy performance of 

fenestration systems was also not a top priority. As well, the indoor space conditioning of a 

building would be a much simpler problem if window areas could be just replaced by walls (such 

as a dungeon). Yet windows create aesthetically pleasing spaces in any building design. The key 

is to find an acceptable and optimized balance among several competing aspects of building design 

(e.g., comfort, daylighting, energy conservation, indoor environmental quality, privacy, security, 

and outdoor view). 

Advanced window technologies and CFSs have become essential in pursuing multiple objectives 

of modern building design, including high building energy-efficiency and lower peak energy 

demand. As energy efficiency requirements become increasingly demanding, and indoor 

environmental quality requirements remain a high priority, the ability to accurately predict window 

performance becomes more important than ever before. 

The increased application and development of CFS have also raised the need of authoritative 

guidance on accurate and efficient performance prediction methods and tools. Such methods could 

be useful for standardizing product ratings. As well, these tools may help building designers to 

pre-select window products and quantify their performance in buildings. However, CFS model 

development and implementation are still at a relatively early stage. Only recently has CFS thermal 

performance modelling been integrated into building energy simulation software (e.g., Wright et 

al. 2011, and Lomanowski and Wright 2009, 2012). 
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Wright (2008) developed a highly general multi-layer framework to predict center-glass energy 

performance indices (i.e., U-value and SHGC) of glazing systems with shading devices. The multi-

layer framework incorporates Individual Layer Models (ILMs) with each layer assumed to have 

spatially homogenous behaviour (i.e., effective optical properties). These ILMs determine how 

one layer interacts with another (i.e., amount and different components of solar gain and heat 

transfer). Researchers have developed both thermal and solar-optical ILMs for shading devices 

such as venetian blinds, insect screens, roller shades and draperies. With the new multi-layer 

framework and available ILMs, Kotey et al. (2009) have shown that this approach is able to provide 

accurate solar optical and thermal characterization of shading devices. 

This research project adds to this modelling effort, particularly in the area of solar optics. 

Specifically, efforts have been dedicated to aid the understanding and quantification of the effect 

of pleated drapes on building energy performance, particularly on SHGC. Some characteristics of 

drapes that can have an impact on both visual and energy performance include drape fabric 

materials, weaves, colors, and geometry as characterized by fullness or folding ratio. The next 

section provides a literature review on CFS studies with an emphasis on topics related to fabrics 

and pleated drapes. 

1.4 Literature Review 

1.4.1 Solar Shade Specifications Provided by Manufacturers 

Today’s window attachments usually come with a list of specifications that are used by designers 

for pre-selection and by business for product promotion. Solar shade providers generally brand 

their products into multiple lines by design/application and openness factor (OF) while various 

colors are generally available for each product line. Brochures or similar documents often promote 

product lines by highlighting the intended applications. As well, regardless of the designs and 
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intended applications, these marketing documents always include information on thermal and 

visual performance. 

Some product guides may also include information on extended thermal analysis (e.g., SHGC) and 

visual impact (e.g., glare reduction, outdoor view visibility, and privacy). A comprehensive 

technical product guide for choosing a window covering fabric considers not only thermal and 

visual performance but also topics related to acoustic control, aesthetic aspects, building and 

window orientations, daylighting, environmental footprint of the product, occupant comfort, fabric 

material and physical properties, security (e.g., fire retardant), UV protection, etc. 

Window attachment providers normally classify solar-optical properties into two groups: thermal 

and optical. Usually, they associate thermal performance with solar properties (i.e., Ts, Rs, and 

As) and visual performance with optical properties (i.e., Tv and OF). Respectively, Ts, Rs, and As 

are solar transmittance, reflectance, and absorptance while Tv and OF are visible transmittance 

and openness factor. This naming convention is not common in the research field, but it is widely 

used in the window shading industry. 

Tv, visible transmittance, is determined with respect to the photopic response of the human eye. 

Tv is mostly linked to glare control. On the other hand, OF, openness factor, is typically considered 

with other fabric properties for determining the degree of visibility, glare control, and solar heat 

gain. OF and the three solar properties are discussed and defined below. 

1.4.2 Nomenclature for Solar Optical Properties of Fabrics 

To be consistent with previous CFS research studies, the nomenclature presented below are used 

throughout this thesis. Consider incident solar radiation on a fabric layer (Figure 1.3) with an 

incident angle of θ. The total (or beam-total) transmittance, bt, includes an unscattered component, 
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bb, and a scattered portion, bd, as shown in Figure 1.3. The subscripts (bt, bb and bd) denote 

beam-total, beam-beam and beam-diffuse properties, respectively. In other words, these subscripts 

pertain to incident beam radiation where bb and bd account for beam-beam (unscattered) 

transmittance and beam-diffuse (scattered) transmittance, respectively. And the beam-total 

property is the sum of beam-beam and beam-diffuse components, or 

bt = bb + bd (1.3) 

 

 

 

 

 

 

Figure 1.3: Solar optical properties of a fabric layer 

 

In addition, openness (Ao) is a distinct term defined as the percent open area of a flat fabric. Ao is 

measured as bb at normal incidence. So, 

Ao = bb(θ = 0) (1.4) 

Note that fabrics do not exhibit specular reflection, so bb ≈ 0. The beam-total reflectance, bt, is 

therefore equal to the beam-diffuse reflectance. 


bt

= 
bd

 (1.5) 

sun 

θ 

bb 

bd bd 

bb = 0 
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For simplicity,  is consistently used to denote fabric reflectance in this thesis. So, unless stated 

otherwise,  = bt = bd for fabric. Also, note that all solar optical properties provided by 

manufacturers are for normal incidence only (i.e. θ = 0). And, these properties are beam-total 

properties. Therefore, Ts = bt (θ=0), Rs = bt (θ=0), and OF = Ao = bb (θ=0). Again, the naming 

convention presented in this section is general and will be used throughout the thesis. 

1.4.3 Early CFS Researchers 

As early as the 1930s, researchers at the American Society of Heating and Ventilating Engineers 

(ASHVE)10 began to study the effect of heat gain/loss through windows (e.g., Miller 1932, 

Blackshaw et al. 1934, Houghten et al. 1934, Carr et al. 1939, and Houghten et al. 1941). This 

research group studied transmission of solar energy through glass, built two test houses, compared 

the energy requirements for a single-glazing test house to that for a double-glazing test house, and 

considered solar heat gain with and without shading. 

Then, from the late 1940s to the late 1960s, ASHVE and then ASHRAE11 undertook significant 

efforts to evaluate and quantify the impact of window shading. In the context of the now defunct 

Shading Coefficient (SC)12, established CFS researchers such as Parmelee, Ozisik, Schutrum, 

Farber, Yellott, and Keyes laid the groundwork for much of the work that followed decades later. 

                                                      
 

10   American Society of Heating and Ventilating Engineers (ASHVE) was founded in 1894 in New York City. In 

1954, it changed its name to American Society of Heating and Air-Conditioning Engineers (ASHAE).  
11   American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) came from the 1959 

merger of ASHAE and the American Society of Refrigerating Engineers (ASRE). ASHRAE, despite having 

“American” in its name, is an influential organization globally. 
12   SC is the ratio of solar gain through a window unit to the solar gain through 3mm clear float glass. It was 

introduced in 1963 ASHRAE Guide and Data Book. Standards have moved away from SC to SHGC. 
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In early work, studies on CFS performance depended largely on measurement in a solar 

calorimeter. As one of the earliest CFS researchers, Parmelee examined the effect of slat type sun 

shades on heat gain to the indoors using both mathematical analysis and experimental solar 

calorimetry (Parmelee et al. 1948, Parmelee et al. 1950, Parmelee et al. 1952, Parmelee et al. 1953). 

Later, Ozisik and Schutrum performed similar measurements for roller shades (Ozisik and 

Schutrum 1959) and drapes (Ozisik and Schutrum 1960). They were the first to investigate the 

effect of pleating on the transmittance and reflectance of draperies. They limited both of their 

studies to single-glazed windows. 

Furthermore, a team of researchers (Farber et al. 1963) performed a theoretical analysis of solar 

heat gain through double pane glazing units with both venetian blinds and draperies. They also 

provided a good summary of the previous studies mentioned above. The same research team 

carried out a parallel experimental study for comparison with their theoretical treatment 

(Pennington et al. 1964). 

1.4.4 Antecedent of Keyes Universal Chart 

Similar to Ozisik and Schutrum’s work on drapes, Yellott experimentally determined the Shading 

Coefficient (SC) of draperies using the ASHRAE solar calorimeter (Yellott 1965). He measured 

the solar optical properties of fabrics as well as glass-drape combinations using a custom-made 

instrument. Based on these measurements, Yellott presented SC for various glass-drape 

combinations as a function of solar reflectance of the drape fabric. He also made frequent reference 

to Keyes work, which had not been published yet. Together Yellott and Keyes proposed that fabric 

properties be rated based on yarn reflectance, y, and fabric openness, Ao (the percent open area 

between fibers in a fabric). This approach was dubbed the yarn reflectance–openness (ρy–Ao) 
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system. A panel of seven untrained observers averaged over 80% correct in identifying 40 random 

fabrics using their system. Therefore, they concluded that visual estimation of fabric properties is 

accurate enough for this application. 

In 1967, Moore and Pennington measured the solar optical properties of fabrics and glass-drapery 

combinations using various techniques. They recommended that fabric classifications be 

designated by fabric solar-optical properties, namely total transmittance (bt) and total reflectance 

(bt), using their so-called bt–bt system instead of the y–Ao system proposed by Yellott and 

Keyes. Moore and Pennington argued that Ao needed to be more accurately determined. Visual 

estimation may not be good enough depending on the fabric material, its thickness and other 

characteristics such as color. The energy passing through the interstices, plus that passing through 

the fabric material, is the transmitted energy. In addition, they pointed out that color may be 

misleading as to its reflective characteristic or ability to turn back the solar energy impinging on a 

fabric. For example, a dark glossy material may be more reflective than a light dull fabric. Note 

that yarn reflectance is hard, if not impossible, to measure. Discussions above on the two 

classification systems formed a good basis for the Keyes Universal Chart (KUC). 

1.4.5 Keyes Universal Chart (KUC) 

Although Keyes Universal Chart (KUC) was first published in the 1965 ASHRAE Guide and Data 

Book (ASHRAE 1965), and mentioned in the work of Yellott (1965), Keyes work itself was not 

published until 1967 (Keyes 1967). In his work, Keyes not only discussed the solar control ability 

of drapes but also their impact on other factors related to thermal comfort, sound (noise) control, 

and daylighting concerns. 
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Further, continuing from the arguments of Moore and Pennington, Keyes reasoned through the 

usefulness of the y–Ao system. He mentioned that if the fabric bt–bt system were the only one 

employed, one would: a) have no fundamental understanding of what is physically happening 

between the yarn and radiant input, b) move into complete dependence on instruments, and c) give 

up the ability to predict other performance characteristics of the drape fabric. He asserted that the 

two systems complement each other; the fabric bt–bt system for accurate prediction of shading 

effect, and the y–Ao system for approximation of shading effect without using instruments and 

for evaluation of other fabric characteristics. He reconciled the two systems and produced the KUC 

(Keyes 1967) shown in Figure 1.4. 

 
 

Figure 1.4: Keyes Universal Chart (Keyes 1967) 
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1.4.6 More Recent CFS Studies 

It is well recognized how important CFS could be both for the control of energy consumption and 

peak load shaving. Fittingly, since the mid 1990s, ASHRAE Technical Committee 4.5: 

Fenestration (TC4.5) and others have paid significant attention to quantifying the benefits of 

shading devices placed on windows. 

While not part of the TC4.5 efforts, one must include the work of Van Dyck and Konen (1982) 

who produced solar optical models of shades and CFS for implementation into their WIS software. 

They showed a theoretical model for analyzing a single glazing with an indoor shading device. 

Optical properties of shading devices including blinds, roller shades, and draperies were measured 

and used in their model for system optical properties. 

Similarly, McCluney and Mills (1993) modelled solar optical properties of shade materials, and 

then applied the result to determine window system solar optical behaviors. Their goal was to use 

a simplified CFS model to compute a realistic estimate of the advantage of using shades to control 

solar heat gain. For windows without shades, the SHGC is insensitive for angles of incidence up 

to about 50 degrees. So one main simplification in their model is to assume that solar radiation is 

always at normal incidence. In addition, while McCluney and Mills acknowledged that almost all 

shades are diffuse reflectors, they also assumed a specularly reflecting shade. Therefore, with 

several other assumptions and as stated by McCluney and Mills (1993), their model has been 

limited to near normal incidence. 

1.4.6.1 Matrix Layer Calculation 

Innovation in window technologies necessitated added complexity in fenestration system analysis. 

Models and solar calorimetric methods became increasingly ineffective for determining solar 

optical and thermal characteristics of more complex fenestration systems. For this reason, Klems 
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developed a detailed method called the Matrix Layer Calculation (Klems 1994a, 1994b). The 

method has great potential to accurately quantify CFS both from solar heat gain and daylighting 

perspectives. 

Using a scanning radiometer to compile a detailed solar optical map, this method relies on a full 

set of bi-directional solar optical properties for each layer in the system (Klems and Warner 1995). 

The complexity of this approach is a problem as it relies on difficult to obtain measurements (i.e., 

very time consuming and expensive) and is computationally intensive. This approach can provide 

a high level of detail regarding the directional nature of the solar radiation within or leaving the 

system, a desired capability for daylighting analysis. However, a lack of database or models of 

thermal and solar-optical properties for individual layers, and excessive CPU time needs, precludes 

the model’s application in whole building energy simulations. Still the approach laid the 

groundwork for the efforts that followed. 

1.4.6.2 Simplified Layer Method 

A simplified and more practical approach is now available for determining the layer-by-layer 

absorption of solar radiation and transmission of solar radiation into the building (e.g., Klems 

2001, Wright and Kotey 2006). Klems (2001) also introduced the Interior (solar) Acceptance 

Coefficient (IAC). Without changing the definition of IAC, IAC is now called Interior Attenuation 

Coefficient in the ASHRAE Handbook of Fundamentals. The IAC tables in newer ASHRAE 

versions replaced the shading coefficient tables in versions of the ASHRAE Handbook of 

Fundamentals prior to 2001. IAC is defined as ratio of the SHGC of a fenestration system with a 

shading device to the SHGC of the same fenestration system without the shading device, or 

IAC =  SHGCshaded/SHGCunshaded (1.6) 
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1.4.6.3 CFS Models and Implementation into Building Simulation Software 

Researchers at the Advanced Glazing System Laboratory (AGSL) and Solar Thermal Research 

Laboratory (STRL) of the University of Waterloo have made significant strides towards CFS 

modelling. They have not only produced accurate models of CFS performance but also 

implemented in code a methodology that allowed CFS models to be included in building 

simulation software where computational speed is important (Wright and Kotey 2006, Collins and 

Wright 2006, Wright et al. 2008, Barnaby et al. 2009, Wright et al. 2011, Lomanowski and Wright 

2012, Foroushani et al. 2015). 

1.4.6.4 Pleated Drape Model - Rectangular 

In 2009, Kotey et al. performed research on determining solar optical properties of shading devices 

including venetian blind, roller blind, insect screen, and drape (Kotey et al. 2009a, 2009b, 2009c, 

2009d, and 2009e). Kotey et al. (2009c) developed a pleated drape model based on a relatively 

simple geometry, rectangular pleats. For fenestration systems with drapes, most work was done in 

the 1960s, and the pleated drape model developed by Kotey et al. is the only theoretical model 

available since the one presented by Farber et al. in 1963. The IAC tables in the 2009 or newer 

version of ASHRAE Handbook of Fundamentals are results of the new model (Kotey et al. 2009a, 

2009c, Wright et al. 2009, Barnaby et al. 2009). 

1.5 Options for Determining SHGC 

All work described above was undertaken for one purpose: estimating SHGC of a CFS. Based on 

the literature review, methods for determining SHGC are summarized below. Each option shows 

the process by which SHGC of a pleated drape is estimated from the properties of a flat fabric 

material. One may choose an option based on application, required accuracy, and/or available 

resources. 
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Option I: Build a full glass-drape test sample made of draped fabric and use direct measurement 

methods (e.g., using calorimeter) to determine SHGC. 

Option II: Build a drape test sample made of draped fabric, measure bt and bt (effective 

properties) of the pleated drape layer using direct measurement methods (e.g., using Broad Area 

Illuminating Integrating Sphere (BAI-IS) or integrated reading with pyrheliometer), and then 

perform the multi-layer analysis (Wright 2008) to determine SHGC. 

Option III: Measure normal-incidence flat fabric properties including ρbt, τbt, and Ao using a 

spectrophotometer, apply drape ILM (i.e., off-normal fabric property models and the rectangular 

pleated drape model) to obtain drape layer effective properties, and then perform the multi-layer 

analysis to determine SHGC. 

Option IV: When one or more flat fabric properties (i.e., bt, bt, Ao) are not available: 

a. Missing one fabric property: When two of the three properties are available, either use 

the KUC to determine the third property and follow Option III, or use the KUC to 

determine the categorized fabric properties and follow Option III. 

b. Missing two fabric properties: When one of the three properties is available, use visual 

inspection and the KUC to determine fabric color (D: Dark, M: Medium, or L: Light) 

and openness (I: Open, II: Semi-open, or III: Closed). Then look up the IAC value in 

the ASHRAE Handbook, which is based on Option III above with estimated (or 

categorized) fabric properties, to determine SHGC. 

c. Missing all three fabric properties: When none of the three properties is available, use 

visual inspection and the KUC to determine fabric color and openness. Then look up the 
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IAC value in the ASHRAE Handbook, which is based on Option III with estimated (or 

categorized) fabric properties, to determine SHGC. 

Direct measurement methods (Option I and II) are considered more accurate, but costly and time 

consuming. Such methods are good for model development and validation purposes. In the case 

where no measurement device is available, one can use the visual inspection method (Option IV) 

with the KUC and the IAC tables in the ASHRAE handbook to estimate SHGC of pleated drape 

materials. The visual inspection method using the KUC and the IAC tables requires minimal cost 

and time with a reduced accuracy. Yet, when equipped with the KUC and IAC tables, visual 

inspection can be a very convenient tool for designers to estimate performance and consider design 

tradeoffs of a CFS during the early design phase. 

Between direct measurement and visual inspection, a more balanced approach is to measure flat 

fabric properties using a spectrophotometer (Option III), which is a relatively quick and easy task 

compared to direct measurement methods. Then SHGC of pleated drape made from the measured 

fabric can be determined either by using the KUC with the IAC tables or by the multi-layer solar-

thermal analysis with solar-optical models for pleated drapes. 

The method of spectrophotometer measurements along with the solar optical models can be 

utilized as a stand-alone tool to determine the performance of a CFS, or it can be easily packaged 

in building simulation software. This method has been coded along with a drapery fabric library. 

In fact, fabric manufacturers will often know and supply bt, bt, and Ao of their products, which 

can simply be used as input in the models. 
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1.6 Purpose and Objectives 

The main purpose of this research is to provide simple but accurate tools that can be both used as 

a stand-alone tool and implemented in the multi-layer analysis as a solar-optical ILM to predict 

the CFS center-glass energy performance index, SHGC or IAC. 

Specifically, this research focused on one type of window shading: draperies. For modelling 

draperies, the effect of pleating needs to be examined, using a pleated drape model. Also, KUC is 

a very convenient tool for designers as it correlates measured solar optical properties of fabric with 

eye-observed values to estimate the shading effect in terms of the historical SC or now the more 

widely recognized SHGC or IAC. In fact, KUC (Keyes 1967) along with the rectangular pleated 

drape model (Kotey et al. 2009c) are the basis for determining the IAC tables published in 

ASHRAE Handbook – Fundamentals since 2009. Therefore, the two key aspects for estimating 

the shading effect of draperies are (1) KUC and (2) a pleated drape model. 

For KUC, Keyes established the original chart in 1967. Since then, it remained unchanged for half 

a century. Recognizing the value and flexibility of the KUC and its y–Ao system, however, a 

study (Collins et al. 2016) revealed the need to update the KUC. 

For the pleated drape model, only the rectangular pleat geometry was considered in previous 

studies (Farber et al. 1963 and Kotey et al. 2009c). The rectangular pleating shape is only an 

approximation of the true pleating profile. In fact, there are so many pleating styles and techniques 

available that it is not feasible to survey all of them. Therefore, there is still much to learn about 

the effect of pleating geometry on SHGC. Furthermore, most experimental studies examined solar 

optical properties of either the glazing layers or the combination of the glazing layers and shading 

attachments. The author is not aware of any solar optical property measurement performed for the 
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pleated drape layer alone. Such sub-system layer measurements are crucial for model development 

and validation at the sub-system component level. The discussions above lead to the following 

three key objectives that are addressed in the next five chapters of the thesis: 

(1) An updated and improved KUC. The first two sections in CHAPTER 2 examine the 

original KUC in detail and discuss the findings that lead to the search for an improved 

KUC.  A database of fabric solar-optical properties was generated for updating the original 

KUC and presented in Section 2.3. Section 2.4 establishes a new methodology for KUC 

and presents the improved KUC (the b&C model). The model provides a functional 

relationship of fabric properties that can be manipulated by two model coefficients, b and 

C. The new methodology itself is an enhancement to the hand-drawn chart of the original 

KUC. The methodology allows variations and makes further analysis much more efficient. 

Building on the b&C model, CHAPTER 3 proposes a customized KUC approach, an 

extension to the b&C model that explores the possibility of using a fourth independent 

variable. 

(2) A triangular pleated drape model. CHAPTER 4 offers a triangular pleated drape model 

for comparison with the rectangular model. 

(3) Pleated drape layer transmittance measurement. CHAPTER 5 provides details of the 

experiment including test matrix, sample construction, limitations, the BAI-IS system setup 

and calibration, and measurement uncertainties. Then CHAPTER 6 presents and compares 

all results from the pleated drape models (both rectangular and triangular) and the 

measurements. Effects of incident angle, pleating (including pleating profile and folding 

ratio), and fabric properties are discussed. 

CHAPTER 7 includes the conclusions and recommendations for further work.  
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CHAPTER 2                                                               

DEVELOPMENT OF THE IMPROVED KUC 

 

2.1 Examination of the KUC13 

2.1.1 Placement of Constant Openness Curves in the Original KUC 

Keyes (1967) used a grid (coordinate) paper with the blank square surface missing to convey the 

concept of yarn reflectance (y) and fabric openness (Ao). He referred yarn to the grid and fabric 

open areas to the square openings. Having solar radiation impinging upon such a sheet, the 

openings allow direct transmission without any interference. The grid (yarn) that is present can 

absorb, reflect, and transmit the solar radiation. The reflectance of the fabric is, therefore, the 

reflectance of the yarn itself, y, multiplied by the decimal fraction of the surface that is present 

(i.e., 1 – Ao). 


bt,fabric

= 
y

× (1 − Ao) (2.1) 

The transmittance of the fabric is 1) the transmittance of the sheet times the decimal fraction of 

the grid area, plus 2) the decimal fraction of the openings, allowing unrestricted transmission. 

bt,fabric = sheet × (1 − Ao) + Ao (2.2) 

Based on the use of y and Ao, Keyes needed three pieces of information to develop the KUC: 

bt,fabric, bt,fabric, and Ao. He was able to obtain this data for various fabric materials, colors and 

weaves from four sources (Keyes 1967): the Yellott Solar Energy Laboratory (Yellott), the 

                                                      
 

13 Discussions presented in this section were largely published by the author (Collins et al. 2016). 
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University of Florida (Pennington), Pennsylvania State University (Pass), and from the Pittsburgh 

Plate Glass Company (Schutrum, Stewart, and Keyes). 

As shown on the KUC (Figure 1.4), the x- and y-axis are bt,fabric (or ) and bt,fabric (or bt) 

respectively. Keyes started by plotting  and bt. To place the constant Ao curves, he plotted on the 

chart all data points within a range of the target Ao. Specifically, he categorized test data into 

ranges of Ao and then plotted a constant Ao curve for each range separately. For example, he plotted 

test data for all fabrics with Ao between 0.015 and 0.025. A curve fit to this data range was set to 

be the constant openness line of Ao = 0.02 as shown in Figure 2.1. As Ao and bt should be nearly 

equal at  = 0 (i.e., dark thread with y = 0), the line was anchored at that point, at the left edge of 

the chart. In other words, Keyes drew the constant Ao lines starting at  = 0 with bt being equal to 

the target Ao (i.e., Equation (1.4)) and passing through the group of plotted data points. 

 

Figure 2.1: Development of openness lines on the KUC (Keyes 1967) 

 

Note that, even with Ao = 0 (i.e., one cannot see through fabric), a certain amount of radiation can 

still penetrate the fabric by transmittance through fibers or by multiple reflections among fibers. 

So there are still scattered components, but no beam-beam transmission in this case. In other words, 
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Ao = 0 does not necessarily mean zero transmission. Figure 1.4 shows this effect as the area under 

the lowest “.01 LIMIT” line. Similarly, the same effect makes each line of constant Ao curve 

upward, indicating increased bt (upward) as bt and y increase to the right. 

Next, the diagonal line connecting ( = 1, bt = 0) and ( = 0, bt = 1) is the upper limit of the KUC. 

Data points beyond this limit require  + bt > 1, which is clearly not possible. So the plot takes on 

a triangular shape. Following this, yarn reflectance (y) was included, based on the approximation 

that  arises from a simple reflection in the area occupied by yarn (i.e., Equation (2.1)). The 

resulting y lines are shown in Figure 1.4. Although y is hard to measure, the openness concept 

offers a way to estimate y. 

2.1.2 Fabric Classifications Outlined by Keyes 

As a final step, Keyes added a general fabric classification to the KUC. The 1965 ASHRAE Guide 

and Data Book first introduced this classification system. Fabrics were classified by weave as 

Open (I), Semi-open (II), and Closed (III), and by color as Dark (D), Medium (M), and Light (L). 

Table 2.1 summarizes the classification system. Note that the nine categories shown in Table 2.1 

correspond to the nine zones on the KUC (Figure 2.2). 

 
Table 2.1: Classification of drapery fabrics by openness and yarn color of fabrics 

 Dark (D) Medium (M) Light (L) 

Open Weave (I) 

(> 25% open) 
ID IM IL 

Semi-open Weave (II) 

(7 – 25 % open) 
IID IIM IIL 

Closed Weave (III) 

(0 – 7 % open) 
IIID IIIM IIIL 
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The KUC has remained virtually unchanged for 50 years. It has been published in the Fenestration 

Chapter of every ASHRAE Handbook of Fundamentals. The only significant change was the 

replacement of shading coefficient (SC) with interior attenuation coefficient (IAC) in the 2001 

Handbook of Fundamentals (ASHRAE 2001). 

 

Note: Classes may be approximated by eye. With closed fabrics, no objects are visible through the material, but large 

light or dark area may show. Semi-open fabrics do not allow details to be seen, and large objects are clearly defined. 

Open fabrics allow details to be seen, and the general view is relatively clear with no confusion of vision. The yarn 

color or shade of light or dark may be observed to determine whether the fabric is light, medium, or dark. 

 

Figure 2.2: Designation of drapery fabrics (Keyes 1967) 

 

2.2 The Need to Update the KUC 

2.2.1 Recently Measured Fabric Solar Optical Properties 

ASHRAE Research Project 1311 recently developed new solar optical and thermal models, and a 

new solution methodology for modelling CFS in building simulation software (Wright et al. 2009). 

As part of that work, the link between the solar optical properties of shades and the solar optical 

properties of the materials from which shades are made was required. In several cases, those 
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models had already been developed. For example, Ozisik and Schutrum (1960) and Yellott (1965) 

had developed drapery models for determining the solar optical properties of a drapery layer based 

on the solar optical properties of fabric. The accuracy and limitations of these models needed to 

be established. And in the case of drapery, this required the measurement of solar optical properties 

of various fabrics. 

Kotey et al. (2009a) examined nine fabrics in total, representing eight of the nine Keyes fabric 

categories, and a sheer fabric. He did not include a IIID (closed weave and dark) sample. All 

measured fabric properties came from a highly accurate UV/VIS/NIR spectrophotometer (Cary 

5000). First, Kotey et al. obtained the data for specular (beam-beam) transmission (i.e., bb), or 

openness (Ao), at normal incidence. Then, with the help of an integrating sphere attachment, the 

total reflectance, bt, and total transmission, bt, were measured. Complete details of the 

measurement method were documented (Kotey et al. 2009a). Table 2.2 reproduces the 

measurement results. Plotting the measured data on the KUC reveals some irregularities. 

Table 2.2: Solar properties of various drapery fabrics (normal incidence) 

Classification Ao Fabric bt Fabric bt 

Sheer 0.45 0.19 0.80 

I_L 0.26 0.42 0.56 

II_L 0.01 0.56 0.43 

III_L 0.01 0.68 0.30 

I_M 0.33 0.23 0.64 

II_M 0.02 0.32 0.28 

III_M 0.01 0.38 0.20 

I_D 0.23 0.15 0.32 

II_D 0.05 0.21 0.23 
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2.2.2 Fabric Reflectance, Fabric Transmittance, and Openness 

Recall that Keyes (1967) reconciled the y–Ao system with the –bt system. Equation (2.1) shows 

that y and Ao depend on each other. Therefore, one may reason that the reconciliation of the two 

systems is equivalent to an introduction of a third variable to the fabric bt–bt system. In summary, 

KUC provides a relationship among three solar optical properties of fabrics: 1) , 2) bt, and 3) Ao. 

2.2.3 Plotting Measured Solar Optical Properties on the KUC 

While the validity of the older drapery models proved to be very good, the same could not be said 

for the KUC. Knowing any two fabric properties would enable one to read the third property using 

the KUC. As discussed in Section 2.2.1, these three fabric properties can also be measured, and 

they should ideally meet at a point on the KUC. However, given the complexity of fabric 

characteristics, it is improbable that the KUC is able to accurately relate the solar optical properties 

for all types of fabrics. Furthermore, Keyes approximated a constant Ao curve from multiple points 

representing a range of measured Ao values. So it was not expected that the three properties would 

meet exactly at a point. This was indeed the case for all fabrics measured by Kotey et al. (2009a). 

2.2.4 Error and Bias of KUC 

For a fabric, when its three properties do not converge to a point, the point disperses into three 

different points on the chart located by the three possible combinations (pairs) among the three 

properties: Ao–bt, Ao–bt, and bt–bt. They form a right triangle on the chart with the point paired 

by bt and bt located at the right angle. So the triangle is bounded by bt (horizontal leg), bt 

(vertical leg), and constant Ao (sloped) line. The constant Ao line can be approximated by the 

hypotenuse. Also, a triangle’s hypotenuse can be facing either downward or upward.  The smaller 

the triangle, the more accurate the KUC is for a specific sample. Using Kotey’s fabric data (Table 

2.2), Figure 2.3 shows 9 triangles, each triangle corresponding to a fabric sample. 
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Figure 2.3: KUC (ASHRAE 2013) including data from Kotey et al. (2009a). This figure is 

taken from Collins et al. (2016) 

As explained earlier, one should not expect that the three points would overlay one another in each 

case. However, they should be in close proximity: the triangles should be small. Furthermore, in 

the absence of bias, upward facing and downward facing triangles would both be present. This, 

however, was not the case. Figure 2.3 shows that not only are some of the triangles large, indicating 

chart inaccuracy, but also all of the triangles point in the same direction (hypotenuse facing 

downward). Also concerning is the fact that some points lie beyond the diagonal limit of the chart. 

As shown in Figure 2.3, all triangles are facing downward. In such case, the bt – bt data point is 

above the hypotenuse, suggesting that the KUC always overestimates Ao. Alternatively, depending 
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on which two of the three properties are measured and plotted, the KUC will always overestimate 

Ao, overestimate bt, or underestimate bt. 

2.2.5 Possible Sources of Error 

It is unlikely that one can definitively show the origin of this error. Keyes (1967) obtained data 

from four sources, but at no point provided a detailed listing of the data or types of samples used. 

Concerning the methods by which each measurement was obtained; he referred to Pennington et 

al. (1964) for determining total reflectance and transmittance, and described a custom-built 

apparatus consisting of a slide projector, collimating tube, and photocell for measuring the 

openness (Figure 2.4). A photocell reading was taken both with and without the sample in place, 

and the ratio of these readings was reported as openness. 

Reliance on the referenced data sources is also not helpful. In the paper by Ozisik and Schutrum 

(1960), they describes nine fabric samples, but no mention is made of the openness. They briefly 

describe the tests as being done outdoors using a pyrheliometer. In Pennington et al. (1964), only 

two samples are listed, also without openness data, and a brief reference is made to 

spectrophotometric measurement. To the authors knowledge, the work of Pass was never 

published, and it is unknown how many samples were tested, or how. 

 

Figure 2.4: Keyes openness measurement apparatus (Keyes 1967). 
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Yellott's work (1965) is the best documented. Yellott describes all three properties for 17 fabrics, 

although fabric designations suggest he tested about 100 samples in total. He also describes his 

measurement procedure in detail. To measure total reflectance and transmittance, he uses the TRA-

Scope (Figure 2.5). It consists of two frames rotating about the same axis, using the sun as a light 

source. One contains a fabric or glass sample, while the other contains a radiometer. To measure 

openness, an apparatus similar to the one described by Keyes was used, except the illumination 

source was the sun (Figure 2.5). 

 

 

Figure 2.5: Yellott (1965) measurement setup: TRA-scope (Left) and Ao reading (Right) 

 

Despite the lack of detail, the source of error most likely lies with the data used by Keyes, and not 

with the new measurements. Either Keyes’ transmittance data was too low, his reflectance data 

too high, or his openness data was too high. The bt and bt measurements shown in Table 2.2 were 

obtained using the same spectrophotometric process mentioned by Pennington et al. (1964) and 

endorsed by Keyes (1967). The modern shading studies described earlier endorse this approach. 
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In deference to the older studies, however, is the fact that the current spectrophotometric 

measurements come from far more accurate and reliable equipment. Still, one must presume that 

data used by Keyes are just as reliable. Regarding Ao, the bb measurement obtained from the 

spectrophotometer is fundamentally no different from the one described by Keyes or Yellott and 

shown in Figure 2.4 and Figure 2.5. In the case of the spectrophotometric equipment, however, the 

equipment is far better designed and calibrated. 

What is most likely the problem with the Ao measurements, however, is the acceptance angle 

associated with the collimating tube. Ideally, a measurement of beam-beam transmission would 

only include those light rays that pass directly through the fabric weave without changing direction. 

Unfortunately, if a single ray direction could be chosen, it would contain no energy, and the sensor 

would not pick up a reading. The measurement system must therefore be designed to accept all 

radiation within a cone that emanates from the sample. As the size of this cone increases, more 

scattered radiation is sensed, and the measured openness value becomes inflated. It is not known 

how large the acceptance angle was in the original experiments, but it is most definitely greater 

than the acceptance angle of the spectrophotometer used by Kotey et al. (2009a). No matter where 

the error lies, it is clear that the constant openness lines shown on the KUC are not placed 

accurately and should be updated. 

2.3 SOLAR OPTICAL PROPERTY OF FLAT FABRICS 

To further examine and resolve the error and bias of KUC discussed above in Sections 2.2.3 to 

2.2.5, various fabrics have been selected and their solar optical properties measured. Without 

measured properties being available in the first place, the selection process first involved visual 

inspection with the intent to cover all regions of the KUC evenly. This was performed by the visual 

inspection method described by Keyes (1967). Visually selected fabrics were then measured and 
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their properties plotted on the KUC. Experience shows that Dark (D) category fabrics are relatively 

difficult to be correctly identified. As a result, relatively more fabrics are in the Medium (M) 

categories. 

The measured properties are also required as input for the pleated drape models. This section offers 

details on the Cary 5000 spectrophotometer used for the fabric property measurements. A 

description of the integrating sphere inside the Cary 5000 and a brief survey on its theory are also 

included. Measurement techniques and data processing for transmittance and reflectance 

measurements are explained. Then, measurement results are presented. Most importantly, these 

measured fabric properties form the basis for developing the improved KUC. 

2.3.1 Cary 5000 Spectrophotometer 

The Cary 5000 UV-Vis-NIR spectrophotometer is a high performance device commercially 

designed and produced for photometric measurements in the 250-2500 nm range. The operation 

of the Cary 5000 is highly automated and controlled by the Cary WinUV software. Calibration 

and measurement procedures are relatively easy and quick. Because of its capabilities, it is an 

excellent apparatus for many purposes including this research project. Kotey gives a detailed 

description of the Cary 5000 spectrophotometer (Kotey 2009). 

2.3.1.1 Measurement Using an Integrating Sphere 

The Cary 5000 spectrophotometer is equipped with a 110 mm diameter integrating sphere. An 

integrating sphere consists of a hollow sphere with its inner surface coated with a layer of high 

reflectance material. An integrating sphere collects and integrates spatially and directionally all 

incoming radiation. Its inner surface is assumed to be Lambertian, reflecting light into all available 

solid angles with equal efficiency. An integrating sphere has at least one inlet port to admit light 

plus a port where detectors are located. 
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2.3.1.2 Integrating Sphere Theory 

Sumpner (1892) described the theory of light-collecting hollow cavities. Ulbricht (1900) 

introduced the integrating sphere as a method for measuring the radiant flux of light sources and 

surface reflectance. Soon it became a standard instrument in photometry and radiometry. 

