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Abstract 
 
This thesis contributes to the knowledge-base of how commuter cycling frequencies are impacted 
by current weather conditions, and what effects climate change will have on them by mid-century. 
Numerous studies have focused on the effects of climate change on passive modes of travel (e.g. 
automotive, locomotive, aviation), with less attention devoted to active transportation, such as 
cycling. As the climate changes through the 21st century, it is important to develop an 
understanding of how commuter cyclists are affected by weather and what these impacts will look 
like under future conditions when planning for modern and accessible cities. This research applies 
this reasoning to contribute to filling-in a geographic void in southern Ontario where there is a 
current lack of knowledge on this topic. Publicly available weather and cycling count data for 
Waterloo, Ontario, is used to analyze the effects of several weather variables on commuter cyclists 
at present and predicted at mid-century using a generalized linear regression model. The model 
results for present-day impacts were consistent with findings in other research: that adverse 
conditions (e.g. rain and snow) negatively affect cycling frequencies, while increased temperatures 
and a lack of precipitation generally result in a positive change, however the rates of change varied 
depending on the trail location in the City of Waterloo. Under the climate change analysis, the 
results contest the numerous studies conducted outside of southern Ontario that indicate cycling 
frequencies will increase under a changed climate by suggesting that they will decrease as the 
effects of climate change intensify. The findings of this research may contribute to the 
understanding of the numerous factors that influence cycling frequencies and provide planners 
with a tool to effectively apply investments in infrastructure and to programs that will seek to 
encourage adaptation to the impacts of weather and climate change identified here.  
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1.0 Introduction and Background Research 

1.1 Introduction 

Cycling has become a major trend in cities throughout Ontario. Citizens and all levels of 

government are realizing the benefits of cycling through its ability to increase public and 

environmental health, help drive sustainable initiatives, further economic development, and 

promote an enhanced quality of life (Transport Canada, 2012; Hooqzaad et al., 2013). Many 

citizens in Canada have been in support of cycling and its related infrastructure. A 2014 opinion 

poll commissioned by Share the Road, a provincial cycling advocacy group, reported that more 

than half of Ontarians wish to cycle more often and over two-thirds state they would cycle more if 

infrastructure was improved (Share the Road, 2014). Share the Road Cycling Coalition estimates 

that approximately 600,000 Ontarians cycle on Ontario’s roadways daily, while 3.8 million cycle 

on a weekly or monthly basis within the province for recreation1, utilitarian2, and commuter3 trips 

(Share the Road, 2014). Data collected by the Transportation Tomorrow Survey (TTS), a 

transportation research group at the University of Toronto, shows that the number of trip-starts in 

the survey area4 by walking or cycling, during both morning rush-hour and over a 24-hour period, 

have increased over time, nearly doubling in the period between 1996 and 2011 (TTS, 2011). 

Despite increasing trends in cycling rates, a number of barriers inhibit people from cycling 

more frequently or at all. The perception of safety while cycling on roads, lack of cycling 

infrastructure, and perceived inconveniences all play a role in deterring individuals from cycling 

(Bidordinova, 2010). While the aforementioned factors influence cycling frequencies in Ontario, 

none are as significant as weather (Stinson & Bhat, 2004; Mullan, 2013; Bidordinova, 2010). With 

cycling rates increasing in Ontario, and cyclists largely deterred by the perceived negative impacts 

																																																								
1	Recreational	cycling	includes	cycling	for	leisure,	health	and	wellness,	among	other	reasons,	
but	does	not	include	travelling	for	transportation	or	to	complete	a	task,	e.g.	shopping.			
2	This	includes	cycling	as	a	mode	of	transportation	to	reach	a	destination	to	perform	a	task,	
such	as	shopping,	or	travelling	to	school	or	work	(i.e.	commuting).	
3	Commuter	cycling	is	a	form	of	utilitarian	cycling;	however	it	strictly	refers	to	travelling	by	
bicycle	to	and	from	an	individual’s	place	of	work	or	school.		
4	The	municipalities	surveyed	in	the	TTS	include:	the	cities	of	Barrie,	Brantford,	Guelph,	
Hamilton,	Kawartha	Lakes,	Peterborough,	and	Toronto;	the	counties	of	Brant,	Dufferin,	
Peterborough,	Simcoe,	and	Wellington;	the	regional	municipalities	of	Durham,	Halton,	Niagara,	
Peel,	Waterloo,	and	York;	and	the	Town	of	Orangeville.	
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of riding in ‘bad’ weather conditions, Ontario has considerable room for improvement to match 

the rates found in cycling-dominant regions such as Vancouver, BC, and Minneapolis-St. Paul, 

USA in North America; along with Germany and Denmark, in Europe (Pucher & Buehler, 2007; 

Pucher et al., 2011; Behan & Lea, 2010). 

Weather conditions are an important influence on active transportation activity, particularly 

cycling. Positive weather conditions are considered the most suitable for all cyclists and are when 

the greatest number of cyclists are reported to ride, such as periods of warm temperature, low 

winds and the absence of precipitation (Lewin, 2011; Moreno-Miranda & Nosal, 2011; Saneinejad, 

Roorda & Kennedy, 2012; Böcker, Prilwitz & Dijst, 2013a). This is important as it allows less 

committed utilitarian cyclists to cycle comfortably and as confidently as the “strong and fearless” 

cyclists who ride in most conditions (Patterson & Steiger, 2013). Alternatively, negative or adverse 

conditions may include the presence of rain, fog, snow, extreme temperatures (hot and cold), 

humidity, wind, and atmospheric cover (Pucher & Buehler, 2006; Behan & Lea, 2010; Saneinejad 

et al., 2012; Böcker et al., 2013a). The presence of these conditions in isolation or combination 

may adversely affect cycling frequency and volume. 

In addition to weather, there are a range of infrastructure and policy elements that are 

associated with increasing cycling activity. The Government of Ontario has put forth a number of 

policies, guidelines and related articles supporting cycling programs at the municipal level. The 

Ministries of Infrastructure (MOI); Environment and Climate Change (MOECC); Transportation 

(MTO); Municipal Affairs and Housing (MMAH); Tourism, Culture and Sport (MTCS); Health 

and Long Term Care (MOHLTC); and Education (EDU), along with government agencies such as 

Metrolinx, and non-governmental organizations (NGOs) such as Share the Road and the Toronto 

Centre for Active Transportation (TCAT) have expressed support through increased funding, 

education, advocacy and improvements towards cycling within Ontario (Ontario, 2014). The 

Ontario government introduced the Ontario Municipal Cycling Infrastructure Program where 

additional funding opportunities are made available to municipalities (Ontario, 2015). Within the 

program, $10 million is allocated to municipal cycling improvements, while $15 million is 

available to expand and improve cycling infrastructure along provincial highways, lands and trails 

(Ontario, 2015).  

Ontario’s cities are allocating more money and resources into cycling than ever before; 

increased infrastructure installations, year-round bike route maintenance and bike sharing services 
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have been initiated. More municipalities are commissioning cycling master plans and active 

transportation master plans to guide future development, objectives and planning for cycling and 

active transportation routes, infrastructures, policies and programs. The City of Waterloo’s 

Transportation Master Plan (2011) lists a number of objectives for cycling, including reduced 

dependency on non-renewable energy, increased multi-modality, and to establish a network of 

cycling trails and routes. 

Although ambitious objectives and considerable resources have been presented, there is no 

accepted understanding of how factors, such as weather, influence cycling in Ontario. Without 

comprehensive evidence of how weather influences cycling, municipalities cannot optimize their 

investments. This is a key consideration when planning for and evaluating the effectiveness of 

infrastructure and initiatives due to the influence weather has on utilitarian cycling. Additionally, 

there is an absence in understanding how climate change will alter the weather conditions that 

cyclists experience in future years. It is important that consideration is given to how utilitarian 

cycling in Ontario will be impacted by climate change and what these implications mean for long-

range transportation planning within the province, especially with regards to active transportation 

infrastructure investment.  

Weather is arguably the most influential deterrent preventing individuals from cycling. In 

a 2010 study on barriers to utilitarian cycling in Toronto, weather is identified as the largest 

deterrent to utilitarian cycling (Bidordinova, 2010). While lack of infrastructure and dangerous 

driving were also identified as significant deterrents, the perception of decreased safety and 

comfort as a result of ‘bad’ weather has a greater effect on utilitarian cyclists’ willingness to travel 

by bicycle (Bidordinova, 2010). Additionally, a study on cycling deterrents in Canada and the 

United States found that 60% of respondents selected unpleasant weather as the greatest barrier to 

commuting by bicycle (Stinson & Bhat, 2004). Notably, cyclists who identified as frequent bicycle 

commuters chose unpleasant weather as their greatest deterrent 64% of the time, followed by 

personal reasons (33%), and lack of daylight to ride safely (26%) (Stinson & Bhat, 2004). A study 

on commuter cycling behaviour in Ireland echoes these results as interviewees noted weather as 

the biggest obstacle to cycling for transportation (Mullan, 2013). Developing a thorough 

understanding of how cyclists respond to different weather events (i.e. sensitivity and perception 

of weather) is integral to ensuring continued and effective use of cycling infrastructure.  
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Beyond present-day weather, trends of increasing average annual temperatures and greater 

precipitation variability across Canada have led to further attention towards climate change and 

how it will impact society (Lemmen et al., 2008; Hamilton Conservation Authority [HCA], 2012; 

Warren & Lemmen, 2014).To avoid negative outcomes from the inevitable climatic shift, 

municipalities must develop greater resiliency through infrastructure, policy and program 

adaptation that incorporate cycling (Giodana et al., 2013). Distinguishing between adaptation and 

other strategies such as coping is an important component. The Intergovernmental Panel on 

Climate Change (IPCC) states that “coping focuses on the moment, constraint, and survival”, while 

“adapting focuses on the future, where learning and reinvention are key features” (2012). 

Similarly, CARE International defines coping as a “lack of alternatives”, and a “short-term and 

immediate response”; and that adaptation “involves planning”, “finding alternatives” and is 

oriented towards a longer-term strategy (2009). Therefore, by proactively introducing climate 

change into active transportation, cycling and/or transportation master plans, municipalities will 

be prepared to adapt cycling policies, programs and infrastructure according to current and future 

climate conditions rather than retroactively coping with the impacts. 

The purpose of this research is to establish an understanding of how weather impacts 

cyclists and how cycling will be impacted by climate change in Ontario using weather and cycling 

count data collected in the City of Waterloo to facilitate this exploration. While research into active 

transportation modes is becoming more popular within transportation literature (e.g. Behan & Lea, 

2010; Pucher, 2011; Ahmed et al., 2012; Tin Tin, 2012; Böcker et al., 2013a; Spencer et al., 2013; 

Wadud, 2014), the impacts of various climate and weather events on cyclists remain narrowly 

focused on several specific weather conditions and geographic locations (e.g. north and western 

European nations). Further, the importance of incorporating climate change into planning for 

cycling is often not considered despite its acknowledgement and looming presence. Although there 

is research within the field on the impacts of weather on cycling, few studies have sought to provide 

an understanding of how future climate conditions will impact cycling. Casello and Towns (in 

press), and Koetse and Rietveld (2009) identify the need for localized analysis of “consequences 

of climate change and weather for the transport sector”, which have received little attention. 

Heinen et al. (2010) state that there has been little discussion on the effects of climate change on 

cycling, warranting further research.  
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1.2 Research Relevance 

Cycling is very sensitive to weather conditions, with the degree of sensitivity to a given weather 

variable known to vary throughout locations. Research has been conducted in large volumes on 

the correlation between cycling frequencies and weather conditions in northern Europe (e.g. 

Mathisen et al., 2015; Brandenberg et al., 2007), Belgium (e.g. Cools et al., 2009; Cools et al., 

2010; Cools & Creemers, 2013; Creemers et al., 2013; Khattak & de Palma, 1997), the Netherlands 

(e.g. Böcker et al., 2013a; Böcker et al., 2013b; Koetse & Rietveld, 2009; Thomas et al., 2012) 

and Australia (e.g. Ahmed et al., 2012; Measham et al., 2011; Nankervis, 1999). Findings from 

these studies provide an integral glimpse into the importance of identifying the degree to which 

weather impacts a utilitarian cyclist’s decision to commute via bicycle in different regions. 

However, there is not a similar abundance of material in the Ontario, or even Canadian contexts. 

Therefore, studying Waterloo cyclists will contribute to the sparse research on the effects of 

weather on cyclists in Canada. A local analysis of weather sensitivities and cycling frequencies 

can further the discussion on appropriate policy development for the continued growth of cycling 

in Canada and offer an opportunity to compare against other jurisdictions with high cycling mode 

share for future development. 

 Research on the implications of future climatic changes on cyclists will be of utmost 

interest to transportation engineers, planners and policy analysts who must ultimately implement 

new cycling policies or programs. Additionally, provincial planners and policy analysts in Ontario 

ministries including the MTO, MMAH, and MOECC, as well as federal ministries and agencies 

that benefit through increased knowledge during discussions on provincial and federal roads, lands 

and interests, and in climate change and active transportation plans, strategies or guide lines. This 

information will provide these individuals an opportunity to explore policy and infrastructure 

adaptations in advance by gauging weather, cycling frequencies and sensitivities, and population 

change to implement adaptation strategies at the most appropriate time. The findings of this 

research will be relevant to most of southern and eastern Ontario (i.e. the very populated regions 

in the province), according to the Köppen-Geiger Climate Classification. Cities such as Toronto, 

Waterloo, Barrie, Ottawa, and St. Catharines are found within the same climate classification (Dfb: 

warm-humid continental climate) (Kottek, et al. 2006). Therefore, this research will be applicable 

to a large region home to millions of people. This research, therefore, can be seen as the proactive 
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development of a tool for governments and agencies to use and offer effective and appropriate 

means to continue cycling growth during years of climatic variability.  
 

1.3 Research Questions 

This study will be oriented around the following two research questions:  

 

1. How is commuter cycling impacted by weather conditions? 

2. How will climate change potentially impact commuter cycling? 

 

The purpose of the first research question is to develop an understanding of how Waterloo cyclists 

are currently affected by weather variables during their daily commutes. This will establish a 

baseline from which future cycling frequencies and weather conditions or climate projections can 

be compared against to identify trends in cycling throughout the temporal scale of the study. This 

question will be investigated using several datasets: Environment and Climate Change Canada’s 

(ECCC) Waterloo weather data (collected at the Waterloo International Airport); the City of 

Waterloo’s cycling count data; and the University of Waterloo’s weather data, for the years 2015 

and 2016. 

The second research question looks directly at identifying the impact of climate change on 

cycling behaviour in Waterloo over various time periods, using different climate models and 

projections. The scenarios explored in this exercise will allow insight into the potential impacts of 

climate change on cycling frequencies and provide a platform through which the discussion, found 

later in this report, will offer adaptation strategies and recommendations for the City of Waterloo.  

The City of Waterloo was selected as the location for this study for a number of reasons. 

Firstly, it has unparalleled data availability on cycling frequencies throughout the city compared 

to other Ontario municipalities. The city employs eleven automatic cycling counters at ten 

locations that report the frequency at which cyclists travel past the stationary instrument on an 

hourly basis year-round (data is available through the City of Waterloo’s Open Data portal). 

Cycling counters have been installed on most of Waterloo’s multi-use trails that travel into, or out 

of the central urban area, as well as along both directions of an on-road bike lane. These sensors 

provide opportunities to further study commuter cyclist travel behaviour during the morning and 

afternoon commutes (German Institute of Urban Affairs, 2012). Next, weather data is easily 
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attainable within the region due to the presence of an ECCC weather station at the Region of 

Waterloo International Airport, with over 30 years of archived weather data. This is supplemented 

by a weather station located at the Laurel Creek Conservation Area, operated by the Grand River 

Conservation Authority. Finally, the City of Waterloo has a strong cycling community that is 

supported by a political drive to invest in further infrastructural and community improvements to 

enhance cyclist safety and accessibility (City of Waterloo, 2011). 

The structure of this thesis is as follows: chapter two contains the literature review, which 

will outline the relevant research others have conducted on the importance of evaluating weather’s 

impacts on cyclists, cyclist sensitivities to weather, and impacts of climate change on cyclists’ 

behaviour and frequencies; a review of methods that researchers have used to examine the 

relationship between weather and cycling, along with methods to determine the impact of climate 

change on cyclists under future climate change projections. Chapter three will consist of the 

methodology section, which will state and describe the methods used to study the relationships 

presented in this thesis. Chapter four will present the preliminary results of the study, which will 

include general statistics such as frequency of extreme weather events in a year, cycling and 

weather trends at various time scales, and outlines the variables and model that will be used in this 

thesis. Chapter five will present the study’s findings including the impacts of present-day weather 

on cycling frequencies and the expected effects of climate change on cycling frequencies at mid-

century. Finally, Chapter six is the discussion and conclusion section, which will discuss uses and 

potential actions for the City of Waterloo based on a summary of the findings from Chapter five, 

in addition to study limitations and future research opportunities.  
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2.0 Literature Review 

2.1 Introduction 

Literature on the effects of weather and climate change within the transportation sector thus far is 

predominantly oriented towards motorized vehicles (Petersen et al., 2008), and is comparatively 

lacking in research on cycling and its influencers (Koetse & Rietveld, 2009; Böcker et al., 2013b). 

The push for alternative personal transportation, and cycling’s exposure to meteorological factors 

is leading researchers to better understand the influences that impact cyclists travel behaviour 

(Ahmed et al., 2012). Hanson and Hanson (1977) published one of the first studies on cyclists’ 

responses to specific weather events; 40 years later there remains little literature relative to 

motorized transportation analyzing cycling frequency in response to weather and climate change 

(Behan & Lea, 2010). As such, a need for future exploration to address the known spatial variation 

in cycling travel behaviour and the uncertainties regarding the effects of climate change on cycling 

frequencies and travel behaviours has been identified by researchers such as Ahmed et al. (2010). 

Studies that have been completed examine a range of factors that impact travel behaviour from a 

cyclist’s perspective, including mode choice, travelled distance, and current and forecasted 

weather conditions, and, of interest to this study, the relationship between cycling frequencies and 

weather (e.g. Cools et al., 2010; Gallop et al., 2012; Böcker & Thorsson, 2013). This literature 

review presents current research and knowledge on the effects that weather and climate change 

may have on cycling frequencies. This section is presented in the following order: objectives of 

past studies, type and scale of cycling and meteorological data, overview of research 

methodologies, results and findings across the literature, and a summary of the reviewed literature. 
 

2.2 Types of Study Objectives 

Researchers studying the impacts of weather on cycling travel behaviour approach the relationship 

by analyzing certain aspects of cycling that are affected by weather variables. Four types of study 

objectives that seek to analyze the relationship between cycling travel behaviour and weather are 

found in the literature, including preferred transportation mode choice, trip purpose, trip distance 

or duration, and frequency of cycling activities under various combinations of weather conditions. 

Similar study objectives are present regarding the impacts of future weather conditions and cycling 

frequencies, or cycling frequencies under a changed climate, however the focus of these studies is 
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on cycling frequencies rather than a variety of cycling travel behaviours. Below, an overview of 

the study objectives found within the literature on the impacts of weather and climate change on 

cycling travel behaviour will be presented. 

Meteorological impacts on cycling are amplified by its exposure to weather conditions. 

Due to the exposed nature of cycling to weather, scholars show substantial interest in 

understanding how cyclists adjust their travel behaviour based on a variety of weather conditions. 

Studies seek to identify when individuals are more likely to choose a bicycle for utilitarian travel 

(i.e. commuting) versus other modes of transport (e.g. public transit, personal automobile, or car-

pooling) based on current weather conditions (Saneinejad et al., 2012; Flynn et al., 2013; Böcker 

et al., 2013a). Cools and Creemers (2013) believe that commuters refer to weather forecasts to 

identify days where the weather may not be ideal and therefore choose not to cycle, while Gallop 

et al. (2012) state that cyclists form their decision on whether to cycle based on current weather. 

Other weather-related studies focus on the relationship between trip purpose and an individual’s 

choice to cycle (e.g. Cools et al., 2010; Creemers et al., 2013; Mathisen et al., 2015). Researchers 

are also interested in whether individuals are more likely to cycle depending on their destination 

(e.g. shopping, leisure, recreation, or commuting) or motive for travelling (recreation or utilitarian) 

during various weather conditions (Cools et al., 2010; Creemers et al., 2013). Next, there is an 

interest in studying the distances or durations that cyclists will travel based on current weather 

conditions. Sears et al. (2012) study the relationship between cycling frequency, weather, and 

distance to work, focusing on how far cyclists are willing to travel in weather conditions 

(considering one or more conditions at a time), while Böcker and Thorsson (2013) orient their 

study towards trip duration within specific weather conditions. Ultimately, these studies are 

designed to identify how far or how long a cyclist is willing to travel under certain weather 

conditions. Finally, several scholars direct their studies towards how weather conditions alter 

cycling frequencies or rates, excluding considerations on the amount of time spent cycling, mode 

choice, and trip purpose as noted above (e.g. Miranda-Moreno et al., 2013, Wadud, 2014; Mathisen 

et al., 2015). More specifically, Gallop et al. (2012) state that the objective is to “determine the 

significance and magnitude effect of select weather variables on bicycle traffic… and devise a time 

series model that can be used to forecast future bicycle traffic”. Studies of this nature have the 

advantage of generating accurate, directly comparable results that explicitly identify the 

relationship between cycling and a variety of meteorological factors, but lack personal perspectives 
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on weather conditions or consider socioeconomic factors that deter or incentivize cyclists (Böcker 

et al., 2013b). Understanding the relationship between cycling and weather is a study objective of 

this thesis research. 

As jurisdictions around the world are increasing cycling infrastructure, resources, and 

funding, studies are continually seeking to understand what promotes or deters cycling as a form 

of transportation to underline where improvements may be made. While an abundance of research 

outlines conditions that enable or deter cycling, some studies focus on the factors that deter people 

from considering cycling as a viable alternative transportation mode altogether (Bidordinova, 

2010; Spencer et al., 2013; Fisher, 2014; Manaugh et al., 2016). These studies consider factors 

ranging from the presence of end-of-trip facilities (e.g. change rooms, showers, and secure bicycle 

storage) to an individual’s perception of safety while cycling. The dominant theme, however, is 

the connection between an individual not commuting by bicycle as a result of weather 

(Bidordinova, 2010; Manaugh et al., 2016). Other research is specific to cold climatic conditions 

that may be experienced in North America (Spencer et al., 2013; Fisher, 2014). Conversely, though 

there are many articles identifying deterrents to utilitarian cycling, Fisher (2014) identifies 

methods used by other regions (e.g. better winter maintenance, and installing infrastructure more 

suitable to regional climates) that promote cycling during adverse weather, namely the winter 

season. 

While the above studies generally focus on a single region, several authors perform a 

comparative analysis of trends, policies, or weather sensitivities amongst a range of jurisdictions. 

Each comparative study seeks to understand different aspects of cycling’s relationship to weather 

around the world, such as whether climatic conditions influence cycling rates differently in North 

American and European cities (Behan & Lea, 2010); how commuter cyclists in a number of cold 

climate regions respond to the winter season (Fisher, 2014); how several of North America’s most 

cycle-friendly cities compare with regards to weather sensitivities (Miranda-Moreno et al., 2013); 

and, why Canada reports a higher average cycling rate than the United States despite a climate that 

is considered to be less conducive to cycling (Pucher & Buehler, 2006).  

More research is extending the scope of studies beyond identifying the impacts of current 

weather on cycling to forecasting the role that climate change will have in altering future cycling 

frequencies. International examples of local and regional studies on climate change impacts on 

cycling are numerous. Studies on climate change as it relates to cycling travel behaviours in the 
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municipalities of Bodø, Norway, Sutherland Shire, Australia, and Copenhagen, Denmark, are used 

to determine if a revised approach and adaptation measures are necessary to prepare for future 

weather (Fletcher, 2011; Measham et al., 2011; Mathisen et al., 2015). The aforementioned 

research seeks further information on whether seasonal weather, rising sea-levels, increased 

precipitation, and extreme temperatures will prove detrimental to the respective cycling 

communities and related infrastructure. These few studies are unique in that they are designed to 

provide a basis for policy- and decision-makers to make informed decisions with respect to cycling 

policies, programs, and infrastructure by considering future implications of climate change. 

Impacts on cycling frequency derived from projected climate change within a Canadian context is 

a research objective of this thesis research. 

2.3 Types of Data 

Throughout the reviewed literature there is an array of data used to analyze the relationships 

between weather and climate change on cycling. To model these relationships, researchers collect 

data on cycling travel behaviours (e.g. frequency count data, distance travelled, and trip duration), 

weather events, and climate projections. Cycling travel behaviour data collection shows the 

greatest variability of methods used across the reviewed data types, with a strong presence of 

automated count data. Data used within research on the impact of weather on cycling travel 

behaviour may be placed into three categories based on the reviewed literature:  cycling count data 

and activity information (e.g. frequency, travelled distances, and trip durations), local weather 

data, and climate projections. Data collection and obtainment methods used within the reviewed 

literature are discussed below, including the spatial and temporal variations within different 

datasets.  
 

2.3.1 Cycling Data Collection Methods  

While there are many different types of studies using an array of methods, the types of data used 

remains consistent. Each study uses similar types of data to conduct research on meteorological 

impacts on cyclists’ travel behaviour. Studies that seek to identify cyclists’ sensitivities to weather 

(e.g. Brandenburg et al., 2007; Böcker et al., 2013a) use a combination of cycling travel data (e.g. 

frequency count data, or duration or distance of travel) and actual weather data (e.g. hourly 

temperatures, daily precipitation), while those studying climate change (e.g. Saneinejad et al., 

2012; Waded, 2014; Matheson et al., 2015) substitute weather data for climate projections. To 
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gather these data, researchers employ a variety of collection methods which differ based on the 

objectives and required data in a study. While weather and climate projections are usually obtained 

from public agencies (e.g. ECCC, Royal Netherlands Meteorological Institute [KNMI]) sources of 

cycling frequency data and information on cyclists’ sensitivities to weather may be further 

categorized. The categories are as follows: interviews and focus groups, censuses, and surveys, 

and automatically collected cycling data. Each of the aforementioned data collection methods have 

inherent strengths and weaknesses that will be outlined below.  

Interviews and focus groups are used to develop an intimate understanding of cyclists’ 

preferences, behaviours, and thought processes, as well as to what degree their choice of transport 

mode is affected by certain weather variables (Cools et al., 2010; Sears et al., 2012). Interviews 

are generally limited to smaller geographic areas and sample populations, such as university 

faculty, students, and staff members (Bidordinova, 2010); cyclists within recreation areas 

(Brandenburg et al., 2007); and commuter cyclists in urban cities (Spencer et al., 2013). Interviews 

and focus groups offer researchers a more personal and in depth understanding of the driving or 

deterring factors that influence cycling rates. Examples include specific reasons behind choosing 

a mode of transport during adverse weather conditions as a result of safety or comfort concerns 

(Bidordinova, 2010), and personal adaptation strategies for cycling in adverse weather (Spencer et 

al., 2013). Due to limited sample sizes, these approaches may not represent a larger population, 

and lack the ability to identify general trends and patterns in cycling rates and behaviour (Spencer 

et al., 2013), however they may provide insight into the individualized behaviours of cyclists 

experiencing a variety of weather conditions (Jacobson, 2010; Flynn et al., 2012; Spencer et al., 

2013).  

Censuses and surveys are commonly employed as an alternative, less costly method to 

collect information on the behaviour and preferences of cyclists (Böcker & Thorsson, 2013). This 

may also enable jurisdictional comparison (Behan, 2010; Fisher, 2014), and may be used within 

regions where higher resolution data (i.e. automated counter data) are not available (Böcker et al., 

2013b). Generally, census data is presented at the national (e.g. The Netherlands National 

Household Travel Survey) or state/provincial level, however several jurisdictions in North 

America and Europe routinely collect regional and municipal data (e.g. the Transportation 

Tomorrow Survey in southern Ontario). Censuses and surveys have the advantage of reaching a 

greater number of potential participants than interviews and focus groups, however the 
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predetermined questionnaire design may limit the amount of information available to researchers 

for analysis (Saneinejad, 2010).  

The above data collection methods are very common within cycling literature due to a lack 

of automated and technological alternatives in past studies. Recently, however, cities around the 

world are installing automated cycle counters, which use inductive loop and infrared sensor 

technology to measure the number of cyclists, cars, and pedestrians at a specific location (US 

Depart of Transportation, Federal Highway Administration [FHWA], 2013). This data collection 

method generates data at an hourly or daily resolution on the number of travellers passing by the 

location, and may include the direction of travel and type of transport mode they are using (FHWA, 

2013). Automated counter data is heavily used within recent research on cycling and pedestrian 

travel (e.g. Aultman-Hall et al., 2009; Ahmed et al., 2010; Nosal & Miranda-Moreno, 2014). Due 

to automated counters being tied to a specific location they may not capture all travelers when 

unpredictable movements occur next to or near a facility, such as using ‘short cuts’ that effectively 

bypass the counter, and may over or undercount (FHWA, 2013). However, automated counters 

provide the unrivaled ability to continuously count and collect data on cycling frequencies at high 

temporal resolutions, addressing the lack of continuous, non-motorized vehicle data collection 

(Zhao, 2016). In the face of the conventional limitations of automated counters, new technologies 

have been emerging that seeks to more dynamically monitor traffic counts, including cycling. 

Examples include a new mobile application employed by the City of Toronto, Ontario, developed 

by Brisk Synergies. This free application “allows cyclists to record their cycling routes [using GPS 

enabled smartphones] and provide this data to the City” that can then be used by the City of 

Toronto to inform “data collection and analysis when developing cycling network plans” without 

the need for physical infrastructure installations (City of Toronto, n.d.). Another example includes 

the Ontario-based company MioVision that utilizes video technology to differentiate between and 

count different modes of traffic, including active travellers (MioVision, 2017).  
 

2.3.2 Weather Data Collection Methods 

Weather data within most of the studies reviewed in this thesis rely on data that is collected and 

made available by meteorological agencies or independent weather stations (i.e. ECCC or KNMI). 

Alternatively, Cools and Creemers (2013) use cyclists’ perceptions of weather, rather than actual 
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weather data, to study the relationship between weather and cycling. The authors argue that the 

perception of weather is as important as the measured conditions themselves. 

 While many researchers agree on the use of quantitative weather data to analyze temporal 

fluctuations in cycling, there is a great deal of discussion oriented around which weather variables 

are necessary within an analysis. Common weather variables used within analyses include: 

precipitation (mm), temperature (°C), wind speed (km/h), amount of sunshine (h/day), and relative 

humidity (%). A number of authors argue the necessity of further dividing these variables into 

subcategories to represent different conditions and degrees of severity. Precipitation may be 

categorized into rain (Gallop et al., 2012; Tin Tin et al., 2012; Wadud, 2014) and snow (Winters 

et al., 2007; Sears et a., 2012), while authors also consider the variable impact of different amounts 

of rain per hour on cyclists, commonly citing a non-linear relationship (Ahmed et al., 2012; 

Mathisen et al., 2015). Similarly, varying wind speeds are hypothesized to have differing effects 

on cycling, therefore studies include the full range of wind speeds to identify thresholds (Ahmed 

et al., 2010; Creemers et al., 2013), or a severity index is developed to categorize wind speeds 

(Nosal & Miranda-Moreno, 2014). Next, ambient air temperature values are commonly used 

within weather sensitivity models (Miranda-Moreno & Nosal, 2011; Saneinejad et al., 2012; 

Thomas et al., 2013). However, examples exist of ambient air temperature being combined with 

other weather variables (e.g. relative humidity, solar radiation, wind speed) to develop apparent 

temperature values (e.g. physiological equivalent temperature [PET], HUMIDEX), which consider 

how comfortable an individual may feel under a combination of atmospheric conditions (e.g. 

Brandenburg et al., 2007). Others argue that the amount of sunshine plays a significant role and 

should be included, as cyclists may feel unsafe cycling in low-light or dark environments, therefore 

greater amounts of sunshine (i.e. summer months) will result in greater cycling frequency 

(Brandenburg et al., 2007; Phung & Rose, 2007; Behan & Lea, 2010). Further, several authors 

state that certain weather variables have lagged effects, meaning that even when they are no longer 

occurring they continue to impact cycling frequencies for a period of time, such as after rain or 

snowstorms (Miranda-Moreno & Nosal, 2011; Ahmed et al., 2012).  
 

