
 

 

 

 

Characterization and Modeling of Sheared Edge Failure 

in Advanced High Strength Steel 

 

  

by 

Nikky Pathak 

 

 

 

 

 

 

 

 

 

 

 

 

A thesis 

presented to the University of Waterloo 

in fulfilment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Mechanical and Mechatronics Engineering 

Waterloo, Ontario, Canada, 2018 

 

© Nikky Pathak 2018 



ii 

 

Examining Committee Membership 

 

The following served on the Examining Committee for this thesis. The decision of the 

Examining Committee is by majority vote. 

 

External Examiner:  

Chester Van Tyne 

Professor, Colorado School of Mines 

 

Supervisors:  

Michael Worswick 

Professor, University of Waterloo 

 

Cliff Butcher 

Assistant Professor, University of Waterloo 

 

Internal Member:  

Kaan Inal 

Associate Professor, University of Waterloo 

 

Mary Wells 

Professor, University of Waterloo 

 

Internal-External Member: 

Rob Gracie 

Associate Professor, University of Waterloo 

  



iii 

 

AUTHOR’S DECLARATION 

 

This thesis consists of material all of which I authored or co-authored: see Statement of 

Contributions included in the thesis. This is a true copy of the thesis, including any required final 

revisions, as accepted by my examiners.  

I understand that my thesis may be made electronically available to the public. 

  



iv 

 

 

STATEMENT OF CONTRIBUTIONS 

 

The following co-authors have contributed to the current work:  
 

Professor Michael Worswick and Professor Cliff Butcher supervised this Ph.D. thesis. 

Professor Cliff Butcher contributed significantly in implementation of the UMAT 

Dr. Erika Bellhouse assisted with preparing metallographic specimen. 

Dr. Jeff Gao provided materials and access to the metallographic laboratory. 

Dr. Jerome Adrien assisted in performing the tomography experiments and Professor Eric Maire 

supervised the tomography experiments. 

Armin Abedini helped in yield function calibration 

The balance of the research is my own work. 

  



v 

 

ABSTRACT 

Edge failure is one of the major problems associated with forming of advanced high strength 

steels (AHSS) such as dual-phase (DP) steels. The development of ferritic-bainitic steels such as 

complex-phase (CP) steels have improved the performance of AHSS in industrial forming 

operations and is gaining attention in academia as well as industry. As a result, there is an 

interest in developing numerical techniques to predict sheared edge failure in forming 

simulations and optimize forming operations in the automotive industry for vehicle 

lightweighing. The primary objective of this thesis is to examine the influence of shearing on 

edge stretchability and damage evolution in two different grades of AHSS: CP and DP steels and 

develop damage-based models to predict sheared edge failure.  

The stretch-flangeability of DP and CP steels were evaluated using a hole expansion test for 

different edge conditions to isolate to the influence of a range of factors thought to influence 

edge formability. The results demonstrate that work hardening and void damage at the sheared 

edge govern formability while the sheared surface quality plays a minor or secondary role. A 

comparison of the edge stretching limits of DP and CP steels demonstrates the advantages of a 

ferritic-bainitic microstructure for forming operations with severe local deformation as in a 

stretch-flanging operation.  

The failure mechanisms in the CP and DP steels were systematically characterized by 

interrupting hole tension tests at different strain levels. Scanning electron microscope (SEM) 

analysis conducted on interrupted hole tension specimens revealed the ductile failure mechanism 

as being operative in the CP and DP steels for the different edge conditions and microstructures. 

Damage histories were developed from the interrupted samples using optical microscopy and 

quantitative stereology measurement of void nucleation, growth and coalescence, paired with in 

situ digital image correlation (DIC) strain measurements during the mechanical testing. The 

trend of damage evolution differs for the sheared edge in contrast with the reamed edge because 

the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing 

work-hardening and damage behind the sheared edge.  

Two independent experimental techniques were applied to characterize the residual strain 

distribution within the shear-affected zone for CP800 and DP780 steels based on (a) the tendency 

of grains to orient in the direction of shearing and (b) work-hardening introduced within the 
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deformed shear zone. The first technique was developed by applying finite strain theory to 

calculate the equivalent strain from microstructural measurements of grain rotation. The second 

strain measurement technique also involved using the same interrupted shear tests and DIC 

strains followed by microhardness measurements to develop a correlation between the equivalent 

strain and hardness. These techniques were applied to estimate the strain-distribution behind the 

sheared edge generated during the shearing process. 

The influence of stress-state on micro-void nucleation was evaluated experimentally for the 

CP and DP steels and a stress-state dependent nucleation model was developed. Stress state was 

varied by considering four specimen geometries:  the equi-biaxial Nakazima test, a plane strain 

v-bend test, a central hole tension test for uniaxial loading and a simple shear test. 3D micro-

tomography and quantitative stereology measurement of void nucleation paired with in situ 

digital image correlation (DIC) strain measurement was conducted on the interrupted samples to 

quantify damage as a function of equivalent strain. The influence of stress-state on damage 

evolution was observed for both materials with very little void nucleation under shear 

deformation but extensive void damage under biaxial tension. Of particular interest, Lode 

parameter-dependency of void nucleation was identified and a stress-state dependent nucleation 

model is proposed by introducing a nucleation strain surface as a function of stress-triaxiality and 

Lode parameter using a modified form of Chu and Needleman nucleation criterion. 

The critical damage parameters controlling the ductile failure process were identified from 

the void histories determined using 3D tomography to develop a micromechanics-based fracture 

model. An uncoupled anisotropic damage-based fracture model was formulated within an LS-

DYNA user-defined material subroutine. The pre-strain and damage introduced during the 

shearing process were mapped onto finite element models of edge formability. The proposed 

model was validated for the hole tension experiments and found to predict failure efficiently and 

accurately for the CP800 and DP780 alloys with a reamed or sheared edge conditions. 
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1. Introduction 

Shearing of a material prior to forming is very common in the automotive industry and this 

process alters the material at the edge through severe non-uniform deformation. Consequently, a 

significant portion of the formability of a material is consumed by the shearing process and can 

result in a premature failure during a subsequent forming operation. Producing a machined edge 

in industrial parts will improve edge formability but at the expense of production cost and time. 

This problem becomes more severe with multi-phase AHSS such as ferritic-martensitic dual-

phase (DP) steels due to the severe stress-gradients created between the ferrite and martensite 

phases (Avramovic-Cingara et al., 2009). For steel manufacturers, increasing demand for AHSS 

in industrial stretch-flanging operations has provided an incentive to manipulate the 

microstructures of AHSS grades that has led to the development of ferritic-bainitic alloys such as 

complex-phase (CP) steels (Pathak et al., 2017a). A better understanding of the factors governing 

failure during sheared edge stretching is necessary to further improve the performance of AHSS 

steels and predict edge failure in industrial forming operations. Thus, the motivation of the 

current work is to experimentally characterize the factors controlling the formability of a sheared 

edge in AHSS and to develop an accurate constitutive model for the simulation of sheared edge 

stretching operations. Detailed damage characterization measurements, assessing void 

nucleation, growth and coalescence, were conducted to identify critical parameters controlling 

fracture in CP and DP steels and the manner in which edge shearing alters the damage processes 

during edge stretching. A unified framework for a micromechanics-based fracture model is 

proposed. The main beneficiaries of this work will be those who are interested in the accurate 

and efficient simulation of sheared edge failure in practical forming simulations of automotive 

components. The accurate prediction of sheared edge failure is also necessary for those who are 

seeking to optimize shearing processes.  

