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Abstract

Despite the exponentially large amount of information required in the quantum de-
scription of many-body systems, finite size numerical simulations have paved the way for
recent progress in the understanding of quantum phases of matter both in and out-of-
equilibrium.

In this spirit, using exact diagonalization for a small number of spins ~ 20, first, we
investigate the fate of both ergodic quantum many-body systems that thermalize at long
times and systems with quenched disorder that exhibit many-body localization (MBL)
and fail to thermalize (due to an extensive set of local conserved degrees of freedom) under
periodic driving. Ergodic systems always delocalize in energy space and heat up to infinite
temperature, for both local driving, in which the time dependence of the Hamiltonian is
restricted to a few contiguous degrees of freedom, and global driving. On the other hand,
MBL systems remain localized at finite energy density for local driving, while in the case of
global driving these systems can either heat up to infinite temperature or remain localized
depending on the parameters of the drive. Underlying the latter is the emergence of an
effective time independent MBL Hamiltonian describing the long time dynamics of the
system. These numerical predictions have recently been verified experimentally in a one
dimensional quasi-disordered optical lattice of interacting fermions wherein unitary time
evolution can be experimentally probed.

Subsequently, we study the stability of MBL systems with respect to another perturba-
tion, in this case by thermal inclusions, which remains poorly understood. We consider a
simple model to address this question: a two level system interacting with /N localized bits
subject to random fields. In the large N limit, the localized bits are thermalized for any
nonzero ratio of interactions to disorder strength. Moreover, at finite NV, in the transition
region, the single-site eigenstate entanglement entropies exhibit bimodal distributions, so
that localized bits are either “on” (strongly entangled) or “off” (weakly entangled) in eigen-
states. The clusters of “on” bits vary significantly between eigenstates of the same sample,
which provides evidence for a heterogenous discontinuous transition out of the localized
phase in single site observables. These results also imply the MBL phase is unstable in
systems with short-range interactions and quenched randomness in dimensions d that are
high but finite.

The second part of this thesis is motivated by the recent breakthroughs of artificial intel-
ligence in domains such as computer vision involving highly dimensional data of complex-
ity not unlike the one found in the description of many-body systems. Using Monte Carlo
simulations to generate synthetic data, we find that kernel methods, a class of machine
learning algorithms, can learn the mathematical form of physical discriminators associated



with phase transitions, such as order parameters and Hamiltonian constraints, for a set of
two dimensional spin models: the ferromagnetic Ising model, a conserved-order-parameter
Ising model, and the Ising gauge theory.

Our work shows that the combination of numerical simulations with the ability of ma-
chine learning algorithms for automatic feature detection hold promise to become standard
tools in the exploration and characterization of different phases of matter in condensed
matter and other many-body systems.
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Part 1

Instabilities in ergodic and
many-body localized systems



Chapter 1

Introduction

1.1 Thermalization

1.1.1 Classical systems

Statistical Mechanics studies the laws governing macroscopic bodies formed by a formidable
number of individual particles N > O(10%*®). From a classical viewpoint, each particle is
described by its position and velocity (or momentum) at each instant of time. The set
of positions and momenta of the particles x;, p; defines the so-called phase space of the
system. The dynamics of the system, i.e. how it evolves through time, is determined
by the Hamiltonian that describes at the microscopic level how the particles interact and
how they move as a consequence, following the laws of Newtonian mechanics. Thus, if a
complete microscopic description is available, equations of motion for each of the particles
can be readily obtained. These can be solved and provide complete information about the
state of the system at any future instant in time.

Nevertheless, one immediately understands the challenge of such attempt. Even in the
uncommon situation where an analytical solution is available, just the first step of holding in
computer memory the initial state for every particle is far from reach for current technology.
Moreover, with the natural expectation that the complexity in the behavior of macroscopic
bodies only increases with the number of particles, any progress on the problem of deriving
the macroscopic behaviour from the microscopic dynamics is apparently doomed to failure.

Yet, notwithstanding that large systems are described by the same microscopic laws
as systems composed of only a small number of particles, the large number of interacting



degrees of freedom motivate a powerful hypothesis that simplifies the problem and is able
to explain a large range of macroscopic phenomena.

The ergodic hypothesis [6] states that due to the complex microscopic interactions,
during a sufficiently long time, the system visits every possible state compatible with
macroscopic conservation laws, e.g. energy. Additionally, the time spent in a particular
state is proportional to its volume element in phase space. Mathematically, this means the
probability of the system being in the state defined by the set of positions and momenta
&1,P1,- -, TN, Py is proportional to a delta-function: § (E(x1,p1, ..., &N, pN) — Fo). This
probability distribution defines the microcanonical ensemble, where FEj is the energy asso-
ciated with the initial state of the system. This ensemble is compatible with an equilibrium
description as an initial set of systems sampled according to its distribution still satisfies
the same distribution at later times; this statement is known as the Liouville theorem [5].
The ergodic hypothesis shifts the paradigm from a microscopic description to a macro-
scopic one, whereby the system is described by the few macroscopic observables that are
conserved by its dynamics.

Thus, according to the ergodic hypothesis the average value of a physical observable O
observed over sufficiently long times, i.e. O = lim;_, " fo dtO(t), is equal to the micro-
canonical average:

fdwldpl .. -ddepNO(whplu v 7wN7pN>6 (E(whplu s e 7wN7pN) - EO)
[ dx\dp, ... dendpNd (E(21,p1, ..., 2N, PN) — Eo)

0= (1.1)

Moreover, the average value O provides a very accurate description of the equilibrium
state for additive physical quantities, as, in the thermodynamic limit, deviations from this
value are very unlikely [5]. This result relies on the statistical independence of O(N) macro-
scopic subsystems in which the full system can be divided, which are still large enough to
behave as macroscopic bodies. This assumption is valid as long as interactions are approx-
imately local and for short enough periods of time, before interaction effects ultimately
propagate into the subsystem. Under the assumption of statistical independence, the ratio
of the time fluctuations of the physical observable O to its mean value is suppressed in
the thermodynamic limit as 1/ V/N. Consequently, most configurations with significant
weight in the microcanonical ensemble bear similar values with respect to macroscopic
observables.

The ergodic hypothesis provides the connection between microscopic and macroscopic
behavior on which the field of Thermodynamics relies to explain an incredible range of
phenomena. For example, a hot cup of coffee eventually cools down because the number of
microscopic configurations compatible with the temperature of the coffee and its environ-
ment being the same is overwhelmingly larger than in any other available scenario. This



is an example of the second law of thermodynamics at play, which states that for a closed
system in a non-equilibrium state the most likely sequence of events is a steady increase
of the system’s entropy.

However, it should be acknowledged that there is still debate in the community about
the finer details connecting microscopic to macroscopic thermodynamic behavior in classi-
cal systems [6].

1.1.2 Quantum systems

Numerous independent experiments have shown that an accurate description of reality
must take into account quantum effects. Consequently, the relationship between macro-
scopic thermalization phenomena and the microscopic quantum mechanical description
must be understood. As we shall see in the following, this relationship between the micro-
scopic dynamics and the emergence of a statistical mechanical description is more subtle
in quantum systems and qualitatively different from the classical case.

In this thesis, we will focus on isolated quantum systems. A complete description of
these systems requires the specification of the Hilbert Space defining the possible states of
the system and the Hamiltonian H(¢) which determines the unitary time evolution of the
system according to the Schrodinger equation:

d(t))

o = HY(®)). (1.2)

?

Among the most common protocols for driving quantum systems out of equilibrium are
the so-called quenches. This means that the system is initially prepared in a state that
is either simple to prepare (e.g. product state) or corresponds to an equilibrium state or
ground state of another Hamiltonian H’. Quenches in which H’ differs from H in parame-
ters throughout the system are called global quenches, while quenches in which parameters
are only changed in a finite region are called local quenches. The subsequent discussion
considers initial states |pg) that are pure for simplicity, however the generalization to ini-
tial mixed states is trivial. The initial states |pg) in quench experiments typically have
a well-defined energy density ey = (po|H|po)/N, where N is the number of degrees of
freedom, in the sense that the energy fluctuations AEy = /{po|H2|po) — (o H|po)? are
sub-extensive [7]. This is an important requirement, so that the long time limit behaviour
can be compared to the thermodynamic ensembles where this property holds.

The time evolution of the initial state |¢g) when expanded in the basis of eigenstates



of the Hamiltonian |E,,) is simply:
WD) = Ame !By, (13)

where E,, is the eigenenergy of the Hamiltonian associated with eigenstate |E,,) and A,, =
(Em|po) denotes the projection of the initial state on the eigenstate basis.

As the framework of statistical mechanics relies on an ensemble description, it is nat-
ural to move from a wavefunction to a density matrix description of the system. In this
formulation, the state of the system is

p(t) = [N S(E)] = D Aul|En)(Bnl + ) AnAne En B0 BBy, (14)

m¥#n

and the time evolution of an observable O is given by

O(t) = Tep(t)O = Y |An|* O + Y A A5 Ope Fm =, (1.5)
m m#n

where O,,, = (E,|O|E,). From Eq. 1.5, we can enumerate the conditions under which
generic observables thermalize in the long time limit. For an observable to thermalize, the
equilibrium value O given by the time average O = limy_,o0 7 fOT dtO(t) = >, 1An*Omm
must agree with the predictions of the microcanonical ensemble pyc and the canonical
ensemble pc, which we define shortly. Notice that O is the expectation value in the so-
called diagonal ensemble:

PD = Z|Am|2‘Em><Em| (1~6)

Further, for thermalization to occur in the strong sense [6] the expectation value O(t)
must remain close to the equilibrium value O for most of the time, which requires the time
dependent contributions in Eq. 1.5 to vanish at long times in the thermodynamic limit.

Here it is assumed that energy is the only extensive conserved quantity (however, other
possible conservation laws might exist, e.g. particle number, total spin, etc). The micro-
canonical ensemble is the maximum entropy density matrix restricted to a macroscopically
small energy shell [Ey — AFEy/2, Ey + AEy/2] with, e.g. AE = O(NY), around the mean
energy of the initial state Ey = (@o|H|¢o):

e = 7 > 1B (B (1.7)

m:EmE[EofAE/2,E0+AE/2}



where A is the number of eigenstates in the energy shell.

The thermal/canonical ensemble is given by the usual Gibbs distribution
po= e (1.9
C Zﬁ ) .

where the partition function is defined as Zs = Tre P# and the inverse temperature
f = 1/T is fixed by the mean energy of the initial state Fy = (po|H|po) such that
Ey = TrpcH is verified.

A natural definition of thermalization would be the requirement that the density ma-
trices pp, pmc, pc converge in the thermodynamic limit:

PD = pyc = pc- (1.9)

Consequently, if Eq. 1.9 holds, all observables converge to their thermal values at long times.
However, this is not the case for generic initial states. As we will see, thermalization in
quantum systems is understood through the behaviour of local observables as opposed to
considering the state of the entire system.

Eigenstate Thermalization Hypothesis

The Eigenstate Thermalization Hypothesis [9, 10, 11, 7] defines an ansatz for the matrix
elements of local observables O in the basis of the eigenstates |E,,) of the Hamiltonian:

O = O(E)0pp + € 5F2 fo(E, w) Ry (1.10)

Here £ = (E, + E,)/2, w = E, — E,,, and S(E) ~ In(p(E)) is the thermodynamic
entropy at energy E defined in terms of the density of states p that counts the number of
eigenstates per energy interval. Moreover, both O(E) and fo(FE,w) are smooth functions
of their arguments and R, is a random variable with mean zero and variance O(1). By
now, numerical simulations have verified the ETH on several distinct one dimensional
systems [12, 13, 14, 15, 6]. Quantum many-body systems that satisfy ETH are also known
as ergodic systems.

The ETH ansatz is motivated by Random Matrix Theory (RMT) [6]. Eigenstates
of Hamiltonians sampled from the RMT ensembles are uncorrelated random states and,
under this assumption, the matrix elements of a local observable satisfy O,,,, = (O)d,, +

<O,DQ> R, [6]; D is the dimension of the Hilbert space and the averages (O), (O?) are basis

independent, e.g. (O) = % Zle O,n. ETH adapts RMT by arguing that eigenstates of
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local Hamiltonians, which by definition are characterized by a given energy, are essentially
random after taking this constraint into account. This means that the diagonal matrix
element O,,, is allowed to be a function of the energy, and the typical value of the off-
diagonal elements O,,, is set by the available number of eigenstates with energy ~ E,
which is proportional to the density of states p(E) ~ 5 instead of the total number
of states in the Hilbert Space. These arguments suggest the form of Eq. 1.10. Moreover,
the function fo(F,w) must decay rapidly with w on the scale of the energy per degree of
freedom as a local operator only affects a few degrees of freedom and can only change the
energy by a finite amount.

Using the ETH ansatz, we can obtain an expression for the equilibrium value O [6]:

0= |Au|*Opm (1.11)
= [AnO(En) + ... (1.12)
zZ|A PO(Ey + 6E,,) (1.13)
) L do 14?0

NZ|A | [ 50 Em + 575 (0En R (1.14)
1420

~ O(Ey) + QdEQ(AEO) (1.15)

In the second line, the random terms in the diagonal matrix elements were neglected, since
they account for an exponentially small contribution. And, in the fourth line, O(Ey+dE,,)
from Eq. 1.10 is expanded up to second order terms in 0 E,,.

An analogous calculation shows the expectation values Oy = TrpncO, Oc = TrpcO
differ from O only in the second term in Eq. 1.15 due to each ensemble having different
energy uncertainties AFE. Moreover, since the energy uncertainties are sub-extensive in
any of the ensembles and for local operators the function O(E,,) only depends explicitly
on the energy density [16], the second term vanishes with increasing system size. Thus, in
the thermodynamic limit, the three ensembles are in perfect agreement: O = Ope = Oc.

Moreover, the ETH predicts that time fluctuations of an observable

AO? = limy_ o0 7 fo dt (O(t) — @)2 are exponentially small in the number of degrees of
freedom (particles, spins, ...) [6]. This implies that at long times observables remain near
their thermal values most of the time, thus thermalization occurs in the strong sense.

However, ETH is not valid for certain systems that also fail to thermalize. These can be
divided into two broad categories, namely integrable systems and many-body localization.
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The latter is the only robust example though, as it remains non-thermalizing when generic
small perturbations are added to the Hamiltonian, i.e. it defines a phase.

Integrable systems

Integrable systems include all non-interacting models, interacting models that can be
mapped to non-interacting ones, and specific interacting models that cannot be mapped
to non-interacting ones.

For concreteness, an example of the first category is a free fermion system with nearest
neighbour hopping on a one dimensional chain: H = —t ZZ]L (czT 411G+ h.c.). Any generic

non-interacting Hamiltonian such as this one can be expressed in the diagonal form:

N
H=Y Enln, (1.16)

m=1

where the particle numbers I,,, = ¢! c,,, are defined by the creation/annihilation operators
¢, constructed from the single-particle states that diagonalize the Hamiltonian and the
E,, are the associated eigenenergies; for this particular example, the ¢,, correspond to
momentum eigenstates.

The 1d Transverse Field Ising Model constitutes an example for the second category,
since it can be cast in the same diagonal form as Eq. 1.16, after a Jordan-Wigner trans-
formation mapping the 1/2-spin degrees of freedom to fermions followed by a Bogoliubov
transformation [17].

The O(N) quantities I,,, = ¢} c,, commute with the Hamiltonian and with each other,
and thus are independently conserved by the dynamics after a quench experiment. It was
proposed and verified in numerical simulations [18] that these systems equilibrate at long
times to the predictions of the Generalized Gibbs Ensemble pggg ~ e~ Y1 bmln - This
ensemble maximizes the entropy under the constrain that it reproduces the expected values
of the conserved quantities I,, in the initial state. The only reported case where the GGE
failed was in the presence of disorder [19].

At first sight, there are a few important criticisms to the GGE [8]. The I,,, can be
non-local, for example when these correspond to the occupation of momentum eigenstates,
which is the case both for the free fermion model and the TFIM mentioned above. This
poses a problem, since including non-local conserved quantities in the ensemble, means it
would be admissible to include the exponential number of eigenstate projectors in a thermal
ensemble for generic quantum many-body systems. Moreover, it is very important to deal



with local additive conserved quantities like the energy, so that the statistical mechanics
assumption of approximate subsystem independence applies [5]. However, it turns out
the non-local I,,, can be expressed in terms of local additive quantities, which settles the
issue [6]. This also hints at a generalization of the ETH [20, 6], whereby the values of
local observables are smooth functions of not just the energy, but also of the other local
extensive conserved quantities.

1.2 Many-body localization

Many-body localization [21, 22] has its origins in single-particle systems. When the Hamil-
tonian contains some randomness, non-interacting systems can exhibit interesting localiza-
tion phenomena known as Anderson localization [29].

For concreteness, consider a one dimensional chain of fermions with nearest neighbour
hopping:

H = —tZ(cLlcrl—h.c.) —|—ZWZ'CICZ', (1.17)

where the disorder terms W; are sampled form the uniform distribution on the interval
[—W, W] defined by the disorder strength W.

Through diagonalization, H can be cast in a diagonal form: H = > FE,cl c,,. The
single-particle eigenstates |FE,,) are localized in real space centered around an eigenstate
dependent location r,,. The amplitude for finding the fermion a distance R away from

r.,, decays exponentially on the scale of the localization length &, i.e. it is proportional to
—R/¢
e .

In the limit of zero hopping, the eigenstates are strictly localized on each lattice size.
In the perturbative regime ¢/W < 1 of small hopping, localization survives, as from first
order perturbation theory, a given site only has a small probability of hybridizing with
neighbouring sites. Turns out, in dimensions one and two, all eigenstates are localized in
the thermodynamic limit for arbitrarily small disorder strength W. In higher dimensions,
there is a transition between localized and delocalized eigenstates. This can happen as a
function of disorder strength or energy density. In the latter, localized states at the edge
of the spectrum are separated by a mobility edge from delocalized states, and these critical
states show a power-law localization profile.

The localization of even some of the single-particle states in the spectrum has conse-
quences for thermalization. Consider a quench in which the initial state contains an excess



density of particles in a region of localized eigenstates. Due to the conservation of the
number of particles in each of the localized states, the particles in the localized region do
not diffuse completely, so the system fails to thermalize [21].

Thus, disorder through localization phenomena prevents thermalization in single-particle
systems. It is then natural to ask to what extent localization survives when weak interac-
tions are introduced in the system.

Recent works based on perturbation theory showed that localization is indeed stable
to weak, short-ranged interactions [23, 24]. Subsequently, many numerical studies of one
dimensional models for 1/2-spins and fermions further supported these findings.

To clarify the meaning of localization in the many-body context, it is useful to focus
on a concrete model. Most numerical studies have adopted the following 1/2-spin model:

N-1

N—-1 N
H=JY (8858, + SIS0+ S28i, + > hiS?, (1.18)
i=1 i=1

=1

where the spin operators are defined in terms of the Pauli matrices ¢ as S = 0 /2 with
a = x,y,z, J is the hopping/interaction strength, and h; is sampled from the uniform
distribution [—W, W] representing the disorder in the system. Through a Jordan-Wigner
transformation this model represents interacting fermions moving on a disordered potential,
and differs from Eq. 1.17 due to nearest neighbour interactions.

In the limit J = 0, the many-body eigenstates have a simple product state form
[$182...8,) = |51) ® [$2) @ ... ® |sn), where each spin is aligned along the z direction
with two possible orientations s; = (07) = +1. Moreover, the O(N) operators o7 form
a set of conserved quantities, which commute with the Hamiltonian and with each other.
At larger disorder, but non-zero hopping and interactions J/W < 1, Eq. 1.18 remains in
the fully many-body localized regime. All eigenstates of the Hamiltonian are localized as
each spin only hybridizes weakly with its neighbours, even though the set of operators o7
no longer commute with the Hamiltonian. In fact, many-body localization is robust for a
larger parameter range until J ~ W [30, 31].

It was argued [25, 26] that at strong enough disorder a quasi-local unitary operator
diagonalizes the Hamiltonian in the product state basis |s1S2...sy) associated with o7:
Hging = UTHU. The quasi-locality of U means that it cannot modify in a correlated way
degrees of freedom which are far away on the scale of a many-body localization length &.
For example, when U is applied to a product state |s1ss...sy), the overlap with states
that differ from the original one by spin-flips involving spins separated by a distance R
decays exponentially with R on the scale &.
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Consequently, we can define localized two-state degrees of freedom 77 called 1-bits (i.e.
localized-bits) [26] related to the physical spins o7 by 77 = Uc?U'. By definition, the 77
commute with the original Hamiltonian H and with each other. The quasi-locality of U
implies the following real space profile for a given I-bit:

TF = ZKZUJQ Z agaaaf ey (1.19)
J jk.ap

where the coefficients K, K Zﬁ decay with the maximum distance between any pairs formed

by spin ¢ and the physical spins involved in the corresponding term. The omitted higher

order terms behave in an analogous way.

Because by definition Hgiae depends only on the o7 and their products, the original
Hamiltonian H has the following form in terms of the l-bits 77 [26, 21]:

H= Z Ji(l)Tf + Z Ji(2 T+ Z UkTZTZT]f . (1.20)
i ij

ijk

Again, due to the quasi-locality of U, the coefficients of multi-spin products in the Hamilto-
nian decay exponentially with the maximum distance between every pair of spins involved.

Physically, the form of the Hamiltonian Eq. 1.20 is intuitive since there must exist a
set of conserved local charges 77 preventing the transport of energy and other conserved
quantities in the system, which underlie localization [26]. On the other hand, this con-
struction is expected to hold only in the case that all eigenstates are localized, and the
generalization is not immediate if the spectrum contains a many-body mobility edge.

The phenomenological model Eq. 1.20 predicts several features of the MBL phase that
have been observed in numerical simulations and experiments. In fact, one of the ear-
lier MBL studies considered a quench experiment where the entanglement entropy of a
symmetric real space bipartition of the system in Eq. 1.18 was observed to grow logarith-
mically with time [27]. The initial states in the quench were product states of the physical
spins. Additionally, the entanglement entropy saturated to an extensive value, though
significantly smaller than the thermal value expected from the ETH.

The fact that the entanglement grows logarithmically follows from Eq. 1.20 [21]. Be-
cause of the form of the 1-bit Hamiltonian, two l-bits ¢« and k only exchange information
through the direct interaction term that involves both 1-bits, which is exponentially small
in their distance. To see this, consider just three 1-bits z ], k, Ignormg the dlrect interaction
between ¢ and k, the Hamiltonian is H = J TS+ J T + J .+ J TZTZ + J(i)TJZTk
To understand the propagation of quantum 1nf0rmat10n it is useful to COIlSldel" how an
operator associated with an l-bit, e.g. 7¥ = Uo?U', changes in time according to the
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Heisenberg picture for unitary quantum dynamics. In this picture, 7 evolves in time as
%t(t) = i[H,77(t)], where 77(0) = 7. The l-bit operator 7 will generically spread out
through the system. This spread in real space indicates that quantum information about
the other 1-bits has reached i and, thus, in general ¢ becomes entangled with them. Because
of the interaction with 1-bit j, 7%(¢) evolves to terms that depend on l-bit j, namely 7/ 7,
7,°7;. However, since the interaction between j and k only depends on 77 and commutes
with the previous terms, information about k never reaches ¢ through 1-bit 5. Thus, we see

that 1-bit + and k can only become entangled through direct interaction terms.

Therefore, two 1-bits become entanglement after a time which is inversely proportional
to their effective direct interaction, which scales exponentially with their distance R, i.e. t ~
ef/¢. Likewise, at time ¢, there is entanglement between every pair of I-bits within distance
R ~ &1n(t) of each other, which underlies the observed logarithmic growth of entanglement
entropy in quenches. This is in contrast with generic clean interacting systems including
integrable systems and those that satisfy the ETH, where entanglement entropy grows
linearly in time [28].

The 1-bit picture also predicts certain properties of the eigenstates in the MBL phase.
Because the quasi-local unitary U maps the product states of the physical spins |s; ... sy)
to the eigenstates of the Hamiltonian, it is intuitive that entanglement statisfies an area law,
as entanglement across the boundary is mostly due to the physical spins within distance &
of the boundary. Thus, for L > £, the entanglement of a subregion does not increase with
system size.