2.3.3 Climate Change Data Collection Methods 

Forecasts of the impacts of future weather conditions on cycling use climate projections or 

scenarios in models of future effects. Their use in research has been limited thus far to several 
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examples within transportation literature focused on active travellers, which will be discussed 

below. The most common source of climate projection data appears to be from regional models on 

climate change (Saneinejad et al., 2012; Böcker et al., 2013a; Mathisen et al., 2015). These studies 

use seasonal projection averages (Böcker et al., 2013a), or a range of projection values (Saneinejad 

et al., 2012; Mathisen et al., 2015) that are noted within studies on climate change to then be used 

in cycling research. Some studies use regional climate models (RCMs) or outputs from these 

models as generated by other research (Böcker et al., 2013a; Mathisen et al., 2015), while others 

use global climate models (GCMs) (Wadud, 2014). Slight differences exist in the application of 

RCMs and GCMs. GCMs typically have poor spatial and temporal resolutions in comparison to 

RCMs, which have greater resolution and are better able to represent regional weather patterns, 

but are not available for every region and rely heavily on information derived from GCMs (Takle, 

2005). Therefore, an RCM does not replace a GCM, rather it provides climate information at a 

finer resolution (Takle, 2005). When RCMs are not available or are not desired, alternative 

methods may be used to downscale GCM projections to smaller temporal and spatial resolutions, 

as seen in Wadud (2014). In some cases (Mathisen et al., 2015), authors use a single report on 

climate change projections to guide their research and develop cycling forecasts, which raise 

questions over the degree of uncertainty surrounding cycling frequency modelling (Mathisen et 

al., 2015). In contrast, others use multiple reports or entire climate model projections to generate 

cycling forecasts based on current weather data and produce more robust findings (Saneinejad et 

al., 2012; Wadud, 2014).  
 

2.3.4 Temporal and Spatial Scale of Collected Data 

With such a variety of geographic areas represented in the literature, ranging from case studies of 

a single transport corridor (Saneinejad et al., 2012; Mathisen et al., 2015), to regional (Cools et al., 

2010; Ahmed et al., 2012; Wadud, 2014) to nation-wide (Pucher & Buehler, 2006; Creemers et 

al., 2013), there are debates regarding the appropriate scale of data collection required for a study 

area that will provide useful results without overly generalizing the findings. Studies performed at 

a municipal level are said to be capable of considering demographic differences within a city or 

region, as well as providing localized weather and cycling data for more refined outcomes than at 

larger scales (assuming localized data is available) (Saneinejad, 2010). Conversely, studies using 
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larger scales (e.g. national) are able to consider broader weather pattern, climate, and geographical 

differences, as well as provide further analysis from an inter-city perspective (Saneinejad, 2010).  

 In addition to the variety of locations and the size of geographic areas under study, there 

are considerable differences in the temporal scale of weather and cycling data used within research. 

In some instances, researchers are constrained to shorter time periods as automated counters may 

have been recently activated (e.g. Phung & Rose, 2007). However, researchers offer a variety of 

hours or days that they believe are the most appropriate to study. Examples include only using 

hours that correspond to the morning rush hour (Brandenburg et al., 2007; Ahmed et al., 2010; 

Sears et al., 2012; Flynn et al., 2012), while others opt to utilize a continuous stretch of time 

throughout the day to include both morning and afternoon rush hour periods, and travel occurring 

outside these periods, such as 06:00 to 20:00 (Phung & Rose, 2007; Miranda-Moreno & Nosal, 

2011; Tin Tin et al., 2012; Nosal & Miranda-Moreno, 2014). This method omits night time hours 

due to low cycling frequencies and low representation of utilitarian cycling after nightfall 

(Miranda-Moreno & Nosal, 2011; Nosal & Miranda-Moreno, 2014). Authors also consider the 

weekly fluctuations in cycling frequencies, and therefore must identify days of the week that are 

to be included or excluded from study. Thomas et al. (2013) exclude weekends, statutory, and 

school holidays from utilitarian cycling travel behaviour modelling, while Saneinejad et al. (2012) 

and Ahmed et al. (2010) include all days of the week to identify differences between utilitarian 

and recreational cyclists. Finally, months of the year are considered when determining the 

appropriate time periods to study, with specific months being preferred over others. Authors argue 

that the majority of commuter cyclists travel by bicycle during the spring, summer, and fall (i.e. 

April to November), with few cyclists continuing throughout the winter (Miranda-Moreno & 

Nosal, 2011; Miranda-Moreno et al., 2013; Nosal & Miranda-Moreno, 2014). However, this 

omission does not consider cyclists who travel year-round, and also limits one’s ability to model 

the relationship between cycling frequency and climate change for a full year. Despite this, 

examples exist of research on the impacts of weather on cycling for all twelve months (Creemers 

et al., 2013; Wadud, 2014; Mathisen et al., 2015).  

There are differing opinions on what resolution of weather and cycling data should be used. 

Authors generally show support for using hourly data when it is available (Saneinejad et al., 2012; 

Tin Tin et al., 2012; Böcker et al., 2013b; Miranda-Moreno et al., 2013), however several 

researchers prefer the use of daily summaries or aggregates of data (Aaheim & Hauge, 2005; 
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Creemers et al., 2013). Though hourly data provides greater resolution and detail, some researchers 

argue that daily averages or aggregates are more appropriate due to uncertainties regarding the 

hourly measurement of certain conditions (Thomas et al., 2013), or modelling routine activities 

such as work or school commuting trips (Sabir, 2011; Böcker & Thorsson, 2013). Böcker et al. 

(2013b) conversely state that “daily weather data [does] not always reflect actual weather at the 

moment a trip or activity takes place”, and that many past studies have used daily data because it 

was the highest resolution that was publicly available. 
 

2.4 A Review of Methods Used within the Literature 

A variety of methods are used by authors to quantify the relationship between cycling travel 

behaviour and weather or climate change. Models and analyses may be used to statistically 

represent the expected changes in cycling rates as a function of weather or future climate 

conditions. As noted above, there are several types of data that are used to study these relationships, 

which are analyzed using different methods. The types of modelling and measurement throughout 

the reviewed literature are listed below for both weather and climate change.  
  

2.4.1 Methods of Cycling Travel Behaviour Analysis  

Prior to modeling the relationship of weather effects on cyclists, cycling frequencies must first be 

analyzed to identify any underlying temporal influences and to demonstrate the temporal variation 

in cycling frequencies across a study area. The dominant method used to assess temporal effects 

on cycling frequencies is to sort the cycling count data into time-based categories, which are 

commonly based on the hour of day, day of the week, and month of the year (Miranda-Moreno & 

Nosal, 2011, uses the term “absolute approach” to reference this method). Variations include 

considering weekends and weekdays separately, as well as seasonal summaries of cycling count 

data (e.g. Tin Tin et al., 2012; Böcker et al., 2013a). These time scales provide a cursory glance at 

the temporal effects on cycling. The advantage of this approach is its ability to identify long-term 

trends in cycling frequencies (Miranda-Moreno & Nosal, 2011). However, it fails to adequately 

model short-term trends over long time periods in response to an independent variable (i.e. 

weather). An absolute approach possesses the potential to be impacted by systematic changes in 

cycling rates that are not a result of weather, such as the influx of students, a social group that has 

a high reliance on bicycles, in regions with post-secondary institutions every fall (Miranda-Moreno 
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& Nosal, 2011). This occurrence will register higher cycling frequencies not as a result of positive 

weather conditions, but through a simple increase in volume. 

 While cycling count data may be analyzed at varying time scales, Miranda-Moreno and 

Nosal (2011) find that count data may be analyzed using an alternative approach. Rather than 

relating weather conditions with the sheer volume of cyclists, as is the case with an absolute 

approach, a relative approach compares average cycling volumes for a given day of the week at a 

given time of day, indicating changes relative to the mean (Miranda-Moreno & Nosal, 2011). 

Miranda-Moreno and Nosal (2011) state that this approach is better at analyzing short term trends 

and directly examining the impact of weather on cycling as it accounts for systematic seasonal 

non-weather impacts (e.g. post-secondary students, individuals who are frequent cyclists, returning 

to school in September resulting in an absolute increase in cycling volumes). However, it is 

important to note that this approach is limited in its application, first being used in Miranda-

Moreno and Nosal (2011), and again by Miranda-Moreno et al. (2013) and Nosal and Miranda-

Moreno (2014), lacking use by alternative research groups. Additionally, several years of time-

series data is required to produce representative means to compare current cycling count data 

against. 

 Aside from the absolute and relative approaches outlined above, alternative methods are 

found in a variety of studies. Studies using travel diaries, logs, or surveys to collect cycling travel 

data may analyze cycling frequencies as a binary distribution (e.g. did a participant cycle: yes or 

no), using whichever time scale is provided by the participant or required within the study, such 

as the time of day or day of the week that the cycling activity began, finished, or occurred (Flynn 

et al., 2012; Sears et al., 2012). A binary distribution is useful when the aforementioned data 

collection methods are employed, however it cannot be applied to all studies, such as those that 

use automated cycling count data, as individuals that do not cycle and an individual’s cycling 

trips are not registered at automated count locations.  
 

2.4.2 Weather and Cycling Modelling Methods 

Understanding how weather influences cycling is a common theme within the reviewed literature, 

as researchers seek to understand how different geographic areas respond to a variety of weather 

conditions. A common method used to study the relationship is to combine cycling frequency or 

travel data and weather data, termed the “revealed accounts of weather approach” (Böcker et al., 



19	
	

2013b). This approach seeks to reveal travel behaviour by combining the two types of data to 

identify the relationship. Each publication that studies the impact of weather on cycling travel 

behaviour uses this approach with their respective cycling and weather datasets. Due to the variety 

of data researchers use to model the relationship, as well as varying research objectives, there are 

a number of notable methods authors use within studies to analyze the relationship. Below, a 

review of quantitative and qualitative analyses within the literature are provided. 

Statistical analysis of cycling and weather data is a common approach within the literature 

to quantify the relationship between cycling frequency and weather variables. There is a range of 

approaches that researchers use to quantitatively analyze the relationship, however all methods use 

a form of regression analysis. Amongst multivariate regressions are two approaches to modeling 

explanatory variables: linear (e.g. a constant change in a weather variable will result in a constant 

change in cycling frequency) and non-linear (e.g. a change in a weather variable does not result in 

a similar change in cycling frequency) models. A common practice amongst the reviewed literature 

is to predetermine the linearity of the model based on past findings (Nosal & Miranda-Moreno, 

2014; Wadud, 2014; Mathisen et al., 2015). Thomas et al. (2013) argue that this is a dangerous 

approach, as the use of non-linear variables inappropriately included in a linear regression model 

violates the linearity assumption of a multiple linear regression (as cited in Phung & Rose, 2007, 

and Ahmed et al., 2010). Wooldridge (2012), conversely states that the use of a linear or non-linear 

model should be determined by the linearity of the included weather parameters, which is exhibited 

in select publications (e.g. Thomas et al., 2013). The use of a linear or non-linear model is not a 

binary decision, rather authors (e.g. Nosal & Miranda-Moreno, 2014; Wadud, 2014) show that 

non-linear variables (e.g. wind speed, precipitation, and temperature) may be included into a linear 

regression model. This is achieved by using categorical variables to represent non-linear weather 

variables in linear models. A categorical variable is divided into a number of segments (e.g. 

precipitation values of <1 mm, 1 mm to 4.9 mm, and >5 mm) to coarsely capture a non-linear 

relationship, while still meeting the necessary assumptions and conditions of an MLR. This non-

linear approach has been applied to the weather variables rain, temperature, and wind, with the 

added benefit of being able to represent variables found to have a linear relationship with cycling 

frequencies (e.g. hours of sunlight, wind speed, and temperature). 

 There are a variety of regression models used throughout the literature to statistically 

analyze the relationship between weather and cycling. A common approach is to use a log-linear 
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model (a linear regression model with a logarithmic transformation applied to the explanatory 

variables) to reduce the positive skew of the cycling data, producing a normal distribution, as 

required within linear regression (Brandenburg et al., 2007; Phung & Rose, 2007; Ahmed et al., 

2010; Miranda-Moreno & Nosal, 2011; Nosal & Miranda-Moreno, 2014). A noted benefit of using 

a log-linear model is that the interpretability of the coefficients is made simple as they are listed 

as a percentage change in the response variable (i.e. cycling frequencies) relative to the reference 

case (Phung & Rose, 2007). However, interpreting categorical coefficients is not as simple, as 

Halvorsen and Palmquist (1980) “suggest taking the anti-log of the coefficient and subtracting one 

to obtain the percentage effect”, reversing the effects of the previously applied logarithmic 

transformation (as cited in Phung & Rose, 2007). An alternative to using an ordinary linear model, 

Sears et al. (2012), Creemers et al. (2013), and Thomas et al. (2013) use a generalized or generic 

regression due to the flexibility of the model. Authors using this approach indicate their preference 

for allowing the data to determine the appropriate model form (i.e. linear or non-linear), which is 

an inherent benefit of this regression. This is in contrast to Wadud (2014) and Mathisen et al. 

(2015) who follow an econometric approach. The authors point to the advantages of using an 

econometric model over logarithmic transformations of explanatory variables, as they argue this 

method is unable to handle valid zeroes, which are common in precipitation data (Mathisen et al., 

2015). Wadud (2014) also states that log-linear ordinary least squares models, though common in 

the literature, are inappropriate for weather and cycling data analysis due to the presence of non-

normal and heteroskedastic error values, producing biased estimates, indicating preference for the 

use of a Poisson and Negative Binomial regression approach in its place. Another type of 

quantitative analysis can be found with authors choosing to use a multinomial logistic (MNL) 

regression, as seen in Saneinejad, et al. (2012). An MNL regression models nominal outcome 

variables, “in which the log odds of the outcomes are modeled as a linear combination of the 

predictor variables” (University of California, Los Angeles [UCLA], n.d.). This method differs 

from the above by not attempting to predict a count, but the probability of an outcome occurring, 

and is beneficial for studies on mode choice, as well as those that employ large numbers of 

categorical variables (e.g. Saneinejad et al., 2012). Finally, Bidordinova (2010) uses non-

parametric regression to rank mean values for the collected responses, after coding each response 

using a Likert scale. The mean values are also used to measure the average response to each 

question as well as the variance around the mean (Bidordinova, 2010). 
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 Outside quantitative analysis, there are a few examples of qualitative analyses on the 

impacts of weather on cycling travel behaviour. Approaches in qualitative analysis of cycling 

frequencies include identifying the frequency at which common themes and topics arise in 

interviews and focus groups, and interpreting the results using the mean of select weather 

variables, as seen in Spencer et al. (2013). Spencer et al. (2013) identifies the frequency of themes, 

determining the proportions for how frequently a topic is mentioned by focus groups or based on 

a characteristic shared amongst the participants (e.g. gender). Identifying and analyzing common 

topics in focus groups and interviews is benefitted by being a simple means to determine potential 

effects of weather on cyclists based on the sample population.  While this form of analysis provides 

unparalleled insight into the thought processes, feelings, and decision-making processes of 

utilitarian cyclists’ travel behaviours, it lacks the ability to extrapolate to larger populations due to 

the individualized nature of the responses (Spencer et al., 2013). Additionally, there is no objective 

analysis of the relationship between cyclists’ travel behaviours and weather. Rather, qualitative 

studies on weather’s effects on cycling frequencies analyze subjective statements by participants, 

later, in the case of Spencer et al. (2013), relating them to mean weather values. 
 

2.4.3 Climate Change and Cycling Modelling Methods 

Among the few publications that statistically forecast and analyze the impacts of climate change 

(or future weather conditions) on cycling frequency there are two notable methods of analysis. The 

most common approach found in cycling and climate change literature is to use the delta or change-

factor method, whereby projected changes in future weather are applied to present-day values to 

project actual weather conditions. Values representing weather conditions in future climates are 

entered into a regression model (usually the same one used to model weather sensitivities as 

discussed above) to model cyclists’ weather sensitivities in future climates. Mathisen et al. (2015) 

uses the most simplistic approach by referring to a Norwegian national climate change study and 

using the projected values for temperature and precipitation for 2050 in their cycling and climate 

change model. Saneinejad et al. (2012) continues the use of the change-field method in a study on 

climate change impacts on Toronto, Ontario cyclists with an increase in the range of conditions 

being modelled compared to Mathisen et al. (2015). The authors use a range of projections from 

four climate change reports to determine the expected change in temperature and precipitation in 

mid-century climates. For temperature, the expected increases (between 1°C to 6°C) are 
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individually applied to a dataset of past temperature values used within the initial study to model 

the changes in cycling travel behaviour per each 1°C increase in temperature. Precipitation is 

modelled in a similar fashion, by applying the expected 0-20% increase in precipitation to past 

precipitation data. Changes in precipitation are applied by randomly changing 10% or 20% of 

hours from rain events to clear or cloudy conditions (decreased occurrence of rain), or by changing 

hours from clear or cloudy conditions to rain (increase in occurrence of rain). The change-field 

method is advantageous due to the simplicity of the approach and its ability to generate robust 

results, especially when using weather sensitivities generated with current weather conditions that 

may then be applied to forecasting climate change impacts (Anandhi et al., 2011; USAID, 2014). 

This method is also beneficial when comparing the impacts of current to future climate conditions, 

as the output values share the same units by using the same regression model, albeit with modified 

values. USAID (2014) identifies that the previously mentioned benefits exist, however there are 

assumptions within the change-field method that must be acknowledged. This method requires 

that normally distributed data are used (e.g. monthly precipitation as opposed to daily precipitation 

values, which is positively skewed), and is also noted as not being an appropriate method for 

modelling extreme events or changes in weather variability (Matthews, 2014; USAID, 2014). 

Therefore, the change-field method is a simple approach to model future weather conditions at 

coarse temporal resolutions, although important limitations in the type of data and its distribution 

must be considered.  

 To work around coarse temporal resolutions within climate projections, Wadud (2014) 

employs a weather generator to synthetically downscale the data to hourly and daily time scales. 

A GCM is used within their study, which features coarse spatial and temporal resolutions that 

make representation of future hourly and daily weather conditions problematic, justifying the use 

of a weather generator to produce values similar in scale to the previously inputted weather 

variables. The weather generator produces a large volume of projections which may then be 

applied to a model in similar fashion to the change-field method noted above. Each projected 

change in a weather variable is applied and the model is rerun to model the relationship between 

future weather through climate change on cycling frequencies. Unlike the change-field method 

which can model the change in precipitation severity, a weather generator is able to calculate how 

long a period of precipitation or drought may occur (USAID, 2014). This approach is identified 

by the Intergovernmental Panel on Climate Change (IPCC) as an inexpensive and robust method 
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of generating regional climate information (Giorgi et al., 2001), while USAID (2014) finds that it 

is better able to model non-normally distributed weather variables such as precipitation and wind 

speed than the more commonly used change-field method. Additionally, weather generators 

produce large volumes of data series within a range of climate projections (USAID, 2014; Wadud, 

2014). While this is beneficial in some scenarios, it also requires a large and exhaustive review of 

the outputs and is “computationally more cumbersome” than alternatives, such as the change-field 

method (Matthews, 2014; USAID, 2014). Additionally, USAID (2014) reports that weather 

generators’ outputs require post-processing, in contrast to the straightforward interpretation and 

use of change-field method outputs. 

 An alternative approach to the change-field method and weather generator, Böcker et al. 

(2013a) simulates climate change impacts on transportation using a different method. A key 

difference from this study and the above is that Böcker et al. (2013a) does not seek to simulate the 

effects of current weather on cycling frequencies, and therefore does not develop a statistical model 

for current conditions. Rather, Böcker et al. (2013a) focuses strictly on climate change analysis. 

Seasonal weather data from 2004-2009 are used, with seasons categorized as being representative 

of normal or unusual weather conditions (based on average temperature and precipitation values 

for a given season compared to the historical record). Cases categorized as normal represent 

current weather conditions, while those categorized as unusual closely exhibit projected conditions 

under a changed climate in 2050. Transportation data is then combined with temperature and 

precipitation data collected from the previously categorized seasons into a multivariate regression. 

To model future mode choice, Böcker et al. (2013a) employs a multinomial LOGIT model that 

can categorically represent each mode based on utility maximization, using personal automobiles 

as the reference case, while travelled distances are modelled with a TOBIT model due to the 

abundance of valid zeroes and lack of non-negative values. This approach enables the researcher 

to use past, non-simulated examples of how Dutch cyclists respond to conditions projected to occur 

in 2050. The use of past seasonal cycling frequencies to determine future responses appears to be 

a novel approach amongst the literature. A disadvantage to this approach is that the relationship 

between weather, travelled distances and mode choice is performed solely at a seasonal level, with 

another being that it does not attempt to model adaptation, rather focusing on how cyclists have 

coped with past weather conditions. Böcker et al. (2013a) identifies that this method does not 

model at higher temporal resolutions, or consider the impacts that individual hourly, daily, or 
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monthly weather conditions have on mode choice and travelled distances (including cycling), 

focusing instead on the overall seasonal impact.  
 

2.5 Discussion of Findings and Results within the Literature 

The literature uses a variety of methods, datasets, and variables amongst each of the analyses, and 

as such the reported findings show degrees of variation from one study to another. However, 

despite this variability, consistencies appear across a number of the findings. Cycling travel 

patterns, select weather variables and climate projections are identified in the literature as having 

similar effects on cycling travel behaviours, while other variables appear to show greater 

variability. Findings within the literature are reported in this paper by the following categories: 

temporal variations in cycling frequencies; the degrees of impacts of weather on cycling 

frequencies, mode choices, and travelled distances; and projected impacts of climate change on 

cycling.  
 

2.5.1 Cycling Travel Behaviour Patterns 

As the basis for modelling the relationship between weather and climate change on cycling travel 

behaviours, many authors report descriptive statistics for each facility to acknowledge temporal 

variations in cycling frequencies. The consistency in global cycling travel behaviour can be 

identified here, where similarities in weekday versus weekend cycling distributions (both at time 

of day and day of the week) are seen in study areas ranging from Vancouver, BC (Gallop et al., 

2012), to Melbourne, Australia (Phung & Rose, 2007; Ahmed et al., 2010). Along commuter 

cycling routes, workday (weekdays that are not a holiday) hourly variations consist of a bimodal 

distribution, with a clear AM peak (between 7:00 – 9:00 am) and a clear PM peak (between 4:00 

– 6:00 pm) (Ahmed et al., 2010; Gallop et al., 2012). This is in contrast to weekend and holiday 

patterns, where a unimodal peak is found in the afternoon hours as a result of recreational and non-

commuting utilitarian cycling activities (Miranda-Moreno et al., 2013; Mathisen et al., 2015). 

Further, weekly patterns are shared across all study areas, with Monday representing the lowest 

average cycling frequencies, and Tuesday or Wednesday holding the highest rates amongst 

workdays, and Saturday and Sunday having the overall lowest cycling frequencies of the week 

(Nosal & Miranda-Moreno, 2014; Mathisen et al., 2015). Differences emerge when comparing 

monthly or seasonal variations in cycling frequencies commonly resulting from current climates 
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and pre-existing travel behaviours in each of the study areas. While summer months (May to July 

in the northern hemisphere, and January to February in the southern hemisphere) commonly 

experience peak annual cycling (Ahmed et al., 2010; Flynn et al., 2012; Miranda-Moreno & Nosal, 

2011), some regions have higher spring and fall cycling frequencies, such as in Texas, US, where 

high summer temperatures prove detrimental to cycling (Sener, Eluru & Bhat, 2009). In addition, 

winter months appear be the least popular time for cycling (Sener et al., 2009; Fisher, 2014), also 

showing varying impacts depending on the locations under study. Miranda-Moreno et al. (2013) 

notes that across Canada, Vancouver, BC, does not experience a significant decline in winter 

ridership when compared to the cities of Ottawa, ON, and Montreal, QC, likely due to the mild 

climate that is found in Vancouver, BC. Overall, clear temporal patterns exist that are exemplified 

by numerous studies around the world. 

2.5.2 Results of Modelling Weather and Cycling  

Each weather variable has a differing impact on cycling, which may be influenced by differences 

in time (e.g. time of day, day of the week, or month of the year) and in space (e.g. by region or 

continent). This section will provide an overview of the reported findings on the relationship 

between current weather and cycling frequencies, identifying variability and limitations in the 

findings where possible. 

 Temperature is one of the most studied weather variables for its potential influence on 

cycling rates. The literature suggests that temperature generally effects cycling frequencies, 

however these effects can range from negative to positive, with some researchers arguing that the 

effects are linear. There is a general theme that an increase in temperature will result in higher 

cycling frequencies, when holding all other variables constant, and that the influence is relatively 

strong or significant (Böcker & Thorsson, 2013). Examples of the increases range from a 3% 

increase in cycling frequencies for every 1 °F (0.56 °C) increase in temperature in Vermont, US 

(Flynn et al., 2012); a 1.65% increase in cycling frequencies for every 1 °C increase in temperature 

in Vancouver, BC (Gallop et al., 2012); to a 3.2% increase in cycling frequencies for every 1 °C 

increase in temperature in Auckland, New Zealand (Tin Tin et al., 2012). Alternatively, some 

authors express the relationship by finding the optimum temperature or range of temperatures that 

increase cycling, indicating a non-linear pattern as both extreme heat and cold temperatures may 

negatively impact cycling frequencies. Optimum maximum temperatures are predominantly 

reported between 24 °C and 28 °C (Phung & Rose, 2007; Ahmed et al., 2010; Böcker & Thorsson, 
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2013; Wadud, 2014), however Phung and Rose (2007) also report that the optimal riding range 

(where the effect of temperature on cycling is positive) is between 14 °C to 41 °C. Additionally, 

Saneinejad et al. (2012) finds that 15 °C is a key temperature: above 15 °C cyclists become 

insensitive to temperature, while below 15 °C the utility of cycling is found to decrease. 

Conversely, Behan and Lea (2010) and Cools et al. (2010) both find that temperature has a minimal 

or insignificant impact on cycling and active transportation. An important note must be made that 

both Behan and Lea (2010) and Cools et al. (2010) use average temperatures rather than hourly 

temperature readings, which may lead to underestimating the impact of temperature on cycling. 

Additionally, neither Behan and Lea (2010) or Cools et al. (2010) report any advantage of using 

mean, maximum, and minimum temperatures over the more widely used hourly temperature data 

found in other studies.  

Precipitation is another weather variable that is commonly under study for its supposed 

negative effects on cycling frequencies. It may also prove hazardous to cyclists depending on the 

type of precipitate a study area experiences (e.g. rain, hail, snow, sleet, and freezing rain). Rain is 

the most common precipitate included in publications due to its presence during the cycling season 

(this varies by season and location, but generally includes spring, summer, and fall). Researchers 

commonly identify the non-linear effects of rain on cycling frequencies, finding light rain (e.g. 

<10 mm) has a more dramatic impact than heavy rain (e.g. >10 mm) on cycling frequencies and 

travel behaviour (Phung & Rose, 2007; Ahmed et al., 2010; Wadud, 2014). Other authors find rain 

has a linear effect on cycling frequencies, such as a 10.6% decrease in cycling rates for every 1 

mm of rain during a given hour (Tin Tin et al., 2012). The lagged effect of precipitation is also 

considered, with numerous publications indicating a significant effect up to three hours after a rain 

event (Wadud, 2014), with cycling frequency decreases ranging from -8.86% (one hour after a rain 

event) in Vancouver, BC (Gallop et al., 2012) to an extreme of -36% in Montreal, QC (Miranda-

Moreno & Nosal, 2011). Saneinejad et al. (2012) also identify a lagged effect, as they mention that 

many cycling trips are postponed rather than cancelled due to rain. Despite the general consensus 

that rain negatively impacts cycling rates, Behan and Lea (2010) find no meaningful results by 

comparing the levels of precipitation across eight cities in Europe and North America based on 

annual precipitation values, rather than hourly or daily values used in the studies mentioned above. 

Their use of annual volumes cannot consider variations in the severity of precipitation, identify 
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the number of precipitation days, or the duration of precipitation events and their impacts on 

cycling, all of which are available when using hourly weather data. 

The final weather variable that is heavily researched is wind speed. There appears to be a 

large degree of variability in cyclists’ responses to varying degrees of wind speed. Flynn et al. 

(2012) find that wind has a significant negative effect on cycling rates, stating for every 1 mph 

(1.6 km/h) increase in wind speed, there is a 5% decrease in cycling frequency, while Ahmed et 

al. (2010) identify a 15% decrease in frequency during peak hours. When presented, authors 

indicate that wind may have either a linear or non-linear relationship with cycling frequency. 

Thomas et al. (2013) finds that wind negatively affects cycling up to a specific point, whereby the 

effects of stronger winds become disproportionately larger indicating a non-linear effect, while 

Phung & Rose (2007) are supportive, finding that cyclists only respond to strong winds (above 40 

km/h). Conversely, some research points to a linear or nearly linear effect; as wind speeds increase 

there is a proportional decline in cycling frequencies (Wadud, 2014). In contrast, there is evidence 

in research that wind does not significantly and wholly impact cycling. Böcker and Thorsson 

(2013) find that average daily wind speed has a negative effect on cycling durations (at a 90% 

confidence interval), however it does not significantly affect cycling frequencies. Finally, Spencer 

et al. (2013) report alternative responses to the impacts of wind throughout focus groups and 

interviews of Vermont cyclists. Spencer et al. (2013) share cyclists’ perspectives that wind can be 

dealt with and is not a significant factor in its own right, however its ability to influence apparent 

air temperatures can be a deterrent. Conversely, one participant stated that the impact of wind 

depends on its direction: head winds (riding into the wind) can be uncomfortable, while tail winds 

(riding with the wind to one’s back) can make cycling easier (Spencer et al., 2013).  

 Aside from the main three weather variables reviewed above an additional three are 

discussed in the literature. The influence of daylight hours is studied due to the perception that a 

lack of daylight may be less safe and comfortable and may exacerbate the effects of adverse 

weather conditions. There is a divide in research outcomes, with some indicating that there is a 

clear impact on cycling frequency with a lack of daylight hours (Ahmed et al., 2010; Tin Tin et 

al., 2012; Böcker & Thorsson, 2013), while others find the effect to be statistically insignificant or 

have minimal impact (Phung & Rose, 2007; Behan & Lea, 2010; Flynn et al., 2012; Wadud, 2014). 

A common concern identified with using this parameter is that daylight hours are generally found 

to be highly correlated with temperature and visibility, which all benefit cycling frequencies and 
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are unlikely to occur individually from the other two parameters (Thomas et al., 2013). Next, 

humidity is considered with varying impacts, ultimately dependent on the geography of the study 

area. Such is the case in Ottawa and Montreal, where Nosal and Miranda-Moreno (2014) finds that 

these regions experience greater negative impacts by humidity than other study areas, such as 

Portland, Oregon. Gallop et al. (2012) provide further evidence of this regional variation as the 

effect of humidity in Vancouver, BC, has a minimal impact on cycling, with a 0.08% decrease in 

bicycle traffic per 1% increase in humidity from the mean. Finally, a condition that is not 

experienced across all study areas, snow appears to generally have a negative impact on cycling 

frequencies. Flynn et al. (2012) are the only authors to quantify the impact that snow depth has on 

cycling, stating that one inch (2.5 cm) on the ground reduces the likelihood of cycling by roughly 

10%. Flynn et al. (2012) subsequently state that the majority of the respondents within their study 

did not cycle during the winter, and that these values are generated off of a small sample group 

that continued cycling. The remainder of the studies that include snow use qualitatively collected 

data, simply indicating the presence of snow on the ground or of precipitation in the form of snow 

(Spencer et al., 2013; Wadud, 2014), continuing to support the negative effect of snow on cycling 

frequencies. Gallop et al. (2012) finds that its effect is insignificant, however the study area did 

not experience many hours with snow during the data collection period, limiting the application of 

their findings.   