This thesis has been written in a “manuscript-based” style that includes first this synopsis of 

the thesis work, followed by several parts documenting each aspect of the research. The synopsis 

comprises a concise review of the current state of the art in sheared edge stretching, an outline of 

the objectives of this thesis research and a summary of the research results, followed by 

discussion, conclusions and future work. The remainder of the thesis consists of five individual 

manuscripts that detail the work done and results accomplished to fulfill the objectives.  
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2. Literature Review 

2.1. Sheared process and characteristics of the sheared edge 

In the shearing process, a punch is used to push the work-piece against the die, which is 

fixed and separates the sheet metal into two pieces at the edge of the shearing punch and die. The 

clearance is the gap between the die and punch and is typically expressed as a percentage of the 

sheet thickness. The shearing process introduces two zones; a shear face (sheared edge) and a 

zone of deformation behind the shear face known as the shear-affected zone (SAZ) (Levy and 

Van Tyne, 2012). 

A typical sheared edge consists of four zones: (a) rollover zone, (b) burnish zone, (c) 

fracture zone and (d) shear burr as shown in Figure 1. The roll-over zone is formed in the sheet 

due to the deformation caused by the initial penetration of the shearing punch into the sheet. The 

shearing punch penetrates further into the material, the straight and vertical profile of burnish 

zone is created at the sheared-edge. The crack that develops at the end of the burnish zone 

propagates through the thickness to create the fracture zone. A shear burr is formed at the 

intersection of the fracture surface and the surface of the sheet in contact with the punch. In 

contrast with the other shear zones, the orientation of the shear burr zone with respect to the 

punch influences the stretchability of the sheared edge which gives rise to what are referred to as 

either burr-up or burr-down configurations in hole expansion testing. 

 

Figure 1: A sectioned DP780 sample that shows geometrical features of a mechanically pierced edge, consisting of SAZ and four 

edge zones as indicated in the figure. 

The shear-affected zone (SAZ), shown in Figure 1, is characterized by severe work-

hardening and damage formed during the shearing process. Since material hardness is an 

indicator of the level of work hardening (pre-strain), the SAZ profile can be measured using 
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micro-hardness tests. When the hardness at the edge saturates to a baseline value, the end of SAZ 

is detected (Wu et al., 2012; Konieczny and Henderson, 2007; Davies, 1983). The deformation 

pattern in the SAZ includes a large shear-induced rotation of the grains that increases with 

proximity to the sheared edge. Wu et al. (2012) sectioned the sheared edge in the through-

thickness direction and measured the angle of rotation by highlighting the material flow lines. 

The flow line tilting angles measured on the sheared edge were then used to compute the strain 

due to work-hardening in the SAZ using finite-strain theory, as explained by Wu et al. (2012). 

 

2.2. Sheared Edge Stretching-limit 

Hole expansion tests are commonly used to evaluate the formability of a material in stretch 

flanging operations. The test consists of expanding a hole with a punch until a through-thickness 

crack appears. The hole expansion ratio (HER) is the formability metric and is expressed as the 

ratio of the change in diameter to the original hole diameter as defined by the following equation: 

                                                                                     (1) 

where do is the initial hole diameter and df is the inside hole diameter at fracture. The ISO 

16630:2009 (ISO-16630, 2009) standard for the hole expansion test recommends using a conical 

punch with a 60o included angle to expand the hole. The dependency of the HER on various 

process parameters such as punch geometry, clearance of the shear dies and edge condition have 

been well documented in the literature. Konieczny and Henderson (2007) considered different 

punch geometries: flat, conical and hemispherical and the largest final hole diameter was 

achieved using a conical punch while the minimum resulted from using a cylindrical punch. An 

alternate test to predict failure for the sheared edge stretching is a tensile specimen with a hole 

processed at the center (Wang et al. ,2012). Unlike the hole expansion test, there is no influence 

of burr-orientation or punch geometry on the edge stretching response during the hole tension 

test. However, the most significant influence on the HER is exerted by the edge condition. The 

formability of edges created using milling, punching and laser-cutting have been evaluated using 

the hole expansion test by Lee et al. (2007) and Konieczny and Henderson (2007). The 

performance of the milled (reamed) edge was found to be superior among all the edge conditions 

(%) 100
f o

o

d d
HER
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and a considerable loss in formability was seen with the sheared edge (Lee et al., 2007). Since 

imposing tensile stress on a sheared edge is very common in industrial forming operations, the 

assessment of factors that reduces (or improves) formability of the sheared edge is very 

important. 

The features of the sheared edge and SAZ are mainly considered to be responsible for 

reducing the formability of the sheared edge and have been the main focus in the literature. 

Keeler (1971) and Smith (1990) showed that the HER decreases with increasing burr-height. 

Levy and Van Tyne (2012), and Davies (1983) studied the influence of the SAZ on formability 

by removing the SAZ from the punched edge and observed a considerable increase in the HER 

of a processed punched edge. Butcher et al. (2014) used normalizing heat treatments on punched 

edges to remove strain-hardening prior to the hole expansion test and no significant difference 

was observed between the HER of the normalized punched edge and reamed edge. Recently, 

Pathak et al. (2016) conducted comprehensive hole expansion testing and reported that the work-

hardening within the SAZ is the primary cause of the reduced formability of the sheared edges. 

 

2.3. Fracture mechanism in AHSS 

The fracture of ductile materials generally occurs through a process that involves nucleation, 

growth and coalescence of microscopic voids and these mechanisms are illustrated in Figure 2. A 

ductile material is typically comprised of second phase particles and/or inclusions in a matrix, in 

some cases with pre-existing microscopic voids. During plastic deformation, additional cavities 

are formed (void nucleation) and grow until they coalescence with neighboring voids to create 

micro-cracks. These cracks propagate and coalescence with other cracks and this induced 

damage causes rapid softening in the material leading to a localized neck and reduction in load 

bearing capacity, ultimately causing fracture. The damage is often defined as the volume fraction 

of voids in the aggregate material. The damage accumulation in AHSS steels was found to be 

different than in conventional and mild steels due to their complex multiphase microstructure 

(Erdogan, 2002; Avramovic-Cingara et al.., 2009). To enhance the performance of AHSS, a 

thorough understanding of the fracture mechanism is required.   
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Figure 2: Ductile damage evolution, (a) Initial state; (b) void nucleation; (c) void growth; (d) void coalescence (Chen, 

2004) 

 

2.3.1. Void nucleation 

In general, voids nucleate in ductile materials either by decohesion/debonding of the matrix 

from an inclusion or hard particle, or when an inclusion or particle cracks. Void nucleation in DP 

steels generally occurs through two mechanisms:  decohesion of the ferrite-martensite interface 

(shown in Figure 3) or fracture of martensite islands (Steinbrunner et al.., 1988; Erdogan, 2002; 

Avramovic-Cingara et al., 2009). Ahmad et al. (2000) reported that at low-to-intermediate 

volume fractions of martensite, void formation was due to ferrite-martensite decohesion; and at 

higher volume fraction of martensite (above 32%) void nucleation occurs due to martensite 

cracking. Additionally, Kadkhodapour et al. (2011a) observed the initiation of voids in DP steel 

by the failure of ferrite grain boundaries and in the investigation by Erdogan (2002), voids were 

formed in the vicinity of inclusions. Hence, the nucleation mechanism is different for each grade 

of DP steel. Apart from the effect of microstructure, the influence of stress-state on void 

nucleation has also been inferred experimentally (Hancock and Mackenzie, 1976; Landron et al., 

2010). Landron et al. (2010) quantified the nucleation of voids for two different DP600 

specimens: tensile and higher triaxiality notch specimens and reported the influence of stress-

state on the void nucleation 
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Figure 3: Damage initiation mechanism at the vicinity of ferrite–martensite interface includes (a) micro-void initiation within the 

ferrite phase followed by (b) void growth and decohesion, (c) decohesion along the interface (d) up to the final fracture where 

some of the ferrite phase remains attached to the martensite island (Ghadbeigi et al., 2013) 