Integrating sphere theory has been extensively covered in the literature (e.g., Rosa and Taylor 

1922, Jacquez and Kuppenheim 1955, Hisdal 1965a,b, Goebel 1967, and Tardy 1991) and derived 

from the general theory of radiation exchange between two differential elements of diffuse 

surfaces. Labsphere’s technical guide (Labsphere 2013) gives a detailed discussion on integrating 

sphere theory and applications. 

2.3.2 Measurement Method, Data Processing, and Results 

The beam-diffuse transmittance, bd, is measured with the sample in place and the reflection port 

open, allowing the transmitted beam component to escape while trapping the scattered radiation 

(Figure 2.6a). The beam-total (beam-beam plus beam-diffuse) transmittance, bt, is measured with 

the reflection port covered (Figure 2.6b). The difference between the two readings is the beam-

beam transmittance, bb, which is equivalent to the openness factor, Ao. All measurements are for 

normal incidence, θ = 0. 

To measure the beam-diffuse reflectance, bd, the sample is mounted as shown in Figure 2.7a, 

allowing the incident beam to strike the sample at normal incidence and causing the beam-beam 

reflection component to exit through the transmission port. When the sample is mounted as shown 

in Figure 2.7b at a near normal incidence, both beam and diffuse components remain in the sphere 

and the detectors measure beam-total reflectance, bt. The beam-beam reflectance, bb, is simply 

the difference between the two reflectance readings. However, the shading layers considered do 
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not exhibit specular reflection, bb ≈ 0, which was confirmed experimentally (Kotey 2009). The 

beam-total reflectance, bt, is therefore equal to the beam-diffuse reflectance, bt = bd. 

 

Figure 2.6: Beam-diffuse and beam-total transmittance measurements (Kotey 2009) 

 

Figure 2.7: Beam-diffuse and beam-total reflectance measurements (Kotey 2009) 

 

2.3.2.1 Weighted Average of Spectral Properties 

Transmittance and reflectance measurements of the Cary 5000 utilize an artificial light source. 

Standard test methods have been developed for measuring solar optical properties with an artificial 

light source. The main advantage of using an artificial light source is its stability, enabling 

repeatable readings. Because an artificial light source has a different spectral irradiance profile 
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than natural sunlight, solar optical properties are obtained by calculating a weighted average of the 

corresponding spectral properties with a standard weighting function (e.g., solar spectral irradiance 

for Air Mass m = 1.5). Spectral measurement using a spectrophotometer with an integrating sphere 

provides the spectral solar-optical properties over the spectrum of interest. 

Specifically, the solar spectrum is divided into 50 equal-energy wavelength intervals based on 

ASTM E891-87. Then, the solar optical properties can be determined following the 50-point 

selected ordinate method described in ASTM E903-96. For example, solar transmittance is 

calculated as: 

𝑠𝑜𝑙𝑎𝑟 =
1

𝑛
∑ (𝜆𝑖)

𝑛

𝑖=1

 (2.3) 

where λi is the wavelength at the center of the ith spectral interval and n = 50 (or the number of 

equal-energy wavelength intervals if a different range of solar spectrum is considered). 

2.3.2.2 Measurement Results 

For this study, spectral solar optical properties of 108 fabric samples have been measured. 

Including the nine fabrics measured by Kotey (2009a); there are 117 samples in total. These fabrics 

are numbered, and each of them has been given a name. Using the measured spectral property, 

weighted averages were calculated using the procedures described above in Section 2.3.2.1 for the 

solar wavelength range, 250 – 2500 nm. Appendix A: List of Fabric Samples and Their Properties 

lists the resulting solar optical properties for all 117 samples. Plotting fabric transmittance against 

fabric reflectance, Figure 2.8 shows the location of each measured fabric on the KUC without 

considering the openness data. 
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Figure 2.8: Fabric map showing τbt vs ρ on the KUC 

 

2.3.3 Uncertainty Due to Non-uniformity in Flat Fabrics 

When selecting a fabric, patterned fabrics with any kind of print have been deliberately avoided. 

Only plain fabrics were chosen to preclude the visible non-uniformity in the fabrics. Nonetheless, 

no fabric is perfectly uniform. This section lays out the effort given to quantify and correct the 

non-uniformity in the fabrics on the measured properties. 
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For those fabrics (22 out of 117 samples) that have been chosen to make pleated drape samples, 

their flat fabric properties were measured multiple times at different locations to identify any non-

uniformity in the fabrics. The number of measurements depends on the degree of the non-

uniformity. For each fabric, five random locations were measured. If all five measurements were 

within 0.01 of each other, no further measurement was made. Otherwise, up to 50 measurements 

were taken for measurement of the most non-uniform fabric. 

Two highly non-uniform fabrics, #10 DecolineLining and #71 RoughRed, were chosen to 

demonstrate the effect of fabric non-uniformity. Fabrics #10 and #71 have been measured 50 times 

and 35 times, respectively. In addition, #22 SheerWhite01 and #26 BlusSoft01 have been 

measured 10 times each, also at various locations. For these four fabrics, all tests were performed 

for the visible spectral range 400 – 700 nm and results are presented in Figure 2.9. 

Figure 2.9 shows four groups of spectral transmittance lines. As shown in the figure, a highly non-

uniform fabric (e.g., #10 or #71) has a wide span in measurements whereas spectral transmittance 

lines of a uniform fabric (e.g., #22 or #26) fall within a narrow range. Distributions of measured 

bt for the four fabrics are shown in Figure 2.10. The four graphs in Figure 2.10 have the same 

scale range (i.e., 0.125 or 12.5%). As expected, #10 and #71 span almost the whole range of 0.125 

while #22 and #26 remain within 0.020. 
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Figure 2.9: Spectral transmittance of Fabrics #10, #22, #26, and #71 for the wavelength 

range 400 – 700 nm 

  

(c) #22 SheerWhite01 

(a) #10 DecolineLining 

(b) #71 RoughRed 

(d) #26 BlueSoft01 
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Note: Frequency is the number of measurements that fall within a specific range of transmittance. All four graphs 

have the same scale of 0.125 (to show the relative non-uniformity) at various spectral ranges: (a) 0.300 – 0.425, 

(b) 0.200 – 0.325, (c) 0.600 – 0.725, and (d) 0.000 – 0.125 

 

Figure 2.10: Distribution of measured bt 

(a) No. 10 Decoline Lining (50 data) 

(d) No. 26 BlueSoft01 (10 data) 

(c) No. 22 SheerWhite01 (10 data) 

(b) No. 71 RoughRed (35 data) 
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2.3.3.1 Non-Uniformity Correction Factors 

Due to non-uniformity in a fabric, measured spectral bt differs at various locations. However, as 

shown in Figure 2.9, the difference between any two measurements stays the same spectrally (i.e., 

the lines are almost parallel to each other). It has been confirmed that this “consistent” spectral 

difference is true across the entire spectral range of interest (i.e., 250 – 2500 nm). Therefore, it is 

reasonable to assume that the difference between two measurements at a specific wavelength can 

be applied to the whole range of interest. 

Recall that the solar optical properties have been measured and evaluated for the full wavelength 

range 250 – 2500 nm. To correct fabric non-uniformity, multiple (5 to 50) measurements are taken 

and averaged at 700 nm. Then the average is compared to the single full-range measurement at 

700 nm. The difference between the average (of multiple measurements at 700 nm) and the single 

full-range measurement at 700 nm is the correction factor.  

As an example, the weighted average bt of full range measurement is corrected as: 

bt,Corrected = bt,full − (bt,full@700 − bt,avg@700 ) (2.4) 

where the term inside the bracket is the correction factor. 

All solar optical properties can be corrected following the procedures as described above. Table 

2.3 lists the correction factors for the 22 fabrics that were used to build pleated drape samples. 
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Table 2.3: Correction factors for flat fabric properties 

Fabric # 
Correction Factors for 

bt bd bt 

01 0.0118 0.0026 -0.0057 

08 0.0005 0.0001 -0.0043 

10 0.0995 0.1056 -0.0410 

13 0.0666 0.0100 -0.0038 

20 0.0715 0.0170 -0.0037 

22 0.0724 0.0575 0.0013 

24 0.0117 0.0176 0.0025 

26 0.0001 -0.0005 -0.0049 

27 0.0190 0.0075 -0.0068 

64 0.0141 0.0077 0.0004 

66 0.0147 0.0112 0.0103 

68 0.0000 0.0125 -0.0011 

70 0.0298 0.0046 -0.0194 

71 -0.0006 -0.0035 0.0291 

72 0.0612 -0.0713 -0.0306 

73 0.0066 -0.0044 -0.0013 

75 0.0317 0.0121 -0.0064 

77 0.0074 0.0137 0.0117 

92 -0.0013 -0.0022 -0.0070 

93 0.0085 0.0116 -0.0106 

94 0.0538 0.0099 -0.0100 

95 0.0171 0.0122 -0.0015 

 

2.3.4 Section Summary 

A total of 117 fabrics have been measured for their solar optical properties. Although patterned 

fabrics (visible non-uniformity) have been avoided, there is still invisible non-uniformity in the 

fabrics that can be significant. Fortunately, this uncertainty can be greatly reduced by applying a 

correction factor determined using the method described above. Keep in mind that the correction 

factors have been determined only for 22 fabrics that are used in the pleated drape layer 

measurements. This is largely because most fabric samples were small. 
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2.4 Development of an Improved KUC - The “b&C” Model 

2.4.1 A Closer Look at the Constant Ao Lines and the Solar Optical Properties 

Recall that Figure 1.3 shows the solar optical properties of a fabric layer. The beam-total property 

consists of a beam-beam component and a beam-diffuse component. In essence, a constant Ao line 

on the KUC predicts the split between the bb and bd that make up the total transmittance. So bb 

is equivalent to the openness represented by the constant Ao line (Equation (1.4)), and bd is the 

difference between bt and Ao (Equation (1.3)), which is determined by the upward curvature of 

the Ao = constant line(s) on the KUC. 

 

(a)                                                                           (b) 

Figure 2.11: Illustration of (a) uninterrupted transmission through a fabric layer and (b) 

scattered components of reflectance and transmittance 

 

Figure 2.11 demonstrates the possible radiation paths when radiation is incident on the fabric layer. 

Figure 2.11 (a) shows the uninterrupted transmission through interstices that makes up the bb 

component. Figure 2.11 (b) shows various paths of radiation, which, when impinging on the yarn, 
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can be transmitted through fibers or reflected from fiber to fiber. As discussed earlier, fabrics, 

because of their irregular geometry, do not reflect specularly so bt consists of only scattered 

reflection as bd (Equation (1.5)). For the bd component, Figure 2.11 (b) depicts how the beam 

passes through the fabric, scattered by the interactions of radiation and the fibers in a woven fabric. 

These interactions include optical phenomena such as diffraction, refraction, and multiple 

reflections as shown in the figure. 

2.4.2 The “b&C” Model 

A new model has been developed and proposed as an improved KUC using the measurement 

results presented in Section 2.3. This model is named the “b&C” approach. Equation (2.5) shows 

the proposed “b&C” model. 

bt = (Ao + C)(1 + )−1/b (2.5) 

Coefficients “b” and “C” are two governing parameters that can be adjusted to alter the curvature 

of the constant Ao lines on the KUC, therefore predicting the split between the bb and bd. 

There are three main characteristics of the constant Ao lines governed by Equation (2.5): the y-

intercept (YI), initial slope (S), and rate of change in slope (ROCS). These characteristics can be 

examined mathematically. Based on Equation (2.5), YI is equivalent to bt at  = 0. Therefore, YI 

= Ao of a particular constant Ao line. S can be obtained by taking the derivative of bt with respect 

to  (Equation (2.6)), and the curvature effect or ROCS is the second derivative (Equation (2.7)). 

S =
∂bt

∂ρ
= C(1 + )−1 b⁄ + (−

Ao

b
−

C

b
)(1 + )−1 b⁄ −1 

(2.6) 

ROCS =
∂S

∂
= −

2C

b
(1 + )−1 b−1⁄ + (

Ao

b2
+

Ao

b
+

C

b2
+

C

b
)(1 + )−1 b⁄ −2 

(2.7) 
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As illustrated by Equations (2.6) and (2.7), the S and ROCS of a constant Ao line depend on the 

two model parameters, b and C, as well as Ao and . In other words, the influence of b and C differ 

through various ranges of Ao and . This will be examined in detail in the following sections.  

2.4.3 Model Requirements 

The b&C model (Equation (2.5)) has been proposed because its form satisfies several known 

limits/conditions on the KUC. For instance, Equation (2.5) correlates the three solar optical 

properties of fabrics and provides constant Ao lines. Also, it satisfies the condition at the left edge 

of KUC where bt = 0 and bt = Ao. In addition, it provides the zero openness line that must begin 

at the bottom-left corner (where all three solar optical properties are zero) and curve upward as bt 

increases. These model requirements are discussed in detail as follows. 

i. Relationship of the Solar Optical Properties 

The main purpose of the KUC is to correlate the three solar optical properties: bt, bt, and Ao. 

Equation (2.5) provides the required correlation since bt is expressed as a function of bt, and Ao. 

Given coefficients b and C and with Ao held constant, Equation (2.5) results in a constant Ao line 

(i.e., in the form of bt as a function of bt). 

ii. Left Edge of the KUC (bt = 0) 

At the left edge of the KUC (i.e., bt = 0), the model must satisfy the condition of bt = Ao, therefore, 

predicting the uninterrupted transmission component shown in Figure 2.11 (a). Equation (2.5) 

satisfies this requirement. As a special case, all three solar optical properties are equal to zero at 

the bottom left corner of the KUC. So, at Ao = 0 and bt = 0, bt = Ao = 0. (2.5 also satisfies this 

special case. 
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iii. The Zero Openness Line 

When Ao = 0, the model must predict the scattered components of transmittance (bd) as shown in 

Figure 2.11 (b). The zero openness line must start from the bottom left corner and then move 

upward as bt increases. This condition is met through the C coefficient in the model where C must 

be a positive number. 

2.4.4 Effects of the b and C Coefficients on the Constant Ao Lines 

The b&C approach starts from the fact that the purpose of KUC is to correlate the three fabric 

properties: , bt, and Ao. The simplest form of an equation for a constant Ao line that involves all 

three solar optical properties is: 

bt = Ao(1 + ) (2.8) 

Equation (2.8) is one particular form of the b&C model (i.e., C = 0 and b = -1). This equation 

produces straight constant Ao lines where Ao is the y-intercept (YI) as well as the slope (S) of its 

own line. Equation (2.8) satisfies model requirements (i) and (ii), but not (iii). To meet model 

requirement (iii) without affecting requirements (i) and (ii), the C coefficient is needed. 

Introduction of the b coefficient does not invalidate any of the model requirements either. Instead 

the b coefficient comes with two effects for manipulating the constant Ao lines: 1) change in initial 

S and 2) the curvature effect (or change in ROCS). In other words, varying the b coefficient will 

rotate all lines upward or downward around their YI (first effect) and force the line to curve upward 

or downward (second effect). Based on the value of b, intensities of these two effects vary. 
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        (a) b = -1.00, C = 0.00                (b) b = -0.50, C = 0.00                (c) b = -0.25, C = 0.00 

 

 
        (d) b = -1.00, C = 0.05                (e) b = -0.50, C = 0.05                (f) b = -0.25, C = 0.05 

 

 
        (g) b = -1.00, C = 0.20                (h) b = -0.50, C = 0.20                (i) b = -0.25, C = 0.20 

 

Note: Red Line – Ao = 0. Solid Lines – Ao <= 0.10. Dashed Lines – Ao >= 0.20 

 

 

Figure 2.12: Effect of b and C coefficients on openness lines  
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To put the effects of b and C into perspective, b is set to -1.00, -0.50, and -0.25 so that Equation 

(2.5) can be easily expanded and compared as shown in Table 2.4. Then set C = 0.00, 0.05, and 

0.20. So there are in total 9 sets of b and C values. For each combination, the resulting constant Ao 

lines have been shown in Figure 2.12, which will be used to aid the following discussions. 

 

Table 2.4: Equation (2.5) expanded with (a) b = -1.00, (b) b = -0.50, and (c) b = -0.25 

bt = (Ao + C)(1 + )−1/b    Equation (2.5) is included here for reference. 

b = bt = Equation 

-1.00 (C) 2 + (1Ao + C) + Ao (a) 

-0.50 C3 + (1Ao + 2C) 2 + (2Ao + C) + Ao (b) 

-0.25 C5 + (Ao + 4C)4 + (4Ao + 6C)3 + (6Ao + 4C) 2 + (4Ao + C) + Ao (c) 

 

Strength of b Coefficient with  

If b = -1 (or -1/b = 1) and C is a non-zero positive number, the highest exponent applied to  is 2 

(see Equation (a) in Table 2.4). As b increases toward zero, the highest exponent applied to  also 

increases and will be greater than 2 (see Equations (b) and (c) in Table 2.4). Therefore, the upward 

curvature of bt increases with . Recall that low constant Ao lines cover a wider range of . 

Therefore, considering the  terms, the strength of b on the upward curvature is relatively strong 

for low Ao lines, but only at higher values of . 

Strength of b Coefficient with Ao 

In addition to higher exponential terms with  terms, Equations (a), (b) and (c) in Table 2.4 also 

show that the upward curvature depends strongly on Ao. So, considering the Ao terms, b has a 

much stronger effect for high Ao lines than for low Ao lines, regardless of . 
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Therefore, the b coefficient has a strong effect both at high Ao areas due to high initial S and at 

high  areas of the low Ao lines due to higher ROCS. See a set of constant C in Figure 2.12 (e.g., 

Figure 2.12 (a), (b), and (c)) for illustration of these effects. 

Strength of C Coefficient with  

Looking at the terms in the equations above, C’s effect on bt and, therefore, on the constant Ao 

lines is strongly linked to . At high Ao, the limiting  is low, and therefore, the effect of C is 

weak. At low Ao, the effect of C is also weak in the low  region, but strong in the high  area 

(i.e., near the bottom right corner of the KUC). So C has a more localized effect on the constant 

Ao lines than b does. See a set of constant b in Figure 2.12 (e.g., (c), (f), and (i)) for illustration of 

the effect. 

In fact, the C coefficient has been introduced for the Ao = 0 line where C has the strongest 

influence. Without the C term (i.e., C = 0), the model would still work except for the Ao = 0 cases. 

If C is set to zero, the zero openness line becomes a horizontal line overlapping the x-axis (see red 

lines in Figure 2.12 (a), (b), and (c)). In other words, a model with C = 0 predicts that bd = 0 (i.e., 

no scattered component) when Ao = 0. So C must be greater than zero. 

In summary, the C coefficient has a strong localized effect in the high- (low-Ao) region. The b 

coefficient has a strong effect in the high Ao (low-) region and a moderate effect in the high- 

(low-Ao) region. 
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2.4.5 Determining b and C 

The simplest form of a constant Ao line is a straight line starting at a point (0, Ao) on the left edge 

of the KUC and passing through the fabric’s data point (, bt). Slope, or S, of a straight constant 

Ao line is defined as 

S = (bt – Ao)/ = bd/ (2.9) 

Based on the straight line assumption and the measured data presented in Section 2.3, straight 

constant Ao lines have been shown in Figure 2.13. These lines suggest that, on average, S increases 

with Ao, especially for the high Ao fabrics. This trend is also depicted in Figure 2.14.  

 

 

Figure 2.13: Straight constant Ao lines showing low slopes for low Ao fabrics and high 

slopes for high Ao fabrics 
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Figure 2.14: Slope based on (2.9 and measured fabric properties 

 

The average S increases with Ao is an important trend as it suggests that the constant Ao lines 

should fan out (similar to as shown in Figure 2.13). Comparing Figure 2.13 to Figure 2.12 (a), it 

can be observed that Equation (2.8) (the most basic form of b&C model with b = -1 and C = 0) 

clearly under-predicts S (or over-predicts Ao). 

Using the b&C model and measured fabric data, b can be calculated based on a given C. Figure 

2.15 shows the calculated b versus Ao for all fabrics based on C = 0.0, C = 0.1 and C = 0.2. Recall 

that, although both b and C can influence the constant Ao lines, C’s effect is local to the low-Ao 

and high- area. This localized effect can be observed by monitoring the shift of the calculated b 

in Figure 2.15. As C increases, the calculated b decreases (i.e., downward shift) to various extents. 

For high Ao fabrics, the shift in b is insignificant (i.e., black ο for C = 0.0, red ∆ for C = 0.1, and 

blue □ for C = 0.2 shown in Figure 2.15 stay very closely together). Then, the shift in b increases 

as Ao decreases and as  increases.  

Slope = 8.7979Ao
2 + 0.1205Ao + 0.5139

0.0

1.0

2.0

3.0

4.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

S
lo

p
e

Ao



 

54 

 

 

Figure 2.15: Calculated b based on C = 0.0, 0.1, and 0.2 versus Ao 

 

Figure 2.14 shows that S should increase with Ao. Similarly, in order to have fan-out constant Ao 

lines, b also must increase (or at least stay constant) with Ao. As shown in Figure 2.15, b calculated 

with C = 0.0 and C = 0.1 show b decreasing for Ao < 0.2. Note that, when C is equal to 0.2, S in 

Figure 2.14 and b in Figure 2.15 both have a similar correlation with Ao. Both (averaged) S and b 

increase with Ao. 

In fact, using the polynomial curve fitting for the calculated b, C must be > 0.18 (based on the 

current set of fabrics) so that calculated b would increase with Ao. On the other hand, C should be 

< 0.25 to maintain a reasonable downward shift in calculated b. For 0.18 < C < 0.25, b can be 

assumed, and is proposed, to be a linear function of Ao (i.e., the curve fitting based on C = 0.2 

shown in Figure 2.15 is virtually linear). Then, varying C (between 0.18 and 0.25) results in various 
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downward shift of b, and therefore, modifies the proposed linear function. The adjustment in the 

linear function does not significantly affect the overall result as it could be an improvement for a 

particular group of fabrics (e.g., high or low Ao) but a setback for another. So C should be chosen 

not only to optimize the overall result but also to retain the balance among all fabrics. 

Based on the current set of fabric data and on the above discussion, C is proposed to be 0.22, and 

the resulting linear function is 

b = 0.7951 × Ao − 0.6421 (2.10) 

Based on the proposed b and C, the zero openness line is plotted and compared with fabrics with 

zero openness (Figure 2.16). By visual inspection, the Ao = 0 line passes through and follows the 

trend of Ao = 0 fabric data. Therefore, the proposed b&C model produces an excellent Ao = 0 line 

as well. Figure 2.17 displays the constant Ao lines (up to Ao = 0.6) based on the proposed values 

of b and C. 

 

Figure 2.16: Fabrics with Ao = 0 and the Ao = 0 line. 
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Figure 2.17: KUC based on the proposed b&C model 

 

2.4.6 A Simplified KUC – The Slope Approach 

Recall that Equation (2.9) defines slope (S) of a data point and Figure 2.14 plots S versus Ao. 

Having S as a function of Ao only (i.e., the dashed line shown in Figure 2.14), Equation (2.9) 

becomes an equation that relates the three solar optical properties. As shown in Figure 2.14,  

S =  8.7979 × Ao
2 + 0.1205 × Ao + 0.5139 (2.11) 
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Keeping Ao constant, Equation (2.9) produces straight constant Ao lines with the y-intercept (YI) 

being equal to Ao and the slope (S) being calculated as a function of Ao (i.e., Equation (2.11)). In 

other words, Equations (2.9) and (2.11) provide a simplified KUC with straight lines (shown as 

solid lines in Figure 2.18). Note that the slope approach meets all the model requirements discussed 

in Section 2.4.3. If necessary, the slope of Ao = 0 line can be adjusted to, for example, evenly 

divide the zero openness fabric data by forcing the intercept (slope) to the required value. 

 

 

Figure 2.18: Comparison of KUC using the b&C model and simplified slope approach 
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2.4.7 Results 

So far, plotting data points on the KUC has been done manually (e.g., Figure 2.3) and reading 

fabric properties from the KUC visually. In order to compare the b&C model to the original KUC, 

the original KUC has been reproduced in a methodical way so that plotting of data points can be 

automated. In other words, the original KUC has been reformulated mathematically. And given 

any two of the three solar optical properties (bt, bt, and Ao), the third unknown property can be 

estimated with this new formulation. Appendix B: Mathematical Formulation of KUC layouts the 

procedures used to automate the plotting on the KUC. Results presented in this section were 

produced based on this formulation. 

Figure 2.19 compares the results of the original KUC (shown on the left) to that of the refined 

KUC based on the b&C approach (right) for the open (top), semi-open (middle), and closed 

(bottom) fabrics. The original KUC, as discussed in Section 2.2.4, always over-predicts openness 

as each triangle hypotenuse faces the bottom-right. With the improved KUC, in general, the b&C 

model produces smaller triangles – some facing up and some facing down. The comparison shows 

that bias has been greatly reduced, and accuracy improved. 

Table 2.5 shows the results of Ao predictions using the refined KUCs (slope approach and b&C 

model) and compares them to those predicted using the original KUC. The differences between 

measurements and predictions were averaged (AVG). Standard deviation (STD) was also 

presented to quantify the scattering of the data. Root-mean-square (RMS) is defined as (AVG2 + 

STD2)0.5. Results are presented for all fabrics as a group as well as for various Ao ranges. 
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Overall, comparing the results of the original KUC to that of b&C model, the bias (AVG) has been 

greatly reduced from 0.082 to 0.014. STD has also been lowered from 0.061 to 0.041. 

Consequently, the improved KUC results in a much lower RMS (0.102 vs. 0.043). 

To see how the improved KUC performs in various Ao ranges, the results are grouped by Ao into 

eight ranges of Ao as shown in Table 2.5. As expected, the original KUC over-predicts Ao in all 

ranges, and the over-prediction generally increases with Ao. For the b&C model, the AVGs are 

always within a few percent for all ranges (worst case for AVG is 0.034 for the 0.05 > Ao > 0.02 

group). Furthermore, there is a fairly consistent improvement in STD for all groups except for the 

Ao > 0.4 group. Note that, however, there are only three fabrics in the Ao > 0.4 group. 

Comparison of the slope approach and the b&C model showed marginal difference. Considering 

the variety of fabrics, it is reasonable to conclude that these two methods perform equally well. 

To summarize, the improved KUC largely eliminated the bias (AVG) of the original KUC as well 

as consistently gave lower uncertainty (STD). It would be very difficult, if not impossible, to 

eliminate this uncertainty due to the complexity and variety of fabrics. Therefore, the improvement 

in the overall results comes mainly from the reduction in bias (improved precision) and to a lesser 

extent from the improved STD (improved accuracy). The improvements are generally more 

significant at higher Ao ranges than at lower Ao ranges. 
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Figure 2.19: Comparison of KUC results – original (left) vs b&C model (right) 
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Table 2.5: Results of difference in Ao predictions using different methods 

No. of 

Data 
Ao Range  

 
Slope b&C Keyes 

       

117 Fabrics All 

AVG  0.010 0.014 0.082 

STD  0.036 0.041 0.061 

RMS  0.037 0.043 0.102 

       

3 Fabrics Ao > 0.4 

AVG  0.009 0.009 0.222 

STD  0.051 0.052 0.033 

RMS  0.052 0.053 0.224 

       

9 Fabrics 0.4 > Ao > 0.3 

AVG  -0.004 0.007 0.182 

STD  0.016 0.017 0.029 

RMS  0.016 0.019 0.185 

       

10 Fabrics 0.3 > Ao > 0.2 

AVG  -0.028 -0.023 0.093 

STD  0.020 0.028 0.033 

RMS  0.035 0.036 0.099 

       

9 Fabrics 0.2 > Ao > 0.1 

AVG  0.025 0.030 0.127 

STD  0.060 0.061 0.092 

RMS  0.065 0.068 0.157 

       

10 Fabrics 0.1 > Ao > 0.05 

AVG  0.018 0.023 0.074 

STD  0.043 0.044 0.066 

RMS  0.047 0.050 0.099 

       

16 Fabrics 0.05 > Ao > 0.02 

AVG  0.019 0.034 0.065 

STD  0.040 0.033 0.046 

RMS  0.044 0.047 0.080 

       

31 Fabrics 0.02 > Ao > 0.003 

AVG  0.017 0.020 0.059 

STD  0.035 0.042 0.040 

RMS  0.038 0.047 0.071 

       

29 Fabrics 0.003 > Ao 

AVG  0.008 0.003 0.054 

STD  0.022 0.033 0.027 

RMS  0.023 0.033 0.061 
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2.5 Classification of Drapery Fabrics 

One major advantage of KUC is the convenience of using eye-observed values for approximation 

of measured values and shading effect. One could estimate the fabric classification by comparison 

to a representative sample, and then look up IAC values for fabrics of that same classification. 

This convenient feature can be maintained by keeping the nine-region classification of drapery 

fabrics (see Table 2.1 and Figure 2.2) and the IAC tables in the ASHRAE handbook. 

Since the openness lines that defined the nine regions have moved, the nine regions need to be 

redefined as well. However, in order to take advantage of the existing IAC tables, the nine regions 

and their representative fabrics should be maintained as much as possible for redefined regions. 

This section discusses and offers a revised nine-region classification (Figure 2.20 and Figure 2.21). 

Recall that Keyes (1967) reconciled the ρy–Ao system with the bt–bt system. The nine-region 

classification was based on the ρy–Ao system (Equation (2.1) described by Keyes). The nine 

regions on the KUC were defined by ρy = 0.25 and 0.50 and by Ao = 0.07, 0.25, and 0.50 as shown 

in Figure 2.2. For the revised chart (Figure 2.20 and Figure 2.21), the regions are defined by the 

constant Ao lines of the b&C model and by the ρy–Ao system (Equation (2.1)). Therefore, based 

on Equation (2.1), the constant ρy lines move accordingly with the constant Ao lines. As shown in 

Figure 2.20 and Figure 2.21, the Ao boundaries are horizontal axis, Ao = 0.07, Ao = 0.20, and Ao = 

0.40 based on the improved KUC. Similarly, ρy = 0.20 and ρy = 0.40 are the constant ρy boundaries 

for Dark/Medium and Medium/Light categories respectively. These boundaries have been chosen 

to retain as much as possible the original regions and to have their representative fabrics remained 

in the same classifications (i.e., classifications of representative fabrics are not affected by the 

boundary changes). 
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Figure 2.20: Representative fabrics of original KUC shown on the improved KUC 

 

On the original KUC, a point near the center of each region is selected to represent typical 

(averaged) fabric properties. These representative points (where all three fabric properties meet) 

on the original KUC would disperse into three points each forming triangles on the improved KUC 

as shown in Figure 2.20. Notice that the triangles are now all facing the opposite direction. This is 

not an issue as any real fabric will be represented as a triangle on both the original and the improved 

KUC. Note that triangles are mostly contained in their classification region. Also, the point for the 

representative sheer fabric is now in the I_M (Open Fabric and Medium Color) category. This is 
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also not an issue because the reported IAC values in the ASHRAE handbook for the sheer and 

I_M categories are either the same or within 0.02 for all typical glazing and shade combinations. 

In fact, this observation reflects the increased accuracy that comes with the redefined regions. 

By comparing the IAC values of the nine regions, one can also observe that IAC values are more 

sensitive to ρy than Ao. Again, the revised classification has been defined so that the existing IAC 

tables can still be used. It has been estimated that the IAC values will remain unchanged for the 

Dark (I_D, II_D, and III_D) categories and Closed-Weave (III_D, III_M, and III_L) categories 

and reduce slightly (less than 0.02) for the I_M, I_L, II_M, and II_L categories. 

 

Figure 2.21: Proposed classification of drapery fabrics 
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2.6 Chapter Summary 

This chapter provides two approaches to relate the three common fabric properties: bt, bt and Ao. 

The slope approach is a quick and easy way to make a KUC when a database of fabric properties 

such as the one presented in Chapter 2.3 is available. Though more complicated than the slope 

approach, the b&C model is very versatile. The b and C coefficients allow users to adjust and 

design their own KUC for a specific set of fabrics. The slope approach gives straight openness 

lines while the b&C model results in curved openness lines. Regardless of the openness line 

profile, these two methods are comparable in relating the solar optical properties of flat fabrics 

based on the current set of fabric properties. 

The improved KUC has largely eliminated the bias and reduced the uncertainty present in the 

original KUC. The improvement comes mainly from the high openness range with some 

improvement in the lower openness ranges. 

Furthermore, the nine-region classification has been redefined based on the improved KUC. The 

boundaries of the nine regions are moved accordingly. However, these regions are redefined in a 

way that does not impact the use of the existing IAC tables. 
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CHAPTER 3                                                                            

CUSTOMIZED KUC BASED ON FABRIC THICKNESS 

 

 

It has been shown that the improved KUC (i.e., b&C model presented in CHAPTER 2) is a 

significant enhancement to the original KUC. Alongside the much improved predictions, as shown 

in Table 2.5, the b&C model provides a functional relationship between any two of the three 

conventional fabric solar-optical properties: bt, bt, and Ao. Compared to reading a chart, this 

functional relationship offers efficient and consistent predictions, which make the following 

analysis and further development more feasible. 

Recall that the b&C model gives constant Ao lines regulated by coefficients b and C. Also, recall 

that Figure 2.15 shows how the b coefficient varies with the C coefficient for all fabrics (Section 

2.4.5). With the C coefficient fixed (e.g., C = 0.22), the b coefficient can be determined based on 

the best fit trend line (e.g., a linear function of Ao). While significant improvement has been 

achieved with this b&C model, further enhancement is possible by, for example, reducing the 

scatter of b along the best fit trend line. 

This chapter presents an enhancement of the b&C model by exploring beyond the conventional 

three solar optical properties that are interrelated on the KUC. The investigation focuses on a 

physical property of fabrics, fabric thickness. The following sections discuss observations that lead 

to the introduction of fabric thickness as the fourth property. Analysis that demonstrate a few 

possible enhancements to the b&C model is offered as well. 
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3.1 An Observation – Results of the b&C Model for Fabric Subsets 

Among the 117 selected fabrics, some of their names share the same label (e.g., Horizon, Open, 

ReflexGab, Singapore, 22111FV or etc.). Fabrics that share the same label are considered a subset 

and have the same physical properties. The only difference is in the color. Note that a subset of 

fabrics can be obtained from any retailer selling a type of fabric that is available in various colors. 

In total, there are twelve subsets among the selected fabrics. The properties were plotted on the 

improved KUC (i.e., the b&C model) to examine how the b&C model performs for each group. 

These plots are shown in part (a) of Figure 3.2 to Figure 3.13. 

For two groups of fabrics, Sheer (Figure 3.4a) and ReflexGab (Figure 3.7a), the b&C model gives 

excellent results, very small triangles that do not face in one particular direction. Then, for each of 

the other groups, the b&C model results produce triangles all facing in the same direction. 

Therefore, observations made from Figure 3.2a to Figure 3.13a indicate that the b&C model may 

be tailored to a particular group of fabrics by shifting the constant Ao lines. When all triangles are 

facing downward, the constant Ao lines can be shifted upward. Similarly, when all triangles are 

facing upward, then downward shift of the constant Ao lines would reduce the bias. Therefore, 

further improvement is possible through customization of the model for fabrics of different color 

but made of the same material and weave. And the customized KUC would give results similar to 

those of Figure 3.4a and Figure 3.7a, smaller triangles, some facing upward and some facing 

downward. 
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3.2 Customized KUC using Direct Adjustment of b Coefficient 

The key task in customizing a KUC for a fabric type is to determine the extent and direction of 

required shift for the constant Ao lines. Using the b&C model, the required shift for a fabric is 

equivalent to the difference between the calculated b coefficient (based on the measured solar-

optical properties of the fabric) and the b coefficient determined using Equation (2.10). In other 

words, Equation (2.10) becomes 

bavg = 0.7951 × Ao − 0.6421 + bdiff,avg (3.1) 

where bdiff,avg is the required shift and the average vertical distance (for a subset) from the linear 

trend line (i.e., Equation (2.10)) shown in Figure 3.1. Applying this direct adjustment of the b 

coefficient the results are shown in Figure 3.2b to Figure 3.13b. Note how the constant Ao lines 

shift with the adjustment of b coefficient in each figure. 

