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Abstract

The unique linear and massless band structure of graphene in a purely two-dimensional
Dirac fermionic structure has ignited intense research since the first monolayer graphene
was isolated in the laboratory. Not only does it offer new inroads into low-dimensional
physics; graphene exhibits several peculiar properties that promise to widen the realm of
opportunities for integrated optics and photonics. This thesis is an attempt to shed light
on the exceptional nonlinear optical properties of graphene and their potential applications
in integrated photonics. Following a theoretical exploration of light-graphene interaction,
disruptive new insight into the nonlinear optics of graphene was generated. It now ap-
pears that graphene can efficiently enable photon-photon interaction in a fully integrated
fashion. This property, taken together with ultrawideband tunability and ultrafast carrier
dynamics could be fully exploited within integrated photonics for a variety of applications
including harmonic generation and all-optical signal processing. The multidisciplinary
work described herein combines theoretical modeling and experimentation to proceed one
step further toward this goal.

This thesis begins by presenting a semiclassical theory of light-graphene interaction.
The emphasis is placed on the nonlinear optical response of graphene from the stand-
point of its underlying chiral symmetry. The peculiar energy- momentum dispersion of the
quasiparticles in graphene entails a diverging field-induced interband coupling. Following a
many-body study of the carrier relaxations dynamics in graphene, it will be shown that the
charged carriers in the vicinity of the Dirac point undergo an unconventional saturation
effect that can be induced by an arbitrarily weak electromagnetic field. The perturba-
tive treatment of the optical response of graphene is revisited and a theoretical model is
developed to estimate the nonlinear optical coefficients including the Kerr coefficient of
graphene. The theoretical models are complimented by the experimental results.

The peculiar nonlinear optical properties of graphene together with its ablity to being
integrated with optical platforms would render it possible to perform nonlinear optics in
graphene integrated nanophotonic structures. Here, the suitability of graphene for nonlin-
ear optical applications is investigated both theoretically and experimentally. The empha-
sis is placed on an on-chip platform for ultrafast all-optical amplitude modulation. The
experimental results indicate strong all-optical modulation in a graphene-cladded planar
photonic crystal nanocavity. This development relies heavily on the unique properties of
graphene, including its fast carrier dynamics and the special phonon induced relaxation
mechanism. Finally, the potential application of graphene based all-optical modulation in
time resolved nonlinear spectroscopy is also discussed.
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Preface
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besides the other targets that I spotted but failed to attack. Luckily, my supervisors gave
me enough freedom and guidance to explore my inspirations.
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Chapter 1

Introduction

What we observe is not nature itself, but nature exposed to our method of questioning.

Werner Heisenberg
1901-1976

1.1 Motivation

1.1.1 Integrated Optics: Demand for Optically Nonlinear Mate-
rials

The move over the last few years towards integrated photonics is considered an important
turning point [1-3]. The strong desire of humankind to push for the best and the next | has
stimulated recent intense research recently in exploring robust and versatile alternatives for
semiconductor electronics. Hopes for overcoming the key issues associated with electronic
devices, including operational speed and power consumption impose limitations that must
be surpassed [1,4-6]. Integrated-photonics promises ultrafast and low-power operation that
can be exploited for many sought-after applications [1,6,7]. Photonic and optoelectronic



components are most often wavelength-scale and the adoption of photonic technology for
highly miniaturized applications is thereby hindered by the diffraction limit [8].

The key advantages of employing light rather than electrons to perform a variety of
functions, stem from the weak interaction of photons. Unlike electrons, photons do not ‘see’
each other. If photons flow inside a waveguide, they do not obstruct the path; therefore
resistance in optical paths is negligible compared to their electrical counterparts. Electron-
impurity and other elastic and inelastic scattering processes most often pose stronger limi-
tations on the resistance of channels where charge carriers flow in. The fundamental limits
on the operational speed of electronic devices can be attributed to the Coulombic inter-
action of electrons. The speed of CMOS technology is generally limited by the RC time
constant associated with the charge buildup within the device. This time constant is ob-
viously imposed by the interactive nature of electrons. We should remind ourselves that
capacitance (C) is an electrostatic effect. Photons can overcome this electrical bottleneck,
thus the operational speed of all-optical integrated devices is expected to be superior [9].
However, when a signal light is supposed to be manipulated by a control light, the weak
interaction of photons becomes problematic. In order to facilitate interaction between
photons, the nonlinear optical properties of materials can be exploited [10].

All-optical signal processing — i.e. the direct manipulation of signals in the optical
domain—, is anticipated to offer ultrafast operation and low power consumption by avoiding
power-hungry optical-electrical-optical conversions [11-18]. Integrated nonlinear optical
devices usually utilize ultrafast nonlinear processes including intensity-dependent refractive
index and saturable absorption to perform all optical signal processing at femtosecond time
scale. The operational speed of such device is most often limited by the intrinsic relxation
time associated with light-matter interaction [19]. Since many nonlinear operations rely
on high intensities of the fields participating in the nonlinear process, both well-designed
optical platforms and strongly nonlinear materials are required to execute nonlinear func-
tionalities. The exploration of satisfactory nonlinear materials that are integrable with
state-of-the-art optical platforms remains thereby an active area of research [20-22].

There are several key functions that are considered to be the main building blocks
in integrated photonic circuits and all-optical schemes. The most crucial of these are
wavelength-conversion, optical switching and modulation [1,22].

Wavelength-conversion is the most basic function required for all-optical signal process-
ing and nonlinear photonics [1,23-25]. The applications are diverse and encompass sev-
eral categories including harmonic generation [26-28], difference frequency generation [29],
data-multiplexing [30,31]. Depending on goals, different nonlinear processes in materi-
als must be utilized. For example, the instantaneous nonlinearities of materials can be



exploited to generate higher harmonics through mixing multiple frequencies [32]. The
key figure of merit used to evaluate the performane of such devices, is the conversion effi-
ciency [26-28]. Focusing on harmonic generation specifically, a combination of large optical
nonlinearities and structural configurations enabling enhanced intensities would minimize
resource requirements and maximize the output power. For example, plasmonic structures
offer extreme localization of electromagnetic fields enabling efficient fulfillment of the power
requirement for harmonic generation [33].

Ultra-low-power all-optical switching and all-optical modulation are indispensable func-
tions in all-optical schemes. Intrigued by the promise of all-optical devices to operate at
a reduced-power level as well as extremely fast operational speed, , researchers have been
intensely targeting on-chip all-optical switching [9,15,17,34,35]. All-optical switching de-
vices exploit the Kerr-type nonlinearity of materials together with a resonant cavity to
observe the bistable response [15,35]. Optical bistable devices were extensively researched
in the 1980s and 1990s [36], but these studies showed the limits of such devices for practical
structures. The problems are particularly serious for silicon (Si) based structures because
of the relatively poor Kerr nonlinearity of silicon. Although ultra-small and high qual-
ity factor cavities can potentially overcome the fundamental problems, Si-based optical
bistable devices suffer from high operational power and small bandwidth. In principle the
operational energy is scaled as V,/Q?, where V, is the characteristic mode volume and @ is
the quality factor of the corresponding mode [37]. For carefully-designed high-Q microcav-
ities, theories predict optical bistability in the ~ mW power range. However the cost we
have to pay is difficulty in fabrication and measurement as well as very narrow operating
frequency band.

Crucial role in photonic integrated circuits is played by optical modulation [21,22].
Compared to widely available electronic and electro-optic modulators, all-optical modula-
tion schemes offer intrinsic advantages in terms of higher bandwidth and lower loss [21].
Such devices take advantage of the Kerr-type nonlinearity or saturable absorption of the
materials incorporated into a cavity or a waveguide to change the transmission properties
of the optical structure. The operational speed of such a device is thus limited by the
effective life time of photo-excited carriers [21]. Since the modulation essentially takes
place through a nonlinear effect, field enhancement mechanisms are required to reduce the
switching power.

Two important characteristics of material(s) executing nonlinear operations in inte-
grated photonic circuits, were frequently repeated above; strong optical nonlinearity
and ultrafast carrier relaxation dynamics. In recent years, graphene and other two-
dimensional (2D) materials have attracted increasing attention for applications in optics
and photonics. Compared to bulk semiconductors, 2D materials offer several advantages



rooted in their reduced dimensionality as well as their crystalline structure [20, 21, 38].
Flexibility, mechanical stability and some peculiar optical properties are the most appar-
ent excepetional features of 2D crystals. Specifically, several experimental reports have
verified that graphene exhibits strong optical nonlinearity and ultrafast carrier dynam-
ics [39,40]. These unique optical properties together with the innate flexibility of graphene
that can be incorporated into state-of-the-art optical platforms make it a viable candi-
date for integrated nonlinear optics. In this thesis, the nonlinear optical properties of this
wonder material will be explored to evaluate its performance for future graphene-assisted
nonlinear integrated photonics.

1.1.2 The Rise of Graphene

Carbon is an incredibly versatile element. Depending on how the atoms are arranged, it
can produce a broad range of materials from hard diamonds to soft graphite. In particular,
graphite is made of stacks of 2D carbon sheets bonded together by weak van der Waals
interactions. Graphene was the name selected by Hanns-Peter Boehm for the basic building
blocks of graphite [41]. Graphene is a monolayer of carbon atoms tightly packed into a 2D
honeycomb lattice [42].

In the 1930s, Landau and Peierls argued that strictly 2D crystals were thermodynami-
cally unstable and could not exist [43,44]. According to their theory, thermal fluctuations
in low-dimensional crystal lattices lead to the displacements of atoms. The displacements
are comparable to interatomic distances at any finite temperature. From this vantage
point, 2D electronic system can only exist as an integral part of a larger 3D structure.
According to this theory, without a 3D base, 2D materials were presumed not to exist [43].
However, in 2004 A. K. Geim and K. S. Novoselov successfully isolated the first monolayer
graphene sheet [45]. The common wisdom collapsed in the face of their evidence. It was ex-
perimentally demonstrated that strictly free standing 2D atomic crystals such as graphene
and single-layer boron nitride could be transferred on top of non-crystalline substrates,
in liquid suspension and as suspended membranes. This significant achievement triggered
intensive research on graphene and other 2D materials [46,47]. Tts reduced dimensionality
and the symmetries of its crystalline structure render graphene a gapless semiconductor.
Graphene exhibits interesting electronic, optical and mechanical properties [48]. A large
number of its material parameters, such as mechanical strength [49]and very high electrical
and thermal conductivity are superior [48]. These properties suggest that graphene could
replace other materials in existing applications [50].

The electrons which effectively contribute in the electronic properties of graphene pos-
sess a linear energy-momentum dispersion and thus effectively behave as massless Dirac
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fermions [48]. Graphene can be considered as a 2D gas of charged particles obeying the
relativistic Dirac equation, rather than the non-relativistic Shrédinger’s equation [51]. The
carriers in graphene mimic relativistic particles with zero mass and an effective relativistic
speed of ~ 10°m/s [48].

Graphene exhibits a wealth of exceptional electronic properties including a remark-
ably high mobility of the charge carriers in the room temperature [52], Klein tunneling
and Zitterbewegung [53, 54, existence of a non-zero Berry’s phase, anomalous quantum
Hall effect [55-57], quantum limited intrinsic conductivity [58] and a unique Landau-
level structure [59]. Underlying these peculiar electronic properties are its chiral pseudo-
relativistic quasiparticles [42]. These properties combined with near-ballistic transport
makes graphene a potential material for nanoelectronics, particularly for high-frequency
applications such as ultrafast graphene transistors [60].

In addition to its distinctive transport and electronic properties, the optical response
of graphene is also unique. The first manifestation of its unusual interaction with light is
the visibility of the graphene monolayer. Interestingly, a graphene layer can be seen by
the naked eyes, despite being only a single atom thick! [48]. For me as the author of this
thesis, visibility of a monolayer graphene transferred onto quartz substrate was the first
and perhaps, the most impressive experimental observation! Fig. 1.1 shows a photo of a
graphene monolayer on a quartz substrate. The photo was taken simply with a cellphone
camera! The existence of the graphene monolayer is readily perceivable by looking closely.
It also appears colorless to the sight. This observation reveals the strong and wideband
interaction of graphene with light. In Chapter 2, this effect will be explored thoroughly. It
will be shown that the special symmetries existing in the crystalline structure of graphene
lead to its strong interaction with light over a broad range of frequencies.

The linear dispersion of the Dirac electrons allows interband optical transitions at all
photon energies. This strong dispersion-less interaction, in conjunction with large carrier
mobility makes graphene an ideal material platform for integrated optics, photonics and
nonlinear optics [34,50]. It has been demonstrated that graphene can significantly boost
the performance of many optoelectronic devices inleding electro-optical modulators [61-64],
photoreceivers [65], planar microcavity-enhanced photodetectors [66], photovoltaic [67],
light-emitting devices [68]and finally saturable absorbers and ultrafast lasers [69].

!suspended graphene sheet presents ~ 2.3% broadband interband absorption.
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Figure 1.1: Observation of a graphene monolayer transferred onto a quartz substrate. (a)
Photo taken by a cellphone cameral. Red square marks region where graphene (the square)
is placed. (b) Zoomed photo after image processsing to provide a sharper contrast.

1.2 Scope of Thesis, Goals and Objectives

The first objective of the present study is to develop a comprehensive theoretical model
that provides explicit expressions for the nonlinear response coefficients of graphene. In
the absence of external symmetry-breaking, graphene as a centrosymmetric crystalline
structure does not exhibit even-ordered nonlinear effects; the first nonlinear term is the
third order term. This thesis presents an original formulation of nonlinear optical response
of graphene exposed to continuous electromagnetic radiation. The adopted theory employs
semiconductor Bloch equations (SBEs) to model the electron dynamics in the presence of
an electromagnetic field.

As mentioned earlier, the charged carriers in graphene obey the relativistic Dirac equa-
tion and they possess the property of chirality. Chirality refers to a special electronic state
in which the quantum state of the carriers are locked to the direction (and not magni-
tude) of their linear momentum. It has been demonstrated that all of the unconventional
transport properties of graphene noted in Section 1.1.2, can be attributed to this feature
of Dirac fermions [42,70]. It is worth pointing out that, the chirality of the carriers and
the Dirac-type dynamics are the robust properties of graphene that are rooted in the spe-
cial symmetries existing in its crystalline structure and therefore cannot be violated by
any moderate perturbation of the graphene’s lattice. The impact of this chirality on the
optical response of the graphene, despite its importance, has not been investigated in the
literature. It will be argued that the chirality of charged carriers leads to a non-resolvable
singularity in the nonlinear optical response of graphene obtained from perturbation theory:;



In sharp contrast to ordinary semiconductors, in graphene, interband coupling mediated
by an electromagnetic field is arbitrarily large in the vicinity of the Dirac point.

In an article published three years ago [71], I proposed that the aforementioned sin-
gularity can be resolved by introducing band-renormalization due to spin-orbit coupling.
The quantum spin Hall effect opens up a gap and respects the symmetries of graphene,
simultaneously. ‘Although this band gap is very small, graphene as a critical electronic
state can be strongly affected by this perturbation’ I claimed. However, this claim could
not be completely true since spin-orbit coupling can be cancelled out by a Rashba term
arising from the substrate that graphene is placed on [72]. Although, several other the-
oretical models have been published within the last three years [73-75], a self-consistent
theoretical model that can resolve the above issue is still lacking. In addition, many ex-
perimental studies of the nonlinear optics of graphene have been reported [39, 76-80] and
some of their findings are difficult to reconcile with existing theoretical models. The source
of the discrepancies between theoretical models and reported experiments has not been
conclusively identified [74].

In this thesis, an original and self-consistent theory of light-graphene interaction is
presented that can resolve the issues associated with the topologically protected chiral
nature of carriers in graphene. Using SBEs to model the electronic dynamics, it will be
shown that the charged carriers in the vicinity of the Dirac point undergo a spontaneous
saturation effect. Here the terminology is not precisely matched to how it is used by
condensed matter physicists. In this thesis ‘spontaneous’ refers to an effect that can be
induced by an arbitrarily weak electromagnetic field. The theory is complemented by
a many-body study of the carrier relaxation dynamics in graphene. It is demonstrated
that the carrier relaxation dynamics is slow around the Dirac point, in turn leading to a
more pronounced saturation. As a direct consequence of this effect, the optical response of
graphene is essentially non-perturbative. The analysis shows that a perturbative treatment
of the nonlinear optics of graphene is problematic in particular at small Fermi levels and
large field amplitudes.

The overall result of above interpretations altogether enables me to derive original
expressions for the nonlinear response coefficients of graphene including the Kerr coefficient.
Ultimately, the Kerr coefficient of graphene is experimentally characterized using the z-
scan technique. It is shown that the developed theory can predict the experimental results
reasonably well.

The adopted theoretical model serves as the starting point to evaluate the performance
of graphene in two distinct categories of nonlinear integrated optical devices; wavelength
conversion and all-optical modulation. The performance of a wavelength-conversion device



composed of a plasmonic nanostructure integrated with graphene is numerically examined.
The proposed structure is designed and optimized to harness the optical nonlinearity of
graphene to generate the third harmonic of an intense near-infrared laser beam. In this
particular application, the instantaneous nonlinearity of graphene is exploited, thus the
use of field enhancement to maximize the light-graphene interaction is the only objective
to be optimized.

As the second class of application, the performance of a graphene-cladded silicon pho-
tonic crystal nanocavity is experimentally investigated. The operational principle of the
proposed device is based on the saturable absorption of graphene in the presence of high
intensity illumination. As remarked earlier, the performance of such devices is evaluated
based upon the amount of power required to execute modulation, maximum modulation
depth and the operational speed (predominantly limited by the intrinsic relaxation time
of photoexcited carriers within the nonlinear medium).

The list below summarizes the main objectives of this thesis.

e Develop a novel comprehensive quantum theoretical model to describe the nonlinear
optical response of graphene. The theory is semiclassical, that is, the electromag-
netic field is treated classically but the electron dynamics are modeled within the
framework of quantum mechanics.

e Investigate the impact of chirality of the charge carriers of graphene on its optical
response; leading to a new interpretation of light-graphene interaction.

e Experimental characterization of the Kerr coefficient of graphene as a measure of
nonlinear optical response.

e Investigate the performance of graphene for optical third-harmonic generation (THG).
Propose a graphene-based wavelength-conversion device.

e Experimental Investigation of graphene-integrated silicon photonic crystal cavities
for all-optical modulation. This work is intended to evaluate the performance of
graphene for future all-optical silicon based technology.

This thesis is comprised of five chapters. The contents of remainder of the thesis are
summarized below.

In Chapter 2, a semiclassical theory of light-graphene interaction is developed. Explicit
expressions for the linear and nonlinear conductivity tensors are derived based on SBEs.



Three main additive mechanisms contribute to the nonlinear optical response of graphene:
pure intraband, pure interband and the interplay between them. For each contribution,
explicit response functions are derived. It is shown that the topologically protected chiral-
ity of charged carriers leads to a diverging field -induced interband coupling which causes
charged carriers at the vicinity of the Dirac point to undergo ultrafast Rabi oscillations.
These oscillations occur at a much faster rate than they relax. Therefore, an unconven-
tional optical saturation takes place. The Kerr coefficient of graphene is experimentally
characterized using z-scan technique. The measurement results are presented.

In Chapter 3, a general recipe is proposed to design an efficient graphene integrated
plasmonic structure for third harmonic generation (THG). Specifically, the design proce-
dure for an integrated graphene-based ultra-violet light generator is presented. In order
to enhance the field intensity at the graphene layer, two distinct mechanisms are utilized.
A multilayer Bragg structure is used as a Perfect Magnetic Conductor (PMC) to make a
constructive interference between the incident and reflected fields at the graphene layer. A
periodic array of shaped resonant gold nanoparticles is placed on top of the graphene sheet
to enhance the field intensity due to plasmonic resonance at the fundamental frequency. A
hybrid and fast numerical method based on scattering matrix of Floquet modes and the
Generalized Multipole Technique (GMT) is also proposed to analyze the periodic structure.
This numerical method is used to optimize the dimensions of the multilayer structure and
boost the nonlinear conversion efficiency by more than 10° times.

In Chapter 4, a new experimental demonstration of all-optical modulation in a graphene-
cladded photonic crystal nanocavity is presented. The experimental characterization of the
structure is performed using a cross-polarized confocal reflectometry setup. A graphene
monolayer is transferred onto a photonic crystal double heterostructure nanocavity. This
changes its resonance spectrum . The modulation is executed by an ultrafast pulse laser
shining onto the structure which changes the optical absorption of the graphene monolayer
through the saturation effect. A relatively strong modulation effect is achieved and this is
partly attributed to the ultrafast relaxation dynamics of graphene. Meanwhile, the exper-
imental results indicate that the slow relaxation dynamics caused by the charge injection
from the graphene into the silicon cavity can also contribute to the modulation effect.

In Chapter 5, a summary of contributions as well as suggested directions for future
work are presented.



Chapter 2

Nonlinear Quantum Optical
Properties of Graphene

A Semiclassical Theory

2.1 Introduction

Graphene is a two dimensional arrangement of the carbon atoms sitting in a honeycomb
lattice, a seemingly simple lattice structure that nonetheless underlies the special transport
and optical properties [48]. The band structure of graphene differs substantially from
other condensed matter systems. The effective Hamiltonian describes pseudo-relativistic
quasiparticles obeying the (2 4 1)-dimensional Dirac equation. In the context of QED, the
electronic excitations introduced by such dynamics can be considered as massless chiral
fermions [46].

Graphene exhibits a variety of peculiar properties that are manifestations of the special
symmetries of its crystalline structure and relativistic energy spectrum of charged carriers.
Symmetries entail several unconventional properties such as the existence of a topologically
protected zero-energy state, Berry phase, anomalous quantum Hall effect and Zitterbewe-
gung (‘trembling motion’) [48,70,81]. It is counterintuitive that graphenes conductivity
never falls below a minimum value corresponding to the quantum limit of conductance (
i.e. €2/h ) even at zero temperature and zero carrier concentration. It can be shown that
the minimum conductivity is an intrinsic property of the Dirac Fermions inherited by the
Dirac quasiparticles in graphene. The Dirac type dynamics strongly suppresses short range

10



localization effects. In the absence of the localizations effects, the Mott’s argument can
be invoked to qualitatively explain the physical origin of the quantum limited conductance.
According to Mott, the mean free path of the charged carriers in metallic systems can-
not be shorter than their Broglie wavelength. In graphene the electrons around the Dirac
points have diverging wavelength and hence they can freely travel throughout the lattice.
As a result, a quantum limited conductivity is anticipated [46]. All these odd properties
can also be linked to the chiral behavior of the carriers. In graphene the pseudospin is
locked parallel or antiparallel to the direction along which the electron propagates and so
the quasiparticles possess the property of chirality [42].

The optical response of graphene is also expected to be influenced by the chiral nature
of the carriers and the scale invariance of the band structure in low energy limit. How-
ever, despite its importance, a theoretical study on the unconventional optical response
of graphene is still lacking. The optical response of graphene in the linear regime has
been investigated theoretically and experimentally [82-87]. Graphene as a scale invariant
two dimensional chiral electronic system exhibits universal optical response [88]. A simple
analysis based on linear response theory shows that an isolated graphene sheet can absorb
about 2.3% of the normally incident optical field, which is indeed a huge number for a
monolayer atomic structure.

The nonlinear optical response of graphene has been a topic of intensive research in
the recent years [39,73,89-96]. Treatment of the nonlinear optical response of graphene
in the framework of quasiclassical Boltzman equation predicts strong nonlinearity in the
terahertz range of frequency, neglecting pair productions and interband transitions [89].
This part of nonlinearity is mainly due to the geometrical properties of band structure
rather than its topological aspects [97]. The calculation of optical response of graphene
in time domain has been carried out in Ref. [91]. Wrighte et al. have performed Fourier
analysis of the dirac equation to obtain the optical response of the system for a given
incident field [90]. All existing time domain methods proceed primarily at the level of the
wavefunction, rather than at the level of the density matrix and thereby suffer from the
computational cost and the difficulty resulted from the inclusion of relaxation processes
due to impurities and emission , and many-body interactions.

The treatment of optical response of graphene, in a simplistic manner, proceeds from
single particle approximation and the equation of motion for density matrix. The formal
approach to calculate the optical response of semiconductors, excited by a electromagnetic
field, is based on perturbative expansion of the density matrix and taking all possible tran-
sitions into account [32,95]. Even at such a reasonably simplistic treatment, the evaluation
of nonlinear response coefficients is numerically difficult and does not provide any intuitive
insight. To circumvent these difficulties, Semiconductor Bloch Equations (abbreviated as
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SBEs) [98] for graphene are employed. The SBEs provide a convenient mathematical tool
allowing idenification of the cooperative intraband and interband dynamics. It is shown
that, light-graphene interaction can be perceived as the interaction of light and an ensem-
ble of inhomogenously broadened two level systems concurrently evolved by an adiabatic
intraband dynamics.

Semiconductor Bloch Equations [99] have extensively been used to calculate the non-
linear optical response of semiconductors [98,100]. In Ref. [101] the derivation of SBEs
for graphene beyond the Dirac cone approximation has been discussed. In Ref. [102] the
general treatment of the SBEs for graphene including electron-electron interactions and
exciton effects is presented. Using SBEs, the problem of interaction can be treated in a
semiclassical manner leading to numerically amenable expressions for arbitrary orders of
interaction.