 Researchers identify that although their results appear accurate there are limitations in what 

may be extrapolated from them. A common concern is that the temporal range of weather data 

may not truly represent the weather patterns within a study location. Tin Tin et al. (2012) state that 

their use of continuous data is a clear strength, however their study uses weather data from a single 

location with a “reasonably narrow range of weather conditions”. Additionally, the spatial context 

of a study’s findings is found to potentially limit their applicability to other environments. Thomas 

et al. (2013) point out that their research is focused around a small number of rural cycle paths, 

with uncertainties for how their model and findings may be applied in regions with different levels 

of urbanization; while Flynn et al. (2012) identify that the broad spatial distribution of study 

participants lacks local detail and could weaken the studied relationships. Therefore, despite the 

similarities in findings across studies, a number of limitations are identified by authors that may 

reduce the ability of their findings for the relationship between weather and cycling travel 

behaviours to be generalized to a larger population.  
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2.5.3 Results of Modelling Climate Change and Cycling 

Amongst the publications that consider the impact of climate change on cycling travel behaviours, 

there is a broad range in reported results, in part due to the differing study objectives, study areas, 

and methods through which the studies are generated. Additionally, not all publications project 

climate impacts to the year 2050 (mid-century). Wadud (2014) uses 2041 as the forecasting year, 

Mathisen et al. (2015) uses both mid (2050) and end of century (2100) depending on the effect 

being examined, while Saneinejad et al. (2012) and Böcker et al. (2013a) exclusively use 2050 

projections. 

 Commonalities exist across the literature: by mid-century, there is an agreement that 

precipitation events will become more severe and occur over fewer days (Böcker et al., 2013a; 

Mathisen et al., 2015) and that mean annual air temperatures in each of the study areas are expected 

to increase (Wadud, 2014; Mathisen et al., 2015). These two factors are expected to extend the 

cycling season due to the reduction of winter conditions (Mathisen et al., 2015). Similarities in 

findings continue when reviewing the results only at an annual scale, with the general theme being 

minimal, but significant (at a 99% confidence interval) annual increases in cycling rates (Böcker 

et al., 2013a), with a projected net annual increase in cycling of 0.5% (Wadud, 2014). Mathisen et 

al. (2015) go so far as to state that, when excluding consideration of seasonal variations in climate 

and cycling impacts, increases in the cycling rate of Bodø, Norway, in 2050 is expected to increase 

predominantly due to population growth. This finding is counterintuitive given Mathisen et al. 

(2015) report increases of 1.2°C, 6.8% increase in the amount of rain, with reductions in the 

duration of the winter season, no expected change in average wind speeds, and a greater number 

of days above 5°C.  

Researchers explain that the minimal expected annual increase in cycling frequencies by 

mid-century is a function of counteracting seasonal impacts (Böcker et al., 2013a). Due to the high 

degree of variability between each season, it is therefore not advisable to consider expected annual 

impacts as the final figures. Böcker et al. (2013a) find that each of the four seasons in 2050 in The 

Netherlands will impact transportation usage across all modes, including cycling, differently. A 

rise in temperatures (from 3.6°C to 5.1°C) and precipitation (from 173 to 212 mm), along with 

fewer wet days (from 50 to 47) are forecasted for the winter season, which Böcker et al. (2013a) 

find to have a significant positive effect on active transportation mode choice, and a substantial 
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increase in cycling travel distances (at 99% and 95% confidence intervals respectively). Winter 

increases in cycling rates are supported by others, with Wadud (2014) forecasting a 1.5% increase 

(in 2041), and explanations including the expected reduction in the duration of winter by as much 

as two months in northern climates (Mathisen et al., 2015). However, Böcker et al. (2013a) expect 

differing impacts on mode choice and travelled distances for cyclists in each of the remaining 

seasons. Spring shows a non-significant increase in cycling mode share, with a significant negative 

effect on travelled distances (at 95% confidence interval) (Böcker et al., 2013a). Summer sees a 

significant, negative impact on cycling mode share (at 99% confidence interval), with no 

significant impact on travelled distances (Böcker et al., 2013a). Finally, Böcker et al. (2013a) find 

a non-significant decrease in cycling mode share, and non-significant increase in travelled 

distances during fall, 2050. Conversely, Wadud (2014) expects a 2.5% increase in the summer, 

with reductions of 2.0% and 0.1% in the spring and fall, respectively. Potential explanations for 

this seasonal variability include warmer winter weather with fewer occurrences of winter 

conditions that benefit cycling; and decreases in summer cycling mode share and travelled 

distances from potential negative effects of increased temperature. Contrary to the above results, 

Saneinejad et al. (2012) do not find seasonal variations in cycling rates, but that there is a linear 

effect in the percentage increase in number of trips made between 0°C and temperatures above 

20°C, not allowing for considerations of extreme heat or reductions in cold temperatures. 

Similarly, Saneinejad et al. (2012) find a negative linear association in the percentage change in 

number of cycling trips depending on the amount of precipitation (ranging from -20% to 20% 

change in the number of hours with precipitation).  

A key consideration found within some research is that base year selection has a significant 

impact on the forecasted values for the respective projection years. Wadud (2014) finds that when 

the base year of 2011 is changed to 2009 (which was cooler and wetter than 2011), climate 

projections have a greater positive impact on cycling rates in 2041. Similarly, Böcker et al. (2013a) 

also perform a number of sensitivity analyses to determine how the chosen base years and seasons 

impact mode choice and travelled distances per mode. Examples include switching the base season 

and year of spring 2008 to spring 2007 (which was warmer and wetter, but over fewer days) where 

cycling mode share projections for 2050 change from a positive, but non-significant increase, to a 

positive and highly significant effect (Böcker et al., 2013a). Therefore, selection of which base 
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year to use when projecting the relationship between future weather and cycling is of utmost 

important, as the findings may largely change as a result.  
 

2.6 Summary of the Literature 

This literature review presents an overview of the available study objectives, data collection 

methods and sources, the quantitative and qualitative methods used to analyze the relationship 

between weather or climate change on cycling travel behaviour, and the associated findings from 

the respective researchers. Although there are several approaches identified above, the research 

points to the common use of observed weather and cycling count data using quantitative methods 

to analyze this relationship.  

 Several study objectives are identified above, such as how cycling is included in a 

commuter’s decision on mode choice due to weather, whether trip purpose or trip destination 

impacts the selection of cycling as the preferred transport mode, and if cycling trip distance or 

duration is affected by weather. However, the most common objective is to examine the influence 

that weather has on cycling frequencies, omitting considerations of trip distance, specific 

destinations, and trip purpose (aside from commuter or recreational trips), among others. This 

objective proves advantageous in its ability to explicitly identify the relationships between cycling 

and weather variables, as well as the significance of these relationships.  

 There are few types of collection methods or sources of data used within the literature. 

Surveys, interviews, and focus groups are found in many articles seeking to study how travel 

behaviours such as mode choice, travelled distances or durations, and trip purpose are impacted 

by weather variables. It may be seen that while these studies provide very descriptive findings due 

to the personal nature of their data inputs, they are generally limited to small geographic areas, few 

study participants, and are commonly unable to apply their findings outside of their study area. 

Alternative data include measured weather conditions and cycling counts from facilities positioned 

throughout a city or region. This type of data provides high temporal resolution and objective 

accounts of weather and cycling occurrences. Additionally, the frequent availability of these data 

enables easy comparison between jurisdictions and studies due to consistencies in data collection 

methods. 

 An array of methods, both quantitative and qualitative, are used to analyze the relationship 

between weather variables and cycling travel behaviour. Qualitative methods, although present in 
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the literature are not commonly used, especially within the recent decade due to the ubiquity of 

available observational datasets. Therefore, quantitative methods are frequently used with the 

analyses. Within these methods, a regression analysis, most notably a multiple regression, is used 

to identify the impacts of several independent variables (e.g. temporal, meteorological, and 

socioeconomic) on a dependent variable (e.g. cycling count at a given time and location). Further 

considerations are made by the researchers based on the linearity of the variables used. While 

Thomas et al. (2013) argues that there are several weather variables that are non-linear and should 

not be used in a traditional multiple regression model (e.g. precipitation, temperature, and wind 

speed), researchers such as Phung & Rose (2007) and Ahmed et al. (2010) have found that by 

segmenting a non-linear variable into categories based on a range of values and inputting it as a 

dummy variable, both linear and non-linear variables are able to be entered into a single multiple 

linear regression model. This approach allows for a much more simple and robust method of 

analyzing the relationship while continuing to the meet the assumptions of a multiple linear 

regression.  

 To model future weather conditions or the effects of climate change on cycling travel 

behaviour, three methods are presented above, including the change-field or delta method 

(Saneinejad et al, 2012; Mathisen et al., 2015), a weather generator (Wadud, 2014), and a custom 

approach whereby weather observations are used to estimate how cyclists will react in a future 

climate (Böcker et al., 2013a). Each approach has its merits; however, the change-field method 

and weather generator are methods that are supported by the IPCC (Giorgi et al., 2001) and climate 

scientists (Anandhi et al., 2011) as tools that generate robust results.  

 The reviewed literature offers a plethora of methods to approach studying the relationship 

between weather or climate change and cycling travel behaviour, collecting data, and analyzing 

the relationship. However, after reviewing the literature certain approaches have been selected 

based on being the best methods to tackle the research questions presented in Section 1.3. To model 

the relationship posed in the first research question, this research will employ the methods used by 

Phung & Rose (2007) and Ahmed et al. (2010), whose model is specific to weather and cycling 

frequencies and enables simple modelling of linear and non-linear variables. To address the second 

research question, the change-field method, as used by Saneinejad et al. (2010) and Mathisen et 

al. (2015), will be used to model the impacts of climate change on cycling frequencies. Therefore, 
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this research will borrow proven methods used by researchers to conduct analyses on the impacts 

of weather and climate change on cycling frequencies in the City of Waterloo, Ontario. 
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3.0 Methodology 

3.1 Introduction 

In order to model the effects of meteorological variables on cycling frequencies, this study uses a 

quantitative methodology. By using quantitative methods, this research will be able to both identify 

the impacts that observed weather has on utilitarian cycling frequencies, and to predict how cyclists 

will be impacted under future weather conditions due to climate change. Data, collected at hourly 

temporal resolutions by federal government agencies as well as non-governmental organizations 

and institutions, are used to quantitatively evaluate and identify meteorological impacts on cycling 

frequencies within the City of Waterloo. To quantitatively analyze the relationship between 

weather and cycling and climate change and cycling, this research borrows from past studies on 

the impacts of weather on cycling frequencies by Phung and Rose (2007) and Ahmed et al. (2010), 

who model the impacts of weather on cycling frequencies in Melbourne, Australia, using a log-

linear regression, a variant of a multiple linear regression (MLR). The methods used in Phung and 

Rose (2007) and Ahmed et al. (2010) are presented and used later in this chapter, with adaptations 

that will make the model better able to represent cycling count data and the meteorological 

conditions found in Canada and make predictions on cycling counts under a changed climate. For 

this research, a Quasi-Poisson regression will be used within the model in place of the log-linear 

model used by Phung and Rose (2007) and Ahmed et a. (2010) for reasons explained later in 

Section 3.6. 

To model the relationships between utilitarian cycling, weather, and climate change, 

daytime, weekday hours within the AM and PM peak periods are selected, with mid-day, 

nighttime, and weekend hours excluded, in keeping with similar studies as discussed in the 

literature review (Section 2.5.1). Further information on the selection and application of these 

hours is discussed in Section 3.3.3. By restricting the hours under study to those that coincide with 

peak travel periods this research is able to focus on impacts due to weather on cycling travel 

behaviour during significant commuter travel periods. 

This chapter focuses on the methods that will be used in analyzing the impacts of weather 

and climate change on cycling frequencies. Section 3.2 introduces the study area and relevant 

initiatives undertaken within the municipality. Section 3.3 discusses the study data, including the 

methods through which the data were collected, cleaned, prepared for analysis, and any additional 

data inputs that were calculated and inputted for consideration in the final model. Section 3.4 
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discusses the means through which variables will be selected and assessed for input into the model. 

Section 3.5 describes the assessment and validation procedures that are used to verify the final 

model form prior to its use. Finally, Section 3.6 specifies the basic model form that will be used 

within this study. 
 

3.2 Study Area 

This section provides context about the study area, including general information regarding the 

location and characteristics of the City of Waterloo and the justification for selecting this 

municipality as the study area. Additionally, an overview of the study data is provided, as well as 

the methods that were undertaken by this research to prepare the data for analysis. 
 

3.2.1 Characteristics of the City of Waterloo 

The City of Waterloo is located in southwestern Ontario, less than 100 km west of the City of 

Toronto and the Greater Toronto Area (GTA) and is 150 km west of the City of Buffalo, New 

York, near the Canada-USA border (see Figure 3.1). The city is a landlocked municipality, situated 

approximately in the middle of three Great Lakes: Lake Erie to the south, Lake Huron to the west 

and north, and Lake Ontario to the east. Waterloo is a geographically small city, comprising a total 

land area of 64 km2, with approximately 105,000 inhabitants (Statistics Canada, 2017). Despite a 

geographically small municipality and moderate population size, Waterloo’s population density of 

1,634 persons per km2 is similar to or larger than neighbouring urban centres and the GTA, but 

remains significantly lesser than the City of Toronto, making for a small yet densely populated 

municipality. The City of Waterloo is a single-tier municipality within the Region of Waterloo, 

which also includes the cities of Cambridge and Kitchener, and the townships of North Dumfries, 

Wellesley, Wilmot, and Woolwich. Several post-secondary institutions are located in the City of 

Waterloo, with additional campuses found in adjacent municipalities. The University of Waterloo, 

Wilfrid Laurier University, and Conestoga College are all located a short distance apart in central 

Waterloo, close to Waterloo Park and the city’s central business area known as Uptown Waterloo. 
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Figure 3.1 - Location of the City of Waterloo in the Province of Ontario. 

 

3.2.2 Cycling and Active Transportation Initiatives in the City of Waterloo 

The City of Waterloo has frequently invested lands and resources to continue its strong cycling 

initiatives within the municipality. The City of Waterloo, to date, has installed 150 km of off-road 

multiuse trails and 60 km of on-road bicycle lanes to promote accessible transportation for all 

modes, earning it the Bike Friendly Communities Award by Share the Road Cycling Coalition in 

2011 (WeAre_Waterloo, 2013). Recent road improvements have furthered the city’s accessible 

travel initiatives, with Davenport Road receiving a “complete-street” makeover that facilitates safe 

and easy travel for cyclists, pedestrians, motorists, and everyone in between (WeAre_Waterloo, 

2013). Additionally, the City of Waterloo continues to increase cycling infrastructure by installing, 

improving, or extending current multi-use trails; installing new cycling lanes, introducing new 

active transportation technology, such as the “cross-ride” at Erb Street East and Peppler Road; and 

installing covered and secured bicycle storage boxes in public places. These investments are aided 
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by the continual funding, improvement, and expansion of the current active transportation 

monitoring program (City of Waterloo, 2015). Waterloo’s past efforts are also being aided by a 

recent announcement of increased provincial funding for cycling initiatives. Through joint funding 

by the Province of Ontario and the City of Waterloo, $650,000 was allocated to cycling 

infrastructure improvements in the City of Waterloo, which is being used on trail improvements 

in Waterloo Park, the location of the most frequented multi-use trail in the municipality (CTV 

Kitchener, 2016). 
 

3.3 Study Data 

For this study, detailed hourly weather and cycling count data were required to quantify weather 

sensitivities for cyclists in the City of Waterloo. Weather data used within this research is provided 

by several sources, all of which record data at daily, hourly, or quarter-hourly resolutions 

depending on the nature of the weather variable. While bicycle count data is provided by a single 

source, the City of Waterloo, observed weather data is made available by several organizations, 

including ECCC, the Grand River Conservation Authority (GRCA), and the University of 

Waterloo.  

The study period for this research is dictated by the dataset with the smallest data collection 

period. In this research, the study period is based on the available bicycle count data. This dataset 

contains hourly observations from August 2014 to December 2016, with each count facility 

possessing different amounts of time series data based on the date of installation of the given 

facility. This is complemented by regional weather data, which is available from the three 

aforementioned sources for the length of the study period. In the cases of the recorded observations 

from the University of Waterloo and ECCC, quarter-hourly and hourly data are available from the 

1990s and 2000s, respectively, to present.  

This section will discuss the data that is used within this research to model the effects of 

weather and climate change on cycling frequencies. Methods of data collection by the City of 

Waterloo, the University of Waterloo, ECCC, and the GRCA are discussed, in addition to data 

cleaning methods. Finally, data preparation tasks are discussed to ensure that the data is accurate 

and valid. 
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3.3.1 Data Collection 

This section discusses the methods through which each organization collected the respective data, 

in addition to the means through which this research obtained the information. 
 

Cycling Count Data Collection 

The City of Waterloo has installed eleven automated counters along priority active transportation 

routes throughout the municipality. These counters are employed to collect data on the frequency 

of use of an active transportation corridor by pedestrians and cyclists. Counters have been 

periodically installed by the company Eco-Counter since 2014, with active counter data available 

since August 26, 2014 at the Trans Canada Trail/Laurel Trail at Silver Lake Bridge facility in 

Waterloo Park. Since August 2014 eight additional multi-use trail locations have been activated, 

along with two counters located in an on-road bicycle lane, one on each side of the roadway (see 

Figure 3.2 for the location of automated counters and cycling lanes in the City of Waterloo). 

 
Figure 3.2 - Locations of cycling counter facilities in Waterloo, Ontario. 
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 Automated counters on active transportation routes in Waterloo are permanently installed 

systems found at trail or pathway entrance points, collecting cyclist and pedestrian counts 24 hours 

a day, 7 days a week, year-round. Each system uses inductive loop technology, a common method 

for counting vehicles along roadways, that is embedded in the ground to count passing cyclists, 

combined with infrared sensors to measure passing pedestrians (FHWA, 2013). For the purpose 

of this thesis, only cycling data collected by inductive loop counters will be studied, omitting 

pedestrian counts from infrared sensors. Inductive loop detectors utilize an electrical current that 

circulates through a wire coil installed in the pavement or pathway that is triggered by conductive, 

but not necessarily ferrous, materials such as those found on a bicycle (FHWA, 2013). Any 

disruption in the electromagnetic field that is produced by the inductive loop detector is registered 

as a count (FHWA, 2013). Necessary modifications are made to inductive loop detectors to count 

cyclists. As this is a technology that was initially designed to detect motor vehicles with large 

amounts of ferrous and non-ferrous materials, cycling specific counters are more sensitive and 

have additional criteria to detect and register the passing of a bicycle, which has far less material, 

ferrous or non-ferrous to disrupt the detector (see FHWA, 2013 for greater detail on the workings 

of inductive loop detectors) (FHWA, 2013; Gunst, 2017).  
 

Weather Observation Data Collection 

Weather data for the City of Waterloo is made available from three sources located across the 

Region of Waterloo. The first is from ECCC, which operates a weather station at the Region of 

Waterloo International Airport 11 km to the east of Uptown Waterloo, in the City of Kitchener. 

This weather station offers decades of historical results as observed at the airport, and has the 

advantage of being recorded and reviewed by a large meteorological and federal agency. The 

second source of weather data is from the Grand River Conservation Authority (GRCA), located 

4.5 km to the northwest of Uptown Waterloo at the Laurel Creek Conservation Area. The third 

and final weather station is on the University of Waterloo’s North Campus, 3.4 km to the northwest 

of Uptown Waterloo. All weather stations within the Region of Waterloo publish data at an hourly 

resolution or less.  

 A range of weather observations are provided at each weather station noted above. A key 

point is that not all observations are collected and/or reported as quantitative or continuous data, 

which may be the result of the type of data collected or the weather station not having the means 
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to collect the information in a quantitative format. As such, there are some instances of qualitative 

data that must be accommodated, such as current atmospheric conditions being reported as “rain”, 

“fog”, “snow”, etc., among others.  
 

Climate Projection Data Collection 

To model the effects of future weather conditions on cycling travel behaviour, use of climate 

predictions is necessary. To achieve this, climate projection data is obtained from the CMIP5 

climate model. CMIP5 is the most current and extensive model of the Coupled Model 

Intercomparison Project (CMIP), a coordinated climate model experiment agreed upon by the 

World Climate Research Programme (WCRP), which was partly designed to project future climate 

change at both near term (around 2035) and long term (2100 and beyond) scales (CMIP, n.d.; 

National Center for Atmospheric Research [NCAR], 2016). To generate climate projections, 

CMIP5 uses the years 1981-2005 as the reference period to establish the mean temperature and 

precipitation values. Data found within this dataset consists of “change-fields”. Change-fields 

(discussed in Section 2.4.3) are expected changes in precipitation or temperature from the mean, 

calculated using weather observations during the above reference period that may be presented as 

actual changes in a variable, or as a relative change (i.e. percentage change).  

 

CMIP5 
Emissions 
Scenarios 

RCP26 RCP45 RCP85 

Time Periods 
2011-2040 
2041-2070 
2071-2100 

2011-2040 
2041-2070 
2071-2100 

2011-2040 
2041-2070 
2071-2100 

Weather 
Variables 

Temperature (°C) 
Precipitation (mm) 

Temperature (°C) 
Precipitation (mm) 

Temperature (°C) 
Precipitation (mm) 

Model 
Outputs 

Mean 
25th Percentile 
50th Percentile 
75th Percentile 

Mean 
25th Percentile 
50th Percentile 
75th Percentile 

Mean 
25th Percentile 
50th Percentile 
75th Percentile 

Table 3.1 - Available predictive weather information and emission scenarios of CMIP5. 

 

Specific values for use in the forthcoming analysis of the effects of future weather 

conditions on cyclists were provided by Dr. Chris Fletcher at the University of Waterloo. Monthly 

values representing the changes in temperature and precipitation throughout the 21st century were 



41	
	

provided. Change-fields are provided at a monthly resolution for three emissions scenarios 

(RCP26, RCP45, and RCP85) at three time periods: near (2011-2040), mid (2041-2070), and far 

(2071-2100). A list of available data and scenarios is shown in Table 3.1. 

 
3.3.2 Data Cleaning 

This section outlines the methods used to clean and verify individual data points within each 

dataset to ensure that the data were valid and accurate observations of the respective variables. 

Despite the differences between each the cycling, weather observation, and climate change 

datasets, all datasets were screened and cleaned using the same procedure that will be discussed 

below.  

 Each dataset was initially screened based on time of day, day of week, and date to identify 

missing rows or data entries as well as the areas of concern. Upon doing so, discrepancies were 

identified amongst the time entries, in the cycling and weather observation datasets where 

numerous data entries were either not included in the datasets or in some cases multiples of one 

data entry were found. To ensure each hour of each year was accounted to allow the dataset to be 

truly representative of all hours of the year and identify where missing data occurred, empty rows 

were inputted in place of a missing entry. Missing entries were further validated by reviewing that 

the data ID numbers increased sequentially at a constant rate. In select cases missing data was 

replaced through the assistance of staff at the City of Waterloo who provided raw data. At this 

point several cycling counter facilities were identified as having significant gaps several months 

long due to malfunctions at the cycle counters (see Table 3.2). 

 After reviewing the temporal data of each dataset attention was shifted towards the actual 

observations or data entries. Here, focus was placed on identifying blatantly erroneous data and 

missing data entries. During this process a few inconsistencies were identified across both weather 

and cycling datasets. The University of Waterloo’s weather data proved to be riddled with missing 

and erroneous data for select weather variables (see Table 3.3), while one cycling counter facility 

was found to have results that were highly erroneous due to its proximity to a streetlamp (see 

Figure 3.3) which persisted for several months (Personal Communications, 2017). 

Once data cleaning concluded a series of decisions were made to omit certain data from 

the study due to highly erroneous or large numbers of missing data. Five of the eleven cycling 

counter facilities were excluded due to large amounts of missing data and one site with erroneous 
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data (refer to Table 3.2), while a number of variables from the University of Waterloo weather 

station were excluded for similar reasons. The remaining weather stations (GRCA and ECCC) 

showed few missing data and no obvious errors in the data entries, and therefore were included in 

full for use in this study. Finally, the CMIP5 climate change data does not show any signs of 

missing or erroneous data and therefore will remain unchanged. 

 
Facility Name Nearest 

Intersection 
Distance from 
Uptown 
Waterloo  

Activation 
Date 

Direction 
of Travel 

Dataset Errors/ 
Inconsistencies/ 
Missing Data 

Included in Study? 

Albert 
McCormick 
Community 
Centre 

Parkside 
Drive at 
Cedarbrae 
Avenue 

3.3 April 29, 
2015 

N-S - Erroneous count 
data (10 months) 

- Less than one full 
year of data 

No 

Davenport 
Road – 
Northbound 

Davenport 
Road at 
Hallmark 
Drive 

3.8 May 1, 
2016 

N-S - Missing count 
data (4 months) 

- Less than one full 
year of data 

No 

Davenport 
Road – 
Southbound 

Davenport 
Road at 
Hallmark 
Drive 

3.8 May 1, 
2016 

N-S - Missing count 
data (4 months) 

- Less than one full 
year of data 

No 

Iron Hose 
Trail at John 
Street West 

Park Street at 
John Street 
West 

0.8 July 15, 
2015 

N-S N/A Yes 

Laurel Trail at 
Erb Street 
East 

Peppler Road 
at Erb Street 
East 

0.3 July 17, 
2015 

N-S N/A Yes 

Laurel Trail at 
University 
Avenue East 

Carter 
Avenue at 
University 
Avenue East 

2.0 July 17, 
2015 

N-S - Missing count 
data (8 months) 

- Less than one full 
year of data 

No 

Laurel Trail at 
Weber Street 
North 

Weber Street 
North at 
Bridgeport 
Road East 

1.0 April 28, 
2015 

E-W N/A Yes 

Laurel Trail/ 
Trans Canada 
Trail at 
Bearinger 
Road 

Westmount 
Road North 
at Bearinger 
Road 

4.1 April 29, 
2015 

N-S Missing count data 
(7 months) 

No 

Laurel Trail/ 
Trans Canada 
Trail at 
Columbia 
Street West 

Hagey 
Boulevard at 
Columbia 
Street West 

2.2 April 29, 
2015 

N-S N/A Yes 

Laurel Trail/ 
Trans Canada 
Trail at Silver 
Lake Bridge 

Father David 
Bauer Drive 
at Erb Street 
West 

0.7 August 
26, 2014 

N-S Missing count data 
(2 weeks) 

Yes 

Spur Line 
Trail at Roger 
Street 

Waterloo 
Street at 
Roger Street 

1.2 July 27, 
2016 

N-S Less than one full 
year of data 

No 

Table 3.2 - Basic information regarding location and time of activation of each counter facility. 
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Weather Station Year Number of 

Observations 

Number of Removed 

Entries 

Percentage of Entries 

Removed 

Environment Climate 

Change Canada (ECCC) 

2016 8784 4 0.0% 

2015 8762 94 1.0% 

2014 6600 54 0.0% 

University of Waterloo 2016 35,136 2,388 6.8% 

2015 35,040 10,512 30.0% 

2014 34,748 34,748 100.0% 

Grand River Conservation 

Authority (GRCA) 

2016 8,232 0 0.0% 

2015 8,760 0 0.0% 

2014 8,736 0 0.0% 
Table 3.3 - Number of erroneous or missing data removed from each weather dataset. 

 

 
Figure 3.3 - Image of the Albert McCormick cycling counter potentially impacted by radiation (photo courtesy of Google Street 
View). 
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3.3.3 Data Preparation 

This section outlines the final steps that were required to be conducted following data collection 

and cleaning, such as preparing the datasets for analysis by removing erroneous and missing data 

entries. In addition, this section also mentions the inclusion of additional variables that have been 

calculated and are derived from the original datasets. 

In order to generate the final dataset that will be used to answer the first research question 

regarding the impacts of weather on cycling frequencies select data entries must be removed. As 

this research seeks to study the impacts of weather on utilitarian travel, weekends, statutory 

holidays, and select hours of the day were removed. For the purpose of this research two periods 

of time are used to model commuter cyclist travel behaviour: the AM peak travel period (07:00 to 

09:00) and the PM peak travel period (16:00 to 18:00 pm). Cycling counts within these time 

periods are aggregated to create a daily commuter cycling frequency for both the AM and PM peak 

periods. The time periods are similar to those found in Ahmed et al.’s (2010) research, however 

this study will include the PM peak period as well to assist in explaining commuter cyclists’ travel 

behaviours and cover both in and outbound travels. Any data entries between 00:00 and 06:59, 

10:00 and 15:59, and 19:00 to 23:59 were removed as they represent hours that are not widely used 

by commuter cyclists (e.g. mid-day and nighttime hours).  

The final step was to remove all entries that had previously been flagged as erroneous or 

missing during the above data cleaning exercise. Once all irrelevant or erroneous data entries were 

removed, the datasets were ready for analysis and now shared the following form: data entries 

between Monday and Friday (not including statutory holidays) with two entries per day 

representing the morning and afternoon peak travel periods (07:00 – 09:00, and 16:00 – 18:00), 

excluding all instances of missing or erroneous data as stated above. To create the final datasets, 

cycling count and weather observation data are merged around the temporal variables to align the 

cycling and weather data to their corresponding rows. At this point, five datasets have been created, 

each of which contains its own cycling count data, as well as the corresponding weather 

observation data from the combined ECCC, University of Waterloo, and GRCA weather datasets.  
 

3.3.4 Additional Data Inputs 

Following the data preparation stages, additional variables are required to be inputted into each 

dataset. These variables were not provided by the City of Waterloo, the University of Waterloo, 
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ECCC, or the GRCA. This section will outline the variables that have been identified by the 

literature as being necessary, including newly calculated variables and qualitative variants of 

previously recorded quantitative variables. 

 The first variable that is to be calculated and included is “apparent temperature”. This 

variable is presented in both Phung and Rose (2007) and Ahmed et al. (2010) (originally presented 

by the Australian Bureau of Meteorology, 2010), and is calculated using the following expression: 

 

ATEMP = T + 0.33 [6.105 (17.27 T / 237.7 + T) x 0.01 H] – 0.7 W – 4.0 
Equation 3.1 - Equation used to calculate apparent temperature (Australian Bureau of Meteorology, 2010) 

 

where, T is the air temperature in degrees Celsius, H is relative humidity (%), and W is wind speed 

(m/s). The use of an apparent temperature rather than observed air temperature is discussed in 

Sections 2.3.2 and 2.5.2. As none of the three weather datasets contained apparent temperature 

values, these were required to be calculated and entered for each entry in the recently cleaned and 

prepared datasets. It should be noted, however, that ECCC weather data includes entries for 

HUMIDEX and Wind Chill, which are calculated using relative humidity and temperature, and 

temperature and wind speed, respectively (Equation 3.1). However, observations of temperature, 

relative humidity, and wind speed are not included in a single variable as seen in the above apparent 

temperature calculation.  

   

Scenario Wind Speed (km/h) Relative Humidity (%) 

LOW-LOW 0 40 

LOW-HIGH 0 40 

HIGH-LOW 40 100 

HIGH-HIGH 40 100 
Table	3.4	-	Values	used	in	the	hypothetical	scenarios	used	to	illustrate	changes	in	apparent	temperatures.	

	
To explain how variations in relative humidity and wind speed alter the values of apparent 

temperature, a simple graph illustrating the relationship is used (Figure 3.4). In this graph four 

hypothetical scenarios are presented that display how changes to the wind speed or relative 

humidity, while using pre-set temperature values, can alter the effects of apparent temperature. 

Table 3.4 defines the values used in the four scenarios. In Figure 3.4 it becomes evident that 
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relative humidity does not play a large role in influencing apparent temperatures at the colder end 

of the temperature spectrum, while it appears to have a greater effect at higher temperatures, 

suggesting greater apparent temperatures. The effect of wind speed appears to indicate a constant 

cooling effect when comparing the low to high scenarios, providing a cooling effect during high 

temperatures, while similarly contributing to colder-feeling temperatures (i.e. wind chill) during 

the colder times of the year (i.e. winter season).  

 

 
Figure	3.4	-	Illustration	of	the	effects	of	relative	humidity	and	wind	speed	on	apparent	temperature.	

	
 To complement the aggregated cycling counts during the AM and PM peak periods, the 

weather data listed above must be representative of these time periods at each of the five facilities. 

To accommodate this, several weather variables were used to create additional variables to be used 

to find the most representative variable to use in the analysis. These variables include: 

precipitation, wind speed, temperature, apparent temperature, snowfall, and relative humidity. A 

list of the additional variables can be found in Table 3.4. These variables are calculated using 
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hourly weather observation data during the three hours of each AM and PM peak travel period. 