 

Figure 3.1: Location of calculated b coefficients for various fabric subsets 
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The direct adjustment method of customization is easy to do, but the adjustment is exclusive to 

fabrics used for determining the adjustment. Nonetheless, as shown in Figure 3.1, an adjustment 

(shift of constant Ao lines) in the right direction reduces the bias (for a particular subset) and is 

certainly better than no adjustment for most fabric groups. As shown in Figure 3.2b to Figure 

3.13b, this method gives excellent results. Because of its simplicity and effectiveness, the direct 

adjustment is recommended for a group of fabrics that are made of the same material and weave. 
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(a) b&C Model  (b) w/ Direct Adjustment 

Figure 3.2: Results for 22111FV_Wide fabrics (#2, 3) based on (a) the b&C model and (b) 

customized KUC by direct b coefficient adjustment 

 

 

 

(a) (b) 

Figure 3.3: Results for Open fabrics (#13, 68, 77) based on (a) the b&C model and (b) 

customized KUC by direct b coefficient adjustment 
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(a) (b) 

Figure 3.4: Results for Sheer fabrics (#20, 21, 22, 59, 0-1, 0-4, 0-9) based on (a) the b&C 

model and (b) customized KUC by direct b coefficient adjustment 

 

 

 

(a) (b) 

Figure 3.5: Results for S fabrics (#34, 35, 36, 37, 38, 39, 80) based on (a) the b&C model 

and (b) customized KUC by direct b coefficient adjustment 
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(a) (b) 

Figure 3.6: Results for SingaporeChintz (#43, 44, 45) based on (a) the b&C model and (b) 

customized KUC by direct b coefficient adjustment 

 

 

 

(a) (b) 

Figure 3.7: Results for ReflexGab (#12, 24, 47, 48, 49, 85, 0-2, 0-8) based on (a) the b&C 

model and (b) customized KUC by direct b coefficient adjustment 
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(a) (b) 

Figure 3.8: Results for HorizonSuiting (#50, 51) based on (a) the b&C model and (b) 

customized KUC by direct b coefficient adjustment 

 

 

 

(a) (b) 

Figure 3.9: Results for 100PWool (#54, 55, 56) based on (a) the b&C model and (b) 

customized KUC by direct b coefficient adjustment 
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(a) (b) 

Figure 3.10: Results for Soft fabrics (#57, 58, 60) based on (a) the b&C model and (b) 

customized KUC by direct b coefficient adjustment 

 

 

 

(a) (b) 

Figure 3.11: Results for Fashion fabric (#64, 65, 66, 67, 88) based on (a) the b&C model and 

(b) customized KUC by direct b coefficient adjustment 
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(a) (b) 

Figure 3.12: Results for Rough/Burlap (#70, 71, 0-5, 0-6, 0-7) based on (a) the b&C model 

and (b) customized KUC by direct b coefficient adjustment 

 

 

 

(a) (b) 

Figure 3.13: Results for PowerMesh (#86, 92, 93, 94, 95) based on (a) the b&C model and 

(b) customized KUC by direct b coefficient adjustment  
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3.3 Generalized Customization Based on Fabric Thickness 

While the direct adjustment approach (e.g., bdiff,avg in Equation (3.1))  is easy and effective, it is 

also unique and can only be applied to a specific subset of fabrics. This section demonstrates a 

more general approach that can be more widely applied. 

Figure 3.1 shows that calculated b coefficients of a fabric group tend to be concentrated in one 

region of the chart. In addition, fabrics higher on the chart are thinner while the lower ones are 

generally thicker. Based on Equation (2.10) and similar to the bdiff,avg term in Equation (3.1), the 

shift from the model is bdiff for an individual fabric. It can be seen, and has been observed by visual 

inspection, that bdiff is generally linked to fabric thickness, tf. 

3.3.1 bdiff vs tf 

A digital vernier caliper was used for measuring fabric thickness. Once zeroed, fabric thickness, 

tf, was measured by placing each sample between the jaws that are moved together with little 

pressure. These readings were recorded as the unpressed thickness in Appendix C: Measured 

Fabric Thickness and taken as a measure of tf. The observation mentioned above (bdiff vs tf) is 

depicted in Figure 3.14. 

3.3.2 C vs tf 

A similar relationship between C and tf was also sought. For instance, the b coefficient is calculated 

using Equation (2.10) and C coefficient determined as the unknown variable in the b&C model 

(instead of C = 0.22). Figure 3.15 shows the calculated C coefficients versus tf. 
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Figure 3.14: bdiff vs. measured fabric thickness 

 

 

 

Figure 3.15: Calculated C coefficients vs. measured fabric thickness 
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3.3.3 Customized b&C Model 

The more generalized approach is to have the b&C model customized based on the measured fabric 

thickness. Figure 3.14 and Figure 3.15 show that the customization can be done through the b 

coefficient (i.e., bdiff as a function of tf) or the C coefficient (i.e., C as a function of tf), respectively. 

Analysis shows that both customizations give similar and better results for Ao predictions than the 

b&C model. However, only customization through the C coefficient would also give better results 

than the b&C model for  and bt predictions if they were the unknowns. This is also to say that, 

while both customizations work equally well in terms of Ao predictions, customization through the 

C coefficient produces triangles that are not only smaller but also closer to that of a right isosceles 

shape than customization through the b coefficient. 

Furthermore, fabrics with different openness may be considered separately. Figure 3.15 shows that 

fabrics with Ao > 0.2 are mostly clustered below fabrics with Ao < 0.2. And there is no notable 

cluster for fabrics with Ao < 0.2. So there are two equations that govern the C coefficient, as shown 

in Figure 3.15 and in Equations (3.2) and (3.3). 

C = 0.1681 × tf
−0.4649 for Ao < 0.2 

C = 0.0437 × tf
−0.8957 for Ao > 0.2 

(3.2) 

(3.3) 

The general guideline is to use the Ao > 0.2 equation (Equation (3.3)) for the C coefficient when 

one can see and read distinctly, for example, the text of a magazine behind the fabric. Lacking 

such a transparency, otherwise, Equation (3.2) should be used. 

The two-equation customization scheme requires only an easy visual inspection (e.g., the 

transparency test) and a simple measurement of fabric thickness using a vernier caliper. It is an 
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enhancement to the improved KUC, the b&C model, which itself is a significant improvement to 

the original KUC. 

3.3.4 Results of the Two-Equation Customization Scheme 

The two-equation customization scheme is based on the b&C model (Equation (2.5)) where the b 

coefficient remains unchanged (Equation (2.10)), but the C coefficient (instead of being a constant) 

is based on Equations (3.2) and (3.3). 

Figure 3.16 and Figure 3.17 compare the results of the improved KUC and the customized KUC. 

Enhancement offered by the customized KUC is not visually notable in the high Ao range, Ao > 

0.03, shown in Figure 3.16. Results included in Table 3.1 reflect this observation as improvement, 

when compared to the improved KUC, is not consistent for the high Ao range. Yet, there is a 

consistent improvement for all other ranges, below Ao < 0.3, as shown in Table 3.1. As well, this 

consistent improvement can be observed in Figure 3.17. In general, the cluster of triangles shown 

in Figure 3.17 for Ao < 0.3 (from (a) to (b) in the figures) becomes “cleaner” as most triangles 

become smaller. 

3.4 Chapter Summary 

It has been shown that no one standard three-property KUC is able to suit all types of fabrics. This 

chapter sets a starting point in seeking additional fabric properties that may play a role in KUC. 

Although only with limited success, the two-equation customization scheme proves that fabric 

thickness is a possible fourth property. The potential of including other fabric properties should be 

explored. 
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(a) Improved KUC – b&C Model (b) Customized KUC – Two-equation 

Scheme  

Figure 3.16: Comparison of the improved KUC (b&C model) and the customized KUC 

using the two-equation scheme for fabrics with Ao > 0.03 

 

 
(a) Improved KUC – b&C Model (b) Customized KUC – Two-equation 

Scheme  

Figure 3.17: Comparison of the improved KUC (b&C model) and the customized KUC 

using the two-equation scheme) for fabrics with Ao < 0.03 
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Table 3.1: Results of the customized two-equation scheme compared to the original and the 

improved KUC using the b&C model 

No. of 

Data 
Ao Range  

 
Original 

KUC 

Improved KUC 

b&C Model 

Customized KUC 

Two-Equation Scheme 

       

117 

Fabrics 
All 

AVG  0.082 0.014 0.007 

STD  0.061 0.041 0.029 

RMS  0.102 0.043 0.030 

       

3 

Fabrics 
Ao > 0.4 

AVG  0.222 0.009 0.015 

STD  0.033 0.052 0.045 

RMS  0.224 0.053 0.048 

       

9 

Fabrics 
0.4 > Ao > 0.3 

AVG  0.182 0.007 0.002 

STD  0.029 0.017 0.021 

RMS  0.185 0.019 0.021 

       

10 

Fabrics 
0.3 > Ao > 0.2 

AVG  0.093 -0.023 -0.007 

STD  0.033 0.028 0.020 

RMS  0.099 0.036 0.021 

       

9 

Fabrics 
0.2 > Ao > 0.1 

AVG  0.127 0.030 0.017 

STD  0.092 0.061 0.058 

RMS  0.157 0.068 0.061 

       

10 

Fabrics 
0.1 > Ao > 0.05 

AVG  0.074 0.023 -0.002 

STD  0.066 0.044 0.043 

RMS  0.099 0.050 0.044 

       

16 

Fabrics 
0.05 > Ao > 0.02 

AVG  0.065 0.034 0.011 

STD  0.046 0.033 0.029 

RMS  0.080 0.047 0.031 

       

31 

Fabrics 
0.02 > Ao > 0.003 

AVG  0.059 0.020 0.010 

STD  0.040 0.042 0.021 

RMS  0.071 0.047 0.023 

       

29 

Fabrics 
0.003 > Ao 

AVG  0.054 0.003 0.005 

STD  0.027 0.033 0.017 

RMS  0.061 0.033 0.018 
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CHAPTER 4                                                                            

PLEATED DRAPE MODEL 

 

If the solar optical properties of the flat materials used for draperies are known, the apparent solar 

optical properties of the pleated drape can be estimated (Farber et al. 1963, Kotey et al. 2009c). 

Currently the pleated drape ILM assumes rectangular pleating profile and takes the following 

inputs: pleating profile (geometry factors) and flat fabric solar optical properties (material factors). 

Then depending on the incidence angle, the model calculates the effective (individual) layer 

properties for determining SHGC. Furthermore, the effective properties of the pleated drape layer 

are required in the multi-layer analysis. Both Farber and Kotey approximated a drapery layer with 

a series of uniformly arranged rectangular pleats. For draperies, in addition, the current IAC tables 

in the ASHRAE handbook are results of solar thermal analysis using the pleated drape ILM 

developed by Kotey et al. (2009c). Therefore, the established IAC tables are also built based on 

the rectangular pleating profile. Farber et al. (1963) might have attempted to study other pleating 

geometries as they stated “Other configurations, such as sinusoidal, etc., are under study now.” 

However, to the author’s knowledge, the effect of other pleating profiles has not been examined 

and published until now. 

Regardless the accuracy of the model, this model may not represent drapes with other pleating 

profiles (e.g., triangular, sinusoidal, and irregular). As well, the validity of the drapery layer model 

needs to be verified and improved if necessary. 

Using the same methodology of Kotey et al. (2009c), a detailed model to determine the effective 

properties of pleated draperies is developed and presented in this chapter. While the ILM 
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developed by Kotey et al. (2009c) approximates a drape layer as a series of uniformly arranged 

rectangular pleats, the present ILM supposes that the pleats are of triangular shape. This is an 

important step to understand the effects of pleating profiles have on the solar heat gain. The 

following sections summarize the methodology and present the triangular drape layer ILM. 

For any pleating profile (e.g., rectangular or triangular), draperies are generally described by % 

fullness (or folding ratio, Fr). Folding ratio describes the amount of fabric used to cover a specific 

window width. Specifically, Fr is the ratio of fabric width to window width (or pleated drape 

width), and % fullness is defined as 

% fullness = (Fr – 1) x 100% (4.1) 

For example, a curtain that uses the least amount of material to cover the whole window width is 

a flat fabric. Such drape is said to have Fr = 1.0 and 0% fullness. Any fullness would be the extra 

fabric used across the width. Fullness not only provides a drape with a richer look but also provides 

more light and sound absorption. A drape that uses twice as much of a flat fabric to cover the same 

width would have 100% fullness and Fr = 2.0. 

4.1 Triangular Pleated Drape Model 

As the name suggests, the triangular pleated drape model consists of a series of triangular pleats. 

Figure 4.1 illustrates the configuration of the model, and Figure 4.2 shows a part of the cross-

section. As shown in Figure 4.2, the geometry can be described by the pleat width (W) and pleat 

spacing (S). So, for triangular pleating profile, Fr = 2W/S. 

4.1.1 Model Setup and Geometry 

Consider beam radiation incident on a drape layer of triangular pleats (Figure 4.1). The plane of 

the drape layer is assumed parallel to window. The angle between the incident beam radiation and 
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the plane of drape layer is defined as incident angle, θ. For the purpose of comparison with the 

experimental study, vertical profile angle (or solar altitude) has been set to zero, ΩV = 0. Therefore, 

horizontal profile angle (or surface solar azimuth) is equal to the incident angle, ΩH = θ. 

 

Figure 4.1: Configuration of drapery model showing solar angles 

 

 

 

 

 

 

 

Figure 4.2: Cross-section of triangular pleats (plan view from top) 
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Note that the pleats are recurring so one pleat can represent the entire geometry. Figure 4.3 depicts 

a representative enclosure (plan view from top) that contains two pleats where sections ab and cd 

are the same surface in the model. Similarly, section ab is equivalent to section cd in the model. 

 

 

Figure 4.3: Triangular pleated drape model geometry setup 

 

Beam radiation is coming from the front (left) side of the layer at an incidence angle, θ. This beam 

radiation goes through either direct transmission to the back (right) side of the layer or various 

interactions with the fabric. The effective beam-beam and beam-diffuse solar optical properties of 
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the pleated drape layer are determined by tracking all radiation components. Angle dependent solar 

properties of the fabric and the effect of beam and diffuse components, in both reflection and 

transmission, are included in the analysis. 

There are front and back sides of the drape layer. As shown in Figure 4.3, the drape is folded back 

and forth and pleated at an angle, α. Every pleat takes the shape of an isosceles triangle with one 

side being overlapped with a preceding pleat. For the purpose of model analysis/setup, the side 

with a positive slope is defined as upward-sloped while the other side is downward-sloped (based 

on the plan view shown in Figure 4.3). Therefore, the drape layer alternates between upward-

sloped and downward-sloped surfaces. And, as shown in Figure 4.3, the representative enclosure 

includes two fictitious surfaces, the front opening (ac) and the back opening (bd), and the following 

four surfaces: Upward-Sloped Front (USF), Downward-Sloped Front (DSF), Upward-Sloped 

Back (USB), and Downward-Sloped Back (DSB). Table 4.1 summarizes these surfaces. 

 

Table 4.1: List of model enclosure surfaces 

 
Surface Description Acronym 

Front Side 
ac Front Fictitious Surface FFS 

ab Downward-Sloped Front DSF 

bc Upward-Sloped Front USF 

Back Side 
bd Back Fictitious Surface BFS 

bc Upward-Sloped Back USB 

cd Downward-Sloped Back DSB 
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The pleat angle, α, can be calculated from folding ratio (based on W and S) and vice versa. For 

example, Fr = 2.0 means that α = 60°. The incident angle and pleat angle, θ and α respectively, 

then define the local incidence (wall-solar azimuth) angle on pleat surfaces. Using the models 

developed by Kotey et. al. (2009a), the local incidence angle, γ, determines the off-normal solar 

optical properties of flat fabric. It can be shown that 

γUSF = |
π

2
− θ −

α

2
| 

(4.2) 

γDSF = |
π

2
+ θ −

α

2
| 

(4.3) 

γDSB = |
π

2
− θ +

α

2
| 

(4.4) 

 

4.1.2 Solar Optical Properties of Flat Fabrics 

The solar optical properties that are pertaining to beam or diffuse radiation incident on a surface 

include beam-beam, beam-diffuse, and diffuse-diffuse components of transmittance and 

reflectance. For radiation incident on the front surface of a fabric and following the same 

convention used by Kotey et al. (2009c), they are: 

 f,bb
m  the front beam-beam transmittance 

 f,bd
m  the front beam-diffuse transmittance 

 f,bt
m  the front beam-total transmittance 

 f,dd
m  the front diffuse-diffuse transmittance 

 
f,bb
m   the front beam-beam reflectance 

 
f,bd
m  the front beam-diffuse reflectance 

 
f,bt
m  the front beam-total reflectance 

 
f,dd
m  the front diffuse-diffuse reflectance 
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where the superscript m is used to designate a fabric material property as opposed to the 

corresponding effective solar optical property of the pleated drape. The beam-total component is 

the sum of the beam-beam and beam-diffuse components. Note that, as discussed in Section 2.3.2, 


f,bb
m  is assumed equal to zero. Henceforth, f,bt

m = f,bb
m + f,bd

m  and 
f,bt
m = 

f,bd
m . Similarly, for 

radiation incident on the back surface of a fabric, the corresponding properties are designated by 

replacing subscript f with subscript b. 

4.1.3 Simplification and the Three Model Cases 

Beam radiation incident on a drape layer is transmitted uninterrupted through fabric openings or, 

after multiple reflections, emerges in the forward direction as beam-diffuse transmission and in 

the backward direction as beam-diffuse reflection. Theoretically, at any angle of incidence, beam-

beam transmissions through multiple fabric layers can take place before the beam radiation reach 

the other side of fabric as f,bb. Every transmission itself reduces the strength of beam radiation. 

Furthermore, multiple transmissions of beam radiation will entail incidence on alternating surfaces 

(i.e., between upward-sloped and downward-sloped surfaces), and one of the two (or both) 

incidence angles is likely to be high. Due to multiple transmissions and/or high incidence angles, 

fabric beam-beam transmittance is small, and therefore, the overall beam transmission is very 

small. Thus, as explained by Kotey (2009), it is reasonable to consider beam-beam transmission 

only when beam radiation is incident on the fabric for the first time. Subsequent transmission of 

incident beam radiation is deemed diffuse. 

Based on the reasoning discussed above, the model breaks down into three cases depending on the 

angle of incidence, as depicted in Figure 4.3. For all three cases (Figure 4.4 (a) and (b), Figure 4.5 

(a) and (b), and Figure 4.6 (a) and (b)), all or part of the Upward-Sloped Front (USF) surface 

(highlighted yellow by surface cf in the figures) is illuminated directly by incident beam radiation. 
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For Case 1, Figure 4.4 (a), the directly illuminated portion, cf, is less than half of the pleated drape 

width (or 0 < cf  W/2). In this case, any transmitted beam radiation will hit a portion of the DSB 

surface (highlighted orange by surface cg in Figure 4.4 (a)). Then subsequent transmission of beam 

radiation through the DSB surface is considered diffuse. Case 1 condition continues to hold until 

the surface cg covers the entire DSB (i.e., until cg = cd). 

 

 

                                             (a)                                                                                  (b) 

 

Figure 4.4: Case 1 model for effective solar transmittance of pleated drape (a) beam-beam 

and (b) beam-diffuse 
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For Case 2, Figure 4.5 (a), the directly illuminated portion of cf is between W/2 and W (or W/2 < 

cf < W). In this case, a portion of the transmitted beam radiation hits the whole DSB surface 

(highlighted orange by surface cd in Figure 4.5 (a)), and subsequent transmission through DSB is 

diffuse. The rest hits the fictitious surface and reaches interior as f,bb without further interference. 

 

 

 

 

                                             (a)                                                                                  (b) 

 

Figure 4.5: Case 2 model for effective solar transmittance of pleated drape (a) beam-beam 

and (b) beam-diffuse 
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For Case 3, Figure 4.6 (a), both of the front surfaces, USF (bc) and DSF (ab), are directly 

illuminated. In this case, all directly transmitted beam radiation hits fictitious surfaces and reaches 

interior as f,bb after the first transmission without any interference. 

 

 

 

                                             (a)                                                                                  (b) 

 

Figure 4.6: Case 3 model for effective solar transmittance of pleated drape (a) beam-beam 

and (b) beam-diffuse 
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4.1.4 Effective Beam-Beam Solar Optical Properties of Pleated Drapes 

As discussed in Section 2.3.2, fabrics do not exhibit specular reflection. Therefore, the front beam-

beam reflectance of the pleated drape, f,bb, is also zero. 

The front beam-beam transmittance, f,bb, are determined based on the three model cases. f,bb 

depends on the amount of direct transmission. For Case 1, all radiation that reaches interior must 

go through at least three fabric layers, and therefore, f,bb is zero. As the incidence angle reduces 

toward Case 2, a portion of beam radiation goes through only one transmission before reaching 

the other side of the drape layer. When and after reaching Case 3, all transmitted beam radiation 

experiences only one transmission. 

f,bb can be calculated based on the fabric property and the portion of beam radiation experiencing 

only one transmission. For Case 2, f,bb is the proportional to the ratio of S1,P to SP as shown in 

Figure 4.5 (a). It is calculated by multiplying the ratio, (S1,P / SP), to the off-normal (at the local 

incidence angle of γUSF) beam-beam transmittance of the fabric, f,bb
m (γUSF). For Case 3, f,bb 

comes from transmissions of both USF and DSF surfaces. Beam-beam transmittance from DSF 

and USF encompass the distance, S3,P and S4,P respectively, as shown in Figure 4.6 (a). Table 4.2 

summarizes the resulting effective f,bb of the pleated drape model for all three cases. 
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Table 4.2: Effective beam-beam properties of pleated drape for all model cases 

Case 𝐟,𝐛𝐛 
𝐟,𝐛𝐛

 

1 f,bb = 0 


f,bb

= 0 2 f,bb =  
S1,p  ∙  f,bb

m (γUSF)

Sp
 

3 f,bb =  
S3,p  ∙  f,bb

m (γDSF)  +  S4,p  ∙  f,bb
m (γUSF)

Sp
 

 

4.1.5 Effective Beam-Diffuse Solar Optical Properties of Pleated Drapes 

Incident beam radiation can filter through interstices of a fabric or interact with yarn. Beam 

radiation intercepted by yarn then transforms into transmitted or reflected diffuse radiations that 

can be traced as shown in Figure 4.4 (b), Figure 4.5 (b), and Figure 4.6 (b), each for the three 

model cases. For each case, a number of surfaces can be realized. 

On the downward-sloped surface, any beam radiation would arrive either at the backside surface 

(DSB) in Cases 1 and 2 or at the front side surface (DSF) in Case 3. The section exposed to beam 

radiation at the backside is Surface 1 (section ae). Surface 2 is the section on the backside surface 

that is not being irradiated by any beam radiation. Surface 1 is present in Model Cases 1 and 2 

while surface 2 is only present in Model Case 1. In Case 3, the incident beam radiation arrives at 

and covers the entire DSF surface. In this case, the entire DSF is represented by surface 7 as shown 

in Figure 4.6 (b). 

Similarly, on the upward-sloped surface, there are Surface 3 (present in Model Cases 1 and 2) and 

Surface 4 (present in all three cases). The front and back openings are fictitious surfaces. They are, 
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respectively, surface 5 (section ac) and surface 6 (section bd); both are present in all three cases. 

Table 4.3 summarizes the applicable surfaces and their locations for each case. 

 

Table 4.3: Applicable surfaces for each model case 

Surface Model Cases 

Number Section Location 1 2 3 

1 ae Downward-Sloped    

2 be Downward-Sloped    

3 bf Upward-Sloped    

4 cf Upward-Sloped    

5 ac FFS    

6 bd BFS    

7 ab Downward-Sloped    

 

 

The analysis for determining the beam-diffuse solar optical properties involves radiant interactions 

among surfaces. Respectively, radiosity and irradiance are the radiant fluxes leaving and arriving 

at a surface per unit area. Note that a fabric has two sides. Therefore, for example, radiosity of a 

back surface i, Jib, includes reflected irradiance, 
b,dd
m Gib, on the same (back) side of the surface i 

(i = 1..7) and transmitted irradiance, f,dd
m Gif, on the other (front) side of that surface. In general, 

Equations (4.5) and (4.6) show the radiosity equations for a surface on the back and front of a 

fabric, respectively. 

Jib = 
b,dd
m Gib + f,dd

m Gif + Zib (4.5) 

Jif = 
f,dd
m Gif + b,dd

m Gib + Zif (4.6) 

 



 

95 

 

Surfaces that are illuminated by beam radiation generate a diffuse source term, Zib or Zif (where i 

= 1, 4, and 7). Otherwise, the source term is zero. Furthermore, J6b = 0 and J5f = 0 for the two 

fictitious surfaces (ac and bd). For a given incident beam flux, Ibeam, Table 4.4 lists the radiosity 

equations (Equations (4.7) to (4.18)) for all surfaces in this model. 

Table 4.4: Summary of radiosity equations for all model surfaces 

Radiosity Equations 

B
ac

k
 S

u
rf

ac
es

 

J1b = 
b,dd
m G1b + f,dd

m G1f + τf,bb
m (θUSF)

b,bt
m (θDSB)

S

ae
Ibeam (4.7) 

J2b = 
b,dd
m G2b + f,dd

m G2f (4.8) 

J3b = 
b,dd
m G3b + f,dd

m G3f (4.9) 

J4b = 
b,dd
m G4b + f,dd

m G4f + f,bd
m (θUSF)

S

cf
Ibeam (4.10) 

J6b = 0 (4.11) 

J7b = 
b,dd
m G7b + f,dd

m G7f + f,bd
m (θDSF)

ah

W
Ibeam (4.12) 

F
ro

n
t 

S
u
rf

ac
es

 

J1f = 
f,dd
m G1f + b,dd

m G1b + f,bb
m (θUSF)b,bd

m (θDSD)
S

ae
Ibeam (4.13) 

J2f = 
f,dd
m G2f + b,dd

m G2b (4.14) 

J3f = 
f,dd
m G3f + b,dd

m G3b (4.15) 

J4f = 
f,dd
m G4f + b,dd

m G4b + 
f,bt
m (θUSF)

S

cf
Ibeam (4.16) 

J5f = 0 (4.17) 

J7f = 
f,dd
m G7f + b,dd

m G7b + 
f,bt
m (θDSF)

ah

W
Ibeam (4.18) 
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The diffuse irradiance on each surface of model enclosure is coming from the radiosity of all 

surfaces in the model. Equations (4.19) and (4.20) show the diffuse irradiance equation for the 

back and front surfaces. Table 4.5 shows the full set of irradiance equations. 

Gib = ∑ Fibjb

jb

Jjb 

 

(4.19) 

Gif = ∑ Fifjf

jf

Jjf 

 

(4.20) 

 

Table 4.5: Summary of irradiance equations for all model surfaces 

Irradiance Equations 

B
a
ck

 S
u

rf
a
ce

s 

G1b = F1b1bJ1b + F1b2bJ2b + F1b3bJ3b + F1b4bJ4b + F1b6bJ6b + F1b7bJ7b (4.21) 

G2b = F2b1bJ1b + F2b2bJ2b + F2b3bJ3b + F2b4bJ4b + F2b6bJ6b + F2b7bJ7b (4.22) 

G3b = F3b1bJ1b + F3b2bJ2b + F3b3bJ3b + F3b4bJ4b + F3b6bJ6b + F3b7bJ7b (4.23) 

G4b = F4b1bJ1b + F4b2bJ2b + F4b3bJ3b + F4b4bJ4b + F4b6bJ6b + F4b7bJ7b (4.24) 

G6b = F6b1bJ1b + F6b2bJ2b + F6b3bJ3b + F6b4bJ4b + F6b6bJ6b + F6b7bJ7b (4.25) 

G7b = F7b1bJ1b + F7b2bJ2b + F7b3bJ3b + F7b4bJ4b + F7b6bJ6b + F7b7bJ7b (4.26) 

F
ro

n
t 

S
u

rf
a
ce

s 

G1f = F1f1fJ1f + F1f2fJ2f + F1f3fJ3f + F1f4fJ4f + F1f5fJ5f + F1f7fJ7f (4.27) 

G2f = F2f1fJ1f + F2f2fJ2f + F2f3fJ3f + F2f4fJ4f + F2f5fJ5f + F2f7fJ7f (4.28) 

G3f = F3f1fJ1f + F3f2fJ2f + F3f3fJ3f + F3f4fJ4f + F3f5fJ5f + F3f7fJ7f (4.29) 

G4f = F4f1fJ1f + F4f2fJ2f + F4f3fJ3f + F4f4fJ4f + F4f5fJ5f + F4f7fJ7f (4.30) 

G5f = F5f1fJ1f + F5f2fJ2f + F5f3fJ3f + F5f4fJ4f + F5f5fJ5f + F5f7fJ7f (4.31) 

G7f = F7f1fJ1f + F7f2fJ2f + F7f3fJ3f + F7f4fJ4f + F7f5fJ5f + F7f7fJ7f (4.32) 
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The view factor, Fij, which can be determined by Hottel’s crossed string method, is the fraction of 

diffuse radiation leaving surface i that is seen by surface j. Subscripts i and j are applied to the 

given number of surfaces in each model case. Since a surface cannot see itself, Fii = 0. Also, 

surfaces on the same plane cannot see each other. So, for example, F1f2f = 0. 

From the equations of J (Equations (4.7) to (4.18)) and G (Equations (4.21) to (4.32)) along with 

the diffuse source terms and the view factors calculated, a complete radiant analysis can be 

performed for beam-diffuse radiation. The J-G equation set is linear and can be solved by matrix 

reduction for a given Ibeam. See Table 4.6 for the complete matrix, which applies to all three cases. 

The right-most column is the right-hand side (RHS) of the equations showing the diffuse source 

terms. By setting Ibeam to unity and solving for the radiosities, the beam-diffuse transmittance and 

reflectance for the pleated layer are simply G6b and G5f, respectively. 

f,bd = G6b (4.33) 


f,bd

= G5f (4.34) 

 

Table 4.6 presents the J-G equation set in a matrix form.  

The effective properties of the triangularly pleated drape layer, f,bt and f,bt, are results (sum) of 

the effective beam-beam properties (Table 4.2) and effective beam-diffuse properties (Equations 

(4.33) and (4.34)). 

4.2 Chapter Summary 

A triangular pleated drape model was built and coded. The model code is included in Appendix 

D: Triangular Pleated Drape ILM. Results of the pleated drape models were compared to each 

other and to measurements. All results are presented in CHAPTER 6. 
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Table 4.6: Matrix of the J-G equation set 

Left Hand Side 

Right Hand Side 

J1b J2b J3b J4b J6b J7b J1f J2f J3f J4f J5f J7f 

-1 - ρb,dd
m F1b3b ρb,dd

m F1b4b - - - - τf,dd
m F1f3f τf,dd

m F1f4f - - −τf,bb
m (θ/)ρb,bt

m (θ\)
S

ae
Ibeam 

- -1 ρb,dd
m F2b3b ρb,dd

m F2b4b - - - - τf,dd
m F2f3f τf,dd

m F2f4f - - - 

ρb,dd
m F3b1b ρb,dd

m F3b2b -1 - - - τf,dd
m F3f1f τf,dd

m F3f2f - - - - - 

ρb,dd
m F4b1b ρb,dd

m F4b2b - -1 - ρb,dd
m F4b7b τf,dd

m F4f1f τf,dd
m F4f2f - - - τf,dd

m F4f7f −τf,bd
m (θ/)

S

cf
Ibeam 

- - - - -1 - - - - - - - - 

- - - ρb,dd
m F7b4b - -1 - - - τf,dd

m F7f4f - - −τf,bd
m (θ\)

ah

W
Ibeam 

- - τb,dd
m F1b3b τb,dd

m F1b4b - - -1 - ρb,dd
m F1f3f ρb,dd

m F1f4f - - −τf,bb
m (θ/)τb,bd

m (θ\)
S

ae
Ibeam 

- - τb,dd
m F2b3b τb,dd

m F2b4b - - - -1 ρb,dd
m F2f3f ρb,dd

m F2f4f - - - 

τb,dd
m F3b1b τb,dd

m F3b2b - - - - ρf,dd
m F3f1f ρf,dd

m F3f2f -1 - - - - 

τb,dd
m F4b1b τb,dd

m F4b2b - - - τb,dd
m F4b7b ρf,dd

m F4f1f ρf,dd
m F4f2f - -1 - ρf,dd

m F4f7f −ρf,bt
m (θ/)

S

cf
Ibeam 

- - - - - - - - - - -1 - - 

- - - τb,dd
m F7b4b - - - - - ρf,dd

m F7f4f - -1 −ρf,bt
m (θ\)

ah

W
Ibeam 
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CHAPTER 5                                                                            

PLEATED DRAPE LAYER TRANSMITTANCE 

MEASUREMENTS  

 

In order to further develop and validate solar optical model of pleated drape layers, an experiment 

has been designed to study draperies’ solar transmittance. A standard test method for solar 

transmittance of materials using an integrating sphere has been develop by the American Society 

for Testing and Materials and outlined in ASTM E 903 (ASTM 1996). The flux measured by the 

photo-detector is proportional to the incident flux entering the integrating sphere. By placing a 

sample in front of the transmittance (inlet) port, the detector measures the radiant flux transmitted 

through the sample and entered into the integrating sphere. Then the ratio of the radiant energy 

transmitted by the sample (Sample Reading) to the energy incident upon the sample (Reference 

Reading) is equal to sample transmittance. 

While the standard test method applies to flat and uniform materials, additional considerations are 

required for measuring spectral optical properties of thick, scattering, and spatially non-uniform 

samples such as the pleated drape samples. Milburn (1994) developed the optical-property 

measurement process for thick, scattering, and spatially non-uniform samples using a custom-

designed broad-area illumination integrating sphere (BAI-IS) system. Halder et al. (2007) 

upgraded the BAI-IS system by replacing many of the measuring, control and data processing 

devices. This chapter provides detail discussions on the transmittance tests of pleated drape layers 

and the setup and calibration of the BAI-IS system. 
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5.1 Test Matrix 

Transmittance measurements using the Broad Area Illumination Integrating Sphere (BAI-IS) 

system have been carried out for validating (both the triangular and rectangular) pleated drape 

models and for further model development. Measurements are performed to examine the shading 

effect of different pleat profiles and drape fullness. These tests cover off-normal incidence angles 

up to 60° (i.e., ΩH = θ = up to 60°). 

The pleated drape layers are constructed with selected fabrics with various folding ratios (Fr) and 

pleating profiles (R – Rectangular and T – Triangular). Angle of incidence ranges from 0° to 60° 

with a 10° increment. Therefore, the experiment covers the following test matrix. 

 Folding Ratios (Fr): 1.0 (flat fabric), 1.5, 2.0, 2.5 

 Pleating Profiles: R – Rectangular and T – Triangular 

 Fabrics: 20 selected fabrics 

 Incidence Angles: 0°, 10°, 20°, ... , 60° 

5.1.1 Folding Ratios 

Most drapes have folding ratios (Fr) between 1.5 and 2.5. Drapes with Fr = 3.0 or above are not 

common. In addition, increasing Fr reduces the transmittance of the drape layer, especially at high 

angle of incidence. Therefore, tests with high Fr (3.0 or higher) may be difficult to do for some 

fabrics due to weak signal strength. 

5.1.2 Pleating Profiles 

There are many pleating styles available for draperies. It would be a daunting task to consider all 

possible pleating profiles. Although some drapes exhibit a rectangular or triangular profile, many 

have, for example, pinch pleats or other pleating styles. These pleating styles usually form a 

pleating profile that can be approximated by a rectangular or a triangular profile depending on the 
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pleating style. For example, Figure 5.1 (a) is best approximated by rectangular pleats where Figure 

5.1 (b) and (c) should be approximated with triangular pleats. The triangular pleating style is used 

where a low stacking ratio is desired (i.e., requires less storage room when the drape is open to 

admit sunlight). 

         

                         (a)                                                     (b)                                                         (c) 

Figure 5.1: Examples of various pleating styles14 

 

5.1.3 Fabric Selection 

Fabrics were chosen so that the selection covers all nine categories of KUC (Figure 1.4 and Table 

2.1). One fabric from each category was chosen. One additional fabric in each of the light-color 

(L) and open-weave (I) categories was chosen. This is because the effects of test variables are 

expected to be more noticeable for fabrics with high reflectance and high transmittance. Sheer is 

a popular drapery fabric whose properties fall outside (above) of the nine categories due to its high 

openness. For the sheer category, five fabrics of various openness and colors were selected. 

                                                      
 

14   This image is taken online from www.drape.com  

http://www.drape.com/
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The Cary 5000 spectrophotometer is used to measured normal solar-optical properties of fabrics. 

Refer to Section 2.3.1 for details on measurement using the Cary 5000 and Section 2.3.2 for data 

processing of spectral data. The results are used for fabric selection and for input in the simulations. 

5.1.4 Angles of Incidence 

The turntable to which the integrating sphere and the sample mount structure are attached can 

rotate up to 60°. Therefore, the test matrix is limited to an incident angle of up to 60°. In general, 

increasing incident angle lowers transmittance with reduced signal strength. 

5.2 Construction of Pleated Drape Samples 

Two sample frames made of plexiglass have been built to support fabrics in a pattern of rectangular 

and triangular pleats. Figure 5.2 shows a picture of a sample frame. The frames are 60 cm by 38 

cm (24” by 15”). The area is large enough for illumination at the largest angle of incidence, which 

is 60 degree. Design of the frame also allows pleats of various folding ratios. 