The SBEs introduce an effective dipole (interband dipole matrix element) in the recipro-
cal space that reveales peculiarities of graphene in terms of its optical response. As a direct
consequence of the chirality of the charged carriers, the interband dipole matrix element
obtained within the length gauge carries a first order singularity at the degeneracy points
which is in sharp contrast to ordinary (and other even gapless) semiconductors [71,103].
The anomalous mathematical structure of the interband dipole matrix element has raised
some controversies in treatment of the optical response of graphene [71,74]. Specifically,
the perturbative treatment of the nonlinear optical response has not been trouble free; the
higher order optical response coefficients of graphene obtained by means of the perturbation
theory inherit a nonresolvable singularity [71]. Although a huge amount of effort has been
spent on developing the nonlinear optical response of graphene [73-75|, a self-consistent
theoretical model, which can resolve the above issue, is still lacking.

In this chapter we present original derivations for the nonlinear optical response of
graphene based on a semicassical theory. We will adopt an approach that treats the elec-
trons dynamics in the presence of a moderate intensity electromagnetic field based on SBEs.
It will be demonstrated that the higher order nonlinear response of graphene, possesses a
singularity due to the topological properties of the band structure and the chiral nature
of the charged carriers. We reveal the physical implication of the singularity. Following
a many-body analysis, it will be argued that the electromagnetic field causes the charged
carriers in the vicinity of the Dirac points undergo ultra-fast Rabi oscillations accompanied
with slow relaxation dynamics, which, intriguingly, yields an unconventional saturation ef-
fect. The perturbative treatment of the optical response of graphene is revisited to account
for the extreme nonlinear interaction in the vicinity of the Dirac points. The theory consis-
tently resolves the aforementioned singularity by excluding the saturated states from the
solution domain.
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The theoretical predictions have been examined by direct experimentation. The Kerr
coefficient of graphene has been measured using the well-known z-scan technique and a rea-
sonable agreement between our theoretical results and our experimental results is achieved.

This chapter is organized as follows. In section. 2.2 the Hamiltonian of graphene within
the tight binding approximation is derived. In section. 2.3 we address the question of how
the chirality of carriers affects the optical response of graphene and its dependence on the
fundamental group symmetries of the problem. Section 2.4 is devoted to constructing the
semiclassical model used to treat light-graphene interaction that ends up with graphene
Bloch equations. In Section. 2.5 we propose a perturbative (iterative) approach to solve the
effective optical Bloch equations and address the issues associted with the chiral dynamics
of the carriers in pertubative treatment of the optical response of graphene. In section
2.6, we will proceed to reveal the unconventional saturation effect in graphene. Since
nonadiabatic nonlinear interactions are strongly influenced by relaxation dynamics, a full
many-body analysis will be performed to accurately find the dephasing and population
relaxation. The theory is substantiated by a direct time domain analysis. Section 2.7
is devoted to semi-perturbative treatment of the nonlinear optical response of graphene.
The numerical and experimetal results are presented in sections 2.8 and 2.9, respectively.
We summarize our findings in section 2.10. Concrete derivations are presented in the
appendices.

2.2 Graphene Hamiltonian and Equations of Motion

Graphene has a honeycomb crystal lattice with two lattice points per elementary cell. They
belong to two sublattices A and B where the nearest neighbours of the sites of one of them
are sites belonging to the other sublattice (a bipartite lattice). In Fig. 2.1(a) atoms in

A and B sublattices are shown by blue and red balls respectively. The Bravais lattice is

?Q) and az = a <§i - ‘?’j&) [48]. As

2
shown in Fig. 2.1(b) the reciprocal lattice is also hexagonal with rhomboidal unit cell. The
high symmetry crystallographic points are presented in Fig. 2.1(b).

triangular with the lattice vectors, a; = a <%£ +

We assume that the graphene monolayer (laying on the xy-plane) interacts with a plane
wave illuminating graphene in the perpendicular direction. This assumption allows us to
use the electric dipole approximation in which the effect of magnetic field is excluded.
This approximation is quite accurate for an ideal graphene sheet wherein electrons are
strongly bounded and their off-plane dynamics is negligible. The electric field can have an
arbitrary time variation containing different harmonics. The dynamical properties of the
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Figure 2.1: (a) Graphene lattice and (b) its reciprocal lattice formed by by = 3—2 (i + \/§Q)

and by = g_;r (fc — \/ﬁg) , (¢) Dirac points K’ <§—Z, 3\2/%(1) and K (?,)—Z, —3\2/%) are shown in

the figure .The schematic plot of dispersion relation around the Dirac point.

positively charged ions that constitute the host lattice of the crystal will be neglected in
our formulations. The system Hamiltonian for a single graphene sheet interacting with a
classical electromagnetic field within the single particle approximation is

H=Hy+ H; (2.1)

Where H, governs the dynamics of the electrons with mass M in the presence of the
periodic lattice potential V(r)

oy = / Pt () {% + V(r)} B (r) (2.2)

Where \i/(r) is the field operator. The interaction Hamiltonian in long-wavelength limit (or
normal incidence) is rigorously obtained in the wvelocity-gauge by replacing the canonical
momentum p by p+eA in Hy where A is the associated vector magnetic potential [100]. In
the case of graphene it seems very simple to use this electrodynamics substitution, however
it can be shown that neither the calculations are efficient, nor it reveals some interesting
physical properties. This will be further detailed in the succeeding sections and a through
discussion on the validity of the valocity gauge in the Dirac dynamics is presented in the
in Appendix. A. The interaction problem can be recast into the length gauge

;= eBun(t) - / Frit (c)ri(r) (2.3)

A common problem with the perturbation theory for solids in the length gauge is the
difficult treatment of the position operator r in view of the extended Bloch states [100].
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This is further detailed in the next section. It will be shown that both f]o and H 7 can
be treated in the framework of the Tight-Binding (TB) regime. Taking into account the
nearest-neighbor hopping with the hopping parameter k &~ —2.97eV [104] along 8, d5 and
d3 bonds (shown in Fig.2.1) the TB Hamiltonian in the momentum space is

fy = 3" Bo (ahinc+ ) + 53 [ F(R)alb + f*(k)bax] (2.4)
K k

The operators ax and l;k are fermionic annihilation operators on A and B sublattices
respectively. FEj is the result of the hopping processes within the sublattices. The first
term on the right hand side of the Eq. (2.4) is symmetrically diagonal and does not affect
the quasi-particles dynamics. The function f(k) = Z?:l exp(ik.d;) carries the symmetry
properties of the graphene lattice. The TB Hamiltonian H,y becomes diagonal in the
conduction and valence basis

~ 1 . . A
ékc = — (6_mk/2dk + €+mk/2bk> (25&)
V2
ékv = % (671’0{1‘/2&1{ — €+mk/2i)k> (2511))
2

where f(k) = |f(k)| exp(icy). This yields the corresponding TB-based band structure
B = By £ 5| f(%)] (2.6)

First order expansion of the Hamiltonian around the conical points yields a massless Dirac
quasiparticle whose dispersion relation is Fyx = £hvgk. It is noted that vp = —3ak/2h is
the Fermi velocity which is around ¢/300. Within the band structure picture the effective
Hamiltonian is

H o~ Z hvpk (élcékc - élvékv> (2.7)
K

where ékc and ékv are the conduction and valence annihilation operators in the upper and
lower energy bands, respectively. As long as the inter-valley scattering is improbable the
local behavior of the Hamiltonian around K and K’ is independent. In this work, the
many-body interactions such as electron-electron and electron-phonon interactions will be
phenomenologically incorporated into the dynamical equations via relxation coefficients.
This assumption allows us to use the single particle picture where the system is adequately
described by atomistic language. For mathematical convenience the matrix representations
are used in the derivation of the equations of motion. A more rigorous treatment of the
problem would involve including other band renormalizations such as a modification of
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the Fermi velocity (i.e. vp) due to many body columbic interactions [105]. However, the
present approach is faithful enough to capture the essential physics.

Assume that the two-component spinors (1 O)T and (O 1)T are adopted for A and
B states respectively. The resulting time-dependent Dirac equation describing low energy
excitation around one of the conical points is written as

Hy = hopk - & (2.8a)
0 — N

h—W), = Y 2.8b

i i Hy Uk (2.8b)

where Uy is a two-component spinor in the momentum space and & is made from the Pauli
matrices ¢ = 2o, + yo, + Zo, arose form the two sublattices. The optical response of
graphene can be studied in a physically transparent way using the equation of motion for
the density matrix. In Section. 2.4 we examine the nonlinear optical response of graphene
based on the time evolution of the density matrix. Liouville’s equation governs the time
progress of the density matrix and it yields coupled differential equations. The single
particle Liouville’s equation in graphene reads

i = [, ] ~ [P, ] + 7, (2.9
The first term on the right hand side of Eq. (2.9) is the regular dynamical phase variation.
In the next section it will be shown that the second term is closely related to the Berry
connection and topological properties of the band structure. This is the point where chiral
nature of the carriers and strong optical response of graphene tie up. In the next section,
an intuitive clue will be provided in a general formalism of two-band systems.

2.3 Two-Band Systems and the Role of Chirality

To illustrate the impact of the chiral nature of the charged carriers on the optical response
of graphene and to explore the uniqueness of the graphene in terms of its strong nonlinear
interaction with light, the mathematical description of chirality for a general two-level
systems is presented. We also address applicability of the reduced TB basis to describe
the matrix elements of the interaction Hamiltonian in the length gauge and its connection
with chirality of the charged carriers. In the last part of this section, it is shown that, our
arguments are general enough and they are independent of the approximation existing in
TB calculations. Chirality and its influence on the optical response root in the discrete
symmetries existing in the crystalline structure of graphene and inclusion of the many body
effects and the other higher order interaction terms do not alter the general conclusion.
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2.3.1 Two-band systems

A prototypical two-band system might be described by the Hamiltonian expanded in terms
of the Pauli matrices as R R R

H =¢o(k)! +e(k)u(k).c (2.10)
where £9(k) and £(k) > 0 are real functions of Bloch wavenumber k. The three-dimensional
vector operator ¢ is made from the Pauli matrices and [ is a 2 x 2 identity matrix. The

vector #(k) is a three dimensional unit vector and can be represented in terms of the
spherical angle variables v and

ug (k) = sin f(k) cos a(k) (2.11)
uy (k) = sin B(k) sin a (k) (2.12)
u,(k) = cos f(k) (2.13)

One can find the eigenvectors correspond to two energy eigenvalues F. (k) = gq(k) £ (k)
of the Hamiltonian as [106]

et = [ ) Ifiﬁ] (2.14)
- [0

For a d-dimensional electronic system the Bloch momentum k can be represented by its
magnitude k£ and d — 1 angle variables in the spherical coordinates, {v1,7s, - ,74—1}. For
the sake of brevity all angle variables are conveniently called . For the particular case
of graphene the system is two-dimensional and only the azimuthal angle ¢y ! is needed
to determine the direction of the Bloch momentum in the reciprocal space. Suppose a
prototype Hamiltonian in which @ is a function of angle variables only, i.e. @ = (7), with
no dependency on k, this is known as a general chiral system [88]. For such a system a and
[ appearing in Eqgs. (2.14) and (2.15) only depend on the angle variables. Equivalently
the pseudospin is determined by the direction of the momentum.

According to Eq. (2.8b) it is obvious that the low energy Hamiltonian in graphene
describes a scale invariance chiral electronic system. The chiral symmetry of the carriers
is not restricted to the TB model but stems from the honeycomb translational symmetry
of the crystalline structure.

Loy is the angle of vector k with respect to the k, axis shown in Fig. 2.1(c).
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2.3.2 Position operator: the role of chirality

To examine the importance of chirality in the optical response of graphene, we now turn our
attention to the calculation of matrix elements of the interaction Hamiltonian in the length
gauge. As mentioned earlier, the calculation of matrix elements of the position operator
in different Bloch states is challenging and it has caused some controversies [100,107]. For
the general case of extended Bloch states with spatial dependency of U, (r) = (r|n, k) =
exp(ik.r)u,(r) where upy is the periodic part of the wavefunction, the matrix elements of
the position operator are related to Berry connection tensor [107]. It is also shown [107]
that [r, px| appeared on the left hand side of Eq. (2.9) can be expressed as

(£, pa] = —iVipre + [Ax. /i (2.16)

where Ay m = —i(Unk|Vi|tmy) is the Berry connection tensor. In order to compute
the Berry connection tensor rigorously, the full machinery of Density Function Theory
and Wannier interpolation scheme should be used [107]. Introducing maximally localized
Wannier basis functions provides a numerically feasible scheme to evaluate the matrix
elements. It is straightforward to show that in the proper gauge that the basis functions
are expanded around the atomic centers r, as

Upse(r) =Y Camcexp [ik.(R+1,)] ¢a(r — R —1r,)

R,a

where ¢,s are the localzied wavefunctions. The right hand side of Eq. (2.16) reads

£, i) = —iVih + [Cier ind] (2.17)

where €y . = 1), Cank VikCami is closely related to the Berry connection tensor.
Localization of basis functions is the basic principle that underlines this approximation.
Fortunately, for the case of graphene the basis functions are fairly well localized and this
approximation works well. It is worth mentioning that both terms appearing on the right
hand side of Eq. (2.17) are gauge dependent, but the overall expression is independent of
gauge and the specific choice of basis functions. For the particular case of two band chiral
systems described in the previous section, the Berry connection exhibits singular behavior
at the degeneracy points. Energy eigenstates only depend on the angular variables ~;’s.
Therefore the gradient operator acting on the angular functions will be

1 .1 0
ViCoxn = T ; %Wa_%cmkn (2.18)
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where kh;(y) and 4; are respectively, the Riemann scale function and the unit vector
associated with the angle variable 7;. The appearance of 1/k term in the Liouville equation
is the main difference between graphene and an ordinary semiconductor material. It is
shown in the next section that this term acts like a dipole in the reciprocal space, playing
a significant role in the graphene’s nonlinear optical response.

2.3.3 Chirality and symmetry

Basically, low energy excitations that capture the universal characteristics of the system
are highly influenced by symmetries. Let us focus on the effective Hamiltonian governing
electrons dynamics around the Fermi energy level including band renormalizations due to
electron-electron interactions. In this thesis we will not plunge into the Landau theory
and just symmetry considerations are discussed here. As long as the two Dirac points can
be treated as independent entities, first order expansion of the Hamiltonian around the
conical points reads

HT %Y " kiAio; 4+ m(k)s. (2.19)

irj

where ¢ and j run over z and y. The coefficients A;;’s are the elements of a 2 x 2 constant
real matrix. The mass term m(k) can be expanded as m(k) = mg + k,m, + k,m,. Based
on the mathematical description of the chirality elucidated above, it is straightforward to
show that the necessary and sufficient condition to have a chiral system in low energy
limit is my = 0, which implies gapless state. It can be shown that the Dirac fermions
(gapless property) are topologically protected [97,108]. Two main symmetries characterize
the graphene lattice: time reversal and inversion symmetry. The time reversal symmetry
exists in the absence of any external magnetic field. The inversion symmetry emerges if the
original Hamiltonian is conserved upon inversion with inversion center in the middle of the
hexagonal lattice. These symmetries guarantee the local stability of the Dirac points [108].
However, a large enough perturbation may open up a gap. This is prevented by the
(s, existing in the graphene lattice which guarantees the global stability of the Dirac
points [108].

In the subsequent sections it will be shown that this chiral behavior leads to a singularity
in higher order optical response of graphene. In 2005, Kane and Mele showed that at
sufficiently low energy an isolated graphene exhibits a quantum spin Hall effect with an
energy gap induced by spin-orbit interaction [109]. The spin-orbit coupling Hamitonian
reads [109]

~

Hyo = —Ag0.7.5, + Ag (0,7.5, — 6,T054) (2.20)
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where &; , 7; and §; are Pauli matrices acting on pseudospin, valley index and electron spin
respectively. The coefficients Ay, and Ar are microscopic spin-orbit coupling constant and
Rashba coefficient, (as a result of breaking mirror symmetry) respectively. The spin-orbit
coupling factor A,, can be affected by curvature of the graphene sheet. The reported
value for this coefficient for the ideal case of flat defect-free graphene is Ay, ~ 1ueV [110].
The Rashba term could be present as a result of symmetry breaking by the substrate that
graphene is placed on. The resulting energy gap is 2(As, — Ag). Although this small gap
can remove the singularity in the optical response of graphene, the interband coupling is
still really strong in the vicinity of the Dirac point. It is worth noting that, the band gap
openning resulted from the spin-orbit coupling is much smaller than thermal fluctuations
in the room temperature (i.e. kgT > A,,). Moreover, the Rashba term can effectively
cancel out the spin-orbit coupling and annihilate the gap. Accordingly, we would safely
ignore the spin orbit Hamitonian in the rest of this chapter. The physical implication of
the strong interband coupling will be discussed in section 2.6.

2.4 Semiconductor Bloch Equations for Graphene

As mentioned in the preceding sections, within the single particle approximation, the
density matrix obeys dynamical equations in Schrodinger’s picture. The applied field drives
the distribution out of equilibrium leading to a nonvanishing induced current. For the
specific case of a continuous excitation, the dynamical equations on the density matrix can
be recast into the form of the Semiconductor Bloch Equations (SBEs). Based on SBEs the
dynamics is governed by a quasiclassical theory with quantum fluctuations superimposed.
The quantum corrections to the classical dynamics will be converted to the well known
problem of light-atom interaction [32].

The key assumptions in our calculations are (i) the coherent optical excitation should
be in the continuous regime and thus, our calculations lie on the border between the clas-
sical and the coherent quantum regime (ii) the carriers dynamics are effectively described
using the mean field approximation and their collective influence are incorporated into the
reduced dynamical equations via the relaxation coefficients. We ignore the other many-
body induced band renormalizations such as modification of the Fermi velocity due to
electron-electron interactions [111]. (iii) Being limited to the photon energies below ~ 2eV
the Dirac cone approximation is valid and the excitonic effects are shown to be negligi-
ble [112]. (iv) Due to the smallness of the band gap induced by spin-orbit coupling, the
dispersion properties of the charged carriers would barely deviate from the massless rela-
tivistic dynamics and are that term can be safely neglected. The above assumptions allow
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us to proceed primarily within the single particle picture and the higher order many-body
corrections will be phenomenologically included following a rigorous time domain analysis.

2.4.1 Equations of motion

We proceed from Eq. (2.16) which offers a gauge independent relation and thus we are at
liberty to choose any kind of gauge making the mathematical structure simpler. Working
in the sublattice (pseudospin) basis and making use of Eq. (2.9) and Eq. (2.17) gives

dp N

The 2 x 2 pseudospin density matrix py can be expanded in terms of Pauli matrices
P = mid + 1 - G (2.22)

On substituting Eq. (2.22) into Eq. (2.21), one obtains decoupled equations for charge
density ny and pseudospin density my [42]

onx e
% — 205 (K X 1) + %E.vkmk (2.24)

The right hand side of Eq. (2.24) is analogous to spin procession in a magnetic field. The
same can be set for the pseudospin in the pseudo-magnetic field acting in the reciprocal
space [42]. This equation encodes a wealth of information about the optical response of
graphene including linear and nonlinear response in noninteracting regime. Owing to the
linear dispersion relation around the Dirac points, current operator has only paramagnetic
component

> e 87:[k

T = ———X = —evpd (2.25)

h Ok

and the current density becomes
J=(J) =Tt (jkpk) = —2evp (23 +99) - Y ihe (2.26)
Kk

Having derived the equations of motion in the sublattice basis, now, we can switch to the
energy diagonal basis. To avoid confusion, we use “~” to denote the matrix representation
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of the operators in the valence and conduction basis. In the energy diagonal basis (1 O)T

and (O 1)T, stand for the upper and the lower energy levels respectively. In the energy
diagonal basis the density matrix and the current operator become:

ﬁk :fnk + Tﬁk : (RO’Z + @kO'y — 20};) (227)

jk = — €EVf (lA{O'Z + ¢k0y> (228)

Where k and ¢k are shown in Fig. 2.1(c). In the thermal equilibrium, before switching on
the incident field, the density distribution obeys Fermi statistics

(Eedo = FIEK) L (& b)o = F(—E(K)) (2.29)

Where subscript 0 denotes equilibrium state and (k) = hvsk is the upper energy level.
The distribution f(F) is the Fermi distribution function

1
f(E) = |+ exp (f;;éﬁ)

where 1 and T are, respectively, the chemical potential associated with the fermi energy
level 'y and the temperature.

2.4.2 Dynamics of Population Difference and Polarization

In the presence of electromagnetic field, the current operator acquires a finite expectation
value. The particle current, can be divided into two distinct parts. The first part is the
current resulting from disturbing the distribution of the charged carriers residing on the
upper and lower energy levels and the second contribution is due to interference between
them. The former is intraband and the latter is the interband current. Following this
statement, it will be shown that the optical response of a general two level system depends
on the population difference N (k,t) and polarization P(k,t)

N (k1) = (g &) — (o) = 2k - 170 (2.30)
Pk, t) = (£ &) = —2 -1 + iy - 7 (2.31)
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Taking A/ and P as dynamical variables and using Eq. (2.24), we obtain the equations of
motion for the population difference and the polarization.

w — $E-ViN(k, t) = —20(k, t)Im {P(k, 1)}
(2.32)
w — $E-ViP(k,t) = imP(k, t) + 5 (k, )N (k, 1)

where ®(k,t) is basically the matrix element of the external potential between the upper
and lower energy levels for the given Bloch momentum k describing direct optical transition,
since the momentum of the light is assumed to be negligibly small.

_eE- @y
- Rk
where the unit vector @y is defined as P, = 2 x k/k. The frequency hwy = 2& is the
energy difference between the upper and lower energy levels. The coupled equations given
in (2.32) are called semiconductor Bloch equations (SBEs) for graphene. These equations
must be solved simultaneously, subject to the initial condition imposed by the Fermi-Dirac
distribution before turning on the field.

Nk, —o0) = N\ = f(€(k)) — f(=€(k))
Pk, —o0) =0

d(k, 1)

(2.33)

The left side of the SBEs are essentially similar to the semiclassical Boltzman’s transport
equation. This part of dynamics is responsible for intraband transitions for a pure graphene,
neglecting the effect of collisions and imperfections. A simple way of incorporating the
effect of collision into the theory is to use a complex frequency in the spectral domain.
The right side of SBEs appear to resemble the problem of two level atomic transition
in the presence of an applied electric field. However, the dipole that causes transition
has been replaced by ®(k,t) in the reciprocal space. The chiral nature of the charged
carriers leaves its fingerprint on the appearance of 1/k in the effective dipole expression.

This singular behavior roots in 1/k dependence of ¢, in the energy diagonal basis. The
distinctive mathematical structure of the current operator in graphene and other Dirac
materials can also reveal the fundamental root of this singularity. In contrast to ordinary
semiconductors that in the absence of disorder, the current operator should be fairly well
stationary in the energy eigenstates, for the Dirac fermions current operator does not
commute with the Hamiltonian. This effect leads to Zitterbewegung and pseudodiffusion
transport in graphene [113]. It is straightforward to show that the interband coupling at
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the wavenumber k is r,, ~ %jcv(k) /[€c(k) — &,(k)]. Since the current operator only
depends on the angular variables in a typical Dirac material (See Eq. (2.28) for instance),
its off-diagonal components are strictly nonzero. As a direct consequence of this exclusive
property of the massless Dirac quasiparticles, the interband part of the position operator
carries a first order singularity at the accidental degeneracy point. As discussed earlier,
this singularity would pose major consequences on the optical response of graphene and
other Dirac type materials.

2.5 Perturbative Solution of SBEs

As discussed, the SBEs in their original form describe the quasiclassical transport and
interband excitation problems simultaneously. To convert the dynamical equations into a
more convenient form, we proceed to decouple the transport and interband evolutions. It
is worth noting that for a moderate applied field strength, the time evolution due to this
moving frame can be considered as an adiabatic evolution in comparison to the interband
one. Following this adiabatic argument, the combined intraband and interband dynamics
can be split, by introducing a moving frame in the reciprocal space whose movement
is governed by the Boltzmann transport equation [71]. The pure classical part of the
dynamics drives the distribution function along a trajectory determined by the direction of
the electric field. This motion is accompanied by inelastic scattering as well as coulombic
interactions among the induced charges. A phenomenological treatment of the overall effect
requires invoking an extrinsic fitting factor I' which depends on the quality of the sample.
The main disadvantage of this method is, of course, certain lack of rigour, the method is,
however less laborious. The time-momentum coordinate in the moving frame is designed
by {7,k’}. The primed frame is then related to original frame by {7,k'} = {t,k — Ak(¢)}

where Ak obeys
0Ak

— +
ot
Concurrently, the system evolves by pure interband dynamics as described by the equations
resembling the optical Bloch equations for a generic two level problem [32]

TAk = —%E(t) (2.34)

8N(k’, T) (1)

PRI — DN, )~ M)~ 20, ) (PO, )} (2850)
GP(k’, T) o (2) / . / i / /
—5 = e P, 1) +iwmeP(K', 7) + 5@(k TN (K, 7) (2.35Db)
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As remarked ealier, the many-body effects such as electron-electron and electron-phonon
interactions are rigorously analyzed within a separate many body theory, detailed in
Ref. [114], and their collective influence on the optical response are phenomenologically

incorporated into the dynamical equations via the k-dependent relaxation coefficients 71({1)

and 71((2). It can be shown that this approach is accurate enough for the steady state (fre-
quency domain) analysis of the linear and nonlinear optical response of graphene. The
methodology is concisely discussed in Appendix B. In compliance with the standard no-
tation of Bloch equations, we introduce wy, uy, vy as

we(t) 2 N(K,7) (2.36a)
ue(t) = +2Re{P (K, 7)} (2.36D)
we(t) = —2Im{P (K, 7)} (2.36¢)

w is population inversion in the moving frame. In Egs. (2.36b) and (2.36¢), the factor of
two and the minus sign are used to comply with convention. The functions & = ®(k/,7)
and wy, £ i are also defined for mathematical convenience and they are the analytical
functions of the exciting field. The function & is the equivalent dipole in the moving
frame. This dipole explicitly depends on the exciting field and higher order nonlinear terms
also exist due to motion of the primed frame. In adiabatic approximation the dynamical
equations (not the excitations) are not directly affected by the moving frame and therefore
the time variations of the relxation coefficients as well as wy due to the motion of the
frame can be neglected as long as the pump wave intensity is not so large that multiphoton
excitations take place.