 

2.3.2. Void growth and coalescence 

Three main failure mechanisms are reported in ductile metals: a void coalescence process by 

internal necking in the plane perpendicular to the applied load, a void-sheet mechanism by a 

micro-void shear localization process and “necklace” coalescence of voids in the direction of 

applied load as shown in Figure 4. The internal necking is more prominent under high stress-

triaxiality loading whereas the void-sheet mechanism is associated with low triaxiality conditions 

as in shear loading. For AHSS, Kim and Thomas (1981) suggested that plastic deformation 

begins in the ferrite while the martensite is still elastic. The local deformation/stress 

concentration in the ferrite matrix leads to fracture of the ferrite matrix through cleavage or void 

nucleation and coalescence depending on the microstructure (Steinbrunner et al., 1988). Micro-

voids initiate at the second phase particles or inclusions and, during deformation, grows and 

eventually the ligament between the micro-voids fractures. Voids grow and coalescence 

preferably along the plane normal to the applied load and were observed in the localized necking 

region of the tensile specimen (Avramovic-Cingara et al., 2009). The results reported by Shih et 

al. (2009) suggest that voids grow in the ferrite phase of DP steel. Kahziz et al. (2013) assessed 
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damage evolution of a DP600 sheared edge using laminography. However, the available studies 

on AHSS grades have mostly focused on failure under proportional tensile loading. 

 

Figure 4: Modes of void coalescence. (a) Necking of intervoid ligament or coalescence in a layer. (b),(c) Coalescence in a micro-

shear band. (d)“Necklace” coalescence or coalescence in columns. Major loading axis is vertical in all. Loading is axisymmetric 

in (a)–(c) and plane strain in (d) (Benzerga, 2000) 

 

Recently, x-ray tomography techniques have been used to observe void nucleation, growth 

and coalescence in DP steel by the 3-D reconstruction of 2-D images (Landron et al., 2011, 

2012, 2013). Figure 5 represents the bulk 3-D structure of a DP600 tensile specimen before 

testing and just before fracture. Microstructural parameters such as the number of nucleated 

voids, diameter and orientation of voids can be plotted as a function of strain. These relationships 

can later be used for developing and validating damage-based constitutive models. 

 

Figure 5: 3-D representation of the population of cavities inside the deforming sample in its initial state (a) and (b) just before 

fracture (Landron et al., 2011, 2012, 2013) 
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2.4. Numerical Modeling of Ductile Failure 

As discussed in the previous section, the typical ductile failure process consists of void 

nucleation, followed by the growth of voids due to plastic straining and final coalescence of 

voids. The following sections will focus on modeling the three stages of ductile fracture, 

followed by the challenges in modeling the shear fracture mechanism. 

2.4.1. Modeling of void nucleation 

The conditions for the nucleation of voids from inclusions or second-phase particles have 

been developed based on continuum and dislocation theory (Brown and Stobbs, 1971; Argon et 

al., 1975; Goods and Brown, 1979; Fisher and Gurland, 1981). Gurson (1977) expressed his 

nucleation rule in terms of equivalent plastic strain, based on Gurland’s (1972) experimental 

results for nucleation in spheroidal steel. Chu and Needleman (1980) suggested that the stress or 

strain required to nucleate voids follows a normal distribution and the strain-nucleation model 

can be expressed as 

                                       (2) 

where dεp is the equivalent plastic strain increment, fn is the fraction of void nucleating particles 

and sN is the standard deviation of the nucleation strain. This strain based nucleation rule has 

been widely used in the literature since it can be easily implemented in finite element models. 

Fowler et al. (2000) and Butcher et al. (2006, 2009) used the stress-based Chu and Needleman 

nucleation rule and suggested that the advantage of stress-based nucleation rule is that it is load-

path independent, unlike the strain-based nucleation rule. However, the main limitation of Chu 

and Needleman strain-based nucleation model is that the influence of stress-state on void 

nucleation is not considered.  

2.4.2. Modeling void growth 

The growth of a void within an infinite matrix was the earliest focus of study using 

analytical approaches (McClintock, 1968; Rice and Tracey, 1969). McClintock (1968) analyzed 

a cylindrical void in an infinite matrix and investigated void growth as a function of the remote 

macroscopic strain. Rice and Tracey (1969) derived the void growth rule for spherical voids as a 
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function of stress triaxiality. The stress triaxiality is a representation of the severity of hydrostatic 

loading and is defined as the ratio of the hydrostatic stress to the effective stress. Gurson (1977) 

derived a pressure-dependent yield function by assuming the material to have a periodic 

distribution of voids with each void contained in a spherical or cylindrical unit cell. Later, 

Tvergaard (1981, 1982) introduced calibration parameters (q1, q2 and q3) to the Gurson yield 

surface, resulting the commonly referred to GTN model as described in equation 3 

                                                  (3) 

where σM is the equivalent tensile flow stress and σeq and σhyd are the equivalent von Mises and 

hydrostatic stress, respectively. There are some limitations with the Gurson model and a 

significant effort has been made by various research groups (Mear and Hutchinson, 1985; 

Leblond et al., 1995; Benzerga and Besson, 2001; Gologanu et al., 1993, 2012; Madou and 

Leblond, 2012) to overcome them. Gologanu et al. (1993) extended the Gurson model by 

considering the void shape effect and anisotropic behavior was introduced by Benzerga and 

Besson (2001). The role of void clusters on void growth was investigated numerically by 

Thomson et al. (1999) who suggested that severe stress- and strain-gradients were responsible 

for the increased void growth and coalescence rates. To provide a void growth rule as a function 

of void shape and stress states, Ragab (2004) summarized analytical and numerical simulation 

results on a unit cell comprising voids of different shapes and under different stress conditions. 

The effect of third stress invariant was not considered in the early constitutive models for ductile 

porous materials but has gained more focus recently to account for low stress-triaxialities. 

Nahshon and Hutchinson (2008) and Xue (2007) extended the Gurson (1977) model to 

incorporate the third stress invariant by introducing an extra damage term that allows for failure 

prediction even at zero hydrostatic tension. 

2.4.3. Modeling void coalescence 

A criterion for void coalescence was introduced by Tvergaard and Needleman (1984) based 

on the assumption of a critical void volume fraction. However, this coalescence parameter was 

found to be dependent on a variety of parameters, such as initial void volume fraction, stress 

state and material hardening rate (Koplik and Needleman, 1988; Steglich and Brocks, 1998). The 

physical mechanism of void coalescence in tensile stress states was theorized by considering a 
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competition between a stable, homogeneous deformation mode and an unstable, localized 

deformation mode within the void ligaments resulting in necking failure (Thomason, 1985a, 

1985b, 1990). This model of coalescence by internal necking has received widespread 

acceptance (Pardoen and Hutchinson, 2000; Benzerga, 2002; Scheyvaerts et al. 2010; Benzerga 

and Leblond 2014).  