As shown in Figure 5.2, tiny holes are drilled through the top and bottom of the frame. Distances 

between the drilled holes are based on the pleating profiles and folding ratios. Fishing lines pass 

through these holes and are pulled tightly with tension for supporting fabric in order to make the 

defined profiles and folding ratios as illustrated in Figure 5.3. The pleat spacing, S, is always 2 cm 

for rectangular pleats and 3 cm for triangular pleats. 
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Figure 5.2: A sample frame designed to allow various folding ratios of drapes 

 

Figure 5.3: Illustration of folding ratio (drapery fullness) for square pleats (Kotey 2009) 

 

5.3 Limitations (Signal Strength and Fabrics Physical Properties) 

5.3.1 Signal Strength 

Signal strength is an important factor for this experiment. It is difficult to obtain useful results in 

cases of weak signal strength. Transmittance (and therefore signal strength) depends strongly on 

aforementioned four variables of the test matrix. In general, signal strength decreases with 
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increasing angle of incidence although pleating profile can alter the effect of incident angle. 

Similarly, increasing Fr also reduces the signal strength. However, in a few cases, increasing Fr 

can increase the signal strength for some specific combinations of fabric properties and incident 

angle. 

5.3.2 Physical Properties of Fabrics 

Physical properties of fabrics are of great interest in fields such as textile research and processing 

(e.g., Azeem et. al. 2015 and Kenkare et. al. 2005). Fabrics have complex structures and various 

properties. The properties of woven fabric are decided upon its end use. Detailed discussions on 

properties of fabrics are not within the scope of this research. Instead, this sub-section introduces 

a few common physical properties for discussions of their effects on the pleated drape samples. 

 Drape Coefficient: Drapability of a fabric is a combined effect of several factors such as 

stiffness, weight, thickness etc. Measurement for this parameter has continuously been 

developed, improved, and standardized since 1930. Now, drape coefficient is the most 

common among terms used to describe a fabric. Drape coefficient describes the ability of 

a fabric (circular specimen of known size) to deform when suspended under its own weight 

in specified conditions. The higher the drape coefficient, the less drapeable the fabric. 

 Fabric Thickness: Fabric thickness is usually measured to gauge its effect on thermal, solar-

optical, and mechanical properties of the fabric. For example, when choosing a fabric, one 

may want to consider how the thickness and construction of the fabric will play a roll in 

how warm it is, how easily it wrinkles, and whether it is sheer or opaque. 

 Warp and Weft: Warp/weft refers to the threads that make up a woven fabric. Weft threads 

run from side to side whereas warp threads run along the length of the yardage. Yarn linear 

densities of warp and weft affect both solar-optical and physical properties of fabrics. 
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 Stretchability: Stretchability can be either unidirectional or bidirectional. In general, 

stretchability is greater weft-wise than warp-wise. 

Ideally, the pleated drape sample would be of exactly rectangular or triangular shapes as 

approximated/assumed in the models (i.e., Figure 5.3 and Figure 4.2). However, this is not possible 

due to the physical properties of fabrics. For example, fabrics need to bend alternatively to make 

a pleated drape. As these fabrics fold around the supporting lines, fabrics with low drape 

coefficient would be able to form a sharper edge (better drapability) than fabrics with high drape 

coefficient. As a result, lower drape coefficient fabrics form the anticipated profiles better than 

higher drape coefficient fabrics do. 

5.4 BAI-IS – Setup 

While the Cary 5000 is easy to use and has excellent capabilities, it cannot measure the solar 

optical properties of thick and/or spatially non-uniform samples. The Cary 5000 has a small 

integrating sphere, and therefore a small inlet port. The small inlet port cannot capture all the 

scattering light. This is known as out-scattering loss. Also, the narrow beam of incident light source 

cannot irradiate a representative (broad) sample area. 

Instead, the BAI-IS system is used to measure thick, scattering and spatially non-uniform samples. 

The BAI-IS system is a custom-built spectrophotometer specifically designed to overcome the 

limitations of the Cary 5000. First, it has a larger integrating sphere with an inlet port area that is 

large enough to cover a representative area of a non-uniform sample. Second, the broad beam 

illuminates a large sample area, allowing the in-scattering gain to offset the out-scattering loss. 
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To have confidence in the measurements made by the custom-built BAI-IS system, it is crucial 

that the experiment is properly setup and calibrated. The BAI-IS system consists of the following 

components and sub-systems: 

a. radiant source system including lamp, reflective concentrator, kaleidoscope section, 

chopper disc, Fresnel lens, 

b. sample mount structure including the rotating table and a stepper-motor-controlled 

traversing system that moves samples to block and unblock the sample (inlet) port of the 

integrating sphere, 

c.  integrating sphere and monochromator collecting and splitting the light into spectral 

components, and 

d. control and data processing system including photo detectors, phase-lock amplifier, 

DAQ, a computer (LabVIEW). 

Figure 5.4 shows the schematic of the BAI-IS. The setup and calibration of each component is 

described in the following sections. 
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Figure 5.4: Schematic layout of the BAI-IS system 

 

 

 

 



 

108 
 
 

5.4.1 The Radiant Source System 

The radiant source must provide quasi-collimated irradiation of nearly uniform intensity over a 

broad area at the inlet port of integrating sphere. Also, sufficiently strong intensity is required for 

detectors to attain a good signal-to-noise ratio. Therefore, the radiant source uses a 1000-Watt 

Quartz Tungsten Halogen (QTH) FEL15 Lamp with color temperature of approximately 3200 K 

and with high output in the spectral region of interest (350 nm to 2500 nm). As shown in Figure 

5.5, QTH lamps are good visible and near infrared sources because of their smooth spectral curve 

and stable output. 

 

 

Figure 5.5: Typical spectral irradiance of 1000W FEL quartz tungsten halogen lamp16 

 

                                                      
 

15   The FEL lamp is an ANSI standard 1000 watt quartz halogen lamp with a G9.5 medium 2-pin base. 
16   This figure is from Newport website. 
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5.4.1.1 Power Supply to QTH Lamps 

An external power supply, ScienceTech Model 500-1K-QTH, designed for 120VDC 1000W QTH 

lamps is used to stabilize the output of QTH lamps. The 500-1K-QTH is a fixed DC stabilized 

switching power supply17 that accepts 120/240VAC inputs and produces 120VDC output. Note 

that regardless of the input voltage, only the 120VDC 1000W QTH lamp can be used. 

5.4.1.2 Ellipsoidal Reflective Concentrator 

Radiation from the QTH lamp is directed by a rhodium coated ellipsoidal reflective concentrator18. 

The rhodium coating has an approximately 70% reflectivity and has superior resistance to 

tarnishing and scratching. As well, it has a very important characteristic for the present application: 

it normally does not form an oxide even when heated. 

The QTH lamp should be located inside the concentrator so that its filament is at the focus of the 

ellipsoidal reflective surface. This maximizes the amount of light being redirected to the other 

focus point outside of the concentrator. Distance from center of ellipsoid to either focus, f, can be 

determined in terms of its major and minor radii, a and b: 

f = √a2 − b2 (5.1) 

For the ellipsoidal concentrator, a = 19 cm (7.5”) and b = 12.3 cm (5.0”), giving f = 14.1 cm (5.6”). 

5.4.1.3 Kaleidoscope and Fresnel Len 

Irradiance uniformity is accomplished using a kaleidoscope section in combination with a Fresnel 

lens19. The kaleidoscope section is a square tube with smooth, specularly reflecting mirrored-walls. 

It acts as a light pipe that homogenizes non-uniform light source. The kaleidoscope output aperture 

                                                      
 

17   Switching power supply is also called switched-mode power supply. 
18   Supplied by Melles Griot, Rochester, New York 
19   Supplied by Fresnel Technologies, Houston, Texas 
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is about 3 cm by 3 cm. To collect most of the light (i.e., to have good collection efficiency), a low 

f-number20 lens should be used. The smaller the f-number the greater the radiant flux collected by 

the lens. Therefore, a Fresnel lens with a diameter of 20 cm is used. The lens is made of 

polycarbonate that has good high temperature resistance and a very low absorptance across the 

solar spectral range. 

A diverging Fresnel lens is used to provide a magnification of about 15:1 to cover (45 by 45 cm) 

area of illumination at the sample plane. For reasonable directional uniformity across the sample 

area, the Fresnel lens is placed 3 m from the sample plane, and this dictates that the lens be about 

20 cm from the kaleidoscope output aperture. 

5.4.1.4 Optical Chopper Wheel 

The chopper wheel is a 13-inch diameter disc made of a thin metal sheet with several openings. 

This optical chopper wheel rotates between the kaleidoscope and the Fresnel lens, allowing the 

radiant source to pass at a certain frequency. The chopping frequency is equal to the number of 

openings times the frequency of rotation. During the “open” position the detected signal comes 

from both the radiant source and background light. During the “close” position the radiant source 

is blocked, and only the background signal is collected. The chopping frequency provides a 

reference signal for the phase lock-in amplifier (PLA) to differentiate the background signal and 

generate the “wanted” signal that is from the radiant source only. 

                                                      
 

20   For optical lens, f-number (also denoted as f/#) is defined as the ratio of its focal length to diameter of aperture. 
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5.4.2 Sample Mount 

The sample mount is fixed onto a work table that can be rotated 60° counter-clockwise. This allows 

measurements with incident angles up to 60°. At 0° the sample plane is perpendicular to the 

incoming radiation. 

As well, the sample mount can move horizontally across the sample plane with a traversing 

mechanism, positioning the sample either in front or away from the inlet port of the integrating 

sphere. Traversing of sample is controlled by a stepper motor drive mechanism. 

5.4.3 Integrating Sphere and Monochromator 

Light passing through a sample will be collected by the integrating sphere and split spectrally by 

the monochromator. The original system was developed by Doug Milburn for his PhD research in 

the early 1990s (Milburn 1994). Since then, both the hardware and the software of this system 

have been used, modified, upgraded, and rearranged around by various researchers for other 

projects. Because of its age and the way it has been built and used, the monochromator requires a 

thorough calibration, the biggest challenge of setting up the BAI-IS system. 

5.4.4 Data Processing and Control Systems 

After light goes through the monochromator and reaches the photo-detector, the detector sends a 

signal to the phase lock-in amplifier (PLA), which then sends the output signal to the 

DAQ/computer. 

5.4.4.1 Detectors 

The detector (model UVS/PBS-025/020-H from Electro-Optical System Inc.) is a combination of 

photo-detector/receiver that has both a photo-diode and a photo-conductor sandwiched together. 

Spectral responses of the Silicon photo-diode (UVS) and Lead Sulphide (PbS) photo-conductor 

are in the wavelength range of 200 – 1100 nm and 1000 – 3000 nm, respectively. 
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5.4.4.2 Phase Lock-in Amplifier (PLA) 

The PLA receives both the input signal from the detector and the reference signal from the optical 

chopper sensor. The PLA is able to process signals buried in noise (i.e., mainly ambient light in 

this case). Following the check guide provided by Scitec Instruments Ltd., tests have been done to 

confirm that the PLA is working properly. 

5.4.4.3 Control System 

The BAI-IS utilizes LabVIEW software as an interface to control measurements and process 

results. Based on user input, LabVIEW drives three stepper motors: one turns the prism for 

wavelength selection, one adjusts the exit slit of the monochromator for spectral bandwidth 

selection, and one operates the sample traversing system. 

5.5 Calibration of the Monochromator 

The monochromator is Littrow-style quartz prism design taken from a Beckman DU 

spectrophotometer commercially produced in the 1950s. Milburn (1994) modified this 

monochromator and integrated it into the BAI-IS system. This monochromator has two control 

parameters: slit width and nominal wavelength. A slit width would give a specific nominal 

bandwidth (FWHM – full width at half maximum) within which the peak wavelength would be 

the nominal wavelength. 

The spectral range of the monochromator specified in the literatures and in previous researches 

varies from 200 nm to 2200 nm. The spectral limits of the optical system inside the monochromator 

need to be verified. The control system has also been modified several times. The most recent 

documented work on the calibration of nominal wavelength is (Halder 2007). However, the 

positioning of the stepper motor vs. wavelength has again changed since then. As a result, the 

calibration curve reported by Halder (2007) cannot be used. 
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No information was previously reported on the calibration of spectral bandwidth. Milburn (1994), 

Jiang (2005), Halder (2007) all used the maximum slit width of 2 mm for maximum signal strength. 

Therefore, the spectral resolution of this device had never been tested. In summary, the following 

lists three key questions that need to be resolved for the calibration of monochromator. 

a. What is the operational (spectral) range of this monochromator? 

b. How does stepper motor position correspond to the nominal wavelength (i.e., calibration 

of nominal wavelength selection)? 

c. How does the stepper motor position correspond to the slit/band width (i.e., calibration of 

spectral bandwidth)? 

5.5.1 Beckman DU Quartz Spectrophotometer Documents 

Although the BAI-IS system has been used for research for more than twenty years, no document 

was previously referenced on the Beckman DU quartz spectrophotometer. An effort has been made 

to find the relevant documents with the hope of finding useful information or answers for the 

questions listed above. As a result, some timeworn documents are located through the National 

Institute of Health (NIH) Office of History and Stetten Museum. These documents are listed in the 

end of the Reference section and important information has been summarized here. 

Transmittance (T) is the ratio of the radiant energy transmitted by the sample (P) to the energy 

incident upon the sample (Po). Both radiant energies must be obtained at the same wavelength, 

with the same spectral slit width. T(λ) = P(λ) / Po(λ) 

Spectral Slit Width is the range of waveband emerging from the exit slit, neglecting stray light 

and spherical aberrations. 
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Resolution is the ability of the instrument to distinguish between two closely spaced wavebands. 

The apparent transmittance will depend on the slit width and includes such influences as the 

transmittance profile curve within the wave band being transmitted and the variations of sensitivity 

of the sensors with respect to wavelength. It is usually possible to determine if these effects are 

significant by increasing or decreasing the slit width by a factor of two or more. For example, a 

change in apparent transmittance then indicates that these effects are pertinent. 

Nominal Wavelength is selected by rotating the quartz prism inside the monochromator. In one 

of Beckman’s documents, the wavelength scale is mentioned to have been calibrated from 200 to 

2000 nm. However, in all other Beckman’s documents, the optical system with integrated 

components is mentioned to provide a wavelength range from 220 to 1000 nm. Again, the 

wavelength range needs to be verified. 

Half-Intensity Band Width (or Nominal Band Width) refers to the span of wavelengths leaving 

the monochromator, each of which contributes at least half as much energy as does the wavelength 

with the greatest energy. This is also referred as FWHM (Full Width at Half Maximum). 

Figure 5.6 gives the band width versus wavelength relationship from which the required slit 

openings for a given spectral band width can be determined for any wavelength of interest. For 

measurements at a predetermined nominal band width, the necessary slit width must be calculated, 

taking into consideration that optical aberrations tend to increase that slit width by approximately 

0.04 mm. If X is equal to actual slit width to be used at one wavelength, corresponding to the 

nominal band width, it may be calculated with the slit equation: 

X = (WE – 0.04*WD)/WD 
(5.2) 
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where WD is the nominal band width per 1 mm slit opening (Figure 5.6), and WE is the nominal 

band width to be used for measurement. 

The slit equation, along with Figure 5.6, is the most important piece of information obtained from 

the documents provided by the NIH Office of History and Stetten Museum. 

The light emerging from any practical monochromator does not consist of a single wavelength but 

a group of wavelengths. When the light intensity is plotted as function of wavelength, a triangular 

curve would result similar to that in Figure 5.6 (see theoretical distribution of radiant energy with 

wavelength leaving exit slit in Figure 5.6 inset). The triangular distribution curve is an idealized 

result that would be obtained with a perfect optical system. In practice, unavoidable aberrations 

result in the effective widening of the slit image, and thus the triangle shown should be slightly 

wider and rounded at the bottom and top. 
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Figure 5.6: Bandwidth versus wavelength for 1 mm slit opening (Beckman Instruments) 
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5.5.2 Holmium Oxide Glass Measurements 

A standard practice is to use holmium oxide glass to calibrate the monochromator because 

holmium oxide has many sharp, well documented, optical peaks in the visible range and some 

peaks in the NIR range. Figure 5.7 shows the spectral transmittance profile measured by the Cary 

5000. The BAI-IS system is able to reproduce almost the same profile in the range of 380 nm to 

1100 nm. For clarity, Figure 5.8 shows the comparison of the peak profiles in the visible range. 

 

Figure 5.7: Spectral transmittance of holmium oxide glass measured by Cary 5000 

 

Figure 5.8 shows that the BAI-IS is able to resolve the peaks in the visible range and has reasonable 

resolution in the NIR range. However, no sensible signal was obtained beyond 1100 nm. So peaks 

beyond 1100 nm were not resolved. 
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Figure 5.8: Comparison of spectral transmittance measurement of holmium oxide glass 

using Cary 5000 spectrophotometer (line) and BAI-IS (points) 386 – 750 nm 

 

5.5.3 Ocean Optics Spectrometer Measurements 

A spectrometer (Ocean Optics USB2000 Miniature Fiber Optic Spectrometer) was also used for 

spectral calibration of the monochromator. This spectrometer detects light intensity in the range of 

200 to 1100 nm, which covers about 75% of the energy in the solar spectrum. This device is very 

useful as it gives an intensity profile in the detector range. When used with the BAI-IS system, the 

detector (i.e., the photo-detector shown in Figure 5.4) in the BAI-IS system was replaced by the 

Ocean Optics spectrometer system. Then, the measured intensity profile changes by varying the 

nominal wavelength and the slit width. A typical profile for a bandwidth is shown in Figure 5.9. 

As discussed in Section 5.5.1, this distribution profile would be a perfect triangle if the optical 

system of the monochromator were perfect. 
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The profile shown in Figure 5.9 provides very useful information for monochromator calibration. 

First, the wavelength at peak intensity is the nominal wavelength. Second, the nominal spectral 

bandwidth is approximately the bandwidth at the profile half height. Therefore, the relationship 

between the stepper motor positioning and the two control parameters of monochromator can be 

determined through measurements using various combinations of these two control parameters. 

Using this approach, it has been confirmed that the monochromator is functional within the 

wavelength range of 380 to 1050 nm covered by the Ocean Optics USB2000 spectrometer. 

 

Figure 5.9: A typical light intensity profile within a bandwidth 

 

5.5.4 Calibration of Nominal Wavelength 

The nominal wavelength is controlled by a stepper motor that turns the prism. Light of different 

wavelengths is refracted differently and exits the prism at different angles. As the stepper motor 

turns, different wavelengths pass through the slit opening and exit the monochromator. With the 

Ocean Optics spectrometer system, a set of measurements has been done for various stepper 

motor/prism positioning. Figure 5.10 demonstrates intensity profiles measured at various 

wavelength with slit width = 0.1 mm. 
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Figure 5.10: Intensity profiles measured for 0.1 mm slit width at different wavelength 

 

5.5.4.1 Determining Nominal Wavelength 

With the wavelength setting fixed (i.e., constant nominal wavelength), peak intensity should be at 

the chosen wavelength. However, measurements reveal that peak intensity consistently shifts 

toward higher wavelength as slit width increases. Figure 5.11 illustrates the shift of wavelength at 

peak intensity for a particular wavelength setting with various slit widths. Most likely, the shift of 

peak intensity toward higher wavelength is because the spectral irradiance of the QTH lamp peaks 

at close to 900 nm (Figure 5.5). 

Therefore, the calibration of nominal wavelength is based on measurements with slit width of 0.1 

mm, the narrowest slit recommended by the Beckman documentation. Figure 5.12 shows the new 

calibration curve. The reference point is at the limit switch. Curve fitting has been applied to the 

data and the resulting equation is shown in Figure 5.12. Any equation that relates the steps versus 

wavelength would work. In this case, the 6th order polynomial gives the best estimate. Note that, 

if the limit switch location is moved, the curve will shift and need to be re-calibrated. 
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(a) Stepper Motor Steps = 57500    (b) Stepper Motor Steps = 55000   (c) Stepper Motor Steps = 45000 

 
Figure 5.11: Wavelength at peak intensity shifts as slit width changes 

 

 

Figure 5.12: Calibration curve of stepper motor steps vs. nominal wavelength 
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5.5.5 Calibration of Nominal Spectral Bandwidth 

The Ocean Optics spectrometer measurements can also be used to validate the relationship of slit 

width versus spectral bandwidth at a specific nominal wavelength described in the Beckman 

documentation (see Equation (5.2) and Figure 5.6). For example, the nominal wavelength in a 

measurement (e.g., Figure 5.9) is the wavelength corresponding to the peak intensity. Then, the 

bandwidth can be calculated for a given slit opening with Figure 5.6 and the slit equation (i.e., 

Equation (5.2)). The calculated bandwidth is compared and should be equal to the bandwidth at 

half height of the measured profile. Based on measured intensity profiles, it has been verified that 

Equation (5.2) and Figure 5.6 are valid. Note that slit width can be read visually from a graduated 

dial attached to the slit width adjustment shaft of the monochromator. Figure 5.13 shows a fitted 

curve for stepper motor position versus the slit width. 

 

Figure 5.13: Number of stepper motor steps vs. slit width 
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5.6 Measurement Uncertainties 

All measurements are subject to uncertainties. The uncertainty must be considered or estimated in 

order to interpret data correctly and draw meaningful conclusions. Determining the uncertainty of 

a measurement involves identifying the major process and variables and assessing their effect on 

the measurement. Per ASTM E903-96, random errors in solar optical property measurements are 

associated with signal detection and electronic processing. Errors are also introduced by the 

geometry of the integrating sphere system and the distribution of scattered or reflected light. 

Experience has shown that high level of accuracy is relatively difficult to achieve and depends 

strongly on operator skill, experience, and care, as well as on equipment design and maintenance. 

Based on ASTM E903-96 the following sections discuss random and systematic errors associated 

with measurements made using an integrating sphere.  

5.6.1 Random Errors 

The random uncertainty in the spectral properties measured with an integrating sphere is due 

almost entirely to the signal-to-noise (S/N) ratio of the detector–amplifier system. When the S/N 

ratio is high (e.g., usually in the visible range), the repeatability of measurements made on the 

same sample is usually better than ±0.5%. At the wavelengths near detector’s spectral range limits 

where the S/N ratio is low, usually in the near infrared region, the uncertainty due to this source 

may exceed ±2.0%. These uncertainties can be reduced significantly by scanning for longer times 

at each wavelength. Carefully designed measurements can be repeatable to be within ±0.1%. 

5.6.2 Systematic Errors 

Simple integrating sphere theory (Goebel 1967) is based on four assumptions: (1) the sphere 

coating is uniform in reflectance over the entire inner surface of the sphere, (2) the sphere coating 

is a perfectly Lambertian reflector, (3) none of the reflected flux is lost out of the apertures of the 
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sphere, and (4) none of the reflected flux reaches the detector without being reflected at least twice 

by the sphere wall. 

No integrating sphere design can completely realize these assumptions. However, they can be 

approached in a well-designed integrating sphere so that the resulting errors are small. Most 

commercially available integrating sphere reflectance attachments (e.g., Cary 5000) measure 

reflectance/transmittance factor, which is the ratio of the flux reflected/transmitted by a sample 

into a hemisphere to that reflected/transmitted by a completely reflecting/transmitting and 

perfectly diffusing surface under identical conditions of irradiation and collection. It does not 

measure the reflectance which is the ratio of the flux reflected into a complete hemisphere to the 

flux incident on the sample. The advantage of measuring reflectance/transmittance factor rather 

than reflectance/transmittance is that the ratio of the fluxes reflected by the sample and the 

comparison standard is automatically corrected for the major portion of the errors due to non-ideal 

characteristics of the sphere. 

5.6.3 Uncertainties of Flat Fabric Property Measurements Using Cary 5000 

Spectrophotometer 

Uncertainty in integrating sphere measurements may be attributed to several errors as documented 

in ASTM E903-96. The Cary 5000 is a commercially designed spectrophotometer and uses 0% 

and 100% baseline calibration procedures (ANSI / ASHRAE 74-1988). Based on previous studies 

(Halder 2007, Kotey 2009), the equipment has an accuracy of ±0.1% or well below ±0.001 at 95% 

confidence level for raw measurements. A more significant uncertainty is attributed to the 

conversion of spectral data to solar properties. Since solar properties were obtained based on the 

ratio of sample/reference signals, uncertainties in both signals are correlated and tend to cancel, 

reducing the systematic error in measured properties (Chakroun et. al. 1993). 
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The most significant source of uncertainty for measuring flat fabric solar optical properties comes 

from the fabric non-uniformity (Section 2.3.3). The uncertainty due to fabric non-uniformity has 

been mitigated, if not eliminated, by determining and applying correction factors (Section 2.3.3.1). 

5.6.4 Uncertainties of Pleated Drape Measurements Using the BAI-IS System 

The BAI-IS system is custom-designed, and drape sample tests using the BAI-IS system is one of 

a kind measurement. This increases complexity of uncertainty analysis. The following are sources 

of uncertainty that have been considered for the BAI-IS components and measurement processes 

used in this research: 

 Monochromator 

- wavelength selection 

- spectral bandwidth selection 

 Experimental Setup 

- Internal Sample Reflectance error (ISR) 

- External Sample Reflectance error (ESR) 

 Integrating Sphere Design 

- hot-spot error 

 Data Processing 

- detectors, Phase Lock-in Amplifier (PLA), and DAQ 

 Pleated drape sample 

-  non-uniformity due to transmittance port seeing various pleat locations 

5.6.4.1 Wavelength Selection Uncertainty 

The nominal wavelength setting is controlled by changing the prism angle via linkages and a lead 

screw, which are driven by a stepper motor. Due to backlash effect in the mechanical linkages and 

stepper motor, the same stepper motor position does not mean the same prism angle. To reduce, if 

not completely eliminated, the backlash effect, a limit switch has been installed to ensure the same 

initial reference position for each measurement. 
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5.6.4.2 Uncertainty Due to Changing Spectral Bandwidth 

Nominal spectral bandwidth can be adjusted with the slit width. For a fixed slit width, as discussed 

in Section 5.5, the bandwidth varies with the nominal wavelength. Based on Figure 5.6 and Section 

5.5.1, Table 5.1 is generated and shows the slit widths required at various wavelength for a 

corresponding spectral bandwidth. The table shows that the BAI-IS system can have constant 

spectral bandwidths from 5 to 20 nm for the wavelength range of 400 to 1000 nm. However, 

keeping bandwidth constant requires a very narrow slit width at higher wavelength, leading to very 

low S/N ratio. Furthermore, adjusting the slit width multiple times during a test significantly 

increase the time required for measurements. 

Table 5.1: Slit widths for corresponding nominal bandwidths at various wavelengths 

 

 

WL (nm) = Norminal Wavelength WE (nm) = Norminal bandwidth to be used for measurement

WD (nm/mm) = Norminal bandwidth per 1 mm slit width X (mm) = Actual slit width to be used at one wavelength

WE(nm) >>> 1 2 3 4 5 6 8 10 15 20 25 30 50 100 200

WL(nm) WD(nm/mm)
200 0.78 1.24

215 1 0.96 1.96

255 2 0.46 0.96 1.46 1.96

285 3 0.29 0.63 0.96 1.29 1.63 1.96

310 4 0.21 0.46 0.71 0.96 1.21 1.46 1.96

325 5 0.16 0.36 0.56 0.76 0.96 1.16 1.56 1.96

340 6 0.13 0.29 0.46 0.63 0.79 0.96 1.29 1.63

355 7 0.10 0.25 0.39 0.53 0.67 0.82 1.10 1.39

370 8 0.09 0.21 0.34 0.46 0.59 0.71 0.96 1.21 1.84

380 9 0.07 0.18 0.29 0.40 0.52 0.63 0.85 1.07 1.63

395 10 0.06 0.16 0.26 0.36 0.46 0.56 0.76 0.96 1.46 1.96

495 20 0.01 0.06 0.11 0.16 0.21 0.26 0.36 0.46 0.71 0.96 1.21 1.46

570 30 0.03 0.06 0.09 0.13 0.16 0.23 0.29 0.46 0.63 0.79 0.96 1.63

635 40 0.01 0.04 0.06 0.09 0.11 0.16 0.21 0.34 0.46 0.59 0.71 1.21

705 50 0.02 0.04 0.06 0.08 0.12 0.16 0.26 0.36 0.46 0.56 0.96 1.96

770 60 0.01 0.03 0.04 0.06 0.09 0.13 0.21 0.29 0.38 0.46 0.79 1.63

840 70 0.00 0.02 0.03 0.05 0.07 0.10 0.17 0.25 0.32 0.39 0.67 1.39

915 80 0.00 0.01 0.02 0.04 0.06 0.09 0.15 0.21 0.27 0.34 0.59 1.21

1030 90 0.02 0.03 0.05 0.07 0.13 0.18 0.24 0.29 0.52 1.07

1200 95 0.01 0.02 0.04 0.07 0.12 0.17 0.22 0.28 0.49 1.01 2.07

X(mm)
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Depending on the spectral properties of samples, non-constant bandwidth could affect the 

measurement results especially if the sample is spectrally selective. However, non-constant 

bandwidth does not have a significant effect here since fabrics are not spectrally selective. 

For example, Figure 5.14 and Figure 5.15 show the spectral transmittance profiles measured, 

respectively for the holmium oxide glass (e.g., spectrally selective) and the red sheer fabric (e.g., 

a much smoother and typical profile for a fabric), using the BAI-IS system with various slit widths. 

The effect of slit width (and therefore bandwidth) on spectral transmittance is observable in the 

case of holmium oxide but not the red sheer fabric. 

 

Figure 5.14: Spectral transmittance profiles of holmium oxide using BAI-IS with various 

slit widths 
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Figure 5.15: Spectral transmittance profiles of red sheer using BAI-IS with various slit 

widths 

 

For the holmium oxide, the resulting weighted average (for each slit width) is 0.824 (0.1 mm), 

0.829 (0.3 mm), 0.835 (0.5 mm), and 0.834 (1.0 mm). Similarly, for the red sheer fabric, the 

weighted averages are 0.481 (0.1 mm), 0.471 (0.2 mm), 0.478 (0.5 mm), and 0.478 (1.0 mm). 

These results show that the effect of slit/bandwidth on the weighted average is not significant even 

for the spectrally selective holmium oxide sample. 

5.6.4.3 Internal and External Sample Reflectance Errors 

BAI-IS transmittance measurements involve Internal Sample Reflectance (ISR) and External 

Sample Reflectance (ESR) errors that are caused by sample back reflectance (Milburn 1994). As 

shown in Figure 5.16 (a), some internally reflected ray leaving the sphere that would otherwise 

leave the sphere without sample blockage may now be reflected back into the sphere with the 

sample in place. As well, Figure 5.16 (b) shows that radiation transmitted through the sample (or 

from any surrounding structure) may be reflected by the sphere exterior and then by the back of 

the sample into the sphere. 
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           (a) ISR error caused by back reflectance                     (b) ESR error caused by back reflectance 

Figure 5.16: Paths of radiation that cause ISR and ESR errors 

 

The errors due to sample back reflectance may be significant. Milburn (1994) performed 

transmittance measurements of acrylic sample at 800 nm with various sample-to-sphere distance. 

The difference between two measurements could be more than 0.01 depending on how far the 

sample was away from the sample port. In order to minimize the difference, the sample is placed 

at least 12 cm away from the sample port. 

5.6.4.4 Hot-Spot Error 

A hot-spot is where the light source is first reflected inside the sphere as shown in Figure 5.17. 

The hot-spot error is caused by the overlap of the detector field-of-view (dashed lines in Figure 

5.17) and the direct area of illumination. Generally the error is assumed small and ignored in 

measurements using integrating sphere. However, the hot spot moves with increasing incidence 

angle. A test shows that the hot spot effect is very large for incidence angles larger than 45° for 

the original baffle design. A new baffle (Figure 5.17 (b)) has been made and put in place to 

eliminate any direct view of hot spot. 
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                        (a) Original baffle design                                               (b) New baffle design 

Figure 5.17: Comparison of the original and new designs of baffle to prevent hot-spot error 

 

5.6.4.5 Data Processing System 

Based on specifications given for the detector and electronic data processing systems, Halder 

(2007) performed an uncertainty analysis and reported a value of ±0.1% in solar transmittance for 

his sheer blind measurements. The ±0.1% was based on multiple-sample measurement. He 

recommended the number of measurements N ≈ 200 for λ < 1000 nm and N ≈ 400 for longer 

wavelengths. 

Appendix E: Uncertainty Analysis includes an uncertainty analysis for the data processing system. 

The measurement uncertainty of a measurement can be high (i.e., > 10%) especially for low S/N 

cases. However, it can be greatly reduced by increasing sampling time and number. It has been 

estimated that the uncertainty can be reduced to within 1% with proper settings for the data 

processing system. 

5.6.4.6 Pleated Drape Sample Non-Uniformity Uncertainty 

Similar to the non-uniformity in the flat fabric sample (Section 2.3.3), pleated drape sample is an 

additional source of uncertainty. The projected view of a geometrically non-uniform sample on 
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the transmittance port of an integrating sphere may be different every time the sample is placed in 

front of the opening port. The degree of non-uniformity depends on the number of repeated pattern 

in the sample being “seen” by the opening. For example, in the case of a pleated drape sample, 

Figure 5.18 shows two possible projected views of the opening port on the sample. If the pleat size 

is relatively small, as shown in Figure 5.19, the port would see more pleats, and therefore a more 

uniform sample. In other words, the sample non-uniformity “disappears” when the opening port is 

relatively large. 

Design constraints limit the port size to a maximum of 5% of the sphere surface area (Labsphere 

2013). Having the port opening size fixed, the effect of sample uniformity depends the pleat size 

and folding ratio (Fr). 

 

 

 

Figure 5.18: Transmittance port seeing mostly top (left) or grooved (right) surface of pleats 
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Figure 5.19: Transmittance port seeing several top and grooved surfaces 

 

A set of tests has been performed to estimate the uncertainty in transmittance measurement of 

pleated drape samples using the BAI-IS system due to spatial non-uniformity of the samples. 

Fabrics used have openness ranging from the “Closed” to “Sheer” categories. The standard test 

method for solar transmittance of materials using an integrating sphere (ASTM E 903) is applied 

with one modification. Instead of one sample reading, six sample readings are taken, each at a 

slight shift in sample location. All tests use rectangular pleating profile with a pleat spacing (S) of 

2 cm. The test matrix is shown in Table 5.2. Each test is performed at nominal wavelength of 401 

nm, 536 nm, 651 nm, 784 nm, and 1025 nm to cover the spectral range of interest.  

Table 5.2: Test matrix for pleated drape sample non-uniformity tests 

Fabric ID Fabric Name Fr = 2 Fr = 3 

0-3 Orange0001 θ = 0°, 30°  

0-4 Rough_Medium0001 θ = 0°  

0-7 Red0002 (Sheer) θ = 0°, 30° θ = 0°, 30° 
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Six sample readings of each test taken in the modified test procedures are recorded and averaged 

(AVG). Standard deviation (STD) for each set of six readings are calculated. Results are shown in 

Table 5.3. The uncertainty in the sample reading due to sample non-uniformity can be estimated 

by doubling STD or the ratio STD/AVG  in terms of percentage (STD/AVG%). 

As shown in Table 5.3, the STD/AVG ranges from 0.05% to 1.8%. Then 2 times STD would range 

from 0.1% to 3.6%. So the uncertainty due to sample non-uniformity could be significant and 

added to the overall uncertainty based on the results discussed above. However, except for one 

case, the uncertainty is always the highest at λ = 401 nm and generally decreases with increasing 

λ. Based on the typical spectral irradiance profile (for a 1000W FEL lamp) shown in Figure 5.5, 

the profile peaks at about 900 nm and decreases exponentially toward short wavelengths. This 

observation may imply that the uncertainty due to the non-uniformity is dominated by the 

uncertainty due to low S/N ratios (as discussed in Section 5.6.1). 

Although the measurement uncertainty may be high for λ = 401 nm, it is generally insignificant at 

higher wavelengths. Therefore, the uncertainty due to the pleated drape non-uniformity can be 

ignored for the weighted average results. 

5.7 Chapter Summary 

Results of this experiment are presented in CHAPTER 6. 
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Table 5.3: AVG and STD of measured relative intensities at various wavelengths 

Fabric 

ID 
θ FR λ (nm) AVG STD STD/AVG (%) 

0
-7

 

0° 

2 

401 3.077 0.018 0.571 

536 3.354 0.002 0.052 

651 4.792 0.006 0.134 

784 3.244 0.006 0.171 

1025 3.855 0.005 0.126 

3 

401 1.198 0.011 0.893 

536 2.041 0.008 0.368 

651 3.510 0.010 0.295 

784 2.998 0.005 0.173 

1025 3.747 0.007 0.184 

30° 

2 

401 1.148 0.007 0.608 

536 1.661 0.007 0.451 

651 3.046 0.018 0.603 

784 2.729 0.010 0.373 

1025 3.455 0.018 0.515 

3 

401 0.855 0.010 1.113 

536 1.027 0.019 1.813 

651 1.840 0.027 1.468 

784 1.945 0.012 0.629 

1025 2.329 0.008 0.354 

0
-4

 

0° 2 

401 2.029 0.036 1.773 

536 1.246 0.005 0.362 

651 2.025 0.008 0.386 

784 1.645 0.005 0.314 

1025 2.288 0.007 0.316 

0
-3

 

0° 2 

401 0.495 0.002 0.410 

536 0.511 0.002 0.337 

651 1.908 0.002 0.127 

784 1.727 0.002 0.113 

1025 1.523 0.002 0.122 

30° 2 

401 1.513 0.018 1.179 

536 0.405 0.003 0.813 

651 1.412 0.007 0.500 

784 1.416 0.008 0.575 

1025 1.719 0.010 0.564 
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CHAPTER 6                                                                                                                  

RESULTS AND DISCUSSIONS 

 

6.1 Presentation of Results 

Based on the test matrix presented in Section 5.1, results of bt have been generated using both of 

the pleated drape models presented in CHAPTER 4. The current chapter presents and compares 

the results of the pleated drape models with the BAI-IS measurements presented in CHAPTER 5. 