A consequence of the entanglement area law for eigenstates is that MBL systems cannot
possibly satisfy the ETH. The latter predicts that the expectation value of local observables
in eigenstates are identical to those of a thermal ensemble at the same energy, and thus the
entanglement entropy of subsystems is generically extensive by definition. Similarly, the
long time dynamics cannot be described by a thermal ensemble, since the local conserved
charges 77 also constrain the long time dynamics of the system.

1.3 Diagnostics

After the general overview of thermalization in quantum many-body systems, we now
discuss some of the diagnostics, in addition to testing ETH directly, that are commonly
used in numerical simulations to probe different aspects of thermalization and that are also
useful for detecting its breakdown.
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1.3.1 Level spacing statistics

Quantum systems are described by a Hamiltonian which defines a Hermitian matrix.
Therefore, through diagonalization H|E,,) = E,,|E,,) we obtain its spectrum formed by
the sorted eigenenergies E,,, i.e. E, 1 < E, < F,+1. The spectrum contains some in-
formation about the dynamical properties of the system. For ergodic systems, the energy
levels exhibit a phenomena known as level repulsion. Level repulsion means energy gaps
between nearest neighbour energy levels, e.g. s,, = E,, — E,,_1, do not follow the expected
statistical distribution if each level occurred randomly at a rate set by the average level
spacing 0 = s.

Under the assumption that levels occur randomly, given an eigenenergy F,,, the next
energy level occurs with probability ~ % within any small energy window of range As.
We would like to find the probability that the energy gap s, = E,,+1 — E,, is in the range
[s, s + As]. For this, we divide s in n small intervals of energy width As and demand that
the next level does not turn up in any of these n intervals and that it appears in the next
one. Therefore, this probability is given by P(s) = (1 — £2)"22 with n = 2. In the limit
As — 0, or equivalently n — oo, we find the so-called Poisson distribution Pp(s) = 5e~=.
This probability density monotonically decreases with the size of the gap, i.e. it does not

show level repulsion.

Because the Poisson distribution depends on the level spacing § which changes over
the range of the spectrum, it is common practice in numerical simulations to measure
level repulsion using the ratio of two neareast neighbour gaps r,, = % [32], thus

ms m—l)
removing the dependency on the level spacing 5. Since in the absence of level repulsion
the gaps s, Sm—1 are uncorrelated, one can find from the gap distribution Pp(s) the

corresponding distribution for r given by Pp(r) = H%

It turns out the spectral rigidity of ergodic quantum many-body systems is well de-
scribed by RMT [33, 45]. Depending on the symmetries of the Hamiltonian, the appro-
priate RMT ensemble is either the Gaussian Orthogonal Ensemble (GOE), the Gaussian
Unitary Ensemble (GUE) or the Gaussian Symplectic Ensemble (GSE). For example, the
specific ergodic models considered throughout this thesis contain anti-unitary symmetries
related to time-reversal that constraint the Hamiltonian to be a real matrix in a specific
basis, so their spectrum is well described by the GOE. In this ensemble, real symmetric
matrices are sampled according to the probability distribution P(H) ~ e ™" which is
invariant with respect the action of orthogonal transformations O on H,i.e. H — OTHO.
A very accurate ansatz for the distribution of ratios r,, for the RMT ensembles can be
found through an exact calculation for 3 x 3 matrices [35]. Fig. 1.1 shows the distributions
of ratios r for the Poisson distribution and for the GOE. The former decays with increasing

13



2.00
1.751 Poisson

1.50 GOE
1.251

S

~— 1.001

R
0.751
0.501
0.251

0.00 ' ' ' '
0.0 0.2 0.4 0.6 0.8 1.0

r

min(sm,Sm—1

Figure 1.1: The distributions of the ratio of spectral gaps r,, = e Sm_l)) for Hamil-
tonians described either by Poisson statistics or sampled from the Gaussian Orthogonal
Ensemble (GOE). The energy gaps s,, = E,, — E,,_1 are between the sorted eigenvalues

E,._1 < E,, < E,,+1 of the Hamiltonian.

r, while the latter exhibits signatures of level repulsion as it peaks at a non-zero value of
r. The two distributions can also be discriminated by their mean values rpgisson =~ 0.39,
raor ~ 0.53 [35], which is a common diagnostic for level repulsion in numerical simulations.

A heuristic explanation for level repulsion in ergodic systems follows from considering
the effect of a local perturbation on two nearest neighbour eigenstates. From the ETH
ansatz Eq. 1.10, the off-diagonal matrix element of the local perturbation between the
two levels ~ 1/,/p is asymptotically much larger than the level spacing ~ 1/p, since the
density of states p increases exponentially with the number of degrees of freedom. From
the application of degenerate perturbation theory, we see the two levels become separated
by energy ~ 1/,/p which is much larger than the level spacing, so the levels repel each
other.

1.3.2 Entanglement entropy of subsystems
The entropy of a pure state [¢)) describing a many-body system, defined as S = —Trplog, p

is identically zero, where p = |¢)(?| is the density matrix of the full system [36]. Addi-
tionally, the entropy remains zero under unitary time evolution. Therefore, the connection
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Figure 1.2: Two examples for bipartitions of an one dimensional chain formed by 1/2-
spins: (a) symmetric half-chain bipartition, (b) bipartition defining the smallest possible
subsystem composed by a single spin (subsystem A).

between entropy and thermalization requires the analysis of local subsystems. These be-
come entangled under time evolution with other parts of the system, which effectively
function as a heat bath.

Here we focus on subsystems which result from breaking the system into two parts A,
B such that the total Hilbert Space H4p is the direct product of the Hilbert Spaces of A
and B, i.e. Hap = Ha®Hp. To illustrate this, we provide two examples for bipartitions in
models describing one dimensional chains of 1/2-spin degrees of freedom. The first example
corresponds to a symmetric bipartition of the chain, wherein subsystem A includes spins
number 1 to % (we assume an even number of 1/2-spins), while subsystem B includes
the outstanding spins N/2 4+ 1 to N (see Fig. (a)). In the second example, subsystem A

corresponds to a single spin, and subsystem B is composed by the other N — 1 spins (see
Fig. (b)).

A general pure state [¢) reads |¢) = >, vi;li)alj) s, where [i)a, |i)p specify corre-
sponding basis in subsystems A and B. As we shall see, the entanglement entropy of the
subsystems A, B measures to what extent [¢)) is not separable, i.e. 1)) # [)) 4 ® |¢) 5.

A very useful tool for the purpose of analyzing the separability of subsystems A and
B is the Schmidt decomposition [36], which we now describe. The coefficients 1;; can
be interpreted as a matrix ¥, where the number of rows n4 and columns ng correspond
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to the dimensions of the Hilbert spaces of the subsystems A and B, respectively. The
singular value decomposition of ¥, ¥ = UsVT, defines unitary matrices U of dimensions
naxmin(na,ng) and V of dimensions np x min(n4, ng) and a diagonal matrix s of singular
values of dimension min(n4,ng) X min(na, ng).

As a result, the state [¢) can be re-written in the following form:

) =D s, 1)a® )5, (1.21)

where [y)a = >, U |i)a and |y)p = 3, ij]j)B. Both sets of states |y)4 and |y)p are
orthonormal. Moreover, the singular values satisfy the following normalization condition:
.52 = 1. Tt is thus natural to interpret p, = s2 as defining a probability distribution.

The reduced density matrix for subsystem A is defined as ps = Trgp, where p = |¢) (¢
is the density matrix for the full system. Similarly for subsystem B, pgp = Trap. Using

Eq. 1.21, it follows immediately that pa = 3 s2[y)aa{y| and pp = > $2[7) 5B {1l

Therefore, the state of the subsystems A, B is a statistical mixture, even when the
global state is pure. Moreover, for any set of singular values s, distinct from the one where
all the singular values are zero except for one, the state [¢) is not separable and there is
entanglement between the two subsystems.

The entanglement entropy of p4 is defined as S4 = —Trpa log pa, and it is identical to
the classical Shannon entropy of the probability distribution p, = 53. Consequently, S
measures the logarithm of the effective number of states in A contributing to the statistical
mixture in ps. When the full system is in a pure state, it follows from the Schmidt
decomposition Eq. 1.21, that both subsystems have the same entanglement entropy, i.e.
S4 = Sp. The entanglement entropy of a subsystem takes values between zero and the
logarithm of the dimension of the Hilbert Space of the subsystem. The minimum value
Sa = 0 occurs when |¢) is separable and the maximum value Sy = log(ns) occurs when
when py4 is in a maximally mixed state defined by pa = 1/n4 which is proportional to the

identity matrix.

The ETH ansatz for the expected values and fluctuations of local observables evaluated
in eigenstates of ergodic quantum many-body systems provides non-trivial constraints on
the entanglement entropy of subsystems. More specifically, the ETH ansatz predicts that
for eigenstates the reduced density matrix of local subsystems converges with increasing
system size to the thermal density matrix pﬁ ~ e PHa of the subsystem. H, is the
restriction of the Hamiltonian H to subsystem A and the inverse temperature § = 1/T is
set by the energy of the eigenstate. Since ps ~ pi, it immediately follows (by definition)
that S4 = SThermal, Where Sthermal 18 the thermodynamic entropy of subsystem A at the
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corresponding energy density. Accordingly, S4 is proportional to the volume of subsystem
A and thus satisfies a volume law, which follows from the extensivity of the thermodynamic
entropy. Conversely, if for a quantum many-body system the scaling of S4 with subsystem
size does not follow a volume law, it implies the breakdown of the ETH and thermalization,
which is the case for MBL systems.

We end this subsection with a comment on the calculation of the entanglement entropy
of a subsystem A in numerical simulations. The global state |1)) defines a vector that can
be reshaped into a matrix ¥ (as defined above). Further, the Singular Value Decomposition
of U provides the set of singular values s,. Alternatively, from the matrix ¥, the reduced
density matrix of subsystem A can be obtained directly by a matrix multiplication ps =
U the eigenvalues of p, are identical to 33 and can be obtained by exact diagonalization.
Finally, the entanglement entropy of subsystem A is given by Sq = — > 52 log(s2).

1.3.3 Participation Ratios

The scaling of eigenstate entanglement entropy is now a standard diagnostic for thermaliza-
tion in quantum many-body systems. Similarly, eigenstates can be characterized by their
participation ratio in some basis, which effectively measures how many states in this basis
contribute to the eigenstate. Since the ETH is motivated by RMT, where eigenvectors
are essentially random in any local basis, eigenstates of thermalizing quantum many-body
Hamiltonians are expected to be delocalized in the Hilbert Space. For the 1/2-spin models
considered in this thesis, an example of a local basis are the product states |siss...sn),
where for each spin s; = (07) = £1.

Concretely, for any eigenstate |E,,), its participation ratio on a basis |y) is defined as:
1
> [V Em) !

The participation ratio P, ranges from 1, in the case of only one non-zero amplitude
(7| Em), to the dimension of the Hilbert Space D, when all the amplitudes have the same
norm equal to 1/v/D.

For random states, the expected value of the participation ratio is equal to 1/3 of the
dimension of the Hilbert Space D [37]. This value is in close agreement to what is observed
for eigenstates of ergodic systems at infinite temperature, showing that these states are
indeed essentially random on a local basis. At other energy densities, the participation
ratios remain a finite fraction of the total Hilbert Space dimension [37].

Py, = (1.22)

Therefore, if a quantum many-body system satisfies ETH, the participation ratios of
eigenstates on a local basis grow exponentially with the number of degrees of freedom.
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1.4 Periodic driving

Quantum systems coupled to periodic time-varying external fields are ubiquitous in the
study of physics. Examples include materials irradiated by periodic fields, their response
to periodic currents or mechanical shaking, etc [46]. These apparently unexceptional phe-
nomena resulted in notable applications across multiple domains.

The impact of the laser in Physics has been significant: it has allowed the creation of
synthetic matter using optical lattices [47], and more than 100 years after the theoretical
prediction of Einstein, the Laser Interferometer Gravitational-Wave Observatory (LIGO)
finally made the experimental verification of gravitational waves [48]. The laser also led
to breakthroughs in other fields such as technology (e.g. optical drives) and medicine (e.g.
eye surgery).

Another remarkable example is Nuclear Magnetic Resonance [49] in which atomic nuclei
interact with time periodic magnetic fields. The NMR protocol has not only been applied
to collect structural information on molecules, crystals and other physical structures, but
is also used to perform brain imaging through the detection of local variations in blood
flow, which has many applications in medicine and neuroscience.

In condensed matter, the recent interest in these systems was sparked by the discovery
that periodic driving can induce topological properties in the band-structures of materials.
For example, it was shown that radiating circularly polarized light in graphene generates
topological edge states [50].

1.4.1 The kicked rotor

At the single-particle level, periodic-driving already reveals unexpected phenomena. A
well-known example is the quantum kicked rotor [38, 39, 40, 41, 42, 43, 44, 45]. This system
corresponds to a particle which moves freely, but every period is kicked by a potential. This
is described by the Hamiltonian H = p?/2m + kcos(z) >_>7, 6(t — nT).

Classically, the kick changes the momentum of the particle by a finite amount ~ k sin(z)
every period, which depends on the position z of the particle and can have arbitrary sign.
As a result, we observe random walk behavior for strong enough kicks; the momentum
of the particle undergoes diffusive motion growing as p? ~ n, where n is the number of
elapsed periods.

Surprisingly, the quantum kicked rotor behaves quite differently than the classical model
and the momentum of the particle remains finite in the long time limit. This phenomenon
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was dubbed dynamical localization, since it is reminiscent of Anderson localization. How-
ever, in this case, it happens in momentum space. Interestingly, the two phenomena are
related. The kicked rotor can be mapped to a time independent problem analogous to An-
derson localization except for a few modified ingredients that do not change the physical
properties of the system (e.g. the on-site energies in this case are only pseudorandom).

1.4.2 The Floquet Operator

More generically, a periodically-driven quantum system is defined by a periodic time de-
pendent Hamiltonian H(t) which satisfies H(t + T) = H(t), where T is the period of the
drive. The solutions to the Schrodinger equation under a time dependent Hamiltonian
satisfy:

() =i 190

If one is only interested in the stroboscopic dynamics, i.e. in times ¢t = nT" with n integer
(the beginning of the period can be chosen arbitrarily), or in the infinite time dynamics,
then this information is encoded in the evolution operator over a single period of the drive,
the Floquet operator. For a generically time dependent periodic Hamiltonian, the Floquet
operator reads:

(1.23)

T
F = T/ exp(—iH (t)t) dt. (1.24)
0
Here T denotes the time ordering of the products of the Hamiltonian H(¢;) ... H(t,) arising
from the expansion of the exponential.

Since F' is a unitary operator, it can be expressed in terms of a Hermitian operator
Hpr that naturally plays the role of an effective Hamiltonian and is dubbed the Floquet
Hamiltonian:

F = et (1.25)

This follows from the fact that a unitary operator can always be diagonalized and addi-
tionally its eigenvalues are complex numbers of norm 1 due to unitarity:

1= (Yilihs) = <¢i’FTFW1‘> = A, (1.26)

where \;, [¢;) denote an eigenvalue of F' and the associated eigenvector, respectively. Con-
sequently, in this eigenstate basis, the Floquet operator has the following form:

F= Z e~ T o) (). (1.27)
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Thus, the Floquet Hamiltonian is defined as
HpT =ilnF =Y wT) (3. (1.28)

Since the quasi-energies w; are only defined modulo 27 /T, the Floquet Hamiltonian is not
unique.

Eq. 1.25 implies that with respect to the stroboscopic dynamics the system is effectively
described by a time independent Hamiltonian Hr. However, there are no guarantees that
this Hamiltonian is physical. It might be non-local, for instance.

1.4.3 Periodic Gibbs Ensemble

The existence of a Floquet Hamiltonian has interesting consequences for non-interacting
quantum many-body systems described by periodic Hamiltonians that at each time remain
quadratic in terms of single-particle creation and annihilation operators. The equilibrium
state reached by these systems after a quench experiment is now well understood [51].

In this setting, we can show that the Floquet Hamiltonian Hp is also quadratic in
the single-particle creation and annihilation operators and, consequently, can be cast in a
diagonal form Hp =) Emajnam. Therefore, the particle numbers ainam commute with
the Floquet Hamiltonian Hr and as a result are conserved by the stroboscopic dynamics
of the system.

In analogy with the Generalized Gibbs Ensemble (see Section 1.1.2), we can define the
ensemble with fixed expectation values of the conserved quantities a,a,, that maximizes
the entropy. It is referred to as the Periodic Gibbs Ensemble [51] and has the following
form:

PPGE = € Zmzmain(lmj (129)

where the Lagrange multipliers /,,, are determined by the expectation value of the conserved
quantities al a,, in the initial state of the system.

Indeed, numerical simulations [51] have shown that this ensemble provides an accurate
description of the long time properties of these systems after equilibration takes place.

1.4.4 Magnus expansion

The definition of the Floquet Hamiltonian Hr = = In ('T fOT exp(—iH (t)t) dt) for generic

interacting many-body Hamiltonians does not allow for a general and tractable solution.
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However, it is possible to determine it perturbatively in the driving period 7' (on the scale
of the local energy of H(t) which we define by J) using the so-called Magnus expansion
[53, 54, 52], which is derived in the following.

We recast the Schrodinger equation in the form: d“ﬁlt = A(t)|(t)), with A(t) =

—iH(t). We would like to find Q(¢) such that |¢y(t)) = e t)|g00), where |pg) is the state
at time ¢t = 0. In this notation, the Schrodinger equation is equivalent to

d Q(t)
edt e~ = A(t). (1.30)

. . . . . Q _,—ad
Using the Poincare-Hausdorff matrix identity % = 4 < - £ where adg corresponds

to the mapping B — [, B] for an general operator B, and the identity e ?Ae®? = 7242 4
we find:

ds? adg
— =" A 1.31
dt eado — 1 (1.31)

From Eq. 1.31, a recursive expansion of €(t) in powers of A can be obtained: Q(t) =
32 QM (t), where QM is of order ||A]|". Note that by means of the identity Q(T) =

—1HgT, we obtain an expansion for the Floquet Hamiltonian Hp = ZOO_ Hl(m") as well.

To first order in A, Eq. 1.31 reads =——— Q( G A(t), which implies Q(! f dt1A(ty) or

equivalently H =7 fo dt'H(t') given that A( ) = —iH(t). In the large frequency limit,
it is indeed intultlve that the system is described by the time averaged Hamiltonian, since
the system’s own dynamical timescale ~ 1/.J is much slower than the driving.

To second order in A, we ﬁnd dQ(Q) 40 — —1[QM(¢), A(t)], which is solved in terms of A(t)

given that QU f dtl As a result, the second order correction to the Floquet

Hamiltonian is Hl(f = 55 fo dt1 0 " dty[H (), H(ty)]. This procedure can be iterated to

obtain €(t) up to the desired order in A(t).

It is instructive to also present the third order contribution to the Floquet Hamiltonian:

g~ L [, / dt / dts ([H (1), [H (t), H(ts)]] + [H(ts), [H (), H(t,)])
(1.32)

The pattern for n = 1, 2, 3 suggests that H 1(;") depends on terms with n nested commutators
involving the Hamiltonian H(t). Because H(t) is assumed to be local, at each order H}n)
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is of order %(TJ )*. Consequently, we see the Mangus expansion corresponds to a small
period expansion of the Floquet Hamiltonian.

Moreover, at each order, H}") is still a local Hamiltonian, but the range of the local
terms increases linearly with n. To illustrate this point, we consider the example where
H (t) describes a 1/2-spin chain with only time dependent nearest neighbour couplings, e.g.

ofol .y, 0lo? . Atsecond order, in the definition of Hl(f), most of the terms in [H (t1), H(t2)]
commute with each other, except overlapping operators, such as [o703, 0504] = 2ic{o50}.
Hence, the range of the Floquet Hamiltonian Hp at second order has grown compared to
the time averaged Hamiltonian assumed to only have nearest neighbour couplings. By an

analogous argument, Hl(m") contains local terms with range ~ n.

We now explore the consequences of the convergence of the Magnus expansion. Here
the term convergence is used in the sense that truncating the series at order O(L°) provides
an accurate description of the stroboscopic dynamics (i.e. at times nT') under Hp. In this
situation, Hr is essentially a sum of local terms. This point has important consequences,
in particular if H(t) is ergodic. If Hp is local, we are back to the usual setting where the
system is described by a time independent local ergodic Hamiltonian. Consequently, the
long time steady state after a quench protocol from an initial state |pg) is described by the
thermal state p = e_ﬂZHF, where the inverse temperature § = 1/T is fixed by the energy of

the initial state (po|Hp|eo)-

On the other hand, if Hr is of infinite range, then no local conserved quantities con-
strain the dynamics of the system. Consequently, any initial state equilibrates to what is
effectively an infinite temperature state p,, = %, which maximizes the entropy under no
constraints. When the system equilibrates to the infinite temperature ensemble p.., this

is usually referred to as heating up to infinite temperature.

The only mathematical guarantee for the convergence of the series is if fOT [|H(t)||dt <
O(1) [54], where the norm refers to the matrix norm. This result provides no insight for
generic local interacting quantum many-body systems, since their spectrum is extensive in
the number of degrees of freedom, which means the previous bound is eventually violated
for a large enough system.

1.4.5 Replica formalism
We end this overview of periodic driving with a discussion of one of the earliest strategies

to study periodically driven systems, the so-called replica formalism [55]. This approach
transforms the time dependent problem into an effectively time independent one, but at
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the cost of enlarging the dimension of the Hilbert space. Recall that the solutions to the
Schrodinger equation under a time dependent Hamiltonian satisfy:

dlv(t))
H@)ly(t)) = i—— (1.33)
According to the Floquet theory, there is a complete set of solutions of the form | (1)) =
e~**|p(t)), where the state |o(t)) has period T and ¢ is called a quasi-energy. Notice the
presence of degenerate solutions: if |p(t)) is a solution, so is |p(t))e™*, but the associated
quasi-energy also shifts: € — ¢ — wn. For a solution of this form, Eq. 1.33 becomes:

10 - i | (o) = elote) (1.34)

We now show that Eq. 1.34 is equivalent to a time independent Schrodinger equation.
To that purpose, notice that |p(t)) = > A (t)|Em), where the states |E,,) constitute some
basis of the Hilbert space, which we can choose to be the basis defined by the eigenstates

of the time averaged Hamiltonian H(0) = & fOT H(t)dt. Since the amplitudes A,,(t) have

T
period T, they can be expanded in a Fourier series A,,(t) = > oo AW L ikt and as

™ T
consequence:
1 tkw
lp(t)) = ZAgi)ﬁe " B (1.35)

Eq. 1.35 clearly indicates that |¢(t)) can be interpreted as belonging to a larger Hilbert
space spanned by the orthonormal basis |E,,, k) = |E,) ® |k). Here, |k) = \%e“‘“t
with n € Z and the inner product for these monochromatic states is defined as (k|l) =
\/LT fOT e~ k=Dt — §, ;. Thus, in this formulation, Eq. 1.34 is equivalent to the time inde-
pendent problem:

> (Bl Hk = D|E)AD = (e = k)AL, (1.36)

m

I,n

where the H(k) = 7 fOT dtH (t)e~*+! denote the Fourier components of the Hamiltonian.

In the absence of driving, i.e. H(k) = 0 for k # 0, the quasi-energies are of the form
Empk = Em + kw, where E, are the energies of the eigenstates of the static Hamiltonian
H(0). If a driving protocol is turned on, i.e. terms H (k) with k # 0 become non-zero, the
eigenstates of Eq. 1.36 will generically consist of a mixture of different eigenstates of H(0).
However, there’s a stricking difference in this setting compared to the situation where a time

23



independent perturbation is added to H(0). While in the latter only eigenstates of H(0)
with similar energy are nearly degenerate, in the periodic-driving setting, eigenstates whose
energy differs approximately by a multiple of w are also nearly degenerate. Specifically,
if E,, — E,,, ~ lw, then the states |E,,,k + 1) and |E,, k) are nearly degenerate &, 4 ~
enk and can be mixed by the Fourier mode H(l) of the Hamiltonian. Hence, the time
periodic setting introduces new ways to delocalize the eigenstates of the time independent
Hamiltonian H(0) and it is natural to expect new dynamical regimes to emerge as a
consequence of that.
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Chapter 2

Periodically-driven ergodic and
many-body localized quantum
systems: local drive

2.1 Introduction

The recent interest in periodically driven quantum many-body systems with local inter-
actions started with D’Alessio and Polkovnikov [56] who hypothesized that two distinct
dynamical regimes were possible: the system either (i) keeps absorbing energy, heating up
to infinite temperature (e.g. defined using the time averaged Hamiltonian) at long times
or (ii) dynamically localizes at a certain energy similar to the case of the kicked rotor.