2.4.4. Alternative approaches to modelling ductile failure 

Phenomenological models for prediction of ductile failure, such as those due to McClintock 

(1968), Rice and Tracey (1969), Brozzo et al. (1972), are based on a material-dependent 

parameter which represents the accumulation of damage as a function of strain. These models are 

also based on stress triaxiality and which is very important in controlling strain to failure. More 

recently, a modified Mohr Coulomb (MMC) model was proposed by Bai and Weirzbicki (2008) 

to create a fracture locus with dependence on stress triaxiality and Lode parameter which covers 

low stress triaxialities using the butterfly test, as shown in Figure 6. The incremental damage at a 

material point can be expressed as: 

𝑑𝐷 = 
𝑛

𝜀𝑓(𝜂,𝜉)
𝐷
𝑛−1

𝑛 𝑑𝜀𝑝                                                      (4) 

where dD is the incremental damage, 𝑑𝜀𝑝 is the incremental plastic strain, n is an exponent used 

to introduce non-linearity, D is the current damage and 𝜀𝑓(𝜂, 𝜉) is the plastic strain at failure 

defined by fracture locus. Recently, Benzerga (2012) demonstrated that an infinite number of 

fracture loci exist in terms of failure strain as a function of average stress triaxiality and Lode 

parameter can be constructed for non-proportional loadings. The path-dependent 

phenomenological models are therefore not capable to predict failure under non-proportional 

loading such as sheared edge stretching. In contrast, micromechanics-based models are capable 

to capture material failure under non-proportional loading through prediction of void nucleation, 

growth and coalescence mechanism since failure is predicted as a consequence of the evolution 

of microstructure (void damage). 
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Figure 6: Modified Mohr-Column fracture locus for plane stress conditions, plotted on the plane of equivalent strain to fracture 

versus stress-triaxiality (Bai and Weirzbicki, 2008) 

 

2.5. Finite element simulation of the hole expansion test 

Extensive work has been done to predict the onset of fracture and crack initiation during 

edge stretching simulations (Takuda et al., 1999 Worswick and Finn, 2000; Uthaisangsuk et al., 

2009b; Hashimoto et al., 2010; Kim et al., 2010; Xu et al., 2010; Xu et al., 2012; Choi et al., 

2014; Paul et al., 2014). Efforts have been made to develop anisotropic model for the hole 

expansion test in order to capture localized necking preceding fracture accurately (Hashimoto et 

al., 2010; Xu et al., 2010; 2012). Various researchers have correlated the failure mechanism of 

the tensile test with the hole expansion test (Adamczyk and Michal, 1986). A fracture-based 

failure criterion was developed by Paul et al. (2014), using true fracture strain from the tensile 

test and the formation of a through-thickness crack as the limit criterion for the hole expansion 

test.  

Most of the numerical models of edge stretching have focused on the edge failure of 

reamed/milled holes and limited work has been done considering simulation of actual sheared 

edges. A ductile fracture criterion based on the equivalent strain in notch tensile tests was 

developed by Lee et al. (2007) to simulate hole expansion of punched and reamed edges. The 

experiments were performed on the notched sample with reamed and punched cut-outs to predict 

the failure strain of the respective edges. However, recent work (Bai and Wierzbicki, 2008) has 
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shown that failure strains are stress state-dependent and that applying fracture strains obtained 

from one stress condition to the other is not an accurate technique. An axisymmetric model of 

hole expansion test was developed by Butcher et al. (2013) (shown in Figure 7) and the effect of 

shearing/blanking was accounted by the value of initial porosity and strain hardening. Efforts 

have been made to model the multi-stage simulation process by various researchers using 

different damage models (Goijaerts et al., 2001; Rachik et al., 2002; Chen et al., 2002; Hu et al., 

2014; Wang et al. 2016) but little work has been done so far to transfer experimentally measured 

pre-strains formed during the shearing process to the simulation of the hole expansion test. 

 

Figure 7: Finite element model of the hole expansion test showing predicted contours of equivalent stress (Butcher et al., 2013) 

 

2.6. Current state of knowledge in the sheared edge stretching 

The quality of the sheared edge is dependent on the parameters of the shearing process and 

is reflected in the surface roughness at the sheared edge, the size of the shear-burr, and extent of 

pre-straining and damage in the SAZ. These characteristics result as a consequence of 

deformation during shearing and the damage mechanisms occurring in a material and therefore 

the performance of a sheared edge in stretch-flanging operations is strongly related to the 

microstructure of material. In AHSS, particularly DP steel, the level of work-hardening and 

damage in the SAZ is increased due to the severe stress-gradient between the ferrite and 

martensite grains. Recent results available in the literature have shown that ferritic-bainitic alloys 

could be promising alternatives to dual phase steels in industrial stretch-flanging operations since 

they offer a lower local stress-gradient and therefore a better HER than a ferritic-martensitic DP 

steel (Murata et. al., 2010; Konieczny and Henderson, 2007). However, there is a lack of 

published research addressing the characterization of the microstructural response and 
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mechanical performance of ferritic-bainitic alloys in stretch-flanging operations. To establish 

ferritic-bainitic alloy such as CP steel in industrial stretch-flanging operations, there is a need to 

characterize the mechanical properties, edge-stretchability and damage mechanisms of this alloy. 

Although there has been a lot of work done on the numerical simulation of the stretch-

flanging operations, the main emphasis in the available literature has been to predict crack 

formation at the machined edge by using suitable yield and damage criteria. In industry, holes 

are mostly sheared prior to stretching and sheared edge stretching is a non-proportional loading 

that likely requires a microstructure- and stress state-dependent fracture model to predict failure. 

The published work on the simulation of the hole expansion test for sheared edges has used 

fracture strain criteria with only limited consideration of the stress-state and for an accurate 

prediction of the edge stretching limit, an alternate method is required. Researchers have focused 

on modeling sequential shearing and stretching simulation to predict sheared edge failure. 

However, there are some challenges associated with modeling the shearing process such as mesh 

sensitivity and dependence of the predictions upon the assumed fracture model and calibration 

parameters. Additionally, high computational cost limits the application of finite element models 

to practical forming simulations of components with a complex geometry. More importantly, the 

predicted strain from shearing simulation needs to be validated. For a material designer seeking 

to optimize the microstructure and thermal processing/chemistry, further insight into the 

mechanism controlling the fracture process is necessary. A micromechanics-based ductile 

fracture model can be promising for modeling the sheared edge stretching, but will require 

quantification and characterization of strain hardening and damage at the sheared edge. 
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3. Objective 

The overall aim of this research is to develop a damage-based fracture model to predict the 

sheared edge stretchability of AHSS. To this end, studies of the sheared edge stretchability of 

two AHSS with differing microstructures have been undertaken: (i) a production-trial CP steel 

with a predominantly ferritic-baintitic microstructure; and, (ii) a commercial DP steel with a 

ferritic-martensitic microstructure.  

Within this overall aim, five primary objectives were addressed: 

1. Evaluate the stretch-flangeability of CP and DP steels and investigate the factors that 

control sheared edge stretchability in these alloys; 

2. Characterize the operative damage mechanisms and investigate the role of microstructure 

in influencing the fracture of DP and CP steels; 

3. Develop experimental techniques to quantify the strain-distribution introduced during the 

shearing process; 

4. Develop a stress state-dependent damage nucleation model; and,  

5. Develop a micromechanics-based damage model to predict sheared edge failure. 

Work done in support of these objectives is summarized in the following sections of this 

synopsis.   
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4. Summary of the Research Results 

Five tasks were undertaken that were aligned with the research objectives stated in Section 3 

of this thesis. This section, presents a summary of the research results from each task and is 

presented in five parts: 

Part 1 Assessment of the Critical Parameters Influencing the Edge Stretchability 

of Advanced High Strength Steel Sheet 

Part 2 Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge 

Stretching 

Part 3 Experimental Techniques for Residual Shear Strain Measurement with 

Applications to Sheared Edge Stretching of Advanced High Strength Steel 

Part 4 Experimental Stress State-Dependent Void Nucleation Behaviour for Two 

800 MPa Advanced High Strength Steels 

Part 5 Micro-mechanics Based Fracture Model to Predict Edge Failure in 800 

MPa Advanced High Strength Steels 

 

Each part is documented in a peer reviewed accepted or submitted journal publication, all 

five of which are appended to this thesis. This synopsis presents a summary of these publications 

along with an overall discussion of the results, followed by conclusions and recommendations 

stemming from this research. 
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4.1. Assessment of the Critical Parameters Influencing the Edge Stretchability 

of Advanced High Strength Steel Sheet 

The edge formability of a range of AHSS, namely DP600, DP780, CP590 and CP800, is 

considered (detailed description of the alloys is provided in Appendix A). Both hole expansion 

and hole extrusion conditions were considered by expanding 10 mm holes using a standard 

conical punch, as recommended by ISO standards, and a custom-made flat punch. To isolate the 

influence of work-hardening and surface roughness introduced behind the sheared edge, three 

edge conditions were considered: drilled and reamed, sheared, and sheared and polished. The 

punched holes were sheared using a 12% clearance in accordance with the JFS-1001 (1996) 

standard. The hole expansion testing was conducted at ArcelorMittal Dofasco facility in 

Hamilton, Ontario and the test was terminated when a through-thickness crack was observed. 