Recall that there are twenty fabrics selected for the test (Section 5.1.3). These fabrics are itemized 

and listed in column (1) of Table 6.1. The next four columns of Table 6.1 summarize all table and 

figures (of the twenty selected fabrics) used for presenting and comparing the predicted and 

measured results. 

Column (2) of Table 6.1 lists, for each of the 20 fabrics, the tables (Table 6.2 to Table 6.21) that 

present both predicted (abbreviated to P) and measured (abbreviated to M) bt based on the test 

matrix (Section 5.1): Fr (Flat, 1.5, 2.0, 2.5), θ (0°, 10°, 20° ... 60°), and pleating profiles 

(rectangular – abbreviated to R and triangular – abbreviated to T). Results are grouped by PR, PT, 

MR, and MT where the abbreviations indicate the result type (P or M) and the pleating profile (R 

or T). For instance, PR designates predicted results based on a rectangular profile. Similarly, MT 

refers to measured results with a triangular profile. 

Column (3) of Table 6.1 lists the corresponding figures comprising four plots each and showing 

the matrix results for the four groups: (a) PR, (b) PT, (c) MR, and (d) MT. The effect of Fr and θ 

on bt is best seen through observation of the column (3) figures. 
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Then results are rearranged in various plots for further examination. These plots are assembled 

into figures that are listed in columns (4) and (5) of Table 6.1. Each of the column (4) figures has 

seven plots that compare predicted and measured (P vs M) results of different pleating profiles and 

various Fr. The seven comparisons are for flat (Fr = 1.0), R 1.5, R 2.0, R 2.5, T 1.5, T 2.0, and T 

2.5 where R and T stand for rectangular and triangular, respectively, and the numerals indicate the 

Fr values. Plots in the column (4) figures allow direct comparison between the results of pleated 

drape model predictions and BAI-IS measurements. Similarly, column (5) figures have six plots 

each, three for the pleated drape model and three for measurements. These plots compare results 

of the rectangular and triangular profiles (i.e., R vs T). There are only six plots in each of these 

figures since Fr = 1 is flat for both profiles. Plots in column (5) figures are best for examining the 

effect of pleating profiles. 
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Table 6.1: Summary of tables and figures 

 

Fabrics 
All Predicted and Measured bt 

Listed and Plotted in 4 Groups 

(PR, PT, MR, MT) 

P vs M R vs T 

(1) (2) (3) (4) (5) 

#01 2600BX_Sheeting Table 6.2 Figure 6.1 Figure 6.2 Figure 6.3 

#08 DarkBrown01 Table 6.3 Figure 6.4 Figure 6.5 Figure 6.6 

#10 DecolineLining Table 6.4 Figure 6.7 Figure 6.8 Figure 6.9 

#13 GreyOpen01 Table 6.5 Figure 6.10 Figure 6.11 Figure 6.12 

#20 SheerBlack01 Table 6.6 Figure 6.13 Figure 6.14 Figure 6.15 

#22 SheerWhite01 Table 6.7 Figure 6.16 Figure 6.17 Figure 6.18 

#24 White05 Table 6.8 Figure 6.19 Figure 6.20 Figure 6.21 

#26 BlueSoft01 Table 6.9 Figure 6.22 Figure 6.23 Figure 6.24 

#27 Yellow05 Table 6.10 Figure 6.25 Figure 6.26 Figure 6.27 

#64 FashionBlack01 Table 6.11 Figure 6.28 Figure 6.29 Figure 6.30 

#66 FashionLight01 Table 6.12 Figure 6.31 Figure 6.32 Figure 6.33 

#68 GreenOpen01 Table 6.13 Figure 6.34 Figure 6.35 Figure 6.36 

#71 RoughRed Table 6.14 Figure 6.37 Figure 6.38 Figure 6.39 

#72 Thin01 Table 6.15 Figure 6.40 Figure 6.41 Figure 6.42 

#73 Thin02 Table 6.16 Figure 6.43 Figure 6.44 Figure 6.45 

#75 Thin04 Table 6.17 Figure 6.46 Figure 6.47 Figure 6.48 

#77 WhiteOpen01 Table 6.18 Figure 6.49 Figure 6.50 Figure 6.51 

#92 PMB01 Table 6.19 Figure 6.52 Figure 6.53 Figure 6.54 

#94 PMBOpen Table 6.20 Figure 6.55 Figure 6.56 Figure 6.57 

#95 PMY Table 6.21 Figure 6.58 Figure 6.59 Figure 6.60 
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6.2 Effects of Fr, θ, Pleating Profiles, and Fabric Properties on τbt 

In order to aid the understanding of the results presented in tables and figures listed in Table 6.1, 

general discussions on the effects of test variables are offered. Such discussions also establish 

terms that are used to facilitate discussions for individual fabric and any further analysis. These 

effects are: 

 Blockage Effect (Due to Increasing Fr) 

 Enclosure Effect (Due to Increasing Fr) 

 Global θ Effect (Due to Varying θ) 

 Local θ Effect (Due to Varying θ and Pleating Profile) 

 Combined Effect of Fr, θ, and Pleating Profile 

 Effects of Fabric Solar Optical Properties 

- Insensitivity Effect 

- Effect of Ao on Blockage and Global θ Effects 

6.2.1 Blockage Effect (Due to Increasing Fr) 

Pleated drapes have a Fr greater than one. Drapes with higher Fr have more fabric material present 

in the path of radiation than those with lower Fr. Therefore, in general, increasing Fr reduces bt. 

So one effect of increasing Fr is called the “blockage” effect. 

Regardless the pleating profile or θ, the blockage effect is a general effect that bt reduces as Fr 

increases. This trend can be observed in the results of most fabrics (i.e., column (2) tables and 

column (3) figures of Table 6.1). As an example, Table 6.5 and Figure 6.10 show the results for 

Fabric #13, and the trend of bt reduces with increasing Fr is observed everywhere on Figure 6.10 

with a few exceptions at low θ for rectangular pleating (i.e., PR and MR). With the few exceptions, 

the blockage effect is still present. However, it is offset by the enclosure effect. 
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6.2.2 Enclosure Effect (Due to Increasing Fr) 

Another effect of increasing Fr is called the “enclosure” effect. Consider incident beam radiation 

on a flat fabric, the properties pertaining to the layer are bb, bd, and bt. Note that all reflected 

radiation is considered diffuse. Also, for any pleating profile, Fr dictates the width of that pleating 

profile. As Fr increases from 1 (flat), the drape starts to form pleats (an enclosure). Then a portion 

of the bt component encounters the pleated fabric. So another effect of Fr is that the pleated drape 

layer traps more reflected radiation as Fr increases (deeper pleats) or less as Fr decreases. One can 

relate high Fr to an integrating sphere with a small opening or vice versa where the opening is the 

fictitious surface considered in the pleated drape model (see Figure 4.2, Figure 4.3, and Table 4.1). 

The enclosure effect may offset the blockage effect in that one (enclosure) effect increases bt while 

the other (blockage) decreases it. Intuitively, bt is expected to decrease with increasing Fr. This is 

true for most cases except for fabrics with high reflectance. The higher the reflectance, the stronger 

the radiation field in the enclosure (e.g., integrating sphere’s highly reflecting surface). 

Furthermore, transmittance of a fabric allows the trapped radiation to be transmitted. So, in theory, 

the strongest enclosure effect is when  = 0.5 and  = 0.5. With a strong enough enclosure effect, 

it could dominate and override the blockage effect. In such cases, bt at higher Fr layer can exceed 

bt at lower Fr. 

The best example for illustrating this effect is Fabric #10 (see Table 6.4 and associated figures). 

The enclosure effect shows up in both the predicted results and the measured results of Fabric #10.  

6.2.3 Global θ Effect (Due to θ) 

The term “global” indicates that the window normal is the reference for specifying the incident 

angle. Also, the term “global” is added to exclude the effect that pleating profiles have on local 
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incidence angles. In general, the effect of increasing (global) θ is similar to the blockage effect. 

The higher θ, the more the blockage (to the incoming radiation). And bt approaches zero as θ 

increases. 

For example, based on the results of rectangular pleating profile shown in Figure 6.10 (a) and (c), 

bt reduces with increasing (global) θ. This trend is more evident for high Fr and at high θ. Then, 

for the triangular pleating profile, the change in pleating profile alters the “local” θ, which in turn 

affects the general trend at lower θ. 

6.2.4 Local θ Effect (Due to θ and Pleating Profile) 

The term “local” describes how pleating profiles change the local angle of incidence, which in turn 

affects the general trend of increasing global θ. So, as global θ increases from 0°, the local θ may 

increase or decrease. 

For example, consider a right-angle triangular profile (i.e., triangular profile with Fr = 1.414). At 

normal incidence (i.e., global θ = 0°), solar radiation is striking everywhere on the fabric surface 

at an angle (local θ) of 45°. Then at an incidence angle of θ = 45°, local θ is 0° for all incident 

radiation, and the right-angle triangular profile acts the same as the square pleats with global θ = 

0°. So, one can expect maximum effective layer transmittance at θ = 45° (instead of at the normal 

incidence, θ = 0) for the right angle triangle pleating profile. 

As a result, while the maximum bt for the rectangular pleating profile with a fixed Fr is always at 

θ = 0, the incident angle at which the maximum bt is measured or predicted can range from 0° to 

about 40° for a triangular pleated layer. This is termed the local θ effect. As an example, see Figure 

6.10 (b) and (d). 
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6.2.5 Combined Effects of θ, Fr, and Pleating Profile 

All variables affect bt, and their effects are not independent of each other. A special case of the 

local θ effect for rectangular pleated drapes is that, at normal incidence (i.e., θ = 0), the local θ is 

either 0° or 90° regardless of Fr. As a result, increasing Fr has a relatively weak effect on bt in this 

case. This is because most solar radiation needs to penetrate only one layer of fabric to enter the 

room at normal incidence. As θ increases, local θ everywhere moves away from 0° and 90°, and 

the effect of increasing Fr becomes stronger as well due to the consequent multiple layer 

transmission. Take Figure 6.10 (a) and (c) as examples. The (vertical) range of bt for various Fr 

is the smallest at θ = 0. The vertical span lengthens as θ increases. In other words, the blockage 

effect (i.e., due to increasing Fr) is stronger at high θ than at low θ. 

For the triangular pleating profile, as shown in Figure 6.10 (b) and (d), the resulting bt range for 

various Fr is the narrowest near θ = 20°. The increased bt range at lower θ is due to the local θ 

effect, and the increased range at higher θ is due to the multiple layer transmission as discussed 

above for the rectangular pleating profile. 

6.2.6 Effects of Fabric Properties 

The extent of effects described above varies as these effects are further influenced by fabric 

properties. For instance, a low transmitting fabric would not experience a strong blockage effect 

or the θ effect (both global and local). Similarly, a fabric with low  would have a weak enclosure 

effect regardless of its transmittance. So the lower the solar optical properties of a fabric, the 

weaker the discussed effects. 

6.2.6.1 Insensitivity Effect 

The term insensitivity effect is used to describe cases where fabrics with low solar optical 

properties are insensitive to change in variables. Regardless of the changes in variables, the range 
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of measured or predicted bt is always between 0 and bt of a fabric (or, in a few cases, slightly 

higher due to the enclosure effect). So, any change would be small when the possible range is 

small (i.e., for low transmitting fabrics). 

The best example for illustrating the insensitivity effect is Fabric #1 2600Bx Sheeting (bb = 

0.0146, bt = 0.0258, bt = 0.0418). As shown in Figure 6.1, Figure 6.2, and Figure 6.3, the results 

are insensitive to any variables due to very low solar optical properties. 

6.2.6.2 On Combined Effect of Variables 

As discussed in Section 6.2.5, the blockage effect (i.e., due to increasing Fr) is more evident at 

high θ. The blockage effect is also important at low θ for the triangular pleating profile. Note that 

the extent of blockage effect also depends strongly on Ao. For example, compare Fabric #13 

(Figure 6.10) to Fabric #20 (Figure 6.13) and Fabric #24 (Figure 6.19). Fabric #20 (Ao = 0.3451) 

experiences a stronger blockage effect than Fabric #13 (Ao = 0.1919). And the blockage effect is 

weaker for Fabric #24 (Ao = 0.0006). Therefore, the extent of blockage effect depends strongly on 

Ao. Note that the blockage effect mainly affects the bb component. So, as Ao decreases and as the 

bd component becomes dominant, the blockage effect diminishes. 
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Table 6.2: #01 2600BxSheeting – calculated and measured bt for various θ and Fr 

#01 2600BxSheeting ( bb = 0.0146, bt = 0.0258, bt = 0.0418) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.026 0.024 0.023 0.022  0.011 0.006 0.004  0.038 0.029 0.019 0.020  0.017 0.011 0.012 

10 0.025 0.021 0.019 0.016  0.011 0.007 0.005  0.038 0.027 0.019 0.017  0.017 0.011 0.012 

20 0.023 0.018 0.014 0.010  0.014 0.010 0.009  0.034 0.027 0.019 0.012  0.020 0.014 0.012 

30 0.020 0.015 0.010 0.006  0.017 0.016 0.011  0.028 0.025 0.017 0.007  0.024 0.016 0.011 

40 0.016 0.011 0.007 0.004  0.021 0.015 0.010  0.020 0.022 0.013 0.003  0.026 0.015 0.009 

50 0.011 0.009 0.006 0.003  0.020 0.012 0.005  0.012 0.020 0.009 0.002  0.025 0.013 0.005 

60 0.007 0.008 0.004 0.001   0.015 0.005 0.003   0.005 0.017 0.006 0.001   0.020 0.006 0.002 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.1: #01 2600BxSheeting – calculated and measured bt for various θ and Fr 
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Figure 6.2: #01 2600BxSheeting – prediction vs measurement 
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Figure 6.3: #01 2600BxSheeting – rectangular vs triangular profile 
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Table 6.3: #08 DarkBrown01 – calculated and measured bt for various θ and Fr 

#08 DarkBrown01 (τbb = 0.0000, τbt = 0.1156, ρbt = 0.2933) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.115 0.100 0.090 0.084  0.063 0.043 0.033  0.113 0.091 0.097 0.103  0.097 0.092 0.111 

10 0.113 0.095 0.080 0.069  0.065 0.046 0.036  0.110 0.090 0.095 0.099  0.095 0.087 0.109 

20 0.108 0.087 0.069 0.054  0.069 0.054 0.046  0.107 0.090 0.093 0.094  0.097 0.087 0.106 

30 0.099 0.078 0.058 0.040  0.077 0.068 0.052  0.106 0.091 0.092 0.089  0.097 0.087 0.103 

40 0.086 0.068 0.047 0.032  0.090 0.069 0.051  0.100 0.086 0.087 0.079  0.097 0.083 0.094 

50 0.072 0.058 0.040 0.029  0.091 0.067 0.050  0.092 0.083 0.083 0.071  0.093 0.078 0.083 

60 0.055 0.051 0.036 0.025  0.085 0.063 0.045  0.083 0.082 0.071 0.061  0.087 0.069 0.074 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.4: #08 DarkBrown01 – calculated and measured τbt for various θ and Fr 
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Figure 6.5: #08 DarkBrown01 – prediction vs measurement 
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Figure 6.6: #08 DarkBrown01 – rectangular vs triangular profile 
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Table 6.4: #10 DecolineLining – calculated and measured bt for various θ and Fr 

#10 DecolineLining (τbb = 0.0520, τbt = 0.3329, ρbt = 0.6229) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.333 0.347 0.352 0.352  0.300 0.287 0.280  0.258 0.274 0.299 0.322  0.195 0.279 0.298 

10 0.330 0.335 0.331 0.320  0.302 0.293 0.289  0.250 0.267 0.290 0.306  0.189 0.277 0.297 

20 0.322 0.323 0.312 0.292  0.308 0.310 0.317  0.242 0.262 0.283 0.295  0.191 0.283 0.291 

30 0.308 0.309 0.294 0.266  0.321 0.347 0.329  0.228 0.257 0.274 0.276  0.197 0.293 0.286 

40 0.288 0.294 0.277 0.246  0.348 0.339 0.317  0.204 0.247 0.259 0.253  0.193 0.284 0.256 

50 0.262 0.282 0.259 0.226  0.345 0.324 0.301  0.170 0.237 0.243 0.224  0.199 0.264 0.229 

60 0.229 0.273 0.238 0.209  0.326 0.302 0.269  0.145 0.219 0.211 0.196  0.183 0.226 0.195 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.7: #10 DecolineLining – calculated and measured τbt for various θ and Fr 
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Figure 6.8: #10 DecolineLining – prediction vs measurement 
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Figure 6.9: #10 DecolineLining – rectangular vs triangular profile 
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Table 6.5: #13 GreyOpen01 – calculated and measured bt for various θ and Fr 

#13 GreyOpen01 (τbb = 0.1919, τbt = 0.3170, ρbt = 0.1316) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.317 0.299 0.288 0.281  0.229 0.181 0.150  0.367 0.319 0.289 0.299  0.276 0.233 0.230 

10 0.313 0.280 0.250 0.225  0.231 0.187 0.160  0.361 0.303 0.279 0.279  0.276 0.239 0.228 

20 0.305 0.259 0.215 0.174  0.238 0.208 0.194  0.350 0.285 0.260 0.228  0.283 0.269 0.222 

30 0.291 0.236 0.181 0.128  0.252 0.249 0.199  0.333 0.275 0.234 0.178  0.305 0.292 0.196 

40 0.271 0.212 0.150 0.099  0.280 0.220 0.158  0.301 0.254 0.197 0.130  0.311 0.266 0.162 

50 0.245 0.188 0.123 0.064  0.260 0.169 0.090  0.252 0.228 0.167 0.092  0.297 0.217 0.100 

60 0.212 0.167 0.082 0.043  0.203 0.084 0.056  0.190 0.203 0.092 0.056  0.246 0.132 0.063 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.10: #13 GreyOpen01 – calculated and measured τbt for various θ and Fr 
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Figure 6.11: #13 GreyOpen01 – prediction vs measurement 
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Figure 6.12: #13 GreyOpen01 – rectangular vs triangular profile 
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Table 6.6: #20 SheerBlack01 – calculated and measured bt for various θ and Fr 

#20 SheerBlack01 (τbb = 0.3451, τbt = 0.4993, ρbt = 0.1178) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.499 0.480 0.468 0.460  0.407 0.351 0.311  0.548 0.478 0.477 0.495  0.485 0.413 0.406 

10 0.496 0.454 0.415 0.380  0.409 0.357 0.322  0.542 0.477 0.458 0.474  0.477 0.423 0.431 

20 0.487 0.427 0.368 0.309  0.414 0.378 0.361  0.534 0.467 0.427 0.419  0.476 0.458 0.421 

30 0.473 0.398 0.321 0.243  0.427 0.426 0.352  0.524 0.451 0.391 0.371  0.492 0.459 0.386 

40 0.453 0.366 0.273 0.190  0.458 0.368 0.271  0.498 0.423 0.366 0.314  0.492 0.411 0.322 

50 0.426 0.332 0.226 0.124  0.418 0.275 0.148  0.462 0.400 0.315 0.252  0.461 0.342 0.228 

60 0.390 0.296 0.153 0.087  0.322 0.126 0.087  0.424 0.341 0.223 0.192  0.394 0.222 0.168 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.13: #20 SheerBlack01 – calculated and measured τbt for various θ and Fr 
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Figure 6.14: #20 SheerBlack01 – prediction vs measurement 
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Figure 6.15: #20 SheerBlack01 – rectangular vs triangular profile 
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Table 6.7: #22 SheerWhite01 – calculated and measured bt for various θ and Fr 

#22 SheerWhite01 (τbb = 0.3169, τbt = 0.6496, ρbt = 0.2578) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.649 0.629 0.615 0.604  0.545 0.487 0.446  0.657 0.616 0.608 0.593  0.578 0.544 0.555 

10 0.645 0.603 0.564 0.526  0.547 0.494 0.458  0.648 0.600 0.587 0.564  0.568 0.548 0.554 

20 0.634 0.577 0.518 0.459  0.553 0.516 0.499  0.638 0.604 0.560 0.513  0.569 0.569 0.543 

30 0.616 0.548 0.473 0.394  0.568 0.570 0.498  0.627 0.591 0.543 0.463  0.573 0.569 0.525 

40 0.590 0.515 0.426 0.340  0.604 0.522 0.433  0.604 0.572 0.508 0.417  0.577 0.535 0.486 

50 0.555 0.480 0.379 0.283  0.575 0.447 0.335  0.567 0.551 0.471 0.349  0.551 0.462 0.417 

60 0.509 0.443 0.315 0.243  0.496 0.328 0.261  0.503 0.523 0.363 0.298  0.494 0.354 0.338 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.16: #22 SheerWhite01 – calculated and measured τbt for various θ and Fr 

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60

τ_
b

t

θ

P 1.0 PR 1.5 PR 2.0 PR 2.5

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60

τ_
b

t

θ

P 1.0 PT 1.5 PT 2.0 PT 2.5

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60

τ_
b

t

θ

M 1.0 MR 1.5 MR 2.0 MR 2.5

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60

τ_
b

t

θ

M 1.0 MT 1.5 MT 2.0 MT 2.5



 

159 
 
 

 

 

Figure 6.17: #22 SheerWhite01 – prediction vs measurement 
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Figure 6.18: #22 SheerWhite01 – rectangular vs triangular profile 
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Table 6.8: #24 White05 – calculated and measured bt for various θ and Fr 

#24 White05 (τbb = 0.0006, τbt = 0.2196, ρbt = 0.6110) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.220 0.220 0.216 0.209  0.176 0.158 0.148  0.203 0.177 0.191 0.206  0.182 0.199 0.207 

10 0.217 0.211 0.201 0.187  0.178 0.163 0.154  0.197 0.174 0.185 0.198  0.177 0.208 0.202 

20 0.209 0.201 0.186 0.166  0.184 0.177 0.175  0.189 0.173 0.180 0.185  0.176 0.199 0.195 

30 0.197 0.189 0.171 0.146  0.196 0.205 0.185  0.186 0.172 0.174 0.177  0.181 0.197 0.188 

40 0.179 0.177 0.158 0.133  0.217 0.203 0.183  0.168 0.165 0.165 0.158  0.178 0.188 0.172 

50 0.157 0.166 0.146 0.122  0.218 0.198 0.179  0.149 0.169 0.150 0.141  0.170 0.175 0.152 

60 0.131 0.158 0.135 0.113  0.208 0.191 0.162  0.133 0.157 0.133 0.127  0.163 0.153 0.130 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.19: #24 White05 – calculated and measured τbt for various θ and Fr 

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60

τ_
b

t

θ

P 1.0 PR 1.5 PR 2.0 PR 2.5

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60

τ_
b

t

θ

P 1.0 PT 1.5 PT 2.0 PT 2.5

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60

τ_
b

t

θ

M 1.0 MR 1.5 MR 2.0 MR 2.5

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60

τ_
b

t

θ

M 1.0 MT 1.5 MT 2.0 MT 2.5



 

162 
 
 

 

 

Figure 6.20: #24 White05 – prediction vs measurement 
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Figure 6.21: #24 White05 – rectangular vs triangular profile 
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Table 6.9: #26 BlueSoft01 – calculated and measured bt for various θ and Fr 

#26 BlueSoft01 (τbb = 0.0106, τbt = 0.1758, ρbt = 0.2622) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.175 0.154 0.139 0.130  0.104 0.072 0.056  0.179 0.150 0.131 0.140  0.137 0.109 0.138 

10 0.173 0.145 0.124 0.107  0.105 0.076 0.060  0.174 0.144 0.127 0.132  0.134 0.107 0.135 

20 0.166 0.134 0.108 0.085  0.111 0.087 0.075  0.171 0.141 0.121 0.117  0.137 0.114 0.142 

30 0.154 0.122 0.091 0.063  0.121 0.107 0.082  0.161 0.133 0.114 0.104  0.144 0.125 0.137 

40 0.139 0.108 0.075 0.051  0.138 0.106 0.078  0.144 0.126 0.107 0.091  0.148 0.118 0.124 

50 0.119 0.094 0.064 0.045  0.137 0.100 0.073  0.128 0.115 0.096 0.078  0.143 0.098 0.097 

60 0.096 0.083 0.056 0.039  0.127 0.091 0.064  0.105 0.106 0.083 0.069  0.134 0.085 0.088 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.22: #26 BlueSoft01 – calculated and measured τbt for various θ and Fr 
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Figure 6.23: #26 BlueSoft01 – prediction vs measurement 
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Figure 6.24: #26 BlueSoft01 – rectangular vs triangular profile 
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Table 6.10: #27 Yellow05 – calculated and measured bt for various θ and Fr 

#27 Yellow05 (τbb = 0.0012, τbt = 0.1506, ρbt = 0.5560) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.151 0.146 0.139 0.132  0.107 0.089 0.079  0.169 0.132 0.158 0.144  0.143 0.147 0.149 

10 0.148 0.139 0.127 0.115  0.109 0.093 0.084  0.165 0.128 0.155 0.140  0.137 0.144 0.147 

20 0.142 0.130 0.115 0.099  0.115 0.105 0.099  0.161 0.127 0.155 0.133  0.132 0.145 0.142 

30 0.131 0.120 0.103 0.083  0.125 0.125 0.108  0.154 0.128 0.150 0.125  0.140 0.148 0.142 

40 0.117 0.109 0.092 0.073  0.141 0.125 0.107  0.137 0.124 0.143 0.110  0.139 0.144 0.127 

50 0.099 0.100 0.084 0.067  0.142 0.123 0.106  0.120 0.121 0.134 0.098  0.136 0.136 0.112 

60 0.079 0.094 0.076 0.061  0.135 0.118 0.096  0.100 0.113 0.114 0.090  0.128 0.114 0.096 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.25: #27 Yellow05 – calculated and measured τbt for various θ and Fr 
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Figure 6.26: #27 Yellow05 – prediction vs measurement 
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Figure 6.27: #27 Yellow05 – rectangular vs triangular profile 
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Table 6.11: #64 FashionBlack01 – calculated and measured bt for various θ and Fr 

#64 FashionBlack01 (τbb = 0.2412, τbt = 0.3780, ρbt = 0.1596) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.378 0.361 0.350 0.342  0.291 0.240 0.205  0.409 0.380 0.357 0.344  0.291 0.239 0.233 

10 0.374 0.339 0.307 0.278  0.293 0.246 0.216  0.402 0.371 0.342 0.312  0.286 0.244 0.243 

20 0.366 0.317 0.268 0.221  0.299 0.267 0.253  0.387 0.348 0.308 0.253  0.301 0.279 0.270 

30 0.351 0.292 0.230 0.169  0.313 0.312 0.254  0.356 0.320 0.283 0.196  0.338 0.312 0.252 

40 0.331 0.265 0.194 0.132  0.343 0.275 0.202  0.311 0.286 0.240 0.147  0.370 0.291 0.226 

50 0.304 0.238 0.161 0.087  0.318 0.212 0.118  0.259 0.255 0.196 0.120  0.354 0.230 0.157 

60 0.269 0.214 0.109 0.061  0.251 0.108 0.075  0.208 0.231 0.151 0.102  0.297 0.151 0.116 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.28: #64 FashionBlack01 – calculated and measured τbt for various θ and Fr 
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Figure 6.29: #64 FashionBlack01 – prediction vs measurement 
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Figure 6.30: #64 FashionBlack01 – rectangular vs triangular profile 
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Table 6.12: #66 FashionLight01 – calculated and measured bt for various θ and Fr 

#66 FashionLight01 (τbb = 0.2537, τbt = 0.5332, ρbt = 0.3242) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.533 0.521 0.510 0.500  0.458 0.411 0.377  0.532 0.495 0.476 0.500  0.423 0.382 0.383 

10 0.530 0.500 0.469 0.437  0.459 0.417 0.387  0.521 0.481 0.457 0.461  0.419 0.383 0.396 

20 0.521 0.479 0.431 0.380  0.465 0.436 0.422  0.507 0.456 0.426 0.392  0.425 0.426 0.413 

30 0.506 0.456 0.394 0.326  0.478 0.482 0.422  0.486 0.428 0.389 0.335  0.446 0.459 0.400 

40 0.485 0.430 0.357 0.282  0.507 0.444 0.371  0.448 0.390 0.346 0.278  0.470 0.411 0.372 

50 0.456 0.403 0.318 0.235  0.486 0.385 0.293  0.395 0.355 0.310 0.248  0.454 0.342 0.294 

60 0.418 0.376 0.266 0.201  0.424 0.291 0.231  0.323 0.335 0.248 0.208  0.392 0.222 0.246 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.31: #66 FashionLight01 – calculated and measured τbt for various θ and Fr 
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Figure 6.32: #66 FashionLight01 – prediction vs measurement 
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Figure 6.33: #66 FashionLight01 – rectangular vs triangular profile 
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Table 6.13: #68 GreenOpen01 – calculated and measured bt for various θ and Fr 

#68 GreenOpen01 (τbb = 0.1552, τbt = 0.4195, ρbt = 0.2863) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.419 0.396 0.378 0.365  0.328 0.274 0.236  0.429 0.375 0.345 0.351  0.364 0.324 0.334 

10 0.416 0.377 0.342 0.309  0.329 0.279 0.246  0.419 0.370 0.334 0.325  0.359 0.326 0.331 

20 0.407 0.358 0.307 0.258  0.335 0.298 0.277  0.406 0.367 0.317 0.294  0.366 0.335 0.321 

30 0.393 0.336 0.274 0.209  0.348 0.338 0.282  0.392 0.356 0.299 0.254  0.373 0.331 0.303 

40 0.373 0.312 0.240 0.176  0.376 0.314 0.249  0.365 0.330 0.272 0.212  0.363 0.305 0.270 

50 0.345 0.288 0.211 0.144  0.362 0.273 0.196  0.330 0.306 0.236 0.169  0.344 0.264 0.215 

60 0.310 0.265 0.174 0.122  0.318 0.208 0.155  0.284 0.290 0.176 0.144  0.292 0.183 0.172 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.34: #68 GreenOpen01 – calculated and measured τbt for various θ and Fr 
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Figure 6.35: #68 GreenOpen01 – prediction vs measurement 
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Figure 6.36: #68 GreenOpen01 – rectangular vs triangular profile 
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Table 6.14: #71 RoughRed – calculated and measured bt for various θ and Fr 

#71 RoughRed (τbb = 0.0404, τbt = 0.1873, ρbt = 0.3394) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.187 0.172 0.161 0.152  0.123 0.092 0.074  0.230 0.182 0.188 0.189  0.187 0.181 0.173 

10 0.184 0.163 0.143 0.126  0.124 0.096 0.080  0.219 0.179 0.184 0.187  0.180 0.173 0.175 

20 0.177 0.151 0.125 0.101  0.131 0.110 0.099  0.213 0.180 0.181 0.173  0.177 0.166 0.174 

30 0.165 0.137 0.107 0.077  0.142 0.134 0.107  0.206 0.185 0.176 0.150  0.183 0.161 0.159 

40 0.149 0.123 0.091 0.064  0.161 0.130 0.101  0.188 0.167 0.168 0.128  0.184 0.149 0.135 

50 0.129 0.110 0.080 0.055  0.159 0.120 0.087  0.160 0.163 0.146 0.102  0.172 0.126 0.114 

60 0.105 0.100 0.067 0.047  0.143 0.100 0.073  0.122 0.150 0.107 0.082  0.152 0.101 0.094 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.37: #71 RoughRed – calculated and measured τbt for various θ and Fr 
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Figure 6.38: #71 RoughRed – prediction vs measurement 
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Figure 6.39: #71 RoughRed – rectangular vs triangular profile 
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Table 6.15: #72 Thin01 – calculated and measured bt for various θ and Fr 

#72 Thin01 (τbb = 0.4445, τbt = 0.7284, ρbt = 0.0918) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.728 0.695 0.674 0.661  0.584 0.508 0.457  0.762 0.699 0.680 0.682  0.703 0.681 0.670 

10 0.723 0.660 0.606 0.558  0.586 0.516 0.471  0.753 0.687 0.671 0.660  0.693 0.680 0.640 

20 0.711 0.625 0.545 0.469  0.594 0.542 0.520  0.741 0.685 0.650 0.610  0.683 0.683 0.619 

30 0.690 0.586 0.484 0.383  0.611 0.605 0.504  0.724 0.673 0.631 0.573  0.682 0.665 0.576 

40 0.661 0.543 0.421 0.313  0.651 0.527 0.399  0.696 0.646 0.567 0.505  0.653 0.624 0.503 

50 0.621 0.494 0.358 0.231  0.600 0.408 0.242  0.664 0.614 0.515 0.426  0.604 0.559 0.413 

60 0.569 0.441 0.268 0.180  0.474 0.218 0.161  0.622 0.547 0.387 0.357  0.514 0.420 0.354 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.40: #72 Thin01 – calculated and measured τbt for various θ and Fr 
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Figure 6.41: #72 Thin01 – prediction vs measurement 
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Figure 6.42: #72 Thin01 – rectangular vs triangular profile 
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Table 6.16: #73 Thin02 – calculated and measured bt for various θ and Fr 

#73 Thin02 (τbb = 0.3521, τbt = 0.5355, ρbt = 0.0922) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.535 0.510 0.496 0.485  0.428 0.365 0.322  0.566 0.527 0.514 0.518  0.523 0.482 0.506 

10 0.532 0.482 0.439 0.400  0.430 0.372 0.334  0.554 0.525 0.497 0.491  0.519 0.478 0.495 

20 0.522 0.453 0.388 0.325  0.436 0.394 0.375  0.540 0.519 0.471 0.449  0.512 0.487 0.471 

30 0.507 0.422 0.338 0.254  0.449 0.445 0.365  0.523 0.502 0.445 0.409  0.522 0.480 0.433 

40 0.486 0.388 0.287 0.199  0.482 0.383 0.280  0.493 0.471 0.397 0.360  0.506 0.442 0.371 

50 0.457 0.351 0.237 0.131  0.440 0.286 0.152  0.455 0.453 0.334 0.298  0.479 0.381 0.285 

60 0.418 0.311 0.162 0.093  0.339 0.131 0.091  0.408 0.383 0.228 0.202  0.415 0.283 0.210 

 

 
      (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
(c) BAI-IS Measurements – Rectangular (d) BAI-IS Measurements – Triangular 

Figure 6.43: #73 Thin02 – calculated and measured τbt for various θ and Fr 
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Figure 6.44: #73 Thin02 – prediction vs measurement 
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Figure 6.45: #73 Thin02 – rectangular vs triangular profile 
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Table 6.17: #75 Thin04 – calculated and measured bt for various θ and Fr 

#75 Thin04 (τbb = 0.4140, τbt = 0.6887, ρbt = 0.0962) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.688 0.655 0.635 0.621  0.550 0.475 0.424  0.738 0.692 0.664 0.658  0.664 0.663 0.659 

10 0.684 0.622 0.569 0.522  0.552 0.482 0.438  0.727 0.687 0.654 0.636  0.656 0.654 0.651 

20 0.672 0.588 0.510 0.436  0.559 0.508 0.485  0.713 0.679 0.627 0.605  0.653 0.635 0.614 

30 0.653 0.551 0.452 0.353  0.575 0.568 0.472  0.697 0.672 0.594 0.560  0.648 0.613 0.572 

40 0.625 0.510 0.391 0.286  0.614 0.495 0.373  0.669 0.627 0.523 0.508  0.614 0.557 0.514 

50 0.588 0.464 0.331 0.209  0.566 0.383 0.226  0.630 0.606 0.481 0.426  0.576 0.472 0.418 

60 0.538 0.414 0.246 0.162  0.448 0.206 0.150  0.587 0.533 0.354 0.334  0.495 0.366 0.339 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.46: #75 Thin04 – calculated and measured τbt for various θ and Fr 
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Figure 6.47: #75 Thin04 – prediction vs measurement 
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Figure 6.48: #75 Thin04 – rectangular vs triangular profile 
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Table 6.18: #77 WhiteOpen01 – calculated and measured bt for various θ and Fr 

#77 WhiteOpen01 (τbb = 0.1909, τbt = 0.5031, ρbt = 0.3525) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.503 0.489 0.476 0.465  0.428 0.383 0.349  0.512 0.461 0.447 0.462  0.459 0.449 0.438 

10 0.500 0.470 0.439 0.408  0.430 0.388 0.358  0.502 0.447 0.445 0.440  0.454 0.446 0.437 