Here we establish the conditions under which the dynamics of locally driven many-body
systems are described by a non-local versus a local Floquet Hamiltonian Hp (defined in
Section 1.4.2), which result respectively in the dynamical regimes (i) and (ii). Specifically,
we consider the following driving protocol illustrated in Fig. 2.1(a), where the Hamiltonian
is switched between two operators periodically in time,

H(t) = (2.1)

V 0<t<Ty
Hy T\ <t<Ty+1T.

Hy(V) is applied during time T (71), such that the total period T" = Ty + 7. We will
consider lattice systems, in which the Hilbert space on every site is finite dimensional,
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V = hS%

H(t) = V,0<t<T) ® L
Hy, Th <t<Ty+ 1T i{] J
V- Hy V Hj
~ -y
Iy Tp t /h@ c =W, W] l

Figure 2.1: (a) A scheme of the general driving protocol. (b) Example of a 1d XXZ spin
chain studied numerically (blue arrows). The Hamiltonian Hy contains nearest-neighbor
hopping and interactions, in the presence of random z field (red arrows). Driving is per-
formed locally by the local operator V' = hS} /2 applied to the middle spin.

.
>

the operator Hy corresponds to a Hamiltonian describing a quantum-many body system
with short range interactions, while V' is a local operator that only acts on a finite set of
contiguous degrees of freedom.

This chapter is organized as follows. In Section 2.2, we map the spectral problem for
the Floquet operator describing the system onto an effective hopping problem and show
that the competition between the typical off-diagonal matrix elements of tan(V73/2) with
respect to the eigenstates of Hy and the typical level spacings in the spectrum of H
determines whether or not the system will heat up to infinite temperature at long times.
In Section 2.3, we discuss some of the signatures of heating in the hopping problem and
introduce the spin model that is studied numerically. In Sections 2.4.1 and 2.4.2, we then
apply our criterion to two general classes of driven many-body systems. The first class is
ergodic systems, i.e. systems that act as their own heat bath and satisfy the Eigenstate
Thermalization Hypothesis [9, 10, 7], c.f. Section 1.1.2. In Section 2.4.1, we show that for
ergodic systems, the system heats up to infinite temperature under driving and thus the
Magnus expansion in the driving period T diverges and Hp is unphysical. The second class
is many-body localized systems with quenched disorder that are known to be non-ergodic
(23, 30, 32, 25, 26], c.f. Section 1.2. Under local driving, we show in Section 2.4.2 that MBL
systems retain memory of their initial state and never reach infinite temperature. Here
the Magnus expansion is expected to converge, Hp is local and itself MBL. Throughout
Section 2.4, we support our analytical results with numerical studies of the driven XXZ
1/2-spin chain in random z fields. Our conclusions are summarized in Section 2.5.
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2.2 Mapping the Floquet onto a hopping problem

In this Section, we provide a mapping of the Floquet problem onto an effective hopping
model, which allows us to infer the properties of Hp, without explicitly computing and
analysing the properties of the Magnus expansion. This mapping shows that the compe-
tition between the typical level spacing and the hopping matrix element (i.e., the matrix
element of tan(V7;/2) between the eigenstates of Hy) determines the structure of the
Floquet eigenstates.

The Floquet operator for the driving protocol in Fig. 2.1(a) is given by
F = exp(—iHyTy) exp(—iV'Ty). (2.2)

The eigenstates of F' completely determine the stroboscopic evolution of the system. Below,
we map the eigenvalue problem of F' onto a hopping problem, similar to the kicked rotor
model in Ref. [57]. The lattice sites of the hopping problem represent eigenstates of Hy,
while V' induces hopping between sites.

The Floquet operator is unitary and its spectrum is given by (c.f. Section 1.4.2):
Flpi) = e T y;) = e~

where D is the dimensionality of the Hilbert space (e.g., D = 2& for the system of L 1/2-
spins considered below) and (1;]1;) = 6;;. The quasi-energies w; are defined modulo 27 /T,
hence Hp is not unique.

), i=1,...,D, (2.3)

Finding the spectrum of F' in a many-body system is generally hard, since F'is gener-
ically highly non-local. For example, in the case of a 1/2- spm chain, F' can be expressed
in the basis of Pauli matrices as F' =},  ffof + ZU op a iof + ..., and we expect

the weights f{{i}} to be non-zero for terms where the set {i } 1ncludes pairs of sites whose
distance is of the order of the system size L.

To circumvent this difficulty, let us provide an explicit mapping to a local Hamiltonian
problem. Rewrite e=*71 in terms of a Hermitian operator G as:

eV = (1 4+4G)(1 —iG) ™, G = —tan(VT/2). (2.4)

In general, GG is not spatially local in the same sense that F' is not local, as just explained
above. If, however, V' is local, then G is also local. The diagonalization problem (Eq. 2.3)
is then equivalent to:

—zHoTo 1 + ZG |¢z> — —zwiT

) (2.5)
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Defining |x;) = (1 —iG) "), Eq. 2.5 becomes:
e T (1 +iG)|xi) = e ™7 (1 —iG)|xi) (2.6)

eiHoTo _ o—iwT
IXi) = Glxa) (2.7)

B ZefiHoTo + e—iwiT

And finally, using the identity tan(x) = —2'222—1}, we obtain:

1

Let us view the eigenbasis of Hy, labeled by |FE,,), as sites in a lattice. Solving Eq. 2.8
is equivalent to finding the zero-energy eigenstate of a hopping problem on this lattice,
where A, (w;) = tanw plays the role of an on-site energy on site m, and G,,, is
the hopping amplitude between sites n and m. The competition between the typical level
spacing and the hopping matrix element, which is different in the ergodic and MBL phases

[11, 12, 14, 30], thus determines the structure of the Floquet eigenstates.

2.3 Microscopic model and heating diagnostics

We now define several quantities that can serve as a measure for when the system heats
up under periodic driving. We also introduce the model of a disordered XXZ spin chain,
where these quantities can be readily computed in numerical simulations. These results
are presented in Section 2.4.

We imagine preparing the system at ¢ = 0 in a low-energy eigenstate of Hy, |pg). The
stroboscopic evolution at times t = nT follows from the expansion of |¢g) in the Floquet
eigenbasis:

|on) = Flo) = Y A exp(—iwnT)[¢r), (2.9)
where A; = (¥;|po). At long times, the time averaged density matrix is

Poo = Z |Ai|2|¢i><¢i|- (2-10)

The nature of the eigenstates |1;) determines the steady state as ¢ — oo. If each [¢);) is
delocalized in the eigenbasis of Hy, then each |1¢);) corresponds to an infinite temperature
state. The entire density matrix, p.,, describes a system at infinite temperature in this
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case. If on the other hand the |¢;) are localized in the eigenbasis of Hy, then, depending
on A;, ps describes a system at different energies.

To characterize the energy absorbed under driving, at each ¢ = nT" we introduce a
dimensionless energy
({on|Holpn) — Eo)

(ET:oo - EO) ,

where Er_., = Tr(Hy)/D is the average energy at infinite temperature, and Ejy is the
energy at t = 0. As we shall see, the cases where Hj is ergodic or MBL are distinguished
by @, — 1 and @), — 0 as n — 00, respectively.

Qn:

(2.11)

Finally, to quantify the structure of the Floquet eigenstates, we compute the partici-
pation ratio (PR). For the Floquet eigenstate |¢;), PR in the basis of eigenstates |E,,) is

defined as .

where Amz = <Em’wz>

The above quantities can be readily computed in finite spin chains using exact diago-
nalization. For concreteness, we focus on the XXZ 1/2-spin chain with L sites and open
boundary conditions, illustrated in Fig. 2.1:

-1 L-1 L
Hy=J, Y (SPSfy+SYSEy) + .Y S+ Y hiSi, (2.13)
i=1 i=1 =1

where fields h; are independent random variables drawn from the uniform distribution
[—W, W], and we fix J, = J, = 1. The model described by Eq. 2.13 exhibits both ergodic
and MBL phases as a function of disorder strength W, with the transition at W, ~ 3 [30].
The system is driven by

V= hS ) (2.14)

acting on the middle spin (we assume h = 2). Since for finite system sizes the range
A ~ O(L) of the spectrum of Hj is also finite, in order to minimize finite size effects we
choose TyA > 1 and we fix Ty = 7. This guarantees that the initial state |pg) can find
resonant states at energy difference +w = +27/Ty. The results for this model will be
presented in Section 2.4 for both the ergodic and MBL cases, which correspond to disorder
strength W = 0.5 and W = 8, respectively. The number of disorder samples analyzed
ranges from 2 x 10* (L = 8,10) to ~ 10® (L = 12,14).
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2.4 Local driving

Here we derive the conditions for the system to heat up to infinite temperature, and
confirm them numerically. We will assume that V' is local (e.g. as in Eq. 2.14). Then,
G = —tan % is also local. Furthermore, we will assume that the Hilbert space at every
lattice site is finite dimensional, like in the model described by Eq. 2.13, such that G has
a finite matrix norm, ||G|| < C, with the possible exception of special values of 77 that
verify 0,77 = (2n + 1)7 for an eigenvalue 7; of V' and arbitrary integer n. Notice that for
the model described by Eqgs. 2.13 and 2.14 the term e~*7* becomes the identity for these

values of T} and the Floquet Hamiltonian is identical to Hj.

4 1 rAEm
. !
»
e ey
~< »
-2 4 r
[
—4- T |

—20 -15 -10 -05 00 05 10 15 20
E../(27/Ty)

Figure 2.2:  On-site energy \,,(w) = tan W for the eigenvalue problem associated
with the spectrum of the Floquet Operator I (see Eq. 2.8); only the eigenstates belonging
to the two central bands are shown for simplicity (represented by green and red dots).
Eigenstates of Hy which differ in energy F,, by a finite amount 27 /Tj are almost degenerate
in terms of the energy \,,(w). The driving operator G couples these states with strength
G and if this is larger than the level spacing A\ these states strongly mix. In this case,
we would expect the eigenstates |x;) to be completely delocalized over the eigenstates of
Hy.

We now explore the properties of the zero-energy states |x;) in Eq. 2.8, to which the
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eigenstates of the Floquet Operator [i;) are related by the action of a local operator:
i) = (1 —iG)|xa).

We expect the states |y;) to be localized (delocalized) on the eigenbasis of H, when
the typical hopping amplitude G,,, between eigenstates of Hy, |E,,), |E,) belonging to
neighbouring bands which differ in energy |E,, — E,| by ~ ?p—’g (see Fig. 2.2) is much smaller
(larger) than the level spacing AX between them; this follows from a first order perturbation
theory analysis on G determining if the states |E,,) and |E,) hybridize or not.

At quasi-energy w (defining the eigenvalue of F'), the on-site energies \,,,(w) = tan w

have a distribution P(\) o ﬁ if the E,, are distributed uniformly. Because |y;) sat-
isfies Eq. 2.8, the expected value of the operator A(w) = tanw for this state is
A = (xi|G|xi). This suggests that the relevant values of the on-site energies \,,(w) are at
most of order ||G||. And, since this norm is finite (i.e. O(L?)), we don’t have to worry
about the large values of \,,(w) arising due to the unbounded tan function. From the form
of P(X), we thus conclude that the relevant level spacing is AX & AE ~ =%, where AE is
the level spacing associated with Hy. The criterion for the localization of the eigenstates
|x:) in the energy space of Hy thus takes the form:

|Gn| = [(En|G|E,)| < 1/D. (2.15)

And, using Eq. 2.8, we find that the Floquet eigenstates |¢;) are localized (delocalized)
if |x;) are localized (delocalized). We now explore this criterion for delocalization when
H, describes an ergodic or a many-body localized phase, since the off-diagonal elements
behave quite differently in the two cases.

2.4.1 FErgodic systems

The condition determined by Eq. 2.15 does not hold for ergodic systems even for arbitrarily
weak driving. To see why, note that eigenstates |F,,) in the ergodic phase are like random
vectors in the basis of product states (except for the energy constraint) according to the
ETH. The typical matrix element of any local operator between two random vectors is:

|G| ~ ||G||/VD > 1/D. (2.16)

Thus, in the thermodynamic limit, the hopping problem is always in the delocalized phase.

In the delocalized phase, the Floquet eigenstates are superpositions of nearly all eigen-
states | E,,) with macroscopically different physical energies E,, (but with |\, (w)| < [|G]]).
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Figure 2.3: Energy delocalization and heating to infinite temperature in the ergodic phase
of the XXZ model (T, = 7,W = 0.5). (a) Squared overlap |A,,;|* of the Floquet eigenstate
|1;) with eigenstates |E,,) of Hy, ordered by energy, for a fixed disorder realization and
Ty = 1.5. |A,|* are nearly uniformly spread over all eigenstates |E,,). (b) Disorder
averaged PR/D vs Ty. As L is increased, PR remains finite in the ergodic phase. (c)
Disorder averaged @), vs the number of driving cycles n (77 = 1.5), for evolution starting
from the ground state. (d) Disorder averaged saturation value Q) vs T} for different L. In
the ergodic case, (0 sharply approaches 1 as L — oo for any 77, signaling generic heating
to infinite temperature. Number of disorder averages is 2 x 10* (L = 8,10) and ~ 10?
(L =12,14).

Their PR, defined in Eq. 2.12, remains a finite fraction of the total size of the Hilbert space
as D — oo, thus individual Floquet eigenstates describe infinite temperature states of the
system.

We have verified the above statements numerically in the case of the XXZ model defined
in Eq. 2.13. In Fig. 2.3(a) we first illustrate the structure of a typical Floquet eigenstate
|¢;) for a fixed disorder realization and T; = 1.5. We plot |A,,;|* as function of |E,,),
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ordered by energy E,,. As expected for the ergodic case, a typical Floquet eigenstate is
delocalized and has non-zero overlap with states at very different energies.

The difference between Floquet eigenstates is further revealed in the behaviour of PR
shown in Fig. 2.3(b). The disorder averaged PR/D, plotted as a function of 7} for different
system sizes L, shows that Floquet eigenstates occupy a finite fraction of the Hilbert space
in the thermodynamic limit when the system is ergodic.

The energy absorbed after n cycles, @), defined in Eq. 2.11, when the system is initially
prepared in the ground state of Hy, is shown in Fig. 2.3(c). In the thermodynamic limit,
Q,, approaches 1 for ergodic systems !.

Similarly, the saturated value @) in the ergodic phase (Fig. 2.3(d)) tends to 1 as L is
increased. Note that for the system sizes studied here, Q) < 1 for 7} — 0 and 77 — «. For
a finite size system, at small 77, the off-diagonal elements are larger than the level spacing
only for tan (71/2) > 1/v/D which marks the onset of delocalization. As Ty — =, the
off-diagonal elements increase as tan (77/2) and the level spacing of the relevant \,, grows
as well, see discussion in the third paragraph of Section 2.4. Assuming delocalization, the
relevant \, are of order A ~ tan (73/2) 1/v/D and the level spacing at X is AN ~ (14+-A%) 2L
Further assuming A\> > 1, ie. tan(71/2) > /D, the delocalization condition reads
tan (11 /2) \/LT) > AM. This implies that delocalization is not possible for tan (77/2) 2

T%D?’/ 2 which explains the numerical observations. However, Q. monotonically increases
as a function of L, and is likely to reach 1 in the thermodynamic limit for arbitrary values
of T, except for specific values where e~*V"1 is the identity, suggesting that ergodic systems
generally heat up to infinite temperature.

2.4.2 Many-body localized systems

The situation for MBL states is quite different. A given MBL eigenstate of Hy, |E,,) with
energy E,, is labelled by the set of values of the l-bits |7), where we use the notation
T = (rf,...,77,...,77) (c.f. Eq. 1.20). A local operator G, for e.g. with support only
on a specific site 7, can be expanded in the basis of Pauli matrices associated with the
Lbits: G =3,  KGT8 4+ ik ap KZQTJ-O‘T,? +.... The coefficients Kj{o;.}]:, where {a} denotes
the list a1, ag, ... and {j} the list ji, js, ... of sites, decay exponentially as e~#/¢ with the

'We note that, since we consider finite systems, the system will undergo rare quantum revivals when its
energy becomes close to the initial value, which is much lower than the infinite temperature value (Q,, < 1).
However, the revival time increases exponentially with system size and therefore for all practical purposes
revivals can be ignored.
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Figure 2.4: Energy localization and absence of heating in the MBL phase (Ty = 7, W = 8).
(a) Squared overlap |A,,;|* of the Floquet eigenstate [¢;) with eigenstates |E,,) of Hy,
ordered by energy, for a fixed disorder realization and T} = 1.5. The overlap is non-zero
only for a few eigenstates with similar energies. (b) Disorder averaged PR/D vs T}. As L
is increased, PR/D decreases as 1/D. (c) Disorder averaged @, vs. the number of driving
cycles n (T7 = 1.5), for evolution starting from the ground state. (d) Disorder averaged
saturation value (), vs. T} for different L. In the MBL phase, ()., < 1 and decreases with
L, indicating that the system absorbs finite energy locally. Number of disorder averages is
2 x 10* (L = 8,10) and ~ 10° (L = 12, 14).

maximum of distance R between the sites in ¢ and {j} on the scale £ defining a many-body
localization length.

Thus, let’s consider the states |7/) which differ from the fixed state |7) only in integrals
of motion within a distance R from the support of operator (G. The density of these states
is dominated by those that differ by k& = R/2 integrals of motion from |7), due to the
properties of the binomial coefficient (ﬁ) ~ (}52) e2(B/2-R)?/R 3—%62<k_R/2)2/R. Hence, the

level spacing of these states at energies FE,, + QT—Q scales as AF ~ %, since the bandwidth
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Figure 2.5: Absorbed energy FEg.. — Fo = Tr(pooHo) — Ep as a function of system size L for
ergodic (red) and MBL (green) phases; Ej is the energy at time ¢t = 0. In the former case,
absorbed energy is extensive and scales linearly with L, while in the latter case energy is
absorbed only locally and its value is independent of L.

scales as ~ W+v/R due to the random disorder and assuming W+v/R > QT—Z On the other

hand, the matrix element with |7) is typically ||G||e~f/%. Therefore, at sufficiently strong
disorder and correspondingly large £, the level spacing is asymptotically larger in R than
the matrix element.

Thus, the criterion for localization (defined in Eq. 2.15) is satisfied in the MBL phase.
Hopping G only significantly mixes a few eigenstates with a similar structure away from
the support of G. This implies that energy can be absorbed only in the vicinity of the
driving.

The structure of the Floquet eigenstates in the MBL phase is thus very different from
the ergodic case. A typical Floquet eigenstate in the MBL case has sizable overlap only
with those |E,,) that are close in energy, as shown in Fig. 2.4(a). In this case, we fix the
disorder realization, and set T} = 1.5, Ty = 7, and disorder strength W = 8. Moreover,
the disorder averaged PR/D approaches zero as 1/D (Fig. 2.4(b)).

The energy absorbed after n cycles, (), when the system is initially prepared in the
ground state of Hy, is shown in Fig. 2.4(c). As expected for the MBL case, @,, is much
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smaller than 1 for all 7} and decreases with system size. (o remains smaller than one
for all 77, and decays as 1/L (Fig. 2.4(d)). These features reflect the local absorption of
energy in the system. The finite size scaling of the absorbed energy for the ergodic and
MBL cases is shown in Fig. 2.5.

Finally, we have also numerically studied the level statistics of the sorted quasi-energies
w; of the Floquet operator, characterized by the parameter [30]
min(Aw;, Aw; 1)

o 2.1
i max(Aw;, Aw;y1)’ (2.17)

where Aw; = w; —w;_1. In the ergodic phase, the average r is approximately 0.53, reflecting
the Circular Orthogonal Ensemble [58], while in the MBL case, the average r is approx-
imately 0.386, consistent with Poisson statistics. The circular ensembles generalize RMT
to the Floquet setting. For the system considered here, the distribution of r is specifically
described by the Circular Orthogonal Ensemble due to an anti-unitary symmetry which
squares to one and leaves the Floquet operator invariant [59].

2.5 Conclusions

We have shown that periodic local driving has very different effects on ergodic versus MBL
systems. Driven ergodic systems heat up to the infinite temperature and their Floquet
eigenstates are delocalized in energy space, while MBL systems absorb energy only locally
and provide an example of dynamical localization.

The above results indicate that driven interacting systems differ significantly from
driven non-interacting systems (on a lattice): the latter have a set of conserved quantities,
a local Floquet Hamiltonian and their long time behaviour is described by the Periodic
Gibbs Ensemble (c.f. Section 1.4.3) rather than an infinite temperature state [60].

A few remarks are in order. First, we expect that our results hold for other choices
of the local operator V' and Hamiltonian H, in addition to the type of driving protocol.
In particular, our results are expected to hold for harmonic driving as well, e.g. H(t) =
Hy + V cos(wt). Second, our approach can be extended to the case of global driving —
that is, when V' is a sum of local terms. In this case, GG is no longer bounded as L — oo,
which can only help with delocalization [58]. Thus globally driven ergodic systems are also
expected to heat up to the infinite temperature and to have delocalized Floquet eigenstates
in agreement with a recent study [61]. Moreover, our results for ergodic systems suggest
that non-interacting topological Floquet bands will generally be unstable to the inclusion
of interactions. The case of globally driven MBL systems however is more intricate and
deserves a separate study (see Chapter 3).
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Chapter 3

Periodically-driven ergodic and
many-body localized quantum
systems: global drive

3.1 Introduction

This chapter extends the work presented in the previous chapter concerning periodically
driven systems under local drive to the setting of global drive.

In this setting, we consider a generic class of periodically driven one dimensional models
with quenched disorder and find that as the system’s parameters are varied, two distinct
phases are realized, which differ in the structure of their Floquet eigenstates as well as in
their dynamical properties. One of them is the MBL phase in which the Floquet eigenstates
at arbitrary quasi-energy obey the area law for entanglement entropy and thus in this
respect behave as ground states of gapped systems. Level repulsion is absent and the
statistics of quasi-energy levels follows the Poisson distribution. Further, in the limit of
an infinite system, eigenstates with similar quasi-energies typically have different local
properties and thus the ETH breaks down. The second phase is the delocalized (ergodic)
phase. Here the Floquet eigenstates have volume law entanglement, the quasi-energy levels
repel and their statistics are described by the Circular Orthogonal Ensemble (COE). ETH
holds in this phase and consequently the Floquet eigenstates have identical local properties
and are described by an infinite temperature Gibbs ensemble.

The two phases can furthermore be distinguished by their dynamical properties when
the system is initially prepared for example in a product state. In the MBL phase, the
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time evolved states retain local memory of the initial state and at long times local observ-
ables are correlated with their initial values. As in MBL systems with time independent
Hamiltonians, entanglement entropy grows logarithmically in time. This behaviour reflects
the presence of emergent local integrals of motion (c.f. Section 1.2), which we explicitly
construct following Ref. [69] (see also Ref. [70]). In contrast, in the delocalized phase, local
observables relax to their “equilibrium” values at long times, which are given by the infinite
temperature Gibbs ensemble. In this case, the entanglement spreading is much faster and
consistent with linear growth.

The organization of this chapter is as follows. In the next section (Section 3.2), we
introduce the model describing a 1/2-spin chain with open boundary conditions as well
as the driving protocol which realizes the two phases mentioned above. In Section 3.3,
we probe different properties of the Floquet quasi-energies and eigenstates as the strength
of the kick of the drive is varied; these include the gap statistic of the quasi-energies, the
half-chain entanglement entropy and we test directly if the ETH is verified for a set of local
operators. Next, in Section 3.4, we analyze the system’s dynamics by considering a quench
experiment where the initial state is a Neel product state; in particular, we study the time
dependence of a local observable and the growth in time of the half-chain entanglement
entropy. In Section 3.5, we construct integrals of motion following [69] and verify their
locality in the MBL phase. Finally, we summarize our findings in Section 3.6.