4.1.1. Influence of the Punch Geometry 

Figure 8 shows a comparison between hole expansion ratios obtained using the flat and 

conical punches for the CP590 and DP600 steels. A higher hole expansion ratio was reported 

with the conical punch than the flat punch for all of the materials and edge conditions considered 

in this work. Using the flat punch, both alloys show only mild sensitivity to the edge condition 

with a difference of 10-14% between the HER for the reamed and sheared edges. In contrast, the 

conical punch is able to clearly differentiate between the edge conditions with formability 

reductions of 40-60% between the hole expansion ratios for the reamed and sheared edges. 

Similar trends was observed for the other materials considered in this work, as further detailed in 

Appendix A. 
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Figure 8: HER values for the reamed and sheared edges expanded by the flat and conical punches for the materials (a) CP590 

and (b) DP600. 

 

4.1.2. Influence of the Edge Condition 

Figure 9 shows the HER for the reamed and punched-polished edge conditions for the CP 

and DP steels. The considerable difference in the edge formability of the two edge conditions for 

all of the materials is observed and attributed to the presence of pre-strain (work-hardening) and 

nucleated voids in the SAZ that leads to premature failure in the sheared edge. This observation 

suggests that the presence of the SAZ plays a prominent role in influencing formability of the 

sheared edge.  
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Figure 9: Hole expansion ratios of the CP and DP steels with the sheared-polished and sheared edge conditions (the error bars 

shows the 95% confidence intervals) 

The influence of the surface roughness is studied by comparing the HER for the punched 

and punched-polished edges. As shown in Figure 10, the confidence intervals of the HER for the 

two edge types overlap and suggests that there is no significant difference between the 

stretchability of the two edges. This result implies that the surface roughness at the sheared edge 

has minor or secondary influence on the HER. 

 

Figure 10: Hole expansion ratios of the CP steels with the sheared-polished and sheared edge conditions (the error bars shows 

the 95% confidence intervals) 
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4.2. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge 

Stretching  

Traditionally, hole expansion tests are used to determine edge failure that consist of 

expanding a hole with a conical punch until failure. The hole expansion test poses challenges in 

relating the damage mechanism to the microstructure due to punch geometry, tooling contact, 

friction, burr orientation and lack of ability to account for anisotropy. In the present work, to 

evaluate the edge stretchability of CP and DP steels, a hole tension test was performed on a 

tensile specimen with a hole processed at the center of specimen, as shown in Figure 11. The 

damage mechanism and accumulation in the CP and DP steels were systematically characterized 

during the edge stretching by interrupting the hole tension test at different strain levels as shown, 

for example, in Figure 12. The interrupted samples were observed under the scanning electron 

microscope (SEM) to observe the damage mechanism in the CP and DP steels. A procedure for 

quantifying damage during the edge stretching of CP and DP steels is presented to identify the 

microstructural parameters governing void nucleation and coalescence and a digital image 

correlation system was used to determine the strain level. Appendix B provides further detail 

concerning the methodology for this part of the research. 

       

Figure 11: Specimen geometry used for hole tension tests 
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Figure 12: Histories of nominal stress versus equivalent strain at the reamed and sheared hole edge for the CP800 specimens 

interrupted at different strains. 

 

4.2.1. Damage Development Resulting from Shearing and Hole Tensile Deformation 

SEM investigations were performed on the DP780 and CP800 hole tension specimens at the 

edge of the hole, as indicated in Figure 12. The DP780 results are shown in Figure 13 and reveal 

four kinds of nucleation mechanism: (1) fracture of martensite particles, (2) decohesion of 

ferrite-martensite interfaces, (3) ferrite grain failure and (4) particle-related cavity formation. The 

DP780 samples did exhibit void nucleation at TiN particles, as shown in Figure 13 (A1), 

however, these voids do not appear to play a significant role in overall damage development due 

to the considerably lower fraction of TiN particles compared with the amount of martensite. 

Micrographs B1 and B2 show that voids mainly nucleate due to martensite cracking or 

debonding of the martensite-ferrite interface during deformation. Void nucleation by decohesion 

of ferrite-martensite interfaces (C1) becomes the more dominant mechanism. Micrograph C2 

indicates the fourth category of void nucleation by failure of ferrite grains along with the crack 

initiation at the hole edge. The propagation of the crack eventually occurs by linking of voids 

and results in the fracture of the DP780 reamed edge, as shown in micrographs D1 and D2. An 

irregular crack-path is associated with void nucleation, growth and coalescence and indicates 

ductile failure in the DP780 reamed edge.  
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Figure 13: SEM micrographs of the interrupted DP780 reamed edge hole tension specimens at different strain levels: (a) 0.16, 

(b) 0.24, (c) 0.31 and (d) 0.45 

Figure 14 shows a series of SEM micrographs taken from deformed CP800 specimens. The 

EDS spectrums acquired on the four cavities (a, b, c and d) in micrographs A1, A2, B1 and B2 

reveal that titanium-nitride particles were the main nucleation sites in the CP800 steel. The 

micrographs (C1 and C2) acquired at a strain of 0.63 demonstrate two different void formation 

mechanisms associated with particles in the CP800 steel. Cavity formation at inclusions occurs 

either due to the de-bonding of the TiN intermetallic particles from the matrix, as shown in 

magnified image C1, or fracture of the TiN particles as observed in image C2. The edge of the 

fractured CP800 reamed sample is shown in micrograph E. The formation of primary voids 

associated with inclusions in addition to secondary voids nucleated at bainite or martensite 
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interfaces is shown in Figure 14 (D). Near failure, the rate of formation of secondary voids 

rapidly increases as shown in micrograph E1. A typical void impingement coalescence is shown 

in magnified image E2. 

 

 

 

 

 
Figure 14: SEM micrographs of the interrupted CP800 reamed edge hole tension specimens at different strain levels: (a) 0.45, 

(b) 0.55, (c) 0.63, (d) 0.74 and (e) 0.92 

T
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The nucleation mechanism for a particular alloy did not change with edge condition; the 

effect of shearing was to locally harden the edge that increased the rate of nucleation. The role of 

void evolution in the premature failure of the sheared edge is reflected in the crack propagation 

mechanism. During deformation of the reamed edge, crack initiation and propagation occur over 

a small range of strain near the fracture strain. In contrast, cracks initiate at the sheared edge 

during the early stages of deformation (Appendix B). 