20 0.491 0.451 0.405 0.365  0.435 0.406 0.390  0.492 0.440 0.425 0.398  0.457 0.452 0.415 

30 0.478 0.430 0.372 0.307  0.447 0.447 0.393  0.478 0.438 0.406 0.359  0.471 0.449 0.391 

40 0.457 0.407 0.338 0.268  0.475 0.418 0.353  0.451 0.414 0.374 0.312  0.463 0.421 0.340 

50 0.430 0.383 0.304 0.230  0.458 0.371 0.293  0.421 0.389 0.330 0.265  0.439 0.379 0.274 

60 0.394 0.359 0.261 0.202  0.410 0.299 0.239  0.376 0.335 0.242 0.205  0.393 0.285 0.228 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular  (d) BAI-IS Measurements – Triangular 

Figure 6.49: #77 WhiteOpen01 – calculated and measured τbt for various θ and Fr 
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Figure 6.50: #77 WhiteOpen01 – prediction vs measurement 
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Figure 6.51: #77 WhiteOpen01 – rectangular vs triangular profile 
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Table 6.19: #92 PMB01 – calculated and measured bt for various θ and Fr 

#92 PowerMeshBlack01 (τbb = 0.0316, τbt = 0.1325, ρbt = 0.1431) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.132 0.116 0.106 0.101  0.071 0.046 0.033  0.170 0.139 0.125 0.108  0.091 0.071 0.079 

10 0.130 0.108 0.092 0.080  0.073 0.049 0.037  0.161 0.133 0.118 0.091  0.096 0.077 0.079 

20 0.124 0.098 0.077 0.059  0.078 0.060 0.051  0.151 0.118 0.107 0.074  0.109 0.094 0.080 

30 0.114 0.086 0.062 0.039  0.088 0.078 0.058  0.133 0.101 0.095 0.064  0.121 0.118 0.073 

40 0.101 0.074 0.048 0.031  0.102 0.075 0.052  0.100 0.087 0.083 0.043  0.126 0.114 0.077 

50 0.084 0.063 0.040 0.024  0.100 0.066 0.041  0.070 0.082 0.071 0.036  0.118 0.094 0.062 

60 0.066 0.055 0.032 0.019  0.086 0.050 0.033  0.052 0.083 0.058 0.033  0.100 0.059 0.040 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.52: #92 PMB01 – calculated and measured τbt for various θ and Fr 
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Figure 6.53: #92 PMB01 – prediction vs measurement 
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Figure 6.54: #92 PMB01 – rectangular vs triangular profile 
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Table 6.20: #94 PMBOpen – calculated and measured bt for various θ and Fr 

#94 PowerMeshBlackOpen (τbb = 0.2392, τbt = 0.3138, ρbt = 0.0854) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.314 0.303 0.296 0.292  0.234 0.190 0.161  0.381 0.348 0.330 0.326  0.234 0.169 0.149 

10 0.310 0.281 0.255 0.231  0.236 0.196 0.172  0.373 0.345 0.310 0.273  0.236 0.177 0.150 

20 0.302 0.259 0.217 0.177  0.243 0.218 0.208  0.355 0.317 0.271 0.199  0.257 0.219 0.197 

30 0.288 0.235 0.181 0.128  0.258 0.262 0.210  0.326 0.289 0.229 0.122  0.290 0.251 0.205 

40 0.268 0.209 0.148 0.096  0.287 0.224 0.158  0.275 0.259 0.185 0.074  0.325 0.228 0.184 

50 0.242 0.184 0.119 0.052  0.260 0.160 0.073  0.198 0.227 0.151 0.058  0.325 0.164 0.100 

60 0.209 0.162 0.068 0.028  0.190 0.054 0.035  0.070 0.199 0.113 0.048  0.258 0.074 0.054 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.55: #94 PMBOpen – calculated and measured τbt for various θ and Fr 
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Figure 6.56: #94 PMBOpen – prediction vs measurement 
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Figure 6.57: #94 PMBOpen – rectangular vs triangular profile 
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Table 6.21: #95 PMY – calculated and measured bt for various θ and Fr 

#95 PowerMeshYellow (τbb = 0.0838, τbt = 0.4717, ρbt = 0.4173) 

θ 

Pleated Drape Models (P)  BAI-IS Measurements (M) 

  Rectangular (R)  Triangular (T)    Rectangular (R)  Triangular (T) 

Flat 1.5 2.0 2.5  1.5 2.0 2.5  Flat 1.5 2.0 2.5  1.5 2.0 2.5 

0 0.471 0.456 0.442 0.430  0.398 0.356 0.327  0.449 0.404 0.413 0.405  0.357 0.359 0.371 

10 0.468 0.441 0.412 0.383  0.399 0.361 0.335  0.441 0.396 0.394 0.383  0.353 0.357 0.367 

20 0.460 0.425 0.384 0.341  0.404 0.377 0.362  0.426 0.378 0.371 0.344  0.357 0.362 0.364 

30 0.446 0.406 0.356 0.298  0.416 0.414 0.368  0.410 0.363 0.346 0.299  0.377 0.370 0.352 

40 0.426 0.387 0.327 0.266  0.442 0.396 0.345  0.376 0.336 0.312 0.254  0.379 0.355 0.307 

50 0.399 0.366 0.299 0.240  0.434 0.369 0.314  0.329 0.311 0.273 0.227  0.371 0.326 0.270 

60 0.364 0.345 0.270 0.219  0.404 0.331 0.271  0.263 0.286 0.236 0.203  0.338 0.261 0.231 

 

 
       (a) Pleated Drape Model – Rectangular     (b) Pleated Drape Model – Triangular 

 
       (c) BAI-IS Measurements – Rectangular     (d) BAI-IS Measurements – Triangular 

Figure 6.58: #95 PMY – calculated and measured τbt for various θ and Fr 
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Figure 6.59: #95 PMY – prediction vs measurement 
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Figure 6.60: #95 PMY – rectangular vs triangular profile 
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6.3 Summary of Results 

6.3.1 Predictions vs Measurements (P vs M) 

Based on the results presented in the column (2) tables (i.e., Table 6.2 to Table 6.21), the 

differences between predicted bt and measured bt were averaged for the 49 cases in the test matrix 

for each fabric and listed as AVG in Table 6.22. The standard deviation of the differences (STD) 

is also given. In addition, the most underpredicted case (listed as Minimum Diff) and the most 

overpredicted case (listed as Maximum Diff) are also shown for each fabric in Table 6.22. In the 

cases where minimum and maximum differences are both negative (i.e., Fabrics #72 and #75), the 

pleated drape models always underpredict bt. 

 The P vs M comparisons are shown in the column (4) figures of Table 6.1. In general, the 

pleated drape models capture the effects of test variables discussed in Section 6.2 and 

provide trends that are comparable to those of BAI-IS measurements. 

 Overall, the models tend to under-predict (AVG = -0.026 and STD = 0.051 for all cases of 

all 20 fabrics). On average, the models under-predict dark/medium color fabrics and 

slightly over-predict for light color fabrics. Note that fabrics with AVG near zero or above 

are all of light colors. And AVG is negative for all dark/medium color fabrics. 

 AVG and STD are generally within  0.05 and 0.03, respectively, except for thin fabrics 

(i.e., #20, #22, #72, #73, and #75) where AVG can be as low as -0.110 and STD as high as 

0.062. All of these fabrics are in the sheer category that has a high Ao and high bt. This is 

likely due to the model simplification that bb (which is very high for the fabrics considered 

here) is considered only for the first transmission. Any subsequent contact with fabric 

yields only diffuse radiation. 
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Table 6.22: Differences between pleated drape model predictions and BAI-IS 

measurements (-ve indicates under-prediction) 

 

Fabrics AVG STD 
   Minimum   Maximum 

 Diff Case Diff Case 

#01 2600BX_Sheeting -0.004 0.004  -0.013 Flat @ θ = 10° 0.004 R 2.0 @ θ = 0° 

#08 DarkBrown01 -0.026 0.020  -0.078 T 2.5 @ θ = 0° 0.009 R 1.5 @ θ = 0° 

#10 DecolineLining 0.054 0.042  -0.018 T 2.5 @ θ = 0° 0.154 T 1.5 @ θ = 40° 

#13 GreyOpen01 -0.036 0.020  -0.080 T 2.5 @ θ = 0° 0.022 Flat @ θ = 60° 

#20 SheerBlack01 -0.064 0.029  -0.128 R 2.5 @ θ = 30° 0.002 R 1.5 @ θ = 0° 

#22 SheerWhite01 -0.035 0.034  -0.109 T 2.5 @ θ = 0° 0.027 T 1.5 @ θ = 40° 

#24 White05 0.004 0.025  -0.060 T 2.5 @ θ = 0° 0.048 T 1.5 @ θ = 50° 

#26 BlueSoft01 -0.022 0.020  -0.082 T 2.5 @ θ = 0° 0.008 R 2.0 @ θ = 0° 

#27 Yellow05 -0.024 0.019  -0.070 T 2.5 @ θ = 0° 0.014 R 1.5 @ θ = 0° 

#64 FashionBlack01 -0.020 0.022  -0.053 R 2.0 @ θ = 30° 0.061 Flat @ θ = 60° 

#66 FashionLight01 0.020 0.023  -0.024 R 2.5 @ θ = 10° 0.095 Flat @ θ = 60° 

#68 GreenOpen01 -0.014 0.027  -0.098 T 2.5 @ θ = 0° 0.033 R 2.0 @ θ = 0° 

#71 RoughRed (Burlap) -0.045 0.024  -0.099 T 2.5 @ θ = 0° 0.000 T 2.0 @ θ = 60° 

#72 Thin01 -0.101 0.062  -0.213 T 2.5 @ θ = 0° -0.002 T 1.5 @ θ = 40° 

#73 Thin02 -0.080 0.048  -0.184 T 2.5 @ θ = 0° 0.010 Flat @ θ = 60° 

#75 Thin04 -0.110 0.062  -0.234 T 2.5 @ θ = 0° -0.001 T 1.5 @ θ = 40° 

#77 WhiteOpen01 -0.011 0.028  -0.088 T 2.5 @ θ = 0° 0.029 R 2.0 @ θ = 0° 

#92 PowerMeshBlack01 -0.022 0.012  -0.046 T 2.5 @ θ = 0° 0.014 Flat @ θ = 50° 

#94 PowerMeshBlackOpen -0.021 0.037  -0.068 T 1.5 @ θ = 60° 0.139 T 1.5 @ θ = 40° 

#95 PowerMeshYellow 0.031 0.027  -0.044 T 2.5 @ θ = 0° 0.101 Flat @ θ = 60° 
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 For #01 2600BX_Sheeting, model predictions and BAI-IS measurements compare very 

well (AVG = -0.004 and STD = 0.004) with the worst case only being under-predicted with 

Minimum Diff = -0.013, a nearly perfect result. Though, as discussed in Section 6.2.6.1, 

the reason for this very good agreement is the insensitivity to any change in variables (i.e., 

due to very low solar-optical properties). So, for fabrics with extremely low solar-optical 

properties, either model can be used to predict bt. Or even a constant bt can be assigned 

in this case, and the result would still be excellent. 

 In addition, AVG and STD are also calculated based on combinations of pleating profile 

and Fr (Table 6.23) and on θ (Table 6.24). Both models tend to under-predict the high Fr 

cases. STD is the lowest for flat profile and increases with Fr for both pleating profiles. For 

θ, no convincing trend is observed in the results. 

 

Table 6.23: AVG and STD for combinations of pleating profiles and Fr 

Profile/Fr Flat R 1.5 R 2.0 R 2.5 T 1.5 T 2.0 T 2.5 

AVG -0.004 -0.018 -0.032 -0.044 -0.012 -0.029 -0.045 

STD 0.037 0.043 0.043 0.055 0.050 0.053 0.059 

 

Table 6.24: AVG and STD for various θ 

θ 0 10 20 30 40 50 60 

AVG -0.026 -0.031 -0.030 -0.027 -0.024 -0.025 -0.020 

STD 0.052 0.048 0.043 0.046 0.050 0.057 0.059 
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6.3.2 Pleating Profiles – Rectangular vs Triangular (P vs T) 

To see the effects of pleating profiles, column (5) figures of Table 6.1 compare bt for the two 

profiles. The effect of pleating profiles in model prediction is more evident than that in 

measurements. In several cases, pleating profile did not affect the measured bt. One reason is the 

physical limitation (i.e., the profile cannot be perfectly rectangular or triangular) in the pleated 

drape sample discussed in Section 5.3.2. As a result, the local θ effect discussed in Section 6.2.4 

is also more evident in the model predictions than in the measurements. 
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CHAPTER 7                                                                    

CONTRIBUTIONS, CONCLUSIONS AND 

RECOMMENDATIONS 

 

7.1 Contributions to CFS Modelling 

 An improved KUC that largely eliminated the bias and reduced the uncertainty present in 

the original KUC. 

 The b&C model approach is a new methodology that enables efficient analysis in further 

KUC research. 

 Customized KUC, an innovative way to express KUC through the b&C model approach 

and to increase the prediction accuracy, is the result of linking the convectional three-

property KUC to a fourth fabric property, fabric thickness. 

 As only rectangular models were previously available, a triangular pleated drape model 

was developed for comparison with the rectangular model and to aid the understanding of 

pleating. 

 A comprehensive set of transmittance test results was attained based on a test matrix that 

covers four folding ratios (up to 2.5), two pleating profiles (rectangular and triangular), 

20 fabrics (covering all original KUC categories plus sheer), seven angles of incidence 

(up to 60°). No previous measurement was done on the pleated drape layer alone. So this 

set of results is crucial for model development and validation. 
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7.2 Conclusions 

CFS plays a key role in various aspects of building design. For controlling solar heat gain, CFS is 

practical and the most common. Early CFS research dates back to the 1930s, but development of 

computer-based CFS models is still at an early stage. Only within the last decade does the center-

glass glazing analysis start to include CFS models for various window attachments. The ability to 

accurately and efficiently predict CFS energy performance is highly anticipated due to increasingly 

rigid energy efficiency regulations and indispensable indoor environmental quality requirements. 

Drapes, the focus of this research and the most artistic among all window shadings, come with 

endless options in terms of textile, design, style, color, function, and etc. Conventionally, energy 

performance of drapes is rated with the three solar-optical properties of drape fabrics: reflectance, 

transmittance, and openness. This is the reason that the KUC is a useful tool in estimating the 

shading effect of drapes by providing a predetermined energy performance index based on the 

conventional rectangular pleated drape model with typical glazing units. 

This study utilized a highly accurate spectrophotometer to generate the solar-optical properties for 

a set of fabrics and develop the improved KUC. The b&C model produces not only better results 

but also a methodology based on functional relationships that can be integrated into computer-

based models. The functional relationship method leads to the finding of a fourth fabric property, 

fabric thickness, that has been confirmed to have an influence on how a KUC should be defined, 

giving a customized KUC based on the fourth property.  

Parallel to the convectional rectangular pleated drape model, this study also built a triangular 

pleated drape model for comparison to better understand and quantify the effect of pleating. 

Similarly, the experiment performed with the BAI-IS dealt with both rectangular and triangular 
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pleated drape samples. A major limitation in the experiment was that pleated drape samples may 

not be comprised of the expected pleating profiles due to the physical properties of fabrics. 

Nevertheless, cross-examination of models versus measurements and rectangular profile versus 

triangular profile has aided to the understanding of pleating effect. 

Overall, the models tend to under-predict (AVG = -0.026 and STD = 0.051 for all cases of all 20 

fabrics). On average, the models under-predict dark/medium color fabrics and slightly over-predict 

for light color fabrics. Note that fabrics with AVG near zero or above are all of light colors. And 

AVG is negative for all dark/medium color fabrics. AVG and STD are generally within  0.05 and 

0.03, respectively, except for thin fabrics where AVG can be as low as -0.110 and STD as high as 

0.062. All of these fabrics are in the sheer category that has high Ao and high bt. The model 

simplification that bb is considered only for the first transmission could be the main cause for the 

under prediction. 

7.3 Recommendations 

7.3.1 Works to be done 

 Replace the original KUC with the improved KUC and update the IAC table in the 

ASHRAE handbook accordingly.  

 While all custom usage of the original KUC are retained with the improved KUC, the 

proposed customized KUC should be used for increased accuracy. In this case, each 

customized KUC needs a separate IAC table. The customized KUC can be incorporated 

into the pleated drape models to generate IAC tables. 

 The above two tasks should be repeated with the triangular pleated drape model. 
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7.3.2 Future Research 

 Fabric samples used in this work are more concentrated in the lower right region of the 

KUC. It is recommended to expand the current research to include a more balanced set of 

fabric samples. 

 The customized KUC approach demonstrated that fabric thickness is linked to KUC. It is 

recommended to examine other fabric properties following the customized KUC method. 

Some possible controlling variables include fabric material, weave, thickness, and drape 

coefficient. 

 Explore the applicability of the customized KUC approach for other window attachments 

such as insect screen and roller blind. 

 The simplification assumed in the triangular pleated drape model should be re-examined 

for the high Ao fabrics. Considering beam-beam transmission only when beam radiation is 

incident on the fabric for the first time may lead to significant errors. For high Ao fabrics, 

subsequent transmission of incident beam radiation should be considered. 

 While it is impractical to survey all pleating profiles, it is recommended to extend the BAI-

IS measurements to include pleated drape samples that are comprised of sinusoidal pleats. 

Since sinusoidal pleats do not have sharp edges as in the cases of rectangular and triangular 

pleats, the uncertainty due to varying physical properties (e.g., drape coefficients) would 

be much reduced. 

 The non-uniformity correction factor of fabrics should be considered in all future research. 
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Appendix A: List of Fabric Samples and Their Properties 

 

  KUC 
Weighted 

(400 – 1045 nm) 

 
Weighted 

(250 – 2500 nm) 

ID Name I,II,III D,M,L bt bt bd  bt bt bd 

1 2600BX_Sheeting III D 0.043 0.045 0.017  0.062 0.081 0.038 

2 22111FV_Wide_LightYellow II L 0.388 0.572 0.376  0.371 0.553 0.360 

3 22111FV_Wide_White III L 0.354 0.634 0.363  0.341 0.615 0.351 

4 BlueRough01 III M 0.142 0.446 0.139  0.116 0.406 0.114 

5 SoftBlue31 II M 0.327 0.323 0.316  0.317 0.309 0.307 

6 Brown01 III M 0.143 0.459 0.140  0.121 0.432 0.120 

7 DadSolidFM III M 0.173 0.485 0.171  0.146 0.444 0.145 

8 DarkBrown01 III M 0.175 0.400 0.178  0.158 0.380 0.161 

9 DarkGrey01 III M 0.186 0.431 0.184  0.170 0.409 0.168 

10 DecolineLining II L 0.435 0.589 0.390  0.420 0.561 0.374 

11 GoldCut01 III L 0.220 0.675 0.231  0.207 0.645 0.219 

12 Grey01 III L 0.213 0.516 0.205  0.196 0.494 0.190 

13 GreyOpen01 I D 0.407 0.155 0.158  0.409 0.157 0.163 

14 Pink01 III L 0.185 0.633 0.183  0.163 0.601 0.162 

15 Pink02 III L 0.181 0.519 0.175  0.164 0.496 0.158 

16 Pink03 III L 0.250 0.475 0.254  0.242 0.461 0.248 

17 PurpleDark01 II M 0.285 0.311 0.292  0.277 0.303 0.286 

18 PurpleLight01 III L 0.204 0.489 0.190  0.185 0.455 0.170 

19 Rockton5865000FM II L 0.443 0.563 0.404  0.431 0.547 0.393 

20 SheerBlack01 S M 0.632 0.151 0.230  0.630 0.145 0.231 

21 SheerRed01 S M 0.650 0.171 0.273  0.647 0.169 0.273 

22 SheerWhite01 S L 0.732 0.261 0.399  0.727 0.250 0.396 

23 SoilMusick01 II L 0.298 0.470 0.297  0.282 0.449 0.281 

24 White05 III L 0.255 0.635 0.259  0.237 0.609 0.242 

25 White07 III L 0.247 0.713 0.249  0.225 0.684 0.227 

26 BlueSoft01/SoftBlue30 II M 0.248 0.335 0.237  0.235 0.323 0.224 

27 Yellow05 III L 0.195 0.595 0.182  0.171 0.555 0.158 

28 YorklineLining III L 0.333 0.675 0.337  0.317 0.648 0.320 

29 Black10 III D 0.115 0.194 0.088  0.114 0.185 0.087 
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  KUC 
Weighted 

(400 – 1045 nm) 

 
Weighted 

(250 – 2500 nm) 

ID Name I,II,III D,M,L bt bt bd  bt bt bd 

30 Brown10 III M 0.191 0.427 0.190  0.180 0.409 0.179 

31 Brown Open01 II M 0.326 0.324 0.178  0.317 0.304 0.169 

32 Green01 III L 0.275 0.501 0.236  0.252 0.468 0.215 

33 Grey10 III M 0.220 0.381 0.184  0.203 0.360 0.168 

34 S_Blue01 III M 0.174 0.444 0.166  0.157 0.421 0.149 

35 S_Brown01 III L 0.175 0.502 0.170  0.157 0.477 0.153 

36 S_Gold02 III L 0.226 0.617 0.218  0.209 0.591 0.200 

37 S_Grey01 III M 0.158 0.424 0.151  0.143 0.402 0.136 

38 S_Red01 III M 0.157 0.462 0.157  0.141 0.437 0.140 

39 S_Silver01 III L 0.252 0.621 0.233  0.234 0.592 0.216 

40 Silk01 III L 0.223 0.579 0.222  0.203 0.555 0.202 

41 SilkBlack01 III M 0.178 0.412 0.161  0.157 0.380 0.142 

42 White10 III L 0.292 0.675 0.297  0.264 0.636 0.269 

43 SingaporeChintzWhite01 III L 0.377 0.625 0.381  0.362 0.610 0.366 

44 SingaporeChintzOrange01 II L 0.329 0.490 0.331  0.312 0.474 0.315 

45 SingaporeChintzBlack01 II M 0.250 0.359 0.243  0.233 0.340 0.227 

46 SheerLight01 I M 0.618 0.274 0.472  0.612 0.270 0.469 

47 ReflexGabWhite01 III L 0.312 0.697 0.310  0.296 0.674 0.294 

48 ReflexGabOrange01 III L 0.211 0.510 0.211  0.193 0.488 0.192 

49 ReflexGabBrown01 III M 0.190 0.424 0.189  0.172 0.401 0.171 

50 HorizonSuitingDarkGreen III M 0.185 0.405 0.183  0.168 0.386 0.165 

51 HorizonSuitingBlack II M 0.226 0.363 0.215  0.211 0.344 0.201 

52 BlackSoft02 II M 0.318 0.318 0.261  0.314 0.311 0.257 

53 BlackSoft01 II M 0.264 0.331 0.231  0.249 0.309 0.215 

54 100PWoolMens Medium01 II M 0.249 0.339 0.239  0.223 0.310 0.214 

55 100PWoolMens Light01 II M 0.316 0.417 0.293  0.284 0.381 0.262 

56 100PWoolMens Dark01 III D 0.132 0.234 0.129  0.131 0.227 0.129 

57 BlueSoft20 II M 0.236 0.362 0.227  0.232 0.353 0.223 

58 RedSoft20 II M 0.269 0.346 0.256  0.263 0.339 0.250 

59 WhiteSheer20 S L 0.720 0.257 0.390  0.715 0.251 0.386 

60 YellowSoft20 II L 0.395 0.485 0.381  0.388 0.479 0.374 

61 Dark30 II M 0.284 0.310 0.211  0.269 0.293 0.194 

62 Dark31 II M 0.286 0.322 0.189  0.269 0.302 0.172 
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  KUC 
Weighted 

(400 – 1045 nm) 

 
Weighted 

(250 – 2500 nm) 

ID Name I,II,III D,M,L bt bt bd  bt bt bd 

63 Dark32 III M 0.219 0.366 0.197  0.209 0.358 0.189 

64 FashionBlack01 I M 0.450 0.217 0.202  0.443 0.208 0.197 

65 FashionGreen01 I M 0.471 0.242 0.214  0.463 0.231 0.209 

66 FashionLight01 I L 0.560 0.339 0.304  0.553 0.330 0.298 

67 FashionLight02 I L 0.584 0.362 0.340  0.575 0.352 0.333 

68 GreenOpen01 I M 0.457 0.311 0.313  0.450 0.301 0.308 

69 LightGreen30 II L 0.434 0.469 0.324  0.418 0.456 0.310 

70 RoughBlack II M 0.226 0.306 0.130  0.211 0.287 0.117 

71 RoughRed III M 0.225 0.444 0.181  0.204 0.410 0.161 

72 Thin01 S D 0.805 0.064 0.227  0.804 0.063 0.229 

73 Thin02 S D 0.605 0.115 0.240  0.603 0.114 0.240 

74 Thin03 I M 0.465 0.235 0.333  0.463 0.225 0.331 

75 Thin04 S M 0.747 0.094 0.310  0.747 0.092 0.313 

76 White30 II L 0.429 0.522 0.350  0.413 0.512 0.334 

77 WhiteOpen01 I L 0.523 0.366 0.337  0.516 0.358 0.331 

78 NigataSolids III M 0.138 0.310 0.138  0.115 0.370 0.114 

79 NouvelleSkirts III M 0.203 0.412 0.192  0.188 0.336 0.178 

80 S_GreyLight III M 0.156 0.466 0.150  0.142 0.445 0.135 

81 IsakGrey II M 0.302 0.282 0.241  0.285 0.266 0.226 

82 NathanGreen II M 0.268 0.321 0.248  0.258 0.310 0.239 

83 Nathan ThickBlack III D 0.051 0.139 0.049  0.050 0.142 0.048 

84 Nathan ThickDarkBlue III M 0.101 0.335 0.100  0.094 0.321 0.093 

85 UnknownReflexGabBlack III M 0.168 0.396 0.166  0.152 0.364 0.149 

86 NathanSheerBlack II D 0.274 0.123 0.091  0.299 0.147 0.114 

87 NathanBlue III M 0.198 0.399 0.195  0.181 0.373 0.178 

88 FashionSkin I L 0.569 0.317 0.294  0.563 0.310 0.289 

89 UnknownGrey III M 0.238 0.412 0.227  0.224 0.404 0.213 

90 IsakBlack2Pieces II M 0.305 0.296 0.270  0.300 0.289 0.266 

91 IsakBlack1Piece III M 0.204 0.348 0.194  0.190 0.328 0.179 

92 PowerMeshBlack01 II D 0.188 0.200 0.155  0.199 0.205 0.166 

93 PowerMeshBlack02 II D 0.216 0.197 0.173  0.224 0.200 0.182 

94 PowerMeshBlackOpen I D 0.409 0.112 0.126  0.426 0.124 0.143 

95 PowerMeshYellow II L 0.501 0.501 0.413  0.482 0.392 0.394 
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  KUC 
Weighted 

(400 – 1045 nm) 

 
Weighted 

(250 – 2500 nm) 

ID Name I,II,III D,M,L bt bt bd  bt bt bd 

00-1 Red01 III M 0.227 0.439 0.198  0.222 0.424 0.193 

00-10 Silver01 III M 0.202 0.490 0.182  0.188 0.479 0.169 

00-12 White02 II L 0.382 0.583 0.287  0.364 0.558 0.270 

00-13 White03 III L 0.366 0.629 0.308  0.366 0.610 0.308 

0-1 Black0001 I M 0.584 0.163 0.248  0.581 0.156 0.248 

0-2 Black0002 III M 0.179 0.389 0.178  0.161 0.367 0.162 

0-3 Orange0001 III L 0.276 0.498 0.242  0.259 0.478 0.226 

0-4 Red0002 S M 0.670 0.170 0.289  0.669 0.164 0.290 

0-5 Rough_Dark0001 II M 0.339 0.272 0.165  0.328 0.248 0.155 

0-6 Rough_Light0001 II L 0.479 0.433 0.264  0.464 0.397 0.251 

0-7 Rough_Medium0001 II M 0.393 0.368 0.219  0.376 0.339 0.206 

0-8 Sandy0001 III L 0.209 0.533 0.201  0.193 0.510 0.186 

0-9 White0001 S L 0.773 0.245 0.395  0.769 0.237 0.392 

N1 Cream_Sheer S      0.800 0.190 0.350 

N2 White1_IL I L     0.560 0.420 0.300 

N3 White2_IIL II L     0.430 0.560 0.420 

N4 White3_IIIL III L     0.300 0.680 0.290 

N5 Brown_IM I M     0.640 0.230 0.310 

N6 Green_IIM II M     0.280 0.320 0.260 

N7 Blue_IIIM III M     0.200 0.380 0.190 

N8 Black1_ID I D     0.320 0.150 0.090 

N9 Black2_IID II D     0.230 0.210 0.180 

 

 

  



 

220 
 
 

Appendix B: Mathematical Formulation of KUC 

 

Openness Lines Represented by Quadratic Functions 

First, from the constant openness lines shown on the KUC, fabric transmittance, bt, was read by 

eye from zero reflectance (bt = 0) to bt at the diagonal limit line, bt = bt,limit = 1 - bt,limit, at an 

increment of bt = 0.05. These (bt, bt) points have been recorded along all constant Ao curves 

shown on the chart including Ao = 0.50, 0.40, 0.30, 0.25, 0.20, 0.10, 0.07, 0.05, 0.04, 0.03, 0.02, 

0.01, and 0.01Limit. Table A.1 includes the data collected. 

Second, the data points can be fitted using 2nd order polynomial of the form 

bt (bt) = C1 bt
2 + C2 bt + C3 (A.1) 

That is to say that the constant Ao lines take the form of bt as a function of bt. The fitting has been 

done in an Excel worksheet. The quadratic equations generated are shown in Figure A.1, each 

corresponding to a constant Ao line. The fitting is excellent with any difference between the 

original (solid) lines and the corresponding fitted (dashed) lines either not visible or insignificant. 

Figure A.1 shows the reproduced KUC, and Table A.2 summarizes the constant coefficients (C1, 

C2, and C3) of the quadratic equations shown in Figure A.1. The nine categories plus the sheer are 

shown on the reproduced KUC for clarity (Figure A.2). 
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Table A.1: Points on Keyes’ constant openness lines 

Ao = 0.50 Ao = 0.40 Ao = 0.30 Ao = 0.25 Ao = 0.20 Ao = 0.10 

bt τbt bt τbt bt τbt bt τbt bt τbt bt τbt 

0.000 0.500 0.000 0.400 0.000 0.300 0.000 0.250 0.000 0.200 0.000 0.100 

0.050 0.530 0.050 0.421 0.050 0.315 0.050 0.262 0.050 0.210 0.050 0.110 

0.100 0.565 0.100 0.442 0.100 0.333 0.100 0.280 0.100 0.225 0.100 0.125 

0.150 0.600 0.150 0.472 0.150 0.360 0.150 0.302 0.150 0.245 0.150 0.142 

0.200 0.637 0.200 0.505 0.200 0.385 0.200 0.328 0.200 0.270 0.200 0.162 

0.250 0.680 0.250 0.540 0.250 0.420 0.250 0.357 0.250 0.296 0.250 0.190 

0.287 0.713 0.300 0.585 0.300 0.456 0.300 0.390 0.300 0.329 0.300 0.220 

  0.350 0.633 0.350 0.498 0.350 0.428 0.350 0.365 0.350 0.250 

  0.358 0.642 0.400 0.540 0.400 0.470 0.400 0.410 0.400 0.285 

    0.430 0.570 0.450 0.513 0.450 0.453 0.450 0.322 

      0.468 0.532 0.500 0.500 0.500 0.365 

          0.550 0.410 

          0.570 0.430 

            

Ao = 0.07 Ao = 0.05 Ao = 0.04 Ao = 0.03 Ao = 0.02 Ao = 0.01 

bt τbt bt τbt bt τbt bt τbt bt τbt bt τbt 

0.000 0.070 0.000 0.050 0.000 0.04 0.000 0.030 0.000 0.02 0.000 0.010 

0.050 0.081 0.100 0.071 0.100 0.06 0.100 0.046 0.100 0.034 0.100 0.020 

0.100 0.098 0.200 0.108 0.200 0.093 0.200 0.075 0.200 0.059 0.200 0.036 

0.150 0.117 0.300 0.157 0.300 0.139 0.300 0.115 0.300 0.092 0.300 0.060 

0.200 0.139 0.400 0.218 0.400 0.195 0.400 0.167 0.400 0.135 0.400 0.094 

0.250 0.161 0.500 0.287 0.500 0.259 0.500 0.228 0.500 0.189 0.500 0.134 

0.300 0.188 0.600 0.364 0.600 0.335 0.600 0.298 0.600 0.255 0.600 0.183 

0.350 0.215 0.620 0.380 0.637 0.363 0.657 0.343 0.681 0.319 0.700 0.248 

0.400 0.248         0.732 0.268 

0.450 0.280           

0.500 0.317           

0.550 0.355           

0.600 0.400           

            

   0.01 Limit y = 0.25 y = 0.50    

   bt τbt bt τbt bt τbt    

   0.000 0.000 0.250 0.000 0.500 0.000    

   0.100 0.001 0.247 0.050 0.499 0.050    

   0.200 0.003 0.241 0.100 0.497 0.100    

   0.300 0.013 0.230 0.150 0.493 0.150    

   0.350 0.022 0.219 0.200 0.488 0.200    

   0.400 0.033 0.207 0.250 0.479 0.250    

   0.450 0.047 0.196 0.300 0.461 0.300    

   0.500 0.060 0.183 0.350 0.435 0.350    

   0.550 0.076 0.172 0.400 0.410 0.400    

   0.600 0.094 0.146 0.500 0.382 0.450    

   0.650 0.115 0.124 0.585 0.355 0.500    

   0.700 0.137   0.299 0.600    

   0.750 0.164   0.270 0.650    

   0.800 0.190   0.251 0.682    

   0.805 0.195        
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Figure A.1: Quadratic equations that represent the fitted openness lines 

 

 

 

 

 

 

 

 

y = 0.5539x2 + 0.5815x + 0.5000

y = 0.9601x2 + 0.3296x + 0.4000

y = 0.8470x2 + 0.2643x + 0.3000

y = 0.8007x2 + 0.2272x + 0.2500

y = 0.8625x2 + 0.1724x + 0.2000

y = 0.6921x2 + 0.1841x + 0.1000

y = 0.5230x2 + 0.2334x + 0.0700

y = 0.5567x2 + 0.1903x + 0.0500

y = 0.5375x2 + 0.1677x + 0.0400

y = 0.5403x2 + 0.1228x + 0.0300

y = 0.5219x2 + 0.0807x + 0.0200

y = 0.4299x2 + 0.0364x + 0.0100
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Table A.2: Coefficients C1, C2, and C3 for quadratic equations representing Ao = constant 

lines 

bt (bt) = C1 bt
2 + C2 bt + C3 

Ao C1 C2 C3 

0.50 .5539 .5815 0.50 

0.40 .9601 .3296 0.40 

0.30 .8470 .2643 0.30 

0.25 .8007 .2272 0.25 

0.20 .8625 .1724 0.20 

0.10 .6921 .1841 0.10 

0.07 .5230 .2334 0.07 

0.05 .5591 .1895 0.05 

0.04 .5375 .1677 0.04 

0.03 .5403 .1228 0.03 

0.02 .5219 .0807 0.02 

0.01 .4299 .0364 0.01 

0.01 Limit .3867 .0723 0 
 

 

 

Figure A.2: Reproduced KUC showing the nine original fabric categories and a sheer 

fabric category 
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Arithmetic Relationship of bt,  bt, Ao Based on the Original KUC 

Given any two properties of bt, bt, and Ao, a point can be located and plotted on the KUC to 

determine the third property. This section offers a method to determine the third property 

arithmetically (without reading from the KUC). 

On the KUC, a data point located by two of the three properties would lie in between two 

neighboring constant Ao lines, one above the point and one below it. Now, these two adjacent 

constant Ao lines, bt,Lower(bt) and bt,Upper(bt), have been represented by the quadratic equations 

discussed in Section 0. Note that at zero reflectance, bt = 0, τbt,Lower(bt =0) = AoLower and 

τbt,Upper(bt =0) = AoUpper. In other words, equations of the two adjacent constant Ao lines bounding 

the data point are used to correlate the fabric properties. 

The equation below relates the three optical properties, bt, bb, and bt, of a fabric: 

    τbb     − AoLower

AoUpper − AoLower
=

          τbt           − τbt,Lower(ρbt)

τbt,Upper(ρbt) − τbt,Lower(ρbt)
 (A.2) 

where 

 bb, bt, and bt are the solar optical properties of a fabric 

AoUpper is the openness of the nearest openness line above the point 

AoLower is the openness of the nearest openness line below the point 

bt,Upper (bt) is bt calculated using the nearest openness line above the point 

bt,Lower (bt) is bt calculated using the nearest openness line below the point 

Equation (A.2) reflects the idea that the relative location of fabric openness between the two 

adjacent (Upper and Lower) Ao lines is the same at bt = 0 and at bt = bt. On the other hand, Ao 

is taken to be linear, with respect to bt, between the values of Ao represented by Equation (A.1) 
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and Table A.2. Therefore, Equation (A.2) along with the C1, C2 and C3 constants can be used to 

calculate the third unknown property given that the other two properties are known. 