3.2 Model

Our system is a one dimensional 1/2-spin chain with open boundary conditions. We con-
sider a driving protocol wherein the system’s Hamiltonian is periodically switched between
two operators, Hy and H;, both of which are sums of local terms. An example of a disor-
dered Hamiltonian Hy, which describes an MBL phase and acts for time Ty, is

Hy =Y hio] + J.ojo7,;, (3.1)

where random fields h; are uniformly distributed in the interval [—-W, W]. The eigenstates
of Hy are product states. As a delocalizing Hamiltonian H; we choose

H, =J, Z ojof +olol (3.2)
which acts for time 7T} such that the driving period is T' = Ty + 7. The associated Floquet
operator is given by:

F = g7 HoTop—ihT (3.3)
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The protocol describes an MBL system periodically “kicked” with a delocalizing perturba-
tion Hy, and can be viewed as a many-body generalization of a periodically kicked rotor
model (c.f. Section 1.4.1). Recent work has argued that a similar protocol for transla-
tionally invariant Hamiltonians results in an infinite temperature state at long times, and
therefore a non-local Floquet operator [58]. We fix J, = J, = 1/4, Ty = 1, W = 2.5 and
tune the strength of the kick — 77 — observing a transition at critical 7} between an MBL
phase (small 77 < T7) and an ergodic phase (7} > T7). We note that the model defined
by Egs. 3.1 and 3.2 always has one conserved quantity, the z-projection of the total spin,
S, = Zle o;. However, we have checked that this global conservation law is not essential
for the existence of the MBL and ergodic phases by studying other models where S, is not
conserved.

3.3 Properties of Floquet eigenstates and quasi-energies

3.3.1 Quasi-energy gap statistics

We first explore the properties of the Floquet eigenstates |¢);) and quasi-energy spectrum w
associated with the Floquet operator defined in Eq. 3.3, using exact diagonalization (ED).
By computing the consecutive quasi-energy gaps Aw; = w; —w;_1, we characterize the level
statistics by their ratio r; = min(Aw;, Aw;y1)/max(Aw;, Aw;1) (c.f. Section 1.3.1 and
Eq. 2.17). The averaged value of r serves as a probe of ergodicity breaking: it allows one
to distinguish between the Poisson and Wigner-Dyson level statistics. In Fig. 3.1 we show
(r) averaged over all quasi-energy spacings and over 1000 disorder realizations, for several
system sizes. At small kick period T}, (r) becomes increasingly close to the Poisson value
TPoisson =~ 0.39 as the system size is increased. This indicates the absence of level repulsion
and suggests that ergodicity is broken at small 77 and the system is in the MBL phase. On
the other hand, at large T}, (r) is approximately equal to 0.53, which is close to the COE
value, rcor ~ 0.53 [58]. This suggests that at large T} the system delocalizes. The (r)
curves for different system sizes cross at T} =~ 0.9, suggesting a phase transition between
MBL and ergodic phases. A drift of the crossing point towards smaller 77 is observed,
similar to the time independent case [30].

3.3.2 Half-chain Entanglement Entropy

To further distinguish the nature of the two phases, we study the entanglement properties
of the Floquet eigenstates. The expectation from the static case is that MBL eigenstates
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Figure 3.1: Disorder averaged level statistics parameter (r) as a function of the “kick”
strength 77. At small values of 77, (r) ~ 0.386, indicating Poisson statistics of quasi-energy
levels (no level repulsion). At larger T} the system undergoes a transition into a delocalized
phase with (r) &~ 0.53, consistent with the COE [58]. The presented data is for system
sizes L = 10,12, 14 and averaging is performed over 1000 disorder realizations.

should obey an area law for entanglement entropy, i.e. in 1d their entropy should weakly
depend on the chain size [25, 71], while in the ergodic phase the eigenstates are thermal and
their entropy is extensive in the subsystem size. Fig. 3.2 shows disorder and eigenstate av-
eraged von Neumann entropy (S) of the Floquet eigenstates, for the symmetric bipartition,
plotted as a function of 77. The markedly different scaling of (S) at small and large values
of T7 lends further support to the existence of two phases. At 77 < 77, (S) is much smaller
than the value expected for random vectors in the Hilbert space, St, ~ L/2In2 [72], which
signals ergodicity breaking. Moreover, at 77 < 0.6 the entanglement entropy grows very
weakly with system size, consistent with area law in 1d. On the contrary, at large 77 > 17,
(S) approaches Sty, indicating that almost all eigenstates are essentially random vectors
in the Hilbert space, as expected in the ergodic phase.

It is also instructive to study the fluctuations of entanglement entropy, as they have been
shown to provide a useful probe of the MBL-delocalization transition in time independent
models [73]. The disorder averaged fluctuations of S, defined as AS = /{(S — (S5))?)
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Figure 3.2: Averaged entanglement entropy (S) and its fluctuations (AS) (inset) as a
function of T7. The scaling of entropy and its fluctuations with system size L are consistent
with the existence of an MBL and a delocalized phase for small and large T}, respectively.

are expected to be small deeply in the delocalized phase, as well as in the MBL phase:
in the former case, almost all eigenstates are highly entangled, with S ~ Sy, with small
fluctuations around this value, while in the latter case, S obeys an area law and is therefore
small, as are its state-to-state fluctuations. In contrast, at the transition S has a broad
distribution [25, 73] and therefore its fluctuations are maximal. Thus, the localization-
delocalization transition can be detected by the location of the peak in AS. Fig. 3.2(inset)
shows AS as a function of 77. FEntanglement fluctuations AS exhibit a maximum at
T} ~ 1.1 that roughly agrees with 77 value found from analyzing level statistics; further,
we observe a slight drift of the maximum with the system size, similar to the previous study
of the static case [73]. We attribute the difference between the position of the maximum
in AS and value T} determined from the level statistics to finite size effects.
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3.3.3 Testing the ETH

We have also directly tested the ETH and its violation in the MBL phase in the Flo-
quet eigenstates, finding behaviour consistent with the existence of two phases (see also
Ref. [15], where ETH for driven ergodic systems was tested). According to the ETH, in
the delocalized phase the expectation value of a local operator O in all Floquet eigenstates
should converge, in the thermodynamic limit, to the prediction of the canonical ensemble

with infinite temperature
1
Oy = =Tr0O,
D
where D is the Hilbert space dimension. We test ETH and its violation in the MBL phase
by examining the deviation of the expectation value of O in individual eigenstates, (O);

from O4:
A0 = [(0); — Oxl, (3.4)

where averaging is performed over all Floquet eigenstates for each disorder realization, and
then over different disorder realization. We expect this quantity to approach zero in the
delocalized phase, as L. — oo. On the other hand, in the MBL phase this quantity should
remain finite as we extrapolate the chain size L to infinity.

In Fig. 3.3 we show numerical results for local operators O that act on the two neigh-
bouring sites in the middle of the chain and conserve S%. We studied the following four
operators:

(91 = 0'2/2,
Oy = 02/202/2%
(ot -+
O; = <JL/2UL/2+1 + UL/ZUL/2+1)7

— it o -+
Oy = Z(UL/QUL/QH - JL/ZUL/2+1>‘

As expected, in the MBL phase (77 = 0.4), (AQ) changes weakly with system size suggest-
ing that it remains finite in the thermodynamic limit. In the delocalized phase (7 = 3.0),
AQ approaches zero with increasing system size suggesting that each Floquet eigenstate
behaves as an infinite temperature thermal state for local observables in the thermody-
namic limit. We note that all four operators show nearly identical behaviour. Thus the
direct test of the ETH is consistent with the presence of two phases with markedly different
properties of their eigenstates.
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Figure 3.3: Deviation of expectation values of local operators from their infinite tem-
perature values given by the canonical ensemble. Different plots correspond to various
choices of S,-preserving local operators O acting on the sites in the middle of the chain,
and T = 0.4, 3.0 correspond to MBL and delocalized phases, respectively.
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3.4 Dynamics

We next study the dynamical properties of the model described by Eqgs. 3.1 and 3.2. We
consider a standard quantum quench protocol: the system is initially prepared in a Néel
(product) state |@o) of spins ¢f = £1 at ¢ = 0, and this state is evolved under the
time dependent Hamiltonian. This protocol is particularly easy to simulate using Krylov
subspace projection methods [74] or the time-evolving block decimation [75] method, both
of which allow us to access larger systems beyond ED due to the sufficiently slow growth of
entanglement in the MBL phase. For the TEBD algorithm we use a second order Trotter
decomposition with time step At = 0.1. The growth of the bond dimension is controlled
by requiring the neglected weight to be less than 107 at each Schmidt decomposition.

3.4.1 Local observables

We first focus on the evolution of local observables, and compute the expectation value
of the spin on a given site I, o}(t), and its long time limit (o7(oc0)) [76, 69, 77]. Fig. 3.4
illustrates the time evolution ¢7(t) for the Néel initial state |pg) and site I = 1, and for
system sizes ranging from L = 10 — 14 (obtained via ED), L = 16,18 obtained using
Krylov subspace projection, and L = 24,30 obtained using TEBD. We find that the on-
site magnetization remains finite at very long times even for the largest systems without
any visible finite size effects. This indicates that the MBL phase remains stable in the
thermodynamic limit.

The infinite time average of the operator ¢7(t) with respect to the initial state |¢g)
reads (07(00)) = limy 00 757 Yo peo(0lo7 (KT)|o) , which in terms of the Floquet eigen-
states [1;) is given by the expectation value in the diagonal ensemble (c.f. Eq. 1.6), i.e.
S (Wil oflwid | {polti)|?. The infinite time value (o7(00)), calculated using ED, and aver-
aged over 6000 disorder realizations, is illustrated in Fig. 3.4(inset). This quantity behaves
differently in the two phases: at 7" < T7, (07(00)) is positive and weakly dependent on
the system size, which shows that in the MBL phase the local memory of the initial state
is retained. Deep in the ergodic phase at 77 > T, however, (07(c0)) — 0, reflecting the
decay of the initial magnetization and therefore a loss of the memory of the initial state.

3.4.2 Entanglement growth

Finally, we explored the spreading of entanglement following a quantum quench, known
to be a sensitive probe of many-body localization: in the MBL phase, entanglement grows
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Figure 3.4: Dynamical properties: decay of magnetization at a given site I = 1 for a
Néel initial configuration. Inset: The long time magnetization remains non-zero in the
MBL phase as the system size is increased, while in the delocalized phase it decays to zero.
Averaging was performed over 6000 disorder realizations.

logarithmically in time [27, 78, 25, 26, 79], while in the ergodic phase, as well as in Bethe-
ansatz-integrable systems, it grows linearly in time [80, 81, 28]. The disorder averaged
entanglement entropy as a function of time, calculated for fixed 7} = 0.4 and for the
symmetric bipartition, is shown in Fig. 3.5. Averaging was performed over 6000 disorder
realizations. Entanglement initially rises from zero, followed by a plateau and a logarithmic
growth for several decades in time, (S(t)) o In(¢). This behavior is qualitatively similar
to that found in the MBL phase in systems with time independent Hamiltonians [78, 25,
27, 26|, which gives further support for the existence of the MBL phase in driven systems
with strong disorder.
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Figure 3.5: Disorder averaged entanglement entropy following a quantum quench, for the
Néel initial state. Data for system sizes L = 12,14 was obtained by ED, for L = 16, 18
using Krylov subspace projection, and L = 24,30 using TEBD. Averaging performed over
6000 disorder realizations.

3.5 Local integrals of motion and effective description
of the driven MBL phase

In order to understand the spectral and dynamical properties of the MBL phase observed
in the numerical simulations, we propose that this phase is characterized by an extensive
number of local integrals of motion [25, 26]. First, we note that the area law entanglement
of the Floquet eigenstates suggests that they can be obtained from the product states (in
the 07 = %1 basis) by a quasi-local unitary transformation U which brings the Floquet
operator into a diagonal form in that basis: UFUT = Fiiag. Since L of the operators o7
commute with Fyi,e, we can introduce a set of L “pseudospin” operators 77 = U TozU.
These operators commute with the Floquet operator [F, 77] = 0, as well as with each other
[77,77] = 0. Operators 77 have eigenvalues +1 and therefore satisfy the relation (77)* = 1;

7 J
they can be viewed as z-components of some “effective” spins. We emphasize that the
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operators 77 can be introduced for any driven system, but the special property of the MBL
phase is that their support is localized near site ¢, and they affect remote physical degrees
of freedom exponentially weakly. In terms of 7 operators or l-bits, the operator F' takes a
simple form, as it can only depend on the 77 operators and their products (but not on the
7, 7¢ operators). It is convenient to represent F' as

F = ¢ a7} (3.5)

where Hes({77}) is a real function of operators 77. (Such a representation takes into
account the fact that eigenvalues of F have absolute value one). Further, since (77)? = 1,
H.¢ can generally be written as

Heg({77}) ZJ (M) ZJ-(Q)TZT’Z + Z 2]3,3737'27',': . (3.6)

ijk

It is natural to assume that in the MBL phase the couplings J between remote effective
spins decay exponentially with distance, in analogy to the static case [25, 26]; we note that
long-range interactions, in particular, would be inconsistent with Lieb-Robinson bounds
on information propagation [82] satisfied by the operator F', which bound the spread of
information by a linear function of time.

The effective model introduced above naturally explains the spectral and dynamical
properties of the MBL phase established numerically, for example, the absence of decay
of the on-site magnetization at long times and the logarithmic growth of entanglement,
which directly follow from Eqs. 3.5 and 3.6. The latter observation in particular is due to
the exponential decay of interactions between remote effective l-bits [78, 25, 26].

To further support the effective model for the MBL phase, we now explicitly construct
an extensive set of quasi-local integrals of motion as in Ref. [69]. Even though these form
an extensive set, they are not identical to the 77 operators. In particular, they do not
commute with each other, which is a defining property of the latter. Following Ref. [69],
we consider the infinite time average of the operator o in the Heisenberg picture, denoted
by &7, which is always an integral of motion by definition. To see this, notice that o} (or
for that matter any operator) can be written in the basis of eigenstates of the Floquet
Hamiltonian Hp:

= ZW%UTWJN%)WJ\ (3.7)

In this basis, the stroboscopic time evolution after n periods of the operator of(nT) =

et ”TUZG’ZHF "T" in the Heisenberg picture is simply:

o7 (nT) = (wjlofi)e =" ) (4] (3.8)

4,0
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The infinite time average defined as ; = limy o0 =5 _p_o05(nT) is given by of =
> (ilof i) [i) (¥s]; the oscillating factor in the off-diagonal elements averages to zero.
This result assumes there are no degeneracies in the phases w;T. We now demonstrate
that in the MBL phase this integral of motion is a quasi-local operator.

First, we note that operator oj describes the spreading of magnetization, initially pre-
pared on site 1. To clarify this statement, consider the infinite temperature ensemble in
which spin 1 was initially prepared in the up state, described by the density matrix

p(0) = 2741+ 07) @ Lins. (3.9)

Note that p(0) is a maximum entropy mixture of the states of the form |s; = 1, {s}), where
{s} denotes the arbitrary value of o7 for spins 2,..., L. The total magnetization Y.~ o7
of this state is 1, since Trp(0)o} = 1 and Trp(0)o? = 0 for i # 1.

As the dynamics conserves the total magnetization, the initial excess magnetization
located on spin 1 will spread over the rest of the chain with time. Upon time averaging,
the density matrix can be expressed in terms of the operator o as follows:

p=2"11+35). (3.10)

Thus, the spreading of the initial magnetization over the chain at long times can be
related to the properties of the operator o7; the long time magnetization on site j is given

by:

M,; = Tr(ﬁaj) = QLLTr (c_ﬁaj) . (3.11)
Fig. 3.6 illustrates that M;; is on the order of unity, but M;; decays over several orders
of magnitude as a function of |j — 1] in the MBL phase (77 = 0.4). This is consistent
with 6% being a quasi-local operator. Conversely, in the delocalized regime (T} = 3), the
magnetization is nearly uniformly spread over all sites j and has a stronger dependence on
the chain size L, thus, the operator 7 is non-local.

To further test the quasi-locality of operator o7 in the MBL phase, we examined the
partial norm

: Lo
N(@j) = gTr(UAOA), (3.12)
where
1
o ST T 07, (3.13)
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Figure 3.6: Local integrals of motion in the MBL and delocalized phase. (Left) Median
magnetization M;; as a function of distance |1 — j|. (Right) Median difference between
the total norm A, and partial norm dN(j), divided by N. The exponential decay of this
quantity with distance |j — 1| demonstrates that in the MBL phase (77 = 0.4) operator
o} is a quasi-local integral of motion. In the delocalized phase (T} = 3), this operator
becomes non-local.
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and A is the region containing sites 1 to j and A its complement. To understand the
physical meaning of 4 notice the following property of the partial trace for an operator
of the product form Oy ® Oz: Trz;O4 ® Oz = O4Tr 10, which is shown below:

{4 HTri04 @ O4l{sa}) = Y ({4 H{54}Oa @ Osl{sa}{s1}) (3.14)
{sa}
= ({,HOal{sa}) D ({54} Oal{s})- (3.15)
{sa}

Hence, it follows that 6 is a truncation of the operator 67 to the region A in the sense
that it is obtained from the latter by removing the terms of the expansion of 7 in Pauli
strings o7 .. .ai’“ with £ = 1,2,..., L that do not act as the identity outside of A, and
keeping the remaining terms as is.

In Fig. 3.6, we illustrate the normalized difference Mj(}j) =¥ jof(j) vs j, where N =
%Tr&f&f is the total norm of the operator ¢j. This quantity describes how well the
operator o7 can be approximated by operators with a finite support, and therefore tests
whether this operator is quasi-local. It is evident from Fig. 3.6 that % approaches zero
exponentially in distance |j— 1| in the MBL phase, indicating that the operator a7 is indeed
a quasi-local integral of motion. We note that similar quasi-local integrals of motion, &7,

can be constructed for other sites, i = 2, .., L, and they form an extensive set of LIOMs.

3.6 Conclusions

We have demonstrated the existence of two dynamical regimes in periodically driven sys-
tems described by local interacting Hamiltonians with quenched disorder. In particular,
we have identified a many-body localized phase in which ergodicity is broken. We argued
that the MBL phase is characterized by an extensive number of emergent quasi-local con-
servation laws. This implies that the dynamics of Floquet MBL systems is described by an
effective quasi-local time independent Hamiltonian H.g, which is itself many-body local-
ized. This is in sharp contrast to the ergodic phase where the Floquet Hamiltonian does
not have a quasi-local representation [58, 61, 1]. An interesting open question is whether
the Magnus expansion [53] converges in the MBL phase.

Another implication of our results is that MBL does not rely on global conservation
laws such as energy conservation. Further, the MBL phase is robust under sufficiently weak
periodic driving and there is a finite driving threshold above which transport is restored
and the system eventually delocalizes. This may serve as an experimental signature of
many-body localization.
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Chapter 4

Thermal inclusions: how one spin can
destroy a many-body localized phase

4.1 Introduction

While MBL phases have been essentially proven to exist in one dimensional systems [83],
their existence and stability in higher dimensions remains controversial. Indeed, a couple
of works [84, 85] have put forward different scenarios whereby MBL phases in higher
dimensions are destabilized by small thermal regions. Ref. [84] studied the effect of a
thermalizing boundary on a d > 1-dimensional MBL phase and argued that the l-bits and
other eigenstate measures of localization are unstable; instead, approximately conserved |
-bits underlie what remains of localization in such systems. In Ref. [85] the authors argue
that any nonzero density of large enough thermalizing inclusions will destroy the MBL
phase in d > 1, converting it to an extremely slow, but ultimately thermalizing regime.

One of the motivations of the work presented in this chapter is to study the key step
in the destabilization process described above in d > 1; that is, how a single inclusion
interacting with the same strength J with many 1-bits on its border leads to their thermal-
ization. We show that a single two-level inclusion is sufficient to thermalize N neighboring
l-bits in the large-N limit at any nonzero J/W, where W is the strength of the random
fields on the l-bits. In order for such a “central spin” system to remain in the MBL phase in
this large- N limit, the interaction with the inclusion must be scaled down with increasing
N. Specifically, we find that the critical J.(N) separating the MBL phase for J < J.(NN)
from the thermalizing phase at J > J.(N) scales as J.(N) ~ W/N up to multiplicative
In(V) corrections (see Fig. 4.1).
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Figure 4.1: Schematic finite size phase diagram of the central spin model mapped out
through the standard deviation AS; over l-bits, eigenstates and samples of the single site
entanglement entropy under the simplest assumption of a single transition at J. = J,(N).

We note that at the transition for our central spin model, the interactions are crucial
to the dynamics of the system but do not contribute to the system’s N — oo equilibrium
thermodynamics, as the number of different interaction terms are O(N) and the coupling
J would need to be much larger (of order O(N?)) to do so.

In the sequel, we analyze the infinite temperature dynamical phase diagram of our
central spin model using exact diagonalization with up to N = 13 l-bits, and using small
J perturbation theory at large N. Numerically, the single-site eigenstate entanglement
entropy, energy level repulsion and many-body eigenstate participation ratios all support
the existence of a MBL phase for J < J.(N) ~ W/N and an ergodic phase for J >
J.(N). They also reveal many interesting features about the localized phase and the
crossover region at J & J.(N). In the localized phase, the mean single-site eigenstate
entanglement entropy [S7] decreases as 1/N, while the participation ratio distributions are
N-independent.

In the crossover region, the 1-bits are either “on” (strongly entangled) or “off” (weakly
entangled) in eigenstates and the pattern of “on” l-bits varies significantly between states
of the same sample (and of course, between samples). Thus, single-site observables are
very heterogenous in real space, in energy space and across disorder realizations in the
crossover region, suggesting that they change discontinuously as N — oo, in line with
recent proposals [86, 87] that few body observables are similarly discontinuous across the
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MBL transition in one dimension.

The perturbative analysis at small J on the classical hypercube explains many of these
numerical observations. At second order, a typical initial configuration is resonant with
K ~ J?*N?/W? states in which two 1-bits are flipped and the central spin is flipped. These
states are in turn resonant with ~ K completely new states at the next order. The resulting
‘resonant subgraph’ is therefore locally tree-like and we argue that the statistical properties
of the resulting eigenstates in the localized phase can be understood via an associated bond
percolation problem on the hypercube.

This mapping however does not capture the transition region, in particular, the hetero-
geneity in single-site observables. This is not particularly surprising as we have neglected
higher order processes. Ref. [91] treats these processes within the tree approximation in a
related model. Their arguments seem to predict an intermediate delocalized non-ergodic
phase between J.(N) ~ W/(NInN) and J*(N) ~ W/N, that is, between the MBL phase
and the thermal phase in the central spin model. The numerical data at the accessible
system sizes is not conclusive about the existence of this possible intermediate phase or
the logarithmic suppression of the critical coupling. We speculate on the possible phase
diagrams in the thermodynamic limit in Section 4.5.6.

One difference between our central spin model in the limit of large N and a short-range
model in the limit of large d is due to the order of how these two limits are taken. Suppose
we are in large but finite dimension d, with a system of size NV spins and with coordination
number z. If we keep the coordination number z fixed and take the thermodynamic limit
of N — oo, then our sample is infinite. Thus, it has an infinite number of chances to
produce a rare thermalizing inclusion composed of a finite number (i.e. O(1)) of spins.
To be clear, one process by which a local thermal inclusion can be generated is when the
random disorder fields of a contiguous set of n spins is unusually small. In this case, these n
spins will be in the ergodic phase and this process occurs with probability p, ~ (W./W)™.
And over a volume of size V' ~ 1/p,, we typically find one such inclusion. So for any
nonzero spin-flip interaction J these inclusions are present at some nonzero density and
they destabilize the MBL phase with probability one. In our central spin model, on the
other hand, we take z to infinity along with N, and scale J accordingly, which yields a
stable MBL phase.

This chapter has the following outline. We first review in more detail the results of
Refs [84, 85] in Section 4.2. Next, we describe the model that we studied in Section 4.3
and present the numerical exact diagonalization results in Section 4.4. We then turn to the
perturbative analysis at low orders in Section 4.5.2 and Section 4.5.3 and compare their
quantitative predictions for the MBL phase and the crossover region to the numerical results
in Section 4.5.5. Finally, we discuss the role of higher order processes in Section 4.5.6.