 

4.2.2. Quantitative Examination of Damage Progression  

The interrupted samples were mounted and polished to mirror-surface to reveal the void 

distribution under the microscope. The images were acquired at 50X magnification and 

assembled in mosaic image, from which the damage accumulation was measured. The measured 

damage was combined with strains measured using digital image correlation (DIC) techniques 

acquired during testing. The equivalent strain contours obtained from the DIC analysis for the 

interrupted samples of CP800 with the reamed holes are shown in Figure 15 along with the 

corresponding optical mosaic image. The strain plot and optical image were divided into six 

square area of interest (AOI) regions of approximately 1 mm along the edge, as indicated in 

Figure 15. The equivalent strain, ε and number of voids, V, for each AOI are indicated in Figure 

15b. In this manner, six data measurements (of damage versus strain level) were acquired from 

each specimen to quantify damage evolution in the DP780 and CP800 steels. 

 

Figure 15: Contour plot of the equivalent strain and in-plane optical image of the CP800 reamed edge divided into six different 

strain levels along corresponding optical image. Equivalent strain and number of voids (V) within each AOI are indicated. 
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The damage history during edge stretching as a function of equivalent strain is shown in 

Figure 16 for the two steels. The number of voids per unit volume reported behind the sheared 

edge is higher than the reamed edge for both the materials at a given strain. The shearing process 

alters microstructure by introducing work-hardening and initial damage behind the sheared edge 

which in turn increases the rate of nucleation. In the multi-phase CP800 and DP780 

microstructures, this phenomenon is more prominent due to the strength-differential generated 

between the phases and therefore the failure strain for the CP800 and DP780 sheared edges are 

lower compared to the failure strain of the respective reamed edges. The void measurements 

such as void area fraction, void diameter, and void aspect ratio were conducted behind the 

reamed and sheared edges to quantify damage evolution and are discussed further in Appendix 

B. 

 
Figure 16: Average void density versus equivalent strain for (a) CP800 and (b) DP780. Note that the number of measurements at 

higher strain drops to unity so that a standard deviation cannot be calculated (no scatter bands). 
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4.3. Experimental Techniques for Residual Shear Strain Measurement with 

Applications to Sheared Edge Stretching of Advanced High Strength 

Steel  

The experimental work discussed in section 4.1 has shown that the formability of the 

sheared edge is mainly controlled by the SAZ which is formed as a result of severe pre-straining. 

To define the SAZ in a finite element model, quantitative characterization of the level of pre-

straining is needed. The development of experimental techniques to quantify the strain 

distribution within sheared complex-phase and dual-phase steels of a similar strength level of 

800 MPa is presented in this section and Appendix C. 

4.3.1. Correlating Shear Angle and Hardness Measurement with Shear Strain using 

Shear Test 

Two independent experimental techniques were proposed to characterize the residual strain 

distribution within the shear-affected zone based on (i) the grain rotation along the shear 

direction and (ii) the work hardening introduced during shear deformation, using microhardness 

measurements. Interrupted shear testing was conducted using the simple shear specimen 

geometry developed by Piers et al. (2012), shown in Figure 17. A stereo digital image correlation 

(DIC) system was used to record the full-field strain during the experiment. The adopted DIC 

parameters are described in Appendix C.  

 

Figure 17: Simple shear specimen geometry adapted from Piers et al. (Peirs, et al., 2012). The shaded area corresponds to the 

clamped location during the test. 

The specimens were polished to a diamond grit size of 0.25 microns and etched with 2% 

Nital to reveal grain boundaries under an optical microscope. An angle of rotation is calculated 

by assuming grains were initially aligned parallel to the rolling direction and any change in the 

orientation of grains is defined as a shear angle, α, as indicated in Figure 18. The metallographic 
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specimens were then re-polished to remove the etched surface so that microhardness 

measurements could be taken at the same location within the shear zone. 

 

Figure 18: Strain contour plot of (A1) DP780 and (B1) CP800 shear specimen. Micrographs of the respective interrupted shear 

specimen indicating shear angle (A2) and (B2) 

For simple shear conditions, the following equation can be used to determine equivalent 

strain using shear angle measurements: 

𝜀𝑒𝑞 =  sinh 𝜀1√3
2 ,                                                          (6) 

where  𝜀1 = sinh
−1(𝑡𝑎𝑛ℎ−1(𝛼)) is the major strain. The work-conjugate equivalent strain 

derived from the measured shear angles is compared with the DIC strain in Figure 19. The DIC 

strains were acquired at the locations where shear angles were extracted and the two strains are 

found to be in good agreement for both the materials and hence validates the shear angle 

technique. 
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Figure 19: A comparison of major strain obtained from DIC analysis and grain rotation technique for the (A) DP780 and (B) 

CP800 steels using a gauge length of 0.2 mm 

To establish a relationship between microhardness and equivalent strain, an inverse power 

law relation is used as follows: 

      𝜀𝑒𝑞 = 
1

𝑎
[(

𝐻𝑉

𝐻𝑉0
)

1

𝑏
− 1]                                                 (7) 

 

in which HV is the average hardness-value and HV0 is the hardness-value of the base material. 

Figure 20 shows the equivalent strain from the DIC measurements and the normalized hardness, 

𝐻𝑉 𝐻𝑉0⁄ , for the interrupted tests. The coefficients a and b are material-specific parameters, 

obtained for each material using the curve-fitting toolbox within MATLAB, and are indicated in 

Table 1.  

Table 1: Inverse power law parameters (a and b) for the CP800 and DP780 steels 

Material a b R2 

CP800 4.9 0.16 0.98 

DP780 11.4 0.17 0.99 
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Figure 20: Variation in the equivalent strain with the normalized microhardness for (a) CP800 and (b) DP780 steel 

 

4.3.2. Characterization of the Sheared Edge 

The sheared edges were sectioned, mounted, polished and etched using 2% Nital to reveal 

grain rotation. A shear angle, α, was measured across the SAZ by drawing a line of approximate 

length 20 µm as indicated in Figure 21. The sheared edge was re-polished and microhardness 

measurements were then taken on the sheared edge in the form of an interlocking grid covering 

the SAZ as shown in Figure 21. Similar measurements were conducted for the DP780 sheared 

edge.  

 

Figure 21: Sheared edge of CP800 indicating hardness mapping and Nital etch to highlight grain rotation. A 12% punch 

clearance was used to shear a hole of diameter 10 mm 

The shear angle measurements were conducted behind the CP800 and DP780 sheared edges 

(at 12% clearance) by drawing lines along the grain boundaries and converting to equivalent 
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strain using finite strain formulation expressed in Eq. (6). The strain distribution as a function of 

distance from the sheared edge and through-thickness distance from the edge determined from 

the shear angle measurements is shown in Figure 22 for the CP800 and DP780 steels, 

respectively. The hardness distributions of the CP800 and DP780 steels are converted to strain 

by inputting respective fitting parameters in the inverse power-law (Eq. (7)) as detailed in 

Appendix C. In this manner the strain-distribution behind the sheared edge was measured using 

two independent experimental techniques. 

  

Figure 22: Strain distribution as a function of distance from the sheared edge and top edge for the (a) CP800 transverse, (b) 

DP780 transverse 
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4.4. Experimental Stress State-Dependent Void Nucleation Behaviour for Two 

800 MPa Advanced High Strength Steels  

This section describes the influence of loading conditions on void nucleation and a stress-

dependent nucleation model is developed based on measured tomography data. The four 

characterization tests performed in the current study were equi-biaxial Nakazima, v-bend, hole 

tension and simple shear tests that correspond to strain states ranging from simple shear to 

biaxial tension, as shown in Figure 23. Each characterization test was interrupted at four different 

strain levels prior to fracture. The region of the maximum deformation was extracted and 3D 

micro-tomography was conducted paired with in situ digital image correlation (DIC) strain 

measurements to construct damage histories from the mechanical testing. The damage 

development is extensive based on the tomographs from interrupted hole tension specimens near 

the failure strain, as shown in Figure 24. More detailed presentation of the tomographs for both 

alloys and edge conditions is provided in Appendix D. 