Additionally, it is worth noting the inclusion of lagged variables in this list, which are discussed at 

length in Section 2.3.2. The inclusion of a lag variable into this study enables the monitoring of 

the delayed effects of precipitation on cycling frequencies. Any occurrence of precipitation during 

or three hours before the AM or PM peak period is coded ‘TRUE’ for the presence of precipitation, 

with all other entries assigned a value of ‘FALSE’. A lagged variable is also created for snowfall, 

however rather than identifying if snow has fallen in the previous three hours, this variable will 

identify if snow has fallen within the past 24 hours, with the lagged effect applied to the full day. 

The reason for the change in approach is due to the different characteristics of snow versus rain 

and other precipitates. Unlike non-frozen precipitation, snow must usually be removed from a 

cycling pathway, or in the event that it melts it may lead to significantly wet or ice-covered routes 

for an extended period of time. 

Next, to ensure that the best form of the data is being used during the analysis select 

quantitative variables were converted into qualitative variables based around categories that 

correspond to intensity levels. The variables selected for this conversion and their corresponding 

intensity levels were derived from previous studies which are extensively discussed in Section 

2.3.2. Additionally, Section 2.3.2 discusses the advantages and disadvantages of including 

quantitative versus qualitative variables within a regression analysis. The general consensus 

amongst researchers is that the use of categorical variables in a regression may be used to overcome 

issues surrounding the inclusion of non-linear variables. Categorical variables, therefore, are able 

to represent non-linear and linear variables, albeit at a coarser resolution than through the use of 

variables with continuous data. All variables that have been selected for this process are outlined 

in Table 3.5, which also identifies the corresponding categories for each variable. These three 

variables will be considered alongside their quantitative alternatives for use within this study. For 

this research, rainfall and wind speed have categorical variables that are categorized based on the 

bins presented in Phung and Rose (2007) and Ahmed et al. (2010), while temperature and apparent 

temperature are included as categorical variables due to arguments over the non-linear effects of 

temperature on cycling, as present in Wadud (2014), among others. Each of the variables identified 

in Table 3.4 are used to produce the additional qualitative variables listed in Table 3.5 above. 
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Observed 

Variable 

Newly Created Variable Description of the Newly Created Variable 

Temperature Maximum Temperature The maximum temperature observed during the AM or PM peak period 

Minimum Temperature The minimum temperature observed during the AM or PM peak period 

Average Temperature The average temperature observed during the AM or PM peak period 

Apparent 

Temperature 

Maximum Apparent 

Temperature 

The maximum apparent temperature observed during the AM or PM 

peak period 

Minimum Apparent 

Temperature 

The minimum apparent temperature observed during the AM or PM 

peak period 

Average Apparent 

Temperature 

The average apparent temperature observed during the AM or PM peak 

period 

Wind Speed Maximum Wind Speed The maximum wind speed observed during the AM or PM peak period 

Minimum Wind Speed The minimum wind speed observed during the AM or PM peak period 

Average Wind Speed The average wind speed observed during the AM or PM peak period 

Relative 

Humidity 

Maximum Relative 

Humidity 

The maximum relative humidity observed during the AM or PM peak 

period 

Minimum Relative 

Humidity 

The minimum relative humidity observed during the AM or PM peak 

period 

Average Relative 

Humidity 

The average relative humidity observed during the AM or PM peak 

period 

Rainfall 

 

Average Rainfall The average rainfall observed during the AM or PM peak period 

Maximum Hourly 

Rainfall 

The maximum hourly rainfall observed during the AM or PM peak 

period 

Total Rainfall The total rainfall observed during the AM or PM peak period 

Rainfall Lag If rainfall was observed during the AM or PM peak period or three hours 

prior, this variable is given the value of “TRUE” 

Snowfall Snow Presence If snow was observed during the AM or PM peak period 

Snow Lag If snow was observed within the past 24 hours, this variable is given the 

value of “TRUE” 

Table 3.5 – A list of newly created variables generated from observed weather variables. 
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Quantitative Variable Qualitative Categories Range of Values for Each 
Category 

Rainfall No Rain 
Light Rain 
Moderate Rain 
Heavy Rain 

< 0.2 mm 
0.2 – 0.9 mm 
1.0 – 2.9 mm 
≥ 3.0 mm 

Wind Speed No Wind 
Light Wind 
Moderate Wind 
Fresh Wind 
Strong Wind 

0.0 km/h 
1.0 – 19.0 km/h 
20.0 – 29.0 km/h 
30.0 – 39.0 km/h 
≥ 40.0 km/h 

Temperature; 
Apparent Temperature 

Extreme Cold 
Very Cold 
Cold 
Freezing 
Near Freezing 
Cool 
Mild 
Warm 
Very Warm 
Hot 
Very Hot 

< -15.0 
-15.0 – -10.1 
-10.0 -- -5.1 
-5.0 – 0.1  
0.0 – 4.9 
5.0 – 9.9 
10.0 – 14.9 
15.0 – 19.9 
20.0 – 24.9 
25.0 – 29.9 
≥ 30.0 

Table 3.6 - Selected quantitative variables converted to qualitative variables, with range of values per qualitative category. 

 
 Finally, in keeping with Phung and Rose (2007) and Ahmed et al. (2010), a variable 

identifying the number of hours of daylight has been included to explore whether the amount of 

sunshine in a day has an impact on cycling frequencies. Each entry is coded with the number of 

daylight hours that were observed during a given day in half hour increments.  

In addition to further data inputs based on weather observations, modifications must be 

made to account for climate change data. In past sections this research has stated that in addition 

to modelling the impacts of the effects of weather on cycling frequencies, the effects of climate 

change on cycling frequencies are also under study. To achieve this, the change-field method 

(CFM) will be used, which provides estimated changes for both precipitation and temperature at a 

monthly resolution. Temperature values are provided as actual changes in temperature (per degree 

Celsius), while precipitation uses percentage changes to represent either an increase or decrease in 

monthly precipitation. An important note about the precipitation data is that it does not indicate 

changes in the distribution of precipitation days, rather it provides an indication on whether there 

will be a change in precipitation intensity or volume during a given period. This method assumes 

that the number of precipitation days remains the same. This approach certainly is a deviation from 

the consideration of changing number of precipitation days under a changing climate, and therefore 
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needs to be interpreted differently. Where this approach is beneficial is that it allows this study to 

understand how varying effects on precipitation will ultimately impact cycling frequencies within 

a peak period, or how it impacts the use of cycling by commuters at trip-level. This approach 

considers the impacts of precipitation variations at a smaller temporal scale rather than estimating 

the effects of changing precipitation across the entire month, season, or year.  
 

3.4 Variable Selection 

Due to the number of variables that are under consideration for inclusion in this study a regimented 

procedure in which variable selection occurs is required. First, descriptively analyzing the data 

will be necessary to provide a cursory glimpse of the patterns and trends found within the variables 

at each counter location. By analyzing the data at different temporal scales (e.g. year, month, week, 

day, hour) an understanding will be developed of when variations in cycling frequencies and each 

weather variable occur and how time may play a role.  

Second, further analysis of the data will be used to delve into not only the temporal patterns 

of each variable, but also the relationship between the variables. Due to the nature of the data, 

which includes both quantitative and qualitative data, different means are used to visually represent 

and analyze it. For quantitative data, such as count and continuous variables, scatterplot matrices 

will be used to identify correlations between each of the variables to assess the strengths of their 

relationships, while the scatterplots will show the distribution of the data points in the 

relationships. Next, qualitative variables, such as temporal and binary variables, are displayed 

using boxplots to show the distribution of data points within each level of a variable, as well as the 

range and median values of the distributions. Exploratory analysis is a key component and greatly 

assists in the variable selection process.  

The final step is to select the variables. First, the relationships between the response and 

explanatory variables will be identified to determine whether to include the variable in a 

quantitative/continuous or in a categorical form. To select the variables that will be included in 

this study those that have the strongest relationships (larger correlations) will be selected to explain 

changes in the response variable. As the relationships between the response and explanatory 

variables are determined at each of the five counter locations the largest correlation for each 

variable group at each dataset will be considered, as well as the mean correlation for each variable 

group. It is also important to note that will be employed to ensure effective, intuitive, and sensible 
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variables are chosen for inclusion in the model. Finally, findings from relevant literature, as well 

as a degree of common-sense will also be used to select explanatory variables to ensure that they 

are effective, intuitive, and sensible. 
 

3.5 Model Assessments 

Once variables are selected for consideration in the model a series of assessments are required to 

ensure that the model meets the requirements to be both a Quasi-Poisson regression and a 

predictive model. It is important to test the foundations of the Quasi-Poisson regression and ensure 

that the results of the predictive model are accurate relative to the observed values and can generate 

meaningful results.  

 The assumptions and conditions of a Quasi-Poisson regression will be checked using the 

statistical modelling software R (R Core Team, 2016). There are four assumptions and conditions 

that are necessary to check prior to modelling with a Quasi-Poisson regression, which include: the 

dependent variable consists of count data; one or more independent variables can be measured on 

a continuous, ordinal, or dichotomous scale; observations are independent of one another; and, the 

distribution of counts follows a Poisson distribution (positively skewed). Use of a standard Poisson 

regression would requite a fifth assumption, that that variance is equal to the mean. This 

assumption is not applied when using a Quasi-Poisson regression as this type of regression does 

not restrict the dispersion parameter to a value of 1 (or, where the variance is equal to the mean) 

as is seen in a Poisson regression. Rather a Quasi-Poisson regression provides flexibility to account 

for overdispersion, a common problem within regression models using count data. To assess these 

conditions, a scatterplot of the predicted versus residuals will be produced and interpreted for each 

counter location. 

After the Quasi-Poisson regression has been proven to be appropriate for continued use, 

the model’s predictive abilities will be tested. To achieve this, a method called ‘cross-validation’ 

is used. Cross-validation is a method which seeks to build and test predictive models by using a 

researcher’s own data to train and test the predictive abilities of a model. Typically, a dataset is 

partitioned into two new, randomly assigned sets: a training set and a test set. The training set 

holds approximately 80% of the original data, while the test set holds the remaining 20%. A model 

is built around the training set and measured for its ability to model the provided values. To 

determine whether a model is able to predict new values, it is then applied to the test set (data that 
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it has never seen or used for training). By comparing the test metrics between the training and test 

sets, a researcher may be able to determine whether the model is able to predict new values (the 

desired outcome), or if the model is ‘overfit’, where the model may represent the training set 

perfectly, but fails to predict the test set as it has not been trained to accept new values properly 

(James et al., 2013). For this research, k-fold cross-validation will be used to validate that the 

model is able to predict new values. For this research, the Caret package in the statistical program 

R will be used to perform repeated 10-fold cross-validation to validate the predictive abilities of 

the model (Kuhn, 2016; R Core Team, 2016; Kuhn, 2017). 
 

3.6 Model Specification 

Following the assessment and verification of the model its form may be identified. At this point it 

is important to understand the models that this research is using as a baseline for refining the count 

model. Phung and Rose (2007) and Ahmed et al. (2011) both use a similar log-linear model based 

on a multiple linear regression (MLR). MLR models make use of the “ordinary least squares” 

approach to determine the best fit of the regression line; that is, the regression line is oriented to 

make the sum of the squared residuals (the difference between the observed and predicted y-

values) as small as possible (De Veaux, et al., 2005). The basic form of an MLR can be seen below 

in Equation 3.2: 

 

𝑌" = 𝛽% + 𝛽'𝑋"' + 𝛽)𝑋") + ⋯+ 𝛽+𝑋"+ + 𝜖" 
Equation 3.2 - Basic form of a multiple linear regression model. 

 
Where Y is the response variable (quantitative/continuous), 𝛽% is the intercept, the point at which 

the regression line intersects the Y-axis, 𝛽' is the coefficient for the ith explanatory variable (where 

i = 1, 2, 3, …, k), 𝑋"' is the observed value or value representing a categorical variable, and 𝜖" is 

the residual or error term.  

The model form that is used by Phung and Rose (2007) and Ahmed et al. (2011) is the log-

linear model, displayed in Equation 3.3: 

 

𝑙𝑜𝑔𝑌" = 𝛽% + 𝛽'𝑋"' + 𝛽)𝑋") + ⋯+ 𝛽+𝑋"+ + 𝜖" 
Equation 3.3 - Basic form of a multiple linear regression model with a logarithmic transformation applied to the response variable 
(log-linear MLR). 
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Where 𝛽% remains as the intercept, 𝛽' is the coefficient, 𝑋"' is the observed value, and 𝜖" is the 

residual term. The difference between Equation 3.2 and 3.3 is that a logarithmic transformation is 

applied to the response variable. The purpose of a logarithmic transformation is to transform 

positively-skewed, non-negative data towards a normal distribution, which is applicable for count 

data. Challenges with this approach for count data are that it cannot easily generate predicted count 

data, cannot handle overdispersion within the data, a common problem with count data, and can 

over or underestimate the coefficient standard errors, ultimately impacting inference (Fox, 2016). 

To refine the model that was created by the aforementioned authors, a commonly used 

alternative distribution is used in this model. Generalized linear models (GLM), specifically 

Poisson or Negative Binomial models are commonly used in literature on transportation count 

modelling as they are able to appropriately handle positively-skewed count data. This research will 

be modifying the equation presented by Phung and Rose (2007) and Ahmed et al. (2010) by using 

a Quasi-Poisson regression, similar to the methods seen in Wadud (2014) and Mathisen et al. 

(2015) where a Poisson regression is used. Quasi-Poisson regression models are a GLM, however 

they make use of a least-squares algorithm when fitting the model to data, similar to simple linear 

regressions, and the variance is defined as a linear function of the mean offering greater flexibility 

over Poisson models (Ver Hoef & Boveng, 2007). The form of a Quasi-Poisson regression can be 

seen below in Equation 3.4: 

 

𝑙𝑜𝑔𝐸[µ"] = 𝛽% + 𝛽'𝑋"' + 𝛽)𝑋") + ⋯+ 𝛽+𝑋"+ + 	𝜀 
Equation 3.4 - Basic form of a generalized linear regression model (GLM) with a Poisson distribution. 
 
 
Where LogE is the logarithm of the expectation of the count, µi is the mean response variable 

(expected count), 𝛽% is the intercept, 𝛽' is the coefficient for the ith explanatory variable, 𝑋"' is 

the observed value or value representing a categorical variable, and ε is the residual or error term, 

similar to a simple or multiple linear regression.  

There are notable differences between the log-linear model used by Phung and Rose (2007) 

and Ahmed et al., (2011) as presented in Equation 3.3. Most notably a log-linear regression uses a 

logarithmically transformed dependent variable modeling the dependent variable as a linear 

function of the regression coefficients, while the Quasi-Poisson regression in Equation 3.4 applies 

a natural logarithmic transformation on the expectation of the count (Gardiner, Mulvey & Shaw, 
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1995). Use of a logarithmically-transformed linear regression proves problematic as count data 

frequently contains valid zero counts. A common approach by researchers using a logarithmically-

transformed linear regression is to apply log(X + 1), where X is the count with a value of zero. 

This enables the use of a log transformation, however it does so through inappropriate 

manipulation of count data that can lead to less than desirable results (Feng, Wang, Lu, Chen, He, 

Lu & Tu, 2014).  

Therefore, to accommodate the potential implications of using a log-linear regression to 

model count data, and the restrictive dispersion parameter of a Poisson regression, a Quasi-Poisson 

model is used in their place. This method is well suited to handling count data, producing predictive 

results using count data, is easily interpretable, and can manage the common issue surrounding 

overdispersion of count data, unlike that of a traditional Poisson regression (Ver Hoef & Boveng, 

2007). 
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4.0 Preliminary Results and Analysis 

4.1 Introduction 

As discussed in Chapter 2, weather plays an important role in changing cycling frequencies. 

Conditions considered to be pleasant (e.g. sunny, warm, and dry) are thought to encourage cycling 

counts, while adverse conditions (e.g. the presence of snow or rain, and extreme temperatures) 

may negatively influence cycling counts. In order to correctly model the effects that weather has 

on cycling counts, it is important to identify the key variables, such as those previously mentioned, 

that play an important role in explaining variability in cycling counts to include them within the 

model. Through descriptive and exploratory analyses, a better understanding of the data and the 

relationships between variables will be identified and used to guide variable selection as well as 

the final steps of model building in this study. 

This chapter details the preliminary analysis that has been performed. The preliminary 

analysis includes an overview of the general trends and patterns within the data which is used to 

display valuable information within the data, and provides the foundation for informed and 

systematic variable selection (Section 4.2). Additionally, the variable selection process is outlined 

in Section 4.3 along with brief descriptions of the variables that are included. In Section 4.4, the 

model is assessed using several tests to confirm its validity and predictive modelling abilities. This 

chapter concludes with the model specification in Section 4.5, whereby the final model is outlined 

and described prior to discussing the modeling results in Chapter 5.  
 

4.2 Data Analysis  

An overview of the data trends and patterns may be found in Section 4.2.1, while a more extensive 

analysis of the relationship between the response and explanatory variables will be conducted 

within Section 4.2.2. 
 

4.2.1 Descriptive Analysis 

This section will provide basic insight into the data, such as the range and temporal variations in 

cycling counts and weather observations. By reviewing this information temporal and geographic 

patterns may be identified across the study period and area. 
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Cycling Counts 

Despite the location of each cycling counter within the City of Waterloo and their close proximity 

to Uptown Waterloo, each facility exhibits different cycling counts over the year. However, similar 

patterns emerge between cycling facilities regardless of where they are located within the city due 

to temporal influences. Using the same method of explaining the variability in cycle path usage in 

Waterloo as Ahmed et al. (2010), temporal variations in cycling frequencies will be identified in 

this section through the use of several time scales.  

 Although the five count facilities are located centrally around Uptown Waterloo, as seen 

in Figure 3.2 and Table 3.2, overall use of the facilities can greatly differ across the municipality. 

During the study period, only one count facility was active from August 2014 to December 2016 

with the remaining facilities installed at later dates. To explain the variability in cycling 

frequencies across each site, a variety of measures are used, including average annual daily traffic 

(AADT), as seen in Table 4.1. The AADT is a measure that displays the average daily cycling rate 

across the entire year. Upon examination of Table 4.1, it is clear that there are stark differences in 

cycling frequencies between each facility. The count facility located along the Laurel Trail at 

Silver Lake has the highest AADT, and largest range between its maximum and minimum hourly 

cycling rates. The remaining four facilities appear to align to two groups. The Laurel Trail at 

Columbia Avenue and the Iron Horse Trail both have similar mean cycling values, and are both 

located along centrally located routes around Uptown Waterloo and the city’s post-secondary 

campuses. The last grouping consists of the Laurel Trail at Weber, and the Laurel Trail at Erb, 

which both show lower AADTs, and lower numbers of cyclists over the course of a year. Both of 

these sites may be found along the same contiguous segment of pathway, which may explain the 

similarly low cycling frequencies. 

 

Counter Location Cycling Counts 
Total Number of 

Observations 
(hourly) 

Total Cyclists 
Observed AADT Max. hourly 

Cyclists 

Min. 
hourly 

Cyclists 
Iron Horse Trail 5,290 82,028 232.37 94.00 0.00 
LT at Columbia 6,097 95,350 234.56 90.00 0.00 
LT at Erb 5,288 32,200 91.48 47.00 0.00 
LT at Silver Lake 8,477 203,477 360.14 178.00 0.00 
LT at Weber 6,107 37,313 91.65 30.00 0.00 

Table 4.1 - Descriptive statistics of cycling counts by facility location during the study period. 
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 In addition to the effects of geography on cycling rate variability, seasonal and monthly 

time scales show separate degrees of variation. The below figures better represent the overall 

changes in cycling rates throughout the course of the year based on aggregate monthly values. 

Figure 4.1 shows the average monthly daily traffic (AMDT) variations by month throughout the 

year, with individual seasons identified for comparison. Two distinct peaks are present at about 

half of the counter facilities. The first occurs between April and June, when the weather warms 

and both public and post-secondary schools are still in session, which may increase the number of 

student commuters. This peak declines after June, which corresponds with the end of the public 

 

 
Figure 4.1 - Average monthly daily traffic (AMDT) by count facility. 

 
school year. On average, July and August both experience a decline in cycling rates across the city, 

which is most prominent at the Laurel Trail at Silver Lake and Laurel Trail at Columbia facilities, 

which are situated along common routes for students and staff travelling to nearby post-secondary 
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institutions. A second peak occurs in September at these facilities which may be attributed to the 

return of both public school and post-secondary students. These trends, however, are not found at 

all facilities. The Iron Horse Trail experiences a surge of cyclists during the summer months with 

a unimodal distribution, while the Laurel Trail at Erb and Laurel Trail at Weber both experience 

lower rates and a unimodal distribution peaking in the late spring/early summer. 

 It is also important to understand the variations in cycling rates throughout the week. While 

many publications make the distinction between weekends and weekdays and their corresponding 

cycling rates, this research focuses solely on commuter cycling, and therefore excludes weekends 

from analysis. Nonetheless, variations throughout the work week do occur with certain days 

experiencing greater rates of cycling than others, as is exhibited in Figure 4.2. Below, in Figure 

4.2, slight variations throughout the week are evident, typically with Tuesday or Wednesday 

experiencing the greatest weekday cycling rate, with lower rates experienced on Mondays and 

Fridays. Comparing facilities, three locations along the Laurel Trail (Columbia, Erb, Weber) have 

similar patterns throughout the week despite differences in cycling rates. The pattern deviates at 

the most popular route, the Laurel Trail at Silver Lake.  

 

 
Figure 4.2 - Average cycling rate by day of the week by counter facility. 

 
 Finally, fluctuations in cycling frequencies occur throughout the day on an hourly basis. 
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0

50

100

150

200

250

300

350

400

450

Monday Tuesday Wednesday Thursday Friday

Cy
cl
e	
Co

un
t

Day	of	Week

Average	Cycling	Rate	by	Day	of	Week	by	Counter	Facility

IHT

LTC

LTE

LTSL

LTW

Average



59	
	

the day. Beginning at approximately 07:00, a peak in the cycling rate emerges as cyclists begin 

traveling to their respective places of work during the morning peak travel period, which extends 

to approximately 09:00. A similar peaked-pattern emerges around 16:00 with the beginning of the 

afternoon rush hours, which extends in the evening until approximately 18:00. The final important 

portion of this pattern are the mid-day cycling rates (i.e. approximately 10:00 to 15:00). Typically, 

on routes that are identified solely as utilitarian and not recreational, mid-day cycling rates 

decrease dramatically as most cyclists that have travelled to work are at work and are no longer 

cycling. The “Study Area Average” and the three most frequented sites all show a pronounced 

bimodal distribution throughout the day common with commuting routes. The Laurel Trail at Erb 

and Laurel Trail at Weber, however, exhibit less diurnal variation which may be in part a result of 

the typically low cycling frequencies observed at these facilities. As previously stated, this research 

is focusing on two periods during the day that represent the AM and PM peak travel periods. In 

addition to the daily cycling count trends identified in Figure 4.3, the AM (07:00 – 09:00) and PM 

(16:00 – 18:00) peak travel periods that are being used within this study are outlined for easy 

visualization of the patterns. 

 

 
Figure 4.3 - Cycling counts by time of day by count facility with peak travel periods included in study identified. 
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Weather Observation Data 

Weather variables considered for use within this research include those that are discussed at length 

in Section 3.3.1 and 3.3.4. Upon creation and formation of the cycle counter facility datasets, 

weather data is descriptively analyzed to provide a basic understanding of the individual variables 

that may be used within the final analysis. Meteorological data for the dates between August 26, 

2014, and December 8, 2016, were analyzed to provide a range of data regarding the overall 

weather conditions observed throughout the study period, as well as annual, seasonal, and monthly 

descriptions.  

The City of Waterloo and the remainder of southern Ontario experience a variety of 

weather conditions with large variations month-to-month as a result of the continental climate and 

lake-effect weather events throughout the year (Bourdage & Huard, 2010). Table 4.2 shows the 

mean, maximum, and minimum values for each of the continuous weather variables during the 

length of the study period. Here, basic statistics on the observed weather variables are found. It is 

apparent that weather conditions in southern Ontario have significant ranges. Examples include 

the nearly 60 degree Celsius range between the maximum and minimum temperatures that were 

observed in the summer and winter months, respectively. Rain and snowfall are experienced 

relatively infrequently, shown with very low mean values (note: snowfall values are based on the 

period between October and April, not the full year) Finally, wind speeds have an average value 

of approximately 16 km/h throughout the year, although during storm-like events, the maximum 

wind speed can be significantly greater, as is identified by the maximum wind speed of 54 km/h 

during the study period.  

 

 Temperature 
(C) 

Apparent 
Temperature 

(C) 

Relative 
Humidity 

(%) 
Rain (mm) Snow Fall 

(cm) 
Wind Speed 

(km/h) 

Mean 8.56 4.75 74.28 0.08 0.18 15.58 
Max 33.90 32.78 100.00 19.20 19.00 54.00 
Min -27.60 -32.35 20.00 0.00 0.00 0.00 
Std. Dev. 8.98 13.64 17.14 0.60 1.83 8.73 
Skewness -0.17 -0.16 -0.81 19.07 5.60 0.48 

Table 4.2 - Descriptive statistics of continuous weather variables throughout the study period (August 2014 to December 2016). 

 
 Apart from the annual statistics of key weather variables, shown above in Table 4.2, there 

are a number of seasonal variations to consider when addressing variability in weather. In Figure 
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4.4, six key weather variables are graphed to display how they change throughout the year. Firstly, 

average monthly wind speeds show some degree of variation across the year, with the main pattern 

being an increase in wind speeds during the late fall, winter, and early spring months (October – 

March), with a decrease in wind speeds during the late spring, summer, and early fall (April – 

September). Next, relative humidity, a variable with a strong relationship with temperature and 

precipitation, appears to show a similar pattern to wind speeds, in that it exhibits an annual decrease 

in values during the summer, with a peak during the winter months. Next, precipitation within 

southern Ontario consists of two predominant precipitates: rain and snow, both of which are 

graphed together in the lower-left panel of Figure 4.4. Here, it can be seen that snowfall is dominant 

through the winter months, which is expected due to the presence of temperatues below 0 degrees 

Celsius, while rain becomes the sole precipitate during the spring, summer, and fall months where 

temperatures are typically above the freezing point. It is important to note that despite the colder 

temperatures that characterize a winter in Ontario, there has been an increasing prevalence of 

temperatures rising near or above 0 degrees Celsius, resulting in the increased presence of rainfall 

throughout the entire year. Temperature variations follow a normal pattern, where temperatures 

reach their peak during the summer months, and the lowest temperatures during the winter season. 

Due to the large range in annual maximum and minimum temperatures in Ontario, the spring and 

fall seasons are characterized by a steep increase or decrease in temperatures. Additionally, while 

Figure 4.4 shows that the summer and winter averages appear to be around 20 and -10 degrees 

Celsius, the summer may be dramatically impacted by humidity and wind speeds, while the winter 

can be similarly affected by wind speeds, resulting in significantly more extreme apparent 

temperatures. Finally, due to the location of Waterloo and southern Ontario, there is a noticeable 

difference in the number of daylight hours throughout the year, with a high of 15.5 hours of 

daylight on June 21, and a low of nine hours of daylight on December 21 of each year. 
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Figure	4.4	-	Monthly	variations	in	wind	speed,	relative	humidity,	precipitation,	temperature,	and	daylight	hours	in	Waterloo,	
Ontario.	

	

Climate	Change	Data 

The	 final	dataset	 to	be	discussed	 is	 the	climate	change	data	generated	by	 the	CMIP5	climate	

model.	 Table	 4.3	 displays	 the	 average	 monthly	 predicted	 changes	 to	 temperature	 and	

precipitation	at	mid-century	in	three	emissions	scenarios	and	at	three	levels	of	climate	change	

predictions:	the	mean	prediction,	and	the	outer	bounds	of	the	50%	inter-model	range	(25%	and	

75%).	This	table	illustrates	the	variations	that	exist	between	the	three	emission	scenarios	and	the	

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

25.0

J F M A M J J A S O N D

Monthly	Variations	in	Temperature

0

5

10

15

20

J F M A M J J A S O N DHo
ur
s	o

f	D
ay
lig
ht

Month

Monthly	Variations	in	Daylight	Hours

0.0

10.0

20.0

30.0

40.0

0.0

20.0

40.0

60.0

80.0

100.0

J F M A M J J A S O N D

Sn
ow

	F
al
l	(
cm

)

Ra
in
	(m

m
)

Month

Monthly	Variations	in	Precipitation

Precipitation Snow	Fall

0

5

10

15

20

J F M A M J J A S O N DW
in
d	
Sp
ee
d	
(k
m
/h
)

Month

Monthly	Variations	in	Wind	Speed

50

100

J F M A M J J A S O N DRe
la
tiv

e	
Hu

m
id
ity

	(%
)

Month

Monthly	Variations	in	Relative	
Humidity

	



63	
	

three	levels	of	climate	change	predictions,	which	speaks	in	part	to	the	uncertainty	that	surrounds	

the	expected	changes	to	Ontario’s	climate	at	mid-century.	Two	similar	trends	are	present	within	

Table	4.3:	the	average	effects	intensify	across	the	three	levels	of	climate	change	predictions	(25%,	

mean,	75%);	and,	the	average	effects	intensify	as	the	emission	scenarios	intensify	from	RCP26	to	

RCP85.		

	
Mid-Century 

(C. 2050) 

Temperature (°C) Precipitation (%) 

25% Mean 75% 25% Mean 75% 

RCP26 1.113 1.765 2.331 0.973 1.055 1.125 

RCP45 1.636 2.352 2.874 1.002 1.077 1.152 

RCP85 2.484 3.175 3.713 1.007 1.083 1.163 
Table	4.3	-	Summary	of	average	CMIP5	inter-model	climate	projections	for	each	emission	scenario	at	mid-century.	

	
4.2.2 Exploratory Analysis 

To complement Section 4.2.1, where patterns are identified for both cycling frequencies and 

weather observations, this section will further seek to explain some of the underlying relationships 

found within the data that is being used for this study. This section will begin to uncover the 

relationships between the response variable (cycling counts) and the explanatory variables 

(temporal and weather), as well as where relationships exist between explanatory variables.  
 

Quantitative Variables 

To further explore the quantitative variables, the extent of the relationships between each pair of 

variables are assessed. The purpose of this procedure is to identify which variables are strongly or 

weakly correlated, such as key variables identified in the literature that impact cycling frequencies 

as well as which explanatory variables show large correlations with each other, as seen in Table 

4.3. Additionally, the distribution of the points between two variables can be assessed to determine 

if the relationship is linear or non-linear.  

Across the five count facilities there are similarities in the relationships between the 

response and explanatory variables, as well as amongst the explanatory variables. Apparent 

temperature and daylight hours demonstrate strong positive correlations (see Table 4.3) with the 

response variable, however Figure 4.5 indicates that apparent temperature shows a non-linear 
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relationship with the response variable due to the variable effects of temperatures that range from 

approximately -20 degrees to 30 degrees Celsius. Both of these findings are in line with those 

found by existing literature on the impacts of weather on cycling frequencies (Ahmed et al., 2010). 

Conversely, relative humidity, precipitation, and wind speed indicate a negative correlation when 

measured against the response variable. What is notable is that each of these variables has a fairly 

weak correlation with the response variable (see Table 4.3). While the sign of the correlation of 

these three variables is similar to the literature (Wadud, 2014; Mathisen et al., 2015) the 

distribution of the points differs. Through these preliminary findings, precipitation and relative 

humidity show a non-linear relationship as per the literature. However, wind speeds, though 

negatively correlated with cycling counts, do not show a non-linear distribution which is consistent 

with Wadud (2014), who finds that wind speed has a negative linear relationship with cycling 

counts. 

In addition to the general findings from the correlation matrices noted above, one 

remaining note must be detailed. Daylight hours is described in the literature as a potential key 

variable in the explanation of seasonal cycling frequency variations. However, while it does show 

a strong positive correlation with cycling frequencies it does also show stronger correlations with 

other explanatory variables (i.e. apparent temperature), introducing the potential for collinearity.  
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Table 4.4 – Bivariate matrices showing the Pearson correlations of each variable pairing (lower-left) and associated p-values 
(upper-left). 