53



4.2 Review

Ref. [84] studied a system composed by an MBL bulk coupled to an ergodic boundary,
wherein the physical spins o7 ; at the MBL boundary interact locally with the spins +;" on
the thermal boundary: Hin, = ¢ ;coqge 0747 -

In the 1-bit picture for the MBL bulk, due to their exponentially localized profile,
every l-bit interacts with the thermal boundary notwithstanding the exponentially small
interactions for the l-bits far away from the boundary. Accordingly, using 1-bit operators
the interaction Hamiltonian reads Hiy = gZiEedge Zj CiiTivg, where Cyj ~ e~ Rii/¢ and
R;; denotes the distance between an I-bit localized around site 3 and a physical spin 2 on
the thermal boundary.

The eigenstates of the uncoupled systems have a product form |E, 7), where T represents
the state of all the l-bits. The interactions terms y*7% induce I-bits flips in the bulk and
mix different thermal eigenstates of the boundary. To probe the stability of the 1-bits with
respect to the interaction with the thermal boundary, Ref. [84] studied the rate of mixing
between a fixed state |E, 7) and states where l-bit at position m is flipped, i.e. |E',7,,).
This is given by the Fermi Golden Rule to leading order in g:

i€edge

where f; is the structure factor for the off-diagonal elements of the boundary operator
and A,, is the energy difference between the 1-bit states 7, and 7. The sum in Eq. 4.1
is dominated by the thermal spin at the boundary closest to m whose distance we denote
by Ry, and thus I, ~ mg2e 2Bm/¢| f,(E — A,, /2, —Ap)|?. The smallest rates are thus
associated with the 1-bits deep in the bulk, for which R,,, ~ oL and I',,;, ~ e 20L/€ where
L is the linear dimension of the system. In order for the states |E, 1), |E’, 7},) to strongly
mix, the rate of hybridization I'*, _ needs to exceed the many-body level spacing of the
eigenstates |E) of the thermal boundary which scales as g ~ 2~ This statement is
equivalent to checking hybridization from first order perturbation theory. As a result, for
d > 2, the states strongly mix and for d = 2, which is a marginal case, a finite fraction
of the 1-bits mix, those within distance R = ﬂn— of the edge. However, even for d > 2,
where the I-bits thermalize in the infinite-time hmlt therate 'y, ~ € QO‘L/ ¢ is so small that
the thermalization time is exponentially large, thus in the thermodynamic limit the full
system is effectively MBL. Additionally, the 1-bit picture and the localization properties of
the eigenstates, which are thought of as defining features of the MBL phase, are no longer
valid: the l-bits are only approximately conserved, in the sense the operator norm of the
commutator ||[H, 77]|| ~ e~%/¢ is exponentially small. The authors go further to show that

o4



for d > 2 the existence of almost conserved l-bit operators 77 is consistent with ETH [84],
though the width of their structure factor is exponentially small in L.

In Ref. [85] the authors argue that any nonzero density of large enough thermalizing
inclusions will destroy the MBL phase in d > 1, and in d = 1 if the localization length
is larger than a finite threshold, converting it to an extremely slow, but ultimately ther-
malizing regime. The outline of their argument is as follows. Consider a single thermal
inclusion. If the inclusion is sufficiently coupled to the MBL phase in which it is embed-
ded, then it will thermalize the localized degrees of freedom (I-bits) bordering the inclusion,
and this allows the thermal inclusion to grow in size. For concreteness, the inclusion is
described by an ergodic Hamiltonian Hpg that is coupled to a bordering 1-bit with Hamil-
tonian H; = hy7{ by Hi(r}t) = gi1057{, where g; is the coupling strength and of is a local
operator on the thermal inclusion. The eigenstates of the uncoupled system are of the form
|E, s1), where s; = £1. The parameter G determining if the inclusion hybridizes the spin,
from first order perturbation theory, reads:

(E' = E+2s1hy, —s1|of | E, s1)

E
_ 9B = E+ 251hog|E) (4.3)
OF
= gl\/pE'|f<E + Slhl, 281h1)‘. (44)
where g = 1/pg is the level spacing corresponding to the thermal inclusion and we

have used the ETH to describe the off-diagonal elements of the local operator of, i.e.
(B = E + 2s1hy|0}|E) = Wﬁlp}’%ml)'. The structure factor f with respect to the
second argument has width w, the typical energy per spin in the system. If G > 1, then
the 1-bit is hybridized. [85] further assumes the eigenstates of the combined system |E)
are random in the basis |F, s1), except for energy conservation, in the sense that their
weight is restricted in the energy space of the uncoupled eigenstates to a window of size
w; = ¢g?/w around the mean energy (this can be justified based on the Fermi Golden Rule).
Now, when a second neighbouring l-bit with Hy = ho75 is considered, which is similarly
coupled by H. @) _ 920375 to the inclusion, the hybridization parameter reads

int

. 92<E1 = E1 + 282h2, —82|O'637'2$’E1, 82> . g2<Ei = E1 + 282h2’0’§|E1>
B 0m, B 0m,

The authors show that under the previous assumptions for the eigenstates |E;) the off-
diagonal elements in Eq. 4.5 satisfy ETH, i.e.

G (4.5)

"(E + syha, 2590
(B = B + Dsahalo ) — (HLE 220 2l (4.6
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for the combined system formed by the thermal inclusion and the first l-bit, where pg, =
2pE is the density of states for the combined system. However, the structure factor f’
broadens with respect to the second argument by w; = ¢2/w compared to the original
one, f, but this change is small since g; < w in the MBL phase. Hence, the hybridization
condition for I-bit 2, Go = g2\/pE, | f'(E+s2ha, 253h,)| is the same as if the original inclusion
had grown by one spin. This is the avalanche effect whereby thermalized 1-bits effectively
enhance the original thermal degrees of freedom.

The previous analysis was then applied to MBL models with random disorder in any
dimensions to the scenario wherein a spherical thermal inclusion is enclosed by 1-bits which
interact with it with strength g; ~ e~ /¢ depending on their distance to the inclusion R;. It
was found that a single thermal inclusion can destroy the MBL phaseind > 1 andind =1
if £ is larger than a finite threshold. The latter was recently demonstrated numerically in
Ref. [88]. As a result, there is a finite, but possibly extremely large time-scale over which
a putative MBL phase is thermalized by the nonzero density of rare thermal inclusions
which arise for any strength of disorder [85]. This time scale can be estimated from the
Fermi Golden Rule and scales as ~ w/g?. Since the g; decay exponentially with the
distance from the l-bits to the inclusion, this leads to very long thermalization times. This
argument leaves open the possibility that MBL phases can remain stable in higher d in
nonrandom systems with quasiperiodic fields or other potentials that do not produce such
rare thermalizing regions.

4.3 Model

Our Hamiltonian for a thermal inclusion connected to N l-bits is:

H=> A7 +J> (A7} + B (4.7)

where A; are independently sampled random variables drawn from the uniform distribution
on the interval [-W, W], 72 for @ = z,y, z are the Pauli operators of 1-bit i, and A; and
B; are real Gaussian symmetric random matrices (GOE) acting on the thermal inclusion
Hilbert space of dimension 2. We caution the reader that while the 7; operators act on
I-bit ¢, the A; and B; operators act on the central spin; the subscript ¢ indicates which
I-bit they are coupled to in H. The normalization of the GOE matrices is such that the
off-diagonal elements have variance 1/2* while diagonal elements have twice the variance.
This normalization guarantees that the operator norm of A;, B; is order 1, which is the
appropriate scaling for a local operator acting on the inclusion.
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Here we focus on the simplest case of a central spin model with M = 1, as it captures
most of the physics of the general M > 1 model in Eq. 4.7. At M = 1, it is convenient to
expand the A; matrices in the Pauli basis o of the central spin:

A =a) +ato” +alo¥ +ajo* (4.8)

As A; is a GOE matrix, a = 0, while a¢ for « = 0, z, z are independent Gaussian random
variables with zero mean and variance 1/2. The Hamiltonian for the central spin model is
therefore:

N
H = Z J(a; - o)17 + IBi7¢ + AT/, (4.9)

i=1
where A; = Al + Ja? is a renormalized field.

There are two dimensionless scales in the model: the temperature and the coupling
constant J in units of W. As here we will focus on infinite temperature, J/W determines
the entire dynamical phase diagram. At J = 0, none of the spins are coupled and the
eigenstates are trivially localized product states with 77 = 1. Each 77 state of the l-bits
is doubly degenerate as the energy is independent of the state of the central spin o. In
anticipation of the leading interaction term at non-zero J, we choose to work in a basis in
which o points along or against the effective 77-dependent field:

h(r) =J Z a7’ (4.10)

Thus, |siz, 7) for s = +1 is an eigenstate of Eq. 4.9 with J = 0, and, in fact, even for
J # 0 for B; = 0, i.e. ignoring the interaction terms JB;7" which flip the state of the l-bits
77. This set of ‘Fock states’ are naturally viewed as the vertices of a (N + 1)-dimensional
hypercube. We use the shorthand 7 = (7, ..., 77,...,7%) and drop the explicit dependence
of h on 7 wherever it is clear from context.

The statistics of the effective field h play an important role in the dynamics of the
model. As the sum of N independent Gaussian random vectors of O(J) in the zz plane, h
has mean zero and typical (root-mean-square) length J VN by the central limit theorem or
from the addivity of the variance for the sum of independent Gaussian random variables. Its
distribution is Gaussian with respect to disorder fluctuations at fixed 7% (by construction
as it is a sum of random Gaussian variables) and with respect to varying 77 in a fixed
sample (by the central limiting theorem).

In the opposite limit of J > W, the bare random fields A; become negligible. Each
I-bit feels a random field of order J in the xz plane and interacts with the central spin
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Figure 4.2: Scaled mean single 1-bit entanglement entropy [S1]/V vs the scaled interaction
strength JN for various N. There are three qualitative regimes: small JN < 0.2, where
the curves collapse, consistent with MBL; large JN 2 1, where N dependent plateaus
form, consistent with the approach to thermalization; and a wide crossover regime at
intermediate JN.

with strength order J. As the disorder and the interactions are of comparable strength,
we expect the system to thermalize as N — oo. Both the perturbative (in B) arguments
and the numerical exact diagonalization study discussed below confirm this expectation.
However, as W drops out for large J, we cannot simply increase .J in order to approach a
more robust thermalizing limit at finite size. This unfortunately results in large finite-size
effects in the thermalizing regime.

4.4 Numerical results

We study Eq. 4.9 using full diagonalization for a M = 1 central spin coupled to N =7 to
N = 13 l-bits. The number of samples at each (N, J) is 2500, except for N = 13 where
this number is 600, and within each sample, we restrict our analysis to the eigenstates
within the central half of the energy spectrum in order to study the properties of infinite
temperature. The mean of a quantity ¢ is denoted by [¢], while the standard deviation
is denoted by Agq. Unless specified otherwise, the mean and standard deviation are taken
with respect to all the I-bits (1), the eigenstates in the central half of the spectrum (E),

58



and all samples (s). When the statistical operation is restricted to a particular subset of
these, we include the subset in the subscript. We measure energy in units where W = 1.

4.4.1 Three Regimes

Numerically, we find three distinct regimes as a function of rescaled coupling JN: localized
(MBL) at small JN, ergodic (ETH) at sufficiently large JN and a wide crossover at
intermediate JN. This is conveniently summarized by the behavior of the mean single
I-bit entanglement entropy [S;] (see Fig. 4.2). The entropy, S}, measures the degree to
which 1-bit i is thermalized within an eigenstate |E,,):

S = —Trp; log, pi (4.11)

Here, p; = Tr;|E,){(En,| is the reduced density matrix for site i, where i denotes the
complement of . If the state |E,,) is thermal (at infinite temperature) for 1-bit 7, then
Si =1 obtains its maximal value. In a localized state, on the other hand, S} can be < 1.

The entropy shows the three qualitatively distinct regimes in Fig. 4.2. At sufficiently
small coupling, we find that [S1|N collapses onto a single curve to excellent precision. This
strongly localized behavior ([Si] ~ 1/N — 0 as N — 00) also follows in the perturbative
treatment of the localized phase in Section 4.5. This is a particularly strong form of
localization, seen also in other long-range models [89], as [S1] ~ O(1) in 1d MBL phases
[31, 90]. We consider this regime the finite size precursor to the MBL phase. At sufficiently
large coupling JN = 1, [S1]N develops plateaus which increase with N, consistent with
thermalizing behavior in the thermodynamic limit ([S;1] — 1 as N — oo). Finally, the wide
crossover between these two behaviors exhibits growth of [S;|N with N, which suggests at
least partial delocalization.

In order to focus in on the intermediate transition regime, we look at the finite size be-
havior of [S1] (unscaled) along with that of the mean level spacing ratio [r] (see Fig. 4.3) The
level spacing ratio r is defined as the ratio of consecutive level spacings r,, = %
with s,, = E,, — F,,_1 when the energies F,, are enumerated in increasing order. The
ratio measures the level repulsion in a system and is commonly used to diagnose (de)-
localization. It flows to rqog ~ 0.53 in ergodic systems that are characterized by RMT
statistics and to Tpoisson =~ 0.39 for systems with Poisson level statistics (c.f. Section 1.3.1).
The upper panel of Fig. 4.3 indicates that [S;] has a sharpening crossover from 0 to 1 near
JN ~ 0.5 while the lower panel shows a similar sharpening crossover in [r| at JN ~ 1.
This suggests that the crossover between the localized and thermal phases sharpens into a
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Figure 4.3: (top) Mean single l-bit entanglement entropy [S;] vs the scaled interaction
strength JN and, (bottom) mean level spacing ratio [r] vs JN, at different N. Both plots
show sharpening of the transition as IV is increased, but with significant finite size “drift”
of the crossing points, particularly for [r].

phase transition on the scale JN. However, as the finite size effects are large, it is difficult
to separate two possible scenarios: The first scenario posits that the two crossover points
coalesce as N — oo and there is a direct transition from MBL to a fully delocalized thermal
phase on the scale JN (up to smaller corrections, e.g. a multiplicative logarithmic [91]).
In the second scenario, the crossover points remain separate as N — oo, sharpening into
two phase transitions surrounded by an intervening partially delocalized phase [91]. In this
phase, the eigenstates overlap with an exponentially large subset of the basis states, but
are not fully delocalized in the Hilbert space. As a result, one would expect that [S1] = 1,
the level statistics are Poisson, and it would presumably not satisfy ETH (in particular
it would violate the ETH prediction for the scaling of the off-diagonal elements and the
fluctuations of the diagonal elements of local operators in the eigenstate basis). This is
often referred to as a delocalized non-ergodic phase.

We comment that [S;] and [r] both attain plateaus at large JN in the thermal phase.
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Figure 4.4: Standard deviation of S; over l-bits, states and samples AS; vs scaled coupling
JN. (inset) Scaling of peak position J, with N on log-log scale. Least squares fit (blue)
to J, ~ 0.95N 107,

We have checked that the plateau values approach their limiting ETH values as 2-V/2.

4.4.2 Heterogeneity in Observables

The most striking feature of the crossover regime is the extreme heterogeneity of single
site observables across eigenstates, samples and l-bits. As a coarse measure, consider
the standard deviation of the single site entanglement entropy AS; shown in Fig. 4.4.
In both the MBL and ETH regimes of Fig. 4.4, the “flow” of AS; is to 0 as N grows.
This is to be expected in the infinite temperature ETH phase, where the fluctuations in
single-site observables across eigenstates are exponentially small in N (AS; ~ 27V/2 to be
precise). On the MBL side, the perturbative picture of Section 4.5 indicates that the entire
distribution of Sy scales to 0 as 1/N so that AS; ~ 1/N as well. In contrast, in the one
dimensional MBL phase, AS] is non-zero as N — oo. This can be seen explicitly in, for
example, the 1d phenomenological models of [25, 26], where the Hamiltonian in the MBL
phase can be cast in a diagonal form in terms of l-bits, which are dressed versions of the
original (physical) bits with finite localization length (c.f. Eq. 1.20 and related discussion).
The data in Fig. 4.4 is consistent with the previous predictions from the perturbative
picture.

In the crossover regime, however, AS; shows a peak whose height AS? increases with V.
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Figure 4.5: AS;/AS} narrows on the scale J/J,(N) with increasing system size. This is
consistent with the finite size crossover sharpening into a delocalization phase transition
in the limit of large N.

As S} is a bounded variable, the growth of AST must saturate at larger sizes. Nonetheless,
should the peak persist to the thermodynamic limit, it must converge to a critical point
(see the discussion below). Previous works in one dimensional models have likewise used
the peak as a sensitive proxy for the critical point [73, 87]. We accordingly define J,(NN) by
the location of the peak in AS; and study the properties of the critical region by following
this coupling. The inset to Fig. 4.4 confirms that it scales as J,(N) ~ W/N.

The relative width of the peak at J = J,(/N) narrows as NN increases (see Fig. 4.5).
This trend is consistent with the existence of a sharp phase transition in S at J,(N) in the
thermodynamic limit. Indeed, J = J,(NN) approaches the location of the crossing point in
[S1] in Fig. 4.3(a) at JN =~ 0.5 with increasing N. As S; detects if 1-bits are entangled in
eigenstates, we expect that it is sensitive to whether the system is localized or delocalized
on the classical hypercube of ‘Fock states’, but not necessarily to whether the delocalized
phase satisfies the off-diagonal criteria for ETH. Fig. 4.5 is therefore consistent with both
scenarios for the phase diagram discussed in Section 4.4.1. In the first scenario, there is
a direct phase transition from a MBL to an ETH phase at J = J,(IN) as N — oco. In
the second scenario in where there are two phase transitions with an intervening partially
delocalized phase, J = J,(NN) is the position of the first transition out of the localized
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Figure 4.6: Finite size scaling of the ratio AS;/ASY = f(%’;w)]\m) with @ = 0.3 and
a = 1.0, showing a good collapse of the data in the localized and delocalized phase,
respectively.

phase.

We note that the narrowing of this peak on the localized side is slower than on the
delocalized side. This can be clearly seen in Fig. 4.6, where the AS;/AST data on the
localized narrows on the scale of J,(IN) as N® with a ~ 0.3, while it narrows faster in the
delocalized side with o ~ 1.0. This makes the extraction of a finite size scaling exponent
problematic, and indicates that the numerics are not yet in the asymptotic scaling regime
as we discuss below. Moreover, the narrowing on the delocalized side suggests exponents
which violate finite size scaling bounds [92, 93].

We now characterize the heterogeneity in S; in the crossover region in more detail.
Fig. 4.7(a) shows the wide variation of S; across both l-bits and eigenstates within a
typical sample. More quantitatively, Fig. 4.7(b) shows that the distribution of S; across
l-bits, eigenstates and samples at J = .J,(NNV) is increasingly bimodal with increasing N,
with increasing weight near zero and one and decreasing weight at intermediate values of
Si. Thus, 1-bits are mostly either ‘on’ (highly entangled) or ‘off” in any given eigenstate
in the crossover regime. The bimodal distribution underlies the large peak in AS; seen in
Fig. 4.4.

As l-bits in weak (strong) fields might strongly (weakly) entangle with the central spin
and with one another, the reader may not be surprised by the bimodality seen at J,.
This explanation however misses the remarkable feature that different 1-bits are active
in different eigenstates. To demonstrate this effect, we investigate the sample averaged
variation of S§ across eigenstates, [AgS}],, for fixed 1-bit ¢ (see Fig. 4.8(a)). If 1-bit i were
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Figure 4.7: (a) S; heatmap from a specific sample of the central spin model with N = 11
l-bits at the peak coupling J,. Each row corresponds to an eigenstate from 50 infinite
temperature selected eigenstates and each column to a particular l-bit. (b) Histogram of
S; collected across l-bits, states and samples at J,.

entangled /unentangled across all the states, [ApS]], would be small. Instead, we see a
robust peak in this quantity at J = J,(N) at each N, with a magnitude comparable to the
total variation of Sy across all samples, states and l-bits (AS)).

In the remainder of Fig. 4.8, we parse the contributions to AS; coming from sample,
eigenstate and l-bit fluctuations, all of which contribute significantly to the total variation
at these sizes [87]. We find that for our range of N the largest contributions to AS; near
the transition come from variations between l-bits in the same eigenstate, i.e. [A;S)]gs
(panel (b)), and across different eigenstates for the same 1-bit, i.e. [ApS;|s (panel (a)).
This is in contrast with previously studied 1d models with quenched disorder exhibiting
an MBL-thermal transition: in Ref. [87], the sample-to-sample variation is the dominant
contribution at the largest sizes accessible to diagonalization.

The sample-to-sample variation shown in panel (d) is the only component which shows
an accelerating trend to stronger and sharper peaks as N increases. This increasing trend
cannot continue with increasing N as AS] is bounded; this indicates that we are not in
the asymptotic scaling regime at the numerically accessible system sizes. Nevertheless,
should the sample-to-sample variation become the dominant contribution to AS in the
thermodynamic limit, the transition is first order in the sense that we discuss in Section 4.6.
The inhomogeneity between eigenstates in the I-bit-averaged entanglement at the transition
is shown in panel (c¢). The peak shows a slight decrease with N. If this persists to larger
N, then all of the eigenstates in one sample would become similar in this respect although
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Figure 4.8: Parsing of contributions to the fluctuations of the single l-bit entanglement
entropy S; vs scaled J. (a) Standard deviation of Si for a fixed I-bit i over eigenstates,
averaged over samples. (b) Standard deviation of Sy over 1-bits, averaged over eigenstates
and samples. (c) Average over samples of the standard deviation over eigenstates of the
I-bit-averaged S;. (d) Standard deviation over samples of S; averaged over eigenstates and

l-bits.

it seems likely that they will still differ in which I-bits are less versus more entangled.

Finally, we note that this central spin model exhibits the strongest single-site bimodal-
ity in the MBL-ETH crossover of any numerically studied model to date, suggesting that
the transition may indeed be ‘first order’ [86]. As we would expect to see the probability
distribution of S; approach a delta-function at S; = 1 (the required value in the thermal
phase) if the transition was continuous. Furthermore, Fig. 4.8(a) shows that S! fluctuates
strongly between eigenstates of a single sample, even at infinite temperature. No renor-
malization group treatment to date takes these intra-sample variations between eigenstates
into account, so might be missing some important physics of this transition [94, 95].

4.4.3 Eigenstate Distributions

As discussed in Section 4.3, the eigenstates at JN = 0 are the product states ]sﬁ, 7). It is
therefore natural to study the support of the eigenstates at JN > 0 on this basis (which
forms a hypercube). This is measured by the participation ratio PR of an eigenstate | E,,)
(c.f. Section 1.3.3):

PR (E,) = Y [(En|sh,7)[* (4.12)

Fig. 4.9 shows the evolution of the distribution of the participation ratios with coupling.
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Figure 4.9: Probability density function of the eigenstate participation ratio (PR) on
the classical basis |sh,T) for JN in the three different regimes: deep in the MBL phase
(JN = 0.2), in the crossover region (JN = 0.8), and in the thermal phase (JN = 4.0).

In the localized phase (illustrated by JN = 0.2), the distribution strongly decays with PR
and is independent of N. This implies that the eigenstates are essentially localized to
finite regions of the hypercube even in the thermodynamic limit. This is consistent with
the perturbative picture of the localized phase in Section 4.5.

In the crossover regime (at JN = 0.8), the distribution remains peaked at small PR,
but the weight in the tail grows with N. Further, the scale of the cut-off grows exponen-
tially with V. In the second order perturbative treatment developed in Section 4.5, the
transition coincides with the high-dimensional percolation transition on the hypercube. In
this picture, the PR distribution should decay as a power law with exponent 3/2 which is
cutoff by ng ~ 22V/3. This (exponential) scaling of the cutoff is in qualitative agreement
with the numerical data at JN = 0.8, although the curvature in the bulk of the distribution
is clearly inconsistent with a simple power law.

Finally, deep in the ergodic phase (at JN = 4), the PR at the peak of the distribution
increases exponentially with /N, consistent with the ETH. The probability density at finite
PR appears to decrease exponentially with N. This would be consistent with exponentially
rare samples probing the localized side of the transition.