The coupled Bloch equations can be converted to the well-known optical Bloch equa-
tions in the two-level approximation [32]. From now on, we drop the prime in wvw-
coordinate system.

e = = (wie = wid) + v (2:37a)
iLk = WUk — ’}/1(3)Uk (237b)
i)k = —WkUk — 71((2)1]1( — §kwk (237C)

where ‘dot’ denotes time derivative. The function wy’ is the population difference at

equilibrium ie. wy! = N For a weak pump field, the inversion wy tends to relax to
wy!. The coherent terms, on the other hand, are the oscillatory functions of the field. To
proceed further, the current response in the reciprocal space must be identified. According
to Eq. (2.27) together with Eq. (2.28) the induced current is

J= —26?)F Z(f{f{ + @k@k) . T?lk = eVF Z [—wk,AkR + vk,AngJk] (238)
k k
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Therefore the equation of motion describing the time evolution of vy provides enough
information to model the interband response of graphene. Neglecting the time variations
of wy in the adiabatic approximation:

B + 2790 + (Wi +73) Uk = —Yobktk — & — Eitig (2.39)
Since wi is much larger than v | we can drop Y2vk to obtain the result:

Q.}k + 2’721.)1{ + (,«)12{1)1{ == —vgﬁkwk - fkwk - fku';k (240)

Eq. (2.40) describes a driven damped harmonic oscillator problem. The master equa-
tion (2.40) in conjunction with Eq. (2.37a) describe all linear and nonlinear properties of
graphene. The origin of the nonlinear interband response in the moving frame lies in the
fact that the coupling to the optical field depends parametrically on the inversion wy. In-
version is driven by the field stength & as described by Eq. (2.37a) which leads to a pure
interband nonlinearity. This set of equations can be solved iteratively. Expanding vy, and
wy into the powers of the exciting field, i.e. &, gives a infinite series that contains the odd
powers for vy and even powers of the field for wy.

we = wil + Y WV (2.41a)
n=1
ve= Y Y (2.41b)
n=1

(

From now on, the n’th order expansion terms wk”) and vl({n) are defined via
W =W =g

The iterative procedure can be conveniently carried out defineing the opeartors Vi and

We.

A f}/l(f) + 1w e
Vi(w) = ®) — Pk (2.42a)
w? — 2w — wi hik
1 e
Wi (w) é'—(l)—@k (2.42D)
W+ Y hk

In addition to the pure interband multiphoton process described above, a part of non-
linearity originates from the quasiclassical transport or intraband transitions. As will be
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clarified further in section 2.5.2, the frequency mixing effects in graphene arise from the
pure intraband, pure interband and interband-intraband transitions. The pure intraband
response occurs just because of the change in the the population difference. Using (2.38),
the intraband contribution of the current is

Jintra = —€VF Z wk Ak (243)

then, the n’th order nonlinearity due to pure intraband process can be obtained using
Taylor expansion:

Tiea = (1) =F Zk [Ak - Vi )" A (2.44)
For the sake of mathematical convenience the derlvatlve operator is represented as
. 1 e
Dy(w) = Y 2.45
k(W) iw+Th * (2.45)

where the Drude-like coefficient 1/(iw + I') is obtained from equation (2.34). An intuitive
symmetry argument shows that in graphene as a centrosymmetric crystal, even orders of
nonlinearity do not exist. In the subceeding subsections the derivation of linear and third
order conductivity of graphene is discussed.

2.5.1 Linear optical response of graphene

Eq. (2.44) for n = 1 gives the intraband conductivity tensor in the k-space

gzgziraG{? wp) = _eUFlA{@k(wp)Nliq (246)
where we have assumed that the electric field is E(t) = E, exp(iwyt) 4 ¢.c and Umim (k,wp)
is defined via

h (k,wp) - E

intra

Performing the integration over the reciprocal space, the off-diagonal terms vanish, we

arrive at
intrat=p 47 h2 (zwp +1') Jo (95 o€ '

where g, and g, are spin and valley degeneracy factors respectively. This equation can be
simplified to a close form expression for the linear intraband conductivity

(1) e’ 9590 kgT I —u/KgT
\ 21n (1 #/Kp 2.48
Tintra(p) = h 4r h(iw, + T') {/@T +2In(l+e ) (2.48)
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The interband linear optical response of graphene can be obtained using the master
equation (2.40). Linear optical response is a single photon process and unlike higher order
terms it can be obtained independently for interband and intraband contributions. The
first order solution of the Eq. (2.40) can be derived by replacing wy and wy with w,! and
0 respectively

Tinter(K, wp) = evp@r Vi (wp )N (2.49)

Integrating over the reciprocal space and including the density of states gives

il = 20 [Tae G pe) ey 2o

inter h 4m w2 — 2ivaw, — wj,

Egs. (2.48) and (2.50) are identical to the results obtained from linear response theory and
Kubo formulation [82].

2.5.2 Third order frequency mixing in graphene

Graphene as a centrosymmetric crystal does not exhibit second order nonlinearity and
therefore the first nonlinear term is the third order one. In fact, to induce an optically
biased second order response, translation symmetry must be broken. From what has been
discussed so far, we know that the yx dependence of the n’th order optical conductivity
tensor in the reciprocal space, i.e. a({n)’ appears as T, (px) = G1ds - - - G,y Where ; can
be either k or Ok. It is straightforward to show that fo% T, (x)dpy vanishes when n
is an even integer. Throughout this section we assume that three complex fields with a
time dependence of e™r!, et and e™r! are mixing through the third-order conductivity of
graphene. As mentioned earlier, the third-order optical response can be interpreted as a
three-photon process and different terms contribute to the third-order conductivity tensor
namelya pure intraband term,a pure interband term and the combination of the both. The
distinct photon processes contributing to the third-order optics of graphene are schemat-
ically shown in Fig. 2.2. The intraband dynamics cause the quasiparticles to travel along
the trajectory determined by the direction of the electric field at the graphene plane. The
quasiclassical Boltzman-like dynamics are schematically pictured by displacement of the
entire distribution of the quasiparticles over the reciprocal space. The interband contribu-
tions are also shown by the two level transition of the quasiparticles predominantly around
the zero detuning region. The adopted mathematical structure would allow us to find the
conductivity tensors associated with the six processes shown in Fig. 2.2.
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Figure 2.2: Schematic representation of different three-photon processes contributing to the
third-order nonlinear optics of graphene. The intraband type of dynamics are displayed by dis-
placement of the distribution and the interband dynamics are shown by two-level transitions. (a)
Pure intraband (b) Pure interband (c) Interband-Interband-Intraband (d) Intraband-Intraband-
Interband (e) Intraband-Interband-Intraband (f) Interband-Intraband-Intraband.

Pure intraband third-order nonlinearity

The pure intraband contribution is fundamentally part of the third-order nonlinearity
which occurs exclusively due to the Boltzman-like transport. The third-order intraband
prcoess is schematically displayed in Fig. 2.2a. Equation (2.44) determines the nonlinear
contribution of the third-order intraband evolution as

—(3) - . . .

Ty 1 (Wp, Wy, wr) = —evpPy { kDy (w;) Dy (wy) Dy (wp )N } (2.51)
Where the normalized gradient operator Dy was introduced in Eq.(2.45). The subscript
‘1’ is used to identify the intraband contribution and the superscript ‘(3)” refers to the
third-order effect. Here we have made use of the intrinsic permutation operator Py; all
possible permutations of the input frequencies w,, w, and w,, should be summed over. The
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overal intraband conductivity tensor is then obtained as

—(3 =(3)
Gootra(Wps g ) = 3 Ty (2.52)
k

Pure interband third-order nonlinearity

Pure interband third-order nonlinearity can be obtained using the master equations (2.40)

and (2.37a) in the moving frame. Power expansion of the inversion and the polarization in
terms of the exciting field as Eqgs. (2.41a) and (2.41b) gives vf’). Assuming that the first
photon w, provides time variation for vl((l)(wp), the first nonzero oscillatory component of

wy as well as the third harmonic of vl(cg) can be found from the following equations

i+ = Glweoy (@) (2.53)
i)l((?’) + 2721}1((3) + wﬁvl(f) = —vgfk(wr)wl(f) — fk(wr)wl(f) — gk(wr)wff) (2.54)

These equations can be solved simultaneously to find the contribution of the interband
dynamics associated with Bloch index k to the third-order optical nonlinearity. Making
use of the operators Vi and Wy allows a compact solution as

—=(3) R e
Ty o(wp, wg, wy) = —evpPy {gokvk(wp + wy + W) Wi (wp + wy) Vie(w, )N } (2.55)
Performing the integration in the reciprocal space and applying the permutation operator

yields the final expression for the interband conductivity tensor. The interband conduc-
tivity tensor is then obtained as

=(3) =)
O_inter<wp7w(bw7‘) = sz,Q (256)
k

where the summation goes over all quantum states. This term is obviously singular at the
origin.
Interband-intraband third-order nonlinearity

The master equations together with the notion of a moving frame lead to four possible
combinations of the inter- and intraband dynamics shown in Fig. 2.2¢-f.
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e Interband-Interband-Intraband: According to Fig. 2.2¢, the interband dynamics
modify the population difference through a non-parametric transition. The third
photon (which is actually the probing photon!) causes an intraband transition. The
master equations (2.40) and (2.37a) yield the modified population accomplished via
two subsequent photon processes.

(2 2 1

iy + = Gelwg)y ()
The third process causes the modified population to move over the reciprocal space
and creates an intraband current described by equation (2.43). The tensor associated
with this process reads

—=(3) ~ A .
Ty 3(wp, Wy, wr) = —evpPy {ka(wT)Wk(wp + wy) Vie(wp) N } (2.57)

e Intraband-Intraband-Interband: Following two subsequent intraband transitions
at the frequencies of w, and w,, the population difference oscillates at the sum fre-
quency w, + w,. The third photon probes the graphene whose quasiparticles are
oscillating over the reciprocal space and the current is induced due to interband

transition. This process is sketched in Fig. 2.2d and mathematically is encoded by
—=(3)
Ik 4-

—(3) . ~ ~ o
Ik,4(wpywq7 wy) = —evpPr {‘kak(wp + W + wT)Dk(wq)Dk(wp>qu } (2.58)

e Intraband-Interband-Intraband: Fig. 2.2e displays the ordering of the processes.
Following an intraband transition, the population difference oscillates at frequency
w,. The second process is interband which creates a coherence (polarization) at the
frequency of w, + w,. The induced polarization is driven by an additional intraband
transition to create a current at the frequency of w, + w, + w,. Although the last
transition is intraband, the induced current is of interband nature and is modulated
by the moving frame.

—=(3) oA ~ e
T 5(wp, wq, wr) = —evpPr { GuDr(wr) Vi(wy, + wq) Di(wp) N } (2.59)

e Interband-Intraband-Intraband: An interband transition caused by the first pho-
ton creates the polarization oscillating at the frequency w,. Due to the Boltzman-like
transport, the induced polarization is modulated by two consecutive harmonics w,
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and w,. The induced current has an interband nature and is shown in Fig. 2.2f. The
—=(3)
overall dynamics are encoded by Z, g.

=(3) oa ~ .
Ly 5(wp, Wy, wr) = —evpPr { eDi(wr) Dic(wq) Vic(wp) N } (2.60)

The overal intraband-interband conductivity tensor is then obtained as

6
=(3) =)
O intra—inter (U.Jp, wq> ("")7") = Z Z Ik,l (261)
=3 k

2.6 Spontaneous Optical Saturation of Graphene

As remarked earlier, the diverging field-induced interband coupling around the Dirac point
is expected to significantly influence the optical response of graphene. Since the inter-
band coupling is really pronounced around the degeneracy point, the intraband dynamics
can be safely treated as independent in the vicinity of the degenercy point. As a result,
graphene can be thought as an ensemble of two level systems over the reciprocal space with
the effective dipole moment described by ®(k,t). We expect that the two level systems
will undergo ultra-fast Rabi oscillations which are dominantly damped by many body in-
teractions including electron-electron and electron-phonon scatterings. The decay terms
drive the two level systems labeled by Bloch index k into an equilibrium state after a time
1/ 71((2). Since around the Dirac point the interband coupling is strong (equivalent to highly
intense illumination), the effective field leaves the two-level systems in a statistical mixture
of the ground and excited states with equal weight and absorption quenching takes place.
We name the nearly zero population difference around the Dirac point caused even by an
arbitrarily weak electromagnetic radiation as the spontaneous saturation effect. This in-
terpretation leads to the proposal that the optics of graphene is essentially nonparametric
and nonperturbative.

The saturation behavior discussed above can be best comprehended by capturing the
steady state solution of the Bloch equations. In order to do so, we adopt steady state ansatz
within the rotating frame approximation [115]. We define N'(k,t) ~ N and P(k,t) ~
ﬁﬁtewt where the tilde ~ designates the stationary part of the population difference and
polarization with vanishing time derivatives. The steady state solution of the SBEs yields
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the optically modified population difference and polarization
n/st 71({1)
Nlj (]0) :qu O @ 5|~ D) (262&)
N e k(W) “I’k‘

Pil(ly) = %Ek(w)/’\vfﬁt&)k (2.62b)

where &y = ¢Ey.¢i/hk is the complex phasor associated with ®(k, ). Since the steady
state solution depends on the field magnitude via |®y|? in the denominator of the Eq. (2.62a),
the overall solution is function of the intensity Iy = 2soc|Eq|* (c is the speed of light and
go is the permitivity). The complex Lorentzian Ly (w) is abbreviated as

Ek(w) £

N 1
N C)

S (2.63)
Yk + ZAk

Here Ay = w — wy denotes the detuning of the two level system at k with respect to
the excitation. Equation (2.62a) decodes a wealth of information about saturation effects
including the spontaneous saturation discussed above. Particularly, the regions of the k-
space where the population N cannot be Taylor expanded in terms of the powers of the
field @, are the saturated regions. Non-validity of the geometric expansion implies that
the perturbative expansion no longer be valid. This saturation behavior basically occurs
in all two level systems at sufficiently high field intensities. However, due to the singularity
of the interband coupling in graphene, there is always a region around the Dirac point
where graphene is saturated. Following this argument, the saturation threshold Ef* can
be obtained as a function of k and the relaxation coefficients as

(1)
Ssa i 2
By = k| ARG + (2.64)
Tk

For the given electric field amplitude FEy, at any region of the k-space where Ey > Ef%, the
perturbative expansion is not valid and the population difference is significantly modified by
the optical illumination. Obviously, at the Dirac point the saturation threshold is zero and
hence graphene gets spontaneously saturated. Equation (2.64) identifies two independent
mechanisms contributing in the saturation effects. Around the Dirac point the overall

expression is dominated by the off-tuned term i.e. eE" ~ hk |Ay| 71(3) /71((2). This term
determines the saturation region at the origin. The second term, however, would lead to
an ordinary saturation effect over the optical transition region where Ay ~ 0 which in turn

yields e Ei™ ~ hkA/ ’ylil)'yl(f).
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Figure 2.3: k-dependent relaxation coefficients ’y( ) and ’yl(f) for an undoped graphene.
The results are obtained from full many body calculations. Yellow shaded region shows
the region with zero detuning (optical excitation is fiw ~ 800meV)

The saturation threshold strictly depends on the effective relaxation coefficients and
therefore relaxation dynamics play a decisive role in saturation behavior. A full many-body
calculation has been performed in order for extracting effective relaxation coefficients. We
have employed the microscopic theory that encompasses carrier-carrier as well as carrier-
phonon scattering channels and takes into account all relevant relaxation paths including
interband and intraband and even inter-valley processes [114]. Both diagonal and off
diagonal many-particle dephasings have been considered in our calculations. The full
dynamics has been examined by a relatively long but sharp ed%ed pulse excitation. In
order to extract the effective relaxation coefficients 71( and Vk , the time decay of the
population difference and polarization has been observed over time at different points in
the k-space. Fig. 2.3 shows the results of our calculations. It is quite interesting that ~ (1)
tends to be zero in the vicinity of the Dirac point which causes an even more pronounced
saturation effect around the origin.

Having achieved all necessary ingredients , the peculiar saturation mechanism in graphene
can be genuinely resolved by time domain analysis of the graphene Bloch equations. The
finite difference time domain technique is employed to watch the temporal dynamics. The
time steps are appropriately selected to assure numerical stability. Although the ultra-fast
and transient response may not be accurately captured by the effective dynamics described
by the coupled equations (2.35a) and (2.35b), since the steady state response is the only
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matter of interest, analysis offers sufficiently reliable results. For the sake of comparison,
the analysis has been performed for two distinct continuous excitations with the energy of
hw = 80meV (THz range) and fw = 800meV (infrared) respectively. In both cases, the
electric field is linearly polarized along ¢ direction with the magnitude of Ey = 10V /m.
Graphene is assumed to be undoped (i.e. p = 0) and is initially held at room tempera-
ture. It can be shown that, in the steady state regime, the population difference contains
even harmonics of excitation with a dominant non-oscillatory part. The polarization, in
contrast, would be oscillatory with odd harmonics. The relative change in the station-
ary component of the population difference due to the optical excitation as well as the
induced polarization oscillating at the first harmonics are illustrated in Fig. 2.4. To distill
the steady state components, we perform Fourier analysis within a time window that the
transient response has already died out. We have found perfect agreement between the
results shown in Fig. 2.4 and Egs. (2.62a)-(2.62b).

As expected, time-domain analysis also reveals the unconventional saturation region in
graphene. Fig. 2.4 illustrates a well-pronounced modified population difference around the
Dirac point due to the optical excitation. We observe that this effect is more conspicuous
for low energy excitations; reduced detuning yields weaker saturation threshold. It is worth
noting that for moderate field intensities (like this example), the completed saturated region
might be small. The region of the reciprocal space where the self-coupling is significant,
nevertheless, is considerably well extended in the vicinity of the Dirac point. This effect
together with nonzero polarization induced aound the origin lead to an unconventional
Kerr like nonlinearity in graphene. An exhaustive analysis of this effect will be presented
in the next section.

To gain insight into the macroscopic impact of the spontaneous saturation effect, let us
consider the example of nonlinear spectroscopy in which monolayer graphene is subjected to
the simultaneous application of a pump and probe laser beam. The frequency of the pump
and probe are w, and w,, respectively, and the intensity of the pump laser is denoted by /..
The intraband absorption profile of the probe field is obtained by plugging the steady state
population difference NV (1,) into the linear response theory. The corresponding intraband
linear conductivity tensor in the presence of the pump I, reads

= € UnggvD 2 st
Yintra d?kk 2.
N s ol Lt (2.65)

where g, and g, are the spin and valley degeneracy factors, respectively, and D = 1/(27)?
is the density of the states in the reciprocal space. The integral goes over the reduced recip-
rocal space where the Dirac dispersion is valid (RBZ abbreviates Reduced Brillouin Zone).
A more rigorous treatment, would involve including additional contributions acounting
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Figure 2.4: Contour plots of the time-resolved steady state population difference (N =
N(k,t) — N?) and polarization of an undopted graphene for two distinct excitations,
hw = 80meV, 800meV. k-space is normalized to ky = w/2vp. Yellow dotted lines display
the optical excitation with zero interband detuning. For the both excitations the field
amplitude is Eg = 10°V /mj.

for the nonlinear frequency mixing due to pure intraband process. However, the above
formulation is adequately accurate for large enough pumpe frequencies. The interband
conductivity consists of two contributions namely incoherent and coherent terms [116].
Similar to the intraband part, the incoherent contribution simply results from reduction of
the population difference over the reciprocal space. The coherent term, however, enters due
to population pulsation at the beat frequency w, — w,. It is argued that the coherent term
involves interference between the pump and probe fields [116]. The population pulsation
followed by absorption of a second photon from the pump field, mathematically acts as
an additional complex contribution to the population difference denoted by SNP“s. The
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Figure 2.5: Change to the diagonal element of the conductivity at the probe frequency
wp (00(wp)) due to the presence of the pump field at the frequency of (a) iw. = 80meV
and (b) fw. = 800meV . The conductivity is normalized to oo = e?/4h. Variations of
the absorption coefficient of graphene (normalized to its intrinsic value) versus the pump
intensity for the two frequences of the pump field are shown in the insets of the figures.

overall pump induced interband conductivity tensor is

= 62 2 A A 1 A st puls
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The validity of the theory requires that the coherence length of the pump laser be much
larger than the wavelength of the probe field.

Following the previous example, Fig. 2.5 displays the relative change to the real part
of the diagonal element of the overall conductivity tensor due to the pump fields described
earlier. Given the absorption coefficient defined as the relative change in the intensity as
light passes through monolayer graphene o« = —AI /I, this coefficient is roughly calculated
as a = Re{o}/4eoc. The relative change to the absorption coefficient for low frequency
probing and probing at the same frequency of the pump field are shown in the insets of
Figs. 2.5b and 2.5¢. The low frequency modulation is caused by virtue of the spontaneous
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saturation effect and is quite pronounced for low frequency pumping. It is quite inter-
esting that sufficiently strong optical excitation can render a graphene monolayer quite
transparent at low frequencies.

2.7 Semi-perturbative Nonlinear Optics of Graphene

In the previous section, it was argued that the topologically protected large interband
coupling at the Dirac point gives rise to spontaneous optical saturation. Since that ef-
fect essentially occurs for even arbitrarily weak field intensities, the full machinery of the
perturbation theory should fail to predict the optical response of graphene. Specifically,
the nonlinear optical response needs to be treated carefully to account for the extreme
nonlinear behavior of the quasiparticles in the vicinity of degeneracy points. One might
legitimately argue that, according to Eq. (2.64), for moderately intense illuminations only
the few number of quasiparticles belonging to the relatively small saturated region would
undergo saturation and thereby its impact should be negligible. Although, the argument
is valid for the linear part of the optical response, the nonlinear optics of graphene can be
highly influenced by this phenomenon. Inside the saturated region, due to optically induced
Pauli blocking, the Bloch quasiparticles basically stop interacting with light. However, as
will be shown in the following, an extreme nonlinear optical interaction over the boundary
of the saturated region takes place and it would leave its finger print as a finite contribution
to the overall nonlinear optical response of graphene.

As detailed in section 2.5, the perturbative treatment of the optical response of graphene
would lead to a nonresolvable singularity in its higher order nonlinear coefficients. We can
now acknowledge that the singularity is the manifestation of the unconventional saturation
effect and it can be removed by excluding the saturated states from the solution domain.

In spite of invalidity of the perturbation theory in the optics of graphene, derivation
of the nonlinear coefficients is still favorable, particularly, for predicting the nonlinear
frequency mixing effects when several frequency components coexist. Striving to obtain
the nonlinear coefficients, we can safely remove the saturated region from the perturbative
expansion. The saturated states would still influence the overal response by specifying
the domain of integeration over the reciprocal space. This is the point where the extreme
nonlinear process at the vicinity of the Dirac point and nonlinear response tie up.

Let us focus on the region of the k-space where perturbation analysis is still valid. It
is argued in section 2.5.2 and references [71,74,75] that the nonlinear frequency mixing in
graphene can be decomposed to the additive contributions namely pure interband , pure
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intraband and interplay between them. Obviously the pure interband term is singular at
the origin. Based on the above argument, the conductivity tensor associated with each
contribution is then obtained as

— =(3)
51(3) (wpvwmw?“) = gsgoD //kl . d’k Ik,l (wpawmwr) (2'68>
>Ksat

where K4 is the radius (with respect to the Dirac point) of the saturated region over the
k-space and is obtained from Eq. (2.64)

1 1 @)
hp Ky ~ ihw — | (5w)? — 2hvpeEy W

; (2.69)

Here 7 and v® are the phenomenological relaxation coefficients and Ej is the mag-
nitude of the largest electric field component (most often a pump field) participating in
the nonlinear process and w is its frequency. The above approximation holds as long as
hw > hvp Ky, which is readily satisfied in most optical excitations. Since the integra-
tion domain and accordingly the nonlinear coefficients depend on the field magnitude,
the solution is called semi-perturbative. However, as will be exemplified in the following,
this dependence is small enough to think of the coefficients as the third order nonlinear
conductivity tenors.