Note that either bb alone or both of bt and bt as a pair is required to choose the upper and lower 

constant Ao lines to be used in Equation (A.2). Therefore, any pair of the three properties satisfies 

the requirement. Additionally, if bt is the unknown in Equation (A.2), an iterative procedure (or 

root-finding calculation) can be used to find the solution. Otherwise, when bt or bb is the 

unknown, a more direct solution can be used. 

Bounds of the KUC 

Keyes (1967) neither considered fabrics with Ao > 0.5 nor discussed the region below Ao = 0. This 

sub-section deals with fabrics above the Ao = 0.5 line and below the Ao = 0.01 Limit line. 

Below Ao = 0.01 Limit 

Instead of using an Ao = 0 line, Keyes used a “0.01 Limit” line as his lower limit. As will be 

presented in the next section, note that none of the 117 fabrics (Section 2.3.2.2) examined in this 

study fall below the 0.01 Limit line of the Keyes Chart. Most likely, the fabric sample data used 

by Keyes were also all above the 0.01 Limit line although he did not explicitly deal with this topic. 

The 0.01 Limit line is assumed to be the zero openness (Ao = 0) line since this line starts at zero 

transmittance, bt = 0, at bt = 0. A fabric below the 0.01 Limit line, if any, is considered to have 

zero openness. For (bt,bb) or (bt, bb) with bb = 0, the 0.01 Limit line or Ao = 0 line is used to 

calculate the unknown property. 

Above Ao = 0.50 

For (bt, bb) or (bt, bb) with bb ≥ 0.50, a constant Ao line is assumed to have the same curvature 

as the Ao = 0.50 line. Similarly, the same curvature is also applied for any pair of (bt, bt) that is 
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above the Ao = 0.50 line. Therefore, for Ao > 0.50, all constant Ao lines share the same C1 and C2 

coefficients as the Ao = 0.50 line listed in Table A.2 while retaining the requirement that C3 = Ao. 

Beyond the Diagonal Limit Line 

As explained in Section 2.2.4 and as shown in Figure 2.3, it is possible that a data point is located 

beyond the theoretical diagonal limit line. In this case, the constant Ao lines are simply assumed 

to follow Equation (A.1) while allowing the reflectance to go beyond the limit (i.e., bt > limit). 

In summary, the method described here in has two functions: 

1. Estimate the third, unknown, property of a fabric: With any two known solar optical 

properties, instead of reading by eye from the KUC, the third property can be estimated 

using Equation (A.2). 

2. Plotting the triangles (Figure 2.3): With the three measured solar optical properties of a 

fabric, instead of a manual plot (e.g., Figure 2.3), Equation (A.2) can be used to generate 

the three points on the chart. The right angle point comes directly from the measured bt 

and bt. For the other two points, either bt or bt is assumed the unknown property. Then 

that “assumed” unknown property can be calculated using Equation (A.2). Combining the 

assumed unknown property and the measured known property gives a data point to be 

plotted on the KUC. Therefore, (bt,assumed_unknown and bt,measured) and (bt,measured and 

bt,assumed_unknown) are the other two points for the triangle. 

This formulation will be useful for comparison between the original KUC and any improved KUC. 
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Appendix C: Measured Fabric Thickness 

  

Unpressed Pressed Unpressed Pressed

1 2600BX_Sheeting 0.25 0.21 55 100PWool Light01 0.37 0.30

2 22111FV_Wide_LightYellow 0.18 0.16 56 100PWool Dark01 0.40 0.32

3 22111FV_Wide_White 0.16 0.13 57 BlueSoft20 0.16 0.12

4 BlueRough01 0.50 0.36 58 RedSoft20 0.19 0.13

5 SoftBlue31 0.18 0.14 59 WhiteSheer20 0.12 0.11

6 Brown01 0.89 0.71 60 YellowSoft20 0.22 0.17

7 DadSolidFM 0.42 0.32 61 Dark30 0.24 0.18

8 DarkBrown01 0.47 0.31 62 Dark31 0.23 0.18

9 DarkGrey01 0.50 0.34 63 Dark32 0.19 0.16

10 DecolineLining 0.27 0.22 64 FashionBlack01 0.20 0.18

11 GoldCut01 0.31 0.25 65 FashionGreen01 0.19 0.18

12 Grey01 0.47 0.32 66 FashionLight01 0.21 0.17

13 GreyOpen01 0.38 0.29 67 FashionLight02 0.18 0.16

14 Pink01 0.81 0.67 68 GreenOpen01 0.32 0.23

15 Pink02 0.49 0.38 69 LightGreen30 0.21 0.15

16 Pink03 0.23 0.18 70 RoughBlack 0.85 0.74

17 PurpleDark01 0.23 0.17 71 RoughRed 0.72 0.52

18 PurpleLight01 0.79 0.49 72 Thin01 0.40 0.11

19 Rockton5865000FM 0.17 0.14 73 Thin02 0.13 0.11

20 SheerBlack01 0.12 0.11 74 Thin03 0.20 0.18

21 SheerRed01 0.12 0.11 75 Thin04 0.15 0.09

22 SheerWhite01 0.12 0.12 76 White30 0.21 0.17

23 SoilMusick01 0.21 0.17 77 WhiteOpen01 0.30 0.21

24 White05 0.48 0.28 78 NigataSolids 0.86 0.46

25 White07 0.76 0.49 79 NouvelleSkirts 0.53 0.35

26 BlueSoft01/SoftBlue30 0.32 0.24 80 S_GreyLight 0.50 0.36

27 Yellow05 0.57 0.49 81 IsakGrey 0.50 0.35

28 YorklineLining 0.28 0.21 82 NathanGreen 0.21 0.17

29 Black10 0.18 0.15 83 Nathan ThickBlack 0.96 0.65

30 Brown10 0.43 0.32 84 Nathan ThickDarkBlue 0.99 0.60

31 Brown Open01 0.43 0.33 85 UnknownReflexGabBlack 0.57 0.40

32 Green01 0.44 0.36 86 NathanSheerBlack 0.63 0.51

33 Grey10 0.66 0.54 87 NathanBlue 0.44 0.35

34 S_Blue01 0.47 0.39 88 FashionSkin 0.18 0.15

35 S_Brown01 0.53 0.43 89 UnknownGrey 0.37 0.29

36 S_Gold02 0.51 0.40 90 IsakBlack2Pieces 0.13 0.10

37 S_Grey01 0.53 0.42 91 IsakBlack1Piece 0.51 0.36

38 S_Red01 0.50 0.43 92 PowerMeshBlack01 0.63 0.44

39 S_Silver01 0.48 0.37 93 PowerMeshBlack02 0.62 0.44

40 Silk01 0.42 0.30 94 PowerMeshBlackOpen 0.37 0.31

41 SilkBlack01 0.42 0.34 95 PowerMeshYellow 0.50 0.33

42 White10 0.50 0.38 00-1 Red01 0.17 0.14

43 SingaporeChintzWhite01 0.18 0.16 00-10 Silver01 0.26 0.22

44 SingaporeChintzOrange01 0.18 0.16 00-12 White02 0.59 0.48

45 SingaporeChintzBlack01 0.18 0.17 00-13 White03 0.21 0.19

46 SheerLight01 0.13 0.12 0-1 Black0001 0.13 0.12

47 ReflexGabWhite01 0.55 0.38 0-2 Black0002 0.55 0.50

48 ReflexGabOrange01 0.57 0.38 0-3 Orange0001 0.64 0.53

49 ReflexGabBrown01 0.60 0.41 0-4 Red0002 0.15 0.13

50 HorizonSuitingDarkGreen 0.47 0.32 0-5 Rough_Dark0001 0.86 0.67

51 HorizonSuitingBlack 0.45 0.36 0-6 Rough_Light0001 0.75 0.63

52 BlackSoft02 0.14 0.10 0-7 Rough_Medium0001 0.96 0.80

53 BlackSoft01 0.44 0.35 0-8 Sandy0001 0.56 0.40

54 100PWool Medium01 0.32 0.27 0-9 White0001 0.12 0.11

Thickness (mm) Thickness (mm)
No. Name No. Name
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Appendix D: Triangular Pleated Drape ILM 

 

PROGRAM TRIANGULAR_MODEL 
 

    IMPLICIT NONE 

 
REAL :: W   ! INPUT -- PLEAT WIDTH (UNITS MUST BE CONSISTENT AND MUST BE GREATER  

THAN ZERO) 

REAL :: S   ! INPUT -- PLEAT SPACING (MUST BE GREATER THAN ZERO AND S CANNOT BE  
GREATER THAN 2W) 

 

    REAL :: OMEGA_H_DEG  ! INPUT -- HORIZONTAL INCIDENT ANGLE (IN DEGREE) 
    REAL :: OMEGA_H_RAD  !       -- HORIZONTAL INCIDENT ANGLE (IN RADIAN) 

 

    REAL :: M_TAU_F_BT0  ! INPUT -- MATERIAL (FABRIC) FRONT NORMAL BEAM-TOTAL   TRANSMITTANCE 

    REAL :: M_TAU_F_BD0  ! INPUT -- MATERIAL (FABRIC) FRONT NORMAL BEAM-DIFFUSE TRANSMITTANCE 

REAL :: M_TAU_F_BB0  !       -- MATERIAL (FABRIC) FRONT NORMAL BEAM-BEAM 

TRANSMITTANCE = M_TAU_F_BT0 - M_TAU_F_BD0 
 

REAL :: M_RHO_F_BT0  !       -- MATERIAL (FABRIC) FRONT NORMAL BEAM-TOTAL   REFLECTANCE   =  

M_RHO_F_BD0 
    REAL :: M_RHO_F_BD0  ! INPUT -- MATERIAL (FABRIC) FRONT NORMAL BEAM-DIFFUSE REFLECTANCE 

    REAL :: M_RHO_F_BB0  !       -- MATERIAL (FABRIC) FRONT NORMAL BEAM-BEAM    REFLECTANCE 

 
    REAL :: RHO_Y   !       -- YARN REFLECTANCE 

 

    REAL :: M_TAU_B_BT0  !       -- MATERIAL (FABRIC) BACK  NORMAL BEAM-TOTAL   TRANSMITTANCE 
    REAL :: M_TAU_B_BD0  !       -- MATERIAL (FABRIC) BACK  NORMAL BEAM-DIFFUSE TRANSMITTANCE 

REAL :: M_TAU_B_BB0  !       -- MATERIAL (FABRIC) BACK  NORMAL BEAM-BEAM 

TRANSMITTANCE = M_TAU_B_BT0 – M_TAU_B_BD0 
 

REAL :: M_RHO_B_BT0  !       -- MATERIAL (FABRIC) BACK  NORMAL BEAM-TOTAL   REFLECTANCE   =  

M_RHO_B_BD0 
    REAL :: M_RHO_B_BD0  !       -- MATERIAL (FABRIC) BACK  NORMAL BEAM-DIFFUSE REFLECTANCE 

    REAL :: M_RHO_B_BB0  !       -- MATERIAL (FABRIC) BACK  NORMAL BEAM-BEAM    REFLECTANCE 

 
    REAL, PARAMETER :: PI = 3.14159265358979 

    REAL :: D_TO_R   !       -- WORKING TEMP (CONVERT DEGREE TO RADIAN) 

 
    REAL :: ALPHA   !       -- PLEAT ANGLE IN RADIAN (PLEAT ANGLE = PI - FOLDING ANGLE) 

    !       -- e.g., FOR RIGHT TRIANGULAR PLEATS, FLODING ANGLE = 2PI/3 SO PLEAT 

ANGLE = PI/3 
    REAL :: W_LAYER   !       -- PLEATED DRAPE LAYER WIDTH 

 

    REAL :: ALPHA_1   !       -- 90 DEGREES (PI/2) FROM NORMAL INCIDENCE 
    REAL :: ALPHA_2   !       -- MINIMUM INCIDENCE ANGLE AT WHICH THE BEAM RADIATION WILL PASS 

TWO FABRIC LAYERS OF THE TRIANGULARLY PLEATED DRAPE 

    REAL :: ALPHA_3   !       -- ANGLE FROM THE NORMAL INCIDENCE TO THE FABRIC (= ALPHA / 2) 
 

REAL :: THETA_DW_BK  !       -- INCIDENT ANGLE ON THE BACK  SIDE OF DOWN-SLOPE \ FABRIC PLEAT (IN  
RADIAN) 

REAL :: THETA_UP_FR  !       -- INCIDENT ANGLE ON THE FRONT SIDE OF   UP-SLOPE / FABRIC PLEAT (IN  

RADIAN) 

REAL :: THETA_DW_FR  !       -- INCIDENT ANGLE ON THE FRONT SIDE OF DOWN SLOPE \ FABRIC PLEAT (IN 

RADIAN) 

 
    REAL :: S_P ! -- S_P(S_PROJECTED) IS PLEAT SPACING (S) PROJECTED ONTO THE PLANE NORMAL TO INCIDENCE 

    REAL :: S1P ! -- SEE DRAWING FOR S1 AND S1P, S1P IS S1 PROJECTED ONTO THE PLANE NORMAL TO INCIDENCE 

    REAL :: S3P ! -- SEE DRAWING FOR S3 AND S3P, S3P IS S3 PROJECTED ONTO THE PLANE NORMAL TO INCIDENCE 
    REAL :: S4P ! -- SEE DRAWING FOR S4 AND S4P, S4P IS S4 PROJECTED ONTO THE PLANE NORMAL TO INCIDENCE 

 

    INTEGER :: GROUP ! -- CASE 1, 2, AND 3 -- DEPENDS ON OMEGA_H_RAD, W, AND S 
   ! -- DETERMINE THE CASE (1, 2, OR 3) 

   ! -- BASED ON THE PLEAT GEOMETRY AND THE INCIDENT ANGLE 
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    REAL :: M_RHO_F_DD !       -- MATERIAL (FABRIC) FRONT DIFFUSE-DIFFUSE   REFLECTANCE = M_RHO_F_BD 

    REAL :: M_TAU_F_DD !       -- MATERIAL (FABRIC) FRONT DIFFUSE-DIFFUSE TRANSMITTANCE = M_TAU_F_BD 
    REAL :: M_RHO_B_DD !       -- MATERIAL (FABRIC)  BACK DIFFUSE-DIFFUSE   REFLECTANCE = M_RHO_B_BD 

    REAL :: M_TAU_B_DD !       -- MATERIAL (FABRIC)  BACK DIFFUSE-DIFFUSE TRANSMITTANCE = M_TAU_B_BD 

 
    REAL :: M_RHO_F_BD_UP_FR 

    REAL :: M_TAU_F_BB_UP_FR 

    REAL :: M_TAU_F_BD_UP_FR 
    REAL :: M_TAU_F_BT_UP_FR 

    REAL :: M_RHO_F_BD_DW_FR 

    REAL :: M_TAU_F_BB_DW_FR 
    REAL :: M_TAU_F_BD_DW_FR 

    REAL :: M_TAU_F_BT_DW_FR 

    REAL :: M_RHO_F_BD_DW_BK 
    REAL :: M_TAU_F_BB_DW_BK 

    REAL :: M_TAU_F_BD_DW_BK 

    REAL :: M_TAU_F_BT_DW_BK 
 

    REAL :: M_RHO_B_BD_UP_FR 

    REAL :: M_TAU_B_BB_UP_FR 

    REAL :: M_TAU_B_BD_UP_FR 

    REAL :: M_TAU_B_BT_UP_FR 

    REAL :: M_RHO_B_BD_DW_FR 
    REAL :: M_TAU_B_BB_DW_FR 

    REAL :: M_TAU_B_BD_DW_FR 

    REAL :: M_TAU_B_BT_DW_FR 
    REAL :: M_RHO_B_BD_DW_BK 

    REAL :: M_TAU_B_BB_DW_BK 
    REAL :: M_TAU_B_BD_DW_BK 

    REAL :: M_TAU_B_BT_DW_BK 

 
    REAL :: TAU_F_BB 

    REAL :: TAU_F_BD 

    REAL :: RHO_F_BD 
    REAL :: TAU_F_BT 

 

    ! DISTANCES BETWEEN TWO POINTS (SEE DRAWINGS) 
    REAL :: AC, BD, AB, BC, CD, CF, BF, CG, AE, BE, DG, AF, FG, BG, CE, EF, DF, AH 

 

    ! VIEW FACTORS 
REAL :: F1B3B, F1B4B, F2B3B, F2B4B, & 

 F3B1B, F4B1B, F3B2B, F4B2B, & 

 F1B7B, F2B7B, F3B7B, F4B7B, F7B4B 
REAL :: F1F3F, F1F4F, F2F3F, F2F4F, & 

 F3F1F, F4F1F, F3F2F, F4F2F, & 

 F1F7F, F2F7F, F3F7F, F4F7F, F7F4F 
 

    ! VIEW FACTORS 

    REAL :: F5F1F, F5F2F, F5F3F, F5F4F, F5F7F 
    REAL :: F6B1B, F6B2B, F6B3B, F6B4B, F6B7B 

 

    REAL :: Z1B_BD, Z4B_BD, Z7B_BD, Z1F_BD, Z4F_BD, Z7F_BD 
 

    ! SEE DRAWINGS FOR SURFACE NUMBERS 

    REAL :: J1B , J2B , J3B , J4B , J6B , J7B  ! J = RADIOSITY, #B = BACK SURFACES 
    REAL :: J1F , J2F , J3F , J4F , J5F , J7F  ! J = RADIOSITY, #F = FRONT SURFACES 

    REAL :: G5F , G6B        ! G = IRRADIANCE 

 

    INTEGER, PARAMETER :: N = 12 

    ! ********************THIS NUMBER IS DETERMINED BY THE MODEL********************************* 

    REAL :: A ( N , N + 2 ) 
    REAL :: XSOL ( N ) 

 

    INTEGER I 
 

    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

    ! 
    ! 

    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
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    ! INPUTS: PLEAT GEOMETRY AND INCIDENT ANGLE 

 W = 3.75                 ! INPUT -- INPUT A VALUE 
 S = 3.00                 ! INPUT -- INPUT A VALUE -- NOTE THAT S CAN'T BE > 2*W 

 OMEGA_H_DEG = 0.00 ! INPUT -- INPUT A VALUE -- LIMIT OMEGA_H_DEG FROM -89.99 TO +89.99 BY 

! SYMMETRY, OPTICAL PROPERTIES ARE THE SAME AT +/- ANGLE 
 

 

! INPUTS: FABRIC PROPERTIES (M_TAU_F_BT0, M_TAU_F_BD0, M_RHO_F_BD0 ARE RESULTS OF CARY 5000  
! MEASUREMENTS) 

    M_TAU_F_BT0 = 0.4717               ! INPUT -- INPUT A VALUE 

    M_TAU_F_BD0 = 0.3879                     ! INPUT -- INPUT A VALUE 
    M_RHO_F_BD0 = 0.4173               ! INPUT -- INPUT A VALUE 

 

    ! TAU_BT = TAU_BB + TAU_BD 
    M_TAU_F_BB0 = M_TAU_F_BT0 - M_TAU_F_BD0 

 

    ! EQUATION 4.1/4.2 AND 4.3/4.4 
    M_RHO_F_BB0 = 0.00  ! ASSUMED TO BE 0 - SEE CHAPTER OF NATHAN'S THESIS (EQUATION 4.1 AND 4.2) 

    M_RHO_F_BT0 = M_RHO_F_BD0 + M_RHO_F_BB0 

! M_RHO_F_BT0 = M_RHO_F_BD0 SINCE M_RHO_F_BB0 = 0 

    RHO_Y = MAX ( 0.00001, M_RHO_F_BT0 / MAX ( 0.00001, 1.0 - M_TAU_F_BB0 ) ) 

! EQUATION 4.3/4.4 WITH MINIMUM YAR REFLECTANCE = 0.00001 

 
! ASSUME FRONT AND BACK FABRIC PROPERTIES ARE THE SAME UNLESS FRONT AND BACK SURFACES OF A FABRIC 

! ARE DIFFERENT 

    M_TAU_B_BB0 = M_TAU_F_BB0 
    M_TAU_B_BT0 = M_TAU_F_BT0 

    M_TAU_B_BD0 = M_TAU_F_BD0 
    M_RHO_B_BB0 = M_RHO_F_BB0 

    M_RHO_B_BT0 = M_RHO_F_BT0 

    M_RHO_B_BD0 = M_RHO_F_BD0 
 

    ! CHECK FOR CORRECT INPUT RANGE: S MUST BE < 2W 

    IF  ( W < S / 2.0 ) THEN 
 WRITE (*,*) 'INPUT ERROR: S SHOULD BE > 2W' 

 STOP 

    ELSE IF ( W < 0.0)  THEN 
WRITE (*,*) 'INPUT ERROR: W SHOULD BE POSITIVE' 

STOP 

    ELSE IF ( S < 0.0)  THEN 
WRITE (*,*) 'INPUT ERROR: S SHOULD BE POSITIVE' 

STOP 

    END IF 
 

    ! CHECK FOR CORRECT INPUT RANGE: OMEGA_H_DEG SHOULD BE WITHIN +90 TO -90 DEGREES 

    IF ( OMEGA_H_DEG < -90.0 .OR. OMEGA_H_DEG > 90.0 ) THEN 
WRITE (*,*) 'INPUT ERROR: INCIDENT ANGLE MUST BE WITHIN +- 90 DEGREES' 

STOP 

    END IF 
 

    IF ( M_TAU_F_BT0 < M_TAU_F_BD0 ) THEN 

WRITE (*,*) 'WARNING: INPUT FABRIC PROPERTIES TAU_F_BT0 < TAU_F_BD0' 
WRITE (*,*) 'CHECK FABRIC PROPERTIES MEASUREMENTS AND THEIR DIFFERENCE' 

    END IF 

 
    ! FACTOR CONVERTING DEGREE TO RADIAN 

    D_TO_R = PI / 180.0 

 

 

    DO I = 1, 7 

 
    ! CONSIDER POSITITVE INCIDENT ANGLE ONLY, LIMIT ANGLE FROM -89.999999 TO 89.999999 

    ! THEN CONVERT TO RADIAN 

    OMEGA_H_DEG = ABS ( MAX ( -89.99999 , MIN ( 89.99999 , OMEGA_H_DEG ) ) ) 
    OMEGA_H_RAD = OMEGA_H_DEG * D_TO_R 

 

    ! CALCULATE WORKING TEMPS BASED ON S, W, AND INCIDENT ANGLE. SEE DRAWINGS FOR MORE DETAILS 
    ALPHA = 2.0 * ASIN ( ( S / 2.0 ) / W ) 

    W_LAYER = W * COS ( ALPHA / 2.0 ) 
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    ! NORMAL INCIDENCE (OMEGA_H = 0) AND THE THREE ALPHA_# DETERMINE THE RANGES OF THE THREE CASES 

    ALPHA_1 = PI / 2.0 
    ALPHA_2 = ATAN( 1.5 * S / W_LAYER ) 

    ALPHA_3 = ALPHA / 2.0 

 
 

 

    ! PROJECTED SURFACES ON THE PLANE PERPENDICULAR TO INCIDENT RADIATION 
    S_P = S * COS ( OMEGA_H_RAD ) 

    S1P = ( 1.5 * S - W_LAYER * TAN ( OMEGA_H_RAD ) ) * COS ( OMEGA_H_RAD ) 

    S3P = W * SIN ( ALPHA / 2.0 - OMEGA_H_RAD ) 
    S4P = W * SIN ( ALPHA / 2.0 + OMEGA_H_RAD ) 

 

    ! DETERMINE THE CASE I, II, OR III 
    IF   ( OMEGA_H_RAD > ALPHA_2 .AND. OMEGA_H_RAD <= ALPHA_1 ) THEN 

 GROUP = 1 

THETA_DW_BK = ABS( PI / 2.0 - OMEGA_H_RAD + ALPHA / 2.0 ) 
THETA_UP_FR = ABS( PI / 2.0 - OMEGA_H_RAD - ALPHA / 2.0 ) 

!THETA_DW_FR = 0.0 

    ELSE IF ( OMEGA_H_RAD > ALPHA_3 .AND. OMEGA_H_RAD <= ALPHA_2 ) THEN 

 GROUP = 2 

         THETA_DW_BK = ABS( PI / 2.0 - OMEGA_H_RAD + ALPHA / 2.0 ) 

         THETA_UP_FR = ABS( PI / 2.0 - OMEGA_H_RAD - ALPHA / 2.0 ) 
         !THETA_DW_FR = 0.0 

    ELSE IF ( OMEGA_H_RAD >= 0.0    .AND. OMEGA_H_RAD <= ALPHA_3 ) THEN 

 GROUP = 3 
         !THETA_DW_BK = 0.0 

         THETA_UP_FR = ABS( PI / 2.0 - OMEGA_H_RAD - ALPHA / 2.0 ) 
         THETA_DW_FR = ABS( PI / 2.0 + OMEGA_H_RAD - ALPHA / 2.0 ) 

    ELSE 

 WRITE (*,*) 'IF YOU SEE THIS MESSAGE, THERE IS SOMETHING WRONG WITH THE CODE' 
 STOP 

    END IF 

 
    ! (CASE I)   FRONT SIDE OF UP SLOPE SURFACE AND  BACK SIDE OF DOWN SLOPE SURFACE 

    ! (CASE II)  FRONT SIDE OF UP SLOPE SURFACE AND  BACK SIDE OF DOWN SLOPE SURFACE 

    ! (CASE III) FRONT SIDE OF UP SLOPE SURFACE AND FRONT SIDE OF DOWN SLOPE SURFACE 
    !THETA_DW_BK = ABS( PI / 2.0 - OMEGA_H_RAD + ALPHA / 2.0 ) 

    !THETA_UP_FR = ABS( PI / 2.0 - OMEGA_H_RAD - ALPHA / 2.0 ) 

    !THETA_DW_FR = ABS( PI / 2.0 + OMEGA_H_RAD - ALPHA / 2.0 ) 
 

 

    CALL FM_SOL_DIFFUSE  & 
                        (   & 

                        M_RHO_F_BT0 ,  & 

                        M_TAU_F_BT0 ,  & 
                        M_TAU_F_BB0 ,  & 

                        M_RHO_F_DD ,  & 

                        M_TAU_F_DD  & 
                        ) 

    CALL FM_SOL_DIFFUSE                  & 

                        (                 & 
                        M_RHO_B_BT0 ,    & 

                        M_TAU_B_BT0 ,    & 

                        M_TAU_B_BB0 ,    & 
                        M_RHO_B_DD ,     & 

                        M_TAU_B_DD       & 

                        ) 

    ! SOLVING FOR UP SLOPE FRONT SURFACE FABRIC PROPERTIES 

    CALL FM_SOL_BEAM  & 

  (                     & 
                    THETA_UP_FR ,        & 

                    M_RHO_F_BT0 ,        & 

                    M_TAU_F_BB0 ,       & 
                    M_TAU_F_BT0 ,        & 

                    M_RHO_F_BD_UP_FR ,   & 

                    M_TAU_F_BB_UP_FR ,  & 
                    M_TAU_F_BD_UP_FR     & 

                    ) 

 M_TAU_F_BT_UP_FR = M_TAU_F_BB_UP_FR + M_TAU_F_BD_UP_FR 
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    ! SOLVING FOR DOWN SLOPE FRONT SURFACE FABRIC PROPERTIES 

    CALL FM_SOL_BEAM                     & 
                    (                     & 

                    THETA_DW_FR ,        & 

                    M_RHO_F_BT0 ,        & 
                    M_TAU_F_BB0 ,        & 

                    M_TAU_F_BT0 ,        & 

                    M_RHO_F_BD_DW_FR ,   & 
                    M_TAU_F_BB_DW_FR ,   & 

                    M_TAU_F_BD_DW_FR     & 

                    ) 
    M_TAU_F_BT_DW_FR = M_TAU_F_BB_DW_FR + M_TAU_F_BD_DW_FR 

    ! SOLVING FOR DOWN SLOPE BACK SURFACE FABRIC PROPERTIES 

 CALL FM_SOL_BEAM & 
                    (                     & 

                    THETA_DW_BK ,        & 

                    M_RHO_B_BT0 ,        & 
                    M_TAU_B_BB0 ,        & 

                    M_TAU_B_BT0 ,        & 

                    M_RHO_B_BD_DW_BK ,   & 

                    M_TAU_B_BB_DW_BK ,   & 

                    M_TAU_B_BD_DW_BK     & 

                    ) 
    M_TAU_B_BT_DW_BK = M_TAU_B_BB_DW_BK + M_TAU_B_BD_DW_BK 

 

 
 

    ! THE FOLLOWING SET OF DISTANCES (EACH BETWEEN TWO POINTS) CAN BE USED FOR ALL 3 CASES 
    ! BUT THE VIEW FACTORS HAVE TO BE DEFINED SEPARATELY FOR EACH CASE 

    AC = S 

    BD = S 
    AB = W 

    BC = W 

    CD = W 
    CF = S * SIN ( PI / 2 - OMEGA_H_RAD ) / SIN ( OMEGA_H_RAD + ALPHA / 2 ) 

    BF = W - CF 

    CG = CF * SIN ( PI - OMEGA_H_RAD - ALPHA / 2 ) / SIN ( OMEGA_H_RAD - ALPHA / 2 ) 
    AE = CG 

    BE = W - AE 

    DG = BE 
    AF = S * SIN ( PI / 2 - ALPHA / 2 ) / SIN ( OMEGA_H_RAD + ALPHA / 2 ) 

    FG = CF * AF / BF 

    BG = SQRT ( BF**2 + FG**2 - 2 * BF * FG * COS ( OMEGA_H_RAD + ALPHA / 2 ) ) 
    CE = SQRT (  S**2 + AE**2 - 2 *  S * AE * COS (  PI / 2 - ALPHA / 2 ) ) 

    EF = SQRT ( AF**2 + AE**2 - 2 * AF * AE * COS ( OMEGA_H_RAD - ALPHA / 2 ) ) 

    DF = SQRT (  S**2 + BF**2 - 2 *  S * BF * COS (  PI / 2 - ALPHA / 2 ) ) 
    ! AH ONLY APPLIES TO CASE 3 

    AH = W * SIN ( ALPHA / 2 - OMEGA_H_RAD ) / SIN ( PI / 2 + OMEGA_H_RAD ) 

 
    SELECT CASE (GROUP) 

    CASE (1) 

  ! DETERMINE TAU_F_BB FOR CASE 1 
  TAU_F_BB = 0.0 

  ! CASE 1 VIEW FACTORS 

  F1B3B = ( ( BC + FG ) - ( CF + BG ) ) / ( 2 * CG ) 
  F1B4B = ( ( CF + CG ) - ( FG      ) ) / ( 2 * CG ) 

  F2B3B = ( ( BG + DF ) - ( FG + BD ) ) / ( 2 * DG ) 

  F2B4B = ( ( FG + CD ) - ( CG + DF ) ) / ( 2 * DG ) 

  F3B1B = F1B3B * CG / BF 

  F4B1B = F1B4B * CG / CF 

  F3B2B = F2B3B * DG / BF 
  F4B2B = F2B4B * DG / CF 

  ! 

  !F1B7B = 0.0 
  !F2B7B = 0.0 

  !F3B7B = 0.0 

  F4B7B = 0.0 
  F7B4B = 0.0 

        !F1F7F = 0.0 

  !F2F7F = 0.0 
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  !F3F7F = 0.0 

  F4F7F = 0.0 
  F7F4F = 0.0 

  ! 

  F1F3F = ( ( AB + EF ) - ( AF + BE ) ) / ( 2 * AE ) 
  F1F4F = ( ( AF + CE ) - ( AC + EF ) ) / ( 2 * AE ) 

  F2F3F = ( ( BE + BF ) - ( EF      ) ) / ( 2 * BE ) 

  F2F4F = ( ( BC + EF ) - ( CE + BF ) ) / ( 2 * BE ) 
  F3F1F = F1F3F * AE / BF 

  F4F1F = F1F4F * AE / CF 

  F3F2F = F2F3F * BE / BF 
  F4F2F = F2F4F * BE / CF 

          ! 

  F5F1F = ( ( AC + AE ) - ( CE      ) ) / ( 2 * AC ) 
  F5F2F = ( ( AB + CE ) - ( AE + BC ) ) / ( 2 * AC ) 

  F5F3F = ( ( BC + AF ) - ( AB + CF ) ) / ( 2 * AC ) 

  F5F4F = ( ( AC + CF ) - ( AF      ) ) / ( 2 * AC ) 
  F5F7F = 0.0 

         ! 