4.4.4 Central spin entanglement

We now study the behavior of the central spin, which has not been addressed up to this
point. In particular, we have analyzed the behaviour of its entanglement S, in eigenstates,
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with the rest of system, i.e. with all the l-bits. At B; = 0, the cigenstates |sh(r),T) are
product states between the central spin and the l-bits with S.s = 0 in all eigenstates and
samples. At small JB;, the central spin can flip in the resonant processes that hybridize
the classical states in first order perturbation theory (see the perturbative analysis in
Section 4.5). As the central spin is substantially entangled even in eigenstates that are
spread over a just few classical states, we expect that S. is close to one in eigenstates with
even a few resonant l-bits, while it is close to zero in eigenstates with no resonant l-bits.
This has two important consequences: (1) the moments of the distribution of S are non-
zero in the MBL phase even in the thermodynamic limit, and (2) the central spin crosses
over to high entanglement at J3*(N) < J,(NN) within the MBL phase. Note however that
the scaling of J5°(N) with NV is the same as that of J,(IV) that is, J5°(N) ~ W/N. This
can be seen in Fig. 4.11(b), where the fit J& ~ 0.17N "% is in qualitative agreement with
this hypothesis especially considering the limited systems sizes analysed.

Feature (1) is already visible in the mean [S.] of the central spin entanglement (see
Fig. 4.10(a)) where the N dependence only emerges for J ~ J,(N). The total standard
deviation AS. brings out feature (2) more clearly (see Fig. 4.10(b)) as the peak lies at
J ~ J(N) < Jp(N) to the left of the global transition point. Furthermore, the peak value
of AS. exceeds 0.28 (the standard deviation of a uniform distribution in the interval [0, 1]),
showing that the distribution is bimodal in the vicinity of J;*(N) and this is confirmed in
Fig. 4.11(a) which shows the probability density of this quantity. Finally, in the ergodic
phase at J/J,(N) > 1, AS. decreases with increasing N, in agreement with the ETH.

In order to bring out the sharp contrast between AS; of the l-bits (Fig. 4.5) and ASc
of the central spin, we plot AS. normalized by its peak value vs J/J*(N) in Fig. 4.10(b).
Unlike the I-bit entanglement entropy variation, AS.s does not narrow on its own scale
with increasing N in the MBL phase. Hence the central spin’s entanglement undergoes a
crossover within the MBL phase, as opposed to the I-bits for which the peaks narrow as
N is increased as seen in Fig. 4.5.

4.5 Perturbative analysis

The central spin model is amenable to perturbative study in small B relative to the “clas-
sical” configurations | sﬁ, 7) defined in Section 4.3. In this approach, delocalization takes
place when a typical starting configuration resonates with a divergent subgraph of degen-
erate configurations on the hypercube.
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Figure 4.10: (a) Mean entanglement entropy of the central spin [S.] and (b) standard
deviation AS. vs. scaled coupling J/J,(N). (¢) ASe normalized by its value at the peak
for a given number of I-bits N vs the coupling J on the scale of the coupling J5*(N).

In Sections 4.5.2 and 4.5.3, we consider first and second order processes and show that
a delocalization transition takes place at J, ~ W/N. At this coupling, only a small (finite)
number of spins can resonate by first order spin-flip processes. On the other hand, second
order ‘flip-flop’ processes, in which two 1-bits and the central spin are flipped, produce a
divergent subgraph of resonant configurations for J > J.. Thus, the low order perturbative
analysis captures a delocalization transition on a scale J. ~ W/N, consistent with the
numerical observations.

As the resonant subgraphs produced at second order are locally tree-like, i.e. typically
different pairs of 1-bits are found to be resonant at each step, with an expected branching
number K ~ J2N?/W?, their statistical properties can be determined from independent
second neighbor bond percolation on the hypercube with probability of placing a bond, p ~
J?/W?2. We summarize the relevant properties of this percolation problem in Section 4.5.4.
In Section 4.5.5, assuming that actual many-body eigenstates are simply delocalized over
these resonant subgraphs, we explain the numerical observations that [S;] ~ 1/N in the
localized phase, as well as the distribution of the participation ratios in the classical basis.
Thus, the low order perturbative analysis also quantitatively describes the localized phase
for J < J..

However, the low order perturbative analysis does not capture all of the features of the
crossover region at J =~ J.. This is not surprising as we expect higher order processes to
be important in the vicinity of the delocalization transition. In Section 4.5.6, we adapt the
arguments of Ref. [91] that suggest a transition from localized to a delocalized non-ergodic
phase on the scale J ~ W/N1In N. As discussed in Section 4.4, the numerical evidence for
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this intervening phase is inconclusive.

4.5.1 Preliminaries

At B =0, the state |sz1, 7) has classical energy
N
By = sh(r)|+ ) A7 (4.13)
i=1

These 2Vt configurations are naturally viewed as the corners of a hypercube. The
interaction term, J ), B;77, defines a short range hopping model on the hypercube as
it connects the corners related by single 1-bit flips either with or without flipping the
central spin s. As the perturbative arguments will predict a delocalization transition at
J. ~ W/N < W, we assume J < W henceforth, since here we are only considering the
large-N regime.

To perturb around a typical infinite temperature configuration ]sﬁ, 7), we need the
classical energies of nearby configurations. We denote the 1-bit configuration obtained by
flipping k 1-bits 4y,...,ix by 7, ;. = (7f,....,—77,...,—75,...,7x). From Eq. 4.13, the
energy of such a state relative to the initial state is

k
o Y . z A
AES/Tz'/l..,ik =S |h<T )| 8|h<7—>| 2 5_1 Tz‘mAzm (414)
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For small numbers of flipped l-bits (k < N), the deviation in the effective field on the
central spin,

k
JSirig =h(7) = h(r) = =2) a;, 77, (4.15)
m=1

is much smaller than the field itself, |d;, ;| ~ Vk < v/N. Thus, expanding Eq. 4.14 in
Jd/|h(7)| (and suppressing the indices of the k flipped l-bits),

k
AByr = (s = s)b| =23 7 (A, + s Ja, - h)
m=1
+ i )

s 2‘|]h| (|(5|2 —(h- 5)2) +0 (W) (4.16)

The first term is the dominant energy change on flipping the central spin relative to its
local field. Tt is of order Jv/N (because it results from the sum of N random terms) but
independent of the choice of flipped 1-bits. The second term is the total field energy of the
flipped 1-bits. The bare fields A; ~ W while the correction due to the central spin is only
~ J < W (for J near the transition). Finally, the third and higher order terms represent
the interactions between the flipped l-bits induced by their interaction with the central

spin. In particular, the leading interaction ~ % is of order J/v/N, since |h| ~ Jv N.

4.5.2 First order processes

At first order in B, there are 2N neighboring configurations with a single l-bit flipped
considering both flipping and not flipping the central spin. The corresponding matrix
element is

J{(s'h(7})| By|sh(1)) ~ O(J), (4.17)

since Bj is a random matrix acting on the central spin with O(1) matrix elements. The
energy differences AESIT; over different choices of the 1-bit 5 to be flipped are distributed

on a band of width W (because the largest term in Eq. 4.16 comes from the random
field A; ~ O(W)). Consequently, over 2N possibilities, the smallest AES/TJ/_ is of order
~ W/2N, and similarly the level spacing between the sorted in ascending order AES/TJ/_
is of the same order. Since a resonance occurs whenever the energy mismatch AES/T; is
less than the matrix element which is of order O(J), it follows that there are typically
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~ J/(W/2N) resonant neighbors from a starting configuration. Thus, first order processes
begin to find O(1) resonances when J ~ W/N. We call these ‘step 1’ first order resonances.
These resonances are treated appropriately by degenerate perturbation theory, whereby the
perturbation is diagonalized exactly on these resonant configurations generically producing
new basis states delocalized over the resonant cluster. These in turn connect at first
order to configurations on the hypercube with two 1-bit flips compared to the starting
configuration | sh, 7). For J ~ W/N, there are again O(1) next neighbor states which
satisfy the resonance condition (‘step 2’ resonances). However, as we will describe in more
detail in the next paragraph, the interaction energy in Eq. 4.16 ~ J/v/N ~ W/N3/? is much
smaller than the level spacing W/N, and roughly the same l-bit flips that were resonant
at step 1 are resonant at step 2.

More precisely, if 1-bit flip ¢; is resonant at step 1, AES/TZ{1 < O(J), then l-bit iy can
resonantly flip at step 2 only if AESHT{NQ < O(J). This requires that the effective field on
1-bit iq, 2 (Am + 5" Jay, - ﬁ) itself should be close to 0 (if s” = s) or |h| (if s" = —s) to
an accuracy of O(J). The resonance condition at step 2 has not been changed compared

to step 1. For example, if at step 1, AF,, satisfied the resonance condition, then, at step
2, AEST{J_ only differs from AESTJ/_ due to the interaction terms between ¢ and j which are

of order J/v/N ~ W/N?®? and are negligible on the energy scale J ~ W/N defining a
resonance. Likewise, at step 2, AE,STZ,/], only differs from AE,STJ/, by terms of order O(J)
which is the same as the slack in the resonance condition. Thus, if AE,ST{J_ satisfies the
resonance condition at step 2, AE_STJ/_ would have already satisfied it at step 1. So, in
both these examples further steps do not find new resonances and this applies generically.
As there are only O(1) 1-bits whose field energy are close to 0 or |h| to accuracy O(J),
even multi-step first order processes only produce a finite cluster (i.e. O(N?)) of resonant
configurations. See Fig. 4.5.2.

We note that in the previous analysis, we have neglected the O(J) shifts in the reference
energy F,. which arise due to the diagonalization over the resonant configurations following
the prescription of degenerate perturbation theory. But, this is justified. Since these
corrections are of the same order as the slack in the resonance condition O(.J), they do not
modify the statistics of the resonant clusters generated.

The structure of the resonant clusters suggests that there will be eigenstate dependence
of which l-bits resonantly flip at J ~ W/N. There is an O(1) subset of the l-bits with
fields A; ~ O(J) which resonate across all eigenstates without flipping the central spin.
Meanwhile, those v/N l-bits with larger fields A; ~ Jv/N resonate in eigenstates for which
the central spin field |h| matches A; (up to O(J)). However, when this happens for an
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Figure 4.12: (a) Illustration of N l-bits coupled to the central spin o. (b) Schematic of
first order processes contributing to resonance relative to reference configuration s7. At
step 1, there are N single I-bit flipped states with central spin s and N with central spin
—s. Flipping the fifth (purple)/ (N-1)th (red) l-bits leads to purple/red states (also marked
75/7n—1) which satisfy the resonance condition |AFE.| < J without flipping the central
spin; similarly, for the third and sixth I-bits (both in blue) with the central spin flipped
(—s). Step 2 illustrates the levels accessible from the purple state (75 flipped) at step 1.
As the energy shifts are very small, roughly the same I-bit flips are resonant.

eigenstate, typically only O(1) of these l-bits are resonant.

4.5.3 Second order processes

As all but O(1) of the 2N nearest neighbor states are off-resonant for any particular state
|sh(7)) when J ~ W/N, we neglect in the following the first order resonances entirely.

At second order in perturbation theory in B, there are 2(];[ ) ~ N? configurations

\S’H(Ti’j),ﬁj>, connected to an initial state | sh,7). These correspond to flipping a pair
of l-bits i < j and, in addition possibly flipping the central spin (s’) relative to its local
field. For each final state, there are 4 channels contributing to the second order amplitude,

corresponding to which 1-bit (¢ or j) is flipped in the intermediate state and to whether
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the central spin also flips in the intermediate state or not:

. . S'h(T )| Bi|3h(7)) (3h (7! B; sh(r
<S/h(Tin),T{j | Sh(T),7->(2) — J2 Z (s"h( ZJ)(’_LEE,_FJ,);E_A(%Z.L) |sh(7))

S==+1

+ (i), (4.18)

where AES/T]( = ESITJ/_ — E,, are the changes in energy relative to the initial state.

For each of these amplitudes, the final energy denominator, AES/TZ,/],, takes ~ 2N? values

on a band of width W and thus has density of states ~ 2N?/W. The intermediate energy
differences, AFj; ./, are typically O(W) (we don’t constrain in any way the energy of the
intermediate state) and the numerators are O(J?), so large amplitudes (resonances) arise
in Eq. 4.18 for ~ (2N%/W?)J? final states. This predicts O(1) second order resonances
when

J ~ W/N. (4.19)

It turns out that this argument is essentially correct for those final states in which the
central spin is flipped & = —s. However, correlations among the matrix elements and
energies involved in the four channels can result in destructive interference between the
four amplitudes. As a result, this can lead to an enhancement of the required J to find of
O(1) second order resonances. Indeed, this is the case when the central spin is not flipped
s’ = s, as we show below.

To study the interference between the four second order channels it is simpler to con-
sider pairs of channels first. For each pair, we label the intermediate states by 1 and 2,
respectively, and the shared final state 12. The sum of amplitudes for the pair then reads

M1 +n) M(1 —n)
(—AEpR)(—AE,) | (=AFEpR)(—AE,)

(4.20)

where AE1; = AE; + AE, + AU and M(1 £ n) are the numerators of the respective
processes. The amplitude can be re-written as:

(12) —
M (1 A AFE, AE1> (4.21)

AL AE, \" AR, T AR,

The first term ﬁ does not involve the final energy denominator AF;, at all,
and thus, does not cause second order resonances (assuming that the first order dif-
ferences AF;, AE, are themselves not resonant which occurs for only O(1) l-bits any-
way). Resonances only arise due to interaction energy A(*?) and matrix element deviations
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n(AE; — AFEy). If both of these are parametrically small in N when defined in terms of

disorder W, then resonances are suppressed at J ~ W/N as to find a resonance we require
JENZAGD /W3 ~ 1 or J2AN?n(AE, — AE) /W3 ~ 1

Let us apply Eq. 4.21 to the determination of resonances in Eq. 4.18. There are two
types of final states depending on whether the central spin is flipped (s’ = —s) or not
(s’ = s) in the final configuration with respect to the initial one.

Central spin unflipped in the final state (s’ = s)— In this case, we choose to analyze
how the four channels destructively interfere in pairs according to the intermediate central
spin state §. For completeness, we list here the four different amplitudes for flipping I-bits

1,7.

2 <SB(Tin) |Bz|Sil(T;)> <3B(TJ’) IBj|st(r)>
! (—AEy )(—AE) (4.22)

o (sh(71;)| By|sh(r))) (sh(r})| Bi| sh(T))
’ (—AE ) (-AEq) (4.23)

2l h(r}j)|Bil = sh(1)))(=sh(7})| B;|sh(r)) (4.24)

(—AEq )(-AE_s)
)

() B| = sh(r!)){—sh(r!)| Bish(r))
! (~AFy )(-BE ) (4.25)

For the pair of channels where the intermediate state has § = s, i.e. Eqs. 4.22, 4.23,

2 A A
AEy; = ABy; + Ay, + sﬁm(@ 5= (h ) (h-5)) 4+ (4.26)
so that
AD = 5L 55— (e 8 8)) 4 = O (i) (4.27)
|h| VN
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To leading order in 1/N, the matrix elements are

M = % (<5/5(Ti’j)lBi|8fl(Tj’-)><8ﬁ(n’-)!Bj!8f3(T)> + <871(T£j)!lesfl(n’»<S/5(T¢’)|Bi|sﬁ(f)>>
(4.28)
= J’Bf "Bt + 0(J*/VN) (4.29)
M = Jg <<Sh(7{j)\Bz~\sﬁ(T§)><8h(T]’~)!BJ~183(7)> - <$h(Tz/j)‘Bj|3iL(7—i/)><8h(7—z’/)|Bi|SiL(T)>>
3
3

= —J*0iBf "Bt + J2piBI B ~ O(J?/VN).

J

where we have used that (from first order perturbation theory)

~

| sh(r)) = | sh(r)) + Y @} | =sh(r)) + ... (4.32)

where ¢ = JT’§<_Sh(?‘La|”‘"U|Sh(T)> ~ O(1/v/N) and i,, indices the flipped l-bits in 7/. We
have also introduced the short hand notation for the matrix elements of B; with respect
to the initial central spin field h(7),

B = (4+sh|B;| £sh) (4.33)

As a result, the term corresponding to the interaction energy A% in Eq. 4.21 predicts
the occurence of resonances for J ~ W/v/N, while for the term due to the matrix element
deviation 7 these occur for J ~ W/N3*, since the difference in the intermediate state
energies AFr — AEST]/_ ~ O(W) due to the disorder terms A;, A;.

We now move on to the interference between the pair of channels with § = —s,
AEsT;j =AE 1+ AE,STJ/, + 4s|h| + - - (4.34)
which provides a larger interaction energy as compared to Eq. 4.27:

AW = 4s|h| 4 --- = O(JVN) (4.35)
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The matrix elements are:

M = T ((sh(rip)| Bl = sh(x)) (=sh(r)|By|sh(r)) + {sh(r}) By — shixD))(~sh(r!)|B.]sh(r)))
(4.36)
= J’B;"B; "+ O(J?/VN) (4.37)
M = = ((sh(fp|B] — shir}))(~sh() B |sh(r)) — {sh(r})|B,| — shixD))(~sh(r!)|B.]sh(r)))
(4.38)
=J? (¢} [B;*B;~ —B; B/t +B;"B; "+ B; "B;'"] (4.39)
+¢? [B; B~ — BB — Bf*Bf~ — B; "B *]) ~ O(J*/VN) (4.40)

As in the previous case, the differences in energy in the intermediate state satisfy AE_ ./ —
AE,STJ/_ ~ O(W) due to the disorder terms A;, A;. As a result, the interaction energy A2

term in Eq. 4.21 predicts the occurence of resonances for J ~ W/N°/6 while for the term
from the matrix element deviation these occur for J ~ W/N3/4,

Therefore, at J ~ W/N <« W/N 5/6 the previous analysis shows that there are no
second order resonances for final states with the central spin unflipped.

Central spin flipped (s’ = —s)— In this case, rather than being paired by the inter-
mediate state of the central spin §, it is convenient to pair the channels by whether the
central spin flips simultaneously with the ¢’th 1-bit or with the j’th. This way we can show
that interference between channels does not change the onset of resonances at J ~ W/N.
Again, for completeness, we list the four different amplitudes:

s <T;J(>\BA \Eh<>)><< A<ES>Jz)9~rsﬁ<T>> i)
p{sh <n-j>|é9_z-|A —Es;l:frg;?<£<ST>)|BJ-|SH<T>> )
p <—sh<T;j>r<B- - h( §z><AE <>) 1BiJsh(r)) i)

] (3
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For each of the pairs:

AE,STZ(; = AE,S.,.Z( + AEST]{ + O(J) (4.45)

AE—ST{;— = AEs‘ri’ + AE—er’. + O(J) (4.46)
Therefore, the interaction energy is only A% = O(J), which is again small for J ~ W/N
and does not lead to resonances at J ~ W/N.

However, unlike the previous case where the final state did not have the central spin
flipped, the matrix elements for the four channels are quite different. For example, in the
first pair (central spin flips with the i’th 1-bit):

M = % (¢S Bilsh(T)) sh () By sh(r)) + (=sh(r/)) | Byl = sh(r)(~sh(r)| Bilsh(r)))
(4.47)

M = L ((=sh(r) Bshr) shir))| By sh(r)) — (~sh(r)|By| — shiz)){—sh(x))| Bish(r))
(4.49)
~ ‘]; (Bi*Bf* — By "B; ") ~ O(J?) (4.50)

This suggests that the amplitude in Eq. 4.21 can become of O(1) because of the 1 term
if J ~ W/N, since the intermediate state energy difference AE_,,/ — AEST]', ~ O(W), again
due to the disorder terms. This is the expected result from the naive argument.

Let us check that no further cancellations arise from summing all four channels, focusing
only on the 7 terms in Eq. 4.21 resulting from first pairing the amplitudes based on which
I-bit the central spin flips together with. The resulting sum after the two pairings is:

2

Jzé [Bi_+(B;r+ — Bj“)} (AE_o — AEST;) . J2L [Bf+(Bi++ _ Bi“)} (AE,ST; —AE)

AE—ST-’-AEi, AE,__, AE—ST(.AEi. I AE
(¥ .s‘ri éTj 1] .57']. 6Tl-
(4.51)

Since the matrix element expressions in the square brackets are independent random
variables of O(1), the two terms in Eq. 4.51 are independent and cannot interfere destruc-
tively. Hence, we reproduce the estimate that J ~ W/N produces O(1) (second order)
resonances, when the central spin flips.
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This is physically sensible as delocalization in this model proceeds due to the interac-
tions with the central spin, so that the divergent resonant subgraph should include classical
configurations in which the central spin is flipped. We now analyze the resonant subgraph
of second order processes. To recap, at .J ~ W/N, the initial state |sh(r),7) is resonant
with O(1) neighbours of the form | — Sil(Tilj), 7i;) (‘step 1 second order’ resonances). Now
consider the ~ N? states accessible from a step 1 resonant state with two more l-bits flipped
and the central spin returned to s (as the central spin flips at each step). In order for the
I-bit pair k[ to be resonant, the state must have energy ]AESTZ(M] < JWQ (again from second
order perturbation theory). As AEST{J-M does not contain the energy change on flipping the
central spin of order ~ Jv/N and this value is much greater than the level spacing of order
W/N? of AEST{jkl over pairs kl, the pairs kl that satisfy the resonance condition at step 2
are typically not the same as the pairs 77 that satisfy the resonance condition at step 1.

Thus, the resonant subgraph includes new 1-bit flips at step 2 as compared to step 1.

At step 3, the ~ N? accessible states involve three l-bit pair flip-flops with the central
spin again flipped to —s. The resonance condition |AE_ST'L/jklmn| < JWQ, which is analogous

to step 1, except for the flipped 1-bits ijkl, picks different pairs as compared to step 1,
because the energy difference,

~

— 2s|h| — 272 (A, — sJay, - h) — 277(A, — sJa, - h)  (4.52)

n

AEfsT./

igklmn

- AEST{JM
+4Js(r7a; - h+ T a; h+1fay - h+1fa; - h) + O(J?/VN) (4.53)

contains new terms of O(J) when compared with AE_,,, | e.g. 4Jst7a; - h, due to the
flipped l-bits ijkl. Since this is much larger than the level spacing W/N? of varying
AE*ST{jkzmn over pairs mn, different pairs of resonant I-bits will be picked compared to step

1. Moreover, the interaction terms of order ~ J2/|h| ~ W/N?®2 not explicitly written out
in Eq. 4.52 for simplicity, ultimately determine which pair mn is resonant, since similarly to
the O(J) terms, W/N?/2 is much larger than the level spacing W/N?2. Thus, the pairs mn
that satisfy the resonance condition |AE_STZ_/J_MW\ < J?/W are not the same as the pairs
ij that satisfy the resonance condition [AE_ | < J?/W at step 1 as the new terms due
to having flipped other 1-bits have significantly changed it. When J ~ W/N | we therefore
find O(1) completely new resonant states among the configurations accessible by flip-flops
at each step.

From the above construction, we see that the resonant subgraph of the hypercube
generated by second order processes is tree-like for small enough J, as at each step a
completely different pair is resonant (see Fig. 4.13). The expected branching number of
the tree, i.e. the number of resonant 1-bits at each step, is K ~ J>N?/W?2. This random
trees undergo a continuous percolation transition at K = K, ~ 1 at which the probability
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that the resonant subgraph is infinite starts growing from zero. However, when the expected
branching number K becomes too large, we expect the tree approximation to break down
as short loops in the interaction graph become very important, i.e. when it becomes likely
that a certain flipped 1-bit will be flipped back to the original state after a few moves. As
the critical branching number K, is of order one, our treatment is self-consistent within the
MBL phase. This provides a J.(N) ~ /K.W/N beyond which second order resonances

guarantee that typical eigenstates cannot remain localized on the hypercube.

|sh, 7)

= sh(rl) )

\573(7’4%1)7 7'415kz>

Figure 4.13: Schematic of graph generated by second order processes on the hypercube of
classical configurations. At each step, there are Z ~ N2 pairs that may be flipped (edges)
of which only K ~ O(1) are resonant (red dashed). The shown resonant subgraph has
n = 5 states.