 

Figure 23: Major and minor strains paths in the region of maximum deformation subjected to different loading conditions for the 

(a) CP800 and (b) DP780 steels 
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Figure 24: 3D views of damage within the (a) CP800 and (b) DP780 hole tension specimens deformed near failure 

 

4.4.1. Damage Evolution under Proportional Loading 

The number of voids nucleated as a function of equivalent strain for the different loading 

conditions is shown in Figure 25. A continuous increase in the number of nucleated voids was 

observed for all the stress-states. The maximum nucleation rate occurs under biaxial tension and 

the minimum cavity formation rate was observed under shear loading for both alloys which 

suggests an influence of stress-state on void nucleation. This trend is in agreement with the 

results reported by Landron et al. (2012) 

 
(a) 

 
(b) 

Figure 25: Average void density versus equivalent strain for (a) CP800 and (b) DP780 steels (symbols). Solid lines are 

predictions using Lode parameter-dependent strain-based Chu and Needleman nucleation rule using Eq. (8 for the various 

loading conditions of the (a) CP800 and (b) DP780 steels.  
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4.4.2. Void Nucleation Model 

To capture the influence of loading condition on the void nucleation, a modification to the 

Chu and Needleman nucleation criterion is proposed and expressed in the following equation: 

�̇� = 𝑁𝑛
𝑠𝑁√2𝜋

𝑒𝑥𝑝 [−1
2
(
𝜀𝑝−𝜀𝑁(𝑇,𝐿)

𝑠𝑁
)
2
] �́�𝑝                                                (8a) 

𝑐𝑣 = 
𝜀𝑁

𝑠𝑁
                                                             (8b) 

where �̇� is the void nucleation rate, Nn is the maximum number of voids per unit volume 

available to nucleation voids, εN and sN are the mean and standard deviation of the nucleation 

strain, 𝑐𝑣 is the coefficient of variation of nucleation strain and εp is the Von Mises equivalent 

plastic strain. The nucleation strain, εN, was determined individually for each loading condition 

as a function of stress-triaxiality as well as Lode parameter and listed in Table 2. The Nn and 

coefficient of variation are assumed to be material-dependent and hence considered same for all 

the loading conditions. 

Table 2: Nucleation parameters for the different stress-states of the CP800 and DP780 steels 

Material Nn 

(per mm3) 

cv 

 

Biaxial Tension Plane Strain Uniaxial Tension Shear 

εN T L εN T L εN T L εN T L 

CP800 397942 0.24 1.10 0.66 0.97 1.34 0.55 -0.01 1.58 0.30 -0.92 2.20 0.00 0.02 

DP780 62000 0.22 0.55 0.66 0.98 0.60 0.55 0.01 0.70 0.55 -0.98 1.20 0.00 0.01 

 

In order to predict the nucleation rate for a broad range of stress-states, a nucleation strain 

“surface” is introduced in which nucleation strain is cast as a function of stress-triaxiality (T) and 

Lode parameter (L). The nucleation surface was developed as an adaptation of the Bai and 

Wierzbicki (2008) fracture locus (Eq, (9)), but here used to predict nucleation strain as a function 

of stress state and expressed as:  

 𝜀𝑁 = 

{
 

 
𝐶1

𝐶2
[𝐶3 + 

√3

2−√3
(1 − 𝐶3) (sec (

𝜋𝐿

6
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× [√
1+ 𝐶4

2

3
cos (
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6
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1

3
sin (

𝜋𝐿

6
))]
}
 

 

−1

𝐶5

                        (9) 

where 𝐶1−5 are material parameters (given in Appendix D). Figure 26 shows the nucleation 

surface for the CP800 and DP780 steels that covers a broad range of stress-states. The nucleation 
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rate for a given proportional loading condition can be predicted by inputting the nucleation 

strain, corresponding to the loading condition, in Chu and Needleman’s nucleation criterion 

along with the respective material parameters, Nn and cv.  

 

Figure 26: Representation of nucleation strain (εN) surface as a function stress-triaxiality (T) and Lode angle parameter (L) for 

the (a) CP800 and (b) DP780 steels with plane stress curve and experimental data points indicated in black line and square 

marker respectively. 
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4.5. Micro-Mechanics based Fracture Model to Predict Edge Failure in 800 

MPa Advanced High Strength Steels  

3D tomography was conducted on CP800 and DP780 hole tension specimens with both 

reamed and sheared holes to capture the influence of edge condition on damage evolution. The 

resulting trends for void nucleation, growth and coalescence were used to calibrate a physically-

motivated damage model which was applied in two stages to simulate the shearing process 

followed by the subsequent hole tension experiment. The shearing process model utilized the 

measured shear strain distributions at the hole edge, presented in Section 4.3. The damage 

constitutive model was integrated for the pre-strains around the sheared edge, thereby 

establishing an “initial sheared edge condition” that was used to initialize a finite element model 

of the hole tension experiments. The reamed edge condition was also modelled by simply 

running the hole tension simulation without initializing the sheared edge condition. This 

modeling approach was validated by comparing the predicted strain distributions and damage 

with the corresponding experimental measurements from hole tension samples for the different 

edge conditions. 

4.5.1. Damage Evolution during the Edge Stretching 

The damage history during the sheared edge stretching as a function of equivalent strain is 

shown in Figure 27 for the two steels. This data was extracted from tomography measurement 

described in Appendix E. The number of voids per unit volume reported behind the sheared edge 

is higher than for the reamed edge for both the materials at a given strain. The shearing process 

alters microstructure by introducing work-hardening and initial damage behind the sheared edge 

which in turn increases the rate of nucleation. In the multi-phase CP800 and DP780 

microstructures, this phenomenon is more prominent due to the strength-differential generated 

between the phases. Thus, the failure strains for the CP800 and DP780 sheared edges are lower 

compared to the failure strain of the respective reamed edges. 
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(a) 

 

(b) 

Figure 27: Average void density versus equivalent strain for (a) CP800 and (b) DP780 reamed and sheared edges 

 

4.5.2. Constitutive Model 

This section presents an uncoupled anisotropic micromechanics-based fracture model which 

is implemented in LS-Dyna to predict ductile failure during the edge stretching of the CP800 and 

DP780 steels.  

The Barlat et al. (1991) Yld91 anisotropic yield function is employed to capture sheet 

anisotropy of the CP800 and DP780 steels and expressed as: 

𝜎 = (0.5(|𝑆1 − 𝑆2|
𝑚 + |𝑆2 − 𝑆3|

𝑚 + |𝑆3 − 𝑆1|
𝑚))

1 𝑚⁄
                                 (10) 

where m =8 is chosen based on the BCC crystallographic structure. 𝑆1, 𝑆2 and 𝑆3 are eigenvalues 

of the symmetric transformed stress tensor S, specified in Appendix E. 

Measurements of void nucleation, growth and coalescence determined using 3D tomography 

were used to implement the modified Chu and Needleman nucleation model discussed in Section 

4.4 criterion for nucleation, the Ragab (2004) model for void growth and the Benzerga and 

Leblond (2014) model for void coalescence to develop a damage-based model.  



36 

 

To map the measured strain-distribution presented in Section 4.3 to FE model, a FORTRAN 

subroutine was developed and implemented as a use material subroutine within the LS-Dyna 

finite element program. Further details concerning the material model are given in Appendix E. 

4.5.3. Finite Element Modeling 

The proposed model was validated against the CP800 and DP780 hole tension tests for both 

edge conditions. The load-displacement response acquired from numerical simulation is 

presented in Figure 28 and is in good agreement with the experimental data. 