Count <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Count <0.01 <0.01 <0.01 0.041 0.042 0.074
0.640 ATempAVG <0.01 <0.01 <0.01 <0.01 <0.01 -0.130 PrecipSUM <0.01 <0.01 0.044 0.057 0.040
0.640 1.000 ATempMAX <0.01 <0.01 <0.01 <0.01 -0.110 0.960 PrecipMAX <0.01 0.120 0.160 0.110
0.640 1.000 0.990 ATempMIN <0.01 <0.01 <0.01 -0.130 1.000 0.960 PrecipAVG 0.044 0.057 0.040
-0.480 -0.320 -0.300 -0.340 RHMAX <0.01 <0.01 -0.077 0.076 0.059 0.076 WindAVG <0.01 <0.01
-0.510 -0.380 -0.360 -0.390 0.970 RHAVG <0.01 -0.077 0.072 0.053 0.072 0.970 WindMAX <0.01
0.430 0.700 0.700 0.690 -0.450 -0.510 Daylight -0.067 0.077 0.061 0.077 0.960 0.880 WindMIN

Iron	Horse	Trail

Count <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Count <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
0.600 ATempAVG <0.01 <0.01 <0.01 <0.01 <0.01 -0.140 PrecipSUM <0.01 <0.01 <0.01 <0.01 <0.01
0.610 1.000 ATempMAX <0.01 <0.01 <0.01 <0.01 -0.120 0.980 PrecipMAX <0.01 <0.01 0.012 <0.01
0.580 1.000 0.990 ATempMIN <0.01 <0.01 <0.01 -0.140 1.000 0.980 PrecipAVG <0.01 <0.01 <0.01
-0.330 -0.320 -0.300 -0.340 RHMAX <0.01 <0.01 -0.190 0.110 0.094 0.110 WindAVG <0.01 <0.01
-0.390 -0.370 -0.360 -0.380 0.970 RHAVG <0.01 -0.160 0.100 0.088 0.100 0.970 WindMAX <0.01
0.430 0.690 0.630 0.690 -0.420 -0.470 Daylight -0.200 0.100 0.091 0.100 0.960 0.880 WindMIN

Laurel	Trail	at	Columbia

Count <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Count <0.01 0.011 <0.01 <0.01 <0.01 <0.01
0.730 ATempAVG <0.01 <0.01 <0.01 <0.01 <0.01 -0.120 PrecipSUM <0.01 <0.01 0.044 0.057 0.040
0.730 1.000 ATempMAX <0.01 <0.01 <0.01 <0.01 -0.095 0.960 PrecipMAX <0.01 0.120 0.160 0.110
0.720 1.000 0.990 ATempMIN <0.01 <0.01 <0.01 -0.120 1.000 0.960 PrecipAVG 0.044 0.057 0.040
-0.510 -0.620 -0.300 -0.340 RHMAX <0.01 <0.01 -0.170 0.076 0.059 0.076 WindAVG <0.01 <0.01
-0.580 -0.380 -0.360 -0.390 0.970 RHAVG <0.01 -0.160 0.072 0.053 0.072 0.970 WindMAX <0.01
0.630 0.700 0.700 0.690 -0.450 -0.510 Daylight -0.180 0.077 0.061 0.077 0.960 0.880 WindMIN

Laurel	Trail	at	Erb

Count <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Count 0.140 0.380 0.140 <0.01 <0.01 <0.01
0.630 ATempAVG <0.01 <0.01 <0.01 <0.01 <0.01 -0.044 PrecipSUM <0.01 <0.01 0.310 0.340 0.350
0.630 1.000 ATempMAX <0.01 <0.01 <0.01 <0.01 -0.026 0.980 PrecipMAX <0.01 0.270 0.280 0.340
0.630 1.000 0.990 ATempMIN <0.01 <0.01 <0.01 -0.044 1.000 0.980 PrecipAVG 0.310 0.340 0.350
-0.130 -0.200 -0.200 -0.210 RHMAX <0.01 <0.01 -0.230 0.030 0.033 0.030 WindAVG <0.01 <0.01
-0.150 -0.240 -0.240 -0.240 0.970 RHAVG <0.01 -0.210 0.028 0.032 0.028 0.970 WindMAX <0.01
0.530 0.700 0.700 0.690 -0.290 -0.310 Daylight -0.230 0.028 0.029 0.028 0.970 0.890 WindMIN

Laurel	Trail	at	Silver	Lake

Count <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 Count 0.014 <0.01 <0.01 <0.01 <0.01 <0.01
0.730 ATempAVG <0.01 <0.01 <0.01 <0.01 <0.01 -0.086 PrecipSUM <0.01 <0.01 0.190 0.210 0.160
0.730 1.000 ATempMAX <0.01 <0.01 <0.01 <0.01 -0.110 0.980 PrecipMAX <0.01 0.090 0.093 0.076
0.730 1.000 0.990 ATempMIN <0.01 <0.01 <0.01 -0.110 0.980 1.000 PrecipAVG 0.090 0.093 0.076
-0.560 -0.310 -0.290 -0.330 RHMAX <0.01 <0.01 -0.120 0.046 0.059 0.059 WindAVG <0.01 <0.01
-0.610 -0.370 -0.360 -0.380 0.970 RHAVG <0.01 -0.110 0.044 0.059 0.059 0.970 WindMAX <0.01
0.560 0.700 0.700 0.690 -0.420 -0.480 Daylight -0.130 0.049 0.062 0.062 0.960 0.880 WindMIN

Laurel	Trail	at	Weber
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Figure 4.5 – A representative example of the scatterplot matrices of the considered variables from the Laurel Trail at Columbia 
counter location. 
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Categorical Variables 

Not all variables used in this study are continuous and/or quantitative in nature. As such, not all 

variables were included in the discussion or correlation matrices provided above due to the nature 

of the data. By analyzing the qualitative data using boxplots, as shown in Figure 4.6. First, 

seasonality is reviewed. Seasonality indicates considerable variation in the number of cycling 

counts across the year, with the winter months experiencing the least, while the summer months 

experience the highest counts. Additionally, there is a much larger range in daily cycling counts 

during the summer, potentially due to the variation in temperatures and presence or absence of 

precipitation. Second, the presence of snow in the current hour has a significant effect on cycling 

frequencies, resulting in a dramatic reduction of cycling observations. This is also true for the 

lagged variants of rain and snow, which show that cycling rates remain affected up to three hours 

after rainfall, as well as 24 hours after snowfall.  
 

4.3 Variable Selection 

Due to the number of variables that have been presented in Section 4.2.2, a structured approach is 

necessary to identify the variables that will be used. To achieve this, correlation matrices are used 

to identify the variables that are strongly correlated with the response variable (COUNT), as well 

as other explanatory variables. In this case, explanatory variables that are highly correlated with 

the response variable are preferred (numbers nearer 1 or -1), while correlations between 

explanatory variables are ideally, but not exclusively, closer to 0 to avoid complications with 

collinearity. Table 4.3 shows the correlation matrices used for variable selection. In the bottom-

left corner are the correlations of one variable against another, while the upper-right corner shows 

the corresponding p-values.  

For simplicity, all correlations between the response and explanatory variables are 

presented in Table 4.4. Values that are shaded in grey identify the highest correlated variable with 

the COUNT response variable, while variables with bolded text represent those that have the most 

number of strongest correlations within the variable grouping, and therefore are selected for use 

within this study. The findings in Table 4.4 indicate that the maximum apparent temperature 

observed during the AM or PM peak travel period has the most number of highest correlations out 

of the two other alternatives: the average and the minimum observed apparent temperatures. 

Similarly, Table 4.4 identifies relative humidity (where the average values are selected), rain 
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(average rainfall is selected), and wind speed (minimum wind speed is selected) as variables that 

should be included in this study. Daylight has no alternative variable form, therefore it remains 

unchanged as the number of hours of daylight in a day. Where deviation from the previously 

mentioned variable selection method occurs is with regards to rainfall. While the average rainfall 

during the AM or PM peak period is identified as being the best variable to represent rain within 

the analysis based on the results of Table 4.4, this author believes that the sum of rainfall during 

peak periods is the most intuitive and suitable form. The sum of rainfall during a period of time is 

also supported and used by Ahmed et al. (2010). In addition, there is very little reported difference 

between the correlations of the two values against the response variable, therefore there should not 

be any appreciable negative effects from using the sum over the average rainfall values.  With 

suitable candidate variables identified for use in this study, a review of the variables’ 

characteristics was undertaken to determine if any should be excluded. Hours of daylight was 

identified as a variable that should be excluded due to the strong correlation between it and the 

apparent temperature variable. To mitigate concerns over multicollinearity, this variable was 

removed from further consideration and inclusion in this study. Despite increasing hours of 

daylight suspected of being linked with increased safety and security of cyclists (e.g. Tin Tin et 

al., 2012; Thomas et al., 2013; Wadud, 2014), several other authors have identified that daylight 

has only marginal positive effects on cycling frequencies (e.g. Phung & Rose, 2007; Behan & Lea, 

2010; Flynn et al., 2012), further supporting this variable’s omission. The last variable to be 

excluded is relative humidity. While it may play a crucial role in comfort levels of cyclists during 

warmer months, the effects of this variable are already included within the apparent temperature 

variable (see Section 3.3.4 for details), making a separate relative humidity variable redundant. 

 Next, as this study is borrowing from a past study, it is important to consider the 

meteorological differences between the two study areas. Ahmed et al. (2010) performed a study 

on the effects of weather on cycling frequencies in Melbourne, Australia, which experiences warm 

temperatures and no snow, among other differences. Given Waterloo’s location in a region that 

receives annual snowfall and a full range of temperatures from well-below to well-above the 

freezing point, considerations must be made to accommodate their effects. Therefore, this research 

which has been inspired by the work of Phung and Rose (2007) and Ahmed et al. (2010) aims to 

better represent typical Canadian weather conditions and cycling frequencies by including weather 

variables that are able to represent both winter and summer weather conditions. 
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Additionally, assessments were undertaken to identify whether select variables (i.e. 

apparent temperature, precipitation, and wind speed) should be included as continuous/quantitative 

or categorical variables. By interpreting added-variable plots (also known as partial regression 

plots) for the proposed variables, the effects of the three aforementioned variables were assessed. 

It was determined that apparent temperature and precipitation exhibit non-linear relationships with 

the response variable (cycling counts), while wind speed displays a linear relationship (see 

Appendix for results). Therefore, apparent temperature and precipitation will henceforth be 

included as categorical variables, while wind speed will remain as a continuous variable. This 

selection is supported by the literature as temperature and apparent temperature (e.g., Ahmed et 

al., 2010; Saneinejad et al., 2012; Böcker & Thorsson, 2013), as well as precipitation (e.g., Phung 

& Rose, 2007; Wadud, 2014) are commonly found to be non-linear with cycling counts, while 

wind speed is commonly found to have a linear relationship with cycling counts (e.g., Flynn et al., 

2012; Wadud, 2014). 
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Iron Horse Trail 0.64 0.64 0.64 -0.51 -0.48 -0.13 -0.11 -0.13 -0.077 -0.077 -0.067 0.43 

Laurel Trail at 

Columbia 

0.60 0.61 0.58 -0.39 -0.33 -0.14 -0.12 -0.14 -0.19 -0.16 -0.20 0.43 

Laurel Trail at 

Erb 

0.73 0.73 0.72 -0.58 -0.51 -0.12 -0.095 -0.12 -0.17 -0.16 -0.18 0.63 

Laurel Trail at 

Silver Lake 

0.63 0.63 0.63 -0.15 -0.13 -0.044 -0.026 -0.044 -0.23 -0.21 -0.23 0.53 

Laurel Trail at 

Weber 

0.73 0.73 0.73 -0.61 -0.56 -0.11 -0.11 -0.086 -0.12 -0.11 -0.13 0.56 

Table 4.5 - Correlations calculated in R of each continuous explanatory variable against the response variable (COUNT). Cells 
shaded in grey represent the variant of that variable that has the highest correlation with the response variable.  
 

After considering the origin of the model initially produced by Phung and Rose (2007) and 

the application of the model in a northern climate several adaptations have been made, notably the 

inclusion of snowfall and lagged snowfall variables to account for precipitation during the winter 
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months. A full list of variables that have been selected for inclusion in the model are identified in 

Table 4.5, including a description and identification of the type of variable being used. 

 

 

 
Figure 4.6 - Boxplots of the categorical variables that are considered for inclusion within this study, from the Iron Horse Trail 
counter location. 
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Variable Variable Name Description 

Cycling Counts COUNT Response variable - Number of cyclists detected during the AM and 

PM peak travel periods 

Maximum Apparent 

Temperature 

ATempMAX_D Categorical variable for the maximum calculated apparent temperature 

during the AM and PM peak travel periods 

Total Rainfall PrecipSUM_D Categorical variable for the total rainfall during the AM and PM peak 

travel periods 

Snow Presence SnowPresence Binary variable for the presence of snow during the AM and PM peak 

travel periods (0 or 1) 

Lagged Rain RainLag Binary variable for the presence of rain during the AM and PM peak 

travel periods, or up to three hours prior (0 or 1) 

Lagged Snowfall SnowLag Binary variable for the presence of snow during the AM and PM peak 

travel periods, or up to 24 hours prior (0 or 1) 

Minimum Wind Speed WindMIN Continuous variable for the minimum wind speed observed during the 

AM and PM peak travel periods 

Month of the Year MONTH Categorical variable for the month of the year 

Table 4.6 - List of variables under consideration for inclusion in final model.  

 

Following variable selection, it is important to outline the expectations for the findings the 

variables identified in Table 4.5 may produce based on prior knowledge of the weather that is 

experienced in southern Ontario. Given the general understanding that cycling is greater in the 

summer than the winter, it is expected that there would be a generally strong positive correlation 

between maximum apparent temperature and cycling counts, however this would change 

depending on the temperature level and count facility. Total rainfall and the presence of snow 

would be expected to have strong negative correlations with cycling counts, as the presence of rain 

and snow can be assumed to result in a decreased desire to cycle. Similar expectations exist for the 

lagged variables for rain and snowfall, due to the presence of wet and muddy, or slippery and 

treacherous trail conditions. The relationship between minimum wind speed and cycling counts is 

expected to be a weak negative correlation. Section 2.5.2 of the literature review discusses the 

range of findings relating to wind speed and the difficulties that researchers have in identifying 

whether it is beneficial or detrimental to overall cycling frequencies, however it is generally 

suggested there is a negative effect on cycling frequencies. Finally, month of the year is expected 

to have varying results depending on the time of year in question: spring, summer, and fall months 
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should all exhibit strong positive correlations, while the winter months should display a strong 

negative correlation due to the combination of freezing temperatures, icy and snowy conditions. 

 
4.4 Model Assessments 

With variable selection completed it is important to assess the validity of the proposed model. The 

model assessment procedure is a two-stage process. The first stage is to check that the model meets 

all assumptions and conditions of a Quasi-Poisson regression. Next, due to this research requiring 

the ability to predict the effects of future weather conditions on cycling frequencies, the second 

stage assesses the predictive capabilities of the model through the use of a process called “cross-

validation”.  
 

Assumptions and Conditions of a Quasi-Poisson Regression 

Based on the assessment procedures outlined in Section 3.5 the model has been assessed on its fit 

within a Quasi-Poisson Regression. Figure 4.7 is used to assess the assumptions and conditions of 

a Quasi-Poisson Regression. Figure 4.7 indicates that the variables are independently observed 

and are not influencing one another through the generally even distribution of points with no 

apparent patterns. Other assumptions to mention are that the mean and variance of the model must 

be identical, and a Poisson distribution (positive-skew) must be present through the use of count 

data. Typically, a Poisson regress requires that the variance equals the mean (dispersion parameter 

equals a value of 1). It has been identified through testing that this model experiences 

overdispersion, which resulted in the use of a Quasi-Poisson model which accommodates 

overdispersion of data in the model. Therefore, this assumption is not relevant for this approach 

(Laerd Statistics, 2017). At this point, all assumptions and conditions have been satisfied. 
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Figure 4.7 - Plots of regression residuals versus fitted (predicted) values used to assess the assumptions and conditions. 
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Cross-Validation 

The last assessment required is to verify the model’s predictive abilities. As stated in Section 3.5, 

a repeated 10-fold cross validation on a Quasi-Poisson GLM using the caret package in the 

program R was used (R Core Team, 2016; Kuhn, 2017). The original datasets were randomized 

and partitioned into a training and test set, with the model calibrated using the ‘train’ function in 

the caret package with the data found in the training set for each counter facility. All models were 

trained and tested using this function and assessed by comparing the root mean square error 

(RMSE) and R2 metrics that were produced by the train function. The predictive abilities of the 

models were then tested by introducing the testing sets from the originally partitioned datasets, 

using the predict function in R, comparing the observed and predicted values using the Metrics 

package (Hammer, 2017). Table 4.6 summarizes the outcome of the training and test sets, which 

exhibits low RMSE’s and low variations between training and test sets, as well as moderate R2 

values. Through the use of this function, it may be concluded that the current model is adequate 

for predictions and may be used to analyze the effects of weather and climate change on cycling 

frequencies.  

 

Site Iron Horse 
Trail 

Laurel Trail 
at Columbia 

Laurel Trail 
at Erb 

Laurel Trail 
at Silver 

Lake 

Laurel Trail 
at Weber 

Training Set R2 42.70 % 37.42 % 45.18 % 51.51 % 46.25 % 
RMSE 35.99 36.16 12.58 55.87 10.17 

Test Set R2 39.21 % 34.70 % 43.99 % 46.05 % 44.88 % 
RMSE 38.32 37.29 13.68 57.83 10.55 

Table 4.7 - Summary of the model cross-validation processes.	

 

4.5 Model Specification 

After proving the predictive abilities of the model it is now appropriate to detail the model that has 

been extensively verified and assessed. The model continues to follow the functional form that 

was displayed in Equation 3.4, which is a Quasi-Poisson Regression. With this form in mind, the 

following regression equation (Equation 4.1) has been developed with descriptions of the variables 

presented in Table 4.7: 
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𝑙𝑜𝑔𝐸[𝐶𝑂𝑈𝑁𝑇";]

= 𝛽% + 𝛽"<=>;?,A𝑀𝑜𝑛𝑡ℎA;

''

AF'

+ 𝛽"GHIJ+<GK,L𝐴𝑇𝑒𝑚𝑝𝑀𝐴𝑋L;

'%

LF'

+ 𝛽"QR">ST<,J𝑅𝑎𝑖𝑛𝑆𝑈𝑀J;

Y

JF'

+	𝛽"Z">[<\]𝑊𝑖𝑛𝑑𝑀𝐼𝑁;

+ 𝛽"S>=abcIdI>eI𝑆𝑛𝑜𝑤𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒; +	𝛽"QR">kRl𝑅𝑎𝑖𝑛𝐿𝑎𝑔; + 𝛽"S>=akRl𝑆𝑛𝑜𝑤𝐿𝑎𝑔;

+ 	𝜀 

 
Equation 4.1 - Proposed Quasi-Poisson Regression model form for use in this research. 

 
By using the model presented in Equation 4.1, the descriptive statistics of the model are 

produced, which are shown below in Table 4.8. Table 4.8 identifies that when the model is applied 

to each of the five counters it is expected to perform reasonably well. Each model shows a 

moderately-high R2 value (calculated by using: 1 − [Ip"R>eI
>qrr	[Ip"R>eI

), identifying that the regression 

line fits well with the observed data. A value for the dispersion parameter is also presented in Table 

4.8 to demonstrate the application of a Quasi-Poisson model to correct for overdispersion of a 

traditional Poisson regression (which would assign a restrictive value of 1). Overall, the model 

presented in Equation 4.1 shows promise as proven by the assessments that were conducted in 

Section 4.4 and the preliminary results presented in Table 4.8. 
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Variable Variable Name Variable Type Levels 
Daily AM (07:00 – 
09:00) and PM (16:00 to 
18:00) Bicycle Counts 

COUNT Response N/A 

Month of the Year Month  
(j) 

Categorical January *** 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

Maximum Apparent 
Temperature (°C) 

ATempMAX 
(k) 

Categorical Extreme Cold (< -15.1°C) 
Very Cold (-15.0°C – -10.1°C) 
Cold (-10.0°C – -5.1°C) 
Freezing (-5.0°C – 0.1°C) 
Near Freezing (0.0°C – 4.9°C) *** 
Cool (5.0°C – 9.9°C) 
Mild (10.0°C – 14.9°C) 
Warm (15.0°C – 19.9°C) 
Very Warm (20.0°C – 24.9°C) 
Hot (25.0°C – 29.9°C) 
Very Hot (≥ 30.0°C) 

Total Rainfall (mm) PrecipSUM 
(m) 

Categorical No Rain (< 0.2 mm)*** 
Light Rain (0.2 – 0.9 mm) 
Moderate Rain (1.0 – 2.9 mm) 
Heavy Rain (≥ 3 mm) 

Minimum Wind Speed 
(km/h) 

WindMIN Continuous N/A 

SnowPresence SnowPresence Binary False*** 
True 

RainLag RainLag Binary False*** 
True 

SnowLag SnowLag Binary False*** 
True 

Table 4.8 - List of key explanatory variables used in preliminary regression equation (*** denotes the base case of a categorical 
or binary variable). 

Location Iron Horse 
Trail 

Laurel Trail 
at Columbia 

Laurel Trail 
at Erb 

Laurel Trail 
at Silver 

Lake 

Laurel Trail 
at Weber 

R^2 61.26% 76.70% 69.08% 71.31% 66.76% 
Dispersion 
Parameter 14.40 7.25 4.04 18.38 3.15 
P-Value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Table 4.9 - Regression statistics for each counter facility using the model presented in Equation 4.1. 
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4.6 Summary of Preliminary Findings 

The findings presented in the above sections provide an overview of the data and brief insights 

into the relationships between the variables. While this information is not as in depth and 

explanatory as the findings that will be presented in Chapter 5, it is of use in this research. 

Preliminary data analysis allows for a better understanding of the data and its inherent qualities, as 

well as identifies where relationships exist, expected or unexpected, between different variable 

pairings. All of this information ultimately culminates into a more informed and decisive variable 

selection process, as discussed above in Section 4.3. Additionally, preliminary data analysis offers 

the first opportunity to compare findings with other researchers. Typically, cycling is more 

frequent during periods of warm, dry, and low wind conditions, and less frequent when adverse 

conditions (e.g. snowfall, rain, high winds) are present. Both of these generalizations are well 

supported in the literature with this research proving to be consistent with these findings, as seen 

in Figure 4.5 and Table 4.3, which show the correlation between cycling counts and weather 

variables.  

 Finally, this chapter has detailed the model that will be used within the analysis of the 

impacts of weather and climate change on cycling frequencies. The model form has seen several 

major changes from the base log-linear model used by Phung and Rose (2007) and Ahmed et al. 

(2010) shown in Equation 3.3. Their models, log-transformed multiple linear regressions 

(discussed in Section 3.6), have a number of limitations when used to model count data. A Quasi-

Poisson regression, used in this research, in place of a log-linear model is better able to model 

count data that does not follow a nearly normal distribution and linear dispersion, required 

components in linear regression and Poisson regression, respectively. Additionally, the inputted 

variables have been altered to better represent the conditions found within southern Ontario, 

Canada. Variables were selected based on findings from the literature, preliminary data analysis, 

and inherent knowledge on the impacts of cyclists in the specified region. Finally, this model was 

assessed using the assumptions and conditions of a Quasi-Poisson regression, as well as cross-

validation to ensure that it holds predictive capabilities, which will be an important feature in 

Chapter 5.  
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5.0 Results & Discussion 

5.1 Introduction 

After detailing the methods used to conduct this study in Chapter 3, and presenting results from 

the preliminary analysis in Chapter 4, the regression results may now be identified and discussed. 

The findings presented within this chapter are calculated from the Quasi-Poisson regression model 

displayed in Equation 4.1. This model was determined to have predictive abilities using the cross-

validation procedure outlined in Section 3.5, and verified through the procedure outputs as seen in 

Section 4.5. A separate set of results have been produced for each of the five counter facilities for 

both current weather (Section 5.2) and future weather (i.e., the effects of climate change; Section 

5.3) cycling frequency analyses. 

 This chapter reports the findings from the statistical analysis that was conducted using the 

aforementioned methods. Section 5.2 shares the model results for the current weather and cycling 

frequency analysis, including interpretation and a discussion on the model outputs and their 

application in daily life. Section 5.3 reports the model outputs from the future weather (climate 

change) and cycling frequency analysis. This section will be oriented in a similar format as Section 

5.2, in addition to a comparison between emissions scenarios displaying the potential impacts of 

different emission levels in a mid-century climate. Finally, Section 5.4 is the culmination of this 

research, whereby the effects of weather on cycling will be assessed both at present and at mid-

century providing a glimpse as to how cycling may be impacted due to a changing climate. 
 

5.2 Weather and Cycling Results 

The basis for this section revolves around the first research question presented in Section 1.3, 

which asks “how is utilitarian cycling impacted by weather conditions?” In order to answer this 

question each counter facility has its cycling counts regressed against weather and temporal 

variables (shown in Section 4.6) to effectively model the sensitivity of Waterloo utilitarian cyclists 

in current weather conditions. The findings, therefore, identify the degree to which cycling is 

affected by various weather conditions or different levels (i.e., temperatures or amounts of 

precipitation), as will be discussed in further detail below. It is important to recall that this research 

uses an absolute model that does not take into effect systematic seasonal  



79	
	

 
Table 5.1 - Regression coefficients and percentage changes in cycling frequencies derived from the current weather and cycling 
analysis. All shaded values are significant at the 95% level5. 

changes in cycling frequencies, therefore annual events, such as the end of a school term may 

report a reduction in cycling frequencies, which may not be a result of a weather or temporal 

variable. As these systematic seasonal changes will affect all counter facilities at the same time, it 

																																																								
5	The	first	row	of	the	table	lists	the	counter	facilities	by	their	short	form.	The	following	is	a	list	of	
the	location	names:	Iron	Horse	Trail	at	John	St.	(IHT),	Laurel	Trail	at	Columbia	Ave.	(LTC),	Laurel	
Trail	at	Erb	St.	E.	(LTE),	Laurel	Trail	at	Silver	Lake	(LTSL),	and	Laurel	Trail	at	Weber	St.	N.	(LTW).	
These	short	forms	are	used	throughout	this	chapter.	
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is expected that this will not be a concern when reporting the regression results. The results of the 

regression may be found in Table 5.1, where all shaded cells indicate variables or levels that are 

significant at the 95% level or greater.  

 Prior to further discussing the results of the weather and cycling analysis it is important to 

identify what the most influential variables are within the model outlined in Equation 4.1 to aid in 

interpretation of the model results. Through use of a simplified model each variable was 

individually assessed to determine the impact on the model’s R2 value, or goodness-of-fit. Through 

this process the most influential variable used in the overall model was determined to be maximum 

apparent temperature, with the variable month of year appearing to also be largely influential, 

which coincides with the larger estimated coefficients listed in Table 5.1. The least influential 

variables were determined to be the variables minimum wind speed and rain lag, which are 

generally reflected in the lower regression coefficients of these two variables. With this 

information in mind it is easier to understand the variable magnitudes of the effects of the presented 

variables and how they alter the overall regression results.  

The remainder of this subsection will be used to discuss the resultant regression 

coefficients. The table displays two values for each variable or variable level: the left is the 

regression coefficient, or the estimated parameter value calculated by the regression model; the 

right is the proportional effect of Y with a one-unit change in X or a percentage change relative to 

the respective base case for categorical variables, which is identified in Table 5.1. All counter 

locations show moderately-strong goodness-of-fit with R2 values ranging from about 61% to 77%, 

with all models having been found to be statistically significant at the 95% level. 
 

5.2.1 Seasonal Effects on Cycling Frequencies 

Beginning with the ‘Month’ variable, January was used as the base case for which all other levels 

(i.e. months) are compared against. The month parameter suggests that as the year progresses from 

January (winter) to June (summer) cycling frequencies increase dramatically, with some sites 

experiencing as much as a 322% increase in June cycling rates over January (see Table 5.1). 

Proceeding beyond the month of June, there is an expected general decline in cycling rates which 

is likely due to decreasing temperatures and shortened daylight hours as the year progresses 

towards the winter season. This shows the expected trend that cycling rates are lowest during the 

winter season and greatest during the summer season. An interesting dip in cycling rates occurs 
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between May and September across some sites (see Figure 5.1 – Laurel Trail at Silver Lake). This 

is likely due to the absence of students and staff traveling to the post-secondary institutions and 

public school systems in April and June, respectively, later returning in September when the 

cycling rates return to higher levels. These findings are similar to those reported in other 

publications (e.g. Miranda-Moreno & Nosal, 2011) as seasonal variations in cycling appear to be 

consistent throughout most northern regions with four distinct seasons, and school systems that do 

not operate or run less frequently during the summer months.  

The effects of seasonality appear to also have different impacts on cycling rates across 

Waterloo. The Laurel Trail at Silver Lake (Figure 5.1) and Laurel Trail at Columbia show a very 

high degree of seasonal variations, with the period of late spring to early fall clearly exhibiting 

much larger cycling rates than other times of the year. Conversely, the Laurel Trail at Weber and 

Iron Horse Trail (Figure 5.1) show less variation over the course of the year, with greater 

consistency across the spring, summer, and fall seasons, with winter having an obvious effect on 

cycling rates at these and all other counter locations. 

Also notable are the levels of significance at each counter facility. Four of the five facilities 

are significant from April to November, while the winter months are not significant. These months 

experience low cycling rates, but the response variable can vary dramatically depending on the 

conditions of a given winter season (e.g. warm and wet versus cold and snowy). Also notable is 

that, unlike the other facilities, the Iron Horse Trail is not significant at the 95% level through most 

of the year despite demonstrating a similar unimodal pattern as other sites, albeit at a much smaller 

magnitude.  

Finally, Figure 5.1 illustrates an important consideration when modelling the impact of 

month of year on cycling frequencies: uncertainty surrounding the estimated outputs. The hashed 

lines of Figure 5.1 for both the Iron Horse Trail and Laurel Trail at Silver Lake indicate the degree 

of uncertainty that surrounds the estimated effects (the solid line) through the use of 95% 

confidence intervals. It is apparent within Figure 5.1 that a large degree of variation exists in the 

estimated effects around the summer months, which may be caused by variable weather conditions 

that deter individuals from cycling, while more favourable days (e.g., warm, no rain) may 

encourage significantly greater number of cyclists, leading to a wide range of effects depending 

on the weather conditions, among other factors. These results are therefore viewed as the estimated 

average effects on cycling frequencies. 
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Figure 5.1 – Representative examples of the variations in cycling frequencies as a function of month of year relative to the base 
case (January), with upper and  lower confidence intervals to display the range of estimation uncertainty. 
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5.2.2 Effects of Maximum Apparent Temperatures on Cycling Frequencies 

The apparent temperature variable suggests strong results in that most parameter estimates are 

significant at the 95% level. General trends are present across most counter facilities, reporting 

that colder temperatures are less conducive to cycling represented by the negative and 

progressively decreasing regression coefficients (see Table 5.1), while warmer temperatures 

encourage cycling due to similar, but positive trends in the regression coefficients. Apparent 

temperature also shows differing relationships with cycling counts (see Figure 5.2). Facilities like 

the Laurel Trail at Erb indicate a more linear relationship between cycling rates and apparent 

temperature, while the Laurel Trail at Silver Lake and the Laurel Trail at Columbia show that this 

relationship deviates from linearity towards a more erratic pattern. Additionally, the manner in 

which cyclists respond to extreme temperatures varies by counter location. Whereas all counter 

locations share similar decreases in cycling rates as the apparent temperature decreases, the 

changes in cycling rates during warmer weather varies significantly between sites, with the Iron 

Horse Trail, Laurel Trail at Erb and Laurel Trail at Weber indicating greater rates of change at 

warmer temperatures. The remaining counter locations show conflicting results, in that a decrease 

is reported at very high maximum apparent temperatures at the Laurel Trail at Columbia and Laurel 

Trail at Silver Lake. It is likely that, due to the assumed high volume of student cyclists on these 

two corridors the decrease in temperatures of ‘Hot” and ‘Very Hot’ maximum apparent 

temperature conditions may be influenced by the lack of students and staff members cycling along 

these trails during the summer months, influencing the magnitude of the regression coefficients.  