4.5.4 Properties of resonant subgraphs

In this section, we model the resonant subgraphs generated by second order processes by
independent bond percolation on the hypercube with second neighbor bonds placed with
probability p ~ J?/W? such that the expected number of resonant bonds at each step is
preserved. The following properties of resonant subgraphs then follow from percolation
theory [96, 97]:
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1. For J < J., the number of resonant subgraphs of size n per site in Hilbert space is
given by:

c(n) oc n=/2em/me (4.54)

J—J\ 2

ne is the characteristic number of sites in a resonant subgraph in the localized phase,
which diverges at the transition. At the transition and for n < n¢ in the vicinity of
the transition, the subgraphs are ‘critical’ and are distributed according to a power-
law. A randomly chosen site in the hypercube lies in a connected cluster of size n
with probability

with

p(n) o< ne(n) ~ n=3/2e7m/me (4.56)

2. At the critical point J = J,. at finite IV, we expect Eq. 4.56 to describe the statistics
of cluster sizes with a cutoff size n¢ that diverges with increasing N. Above the upper
critical dimension for percolation, the largest cluster scales with the volume of space
to the 2/3 power,

Thus, at the critical point at size N, the largest resonant subgraphs, while exponen-
tially large in N are still an exponentially small fraction of the hypercube. We expect
that such large subgraphs are equally likely to include states in which 1-bit 7 is up or
down.

3. For J > J., there is a unique giant component which absorbs a fraction P o |J — J.|!
of the total volume 2V of the hypercube. The remaining clusters are of finite size
with a distribution o< n=3/2e="/"¢. In the giant component, all 1-bits are equally likely
to be up or down, while the remaining clusters have only a finite number of flipped
I-bits (maybe with the exception of a few rare ones of size > O(NV), c.f. point 2 below
as well).

4.5.5 Consequences

We now assume that the actual many-body eigenstates are simply delocalized over the
resonant subgraphs generated by second order processes. This leads to several quanti-
tative predictions about the localized phase, which agree with numerical observations in
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Section 4.4. On the other hand, the predictions for the crossover region do not explain the
numerical data very well and suggest that higher order processes are important.

1. The transition from localized to delocalized takes place at J = J.(N) ~ W/N. This
is consistent with our numerical observations in Section 4.4. However, as we discuss
below, higher order processes may decrease J. logarithmically in N.

2. In a cluster with m edges, the number of flipped 1-bits is at most 2m (as at most
two distinct 1-bits can flip on every edge of the cluster, see Fig. 4.13). Thus, the
entanglement entropy of only O(m) l-bits can be non-zero in a many-body eigenstate
delocalized over this cluster. In the localized phase, the clusters are finite and thus

[51] = O(1/N) (4.58)

This explains the remarkable collapse in Fig. 4.2 in the localized phase. Indeed,
the entire distribution of Si has weight only at zero as N — oo which implies that
AS; ~ 1/N in the localized phase.

3. Within this model, the participation ratio PR of an eigenstate | F) is simply given by
the size n of the associated cluster. Thus, the PR distribution is given by Eq. 4.56.
This explains several aspects of the numerical PR distributions in Fig. 4.9: (1) the
PR distribution is nearly N-independent for small JN and has a sharp cut-off ng,
(2) the cut-off scales exponentially with N as predicted by Eq. 4.57 in the crossover
region. However, the power law regimes suggested by this model are not clearly seen
in the numerics.

4. At finite N, the localized phase in the vicinity of the transition is predicted to be
heterogenous across eigenstates, l-bits and samples as each initial configuration 7
provides a different landscape for building the resonant subgraph. However, this het-
erogeneity vanishes as N — oo as almost all the 1-bits are unentangled in eigenstates
(see the discussion of [S;] above), so this does not explain the numerical observations
in the crossover region.

5. Another possible model of the crossover region is that it is described by the bond
percolation problem at J > J. with a giant component. For eigenstates delocalized
on the giant component, S{ = 1, while for eigenstates delocalized on finite clusters,
S% is non-zero only for a finite number of l-bits. This model therefore predicts that
the distribution for S; becomes bimodal as N — oo with p(S; = 0) = (1 — P) and
p(S1 = 1) = P, where P ~ |J — J.| is the fraction of sites belonging to the giant
component.
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However, the numerics presented in Section 4.4 do not support this picture. First,
there is no evidence of a giant component in the PR distributions in the crossover
region in Fig. 4.9(b). Furthermore, this percolation model does not predict a sig-
nificant variation of S{ between l-bits ¢ in the same state. Numerically, this is the
biggest source of the variation in S} in the crossover region (see Fig. 11).

4.5.6 Higher order processes

The Anderson localization transition for a single particle hopping on a Bethe lattice [107]
with large coordination Z takes places at hopping strength J ~ W/Z1InZ, where W is
the bandwidth of the independently sampled disorder on each site [99]. Altshuler, et al.
argued that this result applies directly to the ‘hopping’ problem in Fock space induced by
two-body interactions in a disordered quantum dot [91]. They further conjectured a phase
diagram in which the eigenstates are localized for J < W/Z1n Z, delocalized sparsely in
Fock space for W/ZInZ < J < W/Z and fully delocalized for W/Z < J.

Physically, the transition at W/Z In Z arises due to long distance, high order resonances
in the Fock space. The associated states appear mixed from the point of view of few body
observables, just as the GHZ state does, an equal superposition of all spins either up or
down, even though their participation ratios remain a vanishingly small fraction of the
total volume of the hypercube. They further would not exhibit level repulsion as states
neighboring in energy typically do not overlap.

There are a number of assumptions that go into mapping the interacting dot model onto
the Bethe lattice localization problem. The most crucial of these are 1) that interference
due to the presence of loops on the hypercube is unimportant at long distances and 2) that
the energy correlations are likewise unimportant. These are plausible but not rigorously
justified. Indeed, even in the Bethe lattice problem, whether this regime is a phase or a
slow crossover is still debated [102, 103, 104].

The central spin model can be mapped to the Bethe lattice problem under similar
assumptions as the quantum dot model of Altshuler, et al. with Z = N. This mapping
predicts that higher order processes destabilize MBL as N — oo at asymptotically smaller
J than the second order processes described in Section 4.5.3. If this is true, then it seems
that there are two possibilities:

1. There is a direct transition from the localized to the ETH phase at J. ~ W/NIn N.

If this is the case, then it must be that at the small sizes N that we can reach nu-
merically, whatever non-perturbative processes cause the sparsely delocalized states

82



to fully thermalize in the limit of large N are ineffective at these small N, and we
primarily observe behavior governed by the second order picture up to the scale
J. ~ W/N. This is why we develop a detailed picture of the second order percolation
model in Section 4.5.5.

2. There is an intermediate delocalized ergodic phase between a transition at J. ~
W/NIn N and another transition on the scale J* ~ W/N. This would imply, for
example, that [S;] transitions at asymptotically smaller coupling than [r] by this
factor of In V.

We have attempted to interpret our numerical results from both of these view points
in Section 4.4, but the results are inconclusive, so we leave this difficult question about the
possibility of such an intermediate phase in our central spin model for future work.

4.6 Conclusions

We have explored a central spin model for many-body localization and thermalization. We
show that a single central spin can serve as a ‘seed’ for interactions between otherwise
noninteracting 1-bits and thus produce a thermal bath. From the point of view of finite
dimensional disordered systems, our model captures the interaction between a small inclu-
sion and the layer of its immediate neighbors. As the number N of immediate neighbors
grows with dimensionality d, the coupling necessary for this layer to thermalize tends to
zero. This bath, ‘nucleated’” by just one central spin, can then thermalize further layers
following a ‘layer-by-layer’ version of the arguments presented in Ref. [85] and accordingly
destabilize MBL.

We show, based both on numerics for small systems and on perturbative arguments,
that a central-spin system with N l-bits exhibits an MBL phase and phase transition in
the limit of large NV if we scale the interaction down with N. This dynamical transition
occurs at an interaction strength that is thermodynamically insignificant in the large- N
limit. We argue that the MBL phase can be understood as localization on a hypercube of
Fock states [91]. We discuss and explore the possibility of an intermediate “delocalized but
nonergodic” phase between the MBL and thermal phases. Our numerical results on small
systems do not allow us to draw a conclusion about whether or not such an intermediate
phase exists in this model. Our results also apply to more realistic models of the 1-bits that
include diagonal interactions between them; with diagonal interactions between the I-bits,
first order processes can already produce a divergent sub-graph of resonant configurations

for J > J.(N).
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We have also examined the finite-size behavior near the phase transition, particularly of
the single-1-bit entanglement within eigenstates. We find that the probability distribution
of this quantity is bimodal near the transition, with peaks near full entanglement and near
zero entanglement. This heterogeneity is shown to occur both across l-bits within single
eigenstates as well as across eigenstates for a single I-bit. This is a feature of the finite size
data that has also been seen in 1d models and is not yet well understood [86, 87]. The
finite size data for our central spin model do not scale well, indicating that the sizes we can
access numerically are well short of any asymptotic large-N scaling regime. One indication
of this is that the sample-to-sample variations are small, but appear to be accelerating in
their growth with increasing V.

Let us speculate on possible scenarios for the phase transition out of the localized
phase in to a delocalized phase (which may be non-ergodic or obey ETH). In the limit
of large systems, each sample s has its own transition point J.(s). Due to the quenched
disorder, we expect the probability distribution of these transition points to have a width
AJ. ~ J./vV/N [92, 93]. Within a single finite-size sample the transition may be sharper
than this, of similar width, or broader than this. The apparent accelerating increase of the
sample-to-sample differences seen numerically (Fig. 4.8(d)) argues against the last of these
possibilities. This leaves the two other possibilities. At the accessible system sizes, the
inter-sample and within-sample variations are comparable; if this persists to large N, we
would expect the rounding of the transition to be of width ~ J./ v/N both within samples
and between samples. The decreasing trend of the peak with N in Fig. 4.8(c) suggests that
the inhomogeneity between eigenstates in the l-bit-averaged entanglement at the transition
might go away at large NV, thus making all eigenstates in one sample similar in this respect
(although it seems likely they will still differ in which I-bits are less versus more entangled).

The other possible scenario is that the transition in a single sample is sharper by a
power of N than the variation in J.(s) between samples. A limiting case of this scenario
in equilibrium is provided by first order transitions with quenched randomness [105, 106].
In this scenario, if we scale J by the sample averaged .J,, then at J,, almost all samples
will be away from their transition and be in their MBL or delocalized phases respectively.
Almost all the variation in S; then comes from sample-to-sample variations. We are clearly
not in this regime for the sample sizes we study numerically here, but it remains possible
that this happens at much larger N. To study the single-sample transition in this regime,
one should instead scale J by the sample-specific transition point J.(s). It is an interesting
question to ask how sharp this transition could possibly be. What would be the nature of
the sharpest possible, thus most discontinuous, MBL-to-delocalized phase transition? We
leave these questions for future research.
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Chapter 5

Discussion and Outlook

In Chapters 2 and 3 we showed numerical evidence that ergodic systems generically heat-up
to infinite temperature with periodic driving, whereas many-body localized systems can
remain stable as an extensive set of localized conserved quantities survives the driving.
These results, which additionally have been supported by rigorous theoretical arguments
[108] and experiments in cold-atom systems [109], laid out the foundations for a series
of interesting and also unexpected developments. Because individual MBL eigenstates
do not satisfy the ETH, they can host a multitude of different types of order such as
symmetry breaking that are forbidden in equilibrium due to thermal fluctuations [110].
The possibility of MBL phases to host different types of order combined with their stability
with respect to periodic driving has resulted in the discovery of new types of ordered phases
[111, 112] — impossible to realize in the static setting — with the most notable example of
the Floquet time crystal exhibiting time translation symmetry-breaking, which has already
been observed experimentally [113, 114]. On the other hand, even though thermalization
of driven ergodic systems implies their collapse to a featureless infinite temperature state
at long times, the transient dynamics turns out to be more interesting. In fact, the latter
can be approximated by the dynamics of an effective local Floquet Hamiltonian obtained
from the Magnus expansion truncated to a few terms [115, 116, 117, 118, 119]. This
regime known as pre-thermalization lasts until heating effects take place at a time scale
which increases exponentially with the frequency of the drive. Theoretical bounds for the
optimal truncation of the Magnus expansion exist, but have not been verified numerically
yet.

In Chapter 4 we showed that a two-level thermal inclusion interacting with N localized
bits subject to random fields leads to their thermalization when the interaction strength
is larger than a critical value that decreases as 1/N. Our results indicate that the MBL
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phase is likely unstable in systems with short-range interactions and quenched randomness
in dimensions d that are high but finite. Moreover, the patterns of single bit entangle-
ment at the transition vary significantly between eigenstates of the same sample, which
provides evidence for a heterogeneous discontinuous transition out of the localized phase
with respect to single-site observables. A complete microscopic theory for the nature of
the MBL-to-thermal transition is still missing. However, these results suggest that a com-
plete understanding of the effects of thermal inclusions will constitute an important step
forward [120]. To this effect, machine learning techniques, the topic of the second part
of this thesis, might become important tools towards the general identification of relevant
order parameters for this phase transition, as well as towards a data-driven algorithm to
identify thermal inclusions (c.f. discussion in Chapter 8).

As we have seen in the first part of this thesis, the physics of closed quantum systems
away from equilibrium constitutes rich territory and many important questions remain
unanswered despite remarkable progress over the last decade. Addressing these questions
is now more urgent than ever with the increasing sophistication of experimental techniques
involved in the simulation and manipulation of isolated synthetic quantum matter, e.g. in
cold-atom systems.
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Part 11

Machine-learning phases of matter
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Chapter 6

Introduction

6.1 Machine learning

Machines that match humans in general intelligence and that are able to process diverse
types of information across different domains have been expected since the invention of
computers [121]. Indeed, the development of artificial intelligence (AI) included significant
challenges manifest in several periods of reduced funding and general interest in the field
known as the Al winters. However, today, Al is a thriving field in science and technology
with many applications. These include human level speech [122] and image recognition
[123], the ability to make diagnostics in medicine [124], and contributions to basic scientific
research across different disciplines [125, 126].

One of the earliest approaches to Al was based on expert systems [121]. These required
a knowledge-base of facts painstakingly hand-coded from human knowledge from which
inferences about new inputs were made. For example, in a task of predicting hand-written
digits in digitized images, one would handcraft rules or heuristics for distinguishing the
digits based on the shapes of the strokes, which would result in a proliferation of rules and
of exceptions to the rules and so on. These systems were expensive to develop, validate
and maintain, and the interest in them eventually waned.

On the other hand, the arguably most successful approach to Al has been machine
learning [127, 128]. This category refers to the set of computer algorithms that given a
specific task acquire their own knowledge by extracting the relevant patterns from raw
data. And then use these patterns to perform decisions given new data that has not been
observed before. Machine learning algorithms can be divided into three types: supervised
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learning, unsupervised learning and reinforcement learning, which are distinguished by the
nature of the task they are designed to accomplish.

Supervised learning

In supervised learning, the goal is to learn to map inputs x to outputs y. The machine
learns to perform this mapping through a training set of examples, i.e. a list of input and
associated output pairs T = {x;, y,}f\z Each input can be generically shaped as vector
x;, where each component is called a feature. For example, if ; describes a specific image,
each feature can correspond to the value of a pixel in the image.

Supervised learning is further discriminated based on the nature of the output y. If y is
a real variable, the problem is known as regression. On the other hand, if y is categorical,
i.e. it takes only ¢ possible values {0,1,2,...,c—1} corresponding to ¢ different categories,
then the problem is known as classification.

Unsupervised learning

In unsupervised learning, the algorithm only has access to a set of training inputs {x;}. The
distinguishing feature with respect to supervised learning is the absence of labels. Different
tasks fall under this category. In density estimation, one tries to learn the data-generating
probability distribution associated with {x;}. Other tasks involve finding certain struc-
tures in the data. For example, clustering algorithms search for optimal partitions of the
dataset into groups whose elements have similar properties (c.f. K-means algorithm), while
manifold learning searches for a lower dimensional but efficient representation of the data
points @; (e.g. Principal Component Analysis).

Reinforcement learning

In reinforcement learning [129], an agent interacts with an environment, and at a given
time can take a set of possible actions. The goal is to learn how to map the state of the
environment to an action, in order to maximize future rewards, which might come only
many steps later. The agent is not given a priori any information about which actions to
take, but must discover which actions yield the most reward by exploring and trying them
out.
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6.1.1 Example: Logistic regression

In Chapter 7 of this thesis we will be classifying phases of matter, so in preparation we
review a simple machine learning algorithm for binary classification called logistic regression
and use this example to introduce several important machine learning concepts.

In logistic regression the probability of an input @ to be classified as say class 1 is given
by p(y = 1|&;w) = o(w - @ + b). The function o is the sigmoid function o(z) = 7=
and squashes its output to the interval [0,1] so that it describes a probability. Due to
normalization, the probability of the input to be classified as class 2 is p(y = 2|x; w,b) =
1 — p(y = 1|z;w,b). The parameters w and b defining the model are called weights and
bias, respectively. Notice that even though the argument of the sigmoid w - & + b is linear
in @, it can be non-linear in an original set of features & by including in the vector x e.g.

polynomial features, such as 7%y, or other non-linear functions of the original features.

The learning algorithm determines the best parameters w,b by optimizing a perfor-
mance metric in the training set. For classification, the common metric is the maximum
likelihood estimator. This means the optimal parameters are those that maximize the prob-
ability of observing the input, output pairs in the training set, i.e. Hf\:l p(y = yi|zi; w, b).
It’s standard, however, to equivalently reframe the problem as minimizing the negative

log-likelihood:

J(w,b) = ——Zlnp(y:yi\mi;w,b) (6.1)

The solution w,b to the minimization of the cost function J(w,b) is found using a
gradient descent algorithm, as there is no closed form solution [128]. The process of
optimizing the cost function over the training set is known as the training phase of the
algorithm.

To evaluate the quality of the algorithm, instead of analyzing the negative log-likelihood
corresponding to the optimal parameters, it is common to focus on the accuracy of the
predictions of the model as it constitutes a more intuitive metric. This assumes the number
of examples in each of the classes is balanced, otherwise alternative metrics might be more
appropriate. If after training, the model captured enough knowledge to distinguish the
two classes on the training set, then we expect its accuracy to be high.

However, the central challenge in machine learning is to find an algorithm that performs
well on data that it has not seen before; this ability is known as the generalization. Thus,
ultimately, the quality of a classification algorithm is determined by finding the accuracy on
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a test set formed by different samples from the ones used in training: 7' = {x/, yg}f\z' One
important factor that contributes to the discrepancy between the training set accuracy and
the test set accuracy is if after training, the model learns details that are not generalizable
patterns of the data.

To address this problem, it is common to employ regularization techniques. These tech-
niques work by favouring certain solutions over others, such that the unpreferred solution
is only selected if it fits the training data significantly better than the preferred solution.

One common regularization technique is weight decay. In logistic regression, weight de-
cay penalizes solutions with larger weights w. More concretely, the cost function becomes:

where v defines an hyperparameter. This is a quantity that as opposed to the weights and
bias, is not learned from the training set, but is chosen so that it results in the optimal
performance in a test set. At very small 7, the weights are not significantly constrained,
so the model that learns the most about the training set by minimizing the negative log-
likelihood is selected. On the other hand, at large v, the optimal solution is a model with
small weights, and it might be too simple to capture all the details that are also relevant
to make predictions on new data. So typically, the best generalization performance occurs
for some intermediate value of ~.

The previous discussion on the role of the regularization parameter is related to a more
general idea in machine learning concerning the generalization error known as bias-variance
trade-off [128]. There’s usually two sources contributing to the generalization error. The
bias error is related to the inability of the model to learn all the complexity associated with
the learning task. When the bias is large, the model doesn’t perform well either on the
training or the test set. This regime is known as underfitting. When the model complexity
is very large, the bias is reduced, but now the model is susceptible to capture noise or
unrepresentative properties of the training data. Consequently, predictions on new data
are volatile with respect to details in the training set, which results in bad generalization.
This is the overfitting regime. Therefore, the general goal is to aim for a model whose
complexity corresponds to the optimal balance between the two types of errors.

6.2 Learning phase transitions

Over the past year there has been a surge of research activity applying machine learning to
several quantum physics problems. However, the relationship between the two fields has
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been a symbiotic one given the promise of quantum computing to improve the performance
of machine learning algorithms [130].

As mentioned above, the applications of machine learning to quantum physics have
been varied [131]. These include learning thermal and quantum phase transitions with su-
pervised and unsupervised learning, including the MBL-to-thermal transition, representing
physical wavefunctions with machine learning models and designing algorithms combining
machine learning and the renormalization group.

Most of the works so far have been based on a class of algorithms known as artificial
neural networks, whose basic units are called neurons. These neural network algorithms
and, in particular, deep neural networks whose architecture is formed by several layers of
neurons were responsible for recent breakthroughs in computer vision, speech recognition,
and natural language processing tasks with significant technological impact. It is believed
that underlying the success of deep learning is the ability to develop a hierarchy of concepts,
from basic ones at the bottom layers closer to the input to more complex ones at the
top layers; this is particularly clear in image recognition tasks [132]. However, that deep
architectures provide practical advantages compared to shallow architectures when working
with data originating from physical systems is still open to debate [133].

Going back to the task of learning phases of matter, which is the subject of Chapter 7,
the pioneering work in Ref. [134] showed that neural networks could perform the supervised
learning task of associating spin configurations from the 2D Ising Model with the corre-
sponding phase and even extract a certain critical exponent. The input to the learning
algorithm were configurations of the system sampled from the equilibrium Gibbs distribu-
tion at different temperatures, obtained from Monte Carlo simulations. Each configuration
was further labelled by the corresponding phase, depending on whether the temperature of
the corresponding Gibbs distribution was below or above the transition temperature sep-
arating a ferromagnetic from a paramagnetic phase. The same work showed that neural
networks were also able to discriminate topological phases, however, in this case, successful
learning was only possible with convolutional neural networks (CNN), whose architecture
directly enforces locality and translational invariance. Indeed, the CNN was able to learn
that the topological ground states of the model under study were characterized by an
extensive number of local constraints.

There have also been several unsupervised learning approaches to discriminating phases
of matter that do not require the precise knowledge of the boundaries between different
phases. Refs. [135, 136, 137] showed that for different models the Principal Component
Analysis (PCA) algorithm, which takes configurations of the system as input without any
label, was able to reveal order parameters that describe the phase transition. However,
it only works if the order parameter is related to a linear function of the input to the
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algorithm, otherwise the success of PCA depended on further feature engineering. For this
reason, there have been attempts to go beyond PCA using autoencoders [138]. Ref. [139]
introduced a confusion scheme to detect the phase transition when a certain parameter is
varied by doing supervised learning assuming different values for the critical parameter.
Under the reasonable assumption that maximum discrimination between the two sets of
configurations should occur when the guess for the critical parameter is close to the exact
one, this provides a way to detect the transition. Refs. [141, 140] also used a similar
approach. In the context of many-body localization, where the knowledge of the precise
boundaries to thermal phases are not known precisely for any model, a mixed approach
was considered, where the data obtained when the Hamiltonian is deep in each of the
phases is labelled, but the data originating from parameters near the crossover region is
not labelled. The associated cost function optimized a neural network model to classify
correctly the labelled data, and in addition to be confident about the predictions on the
unlabelled data [142]; see also [143].

In the next chapter, we introduce another supervised learning algorithm, Support Vec-
tor Machines, for learning phase transitions, which allows to obtain interpretable non-linear
order parameters associated with a phase transition, thus overcoming a general difficult
task for neural network models.
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Chapter 7

Kernel methods for interpretable
machine learning of order parameters

7.1 Introduction

From a physics perspective, the problem of searching for patterns in experimental data
has long driven theoretical progress which, by definition, relates the patterns to underlying
postulates of our physical theories. Hence, in the modern push to automate the discovery
of important and novel physical features in data [144, 134, 135, 145, 146, 147, 148, 149, 150,
151, 152, 153, 154, 155, 139, 156, 157, 154, 158, 159, 160, 161, 162, 163, 138, 164, 136, 142],
physicists must be mindful of the interpretability of machine learning results if they are
truly meant to drive the theoretical process.

In condensed matter, physicists face the ultimate big-data challenge. One must search
practical measurements, obtained from the exponentially-large state space of a system or
model, for patterns which relate to underlying theoretical paradigms. The recent success
of neural networks in classifying phases of matter [134, 147, 156, 146, 145, 148, 142| has
been encouraging, in that it demonstrates how relatively standard supervised learning
tools can be repurposed for calculations in condensed matter physics. However, contrary
to industry applications of machine learning, where performance is the prime metric of
success, in physics it is generally desirable to further tie the outcome to some theoretical
structure, which can eventually be used e.g. to make predictions. Neural network behavior
can indeed be interpreted on the simplest models of statistical mechanics, such as the
demonstration in Ref. [134] that the magnetization order parameter of the two-dimensional
(2d) Ising model is learned by the weights of the hidden units. However, in general for more
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complicated models, similar success in relating network structure to non-linear or non-local
order parameters is challenging, especially in the case of deep neural networks. This lack
of interpretability presents a challenge for the goal of driving theoretical progress with
machine learning. It is therefore crucial that the condensed matter community survey the
performance of interpretable machine learning algorithms on data obtained from models
of interest to condensed matter physics.