 

Figure 28: Load-displacement response during the (a) CP800 and (b) DP780 hole tension tests 

To account for the altered properties of the sheared edge, the strain-distribution and damage 

is prescribed as an initial condition in the FE model, as shown in Figure 29. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 29: Initial strain-distribution behind the (a) CP800 and (b) DP780 sheared edge and initial damage developed during the 

shearing process behind the (c) CP800 and (d) DP780 sheared edge 

To assess the damage accumulation predicted using the numerical model, the evolution of 

porosity as a function of equivalent strain is extracted from the simulation and compared with the 

experimental values in Figure 30. The predicted and measured damage accumulation during the 

hole tension experiments agree reasonable well, except for the DP780 sheared edge for which the 

predicted damage exceeds the measured history. A similar observation was made for the 

evolution of void spacing ratio (used in the coalescence model) for all conditions as discussed in 

Appendix E. 
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(a) 

 
(b) 

Figure 30: The comparison of measured and predicted void area fraction as a function of equivalent strain for the (a) CP800 and 

(b) DP780 edges 

Figure 31 shows the comparison of the predicted and measured failure strain reported for the 

reamed and sheared hole tension tests. In general, the agreement is quite good, providing support 

for the proposed model. 

 

Figure 31: The predicted and measured failure strain for the CP800 and DP780 hole tension specimens 
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5. Discussion 

The research presented in this thesis has characterized the critical parameters controlling 

sheared edge formability and led to development of a damage-based model to predict sheared 

edge failure in the CP and DP steels. The edge stretchability experiments conducted in this work 

have quantified the lower edge formability of the sheared holes and the improved edge 

formability of the ferritic-bainitc CP microstructure relative to the ferritic-martensitic DP alloy. 

Details experiments were performed to characterize the sheared edge and operative damage 

mechanisms. A novel approach to seed the edge formability model was developed based on 

measured shear strain distributions The numerical approach proposed in this work can be applied 

to finite element simulations of component-level models to account for sheared edge cracking. 

The extensive hole expansion testing campaign using three edge conditions (reamed, 

sheared, sheared-polished holes) revealed that the SAZ controls the formability of the sheared 

edge while the surface roughness has secondary or minor role in influencing sheared edge 

formability, at least for the shear conditions considered in the current work. This observation is 

important from a modeling point-of-view and suggests that the surface roughness could be 

neglected while performing the numerical simulation of the sheared edge. Since deformation 

behind the sheared edge is through-thickness which cannot be measured using DIC techniques, 

alternative experimental techniques were developed to characterize the strain-distribution within 

the SAZ introduced during the shearing process based on (a) grain rotation and (b) work-

hardening introduced behind the sheared edge. These techniques are able to determine the local 

strain distribution within the SAZ, providing key input data for subsequent prediction of sheared 

edge stretching limits.  

One of the significant contributions of the work was development of novel hybrid 

experimental-numerical approach to account for the altered properties of the sheared edge. Other 

numerical approaches to predict sheared edge failure are available in the literature (Chen et al., 

2002; Hu et al., 2014; Wang et al. 2016), including simulation of sequential shearing followed 

by stretching, a more computationally complex and expensive approach due to challenges 

associated with modeling the shearing process i.e. mesh sensitivity, choice of fracture criterion 

and introduction of element deletion techniques. More importantly, the strain-distribution 

implemented behind the sheared edge in the current finite element model is measured 
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experimentally and therefore represents authenticated strain measurements as opposed to a multi-

stage simulation where the strain derived from shearing simulation is not validated. 

The current research has provided important insights into the void nucleation process. Of 

particular interest is the identification of Lode parameter-dependence of the nucleation strain in 

addition to the already established dependency of nucleation rate on stress-triaxiality. The Lode 

parameter dependency is evident in Figure 25 in which the damage nucleation rate in the plane 

strain sample is closer to that seen in the lower triaxiality (η = 1/3) uniaxial sample, despite the 

relatively high triaxiality of the plane strain sample (η = 0.577).  

The damage model, which combines published void growth and coalescence models in 

addition to the new nucleation model, is amenable to implementation within finite element codes 

and has application beyond the current sheared edge stretching experiments provided the 

material exhibits a ductile failure mechanism. Implementation of the current model to materials 

not examined in this work would require determination of critical microstructural parameters 

such as initial void diameter, aspect ratio, void spacing and damage nucleation of the material 

considered. 

From material perspective it was shown that the ferritic-bainitic steels provide higher edge 

stretchability compared to ferritic-martensitic steel of similar strength. The optical microscopy 

and SEM analysis conducted in this work have provided insight regardling the influence of 

microstructure on the edge stretchability. The primary void nucleating particles in DP780 are 

martensite which is present in significantly higher composition compared to the TiN particles in 

CP800 which are the main source of void nucleation in CP800. Moreover, the higher strength-

differential between the martensite-bainite phases within the DP alloy leads to greater ease of 

void nucleation compared to the CP alloy (Levy and Van Tyne, 2012). These differences result 

in a remarkably higher rate of void nucleation in the DP780 that causes failure at a lower strain 

and consequently results in the lower edge stretchability of the DP780 compared to the CP800 

alloy. 
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6. Conclusions 

The following conclusions are drawn from this research: 

 Work hardening and the existence of micro-voids introduced during the shearing 

process decreases the HER values for the sheared holes as compared to reamed 

holes. The edge formability is mainly controlled by the shear-affected zone while the 

surface roughness plays a secondary or minor role in influencing the HER for the 

conditions considered in this study. 

 

 The microstructure of DP780 consists of a higher fraction of martensite that has a 

larger strength differential with the ferrite matrix, resulting in a lower nucleation 

strain and accelerated void nucleation in comparison to the ferritic-bainitic CP800 

steel that has a lower strength differential between phases. In contrast with the 

reamed edge, the rate of damage accumulation is higher behind the sheared edge due 

to the presence of pre-straining behind the sheared edge that promotes nucleation, 

growth and coalescence of voids. 

 

 Two shear strain measurement techniques were developed based on the (a) grain 

rotation and (b) hardness-value and validated with the strains obtained from in plane 

DIC measurements. The proposed techniques were applied to determine the strain-

distribution behind the CP800 and DP780, sheared edges. The advantage of the 

proposed technique is that strains can be determined for through-thickness 

deformation which otherwise cannot be captured using DIC. 

 

 A stress-state dependent nucleation model was developed that incorporates a 

nucleation strain surface as a function of stress-triaxiality and Lode angle parameter 

into Chu and Needleman’s nucleation criterion. The proposed model captures the 

Lode parameter-dependency observed in the tomography measurements and 

provides a tractable approach to predict void nucleation in finite element 

calculations. 
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 The micromechanics-based constitutive model proposed in the work reasonably 

predicts damage development and onset of failure for the sheared holes and reamed 

holes during edge stretching of the CP800 and DP780 steels.  
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7. Future Work 

The following future work is proposed as next steps to support the implementation of proposed 

fracture model: 

 The fracture model developed to predict sheared edge failure has been primarily validated 

for the edges sheared at 12% clearance. Future work should consider modeling edges 

sheared at different clearances to fully validate the proposed model. 

 

 Implement the framework developed to predict sheared edge failure (both SAZ integrator 

and fracture model) to the simulation of component-level forming tests, in order to verify 

the applicability of such models at a component level. 

 

 A constitutive framework for a damage-based fracture model was used to predict failure 

under two loading conditions: proportional uniaxial tensile loading and sheared edge 

stretching.  Validation of the model for other critical loading paths, such as biaxial and 

plane-strain conditions, would enhance applicability of the proposed model to predict 

failure during general forming operations. 

 

 The measured through-thickness strain distribution behind the sheared edge should also 

be implemented in the finite element models to capture the influence of burr-orientation 

on the edge stretching-limit. 
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