In order to gain insight into the intensity dependence of the nonlinear response co-
efficients obtained from the semi-perturbative approach as well as to examine equation
(2.69), we compare the Kerr-like nonlinear response encoded by ‘0(3) (W, w, —w)‘ with the
results of nonperturbative solution of SBEs (detailed in Appendix C). The blue shaded
regions display the nonpertubative solution and the black dotted curves are the results
of semi-perturbative approach. First, owing to the spontaneous saturation effect, there
is a noticeable field dependence of the Kerr-like response for lower Fermi energies. As
the Fermi energy becomes larger, the optically induced Pauli blocking fades as the low
energy Fermions are already Pauli blocked. There is perfect agreement between the two
approaches. However, in the saturated states displayed by the red shaded regions, the
semi-perturbation theory expectedly breaks down and it cannot follow the analytical solu-
tions. It is worth pointing out that we have observed significant dependence of the results
on K, and therefore exact exclusion of the stuated region is required to achieve accurate
results. The theoretical estimations for the different semi-perturbative nonlinear response
coefficients including the third harmonic and Kerr coefficients will be deliberated in the
next section.
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Figure 2.6: Kerr-type nonlineraity of graphene obtained based the analytical ap-
proach outlined in Appendix C (blue shaded regions) and semi-pertubative approach (i.e.
0@ (w,w, —w), black dotted curves). The two distinctive red shaded regions are the sat-
uration regions which are separately taking place due to 1. zero-detuning and 2. strong
interband coupling in the vicinity of the Dirac points. Results for different fermi levels are
displayed with different scales. Actual scales are presented in the insets.

2.8 Nonlinear Response Coefficients of Graphene

The nonlinear optical behavior of graphene has been experimentally investigated by several
groups [39, 76, 77]. Four-wave mixing experiment [76] and Z-scan technique [77-79] have
been among the most common methods to measure the nonlinear response of graphene.
The results of the experiments confirm that graphene has an exceptionally high third-order
susceptibility over a wide range of frequency. Depending on the measurement method and
the sample quality, various research groups have reported different values for the bulk sus-
ceptibility and nonlinear refractive index of graphene. Despite the discrepancies between
the different measurement results, the published experimental reports unanimously demon-
strate that the nonlinear response of graphene is relatively strong [94]. The experimental
characterization of the nonlinear optical response of graphene will be deliberated in the
next section.

The theoretical predictions for the linear and nonlinear optical response of graphene
are shown in Figs. 2.7 and 2.8. In our calculations, the unknown parameters are selected
according to the experimental results. As is extensively discussed in Appendix B, the phe-

40



nomenological intraband scattering rate I' and two-level interband relaxation coefficients
(71 and 7,) depend on the frequency, temperature and even quality of the sample. A
full theoretical investigation of the possible origins of the relaxation coefficients is given
in Refs. [114,117,118]. According to the experimental results reported in [86,119], the
relaxation coefficients are typically around tens of meV (I',7;2 ~ 10meV). To highlight
the resonant features of the linear and nonlinear response, it is assumed that graphene
is held at the temperature of 7" ~ OK. It is also assumed that the Fermi energy level is
around 200meV. The energy of the incoming photon(s) are normalized to the Fermi energy.
According to the general conclusion made in the previous section, for such relatively high
fermi energy level, the perturbation theory is fairly valid and the spontaneouss saturation
effect can be neglected. This assumption allow us to retain the meaning of the nonlinear
coefficient as usual.

—Re--Im

0 2 4 6 8 10
hw/Ef

Figure 2.7: Linear optical conductivity of graphene for normally incident plane wave. The
parameter oy = €?/(4h) is the universal optical conductivity.

The linear optical conductivity of graphene is shown in Fig. 2.7. It is observed that the
optical absorption of graphene is universal and independent of the frequency for the photon
energies of hw >~ 2E;. The universal behavior of the optical conductivity in graphene
can be explained by the two-dimensionality and the invariance of the condensed matter
system [88,120]. However, the dispersionless character of the absorption spectral is not
topologically protected and even the inclusion of the higher order terms -such as triangular
warping [42]- can deviate it from the universally flat response.

Fig. 2.8 shows the frequency dependence of the third order conductivity of graphene. To
glean some insight into the dependence of the nonlinear coefficients on the phenomenologi-
cal interband relaxation coefficients , the results are presented for a variety of the relaxation
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Figure 2.8: Third order conductivity of graphene normalized to oy = ¢e2?/4h (a)
Ua(;?;)m(w,w,w) and (b) ag(c?;)m(w,w, —w). Blue shaded regions describe the variations of
the coefficients due to the uncertainties in relaxation coefficients.

coefficients from few to tens of meV. It can be shown that the third order conductivity
tensor is mainly dominated by the interband transitions and Rabi-type oscillations deter-
mine their frequency dependence for high-energy photons. The frequency variation of the
o) (w,w,w) which is responsible for the third harmonic generation is shown in Fig. 2.8(a).
The resonant features of this response can be explained based on the Rabi oscillations in
the reciprocal space. The integrand in Eq. (2.56) for w,, ,, = w possesses four simple poles
at ( ~ +w, w/3. In the absence of Pauli blocking , i.e. for Afdx >~ 2E;, the interband
transitions take place. The overall response is the superposition of the broadened reso-
nances in the reciprocal space. The resonances around the hw ~ 2F; are stronger leading
to appearing of the peaks around hw ~ %Ef and hw ~ 2E5.

The theoretical prediction of oo, (w,w, —w) is also plotted in Fig. 2.8(b). This part of
the nonlinearity contributes in the nonlinear refractive index. This component of the non-
linear response exhibits resonant behavior around fw ~ 2Ef. The nature of this resonant
behavior can be explained by looking at the imaginary of the integrand in Eq. (2.56). The
integrand for wy,, = w,w, —w has two second order poles at {0y ~ +w . The amplitude
of the absorption for such poles is roughly proportional to the slop of population differ-
ence. Those resonances are significantly stronger around the Fermi energy level where the
population difference abruptly changes.

The equivalent third order bulk susceptibility of graphene is related to the third order
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surface dynamic conductivity via

ol . (W Wy, wy)

i(wp + wq + wy)dgren

(2.70)

X(g) (Wpa We, wr) =

where dg, is the equivalent thickness of graphene which is typically around d ~ 34 [76,94]
and g is the free space permittivity. Obviously for the case of graphene, the definition of
the nonlinear bulk susceptibility is ambiguous due to the arbitrariness in the definition of
the thickness of the two-dimensional structure. In the Kerr-type nonlinear response, the
dependence of the complex refractive index n on the intensity of light I is given by

n=mng+ (712 — Z]{?Q)[ (271)

Where I = 2egRe{no}c|E[* (¢ is the speed of light). The nonlinear coefficient ny is related
to the bulk susceptibility Y& (w,w, —w) as [121]

3

Ny — thy = ——
? ? 46()C|7’L0|2

'Im{”‘]}} (2.72)

() — 1—

It is easy to show that for the case of graphene this expression is merely independent of
the particular choice of dg, and it introduces an intrinsic parameter. Fig. 2.9 displays our
theoretical prediction for the real and imaginary parts of the Kerr coefficient ny — ik at
the room temperature.

Fig. 2.9 shows that over a wide range of frequency and far from the resonances, the
nonlinear coefficient is around ny ~ 10~ 8cm?W . The predicted value is reasonably close
to the experimental results reported in the next section. This curve also indicates that the
Kerr nonlinearity of graphene is relatively strong compared to the other known nonlinear
semiconductors such as GaAs, AlGaAs and Ge. More specifically, the nonlinear Kerr
coefficient of GaAs and AlGaAs in the near-infrared range, have been reported —1.5 x
107 2em?Wt and 1.12 x 107 2cm?W ! respectively [122].The Kerr coefficient of Ge in the
far-infrared range has been reported to be around 1.5 x 107 2em?W~! [122].

It is quite interesting that nonlinear Kerr coefficient of graphene can be tuned by
changing the Fermi energy level and strong Kerr type nonlinearity can be achieved in
appropriately gated graphene monolayer and chiral multilayer graphene.
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Figure 2.9: Kerr nonlinear coefficient of graphene [i.e. ny — iky defined in Eq. (2.71)] at
T = 300K. (a) nonlinear refractive index ns (b) nonlinear absorption ky. Over a wide
range of frequency the Kerr coefficient is around ~ 1078cm?W 1. Shaded regions describe
the variation of the coefficients due to uncertainties in the relaxation coefficients.

2.9 Z-Scan Characterization of the Nonlinear Refrac-
tive Index of Graphene

In section 2.8, the estimated numerical values for the nonlinear optical coefficients of
graphene were presented based on the theoretical model that has been developed in this
chapter. Among the nonlinear coefficients, the Kerr-type nonlinearity can be conveniently
yet precisely measured using the so-called z-scan technique. The z-scan technique was first
reported in 1989 by Sheikh-Bahaei and his colleagues to measure the sign and magnitude
of the nonlinear refractive index of thin materials [123,124]. The operational principle of
the z-scan technique is based on the correction of phase and amplitude distortions during
beam propagation through a Kerr nonlinear medium.

Within the last decade, several attempts have been made to experimentally charac-
terize the nonlinear response of graphene in general and the Kerr coefficient in particu-
lar [39,76,77,77-80]. Reported values for the Kerr coefficient of graphene are listed in
Table 2.1. Apart from highly probable experimental errors, the discrepancies between the
various experimental reports might have multiple origins. Specifically, graphene on dif-
ferent substrates does not necessarily retain all of its original properties. For instance, a
graphene monolayer transferred over SiO, usually suffers from unavoidable phonon induced
scatterings effects. Depending on the quality of the sample under test —with different dop-
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Table 2.1: Reported experimental values for the Kerr coefficient of graphene.

nolem? /W] Sample Method Experimental Ref.
Parameters

~+1x107" CVD graphene | Z-scan A = 1550nm | [77]
transferred onto Tpulse ~ 3.8PS
quartz

~ +1.4x 107" | CVD graphene | Z-scan A = 1562nm | [80]
transferred onto Tpulse ~ 1.4ps
quartz

~+1.4x1072 | CVD graphene | Z-scan A = 733nm | [7§]
transferred onto Tpulse ~ 100fs
quartz

~—=2x1078 CVD graphene | Z-scan A = 1550nm , | [79]
transferred onto Tpulse ~ 3-8PS
quartz

~ —1.07x 1072 | CVD graphene | Optical Kerr effect | A\ = 1600nm , | [79]
transferred onto | method coupled to | Tpuise ~ 180fs

quartz

optical heterodyne de-
tection (OHD-OKE)

ing levels— experimental results might vary. Moreover, different experimental methods used
to probe a sample would significantly affect the results.

With consideration of the above facts, a robust theoretical model would be expected
to predict both the orders of magnitudes as well as the trends connected with actual
physical phenomena. In the following sections, the experimental results obtained from the
z-scan experiment are presented. The wavelength dependence of the Kerr coefficient is
investigated and discussed. Ultimately, a reasonable agreement is achieved between the

experimental results and the theoretical model developed in this chapter.

2.9.1 Z-Scan Technique: Operational Principles

One of the processes resulting from the intensity dependent refractive index is the self-
focusing (or defocusing) effect as light travels through a Kerr type nonlinear material.
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Figure 2.10: Optical set-up used for the Z-scan measurement. The high power laser beam
is guided to the first focusing lens where the beam is focused and the sample is translated
through the focal plane. The transmitted beam is split into two with a 50:50 beam splitter
(NP-BS) into the open aperture detector (OD), and the closed aperture detector (CD)
through the pinhole. To avoid any damage to the detector a Natural Density filter (ND)
is used in front of the OD.

At sufficiently high field intensities, such that the nonlinear effects become dominant, a
Gaussian beam spatially modulates the refractive index profile as a result of the intensity
dependent refractive index. The modulated profile essentially acts like a lens so that
the wavefronts are deformed and light is focused (assuming a positive nonlinear index
ng) or defocused (for a negative nonlinear index) . In addition to the phase distortion
effect that predominately originates from the real part of the Kerr coefficient, the medium
tends to become transparent under high intensity illuminations and amplitude distortion
takes place. The phase and amplitude distortion effects are captured by the closed- and
open-aperture z-scan configurations, respectively. The measurement setup is schematically
shown in Fig. 2.10.

The analysis follows the changes in the incident beam as it enters and propagates
through the sample, and then follows the free space propagation of the modified beam to
the aperture and detector plane. Let us assume that a Gaussian beam shines on a thin
Kerr-type material (graphene for instance) and the material is placed perpendicular to
the propagation direction of the beam. In a high intensity regime (that the absorption
of thin material fades away), the beam acquires an additional phase correction A®(x,y)
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Figure 2.11: (a) Schematics of beam propagation and coupling to the detector. (b) Nor-
malzied transmission profile.

due to the spatially modulated refractive index in the transvers direction (See Fig. 2.11).
A full numerical solution for Gaussian beam propagation through a Kerr-type nonlinear
medium is complicated and out of scope for this thesis. Here, only the results of the
calculation are presented. A detailed breakdown of the technique can be found in the
original references [123,124].

As schematically shown in Fig. 2.11, the phase correction introduced by the Kerr
medium causes the beam to deviate from its original form.The phase and amplitude of
the beam as it propagates through the sample can be obtained from the paraxial wave
approximation. Once the amplitude and the phase of the beam exiting the sample are
known, the field distribution at the far-field aperture can be calculated using diffraction
theory (Huygens principle). One of the most convenient approaches is to invoke Gaussian
wave expansion. The electric field at the exit plane is decomposed into a summation of
Gaussian beams through the Gabor expansion technique [125]. The propagation of the
individual Gaussian components can then be readily carried out.

In a practical measurement setup, the aperture is placed in the far field region so that its
distance from the focal point is much larger than the Rayleigh Length of the focused beam
(zg). Taking z = 0 as the focal plane, a geometry-independent normalised transmittance
is [123]

AADy(2/2R)
[(z/2r)* + 91[(2/2R)* + 1]
where A®, is the on-axis phase shift at the focal plane and is defined as A®y = knol (x =

T(z,Adp) =~ 1 —

(2.73)
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0,y = 0)L.ss. The parameter k is the wavenumber and the length L.ss is the effective
interaction length of the sample defined as

al- exp(—al) (2.74)

L
eff o

where « is the linear absorption coefficient. In the case of graphene it can be shown that
the effective interaction length is equivalent to the hypothetical thickness dg, that has
been selected for graphene. This equation can be fit to normalised Z-scan data to obtain
an estimation for A®q. After some algebaric steps, it can be shown that the peak-valley
separation is [123]

8 |2pv/ 2R
[(zpv/2r)* + 9N[(2p0/ 28)% + 1]
The above equation can be conveniently used to find the projected Kerr coefficient.

AT,_, ~ ADy ~ 0.406AD, (2.75)

2.9.2 Experimental Results

The z-scan experiment was performed to characterize the Kerr coefficient of a monolayer
graphene transferred over a thin quartz substrate. The quartz layer is fairly transparent and
its nonlinear behavior negligible [126]. The former fact allows us to assume that the beam
profile is minimally impacted by the multiple reflections from the interfaces, and the latter
implies that the self-focusing effect is merely attributable to the graphene. To confirm that
the self-focusing effect is exclusively originating from the graphene’s nonlinearity, we also
conducted a similar experiment on a bare quartz sample. An ultrafast tunable laser (PART:
Coherent Chameleon Vision S) with a pulse duration of ~ 100fs and a repetition rate of
80MHz was used as the source. The experiment was performed for multiple wavelengths
from 700nm to 1050nm.

The z-scan profiles for the closed- and open-aperture configurations are displayed in
Fig. 2.12. It is obvious from Fig. 2.12(b) that the bare quartz sample does not prompt any
self-focusing effect and the Kerr nonlinearity is caused by the graphene layer. In agreement
with the theory, the valley-peak configuration confirms that the graphene sample has a
positive Kerr coefficient.

The projected Kerr coefficient of graphene (i.e. ny) versus wavelength as well as the
theoretical prediction are shown in Fig. 2.13. The yellow shaded region displays the Kerr
coefficient predicted by the theory with all uncertainties included. The uncertainties are
due to the unknown values for the relaxation parameters as well as the Fermi energy level.
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Figure 2.12: Z-scan profile for the wavelength A = 900meV. The z = 0 location corresponds
to the beam waist. (a) Graphene covered quartz substrate (b) Bare quartz substrate.

Since graphene is absorptive over the entire wavelength range, the Fermi level should
be much smaller than the energy of the photons, ie. Ey < 600meV. The relaxation
coefficients varry between a few mev to tens of mev . A nonlinear optimization technique
wa employed to find the best fitted values for the unknown parameters. As shown in the
figure, the relaxation parameters v;,7, ~ 10meV can perfectly explain the experimental
results. Assuming E; < hw, a slight dependence of the Kerr coefficient on the Fermi
energy level is observed.

The adopted theoretical model can qualitatively explain the spectral behavior of the
Kerr coefficient. It is observed that the Kerr coefficient quadratically increases as the
wavelength increases. Since the Fermi energy level is small compared to the energy of
the photons, the frequency dependence of the linear optical response of graphene can be
assumed to be negligibly small. Therefore, the third-order interband optical nonlinearity is
responsible for the wavelength dependence of the Kerr coefficient. The physical processes
that give rise to the nonlinear refractive index and the accompanying nonlinear absorption
include ultrafast bound electronic processes, excited state processes where the response
times are dictated by the characteristic formation and decay times of the optically induced
excited states. It was argued in section 2.5 that in graphene, Kerr-type nonlinearity over
the optical range of frequency is predominantly caused by the self-coupling effect. Due to
the ultrafast Rabi oscillations at the zero detuning region (i.e. Ax ~ 0) the steady state
population difference is modified significantly by the intense illuminating field. One can
speculate that the asymptotic frequency dependence of the Kerr coefficient can be gleaned
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Figure 2.13: Wavelength-dependence of the Kerr coefficient of graphene from experimental
results and the adopted quantum theory. Yellow shaded region is obtained from quantum
theory for ~ 1meV < 7,75 <~ 20meV. A perfect theoretical fit is achieved by setting the
relaxation coefficient to be 10meV.

from the steady state inversion around the zero detuning region as

Py

st \fed o ~ N |1 1
T e , S~ |2 ~ VK RONE)
Y0+ 92 | L) | B

2} (2.76)

AkzO

where Ly (w) = 1/(v® + iAy). As discussed in the previous section, the spontaneous
saturation effect can be safely neglected over the optical range of frequency for moderately
doped graphene. The corresponding steady state polarization is obtained from Eq. (2.62b).
The induced nonlinear interband current is then calcuated as (see Appendix C)

JNL<w>:——vnggvD //RBde o B) L) [N - A} @)

E, (2.78)

=Ko

~ B gngD/y(l) ’th()’ Neq

where 2hvp Ky = hw determines the zero detuning circle around the Dirac point. The
dimesionless parameter 8 ~ m accounts for the angular integration. Since the population
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difference N ? is almost constant for fw > E;, the 1/K? term in the above equation
dictates the frequency dependnece of the Kerr type nonlinearity. Obviously, the nonlinear
current is quadraticly proportional to the wavelength as Jyz(w) X w™2 o< A2. It is noted
that the quadratic spectral dependence of the Kerr coefficient reflects the peculiar linear
dispersion of the quasiparticles.

2.10 Summary

A semiclassical theory of light-graphene interaction in linear and nonlinear regimes has been
detailed. Focusing on the scale-invariancy and chiral character of Bloch quasi-particles in
graphene, the Semiconductor Bloch Equations (SBEs) were formulated. The advantage
of SBEs is two-fold: first they provide a convenient mathematical scheme leading to the
analytical expressions for different contributions of the linear and the nonlinear optical
response of graphene. Second, SBEs encode the topological properties of the band structure
in an effective dipole expression appearing in the equations.

The topologically protected chiral nature of the charged carriers in graphene entails
the diverging interband optical coupling (i.e. large effective dipole) in the vicinity of the
Dirac point. The treatment of the unconventional interband coupling has been a source of
controversy in the nonlinear optics of graphene to date. A physically consistent explanation
that could resolve this issue has been proposed. It was deliberated how the large interband
coupling gives rise to ultra-fast Rabi oscillations which excite the quasiparticles at such a
rate that there is insufficient time for them to decay back to the ground state and optical
saturation takes place. Since this saturation can be instigated by even arbitrary weak
field intensities, the effect was considered a spontaneous saturation effect. The theory was
substantiated by a direct time domain analysis of the graphene Bloch equations.

Since the saturation effects are highly influenced by the relaxation dynamics, an accu-
rate evaluation of the relaxation coefficients is crucial to genuinely capture the essential
physics. A full many body analysis was performed , which combined all relaxation mecha-
nisms including electron-electron and electron-phonon interactions to extract the effective
relaxation coefficients. It was concluded that the carrier relaxation dynamics are quite slow
for low energy quasiparticles which in turn yields more pronounced saturation effect around
the Dirac point. The practical implications of this effect was examined via the example of
pump-probe spectroscopy and it was concluded that the unconventional saturation effect
is expected to be readily observed in such experiments.

Owing to the spontaneous saturation effect, the perturbation approach to the develop-
ment of the optical response of graphene should be revisited. Specifically, perturbation the-

ol



ory collapses in describing the nonlinear optical interactions within the saturated regions.
Therefore, exclusion of the saturated states is required to find the nonlinear coefficients.

Using SBEs, the problem of the interaction can then be decomposed into the quasi-
calssical Boltzman transport and the interband time evolution. The nonlinear parts of the
optical response can be classified as pure intraband, pure interband and a combination of
the two. Introducing a novel mathematical framework, analytical expressions for different
contributions of the conductivity tensors have been derived for the first time.

The third order susceptibility and nonlinear refractive index were calculated. It was
shown that our prediction for the Kerr nonlinear coefficient for graphene is in reasonably
good agreement with the experimentally obtained results. It has been demonstrated that
Kerr nonlinear coefficient of graphene can be tuned by changing the Fermi energy level
and relatively strong Kerr nonlinearity can be attained in a gated graphene monolayer.

The measurement results for the Kerr coefficient of CVD-grown graphene (transferred
onto quartz) was presented. The spectral dependence of the nonlinear refractive index of
graphene was measured using z-scan technique. It was shown that the experiment results
can be perfectly explained by the theory developed in this chapter. The findings from the
present study should be instrumental in instigating similar explorations for other Dirac
and Weyl semimetals.

The applications of the noticeably strong nonlinearity of graphene in two practical
structures are discussed in the succeeding chapters.
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Chapter 3

Graphene-Integrated Plasmonic
Structure for Optical Third
Harmonic Generation

Tuning the Color of Gold.

3.1 Introduction

Nonlinear up-conversion of the visible and near infrared light to the higher harmonics has
been the topic of intense research in recent years [127]- [128]. Applications are diverse and
encompass many areas ranging from photonics and laser technology to biomedical imag-
ing and sensing [129]- [131]. The conventional up-conversion techniques rely on the phase
matching of the intense electromagnetic fields in bulk nonlinear crystals. The bulk non-
linear structures take advantage of the phase matching to efficiently utilize the cascaded
nonlinear processes and accumulation of nonlinear interactions within a long propagation
path [32]. The guided-wave frequency mixing methods essentially suffer from an excessive
amount of absorption loss that limits the conversion efficiency. In order to perform non-
linear operations in a highly integrated fashion with low power consumption, one would
require to hire effective mechanisms to enhance the field intensity inside the nonlinear
medium. Recent rapid advancements in nanofabrication technologies have widened the
realm of possibilities in nanophotonics, nonlinear and sub-wavelength optics. Realizing
nonlinear optics in sub-wavelength scale paves the way for low cost integrated photon-
ics [132]. The ultra-high-Q photonic crystal nanocavities [133]- [134] and nanostructured
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materials are examples of such structures. Specifically, the plasmonic plasmonic metasur-
faces offer very small mode volume guaranteeing highly enhanced field intensity [132]. The
region of nonlinear interaction nonetheless is limited to the mode extend. That hinders
the efficient adoption of the bulk nonlinear mediums for frequency mixing applications. To
circumvent this issue, the integration of artificial quantum materials such as highly nonlin-
ear multiple-quantum-well semiconductor heterostructures and plasmonic nanostructures
made of noble metals has been proposed recently [135]- [136]. In this chater, we propose
the integration of the plasmonic metasurfaces and graphene [137] to perform nonlinear
frequency mixing.

As extensively discussed in the previous chapter, the symmetries of the graphene lat-
tice entail significantly strong nonlinear optical properties that might make graphene a
compelling candidate for integrated nonlinear optics. This is an endeavor to explore the
possibility of utilizing graphene in future integrated nonlinear optical devices. Beside the
relatively strong optical nonlinearity of graphene, there are several advantages in using
graphene over the conventional alternatives for nonlinear optics. Though some metals
may also exhibit strong nonlinearity, they are generally opaque and highly refractive [138].
Unlike metals, graphene is almost transparent maintaining optical structures intact. In-
tegrability and ease of fabrication are also among the reasons why graphene has already
ignited extensive interest in the optoelectronics and even quantum optics.

In the wavelength conversion device proposed in this chapter, graphene acts as the
nonlinear medium. The centrosymmetry of the graphene lattice prevents even-ordered
nonlinear processes and hence the first nonlinear term is the third order term [139]. Ac-
cordingly the structure is designed for third harmonic generation (THG).

The main objective of this chapter is twofold. First, a design methodology for an
efficient plasmonic graphene-based third harmonic generator is proposed. As a particular
example, we focus on a frequency tripler converting an optical beam in the near infrared
wavelengths (~ 800nm) to its third harmonic at UV range of frequency. Second, a fast
hybrid numerical method is introduced to analyze and optimize the dimensions of the
structure.