In this chapter we study interpretable supervised learning algorithms applied to the
discrimination of phases of matter in large synthetic data sets produced by numerical
simulation. We focus on a particular class of machine learning algorithms called support
vector machines (SVMs). In particular, we ask whether SVMs in the supervised learning
setting are able to discover the mathematical structure of physical order parameters. We
first introduce the SVM algorithm and describe its general properties, with particular
focus on the kernel trick. This trick allows us to perform linear regression on non-linear
features of the data, without explicitly generating the features. In particular, this is relevant
when applied to Monte Carlo data from many-body systems, which typically have high-
dimensional physical states. Without the kernel trick, it would be unpractical to generate
a set of non-linear features, which could be exponentially large. In Section 7.3, we perform
phase classification on Monte Carlo configurations produced from the 2d Ising model, a
conserved-order-parameter Ising model (COP) [135], and the 2d Ising gauge theory. We
find that SVMs with a quadratic polynomial kernel can discriminate the phases of the 2d
Ising model by learning the correct physical order parameter (the squared magnetization
per spin). In the case of COP model, we find that SVMs are able to discover the non-trivial
order parameter, devised by Wang [135] through visualization of dimensionally-reduced
data, with less human intervention. Finally, we show that the 2d Ising gauge theory,
whose T" = 0 ground state is defined by local plaquette constraints but no conventional
order parameter, can be discriminated by SVMs with polynomial kernels. In this case, no
polynomial with order less than four can identify the ground state, indicating that the SVM
is able to learn the original Hamiltonian in order to evaluate whether the local constraints
on four Ising degrees of freedom are satisfied for each plaquette.

7.2 Support Vector Machines

Linear support vector machines [128] were initially designed to perform binary classifi-
cation. They belong to the class of supervised learning algorithms that, given an input
x € RP, predict the class y € {—1, 1} in which it is most likely to belong. In the context
of this chapter, the input x will represent a spin configuration from a statistical mechan-
ical model of interest in condensed matter physics, in which the different components of
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x, called features in the machine learning literature, correspond to the spins at different
lattice sites. The output y will label the thermodynamic phase it was sampled from. The
main idea behind SVMs is to find the hyperplane, defined by w - & + b = 0, that best
separates the two classes. Formally, this is achieved by solving the optimization problem:

1 1 —
arg min{§w~w+—z&}
7=

w7§’i b

such that y(w-x® +b) >1-¢,i=1...N. (7.1)

Here, v is a constant, ¢ are “slack” variables (described with more detail below) and N
is the number of input samples, called the training set. Finding optimal parameters w
and b, which can then be used to make predictions on a test set, is the goal of supervised
learning with SVMs. Unlike say a feed-forward neural network [134], this model does not
provide probabilistic predictions. However, the optimization problem Eq. 7.1 is equivalent
to arg min,, , {%w W+ SN max (0,1 — yid(m(i)))} with d(z)) = w-x 4b. Because
the hinge function max(0,1 — yd) approximates the misclassification error ©(—yd) [127],
this can be viewed as an approximation to minimizing the misclassification error with a so-
called fo-norm regularization (which penalizes unnecessary coefficients of w). This analogy
also explicitly shows that v can be interpreted as a regularization parameter.

When the & variables are constrained to be zero in Eq. 7.1, this corresponds to the
hard margin case and the optimization algorithm has a solution only for linearly separable
classes. In this case, the solution corresponds to the hyperplane w -  + b = 0 for which
the margin, defined as the minimum distance dy,;, = 1/||w|| of the data samples to the
hyperplane, is maximum. Thus, this algorithm finds the hyperplane which maximizes the
training set margin and provides the most confident predictions on new inputs. On the
other hand, perfectly separable data is not a typical property of datasets and in general
the constraints y® (w - £ + b) > 1 are not feasible. Hence, it is necessary to introduce
the slack variables ¢ which allow a training set input ® to violate the margin at a cost
of &/v. For a given training sample, the slack variable &; can take different values. & = 0
if the margin is not violated; 0 < & < 1 if it is on the correct side of the hyperplane but
violates the margin; and &; > 1 if the sample is misclassified. In general it is necessary to
use a test set to find the optimal parameter . This will provide the best trade-off between
minimizing training errors and the model complexity.

After optimization (i.e. training), the class to which a new input & belongs is predicted
as y = sign(d(x)), hence d(x) is referred to as the decision function in the machine learning
literature. Even though the previous optimization problem can be solved by quadratic
programming [128], it also admits a dual formulation whereby the primal variables w, &, b

96



are eliminated and the optimization is performed over N dual variables «;, which are the
Lagrange multipliers associated with each constraint in Eq. 7.1. The optimal parameter
w is then expressed as w = Zfil ay;2®. A crucial feature of this dual formulation is
that the optimization algorithm only depends on inner products of the training samples
(x® 2), In addition, at prediction time, one only needs to calculate the inner product
between the training samples and new samples. Because the algorithm is formulated such
that the input vector enters only in the form of a scalar product, this allows us to employ
the kernel trick, whereby we replace 9 - (9) with some other choice of kernel function,
K (:I:(i), xU )). Then, at prediction time the decision function has the form

N
d(z) = ayK(xW, x)+b, (7.2)
=1

whereby we can learn more complex decision functions depending on the choice of the
kernel without explicitly generating more features in our input . For example, the kernel
K(z®,20) = (2 -2V + ¢;)? corresponds to the mapping to a (*+?) dimensional feature
space corresponding to all the monomials of the form x;, x;, . .. x;, (ignoring permutations)
that are up to order d where p is the number of raw features. Importantly, we note that
the choice of a kernel (e.g. a polynomial) that results in a highly interpretable decision
function also limits the expressive power of the SVM, especially when compared with
universal approximator algorithms such as neural networks.

7.3 Results

In this section, we perform supervised learning with SVMs on data sets generated by
sampling spin configurations of classical Hamiltonians, where Ising degrees of freedom o
(“spins” taking binary values) will serve as our input @. Finite size lattices with N spins
are considered. In the following, we use the most efficient training algorithm for SVMs by
means of the scikit-learn library [165] — the Sequential Minimal Optimization algorithm
[166] — known to scale as O(N?), or with a smaller power, for several kernels and types of
data. We find, in practice, training on a single core is generally slow for 10° samples or
more. We explore the behaviour of different polynomial kernels and perform grid search
to find the optimal regularization parameter . In general, the results are averaged over
several choices of training and test sets for the same hyperparameters in order to obtain
more reliable statistics.

97



7.3.1 2d Ising Model

We first consider the nearest-neighbor Ising model in two dimensions, H = — ) (ab) Ta0b;
where 0, = £1, and a are the Euclidean coordinates of a given lattice site. Monte Carlo
simulations using the Wolff algorithm were performed to collect spin configurations ol) =
(... ,Uc(f ), ...) where 7 identifies each configuration collected at different temperatures from
T =1.6toT =2.9. The 2d Ising phase transition occurs at the critical temperature T, ~
2.269 [167] and separates a ferromagnetic (FM) phase, characterized by a non-zero total
magnetization per spin, from a featureless paramagnetic (PM) phase at high temperatures.
For a given L x L = N size lattice, each sample is labeled with its corresponding phase in
the binary class y; = 1. We train SVMs to learn to discriminate between the two phases
for different numbers of samples in the training set, with a corresponding change in the
number of samples at each temperature. For the Ising model, we limit our survey to a
linear and a quadratic kernel of general form K(o,0') = (o - o' + ¢p)* with k = 1,2 and
¢o = 0. Note that in general, it might be necessary for the learning procedure to find the
optimal ¢q as well.

In order to quantify the performance of each SVM model, the main metric that we
study is the test set accuracy as a function of the number of samples in the training set,
for the value of v which results in the optimal accuracy of the model, illustrated in Fig. 7.1
(a). For the linear kernel, the exploration of v is over a log-spaced grid of 11 values from
107° to 10°. For the quadratic kernel the accuracy does not depend significantly on the
choice of v and thus we fixed it at v = 107°. For a given number of training samples
and regularization ~y, the test set accuracy is additionally averaged over different random
selections of training and test sets.

Results for the test set accuracy and for the SVM decision function are shown in Fig. 7.1.
As seen in Fig. 7.1 (a), the quadratic kernel performs extremely well with mean test set
accuracy ~ 97% for L = 40. This can be easily interpreted, since we know that this model
possesses a quadratic order parameter that linearly discriminates the FM from the PM,
i.e. the squared magnetization per spin m? = (3__ 04/N)* We find that the quadratic
kernel reaches very significant performance with only a few dozen samples in the training
set, which is a result of the simplicity of this model. Moreover, with increasing number of
samples the test set accuracy approaches a plateau value which increases with system size
towards 100%. This is the expected behaviour, since at the critical point the fluctuations
of the order parameter approach zero in the thermodynamic limit and it is thus possible
to discriminate perfectly between both phases.

For the linear kernel (Fig. 7.1 (a)), the accuracy shows non-monotonic behaviour with
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Figure 7.1: (a) Average test set accuracy of Support Vector Machines with polynomial
kernel K(o,0') = (o - ¢')* trained on Monte Carlo sampled configurations from the 2d
Ising model. For each number of training samples, the accuracy is averaged over 100 in-
dependent training and test sets. (b) The SVM classifies samples according to sign(d(o)).
The decision function d(o) for the SVM with a quadratic polynomial kernel is evaluated
by Monte Carlo sampling at different temperatures and compared to the squared magne-
tization per spin m2. The arbitrary scale factor and off-set in the SVM decision function
are fixed by matching the decision function to (m?) at T'= 1.6 and T = 2.9.
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Figure 7.2: The decision function for an SVM with quadratic polynomial kernel, Eq. 7.3.
The averaged C, = (C;E;a)>a is displayed for different values of regularization v = 10% and
v = 1075, Clearly, for large regularization (y = 10%), the decision function is essentially
the m? order parameter of the 2d Ising model.

the total number of training set samples and does not improve with increasing system size.
This is a consequence of the fact that a linear decision function is unable to discriminate
between the FM and PM phases. Namely, in the FM phase configurations have magneti-
zation per spin near +1, while for the PM phase most configurations have appproximately
zero magnetization. Thus, the £ = 1 kernel is asking a linear decision boundary to sepa-
rate a data set with three clusters — an impossible task. Close inspection of the decision
function learned by the SVM reveals it contains random linear coefficients without any
structure, confirming that nothing physically relevant is being learned about the data in
this case.

As noted above, the accuracy of the SVM with a quadratic kernel on the test set does
not depend significantly on the regularization parameter v. An advantage of SVMs is that
we can visualize the decision function being learned. From Eq. 7.2, the decision function
for an SVM with quadratic polynomial kernel can be expressed as

d(o) =) "> C04041s+b. (7.3)

a xr

In Fig. 7.2, we display the heatmap of C, = (Cg(ca)
with respect to all sites @ for v = 10°® and v = 1

, where (...), denotes averaging

)a
075 and system size L = 30. It is
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interesting to note that even though the classification performance is very similar, the SVM
decision function corresponds to different order parameters depending on the amount of
regularization. Clearly, at v = 10°, the SVM is learning m? as the order parameter of the
model up to finite-size effects. In contrast, at v = 107%, the SVM is learning to calculate the
square of the total magnetization within some fixed distance of each spin and summing all
these different local contributions. A more detailed Fourier decomposition of O shows
that the k = 0 mode is dominant for any amount of regularization, but at small v the
contributions from other small k modes are larger.

In Fig. 7.1 (b), the SVM decision function (for large regularization v = 10°) is averaged
over Monte Carlo samples at different temperatures showing essentially perfect agreement
with m?2. Of course, the SVM decision function has an arbitrary scale and off-set and in
order to match with (m?) a linear transformation is performed, so that they agree at the
extreme values of temperature 7' = 1.6 and 2.9.

7.3.2 Conserved-order-parameter Ising model

The conserved-order-parameter Ising model [135] is described by the same Hamiltonian as
the Ising model but the configuration space is restricted to the subspace where the total
magnetization ) o, is zero. This model describes a half-filled lattice gas of particles
with a nearest neighbour attractive interaction [168]. At low temperatures, domains of up
and down spins are separated by either two horizontal or two vertical domain walls for a
square lattice geometry with periodic boundary conditions. There is a phase transition
to a featureless phase at the same critical temperature as the 2d Ising model. Ref. [135]
studied this model on the square lattice using Principal Component Analysis (PCA), a
dimensional reduction algorithm, and devised the following order parameter:

1 2T
S =i ;Uuab [cos (f(éh — bl)>

+ cos (2%(@2 _ @)ﬂ | (7.4)

S is of the form of Eq. 7.3 with
o 1 2m 2T
Ci ) = ﬁ |f308 <f$1> + cos (fl’g):| . (75)
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Figure 7.3: (a) Average test set accuracy vs number of training samples for Support Vector
Machines with polynomial kernel K(o,0’) = (o - 0')* trained on Monte Carlo sampled
configurations from the conserved-order-parameter Ising model at different temperatures.
(b) The spatial dependence of the SVM decision function coefficients (C*), learned by an
SVM with quadratic kernel and regularization coefficient v = 112.9 for system size L = 30
shows very good agreement with the analytical form (Eq. 7.5) devised in [135].
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In contrast to PCA, which through feature dimension reduction provides the easy visu-
alization required for the determination of this order parameter, SVMs should provide
automated order parameter detection in a more systematic way. We explore this ability
now.

As in the case with the Ising model, we collect Monte Carlo samples for a set of
temperatures below and above T.. Fig. 7.3 (a) shows the averaged test set accuracy as a
function of the number of samples for the optimal value of the regularization parameter
v over a grid of 11 values from 1075 to 10°. The results are averaged over 400 training
and test sets. As in the Ising model case, for a quadratic kernel there is a monotonic
improvement of test accuracy with the number of training samples. The limiting value as
the number of training samples becomes very large also increases with system size. This
behavior signals the existence of a quadratic order parameter that discriminates between
the two phases. As a check, we compare the explicit spatial dependence C, = (C’;E,a) Va
of the SVM decision function for v = 112.9 (the selection of this regularization value is
discussed below) to the analytical form (Eq. 7.5). The scale and off-set of the SVM decision
function are fixed by requiring the coefficients C; to have the same mean and standard
deviation as the analytical form. Fig. 7.3 (b) shows very good agreement between them.
In contrast, the linear kernel does not show a clear improvement of the test set accuracy
with increasing number of samples which indicates there isn’t an order parameter of that
form.

One could ask whether this order parameter could also be learned in the case where
the precise value of the critical temperature 77 is not known. We address this by perform-
ing supervised learning with quadratic SVMs assuming different values 77 for the critical
temperature. Finite size scaling of the learned order parameter (or its moments) can then
be used to estimate the value of the critical temperature. Fig. 7.4 (a) compares the ac-
tual order parameter S (Eq. 7.4) with the SVM decision function for different values of
T! = 1.85, 2.05, and 7. ~ 2.269. The scale and off-set of the SVM decision function are
fixed by matching it with S at T'= 0.1 and 7" = 100.0. We observe that the SVM decision
functions learned when assuming 77, = 1.85,2.05 (for a choice of regularization values dis-
cussed below) also agree well with S, suggesting machine learning algorithms are able to
learn important physical information without the precise knowledge of T..

We now analyze the role of the regularization parameter ~ for learning in this model.
Fig. 7.4 (b), shows for L = 30 and a training set with 30000 samples, the test set accuracy
averaged over 10 randomly picked test sets of 10000 samples versus the regularization
parameter v for 7! = 1.85, 2.05, and T &~ 2.269. At v < 103, the test set accuracy jumps
significantly to very high values (=~ 90%) and then reaches a plateau. Interestingly, we find
that throughout the plateau region the decision function of the SVM changes continuously.
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Fig. 7.4 (a) also compares the analytical order parameter S with the SVM decision function
for different values of v when 7). = T.. For v = 112.9, right at the beginning of the plateau,
there is highly accurate agreement between S and the SVM decision function, while for
v = 0.001 the two do not match. Similar results were also found for the other values of 7.
Thus, the physical order parameter can be interpreted as being associated with the least
amount of complexity that still allows the model to have good predictive performance.
This was also what we found for the Ising model in Section 7.3.1.

7.3.3 2d Ising Gauge theory

Finally, we consider the challenging case of topologically ordered systems, where no con-
ventional local parameter exists. For concreteness we study the 2d Ising gauge theory with
Hamiltonian H = — Zp Hiep o7, where the spins live on the bonds of a 2d square lattice
and p represents a plaquette with four spins. The set of ground states is a degenerate mani-
fold with the constraint that for all plaquettes p, Hiep o7 = 1. In the thermodynamic limit,
the constraints are violated at any finite temperature. A conventional order parameter that
distinguishes ground states from finite temperature states does not exist. Ref. [134] found
that the simplest fully connected feed forward neural networks were unable to classify these
two different cases in a supervised learning context. Only with convolutional neural net-
works, which explicitly exploit locality and translational invariance, did this classification
task succeed on raw spin configurations. We note that by engineering predictive features
as a pre-processing step, simple feed forward neural networks may be successful in clas-
sification (as demonstrated in Ref. [156]). However in the present case, we explore the
behaviour of SVMs for the raw 2d Ising Gauge theory data with no pre-processing on the
input data.

We perform supervised learning on spin configurations generated for the Ising Gauge
theory at 7'= 0 and T' = oo (i.e. completely random spin states). We explore kernels of
increasing degree, starting from k = 1, for different system sizes L. Fig. 7.5 (a) shows that
for system size L = 5, SVMs with polynomial kernel of degree less than 4 fail to discriminate
these two phases, exhibiting average test set accuracies ~ 50%, which amounts to random
guessing. However, a SVM with polynomial kernel of fourth order is able to perform the
task with an accuracy that converges towards 100% as the number of training samples is
increased. As apparent in Fig. 7.5 (b), we also note that the number of training samples
necessary to learn the fourth order discriminator increases with system size. This illustrates
the difficulty that SVMs can have in performing classification for large system sizes.

In order to interpret these results, we further analyze the decision function of the SVM.
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Figure 7.5: (a) Test set accuracy of SVMs with polynomial kernels of order k in classifying
ground states versus infinite temperature states of the 2d Ising Gauge theory for system
size L = 5. Only in the feature space of fourth order polynomials is the SVM algorithm
performance better than a random algorithm. The performance approaches 100% with
increasing number of training samples. (b) Test set accuracy for k = 4 and different system
sizes. For larger system sizes, more training samples are needed to learn the correct decision
function.
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Figure 7.6: Histogram of the coefficients Cypeq in the decision function learned by a SVM
with 4th order polynomial kernel in classifying ground states versus infinite temperature
states of the 2d Ising Gauge theory for L = 5. There are 600 large coefficients (in absolute
value) which correspond to the 25 plaquettes and the permutations of their spins.

The smallest degree (fourth order) polymonial kernel learns a decision function of the form
d(o) =" sped CabedTa0b0c04 + b, which contains the product of four spins. Fig. 7.6 shows
the histogram of the coefficients Clypeq for an SVM trained on 20000 samples and v = 1075,
From this plot it is clear that there are two sets of coefficients; one near zero, and another set
with large negative values. Counting the number of these large (in magnitude) coefficients
reveals 600. For this lattice, with 25 square plaquettes, this number corresponds to the the
number of possible permutations of the four indices of abed, i.e. 25 x 4!. Hence, this model
provides evidence that SVMs are able to learn complex interpretable decision functions
and discover the locality of the Hamiltonian directly from raw data on spin configurations.
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7.4 Conclusions

We have examined the use of support vector machines (SVMs), one of the most common
tools for supervised learning, for the binary classification of phases in several models of
interest to condensed matter and statistical physics. SVMs employ a kernel trick to define a
decision function, used to discriminate features in a higher dimensional space. The kernel
depends on the inner product of spin vectors, but can otherwise have some freedom in
definition. We have shown that in contrast to other methods such as neural networks,
the ability to use different kernels for classification tasks gives SVMs significant value in
finding interpretable physical discriminators for different models, such as conventional order
parameters defined in condensed matter theory.

To allow for some slack to misclassify data, SVMs employ a regularization, which con-
trols the tradeoff between minimizing training errors, while still allowing sufficient model
complexity. In this chapter we have found that the amount of regularization has a strong
impact on the decision function learned. We find that the expected physical order param-
eter is associated with the least complex model (i.e. the largest amount of regularization)
that is still able to obtain near optimal test set accuracy.

On the other hand, we find that small values of regularization that achieve the same (or
better) performance than the physical order parameter learn a non-physical decision func-
tion — one not related to any conventional order parameter. Since such decision functions
generalize well to uncorrelated test set samples, we argue that this is not an example of
overfitting, even though it may arise due to particular details contained within the training
set. This observation deserves further study, as it may have consequences more generally
for the role of regularization in black box algorithms, such as neural networks, when applied
to data in condensed matter physics.

While very successful on the Ising-like examples studied in this chapter, the SVM
algorithm is not without its limitations. As observed for the 2d Ising Gauge Theory, the
number of samples required to learn the physically relevant decision function can grow
prohibitively large. The reason that this occurs for the degenerate groundstate of the
[sing gauge theory, and not the models with conventional order parameters, desires further
study. We generally observe that the training of SVMs when the number of samples is
larger than 10° becomes time consuming. This could also be an issue in using SVMs
near phase transitions in models where a large number of samples is necessary to learn
the physical discriminator. In such cases, it would be interesting to further explore the
interpretability of neural networks, since they can possibly present better scalability to
larger system sizes.

It would be interesting to study the utility of SVMs on other classical models of interest
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in condensed matter physics. We note that for systems with continuous degrees of freedom
it might be necessary to consider a radial basis function as a kernel, which maps to an
infinite dimensional space, instead of polynomials. For example, it would interesting to see
if for the 2d XY model, the spin stiffness can be identified as the physical discriminator for
the Kosterlitz-Thouless transition using a suitably modified SVM. Finally, SVMs and other
sparse kernel machines may in the future be easily adapted to study quantum phases and
phase transitions by using wavefunctions or density matrices as data. SVMs with linear
or quadratic polynomial kernels could be used to determine operators which discriminate
between different quantum phases using density matrices or wavefunctions as data. Thus,
as the condensed matter community increasingly adopts modern machine learning methods
into its numerical arsenal, we expect that SVMs will become a standard tool for finding
interpretable physical discriminators for generic Hamiltonians in the near future.
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Chapter 8

Discussion and Outlook

In the previous chapter, we demonstrated that it is possible to automate through machine
learning the discovery of important interpretable features associated with phase transitions
such as order parameters.

In the context of this thesis, a natural future research direction concerns the applica-
tion of interpretable machine learning to phase transitions such as the MBL-to-thermal
transition that are not well understood theoretically. The results of Ref. [143] provide
hopeful prospects as it showed that the decision function associated with a trained neural
network was able to discriminate MBL phases with different types of order and also the
MBL-to-thermal transition with sharper crossovers than standard measures such as the
standard deviation of bipartite entanglement entropy. This suggests the existence of so
far unknown physical quantities that might be relevant for a better understanding of this
phase transition. Another interesting research direction in this context regards a data-
driven identification of the thermal inclusions which are believed to play an important role
at the transition. This could possibly be achieved through unsupervised machine learning
algorithms (e.g. clustering).

The field of learning phase transitions with machine learning is currently not without its
challenges. For example, supervised learning with neural networks of different architectures
cannot capture the topological features associated with the Kosterlitz-Thouless transition
in the 2d XY model without explicit feature engineering [169]. Instead, it seems to learn
the magnetization (which is non-zero due to finite size effects at the transition temperature
for accessible system sizes) and energy fluctuations as a way to detect the phase transition.
It is an interesting open question whether the cost function of the neural network could be
modified to bias it towards finding the true order parameter.
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Challenges such as these are important milestones for the development of the field.
In the future, as the field matures through the application of machine learning to various
models including those that are well understood from a theory point of view and those that
are not, machine learning algorithms might become standard tools not only to discover
phase transitions, but also to guide their theoretical understanding.
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