 The example graphs presented in Figure 5.2 suggest a general trend in the results seen in 

Table 5.1. The results for the Laurel Trail at Columbia and Laurel Trail at Erb indicate a deviation 

from the trend at extreme hot and cold temperatures, while also exhibiting greater variation in the 

estimated effects of extreme temperatures on cycling counts, as illustrated by the upper and lower 

confidence intervals. It is at these extremes that it is necessary to consider both the variation in 

cycling frequencies during extreme temperatures, as well as the model’s ability to effectively 

estimate the effects. While the results displayed in Table 5.1 and Figure 5.2 are based on a wealth 

of data and robust methods, there remains a need to consider uncertainty when interpreting the 

estimated effects of the apparent temperature variable on cycling frequencies. 
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Figure 5.2 - Representative examples of the variations in cycling frequencies as a function of apparent temperature relative to the 
base case (Near Freezing), with upper and lower confidence intervals to display the range of estimation uncertainty. 
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These findings are generally similar to many other relevant publications (e.g., Böcker & 

Thorsson, 2013). Past research has indicated that cycling is strongly correlated with temperature, 

which is again proven here. Where some reports (e.g.; Wadud, 2014) deviate is with regards to the 

effects of extreme heat with suggestions that temperature and apparent temperature have a negative 

effect on cycling frequencies beyond a certain point. In several studies (e.g., Phung & Rose, 2007; 

Ahmed et al., 2010; Saneinejad et al., 2012) researchers have been able to identify the point at 

which cycling frequencies will decrease due to extreme heat, or the optimal temperature range 

where cycling rates are at their maximum. Using the above chart it is not obvious at which point 

cycling rates achieve their peak or even begin to taper off as each facility demonstrates fairly 

erratic results. 
 

5.2.3 Effects of Rainfall on Cycling Frequencies 

The regression coefficients for the four levels of the categorical variable ‘total rainfall’ revealed 

generally consistent results. Prior to the analysis it was hypothesized, based on the findings of 

other studies, that as rainfall increases in volume cycling frequencies will decrease non-linearly, 

as reported in Ahmed et al. (2010) and Wadud (2014). The findings of this study are generally 

similar to those of others mentioned above. Three of the five facilities show a non-linear response 

to varying levels of rainfall during the AM or PM peak travel period, shown in Table 5.1 and 

illustrated in part in Figure 5.3. The Laurel Trail at Columbia shows mild deviation, where the 

negative effects of ‘Heavy Rain’ on cycling appears to be slightly less impactful than ‘Moderate 

Rain’, contrary to the majority of sites. The pattern deviates greatly at the Laurel Trail at Silver 

Lake, where Table 5.1 suggests that ‘Moderate Rain’ has a mild negative impact on cycling rates, 

while ‘Heavy Rain’ has a positive effect, increasing the number of cyclists rather than decreasing. 

Upon inspection there were several peak travel periods that had very large cycling counts (greater 

than 100), which experienced large amounts of rainfall during the three-hour period that were 

skewing the results. Plausible explanations for this occurrence include cyclists travelling along the 

trail unbeknownst of the impending heavy rainfall; cyclists travelling via the trail to work or school 

just before or after a large rainfall within the same hour or three-hour peak period; differing rates 

of rainfall during the peak travel period(s) that encouraged greater cycling rates; or, a result of 

local variations in precipitation and the distance between the count facility and the weather station. 

It should also be noted that this trail is not significant at the 95% level at any level of the  
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Figure 5.3 - Representative examples of the variations in cycling frequencies as a function of precipitation relative to the base case 
(No Rain), with upper and lower confidence intervals to display the range of estimation uncertainty. 
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precipitation variable, likely caused by the wide range of atypical cycling rates per level of rainfall. 

The Laurel Trail at Silver Lake is the most used multiuse trail in the City of Waterloo connecting 

key destinations such as two universities and UpTown Waterloo with residential neighbourhoods. 

Because of its large-scale use there is much greater potential for varying results than along the 

other four trails. These variations in the estimated effect of precipitation on cycling frequencies 

are attempted to be captured by the confidence intervals included in Figure 5.3, which seek to 

display the variations at a 95% confidence level. The area between the upper and lower bounds 

therefore identifies the range in which this research is 95% confident the estimated effects on 

cycling frequencies exist. 

The lagged effect of rain is also considered in addition to its effects during the current hour. 

The common results are that rain has a unanimously significant negative effect on cycling 

frequencies up to three hours after rain is observed, similar to findings by Gallop et al. (2012) and 

Saneinejad et al. (2012). Despite the consensus across facilities that the lagged effect of rain has a 

negative impact on cycling frequencies, the degree to which it affects cycling varies, with the 

Laurel Trail at Columbia, the facility nearest the University of Waterloo, indicates that there is a 

decrease of about 10%, while the other facilities report between a 13% and 23% decline in cycling 

frequencies up to three hours after rainfall. It may be speculated that an individual’s decision to 

cycle may be negatively influenced by the prospect of rainfall during the day or the presence of 

wet roads and cycling paths, some of which are gravel or dirt-covered which may also act as a 

deterrent to cycling after rainfall.  
 

5.2.4 Effects of Minimum Wind Speed on Cycling Frequencies 

Unlike apparent temperature and rainfall, the ‘minimum wind speed’ variable is the only 

continuous variable used in this study, and as such the reported results indicate a linear effect. 

Across all counter facilities there is no consensus on the effects of minimum wind speeds on 

cycling frequencies. The Iron Horse Trail, Laurel Trail at Erb, Laurel Trail at Silver Lake, and 

Laurel Trail at Weber report a slight positive linear effect of wind speed on cycling frequencies 

(1.9%, 0.4%, 0.2%, and 0.8%, respectively, increases in cycling frequency per 1 km/h increase in 

minimum wind speed, when holding all other variables constant), while the Laurel Trail at 

Columbia indicates a very small negative linear effect, with a reported reduction in cycling 

frequency by 0.2% with every 1 km/h increase in minimum wind speed (holding all other variables 
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constant). Despite these generally small effects on cycling frequencies, they are not uncommon as 

seen in Phung and Rose (2007) and Böcker and Thorsson (2013). 

 The lack of consensus and small regression coefficients indicate that wind speed does not 

have a consistent or large impact on cycling frequencies, and that cycling rates appear to change 

independently of wind speeds. At the Iron Horse Trail location, each 10 km/h increase in minimum 

average wind speed suggests an increase in cycling frequencies by 18.5% contrary to findings in 

relevant literature (e.g. Flynn et al., 2012), which suggests that wind speed has a consistent 

negative effect. The Laurel Trail at Columbia shows a more common slight decrease in cycling 

rates as wind speeds increase, however it is marginal at -2% with every 10 km/h increase in 

minimum average wind speed. Of the five counter locations, only the Iron Horse Trail and Laurel 

Trail at Weber are reported as having statistically significant minimum wind speeds, while the 

remaining three are statistically non-significant at the 95% level.  
 

5.2.5 Effects of Snowfall on Cycling Frequencies 

The presence of snowfall during the current hour is significant at the 95% level three of the five 

locations where a strong negative effect is reported (a reduction of between 27% and 36%). The 

remaining two facilities are not significant at the 95% level, but also indicate that there is little 

effect on cycling frequencies, contrary to findings at other sites. The results from the statistically 

significant sites suggest that the presence of snowfall which may or may not remain on the ground 

and accumulate has a fairly strong negative effect on cycling. The statistical insignificance at some 

sites could be impacted by the rapidity of the snow clearing response by municipal or University 

of Waterloo maintenance crews, local conditions as well as the transportation choices of 

individuals using said routes (i.e. continuing to cycle despite the presence of snowfall). If trails are 

well maintained during winter months they may prompt greater cycling frequencies due to a 

reduction in the perception of hazardous conditions. It is not known at this point when snow 

clearing or winter maintenance has occurred within the study area in relation to snowfalls. 

Continuing with the effects of snowfall on cycling, the variable ‘Snow Lag’ again shows a 

large mixture of results across counter facilities. While all reported parameter estimates are 

negative, only the Iron Horse Trail and Laurel Trail at Silver Lake are significant at the 95% level 

and show large negative lagged effects of snowfall of about 32% and 45%, respectively. The 

remaining three facilities are statistically non-significant and show much smaller negative lagged 
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effects of the presence of snow up to 24 hours after snowfall, with one site reporting a marginally 

negative effect of 1.8% on cycling frequencies.  

Both current and lagged effects of snowfall on cycling frequencies are generally consistent 

with those found in published literature on this topic. Spencer et al. (2013) identifies a significant 

decrease in cycling rates during snowfall, while Miranda-Moreno and Nosal (2011) find a similar 

impact due to the lagged effect of snowfall. Current and lagged effects of snowfall may have a 

negative impact on cycling frequencies due to the perceived safety and comfort implications by 

cycling in wet, slippery, and cold conditions with potential for reduced visibility, as found by 

Bidordinova (2010) and Spencer et al. (2013), however the interpretation and statistical 

significance (or lack thereof) of the results presented in Table 5.1 suggest that further analysis may 

be required. 
 

5.2.6 Summary of Results of the Effects of Weather on Cycling Frequencies 

Above, the findings of the effects of each variable on cycling frequencies at the five counter 

locations are reported and discussed. Each reported finding provides an opportunity to better 

understand the impacts of current weather on cycling frequencies in the City of Waterloo, as well 

as weather conditions where less expected effects may occur. Generally, it may be seen that the 

findings are similar to those found throughout other literature on this topic: month of year plays a 

significant role in cycling frequencies; cyclists are more active during warmer temperatures, and 

less so during cooler temperatures; wind is estimated to have a very minor, if any, and albeit 

generally statistically non-significant impact on cyclists; and, rainfall and snowfall lead to sharp 

estimated decreases in cycling rates both during and after their occurrence, although this is not 

well supported by the corresponding p-values and is subject to a degree of uncertainty. Despite the 

results aligning with those of relevant literature, there are some discrepancies when comparing the 

results of Table 5.1 with the a priori expectations outlined in Section 4.3. Examples include the 

uncertainty surrounding the results during winter months despite consistently low cycling 

frequencies, and the inconsistent effects of rainfall and snowfall across all counter facilities, when 

considering either the regression coefficients or their respective significance levels. While general 

patterns may have been preserved at each counter location discrepancies emerged regarding the 

accuracy of some regression coefficients, most notably the ‘Heavy Rain’ level of the rainfall 

variable in one instance. While this is an outlier amongst the other reported findings it is a result 
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that is based on accurate and valid weather observations and must be considered when reviewing 

the findings in this analysis. Aside from these few cases each set of results were reported as being 

statistically significant, and all reported moderately-high R2 values suggesting that the regression 

model fit the distribution of the data well.  
 

5.3 Climate Change and Cycling Results  

The results presented in this section are in response to the second and final research question 

presented in Section 1.3, which asks “how will climate change potentially impact utilitarian 

cycling?” CMIP5 Climate change data was provided by Dr. Chris Fletcher at the University of 

Waterloo. This data specifies the estimated expected changes in temperature and precipitation at 

mid-century using the multi-model mean for three different emissions scenarios, with other model 

predictions used to provide a degree of consideration for uncertainties in estimating effects under 

a changing climate. Therefore, to respond to this question several sets of results are presented for 

each counter facility. This is to compensate for the uncertainty surrounding which emission 

scenario is most likely to occur at mid-century. To produce the results that will be discussed below, 

the same model presented in Equation 4.1 and used above to produce the results in Section 5.2 is 

used, albeit with updated values for select variables to account for changes in future weather due 

to climate change. Below, the results will be displayed and discussed, with comparisons made 

between the findings presented here and in relevant literature. 

 Using the climate change data generated by the CMIP5 climate model predictions are made 

on how changes in future climate will impact cycling frequencies. Climate change will ultimately 

impact all aspects of future weather conditions (to which degree remains uncertain), however due 

to the limitations and available data of climate change models, only key variables will be discussed 

below. Changes in cycling frequencies based on month of year, maximum apparent temperature 

and total rainfall during peak travel periods will be discussed in detail. Variables that are not 

predicted in the CMIP5 climate model (i.e. relative humidity, wind speed, snowfall, snow lag, and 

rain lag) are held constant at present day observations during this exercise due to unavailable or 

uncertain predictions. The presence of snowfall, and by association the lagged effects of snowfall, 

are not provided by the CMIP5 climate model. However, the variables are altered to accommodate 

changes in future weather by reclassifying any snowfall event as false once the maximum apparent 
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temperature during that period reaches above 2°C (the highest maximum apparent temperature at 

which snowfall was reported during this study).  

 

 IHT LTC LTE LTSL LTW Average 

Observed 38.9 57.7 16.2 95.8 15.4 44.8 

RCP26 35.0 57.1 17.4 88.8 14.5 42.6 

RCP45 36.8 58.2 17.8 86.1 15.1 42.8 

RCP85 33.3 56.9 17.5 81.6 14.2 40.7 

Table 5.2 - Predicted average annual peak period bicycle counts by location and CMIP5 emission scenario using the inter-model 
mean. 
 

 Using the cycling count model displayed in Equation 4.1, future weather data was inputted 

into the model to generate predicted counts for three emission scenarios (RCP26, RCP45, RCP85) 

during the mid-century period using the inter-model mean set of predictions. The 25% and 75% 

predictions from the inter-model range are also used to provide a degree of consideration 

surrounding the uncertainty of climate change predictions, effectively providing alternative 

perspectives of the predicted effects of climate change on cycling frequencies. Average predicted 

cycling counts are calculated using the average model results for each emission scenario and are 

displayed in Table 5.2, which displays an average cycling count across all counter facilities at mid-

century of 42.6, 42.8, and 40.7 for RCP26, RCP45, and RCP85, respectively. Based on these 

results, it appears that as the effects of climate change intensify the average number of cyclists 

may decrease. However, as these numbers are only based on the inter-model mean of the CMIP5 

climate model uncertainty surrounding these predictions must be considered. Table 5.2 should 

therefore be read as an example of the effects of climate change on cycling frequencies under a 

very specific set of climate change predictions, and is a representation of the one of the sets of 

predicted cycling counts amongst a range of potential future outcomes. 

 Below, Table 5.3 displays the predicted regression coefficients for each emission scenario 

using the inter-model mean set of climate change predictions at each counter facility. The results 

located in this table will be further discussed in the following sections broken down by variable 

type. Table 5.4 builds on Table 5.3 by displaying the effects of climate change on cycling as 

rendered using the aforementioned model in Equation 4.1 by including two additional sets of 
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climate change predictions to offer a wider range of predicted effects, using the Iron Horse Trail 

location as a representative example. Full regression results are available in the Appendix B.  

 

 
Table 5.3 – Predicted cycling frequencies of key variables for all emission scenarios using the CMIP5 inter-model mean. All shaded 
values are significant at the 95% level. 
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Iron	Horse	Trail	
RCP26	 RCP45	 RCP85	

25%	 Mean	 75%	 25%	 Mean	 75%	 25%	 Mean	 75%	
M
on

th
	

January	 31.5	 28.4	 29.0	 25.6	 29.9	 23.9	 23.5	 25.7	 20.9	
February	 22.0	 20.6	 20.8	 20.9	 20.9	 19.1	 20.4	 18.0	 16.7	
March	 18.7	 17.5	 17.0	 18.4	 18.4	 16.5	 17.8	 15.7	 14.4	
April	 30.1	 28.8	 30.7	 29.8	 29.3	 28.1	 28.6	 27.1	 25.5	
May	 38.5	 36.0	 37.1	 37.5	 38.3	 36.8	 36.7	 35.2	 32.8	
June	 38.6	 35.7	 37.2	 37.2	 38.0	 35.8	 34.8	 34.4	 32.8	
July	 49.8	 45.9	 47.4	 47.8	 49.2	 47.3	 45.9	 45.4	 43.9	
August	 52.0	 48.4	 49.9	 50.5	 51.7	 49.8	 48.1	 47.4	 45.9	
September	 49.9	 46.0	 47.7	 48.4	 49.1	 47.6	 46.4	 45.9	 43.7	
October	 45.4	 42.8	 42.8	 45.0	 44.9	 42.3	 42.0	 40.3	 37.7	
November	 41.9	 39.6	 40.6	 41.2	 41.3	 39.0	 39.5	 37.3	 34.9	
December	 33.0	 30.9	 29.8	 31.5	 30.5	 28.9	 29.4	 27.2	 25.6	

Ap
pa

re
nt
	T
em

pe
ra
tu
re
	

Extreme	Cold	 15.1	 15.4	 14.4	 14.9	 15.4	 15.7	 14.1	 16.5	 13.9	
Very	Cold	 12.6	 12.9	 12.5	 12.6	 12.8	 13.3	 12.8	 13.6	 16.2	
Cold	 17.3	 17.2	 15.1	 17.3	 16.7	 17.0	 15.3	 16.5	 15.8	
Freezing	 23.6	 21.7	 19.7	 21.1	 20.3	 20.6	 20.0	 21.1	 21.2	
Near	Freezing	 31.5	 28.4	 29.0	 25.6	 29.9	 23.9	 23.5	 25.7	 20.9	
Cool	 36.1	 34.7	 34.7	 34.5	 33.2	 33.4	 33.6	 31.8	 30.5	
Mild	 44.7	 38.3	 38.0	 39.4	 38.4	 36.1	 36.9	 35.4	 37.3	
Warm	 53.1	 50.2	 48.1	 49.4	 47.8	 44.1	 45.3	 40.6	 38.3	
Very	Warm	 53.4	 53.4	 52.7	 52.5	 53.0	 53.2	 54.6	 52.1	 49.8	
Hot	 49.5	 49.1	 48.4	 49.5	 48.6	 47.0	 49.6	 45.3	 44.9	
Very	Hot	 55.5	 57.0	 51.3	 49.8	 56.1	 47.7	 48.0	 52.5	 43.0	

Pr
ec
ip
ita

tio
n	 No	Rain	 31.5	 28.4	 29.0	 25.6	 29.9	 23.9	 23.5	 25.7	 20.9	

Light	Rain	 30.0	 27.2	 27.9	 28.4	 28.6	 26.9	 27.3	 25.5	 23.7	
Moderate	Rain	 17.1	 18.2	 19.0	 16.0	 19.6	 18.6	 15.6	 16.7	 16.9	
Heavy	Rain	 16.6	 14.3	 14.7	 15.3	 14.8	 14.1	 14.3	 13.5	 12.6	

Table 5.4 - Representative example of the variations in predicted cycling counts as a function month of year, maximum apparent 
temperature, and precipitation at the Iron Horse Trail location using the 25%, 75%, and mean CMIP5 model predictions. 
 
5.3.1 Temporal Effects Under a Changing Climate 

The temporal effects of weather on cycling frequency have been identified in publications on this 

topic as well as in Section 5.2.1 to generally be a significant factor in affecting cycling counts 

throughout the year. It is no surprise that the time of year will continue to play a role in influencing 

cycling counts under a changed climate at mid-century. The results displayed in Table 5.3 identify 

that trends exist with regards to cycling count frequencies at each counter facility and within each 

emission scenario. Within the results using the CMIP5 inter-model mean set of predictions, it is 
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typically seen that the RCP45 emission scenario (mid-intensity) has the greatest average positive 

effect on cycling counts across four of the five locations. The Laurel Trail at Silver Lake location 

stands out as indicating that the more severe the emission scenario, the greater the negative effects 

on cycling frequencies. The RCP45 emission scenario appears to have the most positive influence 

on cycling frequencies in Waterloo at most facilities, while the most extreme scenario, RCP85, is 

reported as generally being the most detrimental of the three scenarios. When reviewing the results 

of Table 5.4, however, the effects are less distinguishable and decisive across each emission 

scenario. While the high-intensity emission scenario (RCP85) continues to appear to be the most 

detrimental to cycling rates throughout the year, the low-, mid-, and high-intensity emission 

scenarios (RCP26, RCP45, RCP85) appear to significantly overlap and are not able to definitively 

indicate how they rank against each other in terms of their effects on cycling rates. As a result of 

the overlapping range of predictions at the Iron Horse Trail, it is not appropriate to identify that 

one emission scenario will definitively result in a positive or negative change over another due to 

uncertainties surrounding the predicted effects. 

 Aside from the emission scenarios, it is apparent that the winter months show the least 

variation in predicted cycling frequencies, with the late spring and early fall showing the greatest 

amount of variation, exemplified by the Laurel Trail at Silver Lake where there are reductions as 

great as 11 cyclists (-7.5%) between the most and least positive emission scenario. The 

significance levels across counter facilities remain similar to those reported during the weather and 

cycling frequency analysis in Section 5.2.1, with four of the five facilities reporting statistically 

significant values between April and November, while the winter months are consistently non-

significant at the 95% level.  

Despite similar methods and data inputs to other studies, the findings presented above 

deviate from those found by other researchers. Wadud (2014) suggests that weekday commuter 

cyclists in the U.K. will cycle more during the winter and summer, while the spring and fall show 

reductions in cycling under a changed, mid-century climate. This analysis shows that cycling rates 

in Waterloo may experience decreases in all months of the year, contrary to Wadud (2014), with 

the most dramatic reductions occurring under the more severe RCP85 emission scenario. However, 

as exemplified by Table 5.4, there is uncertainty surrounding how dramatic a decrease in cycling 

rates could be expected throughout the year as well as which emission scenario will ultimately be 

represented at mid-century. 
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5.3.2 Effects of Maximum Apparent Temperature Under a Changed Climate 

The effects of the maximum apparent temperature experienced during the AM or PM peak travel 

periods under a changed climate display similar patterns to those found during the current weather 

and cycling frequencies analysis in Section 5.2, where cycling frequencies increase non-linearly 

from cooler to warmer temperatures. Individual patterns at each counter facility have also been 

preserved, with the Laurel Trail at Columbia and Laurel Trail at Silver Lake experiencing a 

reduced percentage change in cycling rates at higher apparent temperatures than the other three 

sites. Additionally, these sites continue to experience a decrease in cycling rates during the 

warmest of temperatures (i.e., ‘Hot’ and ‘Very Hot’ apparent temperature levels), in contrast to 

the other counter facilities. When comparing these results with those of relevant publications, there 

is some degree of discrepancy. Böcker et al. (2013a) and Mathisen et al. (2015) both suggest that 

increased bicycle use will occur under a changed climate (in northern European nations) due to 

warmer temperatures affecting year-round travel. This research suggests that this may not be the 

case, as no discernible trend can be established amongst the regression results, leading to variable 

impacts on cycling rates depending on the emission scenario, cycling facility, and observed 

maximum apparent temperature. This is more in line with the findings of Saneinejad et al. (2012), 

who state that cycling trips are expected to experience greater variation in the number of trips made 

under a changed climate. Table 5.4 further illustrates the predicted general decline across all 

apparent temperature levels, emission scenarios, and CMIP5 model predictions, however it does 

identify the large range in predicted cycling rates between emission scenarios and across model 

prediction sets.  
 

5.3.3 Effects of Rainfall Under a Changed Climate 

The final variable that will be covered within this section is the effect of total rainfall during peak 

travel periods on future cycling rates. On a whole, the change in rainfall has a positive relationship 

with the predicted severity of climate change: the more severe the emission scenario the greater 

the amount of predicted annual rainfall and the fewer predicted cyclists. This trend is seen at the 

Iron Horse Trail, Laurel Trail at Columbia, Laurel Trail at Erb, and is vaguely present at the Laurel 

Trail at Silver Lake and Laurel Trail at Weber. This is in line with the findings in Section 5.2.3, 

that as rainfall increases the number of cyclists decrease, and that rainfall will generally increase 

at an annual scale under more severe effects of climate change. Additionally, the significance of 
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the results is consistent with those presented in Table 5.3, where ‘Light Rain’ is generally 

statistically non-significant, with the other two levels reported as statistically significant at most 

locations and emission scenarios with the exception of the Laurel Trail at Silver Lake, which is 

entirely non-significant. 

 The patterns presented in Section 5.2.3 remain consistent during this analysis, with most 

counter facilities indicating that fewer cyclists are predicted under greater amounts of precipitation. 

These findings are consistent with those reported by researchers describing the effects of rainfall 

on cyclists either at present (e.g., Ahmed et al., 2010; Gallop et al., 2012; Böcker et al., 2013b) or 

under future climates (e.g., Böcker et al., 2013a; Wadud, 2014; Mathisen et al., 2015). Exceptions 

to this remains the Laurel Trail at Silver Lake which continues to suggest that more cyclists will 

be present during ‘Heavy Rain’ (≥ 3 mm of rainfall in three hours) conditions. Again, this is a 

unique finding that may not be representative of actual cyclist responses to varying amounts of 

rainfall. As this is the most popular cycling trail in Waterloo located between several key 

destinations, there are number of potential explanations for this unintuitive result, some of which 

are outlined in Section 5.2.3. Overall, the findings discussed within this section identify that greater 

levels of rainfall will continue to negatively affect cycling rates, and that this may be exacerbated 

under the presence of more severe climate change conditions. 
 

5.3.4 Summary of the Effects of Future Weather on Cycling Frequencies 

This section provides insight into the potential effects that future weather conditions may hold on 

cycling frequencies under a changed climate. Three key variables that will be impacted due to 

climate change are discussed in Section 5.3, detailing the predicted effects they will have on 

cycling frequencies under three emission scenarios at mid-century. The findings identify general 

trends within the data that suggest that cycling frequencies may decrease under more severe 

changes in the local climate, such as the negative impacts that may be present throughout the year 

(Section 5.3.1) and under different maximum apparent temperatures during the AM and PM peak 

travel periods (Section 5.3.2), however uncertainties regarding the intensity and the ultimate 

impact of climate change must be acknowledged and considered. Both of these variables suggest 

a decrease in cycling frequencies that is not consistent with other publications on this topic, but 

are based on valid observations using robust methods. The effects of rainfall under a future climate 

(Section 5.3.3) again suggest decreasing cycling frequencies are possible under more severe 
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changes in climate, however these findings are consistent with other research. In summary, these 

findings suggest that, when considering the range of climate change predictions available and the 

inherent uncertainties that frame climate change modelling, cycling frequencies may be negatively 

impacted as more severe climate change conditions develop. 
 

5.4 Comparison of the effects of Current and Future Weather Conditions on 
Cycling Frequencies 

Presenting the results found above is only the first step to understanding how cycling frequencies 

will be affected due to climate change. This section will combine the results from Sections 5.2 and 

5.3 to provide a more inclusive overview of how cycling frequencies will be impacted by weather 

between the 2014-2016 study period and a mid-century climate under three emission scenarios 

using the CMIP5 inter-model mean, 25%, and 75% sets of predictions. It is important to note that 

the climate change analysis does not take into account population growth, changes in cycling 

infrastructure, socioeconomic variables, behavioural changes due to the presence of alternative 

transportation options, equipment adaptations made by cyclists to reduce the effects of weather, or 

the perception of the safety or utility of cycling; rather, these variables continue to be assumed to 

be constant from the point at which the data was collected. Changes in these variables may lead to 

different outcomes when comparing present-day to predicted cycling frequencies. The following 

comparison of results is based solely on the differing levels of impact that month of year, rainfall, 

and temperature will have on cyclists using present-day observations as the baseline. In addition, 

as this section compares the differences between present-day and future predicted cycling rates, it 

is important to acknowledge the range of predictions presented as well as the uncertainties that 

surround climate change modelling when interpreting the following findings. 
 

5.4.1 Temporal Variations 

As discussed above in Section 5.3.1 the mid-intensity emission scenario is identified as potentially 

having the most positive effect on cycling frequencies under a changed climate. When comparing 

the cycling counts during the 2014-2016 study period with the predicted counts under each 

emission scenario the predicted positive effects become clearer. In Figure 5.4, the percentage 

change is calculated for each emission scenario relative to the observed, present-day cycling counts 

(used as the baseline) at the Iron Horse Trail (this site is used as a representative example for the 
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rest of the dataset). When graphed it becomes apparent that RCP85 remains the most likely 

scenario in which cycling counts will be negatively impacted, however the prediction sets used for 

RCP26 and RCP45 both suggest a negative effect on cycling rates, but it is not possible to 

distinguish which emission scenario may have the greater impact due to the range of predictions. 

 

 
Figure 5.4 – Month of year differences between the current weather and future weather and cycling analyses at the Iron Horse 
Trail. 25%, 75%, and mean predictions generated from the CMIP5 climate model are presented to display the varying predicted 
effects and uncertainties regarding the predicted outcomes under each emission scenario. 
 

5.4.2 Maximum Apparent Temperature Variations 

Arguably one of the most expected impacts of climate change is the predicted increases in apparent 

temperature. This variable is also one of the most studied by researchers seeking to quantify the 

effects of climate change on cycling frequencies. As a result, it is no surprise that apparent 

temperature remains a high-profile variable within this study. To showcase the predicted increases 
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in apparent temperature, Figure 5.5 graphs the average maximum apparent temperatures during 

the study period (“Observed”), along with the average maximum apparent temperatures for each 

emission scenario by month. It becomes clear that a well-defined increase in temperature will occur 

between present-day and mid-century, which may be exacerbated by the development of more 

severe climate conditions, represented by the three emission scenarios (using CMIP5 inter-model 

mean).  

The results of the predicted changes in temperature by emission scenario are represented 

below in Figure 5.6, which again uses data generated for the Iron Horse Trail as a representative 

example. It can be seen that the overall warming of Waterloo’s climate may have an overall 

negative effect on cycling frequencies when compared to the observed data collected during the 

study period, however an increase in cycling rates relative to present-day data may be observed 

within the apparent temperature levels that correspond with warmer temperatures. RCP85 appears 

to again be the most impactful across most maximum apparent temperature levels with the less 

severe emission scenarios indicating generally balanced effects relative to the present-day baseline 

across all apparent temperature levels. Considering the obvious, ubiquitous, and progressively 

increasing apparent temperature at mid-century it may be assumed from this study that cyclists in 

Waterloo, Ontario, and potentially southern Ontario as a whole may be negatively impacted by 

future increases in apparent temperature, when holding all other variables constant. However, 

when considering the full range of predictions (i.e. RCP26 25%) it may be suggested that a 

definitive decrease in cycling rates may not occur, and that there remains a potential for conditions 

to exist which will support and encourage cycling rates. An important consideration for this 

discussion is how wind speed and relative humidity, two of the three variables included in the 

apparent temperature calculation, will be affected under a changed climate. Due to the 

inconsistency of findings on how these two variables will be altered by climate change, they have 

remained constant during this analysis, however they both play important roles in determining 

apparent temperature. Relative humidity is considered a negative influencer on cycling frequencies  
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Figure 5.5 - Average Changes in Maximum Apparent Temperature due to Climate Change by Emission Scenario	
 

 
Figure 5.6 - Apparent Temperature differences between the current weather and future weather and cycling analyses at the Iron 
Horse Trail. 25%, 75%, and mean predictions generated from the CMIP5 climate model are presented to display the varying 
predicted effects and uncertainties regarding the predicted outcomes under each emission scenario 
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during warm weather, while wind speeds have a positive effect in warm weather and a negative 

effect during cold weather, resulting in ‘wind chill’. It raises the question of: would apparent 

temperature have a different effect on cycling frequencies if there were adequate predictions for 

wind speeds and relative humidity at mid-century?  
 

5.4.3 Total Rainfall variations 

The final variable that will be compared between the weather and cycling and climate change and 

cycling analyses is the effects of total rainfall. For this analysis, the data for the Iron Horse Trail 

will again be used as a representative example for all analyses. Using the baseline present-day 

observations for reference, the relative effects of rainfall under each emission scenario are seen in 

Figure 5.7. As with the above sections a clear distinction between which emission scenario is the 

most or least impactful is difficult. While RCP85 appears to be the most negative scenario on 

cycling rates relative to present-day, there remains sets of predictions under RCP45 that also 

suggest largely negative effects, particularly under the variable level ‘Moderate Rain’. In addition 

there are a full range of results that should also be considered, such as RCP45 Mean, RCP26 25%, 

and RCP26 75% which all suggest marginal increases, decreases, or the possibility of no detectable 

change in cycling rates relative to present-day results. Despite the full range of climate predictions 

indicating a negative-bias to the future effects of precipitation on cycling rates, the potential for 

positive or status quo outcomes remains a possibility, and therefore makes it difficult to 

definitively state that the effects of precipitation will negatively affect cycling frequencies under a 

changed climate.  