The proposed structure is composed of a graphene layer transfered over a multilayer
structure. A periodic array of shaped gold nanoparticles, designed to be resonant around
the wavelength of 800nm, is positioned on top of the graphene sheet. The dimensions of
the multilayer structure and nanoparticles are optimized to tune the plasmonic resonance
frequency and maximize the enhancement factor both at the fundamental frequency and
its third harmonics. The multilayer structure is designed to act as a Bragg mirror which
provides an additional enhancement of the field intensity due to the reflection from the
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band gap medium.

The numerical method introduced in this chapter is used to analyze and to optimize
the dimensions of the structure for maximum conversion efficiency over a wide range of
frequency. The numerical method combines the Floquet mode analysis and the General-
ized Multipole Technique (GMT) [140] to develop a circuit model for the entire structure.
The circuit model can be widely used in the fast analysis and optimization of many nanos-
tructured layered media. Exploiting the fast solver, we will drastically enhance the third
harmonic conversion efficiency by many orders of magnitude exceeding the amounts of en-
hancement reported in the literature so far [141]. Furthermore, the circuit model developed
in this chapter, provides a convenient tool for the nonlinear analysis of similar plasmonic
structures.

This chapter is organized as follows. The quantum theory of third order frequency
mixing in graphene is outlined in Section 3.2. We present the operation principles of the
structure and design considerations in Section 3.3. Section 3.4 is devoted to the numerical
analysis and optimization of the wavelength conversion device. The numerical results are
discussed in Section 3.5. The conclusions will be drawn in the last section.

3.2 Optical Third Harmonic Generation in Graphene

In the model adopted in this chapter, we use the nonlinear response coefficients derived
in chapter 2 . Using the conductivity tensors the induced surface current at the third
harmonic is obtained in terms of the electric field at the fundamental frequency. The three

additive tensors constituting the third order conductivity tensor G (Wp, Wy, wy) are

gfgz)tm(wp»wqawr) = U%g) (Wp’ Wq’wr)?l (3.1a)

=(3 =
e (Wp g, @) = 057 (@, W, ) T (3.1b)

=(3 =
z(’ngfra—inter (wp? w‘l? WT) = O-i(iS) (Cdp, wq7 wT)T?’ (31C)

where the tensors ?1, ?2 and ?3 as well as explicit expressions for the scalars 053)’5 are
(3)

given section 2.5.2 . The tensor & is the summation of the three tensors displayed above.

ﬁ( )(wp7 qu WT) = gz(fzira + gz('zz‘,er + =§21ra7inter (32)
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Figure 3.1: schematics of the relevant three-photon processes for optical third harmonic
generation

The induced surface current over the graphene layer at the third harmonic of wy is then
calculated as

J(?)OJO + 5) =

// d(sld(SQ?(S) (wo + 51, wo + (52, wo + o — 51 - 52)E<WO + (51)E(W0 + 52)E(w0 + 0 — 51 — (52)
(3.3)

where we have assumed that the field at the fundamental frequency has a finite bandwidth
centered around wy.

The schematics of the distinct three-photon processes are shown in Fig. 3.1. As dis-
uceed in the previous chapter, the intraband evolution of the quasiparticles is attributed
to the classical motion of the fermionic distribution in the reciprocal space and can be
described based on the semiclassical Boltzman’s equation [99]. In contrary, for the pure
interband part, the three-photon process has only quantum origin and can be interpreted
as the absorption of three successive photons in a two-level atomic system. The last contri-
bution arises due to the cooperative intraband and interband transitions as schematically
depicted in Fig. 3.1. As elucidated in the previous chapter, six possible combinations of
intraband and interband dynamics can contribut in the third order frequency mixing in
graphene. However, due to the fact that structure is designed to be functional in the opti-
cal range of frequency, only three relevant terms ahve domaninat impact. For moderately
doped graphene, the pure interband term plays the dominant role in the optical range of
frequency and is the main reason behind the resonant behavior of the third order conduc-
tivity around 2Er = hw and 2Er = 3hw. The impact of relaxation rate v on the third
order conductivity is also shown in Fig. 3.2(a). We set v = 10meV (the relaxation time
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Figure 3.2: (a) Magnitude of the third order conductivity of graphene as a function of the
normalized frequency for v = 10meV = 65fs, 7 = 50meV = 13fs and v = 100meV = 6.5fs.
(b) Linear optical conductivity of graphene beyond the Dirac cone approximation. The
conductivity is normalized to oy = €*/4h. For higher frequeinces the absorption is not flat.

of 7 = 65fs) throughout this work. In order to take advantage of the resonant third order
nonlinear interaction for maximum conversion efficiency, the Fermi energy level should be
tuned to either 2Fp = hw or 2Ep = 3hw (where w is the fundamental frequency). In the
optical range of frequency, the second resonance condition requires very large gate voltage
level which is hardly achievable in practice. As a result, the Fermi energy level should be
tuned to 2Er = hwy where wy is the center frequency of pump signal.

It is worth mentioning that the tensors T, T and T'5 are derived based on the group
symmetries of the graphene lattice and they are independent of any quantum theory
adopted. For instance, the pure interband term which plays the dominant role, carries
the hexagonal symmetry of the graphene lattice [71,73]. As a result, the spatial distribu-
tion of the induced current at the third harmonic and the way it radiates is determined
by the symmetries of the lattice. However the multiplicative factors o;’s do depend on the
special quantum theory employed.
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The linear conductivity of the graphene layer for normal illumination is plotted in
Fig. 3.2(b). In the subsequent sections, we would need to use the linear conductivity of
graphene in the pump frequency (fundamental frequency) and its third harmonic. The
linear optical response of graphene to the third harmonic photons is obtained beyond
the Dirac cone approximation. Due to the deviation from the Dirac type dynamics, the
absorption spectral of graphene is slightly slopped at higher frequencies. The details of
analysis are given in the Appendix A.

3.3 Structure and Design Methodology

The schematic of the proposed structure is shown in Fig. 3.3. The periodic array of the
gold nanoparticles is placed above the graphene sheet. Graphene is transfered over a
multilayer structure. Throughout this chapter, the lateral period of the nanoparticle array
in z and y are designated by W and L respectively. The multilayers structure is made of
the alternative layers of sapphire and UV fused silica. These materials have been selected
due to their nearly flat refractive index over a wide range of frequency from near infrared
to UV. The refractive index of sapphire is n~ ~ 1.8 and UV fused silica has the refractive
index of n. ~ 1.4. It is assumed that the structure is illuminated from the top by a focused
laser beam, whose spectral range is centered around the wavelength of ~ 800nm. The third
harmonic field is captured from the top as well. The multilayer structure is composed of
twelve layers. As will be detailed, for properly selected L and W, one would need to just
optimize the dimensions of the first few layers to maximize the enhancement of the field
intensity at the graphene layer. The rest of the multilayer is simply a quarter-wave Bragg
mirror. We would optimize the thicknesses of the first five layers and the dimensions of
the nanoparticles to maximize the conversion efficiency.

The structure employs two mechanisms to enhance the field intensity at the graphene
layer and improve the radiation efficiency of the third harmonic: plasmonic resonance and
reflection from the multilayer structure. Although the plasmonic resonance can signifi-
cantly enhance the field intensity inside and around the nanoparticles, the field does not
necessarily interact with graphene in an efficient manner. The graphene sheet laid on
xy-plane can only interact with the transverse components of the total electric field. In
order to change the polarization of the total resonant field to make the complete inter-
action possible, a quasi PMC boundary condition below the graphene sheet is required.
A PMC boundary condition guarantees efficient interaction of the resonant field with the
graphene sheet. It would also create one more enhancement factor due to the constructive
interference of reflected field from the PMC mirror and the total field generated by the
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Figure 3.3: Proposed structure for third harmonic generation. Graphene is transferred
over a multilayer structure. The multilayer structure is made of the alternative layers of
sapphire and fused silica. R is the radius of the nano-disks and H is their height. The
inter-particle separations in the x and y directions are W and L respectively.

nanoparticles. The multilayer structure proposed here aims to accomplish these desirable
properties.

The multilayer structure is composed of two parts: a quarter-wave Bragg mirror and
five layers on the top. The Bragg mirror is intended to completely reflect back the elec-
tromagnetic field both at the fundamental frequency and its third harmonic. The top
five layers are carefully designed to provide an appropriate amount of phase shift to fulfil
the PMC boundary condition just below the graphene sheet. Owing to the plasmonic
resonance, the field induced at the fundamental frequency is highly localized around the
nanoparticles. The localized field can be expanded in terms of the TE® and TM* Floquet
modes. The transverse wave number associated with the TE? =~and TM;  is

2 2
Ky = mW% + n%y (3.4)

where m and n are integeres. The Bragg mirror underneath the structure is made of 7
quarter wave layers of sapphire and UV fused silica that ensures complete reflection for
normally incident waves corresponding to m,n = 0 Floquet modes (i.e. TE§, and TMg,
modes) . In order to suppress the other Floquet modes, we should select L, W < \g
where )\ is the wavelength of the illuminating field. That would guarantee that the higher
order Floquet modes are evanescent in the vertical direction and they are extended only
within the first few layers. As more details to be outlined in the subsequent sections,
the conversion efficiency can be further improved if the Bragg mirror works at the third
harmonic as well. To do so, we select L = W = 250nm <~ \q/3. The Bragg condition
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at the third harmonic is already satisfied as the thicknesses of the layers are chosen to be
323,

In order to tune the resonance of the nanoparticles to the fundamental frequency, the
shape of the nanoparticles should be appropriately tailored. Based on so-called coupled
dipole approrimation, each particle can be modeled by a dipole of quasi-static polarizabil-
ity @ [142]. Using quasi-static interpretations, the resonance behavior of the nanoparticles
can be controlled by changing their relative dimensions and the effective dielectric constant
of the medium(s) surrounding the particles. Specifically, freely standing gold nanoparticles
whose shape and dimensions can be fabricated using the state-of-the-art technology, are
barely resonant in the near infrared range and hence the nanoparticles’ surface should be
placed next to a dielectric media or alternatively coated by a dielectric layer. This effect
reveals another advantage of the multilayer structure in tuning the plasmonic resonance
frequency. It is noted that the resonance frequency is merely influenced by the first few lay-
ers in the proximity of the nanoparticles. This can be understood based on the quasi-static
models describing the plasmonic resonance in the nanoparticles made of noble metals [142].
Having studied the electrostatic polarizability of different geometries, it has been demon-
strated in Ref. [143] that resonance frequency of gold nanoparticles can be moved toward
the near infrared range by breaking the 3D symmetry of the nanoparticles. Moreover,
existence of the sharp edges over the nanoparticles causes an additional enhancement of
the electric field at the geometric singularities. As a result, disk shape nanoparticles are
selected for plasmonic enhancement around the wavelength of interest. The dimensions of
the nanoparticles are designed to be resonant in the presence of the multilayer structure
illustrated in Fig. 3.3. In accordance with the aforementioned design considerations of the
multilayer structure, in this design step, we can assume that the thickness of the first layer
is A/2 and the other layers are simply quarter wave. The dimensions of the nanoparticles
were then optimized by trial and error in the presence of multilayer structure through
use of ANSYS HFSS (finite element solver). Following this recipe for the specific case of
800-UV convertor, we came up with disk shape nanoparticles with the radius of R = 55nm
and the height of H = 20nm.

3.4 Hybrid Numerical Technique in the Analysis of
the Plasmonic Structure

Because of the strong localization of the electromagnetic field in plasmonic structures,
the analysis of such structures are computationally expensive and therefore selecting a
suitable numerical method for field computation is crucial. The commercial numerical
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solvers based on domain discretization such as Finite Element Method (FEM) and the
Finite Difference Time-Domain (FDTD), would require a huge computational resource to
model highly localized fields. Alternatively, the existing boundary-discretization methods
such as Multiple Multipole method have provided faster solutions for the plasmonic prob-
lems [29]. However, their scope of applicability is usually limited to the certain class of
the problems where the solution domain contains few inhomogeneities [144]. Beside the
issues listed above, the plasmonic structure integrated with two-dimensional materials such
as graphene must be analyzed in the spatial spectral domain [145]. The spectral domain
response of two-dimensional materials depends on the direction and polarization of the
plane wave illuminating the layer. Here we present a hybrid method which combines the
advantage of the boundary discretization methods in analyzing the plasmonic structure
and the plane wave expansion method in the analysis of the graphene part and the multi-
layer structure. More specifically, the proposed method combines Floquet mode expansion
and Generalized Multiple Technique (GMT) [29] to present a circuit model for the entire
the structure. The circuit model is proved to be very efficient for linear optimization of
the problem as well as nonlinear analysis of the structure.

The scattering matrix method (network representation) has been widely used before in
the analysis of interconnecting separated characterized system blocks. Ref. [146] applies a
similar method for fast analysis of multilayer periodic structures such as FSS and phased
arrays. The application of the Fourier modal methods and generalized scattering matrix
formulation in the fast and rigorous modal analysis of linear optical structures has been
thoroughly investigated in Ref. [147].

3.4.1 Scattering Matrix Description of the Plasmonic Structure

A complete network description of the plasmonic structure can be obtained by the Floquet
mode decomposition of electromagnetic fields. The structure is assumed to be sliced in the
distinct cross sections separating its semi-planar ingredients as shown in Fig. 3.4. At an
arbitrary cross section z = 2y the tangential components of the electric field are expanded
in terms of the Floquet mode.

Et('xv Y, ZU) = (i'j + ’gg) : E(.I, Y, ZO) =
Z Vn(fr)z(zo) <5i1/%mn + 5i2€mn> eXp(_jkmn : P) (3-5)

i,mn
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Where V% and V5 are the Floquet mode expansion coefficients for the TM and TE
modes respectively. The unit vectors &,,, and &,,, are defined as

kmn = ~ A~
R = — Emn = 2 X Ry (3.6)

In the scattering matrix formulation, every Floquet mode constitutes a hypothetical
port. Moreover, the graphene layer and the nanoparticles array both contain two accessible
channels corresponding to the upper and lower cross sections. Obviously, the accessible
channels contain all the hypothetical Floquet ports contributing in the field expansion at
each cross section. Analogous to incident and reflected waves in waveguide terminology,
modes occur in pairs of incoming and scattered Floquet modes at each cross section.
The scattering matrix establishes a linear relation between incident and scattered Floquet
modes appearing in the channels of the semi-planar parts. The scattering matrix of the
multilayer structure, the graphene layer and the nanoparticle array are designated by Sy,
, S and Sy respectively.

Einc(w) _
— Vo(w)

\J

2p, Suspended Nanoparticle Array —

PO NN SP

_____ Bare Multilayer Structure _______ | |

Figure 3.4: Network representation of the plasmonic structure.

As noted below equation (3.5), every Floquet mode is labeled by the index mn repre-
senting the lateral variation of the mode and the polarization index ¢. The TM and TE
Floquet modes are compactly shown by ¢ = 1 and ¢ = 2 respectively. In the scattering
matrix formulation, the Floquet mode indices mn, i are designated by the collective index

62



a. We also use the index p to show the channel number for the two-channel networks
shown in Fig. 3.4. For mathematical convenience, the index 7 collectively includes o and
p. The calculation of the scattering matrices Sy , S and Sy, is detailed in Appendix D.
As mentioned earlier, we have used GMT method to construct the scattering matrix asso-
ciated with nanoparticle array suspended in free space. The computational considerations
are briefly discussed in Appendix E.

3.4.2 Nonlinear Analysis and Third Harmonic Generation

In the presence of a nonlinear medium subjected to an intense electromagnetic field, the
polarization of the medium develops new harmonics further to the fundamental frequency
wp. The nonlinear optical response of the entire structure can be described by means of
the nonlinear wave equation in time domain [32].

PE(r,t)  0PPy(r,t) &2 Py (r,t)
orr M T
Where f’L and ﬁNL are the linear and nonlinear polarization vectors respectively. The
linear polarization can be obviously merged to the left side of the wave equation. The
nonlinear term ﬁNL, however, acts as a source term which appears on the right side of
the wave equation. The nonlinear analysis can be carried out in the frequency domain by

separating the harmonics induced in the structure. For the electric field E,, oscillating at
the angular frequency w,, = nwy, we have

V x V x E(r,t) + pogo (3.7)

V x V x E,(wp) — (v, wp)w? 1020 Ep (wy) = —jwnptod vz (wWn) (3.8)

where Jyr(wy,) is the nonlinear current oscillating at the n’th harmonic. The treatment
of the nonlinear wave equation is usually complicated due to the coupling of the different
nonlinear interactions [32]. For the plasmonic structure described in this chapter the higher
order couplings can be safely neglected as the accumulative nonlinear interactions do not
occur and as a result the nonlinear currents are only coupled to the linear electric field.
This assumption allows us to have independent analysis for the harmonics contributing in
the nonlinear response of the system. The nonlinear induced current at the third harmonic
is then treated as an impressed current source radiating in the presence of the structure.

The circuit model developed here can be used to find the field radiated by the impressed
source caused by the nonlinear interaction. The linear analysis of the structure is first
performed to find the induced electric field at the fundamental frequency. The nonlinear
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current oscillating at the third harmonic at the graphene layer is then obtained from
equation (3.3). At the third harmonic, the current J(3wp) is modeled by an impressed
current source in the linear equivalent network as shown in Fig. 3.4. The plane wave
decomposition should be applied to find the vector I containing the modal coefficients of
the current source.

—(a . 2 1 ‘
180) = (6um+ Gabn) -7 [ I expltiomplds (39
unit ce

We have shown in our calculations that the nonlinear contribution of the gold meta-
surface in THG can be neglected. Owing to the strong optical nonlinearity of the graphene
layer compared to that of gold, as well as, extreme localization of the electric field intensity
over the PMC mirror, the third harmonic power is dominated by nonlinear contribution
of the graphene layer. According to experimental results reported in Refs. [148]- [149],
the third harmonic optical susceptibility of gold is out of the resonance over the near
infrared range and the maximum value reported for that quantity is around Xé?;)z Jw,w,w) ~
7.71 x 107m?/V? [149]. A full wave calculation has been performed and proved that
the strength of the effective third harmonic dipole induced over gold nanoparticles per
unit cell is at least 2 orders of magnitude smaller than that of graphene. In order to
make a sensible comparison, the equivalent surface third order conductivity of the gold

nanoparticles defined as ag g~ J3wH 50X§;i)l 4 has been calculated. This parameter has the

value of a;?;g 4~ 2.3 x10722Sm?/V? which is 2 orders of magnitude smaller than the third
order nonlinear conductivity of graphene around its resonance (see Fig. 3.2(a)). This rough
comparison is fairly valide due to the very small thickness of the gold nanoparticles.

3.5 Results

Having designed the geometry of the nanoparticles as well as their separation, we can now
proceed to optimize the thicknesses of the layers constituting the PMC mirror. This can
be accomplished using the equivalent network shown in Fig. 3.4. In order to maximize
the conversion efficiency, we use the Differentiated Meta Particle Swarm Optimization
(DMPSO) with democratic implementation in evolution of particles [150]. The optimizer
adjusts the thicknesses of the first five layers (i.e. t1,--- ,5) and accordingly changes the
scattering matrix Sj; to maximize the first order enhancement factor g™ (\) defined as

— S it con 92y [E(2,y, 2 = 0)|”

(1)
-0 WL o)

(3.10)
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Figure 3.5: First order enhacement factor gV (\) defined in equation (3.10).

where E(z,y, z = 0) is the electric field induced over the graphene layer at the funda-
mental frequency (wavelength of A\) and Ejy is the amplitude of the incident electric field
illuminating the structure. As discussed in Section 3.3 , keeping the thicknesses t;’s around
integer multiples of \;/4 (where ); is the wavelength at the fundamental frequency inside
the i’th layer), guarantees dual-band performance of the PMC mirror at both fundamental
wavelength A\¢ and its third harmonics \g/3. Accordingly, the optimizer finely adjusts ¢,
around A;/2 and the other ¢;’s around the quarter wave \;/4. In order to accelerate the
optimization procedure, only a few number of Floquet modes are used to construct the
scattering matrices. We pick up 25 Floquet modes with the indices m,n = —2,---,2
for both TE and TM polarizations. The values listed in table 3.1 were obtained after
optimization for the thicknesses of the layers.

t1 to t3 ty ts t; (’L>5)
220nm 143nm 105nm 137nm  123nm Ai/4

Table 3.1: Optimized thicknesses of the layers constituting the multilayer structure shown
Fig. 3.3.

The resulted first order enhancement factor is shown is Fig. 3.5. The fast solver facil-
itates optimization of the structure and as a result the remarkable amount of plasmonic
enhancement is achieved. The field distribution at the graphene layer as well as over the
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Figure 3.6: Linear electric field distribution at the frequnecy of wy obtained from FEM
solver (a) at the graphene layer (b) over a vertical cross section ( y = 0 palne). The white
dotted line shows the location of the graphene layer. The color map shows the squared
magnitude of the induced electric field normalized to incident electric field.

vertical cross section are depicted in Fig. 3.6(a). The plasmon resonance leads to the high
intensity of the field inside the nanoparticle as shown in Fig. 3.6(b).
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Figure 3.7: (a) Normalized current distribution oscillating at the angular frequency of
3wp. (b) Normalized electric field distribution on top of the nanoparticles and its modal
coefficients. Current amplitude and the corresponding electric field are normalized to
0¥ (w,w,w) and it is assumed that the incident field has the magnitude of unity.
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The field distribution at the fundamental frequency is plugged into equation (3.3) to
find the third harmonic current induced on the graphene layer as the nonlinear medium.
The normalized third harmonic current distribution is displayed in Fig. 3.7. This current
acts as an impressed source radiating in the presence of the structure. The radiating field
can then be obtained by calculating the field distribution on top of the nanoparticle array.
This field distribution acts as a Huygens source and it corresponds to the voltage across
the AA’ nodes in the equivalent network shown in Fig. 3.4. The field distribution and
its spectral components obtained from the equivalent network are depicted in Fig. 3.7.
Since the dimensions of the unit cell are chosen to be W, L < )\¢/3, among all the Floquet
modes appearing in the modal expansion of the wave front, only the modes corresponding
to m = n = 0 contribute to radiation and all other modes are evanescent.

The overall enhancement of the third harmonic power with respect to that of a bare
graphene layer (i.e. the absence of the structure) is shown in Fig. 3.8. The dimensionless
third order enhancement factor ¢®(\) is defined as
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Figure 3.8: Dimensionless third order enhancement factor ¢‘* (\) defined in equation (3.11).

Prad(3w)

G\ = "/ 3.11
where w is the angular frequency corresponding to the wavelength A. The powers P"%%(3w)
and PJ%(3w) are the radiated powers at the third harmonics for the present structure
and a bare graphene layer respectively. The power P™¢(3w) has been calculated via the

numerical method proposed in Section 3.4.

The significantly high amount of enhancement g®()\) ~ 10 achieved, makes third
harmonic generation possible. The performance of the designed structure in the presence

67



of a femto-second laser pulse is also examined. The laser has the repetition rate of 86MHz,
the centeral wavelength of 820nm and the pulse duration of 7 = 150fs. The input power
launched to the set-up is assumed to be 1W with the focused spot size of ~ 15um x 15um.
The input signal in time domain and the third harmonic signal detected in the far field
are shown in Fig. 3.9(a). As a result of the intensity-dependent conversion efficiency, the
third-order pulse is narrower than the incident pulse. It is assumed that the graphene
is biased to the Fermi energy level of Fp ~ 700meV ~ mhc/Ag where )\ is the centeral
wavelength of the laser (i.e. 820nm). The third harmonic output power is predicted to
be P, ~ 1uW which corresponds to the the conversion efficiency of n = 0.0001%. The
amount of the third harmonic conversion efficiency is quite significant and is comparable
to the most efficient subwavelength-scale frequency up-conversion experiments reported
recently [151]. It is worth noting that the third harmonic power is proportional to the
input (pump) power cubed (i.e. P,,; o P32) before the graphene layer get saturated and
therefore, the conversion efficiency can be further enhanced for a larger pump power.

The dependence of the conversion efficiency with respect to the Fermi energy level of the
graphene layer is shown in Fig. 3.9(b). As expected, the conversion efficiency is maximum
when the graphene monolayer is biased to the Fermi energy level of Ef, corresponding to
the resonance condition at the central wavelength. Because of the other quantum resonance
in the nonlinear response of graphene, another peak at the Fermi energy level of 3Ep, is
expected. The suppression of the linear absorption of the graphene layer for the Fermi
levels higher than Ep, also yields significantly higher conversion efficiency. However, as
mentioned earlier, the Fermi energy level of 3Eg, is too large to be realized. Fig. 3.9(b)
displays the variations of the conversion efficiency within a reasonable range of Fermi energy
level. The details of calculations are presented in Appendix F.

3.6 Conclusion

A design methodology for an efficient graphene based integrated plasmonic structure that
enables third harmonic generation has been established in this chapter. More specifically,
it has been shown that the nonlinear optical properties of graphene can be efficiently
utilized for harmonic generation in a plasmonic structure made of a periodic array of
shaped gold nanoparticles integrated with a multilayer topology. The gold nanoparticles
provide extreme localization of the electromagnetic fields. The interaction of the plasmonic
modes with the graphene is engineered by means of a multilayer structure. The multilayer
structure has been designed to act as a dual-band PMC mirror working at the fundamental
frequency and its third harmonic.
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Figure 3.9: (a) Time variation of the pulse laser illuminating the graphene layer (E(1)
at low temperature (7' ~ 0K) and the third harmonic signal (E®) detected in the far
field (radiated field) (b) variations of the overall conversion efficiency with respect to the
graphene’s Fermi energy level normalized to resonant Fermi level Fr = hwy/2. The
frequency wy = 820nm is the central frequency of the laser beam. The pump power is 1W.