  F6B1B = ( ( BG + CD ) - ( BC + DG ) ) / ( 2 * BD ) 

  F6B2B = ( ( DG + BD ) - ( BG      ) ) / ( 2 * BD ) 

  F6B3B = ( ( BF + BD ) - ( DF      ) ) / ( 2 * BD ) 

  F6B4B = ( ( BC + DF ) - ( BF + CD ) ) / ( 2 * BD ) 
  F6B7B = 0.0 

 

  Z1B_BD = M_TAU_F_BB_UP_FR * M_RHO_B_BD_DW_BK * S / AE 
  Z4B_BD = M_TAU_F_BD_UP_FR * S / CF 

  Z7B_BD = 0.0 
 

  Z1F_BD = M_TAU_F_BB_UP_FR * M_TAU_B_BD_DW_BK * S / AE 

  Z4F_BD = M_RHO_F_BD_UP_FR * S / CF 
  Z7F_BD = 0.0 

 

    CASE (2) 
  ! DETERMINE TAU_F_BB FOR CASE 2 

  TAU_F_BB = S1P / S_P * M_TAU_F_BB_UP_FR 

  ! CASE 2 VIEW FACTORS 
  F1B3B = ( ( BC + DF ) - ( CF + BD ) ) / ( 2 * CD ) 

  F1B4B = ( ( CD + CF ) - ( DF      ) ) / ( 2 * CD ) 

  F2B3B = 0.0 
  F2B4B = 0.0 

  F3B1B = F1B3B * CD / BF 

  F4B1B = F1B4B * CD / CF 
  F3B2B = 0.0 

  F4B2B = 0.0 

  !F1B7B = 0.0 
  !F2B7B = 0.0 

  !F3B7B = 0.0 

  F4B7B = 0.0 
  F7B4B = 0.0 

  F1F3F = ( ( AB + BF ) - ( AF      ) ) / ( 2 * AB ) 

  F1F4F = ( ( AF + BC ) - ( AC + BF ) ) / ( 2 * AB ) 
  F2F3F = 0.0 

  F2F4F = 0.0 

  F3F1F = F1F3F * AB / BF 
  F4F1F = F1F4F * AB / CF 

  F3F2F = 0.0 

  F4F2F = 0.0 

  !F1F7F = 0.0 

  !F2F7F = 0.0 

  !F3F7F = 0.0 
  F4F7F = 0.0 

  F7F4F = 0.0 

 
  F5F1F = ( ( AB + AC ) - ( BC      ) ) / ( 2 * AC ) 

  F5F2F = 0.0 

  F5F3F = ( ( BC + AF ) - ( AB + CF ) ) / ( 2 * AC ) 
  F5F4F = ( ( AC + CF ) - ( AF      ) ) / ( 2 * AC ) 

  F5F7F = 0.0 
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  F6B1B = ( ( BD + CD ) - ( BC      ) ) / ( 2 * BD ) 

  F6B2B = 0.0 
  F6B3B = ( ( BF + BD ) - ( DF      ) ) / ( 2 * BD ) 

  F6B4B = ( ( BC + DF ) - ( BF + CD ) ) / ( 2 * BD ) 

  F6B7B = 0.0 
 

  Z1B_BD = M_TAU_F_BB_UP_FR * M_RHO_B_BD_DW_BK * S / AE 

  Z4B_BD = M_TAU_F_BD_UP_FR * S / CF 
  Z7B_BD = 0.0 

 

  Z1F_BD = M_TAU_F_BB_UP_FR * M_TAU_B_BD_DW_BK * S / AE 
  Z4F_BD = M_RHO_F_BD_UP_FR * S / CF 

  Z7F_BD = 0.0 

 
    CASE (3) 

  ! DETERMINE TAU_F_BB FOR CASE 3 

  TAU_F_BB = ( S3P * M_TAU_F_BB_DW_FR + S4P * M_TAU_F_BB_UP_FR ) / S_P 
  ! CASE 3 VIEW FACTORS 

  F1B3B = 0.0 

  F1B4B = 0.0 

  F2B3B = 0.0 

  F2B4B = 0.0 

  F3B1B = 0.0 
  F4B1B = 0.0 

  F3B2B = 0.0 

  F4B2B = 0.0 
  !F1B7B = 0.0 

  !F2B7B = 0.0 
  !F3B7B = 0.0 

  F4B7B = ( BC + CD - BD ) / ( 2 * CD ) 

  F7B4B = F4B7B 
  F1F3F = 0.0 

  F1F4F = 0.0 

  F2F3F = 0.0 
  F2F4F = 0.0 

  F3F1F = 0.0 

  F4F1F = 0.0 
  F3F2F = 0.0 

  F4F2F = 0.0 

  !F1F7F = 0.0 
  !F2F7F = 0.0 

  !F3F7F = 0.0 

  F4F7F = F4B7B 
  F7F4F = F4B7B 

 

  F5F1F = 0.0 
  F5F2F = 0.0 

  F5F3F = 0.0 

  F5F4F = ( ( AC + BC ) - ( AB      ) ) / ( 2 * AC ) 
  F5F7F = F5F4F 

 

  F6B1B = 0.0 
  F6B2B = 0.0 

  F6B3B = 0.0 

  F6B4B = F5F4F 
  F6B7B = F5F4F 

 

  Z1B_BD = 0.0 

  Z4B_BD = M_TAU_F_BD_UP_FR * S / CF 

  Z7B_BD = M_TAU_F_BD_DW_FR * AH / W 

 
  Z1F_BD = 0.0 

  Z4F_BD = M_RHO_F_BD_UP_FR * S / CF 

  Z7F_BD = M_RHO_F_BD_DW_FR * AH / W 
 

    END SELECT 

 
    A       = 0.0   ! INITIALIZE RADIOSITY MATRIX COEFFICIENTS 

    XSOL    = 0.0   ! INITIALIZE SOLUTION VECTOR COEFFICIENTS 
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 A(1,1)  = -1.0 

 A(1,2)  = 0.0 
 A(1,3)  = M_RHO_B_DD * F1B3B 

 A(1,4)  = M_RHO_B_DD * F1B4B 

 A(1,5)  = 0.0 
 A(1,6)  = 0.0 

 A(1,7)  = 0.0 

 A(1,8)  = 0.0 
 A(1,9)  = M_TAU_F_DD * F1F3F 

 A(1,10) = M_TAU_F_DD * F1F4F 

 A(1,11) = 0.0 
 A(1,12) = 0.0 

 A(1,13) = -Z1B_BD 

 A(2,1)  = 0.0 
 A(2,2)  = -1.0 

 A(2,3)  = M_RHO_B_DD * F2B3B 

 A(2,4)  = M_RHO_B_DD * F2B4B 
 A(2,5)  = 0.0 

 A(2,6)  = 0.0 

 A(2,7)  = 0.0 

 A(2,8)  = 0.0 

 A(2,9)  = M_TAU_F_DD * F2F3F 

 A(2,10) = M_TAU_F_DD * F2F4F 
 A(2,11) = 0.0 

 A(2,12) = 0.0 

 A(2,13) = 0.0 
 A(3,1)  = M_RHO_B_DD * F3B1B 

 A(3,2)  = M_RHO_B_DD * F3B2B 
 A(3,3)  = -1.0 

 A(3,4)  = 0.0 

 A(3,5)  = 0.0 
 A(3,6)  = 0.0 

 A(3,7)  = M_TAU_F_DD * F3F1F 

 A(3,8)  = M_TAU_F_DD * F3F2F 
 A(3,9)  = 0.0 

 A(3,10) = 0.0 

 A(3,11) = 0.0 
 A(3,12) = 0.0 

 A(3,13) = 0.0 

 A(4,1)  = M_RHO_B_DD * F4B1B 
 A(4,2)  = M_RHO_B_DD * F4B2B 

 A(4,3)  = 0.0 

 A(4,4)  = -1.0 
 A(4,5)  = 0.0 

 A(4,6)  = M_RHO_B_DD * F4B7B 

 A(4,7)  = M_TAU_F_DD * F4F1F 
 A(4,8)  = M_TAU_F_DD * F4F2F 

 A(4,9)  = 0.0 

 A(4,10) = 0.0 
 A(4,11) = 0.0 

 A(4,12) = M_TAU_F_DD * F4F7F 

 A(4,13) = -Z4B_BD 
 A(5,1)  = 0.0 

 A(5,2)  = 0.0 

 A(5,3)  = 0.0 
 A(5,4)  = 0.0 

 A(5,5)  = -1.0 

 A(5,6)  = 0.0 

 A(5,7)  = 0.0 

 A(5,8)  = 0.0 

 A(5,9)  = 0.0 
 A(5,10) = 0.0 

 A(5,11) = 0.0 

 A(5,12) = 0.0 
 A(5,13) = 0.0 

 A(6,1)  = 0.0 

 A(6,2)  = 0.0 
 A(6,3)  = 0.0 

 A(6,4)  = M_RHO_B_DD * F7B4B 

 A(6,5)  = 0.0 
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 A(6,6)  = -1.0 

 A(6,7)  = 0.0 
 A(6,8)  = 0.0 

 A(6,9)  = 0.0 

 A(6,10) = M_TAU_F_DD * F7F4F 
 A(6,11) = 0.0 

 A(6,12) = 0.0 

 A(6,13) = -Z7B_BD 
 A(7,1)  = 0.0 

 A(7,2)  = 0.0 

 A(7,3)  = M_TAU_B_DD * F1B3B 
 A(7,4)  = M_TAU_B_DD * F1B4B 

 A(7,5)  = 0.0 

 A(7,6)  = 0.0 
 A(7,7)  = -1.0 

 A(7,8)  = 0.0 

 A(7,9)  = M_RHO_F_DD * F1F3F 
 A(7,10) = M_RHO_F_DD * F1F4F 

 A(7,11) = 0.0 

 A(7,12) = 0.0 

 A(7,13) = -Z1F_BD 

 A(8,1)  = 0.0 

 A(8,2)  = 0.0 
 A(8,3)  = M_TAU_B_DD * F2B3B 

 A(8,4)  = M_TAU_B_DD * F2B4B 

 A(8,5)  = 0.0 
 A(8,6)  = 0.0 

 A(8,7)  = 0.0 
 A(8,8)  = -1.0 

 A(8,9)  = M_RHO_F_DD * F2F3F 

 A(8,10) = M_RHO_F_DD * F2F4F 
 A(8,11) = 0.0 

 A(8,12) = 0.0 

 A(8,13) = 0.0 
 A(9,1)  = M_TAU_B_DD * F3B1B 

 A(9,2)  = M_TAU_B_DD * F3B2B 

 A(9,3)  = 0.0 
 A(9,4)  = 0.0 

 A(9,5)  = 0.0 

 A(9,6)  = 0.0 
 A(9,7)  = M_RHO_F_DD * F3F1F 

 A(9,8)  = M_RHO_F_DD * F3F2F 

 A(9,9)  = -1.0 
 A(9,10) = 0.0 

 A(9,11) = 0.0 

 A(9,12) = 0.0 
 A(9,13) = 0.0 

 A(10,1) = M_TAU_B_DD * F4B1B 

 A(10,2) = M_TAU_B_DD * F4B2B 
 A(10,3) = 0.0 

 A(10,4) = 0.0 

 A(10,5) = 0.0 
 A(10,6) = M_TAU_B_DD * F4B7B 

 A(10,7) = M_RHO_F_DD * F4F1F 

 A(10,8) = M_RHO_F_DD * F4F2F 
 A(10,9) = 0.0 

 A(10,10) = -1.0 

 A(10,11) = 0.0 

 A(10,12) = M_RHO_F_DD * F4F7F 

 A(10,13) = -Z4F_BD 

 A(11,1) = 0.0 
 A(11,2) = 0.0 

 A(11,3) = 0.0 

 A(11,4) = 0.0 
 A(11,5) = 0.0 

 A(11,6) = 0.0 

 A(11,7) = 0.0 
 A(11,8) = 0.0 

 A(11,9) = 0.0 

 A(11,10) = 0.0 
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 A(11,11) = -1.0 

 A(11,12) = 0.0 
 A(11,13) = 0.0 

 A(12,1) = 0.0 

 A(12,2) = 0.0 
 A(12,3) = 0.0 

 A(12,4) = M_TAU_B_DD * F7B4B 

 A(12,5) = 0.0 
 A(12,6) = 0.0 

 A(12,7) = 0.0 

 A(12,8) = 0.0 
 A(12,9) = 0.0 

 A(12,10) = M_RHO_F_DD * F7F4F 

 A(12,11) = 0.0 
 A(12,12) = -1.0 

 A(12,13) = -Z7F_BD 

 
    CALL SOLMATS ( N , A , XSOL ) 

 

 J1B = XSOL(1) 

 J2B = XSOL(2) 

 J3B = XSOL(3) 

 J4B = XSOL(4) 
 J6B = XSOL(5) 

 J7B = XSOL(6) 

 J1F = XSOL(7) 
 J2F = XSOL(8) 

 J3F = XSOL(9) 
 J4F = XSOL(10) 

 J5F = XSOL(11) 

 J7F = XSOL(12) 
 

 G5F = F5F1F * J1F + F5F2F * J2F + F5F3F * J3F + F5F4F * J4F + F5F7F * J7F 

 G6B = F6B1B * J1B + F6B2B * J2B + F6B3B * J3B + F6B4B * J4B + F6B7B * J7B 
 

 TAU_F_BD = G6B 

 RHO_F_BD = G5F 
 TAU_F_BT = TAU_F_BD + TAU_F_BB 

 

 
    WRITE (*,*) 'INCIDENT ANGLE = ' , OMEGA_H_DEG 

    WRITE (*,*) 'GROUP = '  , GROUP 

    WRITE (*,*) 'TAU_BT = ' , TAU_F_BT 
    WRITE (*,*) 'TAU_BD = ' , TAU_F_BD 

    WRITE (*,*) 'RHO_BD = ' , RHO_F_BD 

 
    OMEGA_H_DEG = OMEGA_H_DEG + 10.00 

 

    END DO 
 

    CONTAINS 

 
!******************************************************************************************************************** 

! SUBROUTINE: FM_SOL_DIFFUSE 

! 
! PURPOSE: CALCULATES THE DIFFUSE-DIFFUSE SOLAR OPTICAL PROPERTIES OF A FABRIC BY INTEGRATING 

!             THE CORRESPONDING PROPERTIES OVER THE HEMISPHERE USING ROMBERG'S INTEGRATION 

!******************************************************************************************************************** 

! 

!  INPUT: 

! TAUFF_BB_NORM = FORWARD FACING FABRIC BEAM-BEAM  TRANSMITTANCE AT NORMAL INCIDENCE 
! TAUFF_BT_NORM = FORWARD FACING FABRIC BEAM-TOTAL TRANSMITTANCE AT NORMAL INCIDENCE 

!    (TAUFF_BT_NORM = TAUFF_BB_NORM + TAUFF_BD_NORM) 

! RHOFF_BT_NORM = FORWARD-FACING FABRIC BEAM-TOTAL REFLECTANCE   AT NORMAL INCIDENCE 
! 

!  INTERMEDIATE VARIABLES: 

! IMAX  = 2**N - 1 
! JMAX  = NUMBER OF COLUMNS IN TABLEAU 

! NXMJP2  = NMAX - J + 2 

! I   = INDEX ON REPEATED SUM 
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! J   = COLUMN SUBSCRIPT FOR  TABLEAUS 

! N   = ROW SUBSCRIPT FOR TABLEAUS 
! NMAX  = MAXIMUM VALUE OF N 

! MMAX  = MAXIMUM VALUE OF M 

! PROP  = A FLAG THAT SELECTS THE APPROPRIATE FABRIC SOLAR OPTICAL PROPERTY TO BE INTEGRATED 
! T   = MATRIX CONTAINING ROMBERG'S TABLEAU 

! F   = THE INTEGRAND FUNCTION 

! H   = B - A 
! FR   = ( B - A ) / 2**N 

! FORJM1  = 4**( J - 1 ) 

! THETA_RAD   = ANGLE OF INCIDENCE IN RADIANS (VARIES FROM 0 RADIANS TO PI/2 RADIANS) 
! TAUFF_BD_NORM  = FORWARD FACING FABRIC BEAM-DIFFUSE TRANSMITTANCE AT NORMAL INCIDENCE 

! 

!  OUTPUT: 
! RHOFF_DD = FORWARD-FACING FABRIC SURFACE REFLECTANCE FOR INCIDENT DIFFUSE RADIATION 

! TAUFF_DD = FORWARD FACING FABRIC SURFACE TRANSMITTANCE FOR INCIDENT DIFFUSE RADIATION 

!******************************************************************************************************************** 
    SUBROUTINE FM_SOL_DIFFUSE ( RHOFF_BT_NORM , TAUFF_BT_NORM , TAUFF_BB_NORM , RHOFF_DD , TAUFF_DD ) 

 

 IMPLICIT NONE 

 

 REAL :: TAUFF_BB_NORM 

 REAL :: TAUFF_BT_NORM 
 REAL :: RHOFF_BT_NORM 

 

 REAL :: RHOFF_DD 
 REAL :: TAUFF_DD 

 
 INTEGER :: IMAX 

 INTEGER :: JMAX 

 INTEGER :: NXMJP2 
 INTEGER :: I 

 INTEGER :: J 

 INTEGER :: N 
 INTEGER :: NMAX 

 INTEGER :: MMAX 

 INTEGER :: PROP 
 REAL, DIMENSION ( 10 , 10 , 2 ) :: T 

 !REAL :: F 

 REAL :: H 
 REAL :: FR 

 REAL :: FORJM1 

 REAL :: THETA_RAD 
 REAL :: TAUFF_BD_NORM 

 

 REAL :: PI 
 REAL :: THETA_RAD_A 

 REAL :: THETA_RAD_B 

 
 PI = 3.14159265358979 

 THETA_RAD_A =  0.000001 * PI / 180.0 

 THETA_RAD_B = 89.999999 * PI / 180.0 
 

 TAUFF_BD_NORM = TAUFF_BT_NORM - TAUFF_BB_NORM 

 
 MMAX = 4 

 NMAX = 5 

 JMAX = 6 ! Why did Nathan use JMAX = 4? 

 

 DO PROP = 1 , 2 , 1  ! 1 FOR RHO AND 2 FOR TAU 

 
  ! COMPUTE H AND FIRST INTEGRAL APPROXIMATION 

  H = THETA_RAD_B - THETA_RAD_A 

  T ( 1 , 1 , PROP ) =                                                                                 & 
                                     (                                                                                   & 

                                     F ( THETA_RAD_A , RHOFF_BT_NORM , TAUFF_BB_NORM , TAUFF_BT_NORM , PROP ) +  & 

                                     F ( THETA_RAD_B , RHOFF_BT_NORM , TAUFF_BB_NORM , TAUFF_BT_NORM , PROP )     & 
                                     ) * H / 2.0 

 

  ! HALVE INTERVAL REPEATEDLY, COMPUTE T(N+1,1) 
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  DO N = 1 , NMAX 

   T ( N + 1 , 1 , PROP ) = 0.0 
   FR = H / 2.0**N 

   IMAX = 2**N - 1 

   DO I = 1 , IMAX , 2 
                       !WRITE (*,*) FLOAT (I) * FR + THETA_RAD_A 

    T ( N + 1 , 1 , PROP ) =                                  & 

                                               T ( N + 1 , 1 , PROP ) +          & 
                                              F                                  & 

                                               (                                  & 

                                               FLOAT(I) * FR + THETA_RAD_A ,    & 
                                               RHOFF_BT_NORM ,                   & 

                                               TAUFF_BB_NORM ,                   & 

                                               TAUFF_BT_NORM ,                   & 
                                               PROP                              & 

                                               ) 

                                               ! NOTE: WHEN THE LINE IS TOO LONG, THE CODE WON'T WORK 
   END DO 

   T ( N + 1 , 1 , PROP ) = T ( N , 1 , PROP ) / 2.0 + H * T ( N + 1 , 1 , PROP ) / 2.0**N 

  END DO 

 

  ! COMPUTE ROMBERG TABLEAU 

  DO J = 2 , JMAX 
   NXMJP2 = NMAX - J + 2 

   FORJM1 = 4.0**( J - 1 ) 

   DO N = 1 , NXMJP2 
       T ( N , J , PROP ) = ( FORJM1 * T ( N + 1 , J - 1 , PROP ) - T ( N , J - 1 , PROP ) ) / ( FORJM1 - 1.0 ) 

   END DO 
  END DO 

 

  IF ( PROP == 1 ) THEN 
   RHOFF_DD = T ( 1 , 6 , PROP ) 

  ELSE IF ( PROP == 2 ) THEN 

   TAUFF_DD = T ( 1 , 6 , PROP ) 
  ELSE 

   WRITE (*,*) 'ERROR: CHECK THE CODE' 

  END IF 
 

 END DO 

 
    END SUBROUTINE FM_SOL_DIFFUSE 

 

!******************************************************************************************************************** 
! FUNCTION: F 

! 

! PURPOSE: CALCULATES THE INTEGRAND FUNCTION TO BE USED IN THE ROMBERG INTEGRATION 
!******************************************************************************************************************** 

! 

!  INPUT: 
! THETA_RAD  = ANGLE OF INCIDENCE IN RADIANS (VARIES FROM 0 RADIANS TO PI/2 RADIANS) 

! TAUFF_BB_NORM  = FABRIC BEAM-BEAM TRANSMITTANCE AT NORMAL INCIDENCE 

! TAUFF_BT_NORM  = FORWARD-FACING FABRIC BEAM-TOTAL TRANSMITTANCE AT NORMAL INCIDENCE 
!    (TAUFF_BT_NORM = TAU_BB_NORM + TAUFF_BD_NORM) 

! RHOFF_BT_NORM  = FORWARD-FACING FABRIC BEAM-TOTAL REFLECTANCE   AT NORMAL INCIDENCE 

! PROP   = A FLAG THAT SELECTS THE APPROPRIATE FABRIC SOLAR OPTICAL PROPERTY TO BE 
!    INTEGRATED 

! 

! INTERMEDIATE VARIABLES: 

! RHOFF_BD   = BEAM-TO-DIFFUSE REFLECTANCE   OF THE FABRIC (FRONT SURFACE) 

! TAUFF_BB   = BEAM-TO-BEAM    TRANSMITTANCE OF THE FABRIC (FRONT SURFACE) 

! TAUFF_BD   = BEAM-TO-DIFFUSE TRANSMITTANCE OF THE FABRIC (FRONT SURFACE) 
!******************************************************************************************************************** 

    REAL FUNCTION F ( THETA_RAD , RHOFF_BT_NORM , TAUFF_BB_NORM , TAUFF_BT_NORM , PROP ) 

 
IMPLICIT NONE 

 

 REAL :: THETA_RAD 
 REAL :: RHOFF_BT_NORM 

 REAL :: TAUFF_BB_NORM 

 REAL :: TAUFF_BT_NORM 
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 INTEGER :: PROP 

 REAL :: RHOFF_BD 
 REAL :: TAUFF_BB 

 REAL :: TAUFF_BD 

         !WRITE (*,*) THETA_RAD 
  

 

CALL FM_SOL_BEAM              & 
                        (                 & 

                        THETA_RAD ,      & 

                        RHOFF_BT_NORM ,  & 
                        TAUFF_BB_NORM ,  & 

                        TAUFF_BT_NORM ,  & 

                        RHOFF_BD ,        & 
                        TAUFF_BB ,        & 

                        TAUFF_BD          & 

                        ) 
 

 IF ( PROP == 1 ) THEN 

  !F =                              ( COS ( THETA_RAD ) ) * ( RHOFF_BD ) 

  F = 2.0 * ( SIN ( THETA_RAD ) ) * ( COS ( THETA_RAD ) ) * ( RHOFF_BD ) 

!CHECK THE ORIGINAL CODE (CFSShadeMod.f90) DOES NOT HAVE THE SIN PART HERE 

 ELSE IF ( PROP == 2 ) THEN 
  !F =                              ( COS ( THETA_RAD ) ) * ( TAUFF_BB + TAUFF_BD ) 

  F = 2.0 * ( SIN ( THETA_RAD ) ) * ( COS ( THETA_RAD ) ) * ( TAUFF_BB + TAUFF_BD ) 

 ELSE 
  WRITE (*,*) 'ERROR' 

 END IF 
 

    END FUNCTION F 

 
!******************************************************************************************************************** 

! SUBROUTINE: FM_SOL_BEAM 

! 
!  PURPOSE: CALCULATES THE SOLAR OPTICAL PROPERTIES OF A FABRIC FOR BEAM RADIATION INCIDENT ON 

! THE FORWARD FACING SURFACE 

!             USING OPTICAL PROPERTIES AT NORMAL INCIDENCE  USING SEMI-EMPIRICAL RELATIONS. 
!             IF YOU WANT THE SOLAR OPTICAL PROPERTIES FOR THE BACKWARD FACING SURFACE, CALL THE SUBROUTINE 

! AGAIN AND SUPPY IT 

!             WITH THE CORRESPONDING BACKWARD FACING SURFACE OPTICAL PROPERTIES AT NORMAL INCIDENCE. 
!******************************************************************************************************************** 

! 

!  INPUT: 
! THETA_RAD = ANGLE OF INCIDENCE IN RADIANS (VARIES FROM 0 RADIANS TO PI/2 RADIANS) 

! TAUFF_BB_NORM = FORWARD-FACING FABRIC BEAM-BEAM  TRANSMITTANCE AT NORMAL INCIDENCE 

! TAUFF_BT_NORM = FORWARD FACING FABRIC BEAM-TOTAL TRANSMITTANCE AT NORMAL INCIDENCE 
! (TAUFF_BT_NORM = TAU_BB_NORM + TAUFF_BD_NORM) 

! RHOFF_BT_NORM = FORWARD-FACING FABRIC BEAM-TOTAL REFLECTANCE   AT NORMAL INCIDENCE 

! 
!  INTERMEDIATE VARIABLES: 

! THETA = DUMMY VARIABLE 

! RHOFF_BT_90DEG = FORWARD-FACING FABRIC BEAM-TOTAL REFLECTANCE   AT 90 DEGREES INCIDENCE 
! TAUFF_BT_90DEG = FORWARD-FACING FABRIC BEAM-TOTAL TRANSMITTANCE AT 90 DEGREES INCIDENCE 

! RHOFF_BT_EXPO = EXPONENT IN THE FABRIC OFF-NORMAL BEAM-TOTAL REFLECTANCE   MODEL (FRONT SIDE) 

! TAUFF_BB_EXPO = EXPONENT IN THE FABRIC OFF-NORMAL BEAM-BEAM  TRANSMITTANCE MODEL 
! TAUFF_BT_EXPO = EXPONENT IN THE FABRIC OFF-NORMAL BEAM-TOTAL TRANSMITTANCE MODEL (FRONT 

! SIDE) 

! TAUFF_BD_NORM = FORWARD FACING FABRIC BEAM-DIFFUSE TRANSMITTANCE AT NORMAL INCIDENCE 

! TAUFF_BT = BEAM-TO-TOTAL TRANSMITTANCE OF THE FABRIC (FRONT SURFACE) 

! 

!  OUTPUT: 
! RHOFF_BD = BEAM-TO-DIFFUSE REFLECTANCE   OF THE FABRIC (FRONT SURFACE) 

! TAUFF_BB = BEAM-TO-BEAM    TRANSMITTANCE OF THE FABRIC (FRONT SURFACE) 

! TAUFF_BD = BEAM-TO-DIFFUSE TRANSMITTANCE OF THE FABRIC (FRONT SURFACE) 
!******************************************************************************************************************** 

    SUBROUTINE FM_SOL_BEAM ( THETA_RAD , RHOFF_BT_NORM , TAUFF_BB_NORM , TAUFF_BT_NORM , RHOFF_BD , 

TAUFF_BB , TAUFF_BD ) 
 

IMPLICIT NONE 
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 REAL, INTENT (IN) :: THETA_RAD 

 REAL, INTENT (IN) :: TAUFF_BB_NORM 
 REAL, INTENT (IN) :: TAUFF_BT_NORM 

 REAL, INTENT (IN) :: RHOFF_BT_NORM 

 REAL, INTENT (OUT) :: RHOFF_BD 
 REAL, INTENT (OUT) :: TAUFF_BB 

 REAL, INTENT (OUT) :: TAUFF_BD 

 REAL :: TAUFF_BT_90DEG 
 REAL :: RHOFF_BT_90DEG 

 REAL :: TAUFF_BD_NORM 

 REAL :: RHOFF_BT_EXPO 
 REAL :: TAUFF_BB_EXPO 

 REAL :: TAUFF_BT_EXPO 

 REAL :: TAUFF_BT 
 REAL :: THETA 

 REAL :: RHO_YARN 

 REAL, PARAMETER :: PI = 3.14159265359 
 

 TAUFF_BD_NORM = TAUFF_BT_NORM - TAUFF_BB_NORM 

 

 RHO_YARN = ( RHOFF_BT_NORM ) / ( 1.0 - TAUFF_BB_NORM ) 

 

 RHOFF_BT_90DEG = RHOFF_BT_NORM + ( 1.0 - RHOFF_BT_NORM ) * ( 0.7 * RHO_YARN**0.7 ) 
 

 RHOFF_BT_EXPO = 0.6 

 
 TAUFF_BB_EXPO = MAX ( -0.5 * ( LOG ( MAX ( TAUFF_BB_NORM , 0.01 ) ) ) , 0.35 )  ! why 0.001 was used instead of 0.01 

 
 TAUFF_BT_EXPO = MAX ( -0.5 * ( LOG ( MAX ( TAUFF_BT_NORM , 0.01 ) ) ) , 0.35 )  ! why 0.001 was used instead of 0.01 

 

         IF ( THETA_RAD > 90.01 * PI / 180.0 .OR. THETA_RAD < -90.01 * PI / 180.0 ) THEN 
              !WRITE (*,*) THETA_RAD 

              WRITE (*,*) 'ERROR: CHECK CODE AND INPUT INCIDENT ANGLEAAAAAAAAAA' 

 ELSE IF ( THETA_RAD >  89.99 * PI / 180.0 ) THEN    ! FOR INCIDENT ANGLE =  90 DEGREE, MAKE IT =  89.99 DEGREE 
              THETA =  89.99 * PI / 180.0 

 ELSE IF ( THETA_RAD < -89.99 * PI / 180.0 ) THEN    ! FOR INCIDENT ANGLE = -90 DEGREE, MAKE IT = -89.99 DEGREE 

  THETA = -89.99 * PI / 180.0 
 ELSE 

  THETA = THETA_RAD                                   ! USUAL ACTION 

 END IF 
  THETA = ABS ( THETA ) ! BY SYMMETRY, OPTICAL PROPERTIES CALCULATES FOR POSITIVE 

!INCIDENCE ANGLES ARE THE SAME FOR CORRESPONDING 

     ! PROPERTIES AT NEGATIVE INCIDENCE ANGLES 
 

 !CALCULATE BEAM-DIFFUSE REFLECTANCE OF FABRIC 

 RHOFF_BD = RHOFF_BT_NORM + ( RHOFF_BT_90DEG - RHOFF_BT_NORM ) * ( 1.0 - ( COS  & 
( THETA ) )**RHOFF_BT_EXPO ) 

 IF( RHOFF_BD < 0.0 ) RHOFF_BD = 0.0 

 
 !CALCULATE BEAM-BEAM TRANSMITTANCE OF FABRIC 

 TAUFF_BB = TAUFF_BB_NORM * ( ( COS ( THETA ) )**TAUFF_BB_EXPO ) 

 IF ( TAUFF_BB < 0.0 ) TAUFF_BB = 0.0 
 

 !CALCULATE BEAM-TOTAL TRANSMITTANCE OF FABRIC 

 TAUFF_BT = TAUFF_BT_NORM * ( ( COS ( THETA ) )**TAUFF_BT_EXPO ) 
 IF ( TAUFF_BT < 0.0 ) TAUFF_BT = 0.0 

 

 !CALCULATE BEAM-DIFFUSE TRANSMITTANCE 

 TAUFF_BD = TAUFF_BT - TAUFF_BB 

 IF ( TAUFF_BD < 0.0 ) TAUFF_BD = 0.0 

 
    END SUBROUTINE FM_SOL_BEAM 

 

!******************************************************************************************************************** 
!  SUBROUTINE USED TO SOLVE MATRIX BY THE ELIMINATION METHOD SUPPLEMENTED BY A SEARCH FOR THE LARGEST 

!  PIVOTAL ELEMENT AT EACH STAGE 

!                       SINGLE PRECISION VERSION 
!******************************************************************************************************************** 

    SUBROUTINE SOLMATS( N , A , XSOL ) 
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IMPLICIT NONE 

 
         INTEGER N    ! NO. OF ACTIVE ROWS IN A 

         REAL A(:,:) , XSOL(:) ! MINIMUM REQUIRED DIMENSIONS: A ( N , N + 2 ), XSOL ( N ) 

         REAL CMAX , TEMP , C , Y , D 
         INTEGER NM1 , NP1 , NP2 , I , J , L , LP , NOS , NI , NJ 

 

         NM1 = N - 1 
         NP1 = N + 1 

         NP2 = N + 2 

 
         DO I = 1 , N 

              A ( I , NP2 ) = 0.0 

              ! DO 1 J=1,NP1 ! TODO ? 
         END DO 

 

         DO I = 1 , N 
              DO J = 1 , NP1 

                   A ( I , NP2 ) = A ( I , NP2 ) + A ( I , J ) 

              END DO 

         END DO 

 

         DO L = 1 , N - 1 
              CMAX = A ( L , L ) 

              LP = L + 1 

              NOS = L 
 

              DO I = LP , N 
                   IF ( ABS ( CMAX ) .LT. ABS ( A ( I , L ) ) ) THEN 

                       CMAX = A ( I , L ) 

                       NOS = I 
                   END IF 

              END DO 

 
              !     Swap rows 

              IF ( NOS .NE. L ) THEN 

                   DO J = 1 , NP2 
                       TEMP = A ( L , J ) 

                       A ( L , J ) = A ( NOS , J ) 

                       A ( NOS , J ) = TEMP 
                   END DO 

              END IF 

 
              DO I = LP , N 

                   C = 0.0 

                   Y = -A ( I , L ) / A ( L , L ) 
                  DO J = L , NP2 

                       A ( I , J ) = A ( I , J ) + Y * A ( L , J ) 

                   END DO 
                   DO J = L , NP1 

                       C = C + A ( I , J ) 

                   END DO 
              END DO 

         END DO 

 
         !  NOW BACKSUBSTITUTE 

         XSOL ( N ) = A ( N , NP1 ) / A ( N , N ) 

         DO I = 1 , NM1 

              NI = N - I 

              D = 0.0 

              DO J = 1 , I 
                   NJ = N + 1 - J 

                   D = D + A ( NI , NJ ) * XSOL ( NJ ) 

              END DO 
              XSOL ( NI ) = ( A ( NI , NP1 ) - D ) / A ( NI , NI ) 

         END DO 

    END SUBROUTINE SOLMATS 
 

END PROGRAM TRIANGULAR_MODEL  
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Appendix E: Uncertainty Analysis 

 

0th Order Uncertainty 

The photodetector has an uncertainty of ±1% of Full Scale (FS) Reading (Halder 2007). The gain 

accuracy of the PLA is ±1% of actual reading (as specified in datasheet). For the DAQ, the absolute 

accuracy is provided in the Accuracy Table. Based on the datasheet, the uncertainty of DAQ ranges 

from ±0.02% for the highest voltage range to ±0.04% for the lowest voltage range. Any uncertainty 

in this range is extremely small compared to those of detector and PLA. As a result, it is safe to 

ignore the DAQ uncertainty. 

Therefore, the uncertainty in the voltage reading can be estimated as: 

δVS

VS
=

δVR

VR
= ±√(

δVPD

VFS
)

2

+ (
δVPLA

VPLA
)

2

 

Note that VFS = Full Scale Voltage. And if the detector signal is not at full scale, the uncertainty 

should then be estimated as: 

δVS

VS
=

δVR

VR
= ±√(

δVPD

VFS
×

VFS

VPD
)

2

+ (
δVPLA

VPLA
)

2

 

Then, 

δτ

τ
= ±√(

δVS

VS
)

2

+ (
δVR

VR
)

2
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For δVPD/VFS = ±1% and δVPLA/VPLA = ±1%, Table A.3 below lists the calculated δV/V vs VFS/VPD 

and the resulting δτ/τ. 

Table A.3: Zeroth order uncertainty in spectral transmittance for various relative detector 

signal strength 

VFS/VPD δV/V δτ/τ 

1 ±1.4% ±2.0% 

2 ±2.2% ±3.2% 

5 ±5.1% ±7.2% 

10 ±10% ±14.2% 

 

In general, δVS/VS is greater than δVR/VR because VS has to be smaller than VR for a given 

transmittance measurement. For example, assume τ (λ) = 0.5, then VS is half of VR. This implies 

that, assuming VR is at full scale, δτ/τ can be be calculated as δτ/τ = (0.0142+0.0222)0.5 = ±2.6%. 

In other words, the lower the spectral transmittance of a sample, the higher the uncertainty in its 

transmittance measurements. Table A.4 shows the resulting uncertainty in measured spectral 

transmittance for various transmittance assuming the reference signal is at full scale. 

Table A.4: Zeroth order uncertainty in spectral transmittance for various transmittance 

 (λ) δVR/VR δVS/VS δτ/τ 

1.0 ±1.4% ±1.4% ±2.0% 

0.5 ±1.4% ±2.2% ±2.6% 

0.2 ±1.4% ±5.1% ±5.3% 

0.1 ±1.4% ±10% ±10.1% 
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Table A.4 summarizes the zeroth order single-sample analysis that provides the lowest possible 

uncertainty in measured spectral transmittance of samples for several  (λ). 

1st Order Uncertainty 

First order uncertainty is the temporal variation in measured quantities, VS and VR in this case. 

The sources of the temporal variation include stability of the light source and the data processing 

system of BAI-IS. 

To estimate the 1st order uncertainty, two sets of tests were performed. For the first set of tests, 

data were taken continuously for several periods of time at various frequencies without a sample 

in place. As well, the PLA has adjustable time constant (100 μs to 30 s) and sensitivity (3 μV to 1 

V). Time constant and sensitivity should be adjusted according to the detector’s signal level. 

Therefore, the second set of tests were carried out to check the effect of time constant and 

sensitivity on signal stability over a time period. Several typical combinations of time constant and 

sensitivity were chosen for the experiment. Details and results of the two sets of tests are discussed 

as follows. 

The first set includes a series of three tests, using the following settings. 

 Monochromator: Slit Width = 0.1 mm and Nominal Wavelength = 1000 nm 

 PLA: Time Constant = 100 ms and Sensitivity = 30 mV 

Number of sample, frequency of data reading, and the duration of the test are listed in Table A.5. 

As well, average (AVG), standard deviation (STD), and % STD in terms of the average reading 

(STD/AVG) are given Table A.5. 
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Table A.5: Results of the first set tests showing AVG, STD, and STD/AVG % 

Test 1 2 3 

No. of Samples 10000 600 600 

Frequency (Hz) 1000 10 100 

Duration (s) 10 60 6 

    

AVG 0.49736 0.49672 0.49716 

STD 0.00082 0.00082 0.00082 

STD/AVG (%) 0.165 0.165 0.165 

 

As shown in Table A.5, STD is 0.165% of the average reading for all three cases. The results of 

these three test are essentially the same. All averages are within one standard deviation of each 

other. Therefore, taking more than 600 samples for longer than 6 seconds will not reduce 

uncertainty of the results. 

The second set includes a series of five tests, using the following settings, and results are shown 

in Table A4. 

 Monochromator: Slit Width = 0.1 mm and Nominal Wavelength = 1000 nm 

 Number of Samples = 10000 and Frequency = 1000 

 

Table A.6: Results of the second set tests showing AVG, STD, and STD/AVG % 

Test  1 2 3 4 5 

Time Constant (ms) 10 30 100 300 100 

Sensitivity (mV) 100 100 100 100 30 

      

AVG 0.1491 0.1524 0.1524 0.1521 0.4974 

STD 0.0019 0.0008 0.0005 0.0005 0.0008 

STD/AVG (%) 1.253 0.516 0.340 0.320 0.165 
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The results show that STD decreases as time constant increases up to about 300 ms in this case. 

As shown in Table A.6, STD/AVG reduces from 1.25% to 0.32% as time constant increases from 

10 ms to 300 ms. To further reduce uncertainty, one can use a higher sensitivity setting (e.g., test 

case 5 uses 30 mV compared to 100 mV for all other cases). Note that case 5 of the second set is 

case 1 of the first set. 

Both increasing time constant and increasing sensitivity will reduce the uncertainty. However, 

signal saturation occurs when sensitivity is too high. In addition, increasing time constant will also 

increase settling time (longer wait time before signal can be read). 

Uncertainty associated with the stability of light source and data processing system can be 

estimated as two standard deviation of the sample readings. Therefore, based on the two sets of 

tests, the uncertainty ranges from ±0.33% to ±2.5%. Following the manufacturer’s procedures for 

adjusting time constant and sensitivity (i.e., first set of tests), the uncertainty is ±0.33%. For the 

transmittance experiment, time constant less than 100 ms is not necessary. Time saved is definitely 

not worth the added uncertainty. So the maximum uncertainty is ±0.68% based on time constant 

≥ 100 ms. This source of uncertainty can be safely neglected if proper procedures for adjusting 

time constant and sensitivity are followed. For example, ±0.33% is less than ¼ of the minimum 

uncertainty (±1.4%) shown in Table A.3. Even the maximum of ±0.68% is still not significant 

compared to the accuracy of data processing system (±1.4% to ±10%). 

 