Due to the findings within this section regarding the effects of total rainfall on cycling 

frequencies, it is important to note the actual changes in predicted rainfall depends on the baseline 

quantities. For seasonal or annual changes in rainfall the amount of rain will likely be noticeably 

greater due to the larger baseline values and the effects of a multiplicative approach when applying 

the rate of change of precipitation to observations. However, for much smaller temporal 

resolutions, such as within this study, where there is much less time to accumulate precipitation, 

the baseline values are much smaller and therefore do not show great levels of change when the 

predicted percentage changes are applied. 
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Figure 5.7 - Precipitation differences between the current weather and future weather and cycling analyses at the Iron Horse 
Trail. 25%, 75%, and mean predictions generated from the CMIP5 climate model are presented to display the varying predicted 
effects and uncertainties regarding the predicted outcomes under each emission scenario. 
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6.0 Conclusion 

The purpose of this research was to quantify the impact of weather conditions, and to predict the 

effects of future weather conditions under a changed climate on commuter cyclists in southern 

Ontario, Canada. To conduct this research, quantitative methodologies were employed using 

cycling count data from the City of Waterloo. A multilinear regression model developed by Phung 

and Rose (2007) and refined by Ahmed et al. (2010) was used as a base model (Equation 3.3) to 

analyze the data. Revisions were made to the regression to develop a more appropriate model 

(Equation 4.1) given the inherent constraints of the cycling count data and the required outputs of 

the two analyses discussed in Chapter 3. Chapters 4 and 5 identified the current impacts of several 

weather conditions on commuter cycling frequencies, which were then used to predict commuter 

cycling frequencies under a future, changed climate. The latter analysis used three emission 

scenarios calculated from the CMIP5 climate model ranging from low- to high-degrees of change 

in temperature and precipitation. The findings of these two analyses were then compared against 

each other to identify expected trends in cycling frequencies between current and predicted counts 

at mid-century, which included several additional sets of climate change predictions to further the 

discussion regarding the possible range of outcomes and the uncertainty that frames discussions 

on predicted climate change impacts. To conclude this research, the key findings of the weather 

and climate change analyses will be summarized below (Section 6.1), in addition to sections 

detailing research contributions (Section 6.2), study limitations (Section 6.3), and opportunities 

for future research (Section 6.4).  
 

6.1 Summary of Findings 

Weather and Cycling Count Analysis 

The first research question pertained to developing an understanding of the impacts that weather 

conditions have on cycling frequencies. The responses to this question have generally been straight 

forward, as stated in Section 5.2. Across most counter facilities it was determined that the month 

of the year plays a significant role in cycling frequencies, displaying a distinct unimodal pattern; 

cycling peaks during the summer months (June, July and August) reaching a low-point during the 

winter months (December, January, and February). The only deviation from this general trend is 

that counter facilities nearer post-secondary institutions show a marked decline in cycling counts 
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during the months of July and August, likely due to a lack of students and staff traveling to school. 

These facilities show more of a bimodal distribution with peaks corresponding to the end and 

beginning of the winter and fall school terms (May and September, respectively).  

The effect of maximum apparent temperature during peak travel periods also shows 

expected patterns; cycling counts decrease as it gets colder (less than 0 degrees Celsius) and 

increase as it becomes warmer (greater than 0 degrees Celsius). Differences in the magnitude of 

the effect of maximum apparent temperature appear when comparing counter locations, with the 

facilities nearest post-secondary institutions experiencing a lesser effect than those located 

elsewhere. The effects of total rainfall during peak travel periods also show expected patterns, with 

a non-linear relationship present; the effect of moderate rain has the most impact, with decreasing 

effects under heavier amounts of rain (as seen at the Iron Horse Trail, Laurel Trail at Erb, and 

Laurel Trail at Weber locations). This is likely caused by individuals opting not to cycle during 

periods of sustained or moderate rain, while feeling less deterred by light rain, and if already 

cycling, are more likely to continue to travel during heavier amounts of rain. It was also found that 

the lagged effect of rain was a deterrent to cycling, as up to a quarter fewer cyclists were counted 

during a three-hour period following rainfall. The minimum wind speed during each peak travel 

period was used to assess the effect of wind on cycling rates at each counter facility, which were 

found to be negligible and inconsistent, with facilities experiencing either a marginally positive or 

negative impact due to increased wind speeds. Finally, snowfall was a variable included in this 

study due to its seasonal, albeit variable, presence across southern Ontario and its typically 

deterring characteristics with regards to cycling. In statistically significant cases it was found that 

the presence of snowfall has a sizeable negative effect on cycling frequencies. This is furthered by 

the presence of the negative effects that snow has up to 24 hours after snowfall, which was 

analyzed using the snow lag variable noted in Section 5.2. Conflicting findings were identified 

amongst the results that were reported as being statistically non-significant. Approximately half of 

the findings for the variables “snow presence” and “snow lag” were reported as non-significant, 

and with much smaller regression coefficients, bordering on negligible effects. The lack of 

snowfall data available during the study period may have contributed to this. This is certainly an 

area that could be improved upon in the future for more reliable results.  

It is important to note that the results were not always consistent across all counter facilities. 

Counters located nearest to the University of Waterloo and Wilfrid Laurier University (i.e. Laurel 
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Trail at Columbia and Laurel Trail at Silver Lake) experienced different impacts than the 

remaining three locations, such as smaller magnitudes of change due to extreme temperatures and 

contradictory impacts from increases in precipitation amounts, with a wide-range of estimated 

impacts as exemplified by the confidence intervals included in Figures 5.1 – 5.3. It is assumed that 

these differences may be the result of fewer students traveling to school during the summer months 

impacting the effects of temperature and precipitation. Another plausible explanation is that 

cycling along these trails is a necessary means for individuals travelling between school and their 

dwelling. Alternative forms of transportation such as transit, walking, or driving may not be 

available due to proximity to transit routes, distance from school, and financial burdens causing 

an individual to be more likely to travel through adverse weather conditions. These assumptions 

will remain unverified at present due to a lack of information or data on the topic of mode choices 

and socioeconomic status as it pertains to cycling frequencies in Waterloo. 
 

Climate Change and Cycling Count Analysis 

Following the weather and cycling count analysis, a second analysis was run using the same model 

with new data obtained from the CMIP5 climate model representing the impacts of climate change 

at three levels of severity in addition to several other sets of CMIP5 inter-model predictions. Due 

to data limitations (lack of predicted values for select variables used in the regression model such 

as snowfall data) several variables used the same observed values as found in the weather and 

cycling count analysis, while updated values were provided for maximum apparent temperature 

and total rainfall.  

 Similar patterns were observed throughout the climate change and cycling frequency 

analysis as seen in the initial analysis using observed weather data. As apparent temperature 

increases, so to do cycling counts; and as rainfall increases, cycling counts sharply decline. Section 

5.3 suggests that the more severe the predicted effects of climate change, the fewer cyclists are 

predicted under the CMIP5 inter-model mean set of predictions (this is also depicted in Table 5.2). 

This was true for the variables month of year, maximum apparent temperature, and total rainfall; 

however, a number of points were identified suggesting uncertainty over the definitive negative 

impact of future apparent temperature and rainfall on cycling rates given the presence of several 

slightly positive predictions. This is interesting because research on the impacts of climate change 

on cycling generally suggests that cycling counts will experience an increase due to warmer year-
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round temperatures that effectively shorten the winter season which is largely viewed as hazardous 

due to a number of reasons previously listed. However, in a study on the effects of climate change 

on cycling rates in Norway, Mathisen et al. (2015) found that climate change will only result in 

marginal increases in cycling rates, and that the biggest positive contributor is likely to be 

population growth, a variable that was not included in this research, but is still a plausible source 

of future rate increases. Overall, this research finds that, generally, the more severe the effects of 

apparent temperature and rainfall under climate change, the greater the potential for negative 

effects on cycling counts in southern Ontario, when holding all other variables constant. 
 

Comparison of the Effects of Current and Future Weather Conditions on Cycling 
Counts 

The predicted effects of weather under a changed climate were compared to results from the 

observed weather and cycling count analysis to better understand how climate change will impact 

cycling counts relative to the study period. The comparison highlighted expected differences 

between current weather and future weather under a changed climate. Apparent temperatures are 

expected to increase year-round, although the percentage change will vary by season and trail 

location, and cycling may generally experience greater negative effects under warmer apparent 

temperatures than during the values observed during the study period, however several sets of 

predictions suggest that a generally positive effect may also exist, leading to a degree of uncertainty 

over the future effects of apparent temperature on cycling frequencies. Additionally, cycling rates 

are likely to be lesser during each month of the year. Finally, the total rainfall variable indicated 

interesting results, notably that a generally negative effect will occur, with the potential for positive 

or status quo effects when considering the full range of predictions. It is also worth noting that the 

range of predictive impacts of rainfall on cycling rates is quite wide when considering all counter 

locations studied in the City of Waterloo.  

Therefore, it can be suggested that, when holding all other variables constant, the climate 

predictions generally point to declining cycling rates under a changed climate when accounting 

for changes in apparent temperature and rainfall throughout the year. However, due to the presence 

of few predictions indicating a positive or neutral effect on cycling frequencies within the studied 

variables, the uncertainty of these findings must be acknowledged and considered.  
 



107	
	

6.2 Research Contributions 

Research on the impacts of weather and climate change on cycling frequencies has been performed 

in a number of locations using a variety of data, making this study a replication of past efforts by 

researchers with similar objectives. A key point, however, is that cycling analyses are often limited 

to small geographic areas that may or may not be representative of the larger population. 

Additionally, a large portion of studies have targeted European communities, particularly the 

Benelux countries, U.K., and Denmark (e.g., Böcker et al., 2013; Mathisen et al., 2015). Where 

this research provides new insights on the effects of weather and climate change on cycling 

frequencies is in the relatively sparsely studied region of southern Ontario, Canada. Despite this 

region being home to millions of Canadians and many cyclists, past work has been limited, and 

has focused on mode choice (e.g. Saneinejad et al., 2012) and rider perceptions (e.g. Bidordinova, 

2010) within a small, single study location. Therefore, this research contributes by filling the 

knowledge gaps that currently exist on cycling research as it pertains to the effects of weather and 

climate change on cycling frequencies outside of Europe and other prominent areas of study. This 

study may also be viewed as a response to the identification of the need for further research to 

identify the effects of weather and climate change and contribute to the understanding of 

geographic variations in cycling frequencies, as suggested by researchers such as Ahmed et al. 

(2010).  

It is important to further understand and consider these effects on cycling frequencies, 

especially as jurisdictions across Ontario continue to push for and invest in cycling and active 

transportation infrastructure and programs to align with climate change mitigation and adaptation 

goals, objectives, and strategies. By contributing to this knowledge-base, municipalities will be 

better able to effectively invest in appropriate infrastructure and programs to enhance and 

incentivize commuter cycling. In doing so, municipalities will better align their operations to 

conform with municipal and provincial policies and programs, such as the City of Waterloo’s 

Transportation Master Plan (2011), and Ontario’s Climate Change Action Plan (Ontario, 2017) 

through evidence-based decision making. Understanding the deterrents and incentives that drive 

cycling rates may prove beneficial when identifying priorities in cycling investments. For example, 

if snowfall results in significant reductions to cycling frequencies, as identified in this study, it 

may be beneficial to install and implement relevant infrastructure and programs. Examples may 

include increasing segregated cycling infrastructure that removes the hazards or perception of 
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hazards associated with cycling near vehicles in adverse, slippery conditions; ensuring rapid-

responses during and after snowfall to keep trails and cycling routes devoid of snow and ice; or, 

initiate educational programs that teach cyclists recommended techniques when riding in winter 

conditions, and provide advice on appropriate clothing and equipment that will make cycling more 

comfortable and safe.  
 

6.3 Limitations of Study 

This research has highlighted several important and unique findings on the topic of the effects of 

weather and climate change on cycling frequencies. Like most studies limitations have been 

identified that must be noted and considered when reading and interpreting the findings found in 

Chapter 5. Below, key limitations are discussed based on their impact to this research, as well as 

how they may be addressed to have lesser effects on future research.  

 While concluding this study it is important to remember the intent of this research was to 

investigate the effects of weather and climate change on cycling frequencies. As such, variables 

that are also associated with cycling frequencies (e.g., socioeconomic and demographic data, 

information on mode choices, routes taken, and perceptions associated with commuter cycling) 

have been omitted from this study to ensure that the two research objectives were met and scope 

creep was avoided. Additionally, regression models are most effective when the number of 

variables included in the model are kept to a minimum. Therefore, it is recommended to reduce 

the number of variables to only those that are deemed important for the research. This was 

accomplished by limiting the objectives of this research to pertain strictly to weather, climate 

change and cycling counts, as well as using only relevant variables, and avoiding the inclusion of 

alternative influencers on cycling frequencies, ultimately narrowing the scope but generating better 

results. 

The data used within this study also has several limitations or points to consider when 

interpreting these findings. As discussed at length in Chapter 2, data originated from several 

sources and were collected at many locations around and outside of the City of Waterloo. 

Immaturity of the cycling counter facilities in Waterloo limited the inclusion of some facilities as 

they had yet to compile even a year’s worth of cycling counts. Weather data collected at the 

Waterloo Region International Airport by ECCC, though extensive, lacked a number of key 

variables that could have furthered the understanding of this study, such as quantitative 
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measurements of snowfall or snow depth, and consistent and reliable precipitation measurements 

(these were substituted by rainfall data made available by GRCA). Finally, the CMIP5 climate 

model, though a complete and reliable source of current climate change predictions, only included 

estimations on changes to temperature and the intensity of rainfall events. This dataset does not 

include any predictions for variables such as wind speed, humidity, snowfall, or snow depth at 

mid-century. It is important that these data availability concerns are addressed in future research 

to ensure that complete analyses can be conducted and that no missing or unavailable data is a 

cause of limitations. 

Similarly, the accuracy of the data was a barrier that had to be overcome throughout this 

research. Despite the number of cycling counter facilities, a number of them had issues around 

data accuracy and completeness which is highlighted by this research only using five of the twelve 

available counter facilities. Several facilities suffered from suspected mechanical problems, such 

as water ingress or empty batteries that impacted their ability to provide accurate counts. Another 

was suspected to be negatively impacted by the radiation produced by a nearby streetlight or utility 

line. These facilities were omitted to mitigate concerns surrounding data accuracy. Beyond cycling 

counters, a common problem associated with using regional weather stations, such as the one at 

the Waterloo Region International Airport, is that the localized variations in weather are not 

captured. Local wind patterns or shifts that are generated by the physical environment (e.g., 

buildings and wooded areas) are not registered, nor are localized precipitation events. For a more 

complete picture of local weather conditions more weather stations should be installed to provide 

data representative of current conditions, rather than those at an airport with flat terrain devoid of 

many built or natural features such as those found in urban areas. 

Considering the above limitations, this study could be enhanced under a number of 

different approaches. The first is through using more cycling counter facilities to provide deeper 

insight into the geographic variation in cycling rates across the city, especially as there were 

notable differences between routes centred around the universities versus those nearest the city-

centre. This could be complemented by extending cycling counters into the neighbouring City of 

Kitchener to capture commuter cycling rates across the contiguous Kitchener-Waterloo area. 

Additionally, more data from each counter facility would enhance the study by providing more 

observations to overcome any fluctuations in counts that may have been impacted by external 

factors or even by unseasonable weather patterns. Having access to more quantitative 
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measurements of weather variables such as rainfall and snowfall would also benefit this study. 

While the qualitative identification of snowfall was used, it would be beneficial to use a method 

similar to the rainfall variable and quantify how different levels of snowfall or snow depth impact 

an individual’s choice to cycle during the winter months. Finally, installing more reliable counters 

around the city would have significant benefits. The cycling counters currently used by the City 

of Waterloo appear to offer fairly accurate measurements of counts, however as noted by this 

research as well as a staff member at the City of Waterloo, they are not perfect (Personal 

Communication, 2017). Over the few years that the counters have been installed, they have been 

prone to mechanical failures, which is compounded by the fact that they run on batteries rather 

than the municipal power-grid, wind turbines, or photovoltaic systems, and are not watertight. This 

all proves detrimental to the city’s ability to continually collect data for evidence-based decision 

making on investments in active transportation and providing reliable data for use by researchers. 

6.4 Opportunities for Future Research 

While this study and its outputs are new to the region and have resulted in important results, there 

are areas where this research may improve through future exploration on the topic to bolster the 

understanding of weather and climate change impacts on cycling frequencies in southern Ontario. 

Future research should seek to understand the qualitative impacts of weather and climate change 

on commuter cycling to offer an alternative perspective to the presented findings. An example of 

this work would be similar to Bidordinova’s (2010) research on University of Toronto faculty and 

staff, however it is important to be more inclusive by including university students and staff as 

well as the general public. The findings of this research have suggested that there are differences 

between individuals travelling to universities for school or work versus those travelling elsewhere 

during peak travel periods, making it important for future research to explore these differences in 

travel behaviours. This is especially true in cities with large post-secondary student populations.  

 Another source of future research would be to complement this study with an 

understanding of socioeconomic and demographic variables that impact cycling frequencies and 

potentially mode choice. This topic is identified as an important consideration when reviewing 

future investments in cycling infrastructure. By understanding who cycles and where they live, 

work, or otherwise travel in a city a municipality can ensure that they create effective and useful 

infrastructure, with a transportation system to match. 
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 Finally, due to the data limitations identified in Section 6.3 and the expected changes in 

cycling infrastructure, investment, and cycling rates through population and climate change, this 

research should be conducted again in five or more years. This will provide time for cycling 

infrastructure and programs to come to fruition, as well as associated schemes that could result in 

changes to cycling frequencies such as infilling and density increases in targeted corridors (such 

as University Avenue, Columbia Avenue, and King Street in Waterloo). Most importantly, this 

will allow for either new cycling counters to be installed or at least more data to be collected. 
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Appendix 

Scatterplot	Matrix	–	Iron	Horse	Trail		
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Scatterplot	Matrix	–	Laurel	Trail	at	Erb	St.	E.	
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Scatterplot	Matrix	–	Laurel	Trail	at	Silver	Lake	
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Scatterplot	Matrix	–	Laurel	Trail	at	Weber	St.	N.	
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Added-Variable	Plots	(Partial	Regression	Plots)	–	Laurel	Trail	at	Silver	Lake	(representative	
example	for	all	study	data)	
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Boxplots	–	Laurel	Trail	at	Columbia	St.	W.	
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Boxplots	–	Laurel	Trail	at	Weber	St.	N.	
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Boxplots	–	Laurel	Trail	at	Silver	Lake	
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Boxplots	–	Laurel	Trail	at	Weber	St.	N.	
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Weather	and	Cycling	Regression	Result	Table	–	Iron	Horse	Trail	

	
	

January
February -0.291 0.234801 -1.211 0.226 -0.751 0.169
March -0.467 0.236765 -1.855 0.064 -0.932 -0.003
April 0.106 0.220725 0.535 0.593 -0.326 0.539
May 0.279 0.219876 1.359 0.175 -0.151 0.710
June 0.285 0.221259 1.303 0.193 -0.149 0.718
July 0.546 0.22044 2.583 0.010 0.114 0.978
August 0.607 0.217235 2.83 0.005 0.181 1.032
September 0.564 0.215832 2.665 0.008 0.141 0.987
October 0.449 0.210026 2.255 0.024 0.037 0.861
November 0.351 0.205579 1.801 0.072 -0.052 0.754
December 0.119 0.213326 0.623 0.534 -0.299 0.538
Extreme	Cold -0.591 0.303895 -2.056 0.040 -1.187 0.005
Very	Cold -0.616 0.272149 -2.434 0.015 -1.149 -0.082
Cold -0.347 0.165405 -2.335 0.020 -0.671 -0.023
Freezing -0.155 0.10662 -1.721 0.086 -0.364 0.054
Near	Freezing
Cool 0.131 0.093806 1.245 0.213 -0.053 0.315
Mild 0.342 0.096388 3.459 0.001 0.153 0.530
Warm 0.517 0.099819 5.046 0.000 0.321 0.712
Very	Warm 0.470 0.105397 4.402 0.000 0.263 0.676
Hot 0.396 0.110237 3.496 0.001 0.180 0.612
Very	Hot 0.567 0.153223 3.651 0.000 0.267 0.867
No	Rain
Light	Rain -0.040 0.11892 -0.337 0.736 -0.273 0.193
Moderate	Rain -0.465 0.179831 -2.586 0.010 -0.817 -0.113
Heavy	Rain -0.664 0.223039 -2.977 0.003 -1.101 -0.227

0.018 0.002596 7.106 0.000 0.013 0.023
-0.021 0.191393 0.117 0.907 -0.397 0.354
-0.260 0.091604 -2.809 0.005 -0.439 -0.080
-0.594 0.147175 -4.063 0.000 -0.883 -0.306

3.399 0.211752 16.026 0.000 2.984 3.814

BASE

BASE

BASE

61.26%

Upper	
Conf.	Int.

Lower	
Conf.	Int.

p-valuet-valueStd.	Error

Precipitation	Lag
Snow	Lag
Intercept
R²

Estimated	
Coef.
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Weather	and	Cycling	Regression	Result	Table	–	Laurel	Trail	at	Columbia	

	
	

January
February 0.104 0.241408 0.494 0.621 -0.369 0.577
March -0.001 0.246483 -0.017 0.986 -0.484 0.482
April 0.632 0.230098 2.861 0.004 0.181 1.083
May 1.440 0.223317 6.528 0.000 1.002 1.878
June 1.140 0.226408 5.096 0.000 0.696 1.584
July 1.002 0.228421 4.472 0.000 0.555 1.450
August 1.167 0.22757 5.24 0.000 0.721 1.613
September 1.303 0.225836 5.898 0.000 0.860 1.745
October 1.290 0.221323 5.892 0.000 0.856 1.724
November 1.110 0.21792 5.171 0.000 0.683 1.537
December 0.367 0.231599 1.606 0.109 -0.087 0.821
Extreme	Cold -0.305 0.306237 -1.016 0.310 -0.905 0.295
Very	Cold -0.456 0.252452 -1.81 0.071 -0.951 0.038
Cold -0.150 0.155605 -1.026 0.305 -0.455 0.155
Freezing -0.016 0.093968 -0.208 0.836 -0.200 0.168
Near	Freezing
Cool 0.099 0.078169 1.271 0.204 -0.054 0.252
Mild 0.232 0.079886 2.73 0.006 0.075 0.388
Warm 0.242 0.082707 2.896 0.004 0.080 0.404
Very	Warm 0.263 0.085916 2.953 0.003 0.095 0.431
Hot 0.435 0.091232 4.704 0.000 0.256 0.614
Very	Hot 0.331 0.150908 2.116 0.035 0.035 0.627
No	Rain
Light	Rain -0.036 0.066538 -0.541 0.589 -0.166 0.094
Moderate	Rain -0.348 0.115615 -3.011 0.003 -0.575 -0.121
Heavy	Rain -0.279 0.146386 -1.907 0.057 -0.566 0.008

-0.002 0.002194 -0.833 0.405 -0.006 0.002
-0.441 0.136329 -3.279 0.001 -0.708 -0.173
-0.113 0.049001 -2.317 0.021 -0.210 -0.017
-0.068 0.099655 -0.553 0.580 -0.263 0.127

3.064 0.224032 13.608 0.000 2.625 3.504

BASE

BASE

BASE

76.70%

Snow	Lag
Intercept
R²
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Estimated	
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Std.	Error t-value p-value Lower	
Conf.	Int.

Upper	
Conf.	Int.

LTC
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Weather	and	Cycling	Regression	Result	Table	–	Laurel	Trail	at	Erb	

	
	

January
February -0.074 0.227125 -0.316 0.752 -0.519 0.371
March 0.170 0.215964 0.866 0.387 -0.253 0.594
April 0.768 0.206973 3.722 0.000 0.363 1.174
May 0.959 0.209989 4.578 0.000 0.547 1.371
June 1.101 0.210748 5.183 0.000 0.688 1.514
July 0.873 0.212345 4.075 0.000 0.456 1.289
August 0.864 0.21028 4.067 0.000 0.452 1.276
September 0.841 0.209217 3.946 0.000 0.431 1.251
October 0.824 0.204772 4.057 0.000 0.423 1.225
November 0.640 0.201659 3.209 0.001 0.245 1.036
December 0.194 0.212117 0.922 0.357 -0.221 0.610
Extreme	Cold -0.827 0.300871 -2.811 0.005 -1.417 -0.238
Very	Cold -0.657 0.241256 -2.828 0.005 -1.129 -0.184
Cold -0.345 0.150112 -2.412 0.016 -0.639 -0.050
Freezing -0.101 0.09385 -1.202 0.230 -0.285 0.083
Near	Freezing
Cool 0.209 0.083212 2.368 0.018 0.046 0.372
Mild 0.405 0.085655 4.686 0.000 0.238 0.573
Warm 0.525 0.088834 5.938 0.000 0.351 0.699
Very	Warm 0.596 0.092939 6.477 0.000 0.414 0.778
Hot 0.665 0.096085 6.987 0.000 0.476 0.853
Very	Hot 0.688 0.137705 5.05 0.000 0.418 0.957
No	Rain
Light	Rain -0.111 0.104091 -1.066 0.287 -0.315 0.093
Moderate	Rain -0.388 0.154591 -2.511 0.012 -0.691 -0.085
Heavy	Rain -0.534 0.261419 -2.044 0.041 -1.047 -0.022

0.004 0.00224 1.978 0.048 0.000 0.009
-0.314 0.150635 -1.939 0.053 -0.609 -0.019
-0.207 0.077896 -2.838 0.005 -0.360 -0.055
-0.019 0.114336 -0.217 0.828 -0.243 0.205

2.119 0.208367 10.17 0.000 1.710 2.527
69.08%

BASE

BASE

Precipitation	Lag
Snow	Lag
Intercept
R²

Std.	Error t-value p-value Lower	
Conf.	Int.

Upper	
Conf.	Int.
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Weather	and	Cycling	Regression	Result	Table	–	Laurel	Trail	at	Silver	Lake	

	
	

January
February -0.300 0.168 -1.781 0.075 -0.629 0.029
March 0.202 0.147 1.403 0.161 -0.087 0.491
April 0.859 0.144 5.992 0.000 0.577 1.141
May 1.401 0.147 9.576 0.000 1.113 1.688
June 1.271 0.148 8.594 0.000 0.981 1.561
July 1.166 0.151 7.782 0.000 0.871 1.461
August 1.036 0.150 6.925 0.000 0.742 1.329
September 1.427 0.145 9.832 0.000 1.142 1.712
October 1.235 0.142 8.725 0.000 0.957 1.513
November 0.829 0.139 5.991 0.000 0.557 1.101
December 0.176 0.149 1.213 0.225 -0.116 0.468
Extreme	Cold -0.514 0.159 -3.204 0.001 -0.826 -0.202
Very	Cold -0.459 0.139 -3.293 0.001 -0.731 -0.187
Cold -0.236 0.094 -2.52 0.012 -0.419 -0.052
Freezing -0.216 0.708 -3.061 0.002 -1.603 1.171
Near	Freezing
Cool 0.107 0.059 1.841 0.066 -0.007 0.222
Mild 0.142 0.060 2.388 0.017 0.025 0.260
Warm 0.242 0.063 3.849 0.000 0.118 0.365
Very	Warm 0.180 0.068 2.668 0.008 0.046 0.313
Hot 0.049 0.074 0.689 0.491 -0.097 0.195
Very	Hot 0.266 0.094 2.813 0.005 0.082 0.450
No	Rain
Light	Rain -0.002 0.057 -0.043 0.966 -0.113 0.108
Moderate	Rain -0.102 0.096 -1.059 0.290 -0.290 0.087
Heavy	Rain 0.112 0.124 0.904 0.366 -0.131 0.355

0.002 0.002 0.888 0.375 -0.002 0.005
-0.066 0.114 -0.585 0.559 -0.289 0.157
-0.215 0.043 -4.905 0.000 -0.299 -0.131
-0.380 0.086 -4.407 0.000 -0.549 -0.211

3.644 0.144 25.338 0.000 3.363 3.926

BASE

BASE

71.31%

BASE

Snow	Presence
Precipitation	Lag
Snow	Lag
Intercept
R²

Estimated	
Coef.

Std.	Error t-value p-value Lower	
Conf.	Int.