A novel hybrid numerical method combining the plane wave expansion and the Gener-
alized Multipole Technique (GMT) to analyze and to optimize the structure wa proposed.
The numerical method presents a circuit model for the structure. The circuit model allows
us to separately optimize the distinct part of structure.

Applying this design procedure for a near infrared -UV converter as well as optimizing
the structure through the circuit model developed here, the overall enhancement factor of
~ 10% over a wide range of frequency was achieved.
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Chapter 4

Hybrid Graphene-Silicon Photonic
Crystal Nanocavities for All-Optical
Modulation

Observing Nonlinear Optical Phenomena Through a Nano-Magnifier!

4.1 Introduction

All-optical signal processing at nanoscale has become an emerging paradigm within the
past few decades. Silicon is known as a noble material for integrated photonics [3, 133,
152]. However, despite of unprecedented successes in the development of silicon-based
integrated photonics technology, the poor nonlinearity of silicon hinders the adoption of
monolithic silicon devices for all-optical signal processing [10]. Apart from its weak optical
nonlinearity, the band structure of silicon does not guarantee ultrafast recovery time in the
presence of intense optical illuminations [14]. Future technology promises resource-efficient
and ultra-high speed performance; all-optical schemes solely based on silicon may not be
able to compete with their electronic and electro-optic counterparts.

Graphene and potentially the other two-dimensional (2D) materials can complement
to silicon photonic technology by adding a substantial amount of nonlinearity over a wide
spectral range [20-22,34]. As discussed within the preceding chapters, owing to the re-
duced dimensionality and symmetries existing in its crystalline structure, graphene exhibits
relatively strong optical nonlinearity. This strong optical nonlinearity is accompanied by
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ultrafast electron dynamics as well as optical tunability. Although light-graphene interac-
tion is relatively strong given its single atomic thickness, sophisticated field enhancement
mechanisms are definitely required to exploit the exclusive nonlinear optical properties of
graphene. The nascent practice of transferring graphene onto many optical structures,
has already shown great promise for the efficient exploitation of graphene’s unique optical
properties. For instance, by incorporating a graphene layer along a high-Q photonic crystal
nanocavity, a variety of nonlinear optical functionalities can be achieved [34, 38].

Among all functions required for integrated photonic circuits, the crucial role of optical
modulation in optical signal processing is topmost [21]. The key figures of merit used
to evaluate the performance of modulators are speed, operation band, insertion loss and
power consumption [22]. Of these, modulation speed is considered as a decisive factor in
efforts to meet the growing demand for information capacity.

According to the operational mechanism, optical modulators are classified into electro-
optic, all-optical, magneto-optic, thermo-optic and so on [21]. Since the optical response of
graphene can be tuned by applying a gate voltage, the development of electro-optical mod-
ulators based on graphene has been targeted by several groups [61-64]. Various schemes
have been proposed to date, including graphene integrated waveguides as well as resonant
structures whose optical transmissions are controlled by a gate voltage. The most distinc-
tive performance feature of reported graphene modulators is their extremely broad opera-
tion band. Although graphene-based electro-optical modulators demonstrate competitive
performance when compared with the state-of-the-art optical modulation platforms, their
operational speed is limited by the RC time constant associated with the charge buildup
on the graphene sheet [21,64]. This electrical bottleneck on the modulation rate can be
circumvented by an all-optical scheme [21].

All-optical modulation schemes employ a nonlinear material-whose optical properties
vary under high intensity illumination— to control or redirect the flow of a beam of light
that carries information. Borrowing the concept of pump-probe spectroscopy, a switch
light (most often ultrafast pulses) changes the optical properties of the nonlinear material.
The impact of the change on optical absorption or the refractive index of the nonlinear
medium can be augmented through a resonant structure that provides high enough optical
confinement. The majority of all-optical modulation devices exploit third-order optical
processes including the saturable absorption or Kerr effect to optically control the flow of
the signal beam.

While all-optical modulators and switches based on monolithic silicon technology have
been demonstrated in different configurations [14,153,154], these devices require the use of
extremely high-powered control beams to achieve high modulation depths. Although this
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issue can be alleviated using ultra-high-Q resonant structures, limitations in the speed of
such devices would remain an obstacle. The use of an ultra-high-Q structure will impose
further limitations on the speed of the device due to the relatively long life-time of the
photons stored inside the cavity. Several silicon-based all-optical modulators have been
proposed [153,154]. A typical value for operational speed of such a device is hundreds of
picosecond [154]. Graphene’s natural ability to function as a robust saturable absorber,
via the phenomenon known as optically induced Pauli blocking, would render it possible
to perform ultrafast all-optical modulation in hybrid graphene-silicon structures.

The innate flexibility of graphene has been exploited in Ref. [155] to wrap a graphene
monolayer over a microfiber for all-optical modulation based on the saturable absorption
of graphene. The operational principle of the proposed device is based on the absorption
of light by the graphene layer. The absorption loss of the graphene is controlled by a
high intensity pulse which in turn modulates the intensity of the signal light being guided
by the microfiber. The experimental results demonstrate the superior performance of the
device over the aforementioned electro-optical modulators in terms of operational speed.
Response times of ~ 2.2ps have been reported; these are only limited by the intrinsic carrier
relaxation time of graphene. However, the maximum modulation depth is limited to 38%.
Since the fiber-based modulator proposed in Ref. [155], essentially takes advantage of
guided modes and not resonant modes, no additional limitation is imposed by the life time
of the photons being transmitted by the fiber. However, the poor performance of the device
in terms of modulation depth effectively negates its ability to meet one of the key objectives
of all-optical operations. Using optical Kerr effect instead of saturable absorption has been
proposed recently [156]. S. Yu et al. demonstrated all-optical modulation in a graphene-
cladded microfiber integerated with a Mach-Zehnder interferometer structure [156]. In the
proposed device, the signal and control light pass through the graphene-cladded microfiber.
The signal undergoes phase modulation caused by the optical Kerr effect in graphene. The
phase-modulated signal light interferes with another path of light in the Mach-Zehnder
interferometer to realize amplitude modulation. However, since the graphene layer is still
lossy over the operational band, the structure suffers from an excessive amount of loss.
There is always a trade off between overall transmission and modulation depth in guided
based structures. To circumvent this issue resonant-based structures are proposed in this
thesis.

This chapter presents the experimental demonstration of strong optical modulation
effects in a graphene-cladded photonic crystal slab structure. The all-optical modulator
that is being experimentally explored, is schematically illustrated in Fig. 4.1. The photonic
crystal nanocavity was fabricated over a silicon membrane and a graphene monolayer was
directly (without any spacer) transferred onto the cavity region. The cavity was formed by
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displacing the holes around a line-defect waveguide. The resonance frequency of the cavity
in the absence of the graphene was designed to be around A ~ 1550nm. The considerations
regarding the design of the photonic crystal nanocavity are extensively discussed in section
4.2. As is displayed in Fig. 4.1, a high intensity beam impinging on the cavity from the
free space (shown in red) acts as the control beam. The control beam contains a train of
ultrafast pulses of wavelength around A ~ 1064nm. The operational principle is based on
changing the resonance properties of the cavity in the presence of the graphene and by
“deactivating the graphene monolayer ” through saturable absorption. The pulse train is
intended to control the transmission properties of a signal (shown by blue shading) guided
through the line-defect waveguide.

Figure 4.1: Schematic of proposed resonant-based graphene-cladded photonic crystal slab
structure. All-Optical amplitude modulation in graphene-cladded photonic crystal het-
erostructure nanocavity. The red beam contains a train of ultrafast pulses that control
resonance properties of a photonic crystal nanocavity.

The main focus of this chapter is twofold: First, the performance of the graphene-
cladded photonic crystal structure (as a prototype for all-optical modulation) will be exper-
imentally investigated. As the operational speed of the device is dictated by the relaxation
dynamics of the graphene-silicon heterostructure, experimental exploration of the opera-
tional speed will be crucial. The experimental results demonstrate that graphene-silicon
heterostructures offer both ultrafast and slow relaxation dynamics. The ultra-fast relax-
ation mechanisms originate from the carrier dynamics in graphene and the slow part of the
dynamics stems from the charge injection into the silicon layer. Experimental exploration
of the relaxation processes constitutes the second focus of this chapter. It will be ar-
gued that graphene-silicon heterostructures are an effective configuration for photoinduced
doping in graphene.
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This chapter is organized as follows. Section 4.2 is devoted to the design considera-
tions of the photonic crystal structure used in the experiments.The experimental setup
used to characterize the photonic crystal structures and the operational principles are dis-
cussed in Section 4.3. Section 4.4 presents the experimental results indicating strong
all-optical modulation in graphene integrated photonic crystal nanocavities. The findings
are summarized in Section 4.5.

4.2 Design of Photonic Crystal Double Heterostruc-
ture Nanocavity

Photonic crystal optical cavities are usually created by introducing a small defect or peri-
odically modulated refractive index profile in either one, two or three dimensions [157]. The
linear properties of photonic crystals including such defects have been extensively studied
both theoretically and experimentally [158-160]. In particular, a defected periodic array
of holes perforating an optically thin dielectric slab has been shown to be preferable for
graphene integrated nonlinear optics. Apart from the ease of fabrication, a periodic array
of holes supports TFE-like modes in which the electric field tends to lie in the plane of the
slab [157]. This type of polarization is desirable to enhance the light-graphene interaction.
In such structures, the light is confined within the defect regions by combining the action
of the Bragg reflections from the photonic bandgap structure within the plane of the slab
and the total internal reflections in the vertical direction. Design of such optimal microcav-
ities to enhance light-graphene interaction constitute the main focus of this section. The
design of the photonic crystal slab structure is essentially a two-step process. First the slab
dimensions are properly selected. Second, a strategic approach for formation of a high-Q
cavity is taken. The design rule employed to realize the photonic crystal nanocavity is
borrowed from Ref. [161].

4.2.1 Design of Photonic Crystal Slab

As mentioned above, TE-like modes are preferable for graphene-slab integration. The
topology of photonic crystal slab structures is most often inspired by their two-dimensional
counterparts. Imagine that the structure is infinitely extended along the third axis. An
intuitive argument conceived based upon the variational principle implies that a complete
bandgap for TE modes would exist in a 2D photonic crystal with circular holes perforating
a dielectric medium. In such a structure, the holes are arranged in a hexagonal lattcie with
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Figure 4.2: Simulation:(a) Photonic crystal slab and (b) its TE band structure. Shaded
regions show the radiating modes. (c) Design curve to optimize the slab thickness (a =
410nm).

the lattice vectors a; = ax and az = a (‘/75& + %5/) (where |a;| = |ag| = a). Seeking for
the maximum bandgap size, the holes’ radii for a silicon substrate are usually selected to
be around r ~ 0.3a.

Borrowing the in-plane lattice topology from the two-dimensional bandgap structure
designed for TE operation, it is possible to optimize the slab thickness. The photonic crystal
slab is schematically depicted in Figs. 4.2(a). The existence of the optimal thickness can
be intuitively understood by considering two extreme limits. If the slab is too thin, then
it will provide only a weak perturbation on the background dielectric constant leading to
weakly guided states, if they are guided at all. For a too thick slab, on the other hand,
the higher order modes can be excited simply with little energy barrier. For a tall slab the
fundamental mode is that of an infinite two dimensional structure, however, higher order
modes can be pulled down by adding horizontal nodal planes [162]. Such modes will lie
slightly above the low-lying mode, preventing any gap.

Using the variational principle, one can postulate that the optimal thickness will be on
the order of half of the two-dimensional gap-bottom wavelength [162]. A rough estimate
for the slab thickness is then obtained as

e

h =~ (4.1)

[ eff
57~7TEwgap—bottom

where 5ffo denotes the effective dielectric constant. Since the TE modes tend to confine
within the slab region, the effective dielectric constant is fairly close to that of silicon.
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The operational wavelength is intended to be around Ay ~ 1550nm and therefore the slab
thickness should not be far from h ~ 220nm.

The band structure of the photonic crystal slab structure is plotted in Fig. 4.2(b).
Clearly a band gap exists outside of radiation continuum. By selecting a ~ 410nm and
r =~ 108nm, the designed operational wavelength would lie in the mid-gap region. It
is worth pointing out that, due to technology limitations, the slab thickness cannot be
arbitrarily selected. For instance, the commonly available silicon cores that are closest to
the thickness required for the structure proposed here are 210nm or 260nm thick. Moreover,
when localizing states in a resonance cavity, longer decay times can sometimes be achieved
by using slightly thicker slabs [162]. In fact for thicker slabs the frequency is pulled down
to where the density of the radiating modes is lower (the density of the radiating modes
is proportional to w?). Fig. 4.2(c) displays the variations of the gap size! versus the slab
thickness?. The robustness of the gap size, provides more freedom to meet technology-
imposed constraints as well as to further optimize the structure.

4.2.2 Photonic Crystal Double Heterostructure Nanocavity

High Q photonic crystal nanocavities are considered as hands-on solutions that enable non-
linear optics at the integrated level. Nonlinear effects obviously depend on the electric field
strength inside the cavity. Field enhancement in the nanocavities is achieved essentially by
squeezing the light inside the cavity as well as extending the lifetime of the photons stored
in the cavity. Consequently, the field amplitude in the cavity should be inversely propor-
tional to the mode volume V. and directly proportional to the photons’ lifetime 7 ~ @ /wy
(over which time the field builds up in the cavity). Unlike in other resonant structures,
in a photonic crystal nanocavity, the mode volume is usually around (A/n)? (n is the re-
fractive index of the material constituting the slab structure ) and it is barely affected by
the topology of the structure. The quality factor on the other hand, can be optimized to
achieve highly narrow band operations. Recent extensive studies have demonstrated that a
variety of architectures can minimize the radiation decay and maximize the quality factor
of photonic crystal defected structures [160, 163].

As discussed above the photonic crystal cavities trap photons by exploiting two mech-
anisms ; total internal reflection (abbreviated as TIR) in the vertical direction and the
Bragg reflection in the transverse direction. The Q of a cavity is determined by the energy
loss per cycle versus the energy stored. Neglecting the absorption loss of the material

1Gap size is defined as the bandgap frequency length normalized by the center frequency.
2the band structure is analyzed using ‘Crystal Wave’ band solver
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constituting the cavity, Q is thus determined by the reflection loss at the interface between
the interior and exterior of the cavity. It is apparent that, fulfilment of the TIR condition
in the vertical direction is crucial in designing high-Q cavities. To minimize any radiation
leakage, abrupt changes in the field distribution over the cavity region must be avoided.
Several strategies have been proposed to optimize the quality factor including the forma-
tion of a cavity by removing and displacing the holes and more recently width modulation
of line-defect. The approach introduced in Ref. [161] has been taken in this thesis. The
reason for this choice is twofold. First, the proposed structure has been shown to be less
sensitive to fabrication imperfections [164]. The widely-employed linear three-hole defect
cavities (known as L3 cavities) [165] are expected to be highly influenced by fabrication
tolerances . Due to the experimental characterization method emaplyed in this work, the
resonance wavelength in particular should be within a reasonable range. Second, it can be
shown that the proposed design significantly increases the coupling strength of the optical
mode to the graphene sheet compared to a conventional L3 cavity [165].

The proposed design for photonic crystal double-heterostructure nanocavity is shown in
Fig. 4.3. The slab structure is composed of a triangular lattice structure with a line defect
formed by missing a row of the air holes. The line defect supports waveguide modes within
the bandgap. The cavity mode is formed by a slight change in the lattice constant over the
cavity region. The labels I and II shown in Fig. 4.3 designate the original lattice (lattice
constant a) and the deformed lattice (with the lattice constant a’), respectively. The
presence of the cavity mode can be grasped by observing the bandgap structure associated
with each region. The green shaded parts in Fig. 4.3(a) are the transmission part of the
spectrum where a waveguide mode exists and photons can travel through the line defect.
The red shaded parts indicate the mode gap region where transmission is forbidden. By
deforming the lattice, the transmission and mode gap regions are slightly misaligned (with
respect to the bandgap structure in region I) so that within a small part of spectrum a
guided mode is supported by the deformed lattice and not by the original lattice. The
mode is thus confined within a small region. By selecting a = 410nm and a’ = 420nm, the
resonance wavelength is expected to be around A ~ 1550nm.

The proposed design offers optimum performance when the silicon layer (the photonic
crystal slab) is suspended over air. However, since this thesis intends only to demonstrate
the modulation effect discussed earlier, a structure composed of the device layer and a
thick layer of SiO, underneath the silicon slab would be adequate for this purpose. The
fabrication of such a device is of course less laborious and still provides the advantage
of robustness of design with respect to fabrication imperfections. However, a significant
degradation of the quality factor is expected. The structure has been simulated by a three
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Figure 4.3: Design of double-heterostructure PHC nanocavity (a) Simulation: Band
structure associated with the two lattices. Dark shaded region display the radiating modes
inside the light cone. Dotted lines show the guided modes. Green shaded parts allow
transmission through the guided modes and the red shaded regions are mode gap region
where no guided modes exist. (b) Photonic crystal double heterostructure nanocavity
formed by joining two lattice configurations. (c¢) Schematics of the band diagram along the
waveguide direction.

dimensional (3D) FDTD solver® to find the resonane frequency, qulaity fcator and the mode
shape. This was accomplished by exciting the cavity with two perpendicular small dipoles
placed at the center of the cavity. The dipoles generate circularly polarized electromagnetic
radiation with an almost uniform pattern. The electromagnetic field is recorded by two
perpendicular sensors inside the cavity. Fig. 4.4 represents the response of the system in
the spectral domain around the resonance frequency. The response peak takes place at
the resonance frequency and its linewidth determines the quality factor. The resonance
wavelength is Ay = 1.579um and the corresponding Q factor is around ¢y ~ 6500. The field
intensity long after the other low-Q modes have died out is shown in the inset of Fig. 4.4.
To gain insight into the impact of the SiO, layer, an analysis was performed for a photonic
crystal membrane (without a supporting SiOq layer). As expected the quality factor of
the membrane is significantly larger Quembrane ~ 1 X 10% and the resonance wavelength is
Amembrane = 155:U’m

3Photon D, Crystal Wave module
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Figure 4.4: Simulation Results: Response of the double heterostructure nanocavity in
the spectral domain around the resonance frequency. The mode shape is shown in the inset.
The quality factor is @ &~ A\/AX = 6500 where A\ ~ 200pm is the resonance linewidth.

The reason for this cavity having such a high quality factor can be intuitively understood
as follows. The original line defect (in the absence of modulation) theoretically has ideal
guided modes in the PhC without out-of-plane radiation loss. The guided mode is located
outside of the radiation continuum. If we terminate this waveguide to form a cavity, this
termination normally causes a large perturbation in the original mode profile, which results
in a significant radiation loss for the cavity modes. With a mode-gap-cavity design (i.e.
exploiting the band gap in waveguide modes) , the waveguide is not terminated but slightly
modified to create a local modulation of the gap position. In this sense the mode is localized
around the corresponding guided mode with minimum perturbation in k space and as a
result the radiation loss is minimized.

4.2.3 Graphene-Cladded Photonic Crystal Double Heterostruc-
ture Nanocavity

Having designed the photonic crystal nanocavity, we can now proceed to investigate the res-
onance characteristics of the graphene-integrated photonic crystal nanocavity. Graphene is
transferred onto the photonic crystal slab. The interaction of light and graphene obviously
takes place through coupling with the localized mode in the photonic crystal nanocavity.
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Figure 4.5: Theoretical Results: (a) (), versus Fermi energy level. The resonance
frequency in the absence of graphene is fwy ~ 790meV = 1550nm. (b) Wavelength shift.
The results are obtained from perturbation theory. Temperature is assumed to be T =
300K

Since a moderately-doped graphene sheet is absorptive —for the optical wavelengths—, a
significant reduction of the quality factor is expected.

Subwavelength localization of the field in photonic crystal nanocavities leads to exci-
tation of surface plasmons in graphene. Due to the strong confinement of the plasmons in
the vertical direction, numerical modeling of graphene integrated nanocavities using do-
main discretization techniques (including FDTD) is expensive. The quality factor as well
as the resonance shift of the cavity can be conveniently estimated by means of open cavity
perturbation theory [166]. The reliability of the method is of course limited due to a certain
lack of rigor, however insights can be gleaned from the results.

Given the complex resonance frequency defined as Wy = wo(1 + j/2Qy) , where wy and
Qo are the resonance frequency and intrinsic quality factor respectively, the variation of wy
caused by the graphene monolayer is calculated as

55~ / / E(wo) - Re{, } - Eo(wp)ds
4U0 Graphene

)

0o
E; Im{=—4}. E 4.2
* 4U0 //Graphene O(WO) m{ aw } O(WO>d8 ( )

where the complex in-plane optical conductivity of graphene is denoted by the tensor
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7, and the vector field Eq(wy) is the Fourier transform of the electric field at the resonance
frequency. The factor Uy is the total energy stored inside the cavity

1
U= /// ereo [Ef dr (4.3)

In Eq. (4.2), the second term is obtained from the Generalized Foster’s Reactance Theorem
[167]. In the present formulation, an additional radiation loss arising from perturbing
the field distribution by graphene has been safely neglected. It can be shown that the
absorption loss is the dominant mechanism contributing to resonance broadening in the
cavity. Eq. 4.2 allows identification of the intrinsic quality factor Qo (quality factor of the
cavity in the absence of the graphene) and the quality factor associated with the graphene
Qg = #{0&&}. The total () factor is calculated by

1 . 1
Q QO Qg
If the fermi energy level allows absorption of the photons confined in the cavity, the quality

factor ( would be almost identical to (). Fig. 4.5 displays the variations of the resonance
wavelength as well as (), versus the Fermi energy level.

(4.4)

Photonic crystal nanocavities were fabricated on a silicon-on-insulator wafer with a
260nm-thick silicon membrane using a combination of electron-beam lithography and
dry/wet etching steps. A large-area, low-doped monolayer graphene grown by chemical
vapor deposition (CVD) was wet transferred onto the silicon graphene directly without any
spacer. The sample before and after transferring the graphene layer is shown in Fig. 4.6.

4.3 Experimental Characterization of Photonic Crys-
tal Nanocavities Using Cross-polarized Reflectom-
etry Setup

4.3.1 Optical Characterization Technique

The experimental characterization of the photonic crystal nanocavity was carried out by
free-space illumination of a focused laser beam. The wavelength of the laser is scanned
through the resonance of the photonic crystal cavity and the reflected beam is captured
by an InGaAs detector equipped with a low noise amplifier. It is difficult to observe the
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Figure 4.6: Fabricated Device: (a,b) Optical microscope images of photonic crystal dou-
ble heterostructure nanocavity array. Each device containes eighteen equidistant cavities.
(a) Bare photonic crystal sample (b) Graphene-cladded photonic crystal array. The cavity
regions are marked by numbers. The blue boxes mark a pair of cavities. (c) Scanning
electron microcopy image of the graphene-cladded photonic crystal. The dark regions are
inhomogeneities in transferring graphene. The graphene layer is smoothly transfered onto
the cavity.

cavity spectrum directly, because only a small fraction of the incident light couples to the
high-Q cavity mode. The reflected beam predominantly comes from the device interface,
which has no spectral dependence. Owing to the high quality factor of the cavity, the
resonant mode has slight radiation leakage; According to the reciprocity theorem, the free
space modes are barely coupled to the cavity mode. For that reason, the signal reflected
by the cavity is monitored in the cross-polarization reflectometry setup.

The operation principle of the experimental setup used to measure the cavity spectrum
is schematically illustrated in Fig. 4.7. It can be shown that, the cavity mode is dominantly
y-polarized (see Fig. 4.7). A polarizing beam splitter couples the vertical polarization
component of the incident beam. The coordinate system is selected so that the vertical
polarization scheme points toward x direction. A half-wave plate rotates the polarization
of the beam by the angle of 20 where # is the angle of the fast azis with respect to the
x axis shown in the figure. The tilted polarized beam is then focused on the nanocavity
by means of a microscope objective. In order to avoid exciting the modes with large in-
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plane wave-vector, the spot size can be relatively large (20um for instance). However, low
noise operation would require employing a spatial filter at the output to get rid of the rays
reflected back from the artifacts surrounding the cavities. If the cavity mode is excited,
the reflected beam will gain a large cross-polarized component. The reflected beam is
collected by the objective and passes through the A/2-plate once more to be rotated back
to the vertical-horizontal frame. Only, the horizontal component which corresponds to the
cross-polarized term is coupled to the output through a polarizing beam splitter.

The orthogonal polarization configuration of the incident and detection light suppresses
background reflectance which is mainly off the device layer. Therefore, not only can arti-
facts in the spectrum that do not originate in the nanocavity be largely avoided but the
visibility of the mode of interest is maximized. For a further reduction of noise , a 10pm
pinhole was placed at an optically conjugate plane in front of the detector to eliminate
the rays coming from the out-of-focus as well as the region surrounding the cavity. This

technique was inspired from Confocal microscopy, originally invented in 1957 by Marvin
Minsky [168].