Upper	
Conf.	Int.
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Weather	and	Cycling	Regression	Result	Table	–	Laurel	Trail	at	Weber	

	
	

January
February 0.066 0.180123 0.385 0.700 -0.287 0.419
March 0.031 0.179389 0.267 0.790 -0.320 0.383
April 0.493 0.172163 2.885 0.004 0.155 0.830
May 0.583 0.171991 3.418 0.001 0.246 0.920
June 0.601 0.173374 3.482 0.001 0.261 0.941
July 0.632 0.174606 3.67 0.000 0.290 0.974
August 0.556 0.174405 3.202 0.001 0.214 0.898
September 0.592 0.1734 3.44 0.001 0.252 0.932
October 0.632 0.169675 3.787 0.000 0.299 0.964
November 0.447 0.167337 2.706 0.007 0.119 0.775
December 0.147 0.174245 0.876 0.381 -0.194 0.489
Extreme	Cold -0.714 0.238892 -3.061 0.002 -1.182 -0.246
Very	Cold -0.607 0.203252 -3.108 0.002 -1.006 -0.209
Cold -0.379 0.12824 -3.099 0.002 -0.631 -0.128
Freezing -0.111 0.078806 -1.586 0.113 -0.266 0.043
Near	Freezing
Cool 0.223 0.067636 3.199 0.001 0.091 0.356
Mild 0.399 0.069696 5.654 0.000 0.262 0.536
Warm 0.476 0.071624 6.558 0.000 0.336 0.616
Very	Warm 0.497 0.074211 6.624 0.000 0.352 0.643
Hot 0.638 0.078227 8.075 0.000 0.485 0.791
Very	Hot 0.733 0.116713 6.235 0.000 0.504 0.962
No	Rain
Light	Rain -0.155 0.083674 -1.855 0.064 -0.319 0.009
Moderate	Rain -0.371 0.119598 -3.101 0.002 -0.605 -0.137
Heavy	Rain -0.486 0.140465 -3.463 0.001 -0.762 -0.211

0.008 0.001812 4.47 0.000 0.004 0.012
-0.338 0.130849 -2.371 0.018 -0.594 -0.081
-0.142 0.061714 -2.296 0.022 -0.263 -0.021
-0.144 0.10028 -1.529 0.127 -0.340 0.053

2.311 0.172379 13.402 0.000 1.973 2.648
66.76%

BASE

BASE

Precipitation	Lag
Snow	Lag
Intercept
R²

Upper	
Conf.	Int.
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Conf.	Int.
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Climate	Change	and	Cycling	Regression	Result	Table	–	Iron	Horse	Trail	

	

January
February -0.321 0.233 -1.375 0.170 -0.778 0.136
March -0.487 0.234 -2.078 0.038 -0.947 -0.028
April 0.013 0.218 0.06 0.952 -0.414 0.441
May 0.235 0.218 1.077 0.282 -0.193 0.663
June 0.227 0.220 1.036 0.301 -0.203 0.658
July 0.479 0.219 2.185 0.029 0.049 0.908
August 0.531 0.216 2.46 0.014 0.108 0.954
September 0.480 0.215 2.237 0.026 0.059 0.900
October 0.408 0.208 1.961 0.050 0.000 0.815
November 0.332 0.204 1.632 0.103 -0.067 0.731
December 0.082 0.210 0.392 0.695 -0.329 0.494
Extreme	Cold -0.612 0.332 -1.843 0.066 -1.264 0.039
Very	Cold -0.792 0.336 -2.362 0.018 -1.450 -0.135
Cold -0.506 0.221 -2.292 0.022 -0.938 -0.073
Freezing -0.272 0.121 -2.247 0.025 -0.509 -0.035
Near	Freezing
Cool 0.199 0.094 2.121 0.034 0.015 0.383
Mild 0.299 0.097 3.065 0.002 0.108 0.489
Warm 0.569 0.100 5.677 0.000 0.373 0.765
Very	Warm 0.630 0.105 5.99 0.000 0.424 0.836
Hot 0.545 0.109 5.015 0.000 0.332 0.758
Very	Hot 0.696 0.155 4.488 0.000 0.392 1.000
No	Rain
Light	Rain -0.046 0.120 -0.381 0.703 -0.280 0.189
Moderate	Rain -0.448 0.180 -2.488 0.013 -0.801 -0.095
Heavy	Rain -0.690 0.223 -3.09 0.002 -1.128 -0.252

0.018 0.003 7.069 0.000 0.013 0.023
-0.252 0.092 -2.738 0.006 -0.433 -0.072
-0.250 0.179 -1.395 0.163 -0.601 0.101
-0.246 0.136 -1.808 0.071 -0.513 0.021
3.348 0.208 16.075 0.000 2.940 3.756

61.33%
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Std.	Error t-value p-valueIHT	RCP26
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January
February -0.359 0.235 -1.528 0.127 -0.820 0.102
March -0.486 0.235 -2.067 0.039 -0.947 -0.025
April -0.019 0.219 -0.086 0.932 -0.447 0.410
May 0.248 0.218 1.135 0.257 -0.180 0.676
June 0.241 0.219 1.101 0.271 -0.188 0.671
July 0.499 0.219 2.283 0.023 0.071 0.928
August 0.547 0.216 2.539 0.011 0.125 0.970
September 0.497 0.214 2.32 0.021 0.077 0.918
October 0.407 0.208 1.957 0.051 -0.001 0.814
November 0.324 0.204 1.588 0.113 -0.076 0.724
December 0.020 0.212 0.095 0.924 -0.395 0.435
Extreme	Cold -0.662 0.343 -1.931 0.054 -1.333 0.010
Very	Cold -0.850 0.348 -2.445 0.015 -1.532 -0.169
Cold -0.581 0.219 -2.647 0.008 -1.011 -0.151
Freezing -0.385 0.127 -3.027 0.003 -0.634 -0.136
Near	Freezing
Cool 0.105 0.094 1.12 0.263 -0.079 0.290
Mild 0.251 0.096 2.599 0.010 0.062 0.440
Warm 0.471 0.102 4.628 0.000 0.271 0.670
Very	Warm 0.573 0.103 5.575 0.000 0.371 0.774
Hot 0.487 0.107 4.549 0.000 0.277 0.697
Very	Hot 0.631 0.155 4.077 0.000 0.328 0.934
No	Rain
Light	Rain -0.043 0.120 -0.362 0.718 -0.278 0.192
Moderate	Rain -0.424 0.180 -2.358 0.019 -0.776 -0.072
Heavy	Rain -0.699 0.224 -3.128 0.002 -1.137 -0.261

0.018 0.003 6.971 0.000 0.013 0.023
-0.255 0.092 -2.775 0.006 -0.436 -0.075
-0.247 0.180 -1.37 0.171 -0.600 0.106
-0.243 0.140 -1.735 0.083 -0.518 0.032
3.397 0.207 16.376 0.000 2.991 3.804

61.26%
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BASE
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January
February -0.354 0.235 -1.503 0.133 -0.815 0.108
March -0.489 0.236 -2.075 0.038 -0.951 -0.027
April 0.053 0.218 0.244 0.807 -0.374 0.480
May 0.315 0.218 1.448 0.148 -0.112 0.743
June 0.291 0.219 1.33 0.184 -0.138 0.721
July 0.570 0.218 2.609 0.009 0.142 0.998
August 0.613 0.215 2.846 0.005 0.191 1.036
September 0.580 0.214 2.711 0.007 0.161 0.999
October 0.451 0.208 2.17 0.030 0.044 0.859
November 0.373 0.203 1.836 0.067 -0.025 0.772
December 0.058 0.212 0.272 0.785 -0.358 0.474
Extreme	Cold -0.444 0.362 -1.226 0.221 -1.154 0.266
Very	Cold -0.632 0.368 -1.719 0.086 -1.353 0.089
Cold -0.443 0.229 -1.936 0.053 -0.892 0.005
Freezing -0.197 0.140 -1.405 0.161 -0.472 0.078
Near	Freezing
Cool 0.213 0.099 2.155 0.032 0.019 0.407
Mild 0.320 0.101 3.169 0.002 0.122 0.518
Warm 0.459 0.107 4.287 0.000 0.249 0.669
Very	Warm 0.706 0.107 6.596 0.000 0.496 0.916
Hot 0.567 0.111 5.112 0.000 0.350 0.785
Very	Hot 0.715 0.159 4.496 0.000 0.403 1.026
No	Rain
Light	Rain -0.006 0.120 -0.052 0.959 -0.240 0.228
Moderate	Rain -0.430 0.191 -2.251 0.025 -0.804 -0.056
Heavy	Rain -0.641 0.225 -2.856 0.004 -1.081 -0.201

0.018 0.003 6.779 0.000 0.013 0.023
-0.283 0.093 -3.056 0.002 -0.465 -0.102
-0.298 0.182 -1.633 0.103 -0.655 0.060
-0.230 0.142 -1.624 0.105 -0.507 0.048
3.246 0.208 15.6 0.000 2.838 3.654

61.12%
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Climate	Change	and	Cycling	Regression	Results	Table	–	Laurel	Trail	at	Columbia	

	

January
February 0.103 0.176 0.587 0.557 -0.242 0.448
March 0.022 0.177 0.126 0.900 -0.324 0.368
April 0.644 0.164 3.915 0.000 0.322 0.966
May 1.453 0.160 9.100 0.000 1.140 1.766
June 1.459 0.161 9.036 0.000 1.142 1.775
July 1.367 0.164 8.345 0.000 1.046 1.688
August 1.194 0.163 7.332 0.000 0.874 1.513
September 1.314 0.162 8.132 0.000 0.997 1.631
October 1.292 0.158 8.175 0.000 0.982 1.601
November 1.124 0.156 7.228 0.000 0.819 1.429
December 0.360 0.165 2.182 0.029 0.037 0.684
Extreme	Cold -0.182 0.247 -0.740 0.460 -0.666 0.301
Very	Cold -0.550 0.237 -2.319 0.021 -1.015 -0.085
Cold -0.137 0.137 -1.000 0.318 -0.406 0.132
Freezing -0.012 0.075 -0.154 0.877 -0.160 0.136
Near	Freezing
Cool 0.109 0.059 1.848 0.065 -0.007 0.225
Mild 0.120 0.060 1.994 0.046 0.002 0.237
Warm 0.302 0.061 4.973 0.000 0.183 0.421
Very	Warm 0.283 0.064 4.425 0.000 0.158 0.408
Hot 0.399 0.066 6.000 0.000 0.268 0.529
Very	Hot 0.318 0.076 4.203 0.000 0.170 0.467
No	Rain
Light	Rain -0.061 0.049 -1.242 0.215 -0.156 0.035
Moderate	Rain -0.166 0.085 -1.962 0.050 -0.333 0.000
Heavy	Rain -0.230 0.093 -2.475 0.014 -0.412 -0.048

-0.003 0.002 -1.957 0.051 -0.006 0.000
-0.076 0.036 -2.101 0.036 -0.146 -0.005
-0.333 0.112 -2.986 0.003 -0.552 -0.114
-0.224 0.084 -2.676 0.008 -0.388 -0.060
3.043 0.159 19.098 0.000 2.730 3.355

77.32%

BASE

BASE

BASE

Estimated	
Coef.

Std.	Error t-value p-value Lower	
Conf.	Int.

Intercept
R²

LTC	RCP26 Upper	
Conf.	Int.

Pr
ec
ip
ita
tio

n

Wind	Speed
Snow	Presence
Precipitation	Lag

Ap
pa
re
nt
	T
em

pe
ra
tu
re

M
on

th

Snow	Lag



138	
	

	

January
February 0.103 0.179 0.577 0.564 -0.248 0.454
March 0.051 0.181 0.281 0.779 -0.303 0.405
April 0.659 0.168 3.919 0.000 0.329 0.988
May 1.484 0.163 9.127 0.000 1.165 1.803
June 1.487 0.164 9.044 0.000 1.165 1.809
July 1.400 0.167 8.395 0.000 1.073 1.727
August 1.226 0.166 7.397 0.000 0.901 1.550
September 1.335 0.165 8.110 0.000 1.012 1.657
October 1.316 0.161 8.173 0.000 1.000 1.631
November 1.141 0.159 7.178 0.000 0.829 1.453
December 0.396 0.169 2.341 0.020 0.064 0.727
Extreme	Cold -0.173 0.257 -0.673 0.501 -0.677 0.331
Very	Cold -0.610 0.268 -2.276 0.023 -1.136 -0.085
Cold -0.232 0.143 -1.629 0.104 -0.512 0.047
Freezing -0.081 0.086 -0.940 0.347 -0.250 0.088
Near	Freezing
Cool 0.052 0.061 0.864 0.388 -0.067 0.171
Mild 0.088 0.061 1.448 0.148 -0.031 0.208
Warm 0.265 0.063 4.240 0.000 0.143 0.388
Very	Warm 0.289 0.064 4.519 0.000 0.164 0.415
Hot 0.315 0.067 4.682 0.000 0.183 0.447
Very	Hot 0.314 0.075 4.178 0.000 0.167 0.461
No	Rain
Light	Rain -0.079 0.050 -1.602 0.109 -0.177 0.018
Moderate	Rain -0.167 0.086 -1.953 0.051 -0.335 0.001
Heavy	Rain -0.224 0.094 -2.384 0.017 -0.408 -0.040

-0.003 0.002 -1.624 0.105 -0.006 0.001
-0.081 0.036 -2.233 0.026 -0.151 -0.010
-0.354 0.106 -3.341 0.001 -0.561 -0.146
-0.144 0.078 -1.861 0.063 -0.296 0.008
3.037 0.162 18.794 0.000 2.720 3.353

76.65%
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January
February 0.074 0.178 0.414 0.679 -0.275 0.423
March 0.022 0.180 0.122 0.903 -0.331 0.375
April 0.645 0.167 3.857 0.000 0.317 0.973
May 1.463 0.162 9.009 0.000 1.145 1.782
June 1.460 0.164 8.882 0.000 1.138 1.782
July 1.369 0.167 8.217 0.000 1.043 1.696
August 1.193 0.166 7.208 0.000 0.869 1.518
September 1.310 0.164 7.975 0.000 0.988 1.632
October 1.291 0.161 8.019 0.000 0.975 1.606
November 1.127 0.158 7.112 0.000 0.816 1.437
December 0.337 0.169 1.996 0.046 0.006 0.668
Extreme	Cold -0.132 0.263 -0.501 0.616 -0.647 0.383
Very	Cold -0.634 0.284 -2.234 0.026 -1.190 -0.078
Cold -0.262 0.150 -1.743 0.082 -0.556 0.032
Freezing -0.113 0.093 -1.217 0.224 -0.295 0.069
Near	Freezing
Cool 0.059 0.063 0.935 0.350 -0.064 0.182
Mild 0.091 0.062 1.454 0.146 -0.032 0.213
Warm 0.263 0.064 4.101 0.000 0.137 0.388
Very	Warm 0.309 0.065 4.743 0.000 0.181 0.437
Hot 0.331 0.068 4.853 0.000 0.197 0.464
Very	Hot 0.361 0.072 4.983 0.000 0.219 0.502
No	Rain
Light	Rain -0.086 0.049 -1.746 0.081 -0.183 0.011
Moderate	Rain -0.186 0.088 -2.121 0.034 -0.358 -0.014
Heavy	Rain -0.240 0.093 -2.573 0.010 -0.423 -0.057

-0.003 0.002 -1.742 0.082 -0.006 0.000
-0.072 0.036 -1.985 0.047 -0.143 -0.001
-0.269 0.119 -2.262 0.024 -0.503 -0.036
-0.198 0.084 -2.349 0.019 -0.363 -0.033
3.039 0.162 18.771 0.000 2.722 3.356

76.74%
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Climate	Change	and	Cycling	Regression	Result	Table	–	Laurel	Trail	at	Erb	

	
	

January
February 0.006 0.227 0.025 0.980 -0.439 0.450
March 0.299 0.211 1.417 0.157 -0.114 0.712
April 0.921 0.200 4.604 0.000 0.529 1.313
May 1.170 0.203 5.762 0.000 0.772 1.568
June 1.330 0.203 6.539 0.000 0.931 1.728
July 1.078 0.205 5.256 0.000 0.676 1.480
August 1.064 0.203 5.239 0.000 0.666 1.463
September 1.063 0.202 5.273 0.000 0.668 1.458
October 1.022 0.197 5.186 0.000 0.636 1.409
November 0.802 0.194 4.136 0.000 0.422 1.183
December 0.306 0.206 1.489 0.137 -0.097 0.709
Extreme	Cold -0.703 0.287 -2.451 0.014 -1.265 -0.141
Very	Cold -0.669 0.263 -2.546 0.011 -1.184 -0.154
Cold -0.227 0.135 -1.683 0.093 -0.492 0.037
Freezing -0.017 0.088 -0.198 0.843 -0.190 0.156
Near	Freezing
Cool 0.242 0.078 3.101 0.002 0.089 0.396
Mild 0.308 0.079 3.901 0.000 0.153 0.463
Warm 0.481 0.082 5.872 0.000 0.320 0.641
Very	Warm 0.496 0.086 5.739 0.000 0.327 0.666
Hot 0.629 0.090 6.984 0.000 0.452 0.805
Very	Hot 0.654 0.120 5.467 0.000 0.419 0.888
No	Rain
Light	Rain -0.120 0.105 -1.136 0.256 -0.327 0.087
Moderate	Rain -0.354 0.156 -2.268 0.024 -0.659 -0.048
Heavy	Rain -0.314 0.163 -1.922 0.055 -0.634 0.006

0.001 0.002 0.490 0.624 -0.003 0.006
-0.236 0.079 -2.998 0.003 -0.391 -0.082
-0.294 0.147 -2.001 0.046 -0.582 -0.006
-0.066 0.114 -0.579 0.563 -0.291 0.158
2.013 0.201 10.023 0.000 1.619 2.407

68.41%

BASE
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January
February -0.043 0.227 -0.188 0.851 -0.487 0.401
March 0.297 0.209 1.423 0.155 -0.112 0.706
April 0.916 0.199 4.601 0.000 0.526 1.307
May 1.164 0.200 5.820 0.000 0.772 1.556
June 1.328 0.200 6.633 0.000 0.935 1.720
July 1.071 0.202 5.300 0.000 0.675 1.468
August 1.058 0.200 5.285 0.000 0.666 1.450
September 1.059 0.199 5.330 0.000 0.670 1.448
October 1.021 0.194 5.258 0.000 0.641 1.402
November 0.787 0.192 4.097 0.000 0.410 1.163
December 0.282 0.204 1.385 0.167 -0.117 0.682
Extreme	Cold -0.819 0.320 -2.564 0.011 -1.445 -0.193
Very	Cold -0.598 0.255 -2.347 0.019 -1.097 -0.099
Cold -0.213 0.161 -1.324 0.186 -0.530 0.103
Freezing -0.046 0.101 -0.458 0.647 -0.243 0.151
Near	Freezing
Cool 0.185 0.078 2.388 0.017 0.033 0.337
Mild 0.279 0.079 3.518 0.000 0.124 0.435
Warm 0.442 0.082 5.393 0.000 0.281 0.602
Very	Warm 0.452 0.087 5.220 0.000 0.283 0.622
Hot 0.602 0.090 6.656 0.000 0.425 0.779
Very	Hot 0.609 0.106 5.716 0.000 0.400 0.817
No	Rain
Light	Rain -0.146 0.106 -1.379 0.168 -0.352 0.061
Moderate	Rain -0.375 0.156 -2.411 0.016 -0.680 -0.070
Heavy	Rain -0.331 0.163 -2.038 0.042 -0.650 -0.013

0.001 0.002 0.543 0.587 -0.003 0.006
-0.220 0.079 -2.788 0.005 -0.374 -0.065
-0.292 0.125 -2.330 0.020 -0.537 -0.046
-0.099 0.104 -0.952 0.341 -0.303 0.105
2.041 0.197 10.366 0.000 1.655 2.427

68.37%
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January
February -0.057 0.229 -0.248 0.804 -0.506 0.392
March 0.279 0.213 1.311 0.190 -0.138 0.695
April 0.887 0.202 4.401 0.000 0.492 1.282
May 1.135 0.204 5.569 0.000 0.735 1.534
June 1.295 0.204 6.341 0.000 0.895 1.695
July 1.048 0.206 5.078 0.000 0.643 1.452
August 1.028 0.204 5.030 0.000 0.627 1.428
September 1.012 0.203 4.991 0.000 0.615 1.410
October 0.967 0.199 4.872 0.000 0.578 1.357
November 0.758 0.196 3.869 0.000 0.374 1.142
December 0.251 0.209 1.206 0.228 -0.157 0.660
Extreme	Cold -0.931 0.361 -2.577 0.010 -1.640 -0.223
Very	Cold -0.610 0.257 -2.370 0.018 -1.114 -0.106
Cold -0.344 0.177 -1.942 0.053 -0.690 0.003
Freezing -0.143 0.108 -1.325 0.186 -0.355 0.069
Near	Freezing
Cool 0.185 0.081 2.287 0.023 0.026 0.344
Mild 0.289 0.084 3.425 0.001 0.123 0.454
Warm 0.397 0.087 4.563 0.000 0.227 0.568
Very	Warm 0.541 0.089 6.058 0.000 0.366 0.716
Hot 0.530 0.094 5.625 0.000 0.345 0.714
Very	Hot 0.657 0.105 6.264 0.000 0.451 0.862
No	Rain
Light	Rain -0.136 0.105 -1.292 0.197 -0.341 0.070
Moderate	Rain -0.399 0.164 -2.428 0.015 -0.720 -0.077
Heavy	Rain -0.349 0.163 -2.134 0.033 -0.669 -0.029

0.001 0.002 0.572 0.568 -0.003 0.006
-0.216 0.079 -2.734 0.006 -0.371 -0.061
-0.329 0.126 -2.620 0.009 -0.575 -0.083
-0.005 0.102 -0.051 0.960 -0.205 0.195
2.053 0.200 10.267 0.000 1.661 2.445

68.23%
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Climate	Change	and	Cycling	Regression	Result	Table	–	Laurel	Trail	at	Silver	Lake	

	

January
February -0.270 0.169 -1.592 0.112 -0.602 0.062
March 0.217 0.147 1.483 0.138 -0.070 0.505
April 0.869 0.141 6.176 0.000 0.593 1.145
May 1.428 0.144 9.933 0.000 1.146 1.710
June 1.298 0.145 8.952 0.000 1.014 1.582
July 1.185 0.147 8.034 0.000 0.896 1.474
August 1.036 0.147 7.045 0.000 0.748 1.324
September 1.434 0.143 10.060 0.000 1.155 1.714
October 1.237 0.139 8.886 0.000 0.964 1.510
November 0.852 0.136 6.268 0.000 0.586 1.118
December 0.178 0.147 1.208 0.227 -0.111 0.466
Extreme	Cold -0.552 0.176 -3.138 0.002 -0.897 -0.207
Very	Cold -0.379 0.160 -2.366 0.018 -0.694 -0.065
Cold -0.186 0.110 -1.693 0.091 -0.402 0.029
Freezing -0.191 0.079 -2.428 0.015 -0.345 -0.037
Near	Freezing
Cool 0.127 0.063 2.000 0.046 0.003 0.251
Mild 0.214 0.062 3.439 0.001 0.092 0.337
Warm 0.310 0.065 4.752 0.000 0.182 0.438
Very	Warm 0.298 0.069 4.291 0.000 0.162 0.434
Hot 0.186 0.074 2.504 0.012 0.040 0.332
Very	Hot 0.213 0.080 2.648 0.008 0.055 0.370
No	Rain
Light	Rain -0.048 0.051 -0.945 0.345 -0.147 0.051
Moderate	Rain 0.068 0.123 0.556 0.578 -0.173 0.310
Heavy	Rain 0.255 0.183 1.390 0.165 -0.105 0.614

0.001 0.002 0.755 0.450 -0.002 0.005
-0.189 0.042 -4.528 0.000 -0.270 -0.107
-0.077 0.113 -0.683 0.495 -0.299 0.144
-0.345 0.088 -3.920 0.000 -0.517 -0.172
3.554 0.141 25.225 0.000 3.278 3.830

70.89%
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January
February -0.273 0.171 -1.595 0.111 -0.609 0.063
March 0.282 0.147 1.920 0.055 -0.006 0.570
April 0.923 0.141 6.528 0.000 0.646 1.200
May 1.507 0.144 10.463 0.000 1.225 1.790
June 1.381 0.145 9.500 0.000 1.096 1.666
July 1.254 0.148 8.471 0.000 0.964 1.544
August 1.107 0.148 7.499 0.000 0.817 1.396
September 1.510 0.143 10.545 0.000 1.229 1.790
October 1.317 0.139 9.447 0.000 1.043 1.590
November 0.929 0.136 6.831 0.000 0.663 1.196
December 0.230 0.148 1.546 0.122 -0.061 0.520
Extreme	Cold -0.522 0.175 -2.980 0.003 -0.866 -0.179
Very	Cold -0.525 0.173 -3.033 0.002 -0.864 -0.186
Cold -0.250 0.114 -2.194 0.028 -0.473 -0.027
Freezing -0.195 0.085 -2.303 0.021 -0.361 -0.029
Near	Freezing
Cool 0.106 0.065 1.631 0.103 -0.021 0.233
Mild 0.230 0.064 3.604 0.000 0.105 0.355
Warm 0.282 0.068 4.164 0.000 0.149 0.414
Very	Warm 0.331 0.070 4.723 0.000 0.194 0.469
Hot 0.232 0.075 3.092 0.002 0.085 0.379
Very	Hot 0.243 0.081 3.002 0.003 0.084 0.401
No	Rain
Light	Rain -0.013 0.057 -0.228 0.820 -0.126 0.100
Moderate	Rain -0.139 0.101 -1.385 0.166 -0.337 0.058
Heavy	Rain 0.046 0.093 0.495 0.621 -0.136 0.228

0.002 0.002 1.020 0.308 -0.002 0.005
-0.179 0.042 -4.233 0.000 -0.262 -0.096
-0.243 0.110 -2.210 0.027 -0.459 -0.027
-0.106 0.086 -1.230 0.219 -0.274 0.063
3.454 0.140 24.707 0.000 3.180 3.728

70.30%
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January
February -0.298 0.170 -1.751 0.080 -0.631 0.036
March 0.197 0.147 1.343 0.180 -0.091 0.485
April 0.854 0.142 6.001 0.000 0.575 1.133
May 1.418 0.145 9.781 0.000 1.134 1.702
June 1.282 0.146 8.758 0.000 0.995 1.568
July 1.175 0.149 7.891 0.000 0.883 1.467
August 1.027 0.149 6.912 0.000 0.735 1.318
September 1.428 0.144 9.905 0.000 1.145 1.710
October 1.226 0.141 8.725 0.000 0.951 1.502
November 0.831 0.137 6.056 0.000 0.562 1.100
December 0.147 0.148 0.988 0.324 -0.144 0.437
Extreme	Cold -0.443 0.188 -2.353 0.019 -0.813 -0.074
Very	Cold -0.312 0.159 -1.958 0.050 -0.624 0.000
Cold -0.261 0.134 -1.944 0.052 -0.524 0.002
Freezing -0.047 0.086 -0.548 0.584 -0.216 0.122
Near	Freezing
Cool 0.195 0.067 2.921 0.004 0.064 0.326
Mild 0.270 0.068 3.981 0.000 0.137 0.403
Warm 0.324 0.070 4.602 0.000 0.186 0.462
Very	Warm 0.417 0.073 5.711 0.000 0.274 0.560
Hot 0.337 0.077 4.377 0.000 0.186 0.488
Very	Hot 0.238 0.081 2.956 0.003 0.080 0.396
No	Rain
Light	Rain -0.018 0.056 -0.327 0.744 -0.129 0.092
Moderate	Rain -0.109 0.100 -1.091 0.275 -0.305 0.087
Heavy	Rain 0.036 0.095 0.385 0.701 -0.149 0.222

0.001 0.002 0.793 0.428 -0.002 0.005
-0.181 0.042 -4.312 0.000 -0.263 -0.099
-0.074 0.117 -0.635 0.525 -0.303 0.155
-0.359 0.088 -4.099 0.000 -0.531 -0.187
3.482 0.142 24.542 0.000 3.204 3.760
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Climate	Change	and	Cycling	Regression	Results	–	Laurel	Trail	at	Weber	

	
	

January
February 0.097 0.178 0.544 0.587 -0.253 0.447
March 0.155 0.174 0.887 0.376 -0.187 0.496
April 0.622 0.167 3.728 0.000 0.295 0.949
May 0.697 0.166 4.190 0.000 0.371 1.022
June 0.732 0.168 4.368 0.000 0.404 1.061
July 0.741 0.169 4.381 0.000 0.409 1.073
August 0.679 0.169 4.020 0.000 0.348 1.011
September 0.727 0.168 4.326 0.000 0.398 1.056
October 0.759 0.164 4.631 0.000 0.438 1.081
November 0.574 0.162 3.549 0.000 0.257 0.891
December 0.277 0.169 1.641 0.101 -0.054 0.608
Extreme	Cold -0.487 0.283 -1.719 0.086 -1.042 0.068
Very	Cold -0.590 0.268 -2.202 0.028 -1.115 -0.065
Cold -0.101 0.169 -0.596 0.551 -0.433 0.231
Freezing -0.023 0.108 -0.216 0.829 -0.236 0.189
Near	Freezing
Cool 0.167 0.070 2.390 0.017 0.030 0.304
Mild 0.384 0.070 5.475 0.000 0.247 0.522
Warm 0.475 0.072 6.560 0.000 0.333 0.617
Very	Warm 0.508 0.075 6.734 0.000 0.360 0.656
Hot 0.672 0.078 8.643 0.000 0.520 0.825
Very	Hot 0.657 0.087 7.535 0.000 0.486 0.828
No	Rain
Light	Rain -0.233 0.077 -3.015 0.003 -0.385 -0.082
Moderate	Rain -0.592 0.181 -3.264 0.001 -0.947 -0.237
Heavy	Rain -0.236 0.219 -1.076 0.282 -0.666 0.194

0.009 0.002 4.890 0.000 0.005 0.012
-0.155 0.062 -2.512 0.012 -0.276 -0.034
-0.437 0.116 -3.778 0.000 -0.663 -0.210
-0.205 0.106 -1.935 0.053 -0.412 0.003
2.139 0.163 13.119 0.000 1.820 2.459

66.99%
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January
February 0.070 0.181 0.390 0.697 -0.284 0.425
March 0.149 0.177 0.843 0.399 -0.197 0.495
April 0.572 0.169 3.392 0.001 0.241 0.902
May 0.689 0.167 4.111 0.000 0.360 1.017
June 0.712 0.169 4.213 0.000 0.381 1.043
July 0.729 0.170 4.282 0.000 0.396 1.063
August 0.665 0.170 3.903 0.000 0.331 0.998
September 0.701 0.169 4.139 0.000 0.369 1.033
October 0.740 0.165 4.480 0.000 0.416 1.064
November 0.540 0.163 3.305 0.001 0.220 0.860
December 0.209 0.171 1.223 0.222 -0.126 0.544
Extreme	Cold -0.586 0.285 -2.058 0.040 -1.145 -0.028
Very	Cold -0.652 0.266 -2.449 0.015 -1.173 -0.130
Cold -0.325 0.160 -2.034 0.042 -0.639 -0.012
Freezing -0.172 0.101 -1.711 0.088 -0.370 0.025
Near	Freezing
Cool 0.098 0.074 1.329 0.184 -0.047 0.243
Mild 0.321 0.073 4.390 0.000 0.178 0.464
Warm 0.404 0.077 5.273 0.000 0.254 0.555
Very	Warm 0.483 0.078 6.208 0.000 0.331 0.636
Hot 0.578 0.080 7.197 0.000 0.420 0.735
Very	Hot 0.621 0.088 7.019 0.000 0.447 0.794
No	Rain
Light	Rain -0.237 0.078 -3.032 0.003 -0.391 -0.084
Moderate	Rain -0.596 0.179 -3.339 0.001 -0.946 -0.246
Heavy	Rain -0.264 0.221 -1.196 0.232 -0.697 0.169

0.009 0.002 4.719 0.000 0.005 0.012
-0.140 0.062 -2.255 0.024 -0.262 -0.018
-0.433 0.115 -3.774 0.000 -0.659 -0.208
-0.120 0.092 -1.307 0.192 -0.301 0.060
2.204 0.165 13.338 0.000 1.880 2.528

66.56%
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January
February 0.081 0.182 0.449 0.654 -0.274 0.437
March 0.138 0.178 0.774 0.439 -0.211 0.487
April 0.611 0.170 3.605 0.000 0.279 0.944
May 0.727 0.169 4.293 0.000 0.395 1.059
June 0.743 0.171 4.346 0.000 0.408 1.077
July 0.760 0.172 4.414 0.000 0.423 1.098
August 0.692 0.172 4.017 0.000 0.354 1.029
September 0.735 0.171 4.297 0.000 0.400 1.070
October 0.752 0.167 4.495 0.000 0.424 1.079
November 0.565 0.165 3.433 0.001 0.243 0.888
December 0.212 0.173 1.226 0.221 -0.127 0.551
Extreme	Cold -0.391 0.290 -1.346 0.179 -0.959 0.178
Very	Cold -0.726 0.305 -2.385 0.017 -1.323 -0.129
Cold -0.214 0.163 -1.309 0.191 -0.533 0.106
Freezing -0.124 0.106 -1.169 0.243 -0.331 0.084
Near	Freezing
Cool 0.146 0.074 1.973 0.049 0.001 0.291
Mild 0.336 0.073 4.584 0.000 0.192 0.479
Warm 0.440 0.077 5.726 0.000 0.290 0.591
Very	Warm 0.538 0.078 6.920 0.000 0.386 0.690
Hot 0.571 0.080 7.100 0.000 0.414 0.729
Very	Hot 0.697 0.085 8.237 0.000 0.531 0.863
No	Rain
Light	Rain -0.199 0.079 -2.530 0.012 -0.353 -0.045
Moderate	Rain -0.553 0.180 -3.073 0.002 -0.905 -0.200
Heavy	Rain -0.221 0.223 -0.990 0.323 -0.657 0.216

0.008 0.002 4.441 0.000 0.005 0.012
-0.162 0.063 -2.595 0.010 -0.285 -0.040
-0.365 0.136 -2.684 0.007 -0.632 -0.098
-0.189 0.106 -1.776 0.076 -0.397 0.020
2.121 0.167 12.673 0.000 1.793 2.449

BASE

BASE

BASE

Upper	
Conf.	Int.

66.14%

Estimated	
Coef.

Std.	Error t-value p-value Lower	
Conf.	Int.

Precipitation	Lag
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Seasonal	Differences	–	Iron	Horse	Trail	(CMIP5	inter-model	mean	prediction	set	only)	

	
	

Seasonal	Differences	–	Laurel	Trail	at	Columbia	(CMIP5	inter-model	mean	prediction	set	only)	
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Seasonal	Differences	–	Laurel	Trail	at	Erb	St.	E.	(CMIP5	inter-model	mean	prediction	set	only)	

	
	

Seasonal	Differences	–	Laurel	Trail	at	Weber	St.	N.	(CMIP5	inter-model	mean	prediction	set	

only)	
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Apparent	Temperature	–	Iron	Horse	Trail	(CMIP5	inter-model	mean	prediction	set	only)	

	
	

Apparent	Temperature	–	Laurel	Trail	at	Erb	St.	E.		(CMIP5	inter-model	mean	prediction	set	only)	
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Apparent	Temperature	–	Laurel	Trail	at	Silver	Lake	(CMIP5	inter-model	mean	prediction	set	

only)	

	

	

Apparent	Temperature	–	Laurel	Trail	at	Weber	St.	N.	(CMIP5	inter-model	mean	prediction	set	
only)	
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Total	Rainfall	–	Laurel	Trail	at	Columbia	(CMIP5	inter-model	mean	prediction	set	only)	

	
	

Total	Rainfall	–	Laurel	Trail	at	Erb	St.	E.	(CMIP5	inter-model	mean	prediction	set	only)	
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Total	Rainfall	–	Laurel	Trail	at	Silver	Lake	(CMIP5	inter-model	mean	prediction	set	only)	

	
	

Total	Rainfall	–	Laurel	Trail	at	Weber	St.	N.	(CMIP5	inter-model	mean	prediction	set	only)	
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