: ref
Polarizing Beam 10 pm Pin hole Detector

splitter

A
citation beam (1550nm) ki X
half-wave plate

Objective lens

Photonic Crystal nanocavity

(a)

Figure 4.7: (a) Schematic of cross-polarized confocal reflectometry setup. (b) Mathematical
modeling of angle- dependence of the cross-polarized power

As remarked upon above, the cross-polarized component has a resonant nature and it
thus provides an accurate way to measure the resonance frequency and quality factor of
the excited mode. At the resonance wavelength, variations in the amount of the power
coupled to the cross-polarized component versus the angle of the waveplate can be roughly

83



estimated. Although the calculations are overly simplistic, the resulted expression can
accurately explain the experimental results. The amplitude of the resonant mode excited
by the illuminating Gaussian beam is proportional to the spatial correlation of the mode
shape and the incident electric field [169]. Assuming that the mode is dominantly y-
polarized, the amplitude of the excited mode (A,,) accordingly should be proportional to
Ay, o sin(260) where 6 is the angle of the half-wave plate. The cross-polarized reflection
E}, in turn, is approximately proportional to the projection of the mode in the direction
orthogonal to the incident wave [i.e. Ej o A, cos(20)]. Combining the above, the angle-
dependence of the cross-polarized power —denoted by Px— is

Px X |sin 46 (4.5)

Fig. 4.8 illustrates the schematic of the actual setup used to perform the resonance
reflectometry measurements. In addition to the half-wave plate discussed above, the setup
takes advantage of a quarter waveplate for precise alignment as well as IR imaging. The
A/4-plate facilitates the coupling of the co-polarized component to the output for alignment
purposes. We have also employed two visible imaging systems namely incoherent and
coherent. The incoherent imaging system aims us to search for photonic crystal over a
wide sample. The coherent imaging system offers much higher resolution and it is utilized
to find cavities over each photonic crystal. The IR imaging has been performed for both
cross- and co-polarized configurations. The IR imaging camera employed in the setup
(CAMS3 in Fig. 4.8) is equipped with a square array of InGaAs detectors.
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Figure 4.8: Implemented Setup: Cross-polarized confocal reflectometry setup. The red lines display
the optical path for the ~ 1550nm laser beam generated by the continuous tunable laser source (Laserl).
The blue lines represent the visible laser beam (630nm in the actual experiment) generated by Laser 2.
The IR beam is initially polarized; Therefore the A/2-plate WP1 together with the polarizer P1 control
the amount of the power injected into the setup. The polarizer P1 is adjusted to make sure that the beam
is vertically polarized. Mirrors M1 and M2 are required to make the beam perfectly parallel to the optical
table. DM is a dichroic mirror that allows transmission of the IR beam and reflects the visible beam.
DM1 has been employed to make the IR and visible beams collinear. PBS is a polarizing beam splitter,
which couples the vertically polarized beam to the sample. LT stands for Lens Tube. The lens tube is
used to expand the beam to reach to the defraction limit (in terms of the spot size on the sample). In the
experiment the lens tube has been designed to expand the IR beam twice is dimeter. BS1 is a beam sample
which is used to couple the reflected visible beam to the CAM1 and CAM2 for incoherent and coherent
imaging respectively. The A/4-plate plate WP2 is employed to couple the vertically polarized beam to the
output for alignment and IR-imaging purpose. The A/2-plate WP3 is used to rotate the polarization of
the incident beam. The objective lens OL1 focuses light on the cavity of interest. The 3D stage provides
translation in x, y and z directions with micrometer precision as well as two extra degrees providing ability
of rotating the sample. The Filter P2 is adjusted to filter out the vertically polarized beam and only
transmits the horizontal components. The filter LP2 is long pass filter which allows transmission of the
IR beam. BS2 is a beam splitter (sampler) which splits the beam at the output in two parts, one for
detection and one for IR-imaging. OL2 is an objective lens to focus on the 10um pinhole PH to filter out
unwanted signals. The detector Det reads the cross-polarized signal. Precise coupling to the pin hole is
achieved by mirror M4 and M5. The beams is partly coupled to IR camera to observe the cavity mode.
A fiber coupled spectrum analyzer is also used to observe the spectrum of the cross-polarized component.
FM1 and FM2 are flip mirrors.
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Figure 4.9: Experimental Results: Cross-polarized reflectometry measurements for the
test cavity (a) cavity spectrum; yellow shaded region displays the resonant mode and green
shaded part is the part of the spectrum that the photonic crystal supports guided mode
and (b) at A = 1499nm: variations of the cross-polarized power versus the angle of the
A/2-plate close to the sample. The black solid line is the best fitted sinusoidal function. It
is observed that Py varies as ~ |sin 46]°.

4.3.2 Experimental Results

The cross-polarized reflectometry measurements were carried out for two distinct samples.
In the first experiment as a test run, the spectrum of a heterostructure nanocavity covered
by a thin PMMA * layer, without graphene was measured. A tunable laser® covering
the wavelength range of 1450nm — 1630nm was used as the source. Fig. 4.9 displays
the measurement results. The variations of the cross-polarized power (which represent the
cavity spectrum) are shown in Fig. 4.9.(a). The resonance peak takes place at A = 1499nm.

4polymethyl methacrylate
5 8164B Lightwave Measurement System, Keysight
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Figure 4.10: Experimental Results: IR imaging for the test sample (a)-(d) Cross-
polarized imaging for the wavelengths A = 1498nm, 1499nm, 1500nm, 1501nm and (e) co-
polarized imaging.

The relatively low quality factor of the cavity aimed us to adjust the setup and calibrate
the polarizer and the waveplates. Fig. 4.9.(b) shows the variations of the power captured
by the detector at the resonance wavelength versus the angle of the \/2-plate WP3 (see
Fig. 4.8). As expected, the variations of the power agree well with Eq. (4.5).

Two distinct parts of the spectrum are shaded in Fig. 4.9.(a). The yellow shaded
region displays the cavity mode where the structure supports the resonant mode. The
dark green shaded region is the part of the spectrum that the structure (both regions I
and IT of Fig. 4.3) supports waveguide mode within the line defect. Fig. 4.10 presents
the results of IR imaging for the cross- and co-polarized configurations. In the cross-
polarized configuration, the cavity mode is imaged at the resonance and it exhibits extreme
wavelength dependence. The cavity is ON at the resonance frequency and as expected the
cross-polarized components is bright only at the resonance wavelength. The co-polarized
imaging has been performed with a wideband semiconductor laser®. The image is shown
in Fig. 4.10.(e).

The resonance spectrum of the graphene-cladded double heterostructure nanocavity
shown in Fig. 4.6, was measured next. This sample was selected to demonstrate all-optical
modulation. The cross-polarized signal in the wavelength range of 1450nm — 1630nm is
shown in Fig. 4.11. It is obviouse that, the structure possesses a wide linewidth around
the designed wavelength (i.e. ~ 1550nm). The quality factor of this structure is around
@ ~ 100 which is quite low. However, all-optical modulation can performed satisfactorily
by this device. The variations of power captured by the detector in the cross-polarized
configuration versus the angle of the plate at A = 1550nm were also recorded. The ~
|sin 40|2 dependence indicates the resonant nature of the optical interaction.

SFPL1009S - 1550 nm, 100 mW, Butterfly Laser Diode, THORLABS
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Figure 4.11: Experimental Results: (a) Resonance spectrum of the graphene-cladded
photonic crystal shown in Fig. 4.6. (b) At A = 1550nm: The variations of the cross-
polarized power versus the angle of the \/2-plate.

4.4 All-Optical Modulation

4.4.1 Operational Principles and Experimental Setup

As discussed extensively earlier, in the graphene-integrated double heterostructure nanocav-
ity shown in Fig. 4.5, the TE-like resonant mode is evanescently coupled to the monolayer
graphene. Absorption loss in the graphene sheet alters the resonance spectrum by reduc-
ing of the lifetime of the photons launched into the cavity. It has been observed that
the graphene sample transferred onto the photonic crystal slab is absorptive in the op-
tical wavelength range; therefore it should be moderately doped with a low-lying Fermi
energy level. According to the results presented in Fig. 4.5, owing to the absorption loss
in the graphene, a pronounced resonance broadening would be expected. In contrast, The
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resonance shift, would be relatively small. The experimental results confirm this fact.

’ 0.2
time (ps) U k/ Ky

Figure 4.12: All-optical modulation via saturable absorption of graphene (a) Schematic
of all optical-modulation in the graphene integrated photonic crystal cavity (b) Schematic
of the electron dynamics underlying the modulation effect. An intense optical pulse
(1064nm = 1.16eV) causes quasiparticles to jump to the conduction band. The carriers
are then relaxed through electron-electron as well as phonon-assisted scattering processes
to the lower energies. The probe light is stored inside the cavity (1550nm = 790meV) and
experiences a modified population at the conduction band. (¢) Many-body Simulation:
Population of charged carriers in the conduction band (p..) versus Bloch wavenumber k
(with respect to the Dirac point, i.e. & = 0 is the Bloch momentum at the Dirac point),
for several time slices. Excitation pulse in time (with an arbitrary unit) is displayed by
the red shaded curve . Zero-detuning line where hwpyse = 2hvp Ky is shown in the figure.
Pump fluence is 124J /em? with pulse duration of 7 = 150fs.

A schematic of the all-optical modulator is shown in Fig. 4.12(a). The photonic crystal
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cavity is illuminated by a 1064nm ultrafast laser light (illustrated by the red beam). The
ultrafast pulses were characterized by an intensity autocorrelation setup. The measurement
results indicate that the duration of the pulses was around 7 ~ 150fs. The photon energy of
1064nm light is less than the band gap of silicon, so it can only be absorbed by the graphene.
As is schematically illustrated in Fig. 4.12(b), the charged carriers in graphene jump into
the upper energy level (conduction band) in the presence of high intensity illuminations and
they relax to the lower energies (still within the conduction band) via many-body induced
relaxation mechanisms. As a result, the population of the charged carrier in the upper
energy level varies over time during and after applying the pulse and part of the optical
transitions become prohibited due to Pauli-blocking. The reduced population difference in
turn causes fewer photons trapped inside the cavity (with the wavelength of ~ 1550nm) to
be absorbed by the graphene layer. This effect can be interpreted as optically modifying the
Fermi energy level and changing the absorption spectrum of the cavity over the relaxation
period of the carriers.

To further illustrate the saturation effect in graphene, a many-body analysis was per-
formed encompassing all carrier-relaxation channels including Coulombic interactions and
phonon-induced relaxation mechanisms” [114,118] (details can be found in Appendix. B).
The graphene layer is assumed to be undoped and is held at the room temperature. The
temporal evolution of the pump-induced carrier occupation in the conduction band (de-
noted by p..) for the pulse fluence of 12J/cm? is depicted in Fig. 4.12(c). Carrier out-
scattering from the optically pumped states (denoted by the wavenumber Kj) leads to
redistribution of the carriers over the conduction band in a picosecond time scale. It can
be observed from Fig. 4.12(c), that the lower energies k& < K, acquire nonzero carrier
occupations. Consequently, the absorption of the low energy photons is quenched before
carrier cooling is completed.

The experimental setup used to demonstrate all-optical modulation is displayed in Fig.
4.13. The pulse laser (acting as the control light) is generated by a Q-switch laser (Module
#1) with repetition rate of 40MHz (i.e. the delay between two subsequent pulses is 25ns).
The resonant cavity is probed through the cross-polarized reflectometry setup (Module
#2) described in Section 4.3. The control and the probe beams are collinear and shine
into the cavity from the top. Module #1 is designed to provide an arbitrary delay between
two subsequent pulses. Inspired by the pump-probe spectroscopy technique, the control
light is split into two parts and an arbitrary amount of delay is generated through a delay-
line being adjusted by a translation stage. An optical chopper accompanied by a lock-in
amplifier is employed to monitor the modulation effect. The control beam is chopped and
the lock-in amplifier picks a portion of the cross-polarized signal (i.e. the resonant mode)

"In collaboration with Roland Jago, Ermin Malic, Chalmers University of Technology
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Figure 4.13: Implemented Setup: (a) Module #1 is to inject 1064 pulse train into the setup. Module
#2 was explained in Fig. 4.8. The pulse train is generated by a Q-switched pulse laser with the center
wavelength of 1064nm, the pulse duration of 7 = 150fs and repetition rate of 40MHz. The IR beam is
initially polarized; Therefore the A/2-plate WP4 together with the polarizer P3 cooperatively control the
amount of the power injected into the setup. The separation between pulses are tuned by a delay line
and a beam splitter. The beam is split in two parts by the beam splitter BS3. The delay line made of
the retroreflector RR1 mounted on a translation stage can control separation between pulses. A second
retroreflector is employed to balance the optical paths associated with each beam. A chopper with two
types of holes is used to lock out the two beams with different frequencies. The two beams are recombined
through the beam splitter BS4. The power injected to the setup is measured and calbrated by the power
meter shown in the figure. Since the PBS in Module #2 only couples vertically polarzied beams into
the sample, the \/4-plate WP5 rotates the polarization to inject enough power into the sampel. (b)
Implemented setup in our lab.

91



oscillating with the frequency determined by the chopper. This setup makes it possible to
monitore the part of the signal being affected by the control beam .

4.4.2 Experimental Results

Fig. 4.14 presents the experimental results obtained from the optical arrangement described
above. The red-shaded curves display the modulated signal captured by a lock-in amplifer.
The measurement was performed for a variety of input powers (control light). Quoted
power levels are the average power focused onto the sample through free-space illumination.
Obviously, by increasing the power of the pulse laser, the saturation effect becomes more
noticeable. For the input power of ~ 120mW a complete saturation takes place. The
cavity spectrum was simultaneously measured in the presence of high intensity illumination
(blue-shaded curves). It is worth pointing out that due to the ultrafast recovery time of
carriers, the modulation effect ‘predominantly’” occurs within a short time interval (only a
few picoseconds). Therefore, the cross-polarized signal monitored by the detector is barely
affected by the 1064nm laser beam. This necessitates using an optical chopper together
with a lock-in amplifier to capture the small fraction of the signal (in time) being modulated
by the ultrafast pulse laser. This observation does not imply that the modulation effect
is small; given its resonant nature, the modulation depth can reach 100% in a picosecond
time scale.

Our experimental observations indicate that there should be a slow relaxation mech-
anism attributable to carrier injection into the silicon layer. As will be clarified shortly,
the graphene-silicon heterojunction prompts carrier injection into the silicon layer via slow
carrier dynamics comparable to the time-separation between subsequent pulses. Apart
from the non-equilibrium charge redistribution, the high intensity illumination is expected
to vary the temperature of the graphene layer at equilibrium. The cooperative impact of
the slow non-equilibrium charge injection and the equilibrium thermal effects leads to the
slight changes in the cavity spectrum as the power increases.

The slight dependence of the cavity spectrum on the temperature rise, confirms that the
Fermi energy level in the graphene layer (denoted by Ey) should be much lower than the
energy of the photons confined inside the cavity. If Fy < %ﬁw where hw ~ 790meV, the
absorption loss in the graphene would be minimally affected by any change to temperature.

To verify that the modulation effect is originating from the graphene, the experiment
was also carried out with a bare photonic crystal nanocavity (without graphene) and no
modulation effect was observed.
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Figure 4.14: Experimental Results: Spectral dependence of modulation intensity. Red-
shaded region is the spectral dependence of modulation depth (signal capture by lock-in
amplifier in arbitrary units). Blue-shaded region is spectrum of the cavity in the presence
of high intensity illumination.

Next, the impact of the slow relaxation dynamics was experimentally investigated.
Since this effect is negligibly small ; a pump-probe spectroscopic scheme would not be
the most viable option. In order to verify the slow relaxation mechanism, the variation
of modulation-depth versus power of the control beam was observed. If the photo-excited
charge carriers survive in nanosecond time scale, ‘communication’ would be instigated
between subsequent ultrafast pulses that are separated by ~ 25ns. To further understand
this, let us assume two subsequent ultrafast pulses being shot to the structure. The first
pulse redistributes the carriers via the cooperative impact of the ultrafast and the slow
relaxation mechanisms. The subsequent pulse would impinge upon the remaining carriers
that are still undergoing relaxation beyond the time separation between the pulses. As a
result, the modulation intensity is expected to carry a memory. That is, the modulation
effect created by a given pulse should depend on the laser irradiation prior to that pulse.

Fig. 4.15 displays the modulation intensity versus average power of the control beam.
The input power has been steadily swept within a closed loop. A slow sweeping of the
input power guaranties thermal equilibrium in the presence of intense illumination. It
is quite interesting that the modulation-depth follows a hysteresis loop. The high- and
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Figure 4.15: Experimental Results: Mapping of modulation-depth (P,,,q) versus the
power of the control beam (Pjog4). Hysteresis behavior which can be attributed to the slow
relaxation dynamics.

low-state modulations are illustrated in Fig. 4.15. The hysteresis loops indicate that the
modulation-depth carries memory with respect to the control beam.

It is speculated that this effect can be attributed to carrier injection into the silicon
layer through the graphene-silicon heterojunction. With the pulse laser on, the photo-
excited electrons in graphene are partly transferred into silicon and this causes the un-
occupied states in the valence band of graphene to go down gradually. The excess free
electrons transferred into the silicon structure create extra amount of loss in the cavity
region [170]. This extra amount of loss would compete with the optically-induced trans-
parency in graphene to change the resonance spectrum of the hybrid cavity. It should be
emphasized that the 1064nm pulse-train is weakly absorbed by silicon without graphene.
The absorption coefficient of silicon for 1064nm light is reported to be o ~ 11lem ™! which
is quite small and it does not give rise to any significant effect [171,172].

The adopted physical picture can also explain photo-induced doping in graphene-silicon
Schottky structures [173-175]. Motivated by potential applications of photo-induced dop-
ing in solar cells and energy harvesting, the electrical and photoelectrical properties of
graphene-silicon heterojunctions have been characterized by several groups [173,174]. Ex-
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perimental results supported by theoretical studies, confirm that the Raman spectra of
graphene-silicon heterojunctions are changed (mostly downshifted) by light irradiation
[173]. The band configuration of the hybrid structure can be inferred from the experi-
mental observations reported in Refs. [173]. In this work we do not plunge into a rigorous
analysis of the effect and a qualitative explanation of the physical process underlying the
experimental results should suffice, given the scope of this thesis work.

Fig. 4.16 schematically displays the energy diagram of a graphene-silicon heterojunc-
tion. The quality factor drop-off due to the free carriers injected into the silicon cavity
depends on several factors including the free carrier absorption (denoted by apc ) in silicon
and the free carrier concentration [172]. The free carrier absorption coefficient in silicon
probed by 1550nm light is estimated to be around apca ~ 1.4x 107N where N is the free
carrier concentration of silicon [176]. The light-induced carrier injection from the graphene
to the silicon would lead to a charge accumulation over the interface. However, equilibrium
is attained due to an electrostatic field build-up at the interface. The relaxation process is
quite slow so that the graphene-silicon heterostructure exhibits non-memory-less behavior
in the presence of coherent pulse irradiation.

Graphene Silicon
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Figure 4.16: Energy diagram of graphene-silicon heterojunctions. Graphene injects the
photo-excited carriers into the conduction band of silicon.

4.5 Summary

All-optical modulation in a graphene-integrated photonic crystal double heterostructure
nanocavity has been demonstrated experimentally for the first time. A high intensity
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pulse laser beam can effectively control the resonance spectrum of a graphene-cladded
photonic crystal nanocavity via saturable absorption. The graphene layer absorbs the
photons confined inside the cavity through interband transitions and the cavity brightness
is thus reduced. The control pulse can redistribute the quasiparticles in graphene so that
absorption quenching takes place. As a result, the resonance spectrum of the cavity is
manipulated by the external pulse-train impinging onto the structure. Cavity brightness
is thus controlled by the pulse-train via Pauli-blocking the optical transitions.

The optical characterization method employed in this work enables the capture of both
ultrafast and slow relaxation mechanisms. The spectral dependence of the modulation
depth was experimentally investigated. It was concluded that, the modulation depth fol-
lows the cavity spectrum. This observation is expected, since the modulation mechanism
is based on the change in the cavity spectrum.

It was experimentally demonstrated that the modulation depth exhibits a discernible
two-state dependence on the power of the control pulse. Since the optical structure does
not provide any platform to trap the modulating pulses (i.e. 1064nm pulse-train), the
non-memory-less state of the system is attributed to the slow carrier relaxation channels.
It was argued that slow carrier injection from the graphene into the silicon layer competes
with the ultrafast relaxation processes in the graphene to change the resonance spectrum
of the cavity. This observation suggests that graphene-silicon heterostructures could be
efficiently employed in energy-harvesting and related applications including solar cells.

The experimental observations presented in this chapter suggest that the integration
of graphene with state-of-the-art optical platforms including photonic crystal structures
can efficiently enable several nonlinear optical functionalities. In particular, graphene
transferred onto a wavelength-scale nanocavity can significantly enhance the nonlinear
effects , suggesting a new paradigm for chip-scale photonics and ultrafast optics for all-
optical signal processing.
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Chapter 5

Conclusion and Outlook

This thesis work undertook a combination of theoretical modeling, numerical analysis
and experimentation. Although the nature of the concepts studied in this thesis did not
allow for the verification of every theoretical extrapolation by experimentations, overal
satisfactory rate of agreement between the predictions made and experimental observations
was achieved. A summary of original contributions reported in this thesis are outlined in
Section 5.1. Suggested areas for future work are discussed in Section 5.2.

5.1 Summary of Contributions

In Chapter 2, a comprehensive quantum theory of light-graphene interaction was devel-
oped. The adopted mathematical method allowed for the identification of the distinct
nonlinear processes contributing to the third-order optical response of graphene. It was
theoretically proved that the chirality of quasiparticles entails a diverging field induced
interband coupling. Since this singularity has a physical origin, its impact was shown
to be observable. It was argued that the anomalous structure of the interband coupling
causes the charge carrier to undergo ultrafast Rabi oscillations accompanied by slow relax-
ation dynamics. As a result, even under arbitrarily weak electromagnetic radiation, low
energy quasiparticles become optically saturated. It was claimed, for the first time, that
optical response of graphene is in essence nonperturbative. In particular, for small Fermi
energy levels or low-energy excitations, this effect is quite significant and therefore defining
‘nonlinear coefficients’ is no longer valid.

Luckily, for moderately doped graphene, the Kerr coefficient can be still defined within
the optical wavelength range. The results of our experimental characterization of the
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intensity-dependent refractive index of graphene was presented. Propitiously, both in terms
of spectral dependence and orders of magnitude, the theoretical predictions successfully
explained the experimental results.

In Chapter 3, a novel graphene integerated plasmonic structure for THG was proposed
and numerically analyzed. To this end, the formulations developed in Chapter 3 were
employed. The proposed structure was shown to exhibit competitive performance among
state-of-the-art integrated nonlinear devices.

Along with the main purpose of Chapter 3, a novel topology was proposed to maximize
the interaction of plasmon-enhanced fields and graphene. Since graphene only interacts
with the part of the electromagnetic field whose polarization is parallel to the graphene
sheet, enhancement of the magnitude is not necessarily enough. It was demonstrated
that the integration of a plasmonic nanostructure and a multilayer Bragg reflector —which
mimic a perfect magnetic conductor— could not only intensify the field , but would rotate
the polarization of the enhanced field to improve the light-graphene interaction. This was
accomplished by means of a novel numerical method which combines the GMT method
and the plane wave expansion technique.

In Chapter 4, a new experimental demonstration of all-optical modulation in a graphene
integrated photonic crystal nanocavity was presented. Using confocal cross-polarized re-
flectometry technique, the resonance spectrum of a cavity covered with graphene was char-
acterized. It was experimentally confirmed that, the cavity spectrum varies in the presence
of high intensity illuminations. This observation indicates that the graphene-cladded pho-
tonic crystal nanocavity can execute all-optical modulation via photoexcited carriers in
graphene in the presence of ultrafast pulses. In addition, the experimental results indicate
that carrier injection in the graphene-silicon heterostructure also partly contribute to the
modulation effect. This effect introduces a slow process.

A sumamry of the contributions are listed below.

e Theoretical development: comprehensive semiclassical theory of light-graphene
interaction leading to explicit expression for nonlinear optical response of graphene.

e Theoretical development: theory of spontaneous optical saturation of low-energy
Dirac fermions.

e Experimental characterization: spectral dependence of the Kerr coefficient of
graphene.

e Proposed structure: efficient optical third harmonic generation in a graphene-
integrated plasmonic structure.
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e New numerical method: hybrid numerical method; a combination of of boundary
discretization method and plane wave expansion technique.

e Experimental demonstration: All-optical modulation in graphene integrated
double heterostructure nanocavity.

5.2 Outlook

5.2.1 Two-Color Pump-Probe Spectroscopy

The pump-probe time-resolved spectroscopy technique can be used to obtain information
on ultrafast phenomena. In this technique, a sample is hit by a pump pulse that modifies
its refractive index via photo-excited carriers. After an adjustable time delay, a probe pulse
impinges onto the sample, and its transmission or reflection is measured. By monitoring
the reflected (or transmitted) probe signal as a function of the time delay, it is possible
to obtain information on the decay of the carrier, and/or other processes initiated by
the pump pulses. The probe signal is typically averaged over many pulses, and a fast
photodetector is not required. The temporal resolution is fundamentally limited only by
the pulse duration of the pump and probe pulses.

In commonly available pump-probe setups, a pulse laser beam is split into a high in-
tensity pump and a low intensity probe. Since the two generated beams have identical
origins, they are synchronous in time and an arbitrary amount of delay between the pump
and probe pulses can be introduced by means of a spatial delay-line. Obviously, pump and
probe have identical spectral distributions. However, in many applications, the pump and
probe pulses are required to be at different wavelengths (i.e. two colors) to extract par-
ticular information; therefore two different lasers should be utilized. The most important
requirement to perform pump-probe measurement is the synchronization of the pump and
probe pulse trains. To date, several strategies have been introduced in the literature. The
use of nonlinear crystals for second harmonic generation, external cavity lasers and electro-
optical modulators are among the proposed techniques [177-179]. These techniques usually
impose limitations on the wavelengths of the pump and probe and are highly complicated.

The performance of the graphene-cladded photonic crystal nanocavity was successfully
demonstrated in Chapter 4. Since the modulation effect is predominately executed through
the ultrafast carrier relaxation dynamics of the graphene, the modulated signal is expected
to acquire a pulse shape with a picosecond-scale pulse width. Obviously, the pulse is
oscillatory at the wavelength of 1550nm and is synchronous with the 1064nm modulating
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Figure 5.1: Schematics of two-color pump-probe spectroscopy technique based on all-
optical modulation.

pulse train. A suggested direction for future experimental development, is to use the
two synchronized beams (i.e the original pulse train that modulates the cavity and the
modulated signal) to perform two-color pump probe spectroscopy. The proposed scheme
is illustrated in Fig. 5.1. The proposed method offers several advantages over commonly
used approaches. First, it is extremely simple and low cost. Second, the cavities can be
designed to conduct pump-probe spectroscopy at arbitrary wavelengths. Third, due to the
ultrafast carrier relaxation dynamics of graphene, the pulse width remains still quite small
providing a reasonable resolution in time.

5.2.2 Optical Bistability in Graphene-Cladded Photonic Crysal
Nanocavity

In Chapter 4, it was demonstrated that the exceptional third-order optical nonlinearity of
graphene can add a substantial amount of nonlinearity to a wavelength-scale photonic crys-
tal nanocavity. Hybrid graphene-silicon photonic crystal nanocavities can serve as an effi-
cient platform for all-optical operations. In the all-optical modulation device investigated
in Chapter 4, the saturable absorption of graphene was utilized to execute modulation.
It would be even more stimulating to harness the nonlinear refractive index of graphene
to perform all-optical switching in a fully integrated fashion. However, the implementa-
tion of such devices is challenging. All-optical switching would require using ultra-high-Q
nanocavities to observe a bistable response. Due to the absorption loss of graphene over
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the optical wavelengths, the quality factor of a cavity covered with graphene significantly
drops. However, this problem can circumvented by electrical gating of the graphene sheet.

According to the results of the quantum mechanical calculations presented in Chapter 2,
the Kerr coefficient of graphene peaks around 7w ~ E; (see Fig 2.9(a)). Luckily, the
graphene is barely absorptive for the photon energies below 2E; (i.e hw < 2Ey). This
essentially implies that, if the Fermi energy level of graphene is lifted up by applying a
gate volage, the Kerr coefficient would increase and the quality factor of the cavity would
still remain high. This in turn results in a unique optical bistabale device with ultra-low
switching power.
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Appendix A

Length Gauge versus Velocity Gauge
for Graphene

In the long wavelength regime where the spatial dependence of the electromagnetic field
can be neglected, there are two theoretical approaches to couple electromagnetic radia-
tion into the dynamical equations. Within the so called velocity gauge light and matter
are coupled via the minimal substitution of the vector magnetic potential A(t), with the
electric field given by E(t) = —0A/0t. The alternative approach is referred to length
gauge [100] where the field is directly coupled by means of the additive scalar potential
V(r) = eE.r with the elementary charge e > 0 . Although the velocity gauge preserves
the translation symmetry and different Bloch states remain uncoupled, there are several
undesirable features associated with velocity gauge that plague the calculations [100, 180].

In particular, the treatment of the nonlinear optical response of the semiconductors
within the velocity gauge is susceptible to numerical errors caused by truncation of the
band space [100, 181]. Since the electric field is proportional to the time derivative of the
vector magnetic potential, some poles at w = 0 inevitably appear. Diverging terms are
not obviously real in semiconductors. It has been rigorously proven that they essentially
vanish due to time reversal symmetry and an effective mass sum rule [100]. However, a full
calculation of the optical transitions over the entire band is required to eliminate the di-
verging terms [180] and numerical errors due to truncations of the calculation would always
amplify. Moreover, in the two-level systems where an effective Hamiltonian is intended to
describe the electrons’ dynamics (the case of graphene for instance), the application of
velocity gauge is quite vulnerable [181]. Refs. [100, 181] show that in the perturbative
treatment of the nonlinear optical response of such systems, the contribution made by the
remaining parts of the band cannot be ignored in the calculations. This observation implies
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that a local interpretation of the optical transitions within the velocity gauge is not reliable
and all Bloch states collectively impact the optical response [181].

To cope with this situation, the length gauge can be employed. The different contribu-
tions of the position operators have been extensively discussed in the literature [100, 180]
and has been shown that the perturbative treatment of the nonlinear optical response of
semiconductors can be reliably performed in a two-level model by making use of the length
gauge [182]. This gauge eliminates the nonphysical diverging terms and renders it possible
to locally interpret the optical transition over the band space. The matrix element of the
position operator between the Bloch states indexed by (k,s) and (k', s") is [180]

.0
ks ks’ = 5(1{ — k/)[2558/8_k + ZCSS/(k)] (Al)

The position operator can be interpreted as the generator of the translation in the space
of Bloch functions [180]. The Berry potential ¢, (k) is required as the geometric phase
correction and therefore its action in nontrivial topologies is more crucial.

To shed light on the applicability of the velocity gauge to the pertubation theory |,
as a benchmark, we proceed with finding the linear optical response of graphene within
the velocity gauge. Assume that a graphene layer lying on the xy-plane is illuminated by
an obliquely incident electromagnetic field E(r) = Eqexp (iwt — ikg.r). Where kg is the
wavenumber of the incident field. For mathematical convenience, the tangential component
of ko is shown by q £ ko.(24 + 99). Within the velocity gauge the time derivative of the
divergence less magnetic potential A is linearly related to the electric field. The magnetic
vector potential reads as

—iwA = E(r) (A.2)

The interaction Hamiltonian is then H 7= A.j where j is the current operator derived in
Eq. (2.28). Using the customary minimal electron-light coupling prescription, the overal
Hamiltonian reads

~
—

H=Hy+A.J =Hy+ Ay R(—q) (A.3)

For compactness, we have defined the operator ﬁ(q) as

R(q) = J exp(+ia.p) (A4)
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The linear variation of the density matrix due to the presence of the external potential is
calculated using the perturbation expansion

p:ﬁ0+5ﬁ(1)+... (A.5)

The first order perturbation theory gives the 5™ which linearly depends on the electric
field.

~ E ’s’)_f(Eks) A
opl), = I (Eie. : K, s|H/|K, s’ A6
pks,ks Ek/’sl —Ek7s+hw+i’yssr< 7S| I‘ ,S> ( )

where f(FE) is the Fermi-Dirac distribution.The index s refers the upper and lower energy
states. The parameter v appearing in the denominator is the phenomenological relaxation
coefficient. The first order induced current is then obtained as

J =Tt {5;5(1)73(01)} (A7)

Jo= Ay Y SEe) = T )

. 87% sk/s"\ ™ s’ 8/7% ’s' ks S AR
" Eklasl_Ek,s+hw+i’}/Ssl< | ks, k ( q)| >< | ks’ k (q)‘ > ( )

where .
7?/ks,k’s’<q) ~ (ﬁaz + Qauo'y) <_€UF) (A9)

/
form now on we define 11}, as

f(Ek’,S’) B f(Ek,S)

I35, £ A.10
Kk Ek’,s’ - Ek,s + hw + i/yss’ ( )
the unit vectors t and ¢, are defined as
. K'(k,q) +k . o
k) = e DI g ) = 2 x alko (A1)
k'(k,q) +k

where K'(k,q) = (k+ q)/ |k + q| . The integrand in Eq. (A.8) is explicitly writen as Equ
defined below

gk,q(w) é (Hllc%k—&—q + H%{?k—l—q) ﬁ(k7 _q)ﬁ(kv q) + (Hllzk—l—q + H%{}k—&—q) Q&(k, _q>¢(ka(q) )
A.12
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Using Eq. A.2, the conductivity tensor associated with the transitions between the

quasiparticles with the Bloch indices k and k + q is then obtained as 51((1721 = 1§y q(w)/w.
However, as we expected, this term is diverging at lower frequencies due the pole at w = 0.
It is at this point that the undesirable features of the velocity gauge manifest themselves;
the diverging term appears in the optical response and therefore special care must be
taken. As discussed, this singularity would be resolved in a full band calculation where all
contribution are included. In order to eliminate this singularity, one can manually add a
zero to the optical response to cancel out the pole existing at w = 0 and yield a physically

correct result.

Fien = = [Geal®) — Eiql0) (A13)

Accordingly we define ﬁf{i, as

155’ 1 f(Ek/,S') - f(Ek,S)

) R — : A.14
kk Ek’7s’ - Ek,s Ek’,s’ - Ek,s + hw + VYss! ( )

which yields

§k7 ( ) (Hll<1k+q Hl2<2k+q> ﬁ(k7 _q)ﬁ<k7 q) <H11<2k+q Hl2{1k+q) ¢(k> —q)(ﬁ(k, q)
(A.15)
the conductivity tensor reads

7 (w,q) = gsgv4 2//d5 dE,T1eq(w) (A.16)

where & = hvpk; is defined to make the integral dimension less. In the long wavelength
limit, the optical conductivity obtained above and the results of the calculations within
the length gauge offer identical expressions for the linear conductivity tensor. It should be
noted that

Ss 8f(857k) 1
hm Hk a= "5 mail (A.17a)
lim a(k, —q) = lima(k, q) = k (A.17Db)
q—0 q—0

Where 74, = T' is, by definition, the intraband relaxation coefficient. This part of the
conductivity is obviously responsible for the intraband dynamics manifested in the 0/0k
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terms appearing in Eq. (A.1). Likewise, for the interband contribution where s # '

L f(&ry) — f(Ers)

lim I1°, ,, = & A.18
gm0 Kkt T e e e T hw + i (A.182)
q—0 q—0

where &, s = —&s. The prefactor 1/2€; together with the multiplicative vector ¢y

corresponds to ¢,y (k) appearing in Eq. (A.1).

In closing, by removing the artificial diverging pole in the velocity gauge, both ap-
proaches yield identical results. The aforementioned pole arises due to the band space
truncation and it can be removed by developing the sum rule reported in Ref. [100]. In
the effective two-band model, the velocity gauge should be repaired to account for the
nonphysical terms and as a result, the perturbative treatment of the optical response of
graphene within the velocity gauge, in its original form, is not perfectly reliable. The length
gauge can be consistently employed to develop a full theoretical model for the nonlinear
optics of graphene.
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Appendix B

Dynamics and Effective Relaxation
Coefficients

The adopted theoretical models for graphene in this thesis are based on single particle pic-
ture that treats many body effects at the phenomenological level. In some circumstances, a
more accurate inclusion of the relaxation coefficients would provide a substantial improve-
ment in understanding the underlying physics. Striving to use a single particle description
of the electron dynamics in graphene, the many body effects are analyzed within a mi-
croscopic theory (detailed below) and the microscopic relaxation coefficients (k-depend
coefficients) are obtained numerically by means of a long pulse excitation. Inspired by
the practical methods of measurement in the laboratory, we excite graphene within the
many-body model by a long and sharp edged pulse to resolve the relaxation time for the
microscopic polarization P(k,t) and the population N(k, ).

B.0.1 Model Description

We have utilized ! the microscopic model developed in Ref. [114] which takes in to account
the Coulomb and phonon-induced relaxation channels. The adopted model employs a
many-body Hamiltonian which consists of the free carriers (electron and phonon) part Hy,
the carrier field H._¢, and the carrier-carrier and carrier phonon Hamiltonians which are
represented by H._. and H._, respectively [114]

H=Hy+H.;+H._.+H., (B.1)

n collaboration with Chalmers University of Technology, Philippe Tassin, Ermin Malic and Roland
Jago
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The approximations existing in the model are concisely outlined as follows .

(i)

The free carriers (band induced) Hamiltonian H, consists of free electron and free
phonon dynamics. The free electron Hamiltonian is constructed based on a full band
model beyond the Dirac cone approximation for weakly bounded 2p, orbitals. The
full-band model is capable of resolving exciting effects in the absorption spectrum of
graphene. More importantly, phonon induced intervalley scattering is efficiently mod-
eled in the full-band Hamiltonian. The Hamiltonian H also contains the dispersion
of the free phonons including both the optical and acoustic ones. The optical phonons
possess two sharp kinks in their dispersion around the high symmetry points [183].
The corresponding phonon modes causes strong electron-phonon coupling which in
turn yields nonzero population relaxation around the Dirac points [114].

The carrier-field coupling (H._y) is obtained using minimal coupling into the conical
momentum. Since we are using a full-band model, the velocity gauge offers reliable
results and the issues discussed in Appendix A would not lead to trouble.

The electron-electron interaction has been modeled within the first order mean-field
Hartree-Fock approximation. The electrostatic screen effect is calculated using an
effective single-particle picture that leads to the Lindhard approximation of the di-
electric function. It is worth pointing out that the calculations are carried out in the
static limit. The low energy excitations (particularly those ones in the vicinity of the
Dirac points) are minimally affected by this approximation. Many body dephasing
due to radiation is almost nonexistent in low frequency limit due to the reduced phase
space accessible to the low energy photons.

The electron -phonon coupling (H.—,) is also obtained accurately using phonon-
induced defamation potentials. The appropriate potential functions for the optical
and acoustic phonons are calculated in Refs. [183].

B.0.2 Effective Relaxation Coefficients

The numerical estimation of the microscopic relaxation dynamics is carried out by project-
ing the many body dynamics into the SBEs obtained from the reduced Liouville equation.
In compliance with the mathematical structure of the SBEs, we excite the graphene Bloch
equations (full microscopic dynamics) with a relatively long and sharp-edged pulse and
capture the relaxation time scale. The long duration of the optical excitation allows us to
capture the steady state dynamics and the sharp edged nature of the excitation facilitates
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time domain characterization of the microscopic relaxation coefficients. As per SBEs, we
basically curve-fit the envelope of the microscopic polarization and population (after the
pulse is tuned off) to an exponential decay. The numerical steps are outlined below.

1. Use Hilbert transform to capture the envelope of the microscopic polarization.

2. Use low pass filter to get rid of higher harmonics contents in the polarization envelope
as well as the population pulsations.

3. Curve-fit the decay part of the dynamics to an exponential function. The decay of

the microscopic polarization is 71((2) and that of the population is fyl({l).

Figures B.1 and B.2 display the steps followed to extract the microscopic relaxation
coefficients for the pulse excitation of iw = 80meV and 800meV respectively. It is assumed
that the amplitude of the electric fields for the both optical pulses are Ey = 10V /m. The
duration of the pulses have been selected to be 800fs and 400fs for the cases of 80meV
and 800meV respectively.

The results of calculations for a few distinct points over the k-space are shown in Fig.
B.3. As expected, the low energy excitation offers significantly slow relaxation dynamics.
It is also worth noting that, unlike the coherence dephasing coefficient 7,9, the coefficient
71(:) tends to be negligibly small in the vicinity of the Dirac point. This would lead to
a pronounced saturation effect. The red solid lines are the fitted exponential (decay)
functions. For the case of microscopic polarization the envelope of the curved needs to be
captured where H'P stands for the Hilbert transformed of the polarization. The calculations
are shown for two district points over the reciprocal space (low energy around the Dirac

point and a high energy slightly higher than the zero detuning region)
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Figure B.1: Extraction of the microscopic relaxation coefficients for the optical excitation
of hw = 80meV at (a) hupk = 10meV(low energy) and (b) for hvpk = 100meV (high

energy) points.
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Appendix C

Nonperturbative Kerr Type
Nonlinearity of Graphene

A nonperturbative formulation of the Kerr effect in graphene is obtained by taking the
steady state population difference as the optically modified inversion. In the steady state
analysis, essentially only one-photon processes are retained. The impact of higher order
effects including two photon absorption (TPA) is then incorporated into the response
function via additional complex contributions to the population difference. By substituting
the effective complex population difference into the linear response theory, one obtains the
induced interband nonlinear current as

2
NLi(w) = == vrg.g.D // R ENER E)%L’k(w) Nt + ONEPA 4 oNE - N

RBZ 1)
where the complex function SNT4 accounts for the population oscillations at the second
harmonics of excitation. In the dressed state picture, TPA is conceived as the absorption
of two subsequent photons via a virtual state. In the density matrix formulation, that
contribution results in the oscillation of the population difference at the second harmonic.
By expanding the inversion as Ny ~ N + (./\/liz) exp(i2wt) + c.c.) and plugging into the
SBEs one obtained the complex contribution to the inversion as

|y |2

1
5NEPA — __Lk(w)(l)—.
2 Ve T 2w

Nt (C.2)

The second contribution AP enters due to intraband dynamics or Boltzman type trans-
port. According to Eq. (2.34), the intraband dynamics can be incorporated by displacing
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the density matrix in k-space by Ak. As a result of two subsequent translations conducted
by two conjugate fields with the frequency of w and —w, the steady state population differ-
ence experiences a minor change denoted by dNP. By Taylor expanding the population,
one obtains

2

B __ € * ATS
N = m(E Vi) (E" - Vi N (C.3)
Similarly the intraband nonlinear response reads
NIy~ C1r000D // dK? {kE Vi [/\71? + NP —Nﬂ } (C.4)
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Appendix D

Scattering matrix calculation of the
Bragg mirror, graphene layer and the
plasmonic meta-surface

Scattering Matrix of the Multilayer Structure

The scattering matrix of the multilayer structure described in Chpater 3 is obtained by cal-
culating the reflection from the layered media illuminated by the TE,,, and TM,,, Floquet
modes. This goal can be readily achieved by means of the transfer matrix method [169].
The overall transfer matrix of the multilayer structure relating the expansion coefficients
of the Floquet mode labeled by mn and the polarization index ¢ is the multiplication of
the transfer matrices in the intermediate layers [169].

F7(@ _ 77 7@ 7@
M =My"y - My, Mg, (D.1)

where N is the number of the layers and the matrices Hl(f)u’s are the transfer matrices
in the intermediate layers relating the expansion coefficients of waves propagating in 42
directions at (I — 1)’th layer to those of the [’th layer.

. (I—1,mn) (I-1,mn)
e~ I%-1 (14 k2 k2 n
H(i=1mn) BT

Ml*l,l = . k(lfl,mn)
eIt (1 4 %2 n

i ié

el?i-1 1 + W
e (D.2)
1 edti-1 1 +
]

2
!
2
1
—1.m1
kgl ,mn)nlg
kﬁ(zlymrn)”zal i1

kgl,mn)n 3
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. (I—1,mn) . (I—1,mn)
- kz - kz
(i=2,mn) e 90 (1 + ) eI (14 )
]v[L—lJ = by kgiinnn) b, kg34nnn> (D.3)
€ - 1 + k(l,mn) € B 1 + k(l,mn)
2 2

the phase ¢;’s are defined as ¢; = k,gl’mn)tl and the longitudinal wave number is obtained
as

K =\ [n2kE = K|, Im {E{™} <0

The layered media possesses the planar symmetry and thereby the reflected signal
conserves the lateral variations as well as the polarization of the incident wave. As a
result, the scattering matrix associated with the multilayer structure is diagonal and is
given by

, M(a)
SJ?/[a = - 2((11) 5&04’ (D4)
M22

where d,. 1s the Kronecker delta function.

Scattering Matrix of the Graphene Layer

The linear conductivity tensor of doped graphene layers has been calculated in chapter
2. Graphene as a 2D material conserves the transverse variations of the illuminating
electromagnetic field in the linear domain. However, the scattered field does not have the
same polarization as the incident wave. The scattering matrix of graphene S¢ therefore is
diagonal in the mn subspace but not in the polarization (i) subspace. The scattering of the
TE and TM Floquet modes from a free-standing graphene layer is obtained by satisfying
the boundary conditions. The total induced field is related to the excitation coefficient of
the corresponding Floquet mode mn as

V(TM)‘| —(mn) -1 |iV(TM):|
_ (D.5)
TE TE
|:V( ) total V( ) incident
where the 2 x 2 matrix Z(mn) is defined as
(1) 1)
—(mn) = 1 [z™ 0 Ok O
O¢n  Tge
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k. k.mn
2 =g 2 = (D.7)

where U is the 2 x 2 identity matrix and Mo = /Ho/€o is the free space characteristic

(1 (1 (1) 1)

impedance. The conductivity tensor containing oxe, o’ ,0, and O'éﬁ are given in the

—(mn —(mn -1
supplementary information. For mathematical convenience, we define C( Y

The scattering matrix is then calculated as

SE = S (T = i) (D.8)

(22

Scattering Matrix of the Nanoparticles Array

The scattering matrix relating the incident and reflected Floquet modes in the nanoparticle
array, the Generalized Multipole Technique (GMT) is proposed [29]. We assume that the
suspended array shown in Fig. 3.4 is excited by EZ(A’)

kmn R ~ 3 1.1
EZQ) = { (f%mn T | |z> 0i1+ §mn5i,2} exp [—j(kmn.p + kI |2 — zp])] (D.9)

mn
ij

where z, is the location of the channel p. The scattering of the incident field EEV) by the
nanoparticle array is calculated via GMT. The details of GMT analysis are presented in the
appendix E. Assume that E)(x,y, z) is the electric field scattered from the nanoparticles
array. The scattered field is obtained from from GMT analysis. The scattering matrix is
then related to the modal coefficients of the scattered field E)(x,y, z) as

S};’y/ — g’ym’n’,p’ : ((Silll%m/n/ + 51'/257”/”/) + (1 - 5pp’) [1 + e_jk?m‘zp_zél] (DlO)
where 8;%,@, are calculated via the inverse Fourier integral

1 .
E iy = WL // - El(z,y,2= 2y ). €xp(jkmn.p)dzdy (D.11)
unit cell
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Appendix E

GMT Analysis of Nanodisk Array

Fig. E.1 shows the multipole setting used to simulate the cylinder nanoparticle. Spherical
multipoles of the Maxwell’s equation are used as three dimensional (3D) expansion wave
functions in each region. The radial components of TE, and TM, multipoles can be written
as [184]

n(n+1)

EM = e P™(cos 0)H® (kr)el™? (E.1a)
—n<m<n
1 . ‘
H'™ = n(,n——i_z)P,’L”(cos 0)H'Y (kr)el™® (E.1Db)
Jwpr

—n<m<n

where P are the associated Legendre polynomials and P are the Schelkunoff-Hankel
functions of the second kind. The multipoles shown by circles and stars generate the field
inside the cylinder while the rest of multipoles generate the field in the periodic cell and
outside the cylinder. To capture the edge effects of the cylinder nanoparticle, a series
of multipoles are placed in the vicinity of edges. Between each two multipoles that are
connected with a line, there are 11 multipoles that their coefficients are linearly dependent
to the edge multipoles. Using this approach it is possible to model the smooth field
variation around the edge while keeping the number of multipoles as low as possible [29].
Figures E.1(a) and E.1(b) show the actual location of multipoles used in the simulation.
The maximum order of spherical multipoles is n = 2 associated with the maximum order
of Legendre polynomials. We verified the developed code using the result of HFSS and
also by checking the convergence of results as the number of multipoles changes.
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Appendix F

Calculation of Conversion Efficiency

A typical high power pulsed-laser generates Gaussian (in time) optical pules modulated
around the center frequency wy with the reparation rate of R,. The repetition rate is
always low enough to safely assume that the frequency tripler only mixes up the individual
Gaussian packs. Henceforth, every Gaussian pack is treated independently. The time
dependence of the a’th component of the incident electric field is given by S, (¢). The £’th
component of the generated third harmonic signal, Sg"t, is obtained from the following
convolution integral

Sg“t(Q) = Z Z/dwp/dwqai(j,zl(Q — Wy — Wy, Wy, W)

afBy ijkl

GO Sa( — wyywe)Sp(wy) Sy (wy)  (F.1)

Where ¢ is the third order conductivity of the graphene layer (see supplemental infor-
mation). The frequencies w, and w, run over the fundamental frequency band and The
gain function G?Zlm is obtained from the network analysis outlined in section 3.4.

G (9, wpywg) 2 Zei( QT — wp — wo) Tiop(wp) Ty () (F.2)

The functions T,p(w), Zwp(€2) are the transfer functions at the fundamental and third
harmonic bands respectively and they are obtained from the network shown in Fig. 3.4.
Accordingly, the transfer function T,,(w) gives the a’th component of the electric field
induced at the graphene layer (at the fundamental frequency band) excited by the b’th
component of the incident field. The mutual impedance Z,,(2) is defined as the ratio of
the a’th component of the electric field induced right on top of the structure (correspond
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Figure F.1: Gain function |G1Y}](3w,w,w)| versus the wavelength X corresponding to the

fundamental frequency w.

to the AA’ cross section in Fig. 3.4) at the frequency of €2 to the b’'th component of the
third harmonic current induced over the graphene layer (correspond to I(2 = 3w) ). In
order to get an idea about the magnitude of the gain function, |G}, (3w, w,w)| is plotted
in Fig. F.1.
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